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Abstract

The 2023 CERN Latin-American School of High-Energy Physics (CLASHEP)

took place in Chile. The CLASHEP School is intended to give young physi-

cists from Latin-America and other regions an introduction to recent theoreti-

cal and experimental advances in elementary particle physics. These proceed-

ings contain lecture notes on field theory and the electro-weak Standard Model,

on statistics and machine learning and on collider experiments.
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Preface

Martijn Muldersa

aCERN

The eleventh Event in the series of CERN Latin-American Schools of High-Energy Physics took place

from 15 to 28 March 2023 in San Esteban, Chile. It was organized by CERN with the support of Chilean

colleagues from Universidad Andrés Bello, Universidad Tecnica Federico Santa Maria, and CCTVal

(Valparaiso Center for Science and Technology).

The School received financial support from: CERN and CIEMAT. Financial and in-kind contribu-

tions were also received from SAPHIR – Millennium Institute for Subatomic Physics at the High Energy

Frontier. Our sincere thanks go to all of the sponsors for making it possible to organize the School with

a large number of young participants from Latin-American countries, many of whom would otherwise

not have been able to attend.

The School was hosted in the Termas el Corazón Hotel in San Esteban, about 90 minutes from

Santiago. We are indebted to the hotel and its friendly staff for their help in making the Event such a

success.

Mauro Cambiaso from Universidad Andrés Bello acted as local director for the School, assisted

by members of the local organising committee. We are extremely grateful to Mauro and his colleagues

for their excellent work in organizing the School and for creating such a wonderful atmosphere for the

participants. Sixty-six students of 21 different nationalities attended the School. Following the tradition

of the School the students shared twin rooms mixing nationalities, and in particular the Europeans mixed

with Latin Americans.

The 13 lecturers came from Europe, Latin America and the USA. The lectures, which were given

in English, were complemented by daily discussion sessions led by five physicists coming from Latin

America. The lectures and the discussion sessions were all held using the conference facilities of the

hotel. The students displayed their own research work in the form of posters in a special evening session

during the first week. The posters were left on display until the end of the School. The students from

each discussion group also performed a project, studying in detail the analysis of a published paper from

an LHC experiment. A representative of each group gave a brief summary talk during a special evening

session during the second week of the School.

Our thanks are due to the lecturers and discussion leaders for their active participation in the School

and for making the scientific programme so stimulating. The students who in turn manifested their

good spirits during two intense weeks undoubtedly appreciated their personal contributions in answering

questions and explaining points of theory.

We are very grateful to Kate Ross, the administrator for the CERN Schools of Physics, for her

efforts in the lengthy preparations for the School and during the Event itself. Her efficient work, friendly

attitude, and continuous care of the participants and their needs were highly appreciated.

The participants will certainly remember the two interesting excursions: an afternoon visit to

the city of Santiago, followed by dinner at a local restaurant; and a full-day excursion to the town of

vii



Zapallar and an exciting walk along the coastal path before dinner in a lovely restaurant overlooking

the sea. They also greatly appreciated evenings spent together in the hotel, especially the farewell party

on the last night. The success of the School was to a large extent due to the students themselves. Their

poster session and group projects were very well prepared and highly appreciated, and throughout the

School they participated actively during the lectures, in the discussion sessions, and in the different

activities and excursions.

Martijn Mulders

(On behalf of the Organizing Committee)
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Lecture summaries

Quantum field theory and the electroweak Standard Model

In these lectures we give an introduction and overview of the electroweak Standard Model

(EWSM) of particle physics. We first introduce the basic concepts of quantum field theory necessary

to build the EWSM: abelian and non-abelian gauge theories, spontaneous symmetry breaking and the

Higgs mechanism. We also introduce some basic concepts of renormalization, so as to be able to under-

stand the full power of electroweak precision tests and their impact on our understanding of the EWSM

and its possible extensions. We discuss the current status of experimental tests and conclude by pointing

the problems still existing in particle physics not solved by the EWSM and how these impact the future

of the field.

Statistics and machine learning for high-energy physics

These lectures introduce some of the main ideas of frequentist and Bayesian statistics as well as

supervised machine learning with a focus on the probabilistic interpretation of the latter. The ideas are

illustrated using simple examples from particle physics.

Collider experiments: the LHC and beyond

The basic concepts of experimental particle physics at colliders are presented, over four introduc-

tory lectures, using examples taken from the highest energy collider in the world: the LHC at CERN. The

physics motivation for collider experiments is discussed, followed by an introduction of the accelerators

and experiments at CERN and elsewhere. An overview of the principles of particle detection and of the

different types of detectors is given. The physics highlights at the LHC are discussed and an outlook

beyond the Standard Model and the LHC is given.

xi





FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

Quantum field theory and the electroweak Standard Model

Gustavo Burdman

Institute of Physics - University of São Paulo, Brazil

In these lectures we give an introduction and overview of the electroweak Standard Model (EWSM)
of particle physics. We first introduce the basic concepts of quantum field theory necessary to build
the EWSM: abelian and non-abelian gauge theories, spontaneous symmetry breaking and the Higgs
mechanism. We also introduce some basic concepts of renormalization, so as to be able to understand
the full power of electroweak precision tests and their impact on our understanding of the EWSM and
its possible extensions. We discuss the current status of experimental tests and conclude by pointing
the problems still existing in particle physics not solved by the EWSM and how these impact the
future of the field.

1 Quantum field theory basics and gauge theories . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quantum field theory basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3 Non-abelian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 The electroweak Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.1 Building the electroweak Standard Model . . . . . . . . . . . . . . . . . . . . 73

2.2 The electroweak gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3 The origin of mass in the electroweak Standard Model . . . . . . . . . . . . . . 77

3 Testing the electroweak Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Electroweak precision constraints and fermion couplings to gauge bosons . . . 122

3.3 Gauge boson self couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.4 Higgs boson couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.1 The electroweak Standard Model: Open questions . . . . . . . . . . . . . . . . 139

4.2 The EWSM and the future . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

1 Quantum field theory basics and gauge theories

1.1 Quantum field theory basics

1.1.1 Why quantum field theory

Quantum field theory (QFT) [1] is, at least in its origin, the result of trying to work with both quantum

mechanics and special relativity. Loosely speaking, the uncertainty principle tells us that we can violate

This article should be cited as: Field theory and the electroweak Standard Model, Gustavo Burdman, DOI: 10.23730/CYRSP-
2025-002.1, in: Proceedings of the 2023 CERN Latin-American School of High-Energy Physics,
CERN Yellow Reports: School Proceedings, CERN-2025-002, DOI: 10.23730/CYRSP-2025-002, p. 1.
© CERN, 2024. Published by CERN under the Creative Commons Attribution 4.0 license.
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GUSTAVO BURDMAN

energy conservation by ∆E as long as it is for a small ∆t. But on the other hand, special relativity tells

us that energy can be converted into matter. So if we get a large energy fluctuation ∆E (for a short

∆t) this energy might be large enough to produce new particles, at least for that short period of time.

However, quantum mechanics does not allow for such process. For instance, the Schrödinger equation

for an electron describes the evolution of just this one electron, independently of how strongly it interacts

with a given potential. The same continues to be true of its relativistic counterpart, the Dirac equation.

We need a framework that allows for the creation (and annihilation) of quanta. This is QFT.

We can say the same thing by being a bit more precise so that we can start to see how we are going

to tackle this problem. Let us consider a classical source that emits particles with an amplitude JE(x),

where x ≡ xµ is the space-time position. We also consider an absorption source of amplitude JA(x).

We assume that a particle of massm that is emitted at y propagates freely before being absorbed at x [2].

Fig. 1: Emission, propagation and absorption of a particle.

The quantum mechanical amplitude is given by

A =

∫
d4x d4y ⟨x|e−iH∆t|y⟩ JA(x) JE(y) , (1.1)

where ∆t = x0 − y0. Here we have used the notation

d4x ≡ dt d3x , (1.2)

to denote the Minkowski space four-volume, i.e. we are integrating over time and all space. We want to

check if the amplitude in (1.1) is Lorentz invariant, i.e. if it is compatible with special relativity. Writing

H =
√
p2 +m2 ≡ ωp , (1.3)

as the frequency associated with momentum p, then the amplitude is

A =

∫
d4x d4y ⟨x|e−iωp(x0−yo)|y⟩ JA(x) JE(y) . (1.4)

If we go to momentum space using

2
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|x⟩ =
∫

d3p

(2π)3/2
|p⟩ e−ip⃗·x⃗ , (1.5)

and analogously for |y⟩, we obtain

A =

∫
d4x d4y

∫
d3p

(2π)3/2
⟨p| eip⃗·x⃗ e−iωp(x0−yo)

∫
d3p′

(2π)3/2
|p′⟩ e−ip⃗′·y⃗ JA(x) JE(y) . (1.6)

Using that

⟨p|p′⟩ = δ3(p⃗− p⃗′)N2
p , (1.7)

where Np is the momentum dependent normalization, we now have

A =

∫
d4x d4y JA(x) JE(y)

∫
d3p

(2π)3
N2
p e

−ipµ (xµ−yµ) , (1.8)

In the last exponential factor in (1.8) we use covariant notation, i.e.

pµ (xµ − yµ) = p0(x0 − y0)− p⃗ · (x⃗− y⃗) = ωp∆t− p⃗ · (x⃗− y⃗) . (1.9)

To check if A is Lorentz invariant we are going to define the four-momentum integration with a Lorentz

invariant measure. Defining

d4p = dp0 d
3p , (1.10)

we now can compute the Lorentz invariant combination

d4p δ(p2 −m2) , (1.11)

where the delta function ensures that p2 = pµ p
µ = m2. Then we do the integral on p0 as in

∫
dp0 δ(p

2 −m2) =

∫
dp0 δ(p

2
0 − |p⃗|2 −m2) =

∫
dp0

δ(p0 − ωp)
|2p0|

=

∫
dp0

δ(p0 − ωp)
2wp

, (1.12)

remembering that ωp = +
√
p2 +m2 positive. Only the positive root contributes in (1.12) since the

fact that pµ is always time-like means that the sign of p0 is invariant. This, in turn, means that the p0

3
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integration interval is (0,∞), and the negative root is outside the integration region.

This allows us to rewrite the amplitude as

A =

∫
d4x d4y JA(x) JE(y)

∫
d4p

(2π)3
δ(p2 −m2) 2ωp N

2
p e

−ipµ (xµ−yµ) . (1.13)

The expression above appears Lorentz invariant other than for the momentum dependent factor

2ωpN
2
p . (1.14)

Thus, the choice (up to an irrelevant constant)

N2
p =

1

2ωp
, (1.15)

results in the Lorentz invariant amplitude

A =

∫
d4x d4y JA(x) JE(y)

∫
d4p

(2π)3
δ(p2 −m2) e−ip

µ (xµ−yµ) . (1.16)

Although the quantum mechanical amplitude in (1.16) is manifestly Lorentz invariant, there remains

a problem: this expression is valid even if the interval separating x from y is spatial, i.e. even if the

separation is non-causal. This is obviously wrong, since we started from the assumption that there is an

emitting source at y and an absorbing source at x, for which the causal order is crucial, which means that

the way it is now the separation should not be spatial.

In order to solve this problem, we are going to allow all sources to both emit and absorb, i.e. at any point

x we have

J(x) = JE(x) + JA(x) . (1.17)

The amplitude then reads

A =

∫
d4x d4y J(x) J(y)

∫
d3p

(2π)3 2ωp

{
θ(x0 − y0) e−ip

µ (xµ−yµ) + θ(y0 − x0) e+ip
µ (xµ−yµ)

}
.

(1.18)

The first term in (1.18) corresponds to the emission in y and absorption in x, since the function θ(x0 −
y0) ̸= 0 for x0 > y0. For the opposite time order, this term is zero and then only the second term

contributes. The sign inversion in the exponential of the second term in (1.18) needs some explaining.

Surely, the time component p0 (y0 − x0) = −p0 (x0 − y0) comes from just the inversion of the causal

order. However, the inversion of the space component from p⃗ · (x⃗ − y⃗) to − p⃗ · (x⃗ − y⃗) is possible

4
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by changing d3p to −d3p and switching the limits of the spatial momentum integration to preserve the

overall sign.

So for time like separations, when the order of the events is an observable, only one of these terms

contributes. On the other hand, for space like separations both terms contribute. Different observers

would disagree on the temporal order of the event, however all of them would write the same amplitude.

So this amplitude is both Lorentz invariant and causal. It is typically written as

A =

∫
d4x d4y J(x) J(y)DF (x− y) , (1.19)

where we defined

DF (x− y) ≡
∫

d3p

(2π)3 2ωp

{
θ(x0 − y0) e−ip

µ (xµ−yµ) + θ(y0 − x0) e+ip
µ (xµ−yµ)

}
. (1.20)

The two-point function above is what is called a Feynman propagator. To summarize so far, in order

to obtain a Lorentz invariant and causal quantum mechanical amplitude for the emission, propagation

and absorption of a particle we had to allow for all points in spacetime to both emit and absorb, and we

needed to allow for all possible time orders. There is still one more thing we need to introduce.

1.1.2 Charged particles

Here is the problem: if the particle propagating between y and x is charged, for instance under standard

electromagnetism, i.e. electrically charged, then because the amplitude (1.19) does not tell us the order of

events in the case of space like separation, we do not know the sign of the current. For instance, suppose

a negatively charged particle. Is it being absorbed or emitted ? We concluded above that this absolute

statement should not be allowed. But this means that we cannot know the direction of the current.

Fig. 2: Emission, propagation and absorption of a charged particle. Consistency with either temporal
order is restored by having anti-particles. Emission of a negatively charged particle at y followed by ab-
sorption at x is equivalent to emission of the positively-charged anti-particle at x, followed by absorption
at y.

The solution to this problem is that for each negatively charged particle, there must be a positively

charged particle with the same mass, its anti-particle. With this addition, it will not be possible to

5
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distinguish between say the emission of a negatively charged particle or the absorption of its positively

charged anti-particle.

In general, any time a particle has an internal quantum number that may distinguish emission from

absorption it should have a distinct anti-particle that would restore the desired indistinguishability. For

instance, neutral kaons have no electric charge, but they carry a quantum number called “strangeness”

which distinguishes the neutral kaon from the neutral anti-kaon. In the absence of any distinguishing

internal quantum number, a particle can be its own anti-particle.

Finally, to illustrate the relationship between propagation and particle or anti-particle identity, we con-

sider the scattering of a particle off a localized potential. We first consider the situation with emission at

y, followed by interaction at z and finally absorption at x, i.e. the time order is x0 > z0 > y0.

Fig. 3: Scattering off a localized potential.

The amplitude for this is

Ascatt. =

∫
d4x d4y J(y)DF (z − y)Aint.(z)DF (z − x) J(x) , (1.21)

where Aint.(z) is the amplitude for the local interaction with the potential at z. But we know that the

amplitude is non-zero even if events are spatially separated. In this case then, it is possible to have a

non-zero amplitude corresponding to the following time order: y0, x0 > z0. This now would correspond

to the diagram in Fig. 4.

Fig. 4: Particle – anti-particle pair creation.
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In this time order, a pair is created from the “vacuum” at z. The arrows indicate that a particle propagates

between z and x, where it is absorbed, whereas an anti-particle travels from z to y. Thus, the creation

of a pair particle–anti-particle, assuming there is enough energy, is an unavoidable consequence of the

marriage between quantum mechanics and special relativity. All of the arguments above lead us to the

fact that relativistic quantum mechanics, compatible with causality, must be a theory of quantized local

fields. That is to say, we must be able to create or annihilate quanta of the fields locally, including

particles and anti-particles. We will define what we really mean by this below.

1.1.3 Some classical field theory

Here we start by considering a field or set of fields ϕ(x), where x is the spacetime position. The La-

grangian is a functional of ϕ(x) and its derivatives

∂ϕ(x)

∂xµ
= ∂µϕ(x) . (1.22)

Here ϕ(x) can be a set of fields with an internal index i, such that

ϕ(x) = {ϕi(x)} . (1.23)

We will start with the Lagrangian formulation. We define the Lagrangian density L(ϕ(x), ∂µϕ(x)) by

L =

∫
d3xL(ϕ(x), ∂µϕ(x)). (1.24)

In this way the action is

S =

∫
dtL =

∫
d4xL(ϕ(x), ∂µϕ(x)) , (1.25)

where we are again using the Lorentz invariant spacetime volume element

d4x = dt d3x . (1.26)

From (1.25) is clear that L must be Lorentz invariant. In addition, L might also be invariant under other

symmetries of the particular theory we are studying. These are generally called internal symmetries and

we will study them in more detail later in the rest of the course.

We vary the action in (1.25) in order to find the extremal solutions (i.e. δS = 0) and obtain the classical

equations of motion, just as we obtain classical mechanics from extremizing the action of a system of

particles. We get

7
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δS =

∫
d4x

{
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

}
(1.27)

But we have that

δ(∂µϕ) = ∂µ(δϕ) , (1.28)

so the variation of the action is

δS =

∫
d4x

{
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ)

}
,

=

∫
d4x

{(
∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

))
δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)}
. (1.29)

In the second line in (1.29) we have integrated by parts. The last term is a four-divergence, i.e. a total

derivative. Since the integral is over the volume of all of spacetime, the resulting (hyper-)surface term

must be evaluated at infinity. But the value of the field variation at these extremes is δϕ = 0. Thus, the

(hyper-)surface term in (1.29) does not contribute.

Then imposing δS = 0, we see that the first term in (1.29) multiplying δϕ must vanish for all possible

values of δϕ. We obtain

∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0 , (1.30)

which are the Eüler-Lagrange equations, one for each of the ϕi(x), also known as equations of motion.

If now we want to go to the Hamiltonian formulation, we start by defining the canonically conjugated

momentum by

p(x) =
∂L

∂ϕ̇(x)
=

∂

∂ϕ̇(x)

∫
d3yL(ϕ(y), ∂µϕ(y)) , (1.31)

which results in the momentum density

π(x) =
∂L
∂ϕ̇(x)

. (1.32)

Here π(x) is the momentum density canonically conjugated to ϕ(x). Then the Hamiltonian is given by

H =

∫
d3xπ(x) ϕ̇(x)− L , (1.33)

8
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which leads to the Hamiltonian density

H(x) = π(x) ϕ̇(x)− L(x) , (1.34)

where we must remember that we evaluate at a fixed time t, i.e. x = (t,x) for fixed t. The Lagrangian

formulation allows for a Lorentz invariant treatment. On the other hand, the Hamiltonian formulation

might have some advantages. For instance, it allows us to impose canonical quantization rules.

Example: We start with a simple example: the non-interacting theory of real scalar field. The Lagrangian

density is given by

L =
1

2
∂µϕ∂

µϕ− 1

2
m2 ϕ2 , (1.35)

We will call the first term in (1.35) the kinetic term. In the second term m is the mass parameter, so

this we will call the mass term. We first obtain the equations of motion by using the Eüler-Lagrange

equations (1.30). We have

∂L
∂ϕ

= −m2 ϕ ,
∂L

∂(∂µϕ)
= ∂µϕ , (1.36)

giving us

( ∂2 +m2)ϕ = 0 , (1.37)

where the D’Alembertian operator is defined by ∂2 = ∂µ∂
µ. The equation of motion (1.37) is called

the Klein-Gordon equation. This might be a good point for a comment. In “deriving” the equations of

motion (1.37) , we started with the “given” Lagrangian density (1.35). But in general this is not how

it works. Many times we have information that leads to the equations of motion, so we can guess the

Lagrangian that would correspond to them. This would be a bottom up construction of the theory. In

this case, the Klein-Gordon equation is just the relativistic dispersion relation p2 = m2, noting that

−i∂µ = pµ. So we could have guessed (1.37), and then derive L. However, we can invert the argument:

the Lagrangian density (1.35) is the most general non-interacting Lagrangian for a real scalar field of

mass m that respects Lorentz invariance. So imposing the symmetry restriction on L we can build it and

then really derive the equations of motion. In general, this procedure of writing down the most general

Lagrangian density consistent with all the symmetries of the theory will be limiting enough to get the

right dynamics1.

Now we want to derive the form of the Hamiltonian in this example. It is convenient to first write the

Lagrangian density (1.35) as

1Actually, in the presence of interactions we need to add one more restriction called renormalizability. Otherwise, in general
there will be infinite terms compatible with the symmetries.
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L =
1

2
ϕ̇2 − 1

2
(∇⃗ϕ)2 − 1

2
m2ϕ2 . (1.38)

The canonically conjugated momentum density is now

π(x) =
∂L
∂ϕ̇

= ϕ̇ . (1.39)

Then, using (1.34) we obtain the Hamiltonian

H =

∫
d3x

{
π2 − 1

2
π2 +

1

2
(∇⃗ϕ)2 + 1

2
m2 ϕ2

}
(1.40)

which results in

H =

∫
d3x

{
1

2
π2 +

1

2
(∇⃗ϕ)2 + 1

2
m2 ϕ2

}
. (1.41)

We clearly identify the first term in (1.41) as the kinetic energy, the second term as the energy associated

with spatial variations of the field, and finally the third term as the energy associated with the mass.

1.1.4 Continuous symmetries and Noether’s theorem

In addition to being invariant under Lorentz transformations, the Lagrangian density L can be a scalar

under other symmetry transformations. In particular, when the symmetry transformation is continuous,

we can express it as an infinitesimal variation of the field ϕ(x) that leaves the equations of motion

invariant. Let us consider the infinitesimal transformation

ϕ(x) −→ ϕ′(x) = ϕ(x) + ϵ∆ϕ , (1.42)

where ϵ is an infinitesimal parameter. The change induced in the Lagrangian density is

L −→ L+ ϵ∆L , (1.43)

where we factorized ϵ for convenience in the second term. This term can be written as

ϵ∆L =
∂L
∂ϕ

(ϵ∆ϕ) +
∂L

∂(∂µϕ)
∂µ(ϵ∆ϕ)

= ϵ∆ϕ

{
∂L
∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)}
+ ϵ ∂µ

(
∂L

∂(∂µϕ)
∆ϕ

)
. (1.44)
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The first term in (1.44) vanishes when we use the equations of motion. The last term is a total derivative

so it does not affect the equations of motion when we minimize the action. We can take advantage of this

fact and define

jµ ≡ ∂L
∂(∂µϕ)

∆ϕ (1.45)

such that its four-divergence

∂µ j
µ = 0 , (1.46)

up to terms that are total derivatives in the action, and therefore do not contribute if we use the equations

of motion. We call this object the conserved current associated with the symmetry transformation (1.42).

We will illustrate this with the following example.

Example:

We consider a complex scalar field. That is, there is a real part of ϕ(x) and an imaginary part, such that

ϕ(x) and ϕ∗(x) are distinct. The Lagrangian density can be written as

L = ∂µϕ
∗ ∂µϕ−m2 ϕ∗ϕ . (1.47)

The Lagrangian density in (1.47) is invariant under the following transformations

ϕ(x) −→ eiα ϕ(x)

(1.48)

ϕ∗(x) −→ e−iα ϕ∗(x) ,

where α is an arbitrary constant real parameter. If we consider the case when α is infinitesimal (α≪ 1),

ϕ(x) −→ ϕ′(x) ≃ ϕ(x) + iαϕ(x) (1.49)

ϕ∗(x) −→ ϕ∗
′
(x) ≃ ϕ∗(x)− iαϕ∗(x) , (1.50)

which tells us that we can make the identifications

ϵ∆ϕ = iα ϕ

ϵ∆ϕ∗ = −iα ϕ∗ , (1.51)

11
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with ϵ = α. In other words we have

∆ϕ = iϕ , ∆ϕ∗ = −iϕ∗ . (1.52)

Armed with all these we can now build the current jµ associated with the symmetry transformations

(1.48). In particular, since there are two independent degrees of freedom, ϕ and ϕ∗, we will have two

terms in jµ

jµ =
∂L

∂(∂µϕ)
∆ϕ+

∂L
∂(∂µϕ∗)

∆ϕ∗ , (1.53)

From (1.47) we obtain

∂L
∂(∂µϕ)

= ∂µϕ∗ ,
∂L

∂(∂µϕ∗)
= ∂µϕ (1.54)

which results in

jµ = i {(∂µϕ∗)ϕ− (∂µϕ)ϕ∗} . (1.55)

We would like to check current conservation, i.e. check that ∂µ jµ = 0. However, as we discussed above,

this is only true up to total divergences that do not affect the equations of motion. So the strategy is

to compute the four-divergence of the current and then use the equations of motion to see if the result

vanishes. The equations of motion are easily obtained from the Eüler-Lagrange equations applied to L
in (1.47). This results in

(∂2 +m2)ϕ∗ = 0 , (∂2 +m2)ϕ = 0 , (1.56)

i.e. both ϕ and ϕ∗ obey the Klein-Gordon equation. Taking the four-divergence in (1.55) we obtain

∂µj
µ = i

{
(∂2ϕ∗)ϕ− (∂2ϕ)ϕ∗

}
, (1.57)

Thus, this is not zero in general. But applying the equations of motion in (1.56) we get

∂µj
µ = i

{
(−m2ϕ∗)ϕ− (−m2ϕ)ϕ∗

}
= 0 , (1.58)

which then verifies current conservation. We conclude that, at least at the classical level, as long as the

equations of motion are valid, the current is conserved.

12
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1.1.5 Field quantization

Since, as we saw before, quantum field theory (QFT) emerges as we attempt to combine quantum me-

chanics with special relativity it is natural to start with quantum mechanics of a single particle. We will

see that when trying to make this conform with relativistic dynamics, we will naturally develop a way of

thinking of the solution to this problem that goes by the name of canonical quantization. Besides being

conceptually natural, this formalism will be useful when trying to understand the statistics of different

states.

1.1.5.1 Quantum mechanics

The Schrödinger equation for the wave-function of a free particle is

i
∂

∂t
ψ(x, t) = − 1

2m
∇2ψ(x, t) , (1.59)

where we set ℏ = 1. In terms of states and operators, we can define the wave function as ψ(x, t) =

⟨x|ψ, t⟩, i.e. in term of the state |ψ, t⟩ projected onto the position state |x⟩. More generally, eq. (1.59)

can be written as

i
∂

∂t
|ψ, t⟩ = H |ψ, t⟩ , (1.60)

where H is the Hamiltonian which in the non-relativistic free-particle case is just

H =
p2

2m
, (1.61)

resulting in (1.59). We would like to generalize this for the relativistic case, i.e. choosing

H = +
√
p2 +m2 , (1.62)

where again we use c = 1. If one uses this Hamiltonian in the Schrödinger equation one gets

i
∂

∂t
ψ(x, t) =

√
−∇2 +m2 ψ(x, t) . (1.63)

But this is problematic for a relativistic equation since time and space derivatives are of different order.

If the equation has to have any chance of being Lorentz invariant, it needs to have the same number of

time and space derivatives. One simple way to do this is to apply the time derivative operator twice on

both sides. This results in

− ∂2

∂t2
ψ(x, t) =

(
−∇2 +m2

)
ψ(x, t) . (1.64)
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This is the Klein-Gordon equation for the wave function ψ(x, t), and is clearly consistent with the rela-

tivistic dispersion relation (1.62), once we make the identifications

i
∂

∂t
↔ H − i∇ ↔ p , (1.65)

where H and p are the Hamiltonian and momentum operators. In covariant notation, and using

∂

∂xµ
≡ ∂µ = (

∂

∂t
,∇) , ∂

∂xµ
≡ ∂µ = (

∂

∂t
,−∇) , (1.66)

we can write the Klein-Gordon equation as

(∂µ ∂
µ +m2)ψ(x, t) = 0 . (1.67)

This is manifestly Lorentz invariant. However it has several problems. The fact that this equation has

two time derivatives implies for instance that |ψ(x, t)|2 is not generally time independent, so we cannot

interpret it as a conserved probability, as it is in the case of the Scrödinger equation. This issue is tackled

by Dirac, which derives a relativistic equation for the wave-function that is first order in both time and

space derivatives. But this equation will be valid for spinors, not scalar wave-functions. We will study it

in more detail later. But it does not resolve the central issue, as we see below.

Both the Klein-Gordon and the Dirac equations admit solutions with negative energies. This would

imply that the system does not have a ground state, since it would be always energetically favorable to go

to the negative energy states. Since the Dirac equation describes fermions, one can use Pauli’s exclusion

principle and argue, as Dirac did, that all the negative energy states are already occupied. This is the

so-called Dirac sea. According to this picture, an electron would not be able to drop to negative energy

states since these are already filled. Interestingly, this predicts that in principle it should be possible to

kick one of the negative energy states to a positive energy state. Then, one would see an electron appear.

But this would leave a hole in the sea, which would appear as a positively charged state. This is Dirac’s

prediction of the existence of the positron. Is really nice, but now we need an infinite number of particles

in the sea, whereas we were supposed to be describing the wave-function of one particle. Besides, this

only works for wave-functions describing fermions. What about bosons?

What we are seeing is the inadequacy of the relativistic description of the one-particle wave-

function. At best, as in the case of fermions, we were driven from a one-particle description to one with

an infinite number of particles. At the heart of the problem is the fact that, although now we have the

same number of time and space derivatives, position and time are not treated on the same footing in

quantum mechanics. There is in fact a position operator, whereas time is just a parameter labeling the

states.

On the other hand, we can consider operators labeled by the spacetime position xµ = (t,x), such as in

ϕ(t,x) = ϕ(x) . (1.68)
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These objects are called quantum fields. They are clearly in the Heisenberg picture, whereas if we choose

the time-independent Schrödinger picture quantum fields they are only labeled by the spatial component

of the position as in ϕ(x). These quantum fields will be our dynamical degrees of freedom. All spacetime

positions have a value of ϕ(x) assigned. As we will see in more detail below, the quantization of these

fields will result in infinitely many states. So we will abandon the idea of trying to describe the quantum

dynamics of one particle. This formulation will allow us to include antiparticles and (in the presence

of interactions) also other particles associated with other quantum fields. It solves one of the problems

mentioned earlier, the fact that relativity and quantum mechanics should allow the presence of these

extra particles as long as there is enough energy, and/or the intermediate process that violates energy

conservation by ∆E lasts a time ∆t such that ∆E∆t ∼ ℏ.

The behavior of quantum fields under Lorentz transformations will define their properties. We can

have scalar fields ϕ(x), i.e. no Lorentz indices; fields that transform as four-vectors: ϕµ(x); as spinors:

ϕa(x), with a a spinorial index; as tensors, as in the rank 2 tensor ϕµν(x); etc. We will start with the

simplest kind, the scalar field.

1.1.5.2 Canonical description of quantum fields

First, let us assume a scalar field ϕ(x) that obeys the Klein-Gordon equation. The exact meaning of

this will become clearer below. But for now it suffices to assume that our dynamical variable obeys a

relativistic equation relating space and time derivatives:

(∂2 +m2)ϕ(x) = 0 , (1.69)

where we defined the D’Alembertian as ∂2 ≡ ∂µ∂
µ, and m is the mass of the particle states associated

with the field ϕ(x). We also assume the scalar field in question is real. That is

ϕ(x) = ϕ†(x) , (1.70)

where we already anticipate to elevate the field to an operator, hence the †. It is interesting to solve the

Klein-Gordon equation for the classical field in momentum space. The most general solution has the

following form

ϕ(x, t) =

∫
d3p

(2π)3
Np

{
ap e

−i(ωpt−p·x) + b†p e
i(ωpt−p·x)

}
, (1.71)

where, as defined earlier, ωp = +
√

p2 +m2. Here, Np is a momentum-dependent normalization to

be determined later, and the momentum-dependent coefficients ap and b†P will eventually be elevated to

operators. In general ap and b†p are independent. However, when we impose (1.70), this results in

ap = bp . (1.72)
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This is not the case, for instance, if ϕ(x) is a complex scalar field.

At this point and before we quantize the system, we remind ourselves of the fact that the Klein-Gordon

equation (1.69) is obtained from the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
m2 ϕ2 . (1.73)

To convince yourself of this just use the Eüler-Lagrange equations from the previous lecture to derive

(1.69) from (1.73). Then, since ϕ(x) is our dynamical variable, the canonically conjugated momentum

is

π(x) =
∂L
∂ϕ̇(x)

= ϕ̇ , (1.74)

which, using (1.71), results in

π(x, t) =

∫
d3x

(2π)3
Np

{
−iωp ap e−i(ωpt−p·x) + iωp a

†
p e

i(ωpt−p·x)
}
. (1.75)

Having the field and its conjugate momentum defined we can then impose quantization conditions. It is

useful first to refresh our memory on how this is done in quantum mechanics.

1.1.5.3 Canonical quantization in quantum mechanics

Let us consider a particle of mass m = 1 in some units. Its Lagrangian is

L =
1

2
q̇2 − V (q) , (1.76)

where V (q) is some still unspecified potential, which we assume it does not depend on the velocities.

The associated Hamiltonian is

H =
1

2
p2 + V (q) , (1.77)

where the conjugate momentum is p = ∂L/∂q̇ = q̇. To quantize the system we elevate p and q to

operators and impose the commutation relations

[q, p] = i, [q, q] = 0 = [p, p] . (1.78)

Notice that if we are in the Heisenberg description, the commutators should be evaluated at equal time,

i.e. [q(t), p(t)] = i, etc. We change to a description in terms of the operators
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a ≡ 1

2ω
(ω q + ip)

a† ≡ 1

2ω
(ω q − ip) , (1.79)

where ω is a constant with units of energy. It is straightforward, using the commutators in (1.78), to

prove that these operators satisfy the following commutation relations

[a, a†] = 1, [a, a] = 0 = [a†, a†] . (1.80)

We define the ground state of the system by the following relation

a|0⟩ = 0 , (1.81)

where the 0 in the state refers to the absence of quanta. Then, assuming the ground state (or vacuum) is

a normalized state, we have

1 = ⟨0|0⟩ = ⟨0|[a, a†]|0⟩ = ⟨0|aa†|0⟩ − ⟨0|a†a|0⟩ . (1.82)

Since the last term vanishes when using (1.81), we arrive at

⟨0|0⟩ = ⟨0|aa†|0⟩ . (1.83)

This is achieved only if we have

a†|0⟩ = |1⟩ ,
a|1⟩ = |0⟩ , (1.84)

which means that a and a† are ladder operators. We interpret the state |1⟩ as a state with one particle.

In this way a and a† can also we called annihilation and creation operators. The simplest example is, of

course, the simple harmonic oscillator, with V (q) = ω2 q2/2.

1.1.5.4 Quantizing fields

We are now ready to generalize the canonical quantization procedure for fields. We will impose com-

mutation relations for the field in (1.71) and its conjugate momentum in (1.75), which means that we

elevated them to operators, specifically in the Heisenberg representation. The quantization condition is
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[ϕ(x, t), π(x′, t)] = iδ(3)(x− x′) . (1.85)

Here we see that the commutator is defined at equal times, as it should for Heisenberg operators. All

other possible commutators vanish, i.e.

[ϕ(x, t), ϕ(x′, t)] = 0 = [π(x, t), π(x′, t)] (1.86)

Now, when we turned ϕ(x) into an operator, so did ap and a†p. In order to see what the imposition of

(1.85) and (1.86) implies for the commutators of the operators ap and a†p, we write out (1.85) using the

explicit expressions (1.71) and (1.75) for the field and its momentum in terms of them. We obtain

[ϕ(x, t), π(x′, t)] =

∫
d3p

(2π)3
Np

∫
d3p′

(2π)3
Np′

{
iωp′e

−i(ωp−ωp′ )teip·x−ip
′·x′

[ap, a
†
p′ ]

−iωp′ei(ωp−ωp′ )te−ip·x+ip
′·x′

[a†p, ap′ ]
}
, (1.87)

where we have already assumed that

[ap, ap′ ] = 0 = [a†p, a
†
p′ ] . (1.88)

The question is what are the commutation rules for [ap, a
†
p′ ]. Now we will show that in order for (1.85)

to be satisfied, we need to impose

[ap, a
†
p′ ] = (2π)3 δ(3)(p− p′) . (1.89)

If we do this in (1.85) we see that ωp = ωp′ , Np = Np′ , and we obtain

[ϕ(x, t), π(x′, t)] = i

∫
d3p

(2π)3
N2
p ωp

{
eip·(x−x′) + e−ip·(x−x′)

}
. (1.90)

But we notice that since

δ(3)(x− x′) =

∫
d3p

(2π)3
eip·(x−x′) =

∫
d3p

(2π)3
e−ip·(x−x′) , (1.91)

then if

N2
p ωp =

1

2
, (1.92)

18



FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

we recover the result of (1.85). In other words

[ϕ(x, t), π(x′, t)] = iδ(3)(x− x′) ←→ [ap, a
†
p′ ] = (2π)3δ(3)(p− p′) , (1.93)

as long as

Np =
1√
2ωp

. (1.94)

We can now go back to the expression (1.71) for the real scalar field, and rewrite it in covariant form as

ϕ(x) =

∫
d3p

(2π)3
√

2ωp

{
ape

−ipµxµ + a†pe
ipµxµ

}
, (1.95)

where we used that

pµx
µ = p0x0 − p · x = ωpt− p · x (1.96)

Once again, since we define the vacuum state by

ap|0⟩ = 0 , (1.97)

we conclude that ap and a†p are ladder operators, just as in the quantum mechanical case seen above. In

other words we have

a†p|0⟩ = |1p⟩ , (1.98)

where |1p⟩ corresponds to the state containing one particle of momentum p. Conversely, and analogously

to the quantum mechanical case, we have

ap|1p⟩ = |0⟩ . (1.99)

This allows us to interpret the operators ϕ(x) and ϕ†(x) in the following form:

The operator ϕ(x):

– Annihilates a particle of momentum p

– Creates an anti-particle of momentum p

On the other hand,
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The operator ϕ†(x):

– Annihilates an anti-particle of momentum p

– Creates a particle of momentum p

Of course in our case, a real scalar field, particles and anti-particles are the same due to (1.72). On the

other hand, if ϕ was for instance complex, particles and anti-particles would be created and annihilated

by different operators, and they would carry different “charges” under the global U(1) symmetry of the

Lagrangian.

1.1.6 Quantization of fermion fields

We will consider the spinor ψ(x, t) as a field and use to quantize the fermion field theory. For this we

need to know its conjugate momentum. So it will be helpful to have the Dirac Lagrangian. We will

first insist in imposing commutation rules just as for the scalar field. But this will result in a disastrous

Hamiltonian. Fixing this problem will require a drastic modification of the commutation relations for the

ladder operators.

The first step for the quantization procedure is to have the Dirac Lagrangian. Starting from the

Dirac equation

(iγµ∂µ −m)ψ(x) = 0 , (1.100)

we can obtain the conjugate equation

ψ̄(x) (iγµ∂µ +m) = 0 , (1.101)

where in this equation the derivatives act to their left on ψ̄(x). From these two equations for ψ and ψ̄ is

clear that the Dirac Lagrangian must be

L = ψ̄(x) (iγµ∂µ −m)ψ(x) . (1.102)

It is straightforward to check the the Eüler-Lagrange equations result in (1.100) and (1.101). For instance,

∂L
∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)
= 0 . (1.103)

But the second term above is zero sinceL does not depend (as written) on ∂µψ̄. Thus, we obtain the Dirac

equation (1.100) for ψ. Similarly, if we use ψ and ∂µψ as the variables to put together the Eüler-Lagrange

equations, we obtain (1.101).

From the Dirac Lagrangian we can obtain the conjugate momentum density defined by
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π(x) =
∂L

∂(∂0ψ)
= iψ̄γ0 = iψ† . (1.104)

This way, if we follow the quantization playbook we used for the scalar field, we should impose

[ψa(x, t), πb(x
′, t)] = [ψa(x, t), iψ

†
b(x

′, t)] = iδ(3)(x− x′) δab , (1.105)

or just

[ψa(x, t), ψ
†
b(x

′, t)] = δ(3)(x− x′) δab , (1.106)

Following the same steps as in the case of the scalar field, we now expand ψ(x) and ψ†(x) in terms of

solutions of the Dirac equation in momentum space. As we will see later, this will not work. But it is

interesting to see why, because this will point directly to the correct quantization procedure. The most

general expression for the fermion field in terms of the solutions of the Dirac equation in momentum

space is

ψ(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
asp u

s(p) e−iP ·x + bs†p v
s(p) e+iP ·x

)
, (1.107)

ψ†(x) =

∫
d3p

(2π)3
1√
2Ep

∑
s

(
as†p u

s†(p) eiP ·x + bsp v
s†(p) e+iP ·x

)
, (1.108)

The imposition of the quantization rule (1.106) on the field and its conjugate momentum in (1.107) and

(1.108) would imply that the coefficients asp, a
s†
p , bsp and bs†p are ladder operators associated to the u-type

and v-type “particles”. But before we impose commutation rules on them we are going to compute the

Hamiltonian in terms of these operators.

Remember that the Hamiltonian is defined by

H =

∫
d3x {π(x) ∂0ψ(x)− L} ,

=

∫
d3x

{
iψ†(x) ∂0ψ(x)− ψ̄(x) (iγµ∂µ −m)ψ(x)

}
, (1.109)

which results in

H =

∫
d3x ψ̄(x) (−iγ · ∇+m)ψ(x) , (1.110)
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Inserting (1.107) and (1.108) into (1.110) we have

H =

∫
d3x

{∫
d3k

(2π)3
1√
2Ek

∑
r

(
ar†k ū

r†(k) eiK·x + brk v̄
r(k) e−iK·x

)
(1.111)

×
∫

d3p

(2π)3
1√
2Ep

∑
s

(
asp e

−iP ·x (γ · p+m)us(p) + bs†p e
+iP ·x (−γ · p+m) vs(p)

)}
,

In the second line of (1.111) the Hamiltonian operator was applied to the exponentials. Since P · x =

Ex0 − p · x, the −i in the operator cancels with the +ip · x in when the derivative acts on the −P · x
exponential. The opposite sign is picked up when acting on the +P · x exponential. Furthermore, since

(̸p−m)us(p) = 0 =⇒ (Epγ
0 − γ · p−m)us(p) = 0 , (1.112)

which results in

(γ · p+m)us(p) = Ep γ
0 us(p) . (1.113)

Similarly, applying

(̸p+m) vs(p) = 0 =⇒ (Epγ
0 − γ · p+m)us(p) = 0 , (1.114)

which gives us

(−γ · p+m) vs(p) = −Ep γ0 vs(p) . (1.115)

Using (1.113) and (1.115) and that

∫
d3xe±i(k−p)·x = (2π)3 δ(3)(k− p) , (1.116)

in (1.111) we can get rid of 2 of the 3 integrals. Then we have

H =

∫
d3p

(2π)3
1

2Ep

∑
r,s

{
ar†p a

s
p u

r†(p) γ0Epγ
0 us(p)

− brp bs†p vr†(p) γ0Ep γ0 vs(p)
}
, (1.117)
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where we have also use the orthogonality of the us(p) and vs(p) solutions. Finally, using the normal-

ization os spinors

ur†(p)us(p) = 2Ep δ
rs ,

vr†(p) vs(p) = 2Ep δ
rs , (1.118)

we obtain

H =

∫
d3p

(2π)3

∑
s

{
Ep a

s†
p a

s
p − Ep bsp bs†p

}
. (1.119)

In order to have a correct form of the Hamiltonian, we must rearrange the second term in (1.119) into a

number operator, such as the first term. For this purpose, we need to apply the commutation rules on bsp
and bs†p . If we were to impose the same commutation rules we used for scalar fields, and also in (1.106),

we would have

[arp, a
s†
k ] = (2π)3 δ(3)(p− k) δrs, [brp, b

s†
k ] = (2π)3 δ(3)(p− k) δrs, (1.120)

and zero otherwise. This would result in a Hamiltonian

H =

∫
d3p

(2π)3
Ep
∑
s

{
as†p a

s
p − bs†p bsp

}
−
∫

Epd
3p δ(3)(0) . (1.121)

The last term in (1.121) is an infinite constant. It corresponds to the sum over all the zero-point energies

of the infinite harmonic oscillators each with a “frequency” Ep. This will always be present in quantum

field theory (just as the zero-point energy is present in the harmonic oscillator! ) and we will deal with

it throughout the course. However, since it is a constant, we can always shift the origin of the energy in

order to cancel it2. So this is not what is wrong with this Hamiltonian. The problem is in the first term,

particularly the negative term. The presence of this negative term tells us that we can lower the energy

by producing additional v-type particles. For instance, the state |1̄p⟩ with one such particle would have

an energy

⟨1̄p|H|1̄p⟩ = −Ep < ⟨0|H|0⟩ , (1.122)

smaller than the vacuum. This means that we have a runaway Hamiltonian, i.e. its ground state corre-

sponds to the state with infinite such particles. This is of course non-sense. The problem comes from the

use of the commutation relations (1.120). On the other hand if we used anti-commutation relations such

2The fact that this constant is negative will remain true and is an important fact. For instant, for scalar fields is positive.
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as

{arp, as†k } = (2π)3 δ(3)(p− k) δrs, {brp, bs†k } = (2π)3 δ(3)(p− k) δrs, (1.123)

together with

{arp, ask} = 0 = {ar†p , as†k } , {brp, bsk} = 0 = {br†p , bs†k } , (1.124)

and we go back to (1.119), using (1.124) instead of (1.120) we obtain

H =

∫
d3p

(2π)3
Ep
∑
s

{
as†p a

s
p + bs†p b

s
p

}
+ constant . (1.125)

This is now a well behaved Hamiltonian, where for each fixed value of the momentum we have a con-

tribution to the energy of as†p asp number of particles of type u, and bs†p bsp number of particles of type

v. This is the expected form of the Hamiltonian, and we arrived at it by using the anti-commutation

relations (1.123) and (1.124) for the ladder operators. It is straightforward to show that they imply anti-

commutation rules also for the fermion field and its conjugate momentum. That is

{ψa(x, t), ψ†
b(x

′, t)} = δ(3)(x− x′) δab , (1.126)

and zero otherwise, instead of (1.106).

1.1.6.1 Charge operator and fermion number

In order to better understand the meaning of the u and v solutions it is useful to build another operator

other than the Hamiltonian. We start with the Dirac current. We know that it is given by

jµ = ψ̄γµψ , (1.127)

satisfying current conservation

∂µ j
µ = 0 . (1.128)

Noether’s theorem tells us that the conserved current is associated with a conserved charge defined by

Q =

∫
d3x j0(x) =

∫
d3x ψ̄(x)γ0ψ(x) =

∫
d3xψ†(x)ψ(x) . (1.129)
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We have seen this before: it is the probability density obeying a continuity equation (1.128). The fact

that the charge Q is time independent is a direct consequence of (1.128). We build this operator in terms

of ladder operators in momentum space just as we did for the Hamiltonian. Using (1.107) and (1.108)

and following the same steps that lead to (1.111) we obtain

Q =

∫
d3p

(2π)3

∑
s

{
as†p a

s
p + bsp b

s†
p

}
, (1.130)

Using the anti-commutation relations (1.124) on the second term we arrive at

Q =

∫
d3p

(2π)3

∑
s

{
as†p a

s
p − bs†p bsp

}
, (1.131)

where we have omitted the a and b-independent, infinite constant. We see clearly that each u-type particle

contributes to Q with +1, whereas each v-type particle contributes with −1. The continuous symmetry

associated with the current jµ is just the global fermion number. That is the Lagrangian is invariant under

ψ(x) −→ eiα ψ(x) ,

ψ†(x) −→ e−iα ψ†(x) . (1.132)

with α a real constant. This just says that the Dirac Lagrangian conserves fermion number, meaning that

there are fermions with charge +1 and anti-fermions (the v-type states) with charge −1. To summarize:

– asp: annihilates fermions

– bs†p creates anti-fermions

– as†p creates fermions

– bsp annihilates anti-fermions

Or, in other words

– ψ(x) annihilates fermions or creates anti-fermions

– ψ†(x) creates fermions or annihilates anti-fermions

1.1.6.2 Pauli exclusion principle and statistics

One of the most important consequences of having anti-commutation rules for the ladder and field oper-

ators is that fermions obey Fermi-Dirac statistics and the Pauli exclusion principle. To see this, consider

a two fermion state. It is built out of creation operators as
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|1sp 1rk⟩ = as†p a
r†
k |0⟩ . (1.133)

The anti-commutation rules (1.124) imply

as†p a
r†
k = − ar†k as†p . (1.134)

which means that the state is odd under the exchange of two particles (for instance switching positions),

or

|1sp 1rk⟩ = −|1rk 1sp⟩ (1.135)

In particular if both fermions have the same exact quantum numbers, here in our example the helicity s

and the momentum p, we have

|1sp 1sp⟩ = −|1sp 1sp⟩ = 0 , (1.136)

which means that this state is forbidden. As a result, we cannot put two fermions (or two anti-fermions)

with the exact same quantum numbers in the same state. So the occupation numbers in states made

of fermions are either 0 or 1 for a given set of quantum numbers. This is what is called Fermi-Dirac

statistics. Equation (1.136) is an expression of the Pauli exclusion principle.

1.1.7 Interactions and Feynman rules

In Section 1.1.1 we derived an expression for the amplitude for a particle to be produce in one pont of

space time, propagate and be annihilated in another point. The kernel of the amplitude defined in (1.19)

is the two-point functionDF (x−y) in (1.20). But since we now know that quantum fields act as creation

and annihilation operators for quanta of the fields, we can write

DF (x− y) =

∫
d3p

(2π)3 2ωp

{
θ(x0 − y0) e−ip

µ (xµ−yµ) + θ(y0 − x0) e+ip
µ (xµ−yµ)

}

= ⟨0|Tϕ(x)ϕ(y)|0⟩ . (1.137)

In the second line in (1.137) we see that DF (x− y) is the ground state (or vacuum) expectation value of

the product of two field operators evaluated at different points in spacetime in a time ordered form bu the

application of the time order operator T . The two-point function above is called the Feynman propagator.

It isa causal propagator, in the sense that both possible time orderings (x0 > y0 and x0 < y0) are taking

into account in it. But there are other correlation functions we can be interested in. For instance, we
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could want to know the four-point correlation function

G(4)(x1, x2, x3, x4) ≡ ⟨0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0⟩ . (1.138)

But since this is a free theory and there are no interactions, the only thing that a particle created some-

where can do is propagate and be annihilated somewhere else. So this four-point function can be dia-

grammatically expressed as seen in Fig. 5.

Fig. 5: Four-point correlation function in the free scalar theory. It is the sum over the products of all
possible pairs of propagators.

The result is the sum over the product of all possible combinations of two propagators:

G(4)(x1, x2, x3, x4) = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)
+DF (x1 − x4)DF (x2 − x3) . (1.139)

We can generalize this result for the n-point correlation function as

G(n)(x1, . . . , xn) =
∑

all pairings

DF (xi1 − xi2) . . . DF (xn−1 − xn) . (1.140)

That is, in the free scalar theory the n-point correlation function is given by the product of all possible

products of pairings of two points into propagators (2-point functions). For instance, for the 6-point

correlation function we would need products of three propagators, etc. This result reflects something

called Wick’s theorem. And although it looks that it would be useful only in free theories, we will see

below how we can still use it in the presence of interactions, as long as we make use of perturbation

theory.

1.1.7.1 Perturbation theory

In the presence of interactions the correlation functions will change. But in general the solution of the

problem is better approached by using a controlled approximation, typically in powers of the interaction’s

strength, i.e. its coupling. The lagrangian now is given by

L = L0 + Lint. , (1.141)
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where 0 is the free theory Lagrangian and Lint. denotes the interaction Lagrangian. The latter involves

more than two fields and must respect not just Lorentz invariance, but also any other symmetry we

impose. For instance for real scalar field the interaction

Lint. = −
λ

4!
ϕ4 , (1.142)

is invariant under the discrete symmetry ϕ(x)→ −ϕ(x), whereas for a complex scalar field the interac-

tion

Lint. = −
λ

2
(ϕϕ∗)2 , (1.143)

respects a global U(1) transformation, i.e. the Lagrangian is invariant under ϕ(x) → eiαϕ(x) with α a

real constant. Since this is a continuous symmetry, there is a conserved current associated with it.3 For

simplicity, let us consider the case of a real scalar field with Lagrangian

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ

4!
ϕ4 . (1.144)

In general, the n-point correlation functions of the theory can be written in the functional integral ap-

proach as

⟨0|Tϕ(x1) . . . ϕ(xn)|0⟩ = G(n)(x1, . . . xn) =

∫
Dϕ ei

∫
d4xL ϕ(x1) . . . ϕ(xn)∫
Dϕei

∫
d4xL . (1.145)

But since the Lagrangian in (1.145) and (1.144) contains term that are non-quadratic in the field ϕ(x)

we cannot perform the functional integrals as easily as in the free theory, where they can be turned into

basically Gaussian integrals. As a result, we make use of perturbation theory in the interaction coupling

λ. To implement this in the functional integral we must expand the exponential in powers of Lint.. We

start with the denominator in (1.145) above. It expansion reads∫
Dϕei

∫
d4x{L0+Lint.} =

∫
Dϕei

∫
d4xL0 +

∫
Dϕ ei

∫
d4z L0 i

(
− λ
4!

)∫
d4xϕ(x)4

(1.146)

+

∫
Dϕ ei

∫
d4zL0

i2

2!

(−λ
4!

)2 ∫
d4xϕ4(x)

∫
d4yϕ4(y) + . . .

We interpret the first term in the right hand side of (1.146) as the vacuum-to-vacuum amplitude in the free

theory, whereas the terms or order λ and higher can be seen as corrections to this “vacuum persistence”

due to the presence of interactions. Then, we see that the left hand side can be thought of as the corrected

vacuum persistence in the presence of the interactions

⟨0̃|0̃⟩ = ⟨0|0⟩+ . . . , (1.147)

where we denoted |0̃⟩ as the corrected vacuum state. We can see this diagrammatically in Fig. 6. The

fact that the Lagrangian appearing in the exponent in the expressions in (1.146) is the free theory one,

3A local continuous transformation (basically with alpha = α(x)) is the case of gauge theories. We will discuss them later
below.
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+

x

+ x y + ...

x y

Fig. 6: Corrections to the vacuum state coming from the interactions. The first two bubbles are the order
λ, whereas the third and fourth diagrams are the λ2 corrections appearing in ⟨0̃|0̃⟩ − ⟨0|0⟩.

allows us to apply Wick’s theorem also here. For instance, the contribution of order λ can be written as

−i λ
4!

∫
d4x⟨0|Tϕ(x)ϕ(x)ϕ(x)ϕ(x)|0⟩ = −i λ

4!

∫
d4xDF (x− x)DF (x− x) . (1.148)

The term of order λ2 in the second line of (1.146) will result in the products of four propagators

giving terms such as∫
d4x

∫
d4y DF (x− x)DF (x− y)DF (x− y)DF (y − y) , (1.149)

as represented in the third diagram in Fig. 6, or in the following combination∫
d4x

∫
d4y DF (x− y)DF (x− y)DF (x− y)DF (x− y) , (1.150)

as represented by the last diagram of Fig. 6.The vacuum bubbles in Fig. 6 of the denominator in (1.145)

are just corrections to the vacuum state and will cancel with corresponding vacuum bubbles in the nu-

merator of the correlation functions. So we do not need to concern ourselves with these vacuum bubbles

since we are interested in diagrams with connection to external points and their connected corrections.

For example, let us consider the order λ corrections to the two point correlation function.

Fig. 7: Order λ corrections to the two-point function in the theory described in the text.

The two point function to this order comes from the perturbative expansion

G(2)(x1, x2) =
1∫

Dϕe
∫
d4xL0

∫
Dϕ ei

∫
d4xL0 ϕ(x1)ϕ(x2) ×

(
1− i λ

4!

∫
d4xϕ4(x) + . . .

)
,

(1.151)

where we are already omitting the corrections in the denominator since, as mentioned earlier, they will

be cancelled by vacuum bubbles in the numerator. Thus, the functional integrals can be performed using
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Wick’s theorem, since they only depend on the free Lagrangian L0. For instance, the first term is clearly

the free propagator DF (x1 − x2), the zeroth order in λ. The second term, the contribution to order λ, is

given by

−i λ
4!

1∫
Dϕe

∫
d4xL0

∫
d4y

∫
Dϕ ei

∫
d4xL0 ϕ(x1)ϕ(x2)ϕ

4(y) . (1.152)

The application of Wick’s theorem to the expression above in (1.152) results in two terms, corresponding

to the two ways to pair ( sometimes called contraction) the two fields evaluated in the external points

with the four fields in the local interaction. These are given by

−i λ
4!

∫
d4y {3DF (x1 − x2)DF (y − y)DF (y − y) + 12DF (x1 − y)DF (x2 − y)DF (y − y)} ,

(1.153)

where the factors of 3 and 12 are the combinatoric factors of the two types of diagrams: free propaga-

tion from x1 to x2 plus vacuum correction, and correction of the propagator to order λ. These terms

correspond to the two topologies shown in Fig. 7. The disconnected diagram on the left is just the free

propagator plus an order λ correction of the vacuum. It will be cancelled by the corresponding vac-

uum correction in the denominator. The diagram on the right of Fig. 7 is more interesting: represents a

genuine order λ correction to the propagator.

Let us now consider the four point function. Up to order λ in perturbation theory we can write as

G(4)(x1, x2, x3, x4) =
1∫

Dϕe
∫
d4xL0

∫
Dϕ ei

∫
d4xL0 ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

(
1− i λ

4!

∫
d4yϕ4(y) + . . .

)
.

(1.154)

Of course, the order zero is the four point function of free theory, where there are no interactions, just

propagation from one point to another. The order λ term leads to several diagrams. However, we want

to focus on a special diagram where each of the external points is connected via a propagator to the

interaction point, here denoted by the coordinate y. This fully connected contributions to the four point

function can be written as

(−iλ)
∫
d4z DF (x1 − z)DF (x2 − z)DF (x3 − z)DF (x4 − z) , (1.155)

where we have used Wick’s theorem. Inspecting (1.154), we see that there are 4! ways to obtain the

result above, also represented in Fig. 8. This fully connected diagram will be used below in order to

Fig. 8: Connected diagram contribution to the four-[point function to order λ.

define the basic rules of the interacting theory in question. Other, non-connected diagrams contributing
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to the four point correlation function to order λ can be seen in Fig. 9. The diagram on the left is just the

Fig. 9: Disconnected diagram contributions to the four-point function to order λ.

free theory contribution corrected by a vacuum bubble. On the other hand, the disconnected contribution

on the right is an order λ correction of one of the two disconnected propagators. Unlike the previous one,

this contribution is not cancelled by the corrections in the denominator. However, in order to compute

the physical amplitudes of interest we will need only connected diagrams. We will discuss the reason for

this next to derive the Feynman rules in momentum space.

1.1.7.2 From correlation functions to amplitudes: Feynman rules in momentum space

Although the correlation functions we have obtained using perturbation theory are physically meaningful

objects, they are not as useful to compare with experimental observables. For this purpose it is necessary

to compute transition amplitudes, typically in momentum space. For instance, we may want to compute

the amplitude for the scattering of two particles of given momenta p1 and p2 in the initial state going

into a final state with several particles. i.e. we want to compute the

⟨p1p2|p3 . . .pn⟩ , (1.156)

from our knowledge of a given quantum field theory’s correlation functions. In order to do this, we

start by defining the initial state as asymptotic states in the far past, i.e. for t → −∞, and the final

states as asymptotic states in the far future, i.e. for t → +∞. In these n particle amplitude, we assume

that asymptotic states are well defined momentum states, well separated from each other, i.e. without

appreciable superposition between any two states. So in the far past or in the far future, these states are

not interacting with each other. On the other hand, this does not mean that asymptotic states do not

feel the effects of the interactions. They do not feel the interactions with the other real particles in the

amplitude, but they still feel the virtual effects of the interactions as they propagate. So the asymptotic

states are not free states. We will clarify these important different later on. For now, the aim is to write

the scattering amplitude in (1.156) in terms of the correlation functions of our quantum field theory.

We then start by defining the asymptotic states in the far past as satisfying

|p⟩ =
√

2ωp a
†
p(−∞)|0⟩ , (1.157)

where a†p(−∞) creates a particle of momentum p at t→ −∞. Analogously,

|p⟩ =
√
2ωp a

†
p(+∞)|0⟩ , (1.158)

creates a particle of momentum p in the far future at t → +∞. If we consider the 2 → n scattering

amplitude, we want to compute the momentum space amplitude
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⟨f |i⟩ = ⟨p3 . . . pn|p1p2⟩ =
√
2ωp1

√
2ωp2

√
2ωp3 . . .

√
2ωpn

× ⟨0|ap3(+∞) . . . apn(+∞) a†p1(−∞) a†p2(−∞)|0⟩ . (1.159)

Then, in order to obtain this observable from the correlation functions written in terms of fields, we need

to invert the expansion of fields in momentum space. In the case of a free scalar field, the momentum

expansion that needs to be inverted is

ϕ(x) =

∫
d3k

(2π)3
1√
2ωk

(
ake

−ik·x + a†ke
+ik·x

)
, (1.160)

From this, it is straightforward to prove that

⟨0|ϕ(x)|0⟩ = 0, ⟨0|ϕ(x)|p⟩ = e−ip·x = e−iωpteip·x , (1.161)

These are in fact the two conditions that we will need to maintain once we consider an interacting theory.

The first one tells us that in fact ap annihilates the vacuum. The second condition ensures that the creation

operators a†p does create a single particle state with momentum p. In the presence of interactions, the

main difference regarding creation and annihilation operators is that they acquire time dependence. This

is implicit in (1.159) where we have t → ±∞ to the well separated asymptotic states. So if we use the

free field expansion (1.160) to invert it an obtain expression for the annihilation and creation operators of

asymptotic states in the presence of interactions, all we need to guarantee is that (1.161) are still satisfied.

We will comment on this point below.

Making use of the free field expansion (1.160) it is possible to arrive at vs

i

∫
d4x eip·x

(
∂2 +m2

)
ϕ(x) =

√
2ωp [ap(+∞)− ap(−∞)] , (1.162)

for annihilation operators and

−i
∫
d4x e−ip·x

(
∂2 +m2

)
ϕ(x) =

√
2ωp

[
a†p(+∞)− a†p(−∞)

]
, (1.163)

for the creation operators. Then, the amplitude of interest in (1.159) can be rewritten as

⟨f |i⟩ =
√
2ωp1

√
2ωp2

√
2ωp3 . . .

√
2ωpn

× ⟨0|ap3(+∞) . . . apn(+∞) a†p1(−∞) a†p2(−∞)|0⟩
=

√
2ωp1 . . .

√
2ωpn ⟨0|T ([ap3(+∞)− ap3(−∞)] . . . (1.164)
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[apn(+∞)− apn(−∞)]
[
a†p1(+∞)− a†p1(−∞)

] [
a†p2(+∞)− a†p2(−∞)

])
|0⟩ ,

where in the last equality we used the fact that the time-ordering operator T tells us to put all earlier

time operators (here, those evaluated at t → −∞) to the right, whereas the later time operators should

be going on the left. Since

ap(−∞)|0⟩ = 0 , ⟨0|a†p(+∞) = 0 , (1.165)

then the equality between the first and second line in (1.164) holds. We can finally obtain the Lehmann,

Symanzik and Zimmermann (LSZ) reduction formula by using (1.162) and (1.163) above, which results

in

⟨f |i⟩ = i

∫
d4x3 e

ip3·x3 (∂2x3 +m2
)
· · ·
∫
d4xn e

ipn·xn (∂2xn +m2
)

× i

∫
d4x1 e

−ip1·x1 (∂2x1 +m2
)
i

∫
d4x2 e

−ip2·x2 (∂2x2 +m2
)

× ⟨0|T (ϕ(x1)ϕ(x2)ϕ(x3) . . . ϕ(xn)) |0⟩ . (1.166)

The equation above gives the desired relation between the 2 → n − 2 amplitude in momentum space

on the left, and the n-point correlation function on the right. Although the LSZ reduction formula in

(1.166) is not the most convenient way to obtain the momentum space amplitudes, we will make use of

it to derive a set of rules, the Feynman rules, that will greatly speed up the procedure.

But before we derive the Feynman rules from (1.166) we must comment on its validity in the

presence of interactions. We derived the LSZ formula from the simple assumption of the free field

momentum expansion in (1.160). In the presence of interactions, on the other hand, we need to make

sure that the asymptotic states created and/or annihilated at t → ±∞ are single-particle well separated

momentum eigenstates. For this to be the case we need to guarantee that

⟨0|ϕ(x)|0⟩ = 0 , (1.167)

still holds. This is not always the case. In the presence of interactions we could have ⟨0|ϕ(x)|0⟩ = v ̸= 0.

However, in this case we can additively shift the definition of the field as in ϕ(x)→ ϕ(x) + v, such that

the new field ϕ(x) satisfies (1.167). The other condition we should worry about is

⟨0|ϕ(x)|p⟩ = e−ip·x , (1.168)

which, in the presence of interactions, would still guarantee that ap(±∞) still annihilates a single-particle

state of momentum p. But in the interaction theory the coefficient of the exponential in (1.168) need not

33



GUSTAVO BURDMAN

be equal to one. This requires that we redefine (renormalize) the field ϕ(x) multiplicatively by a factor

in such a way as to ensure that the coefficient in front of the exponential is in fact one. Then, we see that

with the necessary redefinitions of the field in the presence of interactions, the LSZ reduction formula is

valid.

We are finally ready to derive the Feynman rules in momentum space from the LSZ reduction for-

mula. Since the correlation function on the right side of (1.166) will be expressed, in perturbation theory,

by sums of products of free propagators (Wick’s theorem) the action of the Klein-Gordon operators on

them will result in delta functions as in

(∂2xi +m2)DF (xi − y) = −iδ(4)(xi − y) , (1.169)

where xi and y are external points. This removal of the external propagators, will result in only connected

correlation functions contributing to the amplitudes. The reason for this is that in the LSZ reduction

formula there is a Klein-Gordon operator for each external line. Disconnected diagrams contributing to

correlation functions will have less external propagators, resulting in the KG operators acting on delta

functions and finally a vanishing contribution.

As an example, let us consider the fully connected diagram in Fig. 8. The correlation function is given

by

G
(4)
λ (x1, x2, x3, x4) = (−iλ)

∫
d4y DF (x1 − y)DF (x2 − y)DF (x3 − y)DF (x4 − y) . (1.170)

The application of the LSZ reduction formula (1.166) to the expression above results in

⟨p3p4|p1p2⟩ = i

∫
d4x1 e

−ip1·x1 (∂2x1 +m2
)
i

∫
d4x2 e

−ip2·x2 (∂2x2 +m2
)

(1.171)

i

∫
d4x3 e

ip3·x3 (∂2x3 +m2
)
i

∫
d4x4 e

ip4·x4 (∂2x4 +m2
)
G

(4)
λ (x1, x2, x3, x4) .

Applying (1.171) to (1.170) we obtain

⟨p3p4|p1p2⟩ = (−iλ)
∫
d4y

∫
d4x1 e

−ip1·x1δ(4)(x1 − y)
∫
d4x2 e

−ip2·x2δ(4)(x2 − y)

×
∫
d4x3 e

ip3·x3δ(4)(x3 − y)
∫
d4x4 e

ip4·x4δ(4)(x4 − y)

= (−iλ)
∫
d4y e−i(p1+p2−p3−p4)·y

= (−iλ) (2π)4 δ(4)(p1 + p2 − p3 − p4) (1.172)
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From this expression, we see that the amplitude is just the insertion of the vertex factor (−iλ) times

a momentum conservation delta function. The appearance of this delta function is associated to the

fact that all external points are connected to the same internal point y where the interaction takes place.

That is, it comes from the fact that the interaction is local. Another important point is that, unlike for

the order λ0 above, the singularities of the contribution to the four-point function G(4)
λ (x1, x2, x3, x4)

exactly match the action of the Klein-Gordon operators in (1.171). The result above is a first example of

a Feynman rule in momentum space. Insert the interaction factor (−iλ) and a momentum conservation

delta function in each vertex. Strip all external propagators (which is the result of applying the LSZ

reduction formula). This is schematically shown in Fig. 10.

Fig. 10: Momentum-space Feynman rule for the four-point amplitude to order λ in ϕ4 theory.

Another important case to consider is that of going beyond leading order. In the case of the four-

point function we just computed, this means going to order λ2. The λ2 contribution to the four-point

function can be obtained from

G
(4)
λ2

(x1, x2, x3, x4) =
1

Z[0]

∫
Dϕϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)×

1

2!

(−iλ)2
(4!)2

∫
d4y ϕ4(y)

∫
d4z ϕ4(z) .

(1.173)

In (1.173), the factor of 1/2! coming from the exponential expansion cancelled by the exchange y ↔ z.

We will concentrate on connected diagrams. There are three ways of connecting the external fields to the

eight fields at points y and z of the interactions. They are depicted in Fig. 11.

Fig. 11: Connected diagrams contributing to the four-point function to order λ2 in ϕ4 theory.
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Let us focus on the first diagram (a) since the other two will be analogous with the obvious

replacements. The combinatoric factor in front of it can be obtained by counting the ways to match

ϕ(x1) with ϕ(y) (4), times the ways of matching ϕ(x2) with the remaining ϕ(y) (3), times the 4 ways

of matching ϕ(x3) with ϕ(z), times the 3 ways to match ϕ(x4) with ϕ(z). Finally, we need to contract

the remaining ϕ(y) and ϕ(z), which brings an extra factor of 2. All in all, the combinatoric factor times

1/(4!)2 results in an overall factor of

(−iλ)2 1
2
. (1.174)

We can understand the factor of 1/2 above in this diagram as a symmetry factor. It is the factor we

need to divide by if we assume that at each vertex of the diagram we insert a factor of −iλ, which

is the coefficient for the four-point function at order λ. In this diagram, using −iλ at each vertex is

overcounting the combinatoric factor since it is tantamount to assuming that all the lines at the two

vertices are un-contracted fields. But we know that the internal lines coming from the vertices result

in contractions into two propagators. To obtain the symmetry factors we see that the use of −iλ will

result in counting diagrams interchanging the internal integration points y and z as distinct contributions.

But this is not the case. So we can think of this factor of 2 as obtained by exchanging the two internal

propagators, resulting in undistinguishable contributions. The result for the contribution to the four-point

function is

G
(4)
(a)(x1, x2, x3, x4) =

(−iλ)2
2

∫
d4y d4z DF (x1 − y)DF (x2 − y)DF (x3 − z)DF (x4 − z)

DF (y − z)DF (y − z) . (1.175)

We want to obtain the O(λ2) contributions to the scattering amplitude for two particles of initial fixed

momenta to go to other two particles of known final momenta. Applying (1.166) on (1.175) we get

⟨p3p4|p1p2⟩(a) =
(−iλ)2

2

∫
d4y d4z e−i(p1+p2)·y ei(p3+p4)·zDF (y − z)DF (y − z) , (1.176)

where the action of each Klein-Gordon operator (∂2xi +m2) on the propagators containing an external

point xi in the argument resulted in factors of −iδ(4)(xi − y) and −iδ(4)(xi − z) which we used to inte-

grate over the xi’s. Since the two internal propagators do not have external positions in their arguments

they remain in (1.176). In order to make further progress we are going to express these propagators in

momentum space by making use of

DF (y − z) =
∫

d4q

(2π)4
e−iq·(y−z)

i

q2 −m2 + iϵ
, (1.177)
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in (1.176). The final expression fot the amplitude in momentum space is

⟨p3p4|p1p2⟩(a) =
(−iλ)2

2
(2π)4 δ(4)(p1 + p2 − p3 − p4)

×
∫

d4q

(2π)4
i

q2 −m2 + iϵ

i

k2 −m2 + iϵ
, (1.178)

where the value of k is fixed by delta functions at

k = −p1 − p2 − q = −p3 − p4 + q . (1.179)

As we can see from (1.178), there remains an undetermined momentum q which must be integrated over.

This can be easily understood by looking at the diagram once again, now in momentum space and with

all these momenta drawn explicitly as seen in Fig. 12. It is clear that, although we have two internal

Fig. 12: One of the Feynman diagrams in momentum space for the four-point amplitude to order λ2 in
ϕ4 theory.

lines, only one of the two internal momenta are independent: there is a delta function forcing momentum

conservation at each vertex, but the overall momentum conservation is not a constraint so there is one

undetermined momentum we still have to integrate over. Finally, before summarizing the Feynman rules,

Fig. 13: One of the Feynman diagrams in position space for the four-point amplitude to order λ2 in ϕ4

theory. It corresponds to an O(λ) correction to one of the external lines.

we comment on another type of order λ2 diagram, depicted in Fig. 13. Its contribution to the four-point

correlation function is
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G(4)(x1, . . . , x4)(d) =
(−iλ)2

2

∫
d4y d4z DF (x1 − y)DF (y − z)DF (y − y)DF (x2 − z)

×DF (x3 − z)DF (x4 − z) . (1.180)

We can see from (1.180) above that applying the LSZ reduction formula will result in two remaining

propagators, but only one undetermined momentum. This is because, when doing to momentum space,

the propagator DF (y − z) will be on shell, resulting in an overall divergent contribution. These are in

fact part of the renormalization of the external legs of any diagram and should not be considered when

computing an amplitude. These diagrams should be excluded from the calculation, since they are going

to be included by the renormalization process, which redefines the fields (leading in this case to the

redefinition of the propagators) in the presence of interactions, as it was briefly mentioned at the end of

the derivation of the LSZ reduction formula. In order to avoid including these diagrams, a rule can be

imposed: only consider diagrams without on shell propagators (amputated diagrams).

We are finally ready to enumerate a set of rules to compute the amplitudes in momentum space

without the need to apply the LSZ reduction formula every time we need to compute one. These are the

Feynman rules of the theory.

1. Vertex: Insert a factor of −iλ for each vertex in the diagram. It is clear from (1.178) that this

will get us the factor in front up to symmetry factors. Notice that this is the Feynman rule of the

diagram at order λ (i.e. at “tree” level and without “loops”). In general, deriving the tree-level

interaction vertex is one of the first things we need to do in a theory in order to be able to obtain

its Feynman rules.

2. Momentum conservation at each vertex: The presence of the delta functions at each vertex that

appear integrating (1.176), tells us that momentum conservation must be enforced at each ver-

tex in the diagram. This always results in an overall delta function enforcing total momentum

conservation. For our case is the factor (2π)4δ(4)(p1 + p2 + p3 + p4).

3. Loop momentum integration: Integrate over all the undetermined momenta. Our example in

Fig. 12, the product of the two delta functions after integrating (1.176) is equivalent to the overall

momentum conservation. So one of the two internal momenta remains free and must be integrated

over.

4. Symmetry factors: We must divide by the symmetry factor of the diagram. In Fig. 12 this is 2,

since the internal propagators can be exchanged without consequence. The need to divide by the

symmetry factors stems from the fact that in any generic diagram we use the vertex Feynman rule

(here −iλ) for each interaction. But generally this has the correct combinatoric factor only in the

tree-level interaction vertex. This “mistake” must be corrected by the symmetry factor.

These Feynman rules are specific to the example of the real scalar field theory of (1.141). However,

the procedure to derive the Feynman rules for any other quantum field theory is always the same. The

one difference is in the derivation of the vertex Feynamn rule (Rule 1). The rest are analogous in all

cases, although in the presence of different kinds of fields, there may or may not be symmetry factor
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to worry about. Using the Feynman rules of an interacting theory, we can compute the amplitude of

a desired process in momentum space, and to the desired order in perturbation theory. For instance,

to leading order in perturbation theory, i.e. to leading order in the coupling λ, the momentum space

scattering amplitude of two real scalar field going to two real scalar fields is given by (1.172). But if

order λ2 accuracy is required one needs to add the diagrams such as that in Fig. 12. Once the momentum

space amplitude is obtained, the next step os to compute the actual physical observable, the cross section.

1.1.8 Cross sections

Now that we know how to compute amplitudes for given processes, we would like to make contact with

observables such as cross sections and decay rates based on those amplitudes. This will complete the

path from computing correlation functions and then amplitudes, which can be easily obtained by using

the derived Feynman rules of a given theory.

We will state the amplitude in the language of the S matrix. Let us consider a scattering process with a

given initial state and a final state. We define the asymptotic states by

|i, in⟩ for t→ −∞
|f, out⟩ for t→ +∞ , (1.181)

where the states labeled “in” are those asymptotic states created by creation operators evaluated at times

−∞, e.g. a†(−∞), etc; and the states labeled “out” are those created by creation operators evaluated at

times +∞, such as a†(+∞). These two distinct sets of asymptotic states are the ones we have used up

until now to write down the desired amplitude

⟨f, out|i, in⟩ . (1.182)

The “in” and “out” asymptotic states are however isomorphic, i.e. there are the same set of states but

labeled differently. We can define a unitary transformation S such that

|i, in⟩ = S|i, out⟩ , (1.183)

in such a way that we can rewrite (1.182) in terms of either both “in” or“out” states.

⟨f, out|i, in⟩ = ⟨f, in|S|i, in⟩ = ⟨f, out|S|i, out⟩ ≡ ⟨f |S|i⟩ . (1.184)

The last equality stems from the fact that we can equally express the amplitude in terms of the “in” or

the “out” states as long as is an element of the S matrix. The S operator can be written as
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S ≡ 1+ iT , (1.185)

where we defined the T matrix elements. The identity in the first term in (1.185) reflects the fact that the

amplitude must include the possibility of no interaction. But in order to compute a cross section we are

only concerned with the part of the amplitude that allows for interactions, i.e. the second term in (1.185).

Schematically, we can express this as

⟨f |S|i⟩ = disconnected diagrams + LSZ formula , (1.186)

where the contributions of disconnected diagrams comes from the identity in (1.185). Thus, the LSZ

formula will give the contribution of the T matrix to a given amplitude.

In general we want to compute the transition probability from an initial state to a final state. In practice,

we are mainly interested in two cases: the decay of a particle to two or more particles, and the scattering

of two particles in the initial state into two or more particles in the final state.

We start with the scattering process 2→ n. The transition amplitude is given by

⟨p1 . . .pn| iT |pApB⟩ ≡ (2π)4δ(4)(PA + PB − P1 − · · · − Pn) iA , (1.187)

where we have defined the amplitude A as the transition amplitude with the overall momentum conser-

vation delta function already factored out. In order to obtain a probability, we will define it as the squared

of the transition amplitude appropriately normalized.

P ≡ |⟨p1 . . .pn| iT |pApB⟩|2
⟨p1 . . .pn|p1 . . .pn⟩⟨pApB|pApB⟩

, (1.188)

where the denominator corresponds to the normalization of the initial and final states.

We start by considering the numerator of (1.188). This is

|⟨p1 . . .pn| iT |pApB⟩|2 =

(2π)4δ(4)(PA + PB −
n∑
f=1

Pf )

2

|A|2

= (2π)4δ(4)(PA + PB −
n∑
f=1

Pf ) (2π)
4δ(4)(0) |A|2 , (1.189)

where f = 1, . . . , n labels the final state momenta. However, we can write

δ(4)(0) = δ(0)δ(3)(0) =
1

(2π)4

∫
d4x ei0·x . (1.190)
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If we consider for a moment a finite volume V and a finite time T , the integral in (1.190) results in

(2π)4δ(4)(0) = V T . (1.191)

For the denominator, we consider the asymptotic momentum eigenstates normalized according to

|p⟩ =
√

2Ep a
†
p|0⟩ , (1.192)

such that the normalization of an eigenstate of momentum p is given by

⟨p|p⟩ = 2Ep ⟨0|ap a†p|0⟩
= 2Ep (2π)

3 δ(3)(p− p) = 2Ep V , (1.193)

where in the last equality we used (1.190). Then, the two factors in the denominator of (1.188) are

⟨pA pB|pA pB⟩ = 2EA 2EB V
2

⟨p1 . . .pn|p1 . . .pn⟩ = 2E1 . . . 2EnV
n =

∏
f

(2EfV ) . (1.194)

Replacing (1.190) and (1.194) into (1.188) and dividing by T , we obtain the probability of transition for

unit time

P

T
=

(2π)2δ(4)(PA − PB −
∑

f Pf )V |A|2

2EA 2EB V 2
∏
f (2EfV )

. (1.195)

But this probability requires that we have precise knowledge of all final state momenta. Often times we

will need to either partially or totally integrate over the phase space of the final states. For this we need

to know the probability that a given final state particle has momentum in the interval

(pf ,pf + d3pf ) , (1.196)

where d3pf contains information about the momentum vector. We would like then to convert (1.195)

into the differential probability that the final states are in a region of the final state phase space defined

by (1.196). In order to obtain this we need to multiply (1.195) by the number of states in each interval

defined by (1.196) for each final state particle. Given that we are using a finite volume V , the momentum

of each final state particle obeys the quantization rule
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p =
2π

L
(n1, n2, n3) , (1.197)

where L3 = V , and the ni with i = 1, 2, 3 refer to the number of states in each spatial direction. Then,

the number of states inside the interval (1.196) of size d3p is

n1 n2 n3 =
Ldpx
2π

Ldpy
2π

Ldpz
2π

=
V d3p

(2π)3
(1.198)

Putting all these together we obtain the differential probability per unit time

dP

T
=

(2π)2 δ(4)(PA + PB −
∑

f Pf ) |A|∈
2EA 2EB V

n∏
f=1

(
d3pf

(2π)3 2Ef

)
, (1.199)

Finally, in order to convert this into a differential cross section we need to account for the incident flux.

In other words, we are interested in the differential probability per unit time and per unit of initial flux so

that we obtain a probability that depends intrinsically on the amplitudeA and the final state phase space,

not on how intense our beams of A and B particles were. The flux is the number of particles per unit

volume times the relative velocity of the particles. For instance, for a typical head on collision

Fig. 14: Head on collision. pB = −pA.

the initial flux “seen” by either the A or the B particle is given by

|vzA − vzB|
V

. (1.200)

So dividing (1.199) by the flux in (1.200) we obtain

dσ =
1

2EA 2EB

1

|vA − vB|
(2π)4 δ(4)(PA + PB −

∑
f

Pf ) |A|2
∏
f

(
d3pf

(2π)3 2Ef

)
, (1.201)

which is the differential cross section for the scattering of the two initial particles with momenta PA and

PB going into an n-particle final state.
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At this point we will make some comments:

– We can define the final state phase space by

∫
dΠn ≡

∫ n∏
f=1

(
d3pf

(2π)3 2Ef

)
(2π)4 δ(4)(PA + PB −

∑
f

Pf ) . (1.202)

It is separately Lorentz invariant.

– The amplitude squared |A|2 is also Lorentz invariant by itself.

– The factor

1

EAEB|vzA − vzB|
, (1.203)

is not Lorentz invariant, but it is invariant under boosts in the z direction.

1.1.8.1 Two-particle final state

A very paradigmatic example is the scattering of two particles in the initial state into two particles in the

final state. We first compute the two-particle phase space for A+B → 1 + 2. We will use the center of

momentum frame. From (1.202) we have

∫
dΠ2 =

∫
d3p1
(2π)3

1

2E1

∫
d3p2
(2π)3

1

2E2
(2π)4 δ(4)(PA + PB − P1 − P2)

=

∫
d3p1
(2π)3

1

4E1E2
2π δ(EA + EB − E1 − E2) , (1.204)

where the second line is obtained by using the spatial delta function to perform the d3p2 integral. The

final momentum differential is

d3p1 = p21 dp1 dΩ1 = p21 dp1 d cos θ1 dϕ1 , (1.205)

with θ1 the angle of p1 with respect to the direction of the incoming momentum pA, and ϕ1 the corre-

sponding azimuthal angle. There is typically no azimuthal angle dependence in |A|∈, so we can integrate

over ϕ1 obtaining a factor of 2π. Then (1.204) now reads

∫
dΠ2 =

∫
p21 dp1

(2π)3 4E1E2
(2π d cos θ1) 2π δ

(
EA + EB −

√
p21 +m2

1 −
√
p21 +m2

2

)
, (1.206)

where we have used that p1 = −p2 in the delta function, which stems from the fact that we have used

the spatial delta function in the center of momentum frame. We are now in a position to perform the
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integral in the absolute value of the spatial momentum of the particle 1, p1, by using the delta function.

Restoring the differential solid angle to have a more general expression, we have

∫
dΠ2 =

∫
p21

(2π)2 4E1E2

dΩ1

| p1E1
+ p1

E2
|

=

∫
1

16π2
p1

E1 + E2
dΩ1 . (1.207)

But, since E1 + E2 = ECM then we obtain

∫
dΠ2 =

∫
1

16π2
p1
ECM

dΩ1 . (1.208)

Let us compute now the cross section in the CM frame. It is

dσ

dΩ
=

1

2EA 2EB

1

|vzA − vzB|
p1

16π2ECM
|A|∈ , (1.209)

where the solid angle refers to the final states particles, and z is the direction of the incoming A particle.

If we now consider the relative velocity we have

|vzA − vzB| =
∣∣∣∣ pzAEA − pzB

EB

∣∣∣∣ . (1.210)

If we now consider the simplified case mA = mB = m1 = m2 = m, we have

|vzA − vzB| =
2

ECM
|pzA − (−pzA)| =

4pA
ECM

=
4p1
ECM

, (1.211)

Then, we arrive at a final expression for the angular distribution for scattering in the CM of two particles

into two particles, all of the same mass m:

(
dσ

dΩ

)
CM

=
1

64π2
1

E2
CM

|A|2 . (1.212)

1.1.8.2 Decay rate of an unstable particle

If instead of considering the transition probability per unit time from a two-particle initial state we start

with a state of one particle, we are computing the decay rate for the process A → 1 . . . n, for the decay

of a particle A to n particles in the final state. The derivation is just straightforward and the result is the

differential decay probability per unit time given by

44



FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

dΓ =
1

2mA

n∏
f=1

(
d3pf
(2π)3

1

2Ef

)
(2π)4 δ(4)

PA −∑
f

Pf

 |A|∈ , (1.213)

where the factor of 2mA comes from using 2EA in the rest frame of the decaying particle, and A is the

amplitude for the decay process. For a given decay channel (i.e. a given final state), the integral gives the

so-called partial width of A into that channel

Γ(A→ f1) =

∫
dΓ(A→ f1) . (1.214)

The total width of A is a property of the particle and corresponds to the sum of the partial widths into all

the available channels into which A can possibly decay

ΓA ≡
∑
i

Γ(A→ fi) . (1.215)

The lifetime of tha particle is then the inverse of the total decay rate or total width. Decay rates have

units of energy, thus if we want the lifetime in seconds we can use

τA =
ℏ
ΓA

. (1.216)

For instance, if we initially have a given number of particles of type A, at a later time t we have

N(t) = N(0) e−t/τA . (1.217)

The lifetime also determines the typical displacement of a particle produced before it decays. This is

c τA γ , (1.218)

where c is the speed of light, and γ is the relativistic factor.

Finally, the propagation of an unstable particle is affected by its decays. We will show later in the course

that the propagator of a particle with open decay channels gets modified to be

i

p2 −m2
A − iΓAmA

, (1.219)

where we considered a scalar propagator and p is the four-momentum of A. We will derive (1.219)

in the context of renormalization and see that the new term appears as a consequence of an imaginary

shift in the pole of the propagator that arises due to the existence of open decay channels for A. As a
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result, unstable particles appear in cross sections for processes that are mediated by them as resonances

of widths characterized by ΓA. This is the reason why these particles are called resonances, and also

why the total decay rate ΓA is called the particle width.

1.2 Gauge theories

Here we introduce vector fields. Although it is generically possible to write the action for a theory with

such fields, it turns out that these generic theories are not well defined unless the vector fields are gauge

fields, i.e. vector fields associated with a local symmetry. We will eventually show this relation further

along our course. For now, let us introduce gauge fields as a consequence of gauge invariance. We will

start with a fermion theory so as to derive quantum electrodynamics.

1.2.1 Gauge invariance

Let us consider the Lagrangian for a free fermion of mass m

L = ψ̄(i ̸∂ −m)ψ . (1.220)

This is invariant under the global U(1) transformation4 defined by

ψ(x) −→ eiα ψ(x) ,

ψ̄(x) −→ e−iα ψ̄(x) , (1.221)

where α is a real constant. The conserved charge associated with these symmetry transformations is

fermion number: +1 for fermions, −1 for antifermions.

But what if we want local U(1) invariance, i.e. what if α = α(x) is a function of the spacetime position?

The local transformation now reads

ψ(x) −→ eiα(x) ψ(x) ,

ψ̄(x) −→ e−iα(x) ψ̄(x) , (1.222)

which leads to a transformation of the Lagrangian as

L → L′ = L = ψ̄(i ̸∂ −m)ψ − ∂µα(x) ψ̄γµψ ̸= L . (1.223)

From (1.223) we see that the local or gauge transformation (1.222) does not leave the Lagrangian (1.220)

invariant. In order to obtain a theory invariant under these local transformations we will need to add a

4A unitary transformation determined by one parameter.
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new field that also transforms in some way that depends on α(x) and whose transformation cancels the

extra term that appears in (1.223). One way to do this is to define a covariant derivative on ψ(x), a

generalization of the normal derivative. We write

L = ψ̄ (iD̸ −m)ψ , (1.224)

where we defined the covariant derivative Dµψ(x) so that it must transform as the field ψ(x) in order for

(1.224) to be invariant, i.e. under the transformations (1.222) it must transform as

Dµψ(x) −→ eiα(x)Dµψ(x) . (1.225)

Clearly, we can see that if (1.225) is satisfied at the same time as (1.222) then (1.224) is invariant. Next,

we write the covariant derivative Dµψ(x) by introducing a vector field as

Dµψ(x) ≡ (∂µ + ieAµ(x)) ψ(x) , (1.226)

where e is a constant. Then, it can be verified that in order for the covariant derivative defined in (1.226)

to satisfy (1.225) the vector field Aµ(x) must transform as

Aµ(x) −→ Aµ(x)−
1

e
∂µα(x) . (1.227)

We notice in passing that the vector field Aµ(x) must be real. This is a consequence of the fact that the

gauge parameter α(x) is real. Thus, to summarize, the theory in (1.224) is invariant under the gauge or

local U(1) transformations

ψ(x) −→ eiα(x) ψ(x) ,

ψ̄(x) −→ e−iα(x) ψ̄(x) ,

Aµ(x) −→ Aµ(x)−
1

e
∂µα(x) , (1.228)

with the covariant derivative defined by (1.226). Finally, if the gauge field Aµ(x) is to be a dynamical

degree of freedom, we need appropriate quadratic terms in it, i.e. a kinetic term and a mass term. A

kinetic term that is trivially invariant under the transformations (1.227) is built from the contraction of

Fµν ≡ ∂µAν − ∂νAµ , (1.229)

with itself, since the tensor Fµν is invariant. Furthermore, a mass term for Aµ(x) must be something like
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m2
AAµA

µ . (1.230)

But since this is clearly not gauge invariant, we must assume that mA = 0. Thus a gauge field must have

zero mass in order to respect gauge invariance. Although there are exceptions to this statement, they

all correspond to the case when the mass is generated dynamically via a scalar field coupled to Aµ(x)

obtaining a non-zero vacuum expectation value. We will study this case in the second part of this course.

For now, gauge invariance means zero mass for the gauge fields. Then, the complete theory that is U(1)

gauge invariant is

L = ψ̄ (iD̸ −m)ψ − 1

4
FµνF

µν

= ψ̄ (i ̸∂ −m)ψ − eAµψ̄γµψ −
1

4
FµνF

µν , (1.231)

where in the last equality we can see that the gauge field Aµ(x) interacts with the fermion current with

a coupling e. The factor of −1/4 in front of the gauge field kinetic term is a convenient choice of

normalization which results in Fµν being the electromagnetic stress tensor in the case of quantum elec-

trodynamics (QED). In fact, this Lagrangian is the basis for QED, where ψ(x) is the charged electron

field and Aµ(x) is identified with the photon. The next step in order to obtain QED as a quantum field

theory would be to quantize the gauge field Aµ(x).

1.2.2 Gauge fields and quantization

From the Lagrangian for the gauge fields

L = −1

4
FµνF

µν , (1.232)

we can derive the equations of motion (Euler-Lagrange)

∂2Aµ − ∂µ (∂νAν) = 0 , (1.233)

As usual in the classical case, if we choose the Lorentz condition

∂µA
µ = 0 , (1.234)

we obtain

∂2Aµ = 0 . (1.235)
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Thus, imposing the Lorentz condition (1.234) gives us a simple equation with plane wave solutions, a

massless Klein-Gordon equation for each component of the four-vector Aµ(x). Naively, we would then

expand Aµ(x) in these solutions and quantize by imposing commutation relations between Aµ(x) and

its conjugate momentum πµ(x). From (1.232) we obtain the form of the conjugate momentum as

πµ(x) =
∂L

∂(∂0Aµ)
= Fµ0 . (1.236)

However, from (1.236) it is clear that there is a problem with the time component of πµ(x) coming from

the fact that Fµν is antisymmetric. We have that

π0(x) = 0 , (1.237)

meaning that it will not be possible to impose a quantization condition on A0(x). We can get around this

by adding a term to the Lagrangian as

L = −1

4
FµνF

µν − c(∂µAµ)2 , (1.238)

where c is a arbitrary real constant. Now the equations of motion are

∂2Aµ + (c− 1)∂µ(∂νA
ν) = 0 . (1.239)

We can see that there are two ways of obtaining (1.235): either by using the Lorentz condition or by

choosing c = 1. But now the second choice also allows us to define a non-zero conjugate momentum of

A0(x) since now

πµ(x) = Fµ0 − cgµ0(∂νAν) , (1.240)

which results in

π0(x) = −c(∂νAν) . (1.241)

So choosing c = 1 allows us to carry out the canonical quantization procedure. This is called the

Feynman gauge. But, as we will see below, the upshot is that now we will have non-physical degrees of

freedom.

To proceed with the quantization, we start by expanding the field Aµ(x) in momentum space. The most

general solution to (1.235) can be written as
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Aµ(x) =

∫
d3k

(2π)3
√
2Ek

3∑
λ=0

{
a
(λ)
k ϵ(λ)µ e−ik·x + a

†(λ)
k ϵ∗(λ)µ e+ik·x

}
, (1.242)

where we have used the fact that Aµ(x) must be a real field, and the ϵ(λ)µ for λ = 0, 1, 2, 3 form a basis

for a general expansion of any four-vector, the so-called polarization vectors. If we could use the Lorentz

condition (1.234) we could eliminate one of the polarizations through

kµϵ(λ)µ = 0 , (1.243)

In particular, using gauge invariance we can always eliminate the polarization with time components.

This is desirable for the quantization procedure given that in its presence there appear negative norm

states. To see this let us guess the form of ⟨0|TAµ(x)Aν(y)|0⟩ , which should be the gauge boson

propagator. Since each component of Aµ(x) obeys the massless Klein-Gordon equation all we lack to

write it is to guess its tensor form: it should be an isotropic second rank tensor. Let us try gµν . We then

write

⟨0|TAµ(x)Aν(y)|0⟩ =
∫

d4q

(2π)4
−igµν
q2 + iϵ

e−iq·(x−y) . (1.244)

To understand the sign choice we notice that doing the contour integral in q0 we obtain

⟨0|TAµ(x)Aν(y)|0⟩ =
∫

d3q

(2π)3
−gµν
2Eq

e−iq·(x−y) . (1.245)

If we now take x → y (but with the limit x0 → y0 from the positive side) and take µ = ν, then the

quantity in (1.245) becomes the norm of the state

Aµ(x)|0⟩ . (1.246)

We want states associated with the physical polarizations of real photons, which must be spatial in nature,

e.g. Ai(x) for i = 1, 2, to have positive norm. This forces us to choose the minus sign in front of gµν in

(1.244). But at the same time this means that the sate

A0(x)|0⟩ , (1.247)

must have negative norm. This sounds troublesome. However, as we mentioned above, this polarization

does not correspond to a physical degree of freedom. Both the temporal as well as the longitudinal

components of Aµ(x) are not physical. They do not correspond to an asymptotic state (a real photon)

satisfying qµqµ = 0, with qµ being the photon momentum. One way to see this intuitively is to consider
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a process where two conserved currents, jµA(x) and jνB(x) interact exchanging a gauge boson (photon).

Each of these currents is conserved and made up by the some fermion charged under the gauge symmetry,

i.e jµA(x) = ψ̄A(x)γ
µψA(x), etc. Then the amplitude can be schematically written as

A ∼
∫
d4x jµA(x)

−igµν
q2 + iϵ

jνB(x)

=

∫
d4x

{
j1Aj

1
B + j2Aj

2
B

q2 + iϵ
+
j3Aj

3
B − j0Aj0B
q2 + iϵ

}
. (1.248)

If we choose the longitudinal direction to be the ẑ = 3̂ direction, the the photon momentum is

qµ = (q0, 0, 0, |q|) . (1.249)

Current conservation then implies, for both A and B currents,

∂µj
µ(x) = 0→ qµj

µ = q0j
0 − |q|j3 = 0 , (1.250)

which means that if the photon is nearly real, i.e. if q2 ≃ 0 and q0 ≃ |q|, then j3 ≃ j0 and the longitudinal

and temporal terms of the currents cancel in the second term of (1.248). So we see that, for a real photon

only the transverse polarizations contribute. However, the unphysical polarizations cannot be neglected

when considering virtual photons. It is straightforward to see this by replacing j3A and j3B in (1.248) by

using (1.250). Then, the amplitude can be seen to be

A ∼
∫
d4x

{
j1Aj

1
B + j2Aj

2
B

q2 + iϵ
+
j0Aj

0
B

|q|2
}
, (1.251)

which shows a transverse contribution and a second contributions that corresponds to the instantaneous

Coulomb potential, entirely given by the unphysical components.

Thus, the photon propagator defined in (1.244) is consistent with current conservation and there-

fore gauge invariance. However, it corresponds to a particular gauge choice, called the Feynman gauge.

A more formal and general derivation of the gauge boson propagator can be performed in the functional

integral approach. But making use of a trick due to Fadeev and Popov, it is possible to obtain the gauge

boson propagator as

DFµν(x− y) =
∫

d4q

(2π)4
D̂Fµν(q) e

−iq·(x−y) , (1.252)

with the momentum space propagator given by

D̂Fµν(q) = −
i

q2

[
gµν − (1− ξ) qµqν

q2

]
. (1.253)

This is the gauge boson propagator in the so-calledRξ gauge, for arbitrary values of ξ. Choosing ξ we fix

the gauge. For instance, with the ξ = 1 corresponds to the Feynman gauge, and we obtain the propagator

of (1.244). But in many cases other choices may be more convenient. The choice ξ = 0 is called the

Landau gauge.
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1.3 Non-abelian gauge theories

1.3.1 Lie algebras and non-abelian symmetries

Non-abelian gauge theories are based on non-abelian continuous groups. These are defined by the fact

that they include elements that can be continuously deformed into the identity. For them then we have

that

g ∈ G/ (1.254)

the we can write

g(α) = 1 + iαata +O(α2) , (1.255)

where the αa’s are infinitesimally small real parameters, summation over the index a is understood and

the ta are called the generators of the group G. The definition (1.255) implies

g(0) = 1 . (1.256)

If g(α) is unitary then the ta must be a set of linearly independent hermitian operators. Groups defined

by these properties are called Lie groups.

In order to obtain the defining property of Lie groups (its algebra) we start by defining the group’s

multiplication. The multiplication of two elements of the group results in another element of G:

g(α) g(β) = g(ξ) , (1.257)

where the real parameters of the product element satisfy

ξa = f(αa, βa) , (1.258)

with f a continuously differentiable function of the αa’s and the βa’s. We can conclude various things

about f . For instance,

f(αa, 0) = αa , (1.259)

and similarly for α = 0. On the other hand, if in (1.257) we have that

g(β) = g−1(α) , (1.260)
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then it must be that

f(α, β) = 0 . (1.261)

Armed with this knowledge we are going to compute the following quadruple multiplication:

g(α) g(β) g−1(α) g−1(β) = g(ξ) . (1.262)

We will first focus on the left hand side of (1.262). This is given by

(1 + iαata + · · · ) (1 + iβbtb + · · · ) (1− iαctc + · · · ) (1− iβdtd + · · · ) , (1.263)

from which we can see that the terms linear in α and β cancel. Multiplying the first order parameters and

keeping only up to second order products we have

1− αaβbtatb + αaαctatc + αaβdtatd + βdαctbtc + βbβdtbtd − αcβdtctd + · · · , (1.264)

where the dots include the second order terms in the expansions of the g’s and they will also contain

second order products of α’s and β’s which are not explicitly written in (1.264). In fact, it is easy to see

that the third and sixth terms in (1.264) actually are cancelled by them. Then the left hand side of (1.262)

up to leading order in the infinitesimal paramenters α and β is given by

1 + βbαc [tb, tc] + · · · , (1.265)

where [tb, tc] = tbtc − tctb is the commutator of the generators.

Now let us consider the right hand side of (1.262). We know that

ξ = f(α, β) . (1.266)

Then the most general expansion of ξ in terms of α and β is given by

ξe = Ae +Befαf + B̃efβf + Cefgαfβg + C̃efgαfαg + Ĉefgβfβg + · · · , (1.267)

where Ae, Bef , B̃ef , Cefg, C̃efg and Ĉefg are arbitrary real coefficients, and the dots correspond to
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terms with more than two infinitesimal parameters. However, since using (1.256), (1.260) and (1.261)

we know that the function in (1.266) satisfies

f(α, 0) = f(0, β) = 0 , (1.268)

we immediately conclude that

Ae = Bef = B̃ef = C̃efg = Ĉefg = 0 . (1.269)

Then we conclude that

ξe = Cefg αfβg + · · · , (1.270)

and therefore

g(ξ) = 1 + iξete + · · ·
(1.271)

= 1 + iCefg αf βg te + · · · . (1.272)

We can now equate this with our result for the left hand side (1.265). We then conclude that the commu-

tator of the generators must satisfy

[tb, tc] = i Cbce te . (1.273)

The expression above is the defining property of the group G and is called the algebra of the group. The

set of constants Cbce are called structure constants and vary from one group to another.

Finally, the structure constants in (1.273) satisfy an identity that is derived from the following cyclic

property of commutators:

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 . (1.274)

Using (1.273) and the equation above we arrive at

CadeCbcd + CbdeCcad + CcdeCabd = 0 , (1.275)

which is the Jacobi identity for the structure constants.
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1.3.2 Classification of Lie algebras

For the applications we are manly interested in here, we focus on unitary transformations on a finite

number of fields. These can be represented by a finite number of hermitian operators. When the number

of of generators is finite we say that the group is compact. If one of the generators commutes with all

others, then it generates a U(1) subgroup. If the algebra does not contain such a U(1) factor is called

semi-simple. Furthermore, if it does not contain at least two sets of generators whose members commute

with the ones from the other set, then the algebra is called simple. The most general Lie algebra can be

expressed as a direct sum of simple algebras plus U(1) abelian factors.

The restriction that the algebra be compact and simple results in the three so called classical groups, plus

five exceptional groups. Here we will not talk about the exceptional groups (G2, F4, E6, E7 and E8)

although some of them have found applications, for instance in attempts to build model of the unification

of all fundamental interactions. In fact we will mostly concentrate on SU(N), which is relevant in many

applications such as, for instance, the description of gauge theories in the standard model of particle

physics. The other classical groups, SO(N) and Sp(N) have been also used in many applications.

SU(N): Unitary transformations of N -dimensional vectors.

If u and v are N -dimensional vectors, a linear transformation on them defined by

u→ U u , v → U v , (1.276)

is a unitary transformation if it preserves the product

u† v . (1.277)

This is satisfied if

U † = U−1 . (1.278)

These transformations defined in this way also include the multiplication by an overall phase:

u→ eiα u . (1.279)

But the transformation above corresponds to an example of a U(1) factor. If we want our algebra to be

simple, we should remove it. We do this by requiring that

detU = 1 . (1.280)

This requirement removes the phase transformation in (1.279) since we have
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U = eiH , (1.281)

where H must be hermitian due to (1.278). The unit determinant constraint (1.280) means that

Tr [H] = 0 , (1.282)

excluding the U(1) transformation in (1.279). Without this exclusion we would have U(N) = SU(N)×
U(1). The generators of SU(N) are represented by N2 − 1 N ×N traceless matrices. Of these, N − 1

are diagonal, which define the rank of the group. As mentioned earlier, SU(N) gauged groups figure

prominently in the standard model of particle physics, where the interactions are described by the gauge

group SU(3)× SU(2)× U(1), where the first factor refers to strong interactions and the last two to the

electroweak ones.

SO(N): Orthogonal transformations on N -dimensional vectors.

It is defined as the unitary transformations that preserve the scalar product of any two N dimensional

vectors

u · v = ua δab vb . (1.283)

This is just the group of rotations in N dimensions, but we need to exclude the reflection so that (1.280)

is satisfied. Otherwise we would have O(N), which is not a simple group. The number of generators is

N(N − 1)

2
, (1.284)

which is the number of independent angles in N dimensions.

SO(N) gauge theories have been used in extensions of the standard model, such as for example SO(10)

grand unification models. The are also often used as spontaneously broken global symmetries in models

where the Higgs boson is composite.

Sp(N): Symplectic transformations on N -dimensional vectors.

These transformations preserve the anti-symmetric product of N dimensional vectors

u · v = ua ϵab vb , (1.285)

with
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ϵ =

(
0 1

−1 0

)
. (1.286)

The groups has

N(N + 1)

2
, (1.287)

generators, that means that it is represented by this number of N ×N unitary matrices.

1.3.3 Representations

A representation is a realization of the multiplication of group elements by using matrices. That is

a b = c → M(a)M(b) =M(c) , (1.288)

where M(a), M(b) and M(c) are matrices. A representation is said to be reducible if it can be written

in diagonal block form, that is as

M(a) =

 M1(a) 0 0

0 M2(a) 0

0 0 M3(a)

 . (1.289)

A reducible representation is the direct sum of irreducible representations (irreps).

The dimension of representation r, d(r), is the dimension of the vector space in which the matricesM(a)

act. Irreps can be used to have matrices representing the generators of the group, ta. We denote these

matrices as tar . To fix their normalization we define the trace of the product as

Tr[tar t
b
r ] ≡ Dab , (1.290)

which satisfies Dab > 0 if the tar are hermitian. We can always choose a basis for the matrices tar such

that

Dab ∝ δab , (1.291)

meaning that

Tr[tar t
b
r ] = C(r) δab , (1.292)

with C(r) a constant that depends on the particular representation r.
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Expressing the generators by the tar , we may write the algebra of the Lie group as

[tar , t
b
r] = i fabc tcr , (1.293)

where the fabc are the structure constants (which we called Cabc before). Making use of (1.292) and

(1.293) we can write the structure constants as

fabc =
−i
C(r)

Tr[[tar , t
b
r ] t

c
r ] . (1.294)

Expanding the commutator and the trace it is straightforward to show that (1.294) implies that fabc is

totally anti-symmetric under the exchange of the group indices a, b and c.

Complex conjugate representation

For each irrep r we can define a complex conjugate representation r̄. For instance, if we have a field ϕ

undergoing an infinitesimal transformation we write

ϕ→ (1 + iαa tar)ϕ . (1.295)

Then, the complex conjugate of the field transforms as

ϕ∗ → (1− iαa (tar)∗)ϕ∗ . (1.296)

Then, the generators of the complex conjugate representation are defined as

tar̄ = −(tar)∗ = −(ta)T , (1.297)

where the last equality is a consequence of tar being hermitian. There are cases when the complex

conjugate representation r̄ is equivalent with r. This is the case if a unitary transformation U exists such

that

tar̄ = U tar U
† . (1.298)

Then we say that the representation r is real.

Adjoint representation

The generators of the adjoint representation G are defined by the structure constants fabc by

(
tbG

)
ac
≡ i fabc . (1.299)
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It is straightforward to verify that they satisfy the algebra, that is that

[tbG, t
c
G]ae = if bcd

(
tdG

)
ae
, (1.300)

which is in fact the Jacobi identity (1.275). Since the structure constants fabc are real, we can see that

the generators of the adjoint representation satisfy

taG = −(taG)∗ , (1.301)

which means that he adjoint representation is real. The dimension of the adjoint representations, d(G) is

given by the number of generators of the group, e.g. N2 − 1 for SU(N), etc.

Casimir Operator

The operator defined by

T 2 ≡ ta ta , (1.302)

is called the Casimir operator and it has the property that it commutes with all the generators of the

group. That is,

[T 2, ta] = 0 . (1.303)

The most well known example is the operator for the total angular momentum squared, J2, which com-

mutes with all the components of J⃗ . In a given irrep r the Casimir is given by a constant:

tar t
a
r = C2(r) 1/ , (1.304)

where 1 is the identity in d(r)×d(r) dimensions. Here we defined C2(r), the quadratic Casimir operator

of the representation r. For the particular case of the adjoint representation, we have

(tc)ad (tc)bd = facd f bcd = C2(G) δ
ab . (1.305)

For a given representation r it is possible to relate the Casimir C2(r) with C(r). To see this we start from

(1.292). We have that if we multiply it by δab on each side we arrive at

δabTr[tar t
b
r ] = C(r) δab δab (1.306)
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The product of the two deltas in the right hand side above gives the number of generators, which we can

write as d(G), the dimension of the adjoint representation G. But inserting the factor of δab on the right

hand side of (1.306) inside the trace, we obtain the trace of (1.304). Noticing that Tr[1] = d(r) we arrive

at the useful relation

d(r)C2(r) = d(G)C(r) . (1.307)

We are now ready to tackle gauge symmetries based on non-abelian groups.

1.3.4 Gauge invariance and geometry

We consider here the generalization of the concept of gauge invariance when the gauge group G is non-

abelian. Below, we will see what this means by presenting the basics of non-abelian group theory. We

will also study the physical consequences of non-abelian gauge invariance. But before we do all that, we

will take another look at abeliang gauge theory, i.e. when G = U(1), by thinking about gauge invariance

in a geometric way.

We consider the action of a U(1) local symmetry transformation on a fermion field ψ(x). It is given by

ψ(x)→ ψ′(x) = eiα(x) ψ(x) . (1.308)

As we well know, terms in the Lagrangian that do no contain derivatives are trivially invariant under

(1.308). For instance, the fermion mass term transforms as

mψ̄ψ → mψ̄′ψ′ = mψ̄ψ . (1.309)

However, terms containing derivatives are not invariant. Let us study in detail how the problem arises.

We write the derivative by using a direction in spacetime defined by a four-vector nµ, such that

nµ∂µψ(x) = lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− ψ(x)] , (1.310)

where the argument of the first term on the left hand side must be understood as

xµ + ϵnµ = xµ +∆xµ . (1.311)

But the fields ψ(x + ϵn) and ψ(x) have different gauge transformations as clearly seen from (1.308).

The fact that they are evaluated in different spacetime points means that the gauge parameters of their

transformations are different, i.e. α(x+ϵn) and α(x). This translates in ∂µψ(x) not having a well defined

gauge transformation.

The situation is similar to what happens in general relativity when we want to compare two objects with
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non-trivial transformation properties, e.g. vectors or spinors, at two different positions in spacetime. For

instance, if the objects being compared are two vectors, then part of the variation comes from the fact

that the curvature will change the orientation of a vector as we move it from one point to another. But

we are interested in the intrinsic variation due to some dynamical effect. For this purpose we define a

parallel transport. Our case is no different.

We define the scalar function

U(y, x) , (1.312)

depending on two spacetime points x and y in such as way that it transforms under the U(1) gauge

symmetry as

U(y, x)→ eiα(y) U(y, x) e−iα(x) . (1.313)

We call U(y, x) a comparator. This clearly means that U(y, y) = 1. Also, it means that

U(y, x)ψ(x)→ eiα(y) U(y, x)ψ(x) . (1.314)

Thus, the product of the comparator times the field in x, transforms as an object located in y. We can use

this to define a new derivative as

nµDµ ≡ lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− U(x+ ϵn, x)ψ(x)] , (1.315)

so that the two terms being subtracted transform in the same way under the gauge symmetry. This is the

case given that under a U(1) gauge transformation

ψ(x+ ϵn) → eiα(x+ϵn) ψ(x+ ϵn)

(1.316)

U(x+ ϵn, x)ψ(x) → eiα(x+ϵn) U(x+ ϵn, x)ψ(x) .

Based on the definition of the covariant derivative in (1.315) we can recover the familiar form ofDµψ(x).

For this purpose, we first expand the comparator at leading order in ϵ as

U(x+ ϵn, x) = 1− iϵnµAµ(x) +O(ϵ2) , (1.317)

where the linear term in the expansion must depend also on the direction nµ, but then this Lorentz index
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must be contracted with a four-vector that generally depends on x, which we call Aµ(x). Implicit in

the form of the expansion we used in (1.317) is the assumption that the comparator can be written as a

phase, since the normalization can always be absorbed in redefinitions of the fields, here ψ(x). Replacing

(1.317) in (1.315) we have

nµDµ ψ(x) = lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− ψ(x) + iϵnµAµ(x)]

(1.318)

= lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− ψ(x)] + inµAµ(x) ,

where we neglected terms of higher order in ϵ since they do not contribute when taking the limit ϵ→ 0.

The first term above is just the normal derivative as defined in (1.310), so we obtain

Dµψ(x) = ∂µψ(x) + iAµ(x)ψ(x) , (1.319)

which is of course the usual definition of the covariant derivative. The vector field Aµ(x) will also

transform under the gauge symmetry. To extract its transformation law, we need to look at the expansion

of the transformation of the comparator U(y, x) which defines Aµ(x). This is,

U(x+ ϵn, x) → eiα(x+ϵn) U(x+ ϵn, x) e−iα(x)

1− iϵ nµAµ(x) + · · · → (1 + iα(x+ ϵn) + · · · ) (1− iϵ nµAµ(x) + · · · ) (1− iα(x) + · · · )

→ 1 + i(α(x+ ϵn)− α(x))− iϵ nµAµ(x) + · · · , (1.320)

where the dots indicate both higher orders in ϵ and in the α’s. We point out that we are not using an

infinitesimal α(x), but that the higher orders terms in α actually identically cancel. Dividing both sides

of (1.320) by ϵ and taking the limit for ϵ→ 0 we obtain

Aµ(x)→ Aµ(x)− ∂µα(x) , (1.321)

as expected. Combining (1.321) and (1.319) one can easily verify that the covariant derivative transforms

as

Dµψ(x)→ eiα(x)Dµψ(x) , (1.322)
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which guarantees that all terms in the Lagrangian are now gauge invariant if the covariant derivative

replaces the normal derivative. That is, the first term in

L = ψ̄iγµDµψ −mψ̄ψ , (1.323)

is U(1) gauge invariant since the covariant derivative of ψ(x) transforms as the field ψ(x).

A final question is the definition of a kinetic term for the connection field Aµ(x). Here, we will make

use of a method that, although appears too complicated for the abelian case, it will be very useful when

applied to non-abelian gauge theories later. What we are after is a term that depends quadratically on

derivatives ofAµ(x). What we will start with is the following differential operator applied to the fermion

field:

[Dµ, Dν ]ψ(x) . (1.324)

This is the commutator of the covariant derivatives applied ψ(x). Using (1.322) is easy to verify that

(1.324) transforms like the field, that is

[Dµ, Dν ]ψ(x)→ eiα(x) [Dµ, Dν ]ψ(x) . (1.325)

This can be interpreted as a transformation rule for the commutator:

[Dµ, Dν ]→ eiα(x) [Dµ, Dν ] e
−iα(x) . (1.326)

On the other hand, we can explicitly compute the commutator by using (1.319). This is

[Dµ, Dν ]ψ(x) = [∂µ + iAµ, ∂ν + iAν ]ψ(x)

= i (∂µAν − ∂νAµ) ψ(x) , (1.327)

which reveals that the commutator of the covariant derivatives is itself not a differential operator.

We then define

[Dµ, Dν ] ≡ i Fµν , (1.328)

which is clearly gauge invariant, since the commutator transformation rule (1.326) implies
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Fµν → eiα(x) Fµν e
−iα(x) = Fµν . (1.329)

This can be alternatively seen from (1.325) in combination with the field transformation (1.308), since

the commutator is not a differential operator. Then, two powers of Fµν would give us what we want for

a gauge field kinetic term.

This concludes our rederivation of the U(1) gauge invariant Lagrangian

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν + · · · , (1.330)

where the factor of−1/4 is necessary to recover the electromagnetic strength tensor in the classical limit,

and the dots denote possible gauge invariant higher dimensional (non-renormalizable) terms.

1.3.5 Non-abelian gauge groups

We will now follow the same geometric procedure we applied for a U(1) gauge theory for the case

of non-abelian groups. We first consider the case of G = SU(2) and later generalize our results for

arbitrary non-abelian groups. SU(2) is isomorphic with SO(3) the group of rotations in 3 dimensions,

so it should be familiar from the study of angular momentum in quantum mechanics. The elements of

SU(2) are unitary matrices which we write as

g(x) = eiα
a(x)ta , (1.331)

where ta are the generators (three of them from 22 − 1), which are given in terms of the Pauli matrices

by

ta =
σa

2
, (1.332)

with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.333)

As we see from (1.331), there are 3 coefficient functions of x, α1(x), α2(x) and α3(x), so that the

exponent is the most general x dependent expansion of the generators. Let us consider, just as in the

previous section for the U(1) case, the transformation of a fermion field under a SU(2) gauge group.

This is given by

ψ(x)→ ψ′(x) = eiα
a(x)ta ψ(x) = g(x)ψ(x) . (1.334)
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If a fermion field does transform as in (1.334) this implies that it has an SU(2) internal index. Depending

on the representation under which they transform they will be different multiplets. The fundamental

representation correspond to using (1.332) and implies that the fermion field is an SU(2) doublet

ψ(x) =

 ψ1(x)

ψ2(x)

 , (1.335)

which means there are two fermions. The local transformation (1.334) mixes these two components.

We are now in a position to define the covariant derivative. Just as before, we define the comparator

U(y, x) with the gauge transformation property

U(y, x)→ g(y)U(y, x) g†(x) . (1.336)

and just as for the U(1) case before, the covariant derivative has the geometric definition

nµDµψ(x) = lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− U(x+ ϵn, x)ψ(x)] . (1.337)

Noticing that

U(y, y) = 1 , (1.338)

the identity in 2× 2 matrices, we can expand U(y, x) around this considering infinitesimal gauge trans-

formations αa(x) ∼ O(ϵ). The most general expansion to leading order is

U(x+ ϵn, x) = 1+ igϵnµAaµ(x) t
a +O(ϵ2) , (1.339)

where we included a factor g, the coupling, and the Lorentz index in nµ is contracted by the fields

Aaµ(x), where the index a contracts with the one in the generator. This reflects the fact that the most

general expansion is a linear combination of the 3 Pauli matrices, meaning that now we will have 3

gauge fields, A1
µ(x), A

2
µ(x) and A3

µ(x). Then, we have

nµDµψ(x) = lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− U(x+ ϵn, x)ψ(x)]

(1.340)

= nµ∂µψ(x)− ignµAaµ(x) taψ(x) ,

which results in the covariant derivative
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Dµψ(x) =
(
∂µ − ig Aaµ(x) ta

)
ψ(x) . (1.341)

For the case at hand, i.e. G = SU(2) the generators in (1.341) are one half of the Pauli matrices. This

is the covariant derivative acting on a fermion ψ that transforms under the SU(2) gauge group as in

(1.334). As we will see below, this determines the interactions of fermions with the SU(2) gauge bosons

Aaµ(x).

The next step is to obtain the gauge transformations for the gauge fields. Once again, to do this we

consider the infinitesimal gauge transformation of the comparator. Using (1.336) this is given by

U(x+ ϵn, x) → g(x+ ϵn)U(x+ ϵn, x) g†(x)

(1.342)

1+ ig ϵnµAaµ(x) t
a → g(x+ ϵn)

(
1+ igϵnµAaµ(x) t

a
)
g†(x) ,

where in the second line we use the expansion in (1.339). We notice that

g(x+ ϵn) g(x) =

[(
1+ ϵnµ

∂

∂xµ
+O(ϵ2)

)
g(x)

]
g†(x)

(1.343)

= 1+ ϵ nµ∂µ(g(x)) g
† .

Replacing the equation above in (1.342), we have that

Aaµ(x) t
a → g(x)

(
Aaµ(x) t

a
)
g†(x)− i

g
(∂µg(x)) g

†(x) . (1.344)

If we now define the gauge field matrix

Aµ(x) ≡ Aaµ(x) ta , (1.345)

we can rewrite (1.344) as

Aµ(a)→ g(x)

(
Aµ(x) +

i

g
∂µ

)
g†(x) , (1.346)

where we have used the fact that g†g = gg† = 1 in order to make the replacement
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∂µ(g(x)) g
†(x) = −g(x)∂µg†(x) . (1.347)

The gauge transformation of the matrix gauge field (1.346) is actually valid for any non-abelian gauge

group, not just SU(2), as long as g(x) is a group element expressed in terms of the generators ta as

in (1.331). We can also recover the abelian gauge field transformation (1.321) if we replace ta by

the identity and αa(x) is just α(x). However this is deceiving since there are new contributions that

appear exclusively in the non-abelian case. To see this in the gauge field transformation, we consider an

infinitesimal gauge transformation with

g(x) = 1+ i αa(x) ta + · · · (1.348)

where the dots denote terms higher in powers of αa(x). Replacing (1.348) in (1.346) we arrive at

Aaµ(x) t
a → Aaµ(x) t

a +
1

g
∂µα

a(x) ta + i
[
αa(x) ta, Abµ(x) t

b
]
+ · · · . (1.349)

The first two terms in (1.349) are analogous to what we find in the abelian case. But the third term is

only present in non abelian gauge groups since it is proportional to the commutator of two generators.

We will see below that this non commutativity has important physical consequences.

With the definition of the covariant derivative in (1.341) and the gauge field transformation (1.346) we

can prove that the fermion kinetic term given by

ψ̄γµDµψ , (1.350)

is invariant under the gauge transformations (1.334). This means that under these gauge transformations

Dµψ(x)→ g(x)Dµψ(x) , (1.351)

must be satisfied. This can be explicitly verified just by substitution.

The final step, just as in the abelian case considered earlier, is to obtain the kinetic term for the gauge

fields. Following the steps taken there, we need to compute

[Dµ, Dν ]ψ(x) . (1.352)

Using the matrix notation (1.345) and replacing the explicit form of the covariant derivative (1.341) in

(1.352) we obtain

[Dµ, Dν ]ψ(x) = −ig (∂µAµ − ∂νAµ)ψ(x)− g2 [Aµ, Aν ]ψ(x) . (1.353)
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Once again, just as for the abelian case, we see that the commutator in (1.352) is not a differential

operator. But unlike for the abelian case, there is a new term proportional to the commutator

[Aµ, Aν ] = AaµA
b
ν [t

a, tb] . (1.354)

Defining the gauge field strength (matrix) by

[Dµ, Dν ]ψ(x) ≡ −ig Fµν ψ(x) , (1.355)

we have that

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (1.356)

which can be expressed in gauge field components using (1.345) to give

Fµν =
(
∂µA

a
ν − ∂νAaµ

)
ta − ig AaµAbν [ta, tb] . (1.357)

Defining the gauge field strength F aµν by

Fµν ≡ F aµν ta , (1.358)

and writing the commutator out in terms of the structure constants we arrive at

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.359)

which is the non-abelian gauge field strength in all generality. For instance for and SU(2) gauge theory

we have

F aµν = ∂µA
a
ν − ∂νAaµ + gϵabcAbµA

c
ν , (1.360)

since the structure constants are given by the epsilon tensor ϵabc.

Now, given (1.351), we know that the commutator acting on the fermion field transforms as

[Dµ, Dν ]ψ(x)→ g(x) [Dµ, Dν ]ψ(x), (1.361)

which results in the gauge transformation for the commutator
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[Dµ, Dν ]→ g(x) [Dµ, Dν ] g
†(x) . (1.362)

Then, using (1.355), we obtain the gauge transformation for the matrix Fµν :

Fµν → g(x)Fµν g
†(x) . (1.363)

We can use this information to guess the form of the gauge invariant kinetic term. From (1.363), we see

that Fµν is not gauge invariant, unlike what happens in the abelian case. Then, although

FµνF
µν → g(x)FµνF

µν g†(x) , (1.364)

is not gauge invariant, its trace actually is. Then, we have

Tr[FµνF
µν ] = F aµν F

bµν Tr[tatb]

(1.365)

= F aµν F
bµν δ

ab

2
,

so the form of the kinetic term that corresponds to the abelian normalization is

−1

2
Tr[Fµν F

µν ] = −1

4
Fa
µν F

aµν . (1.366)

Although at first the form of the gauge kinetic term above looks just like a simple sum of the kinetic

terms of the individual gauge bosons (for a = 1, . . . , N2 − 1), this is deceiving. When plugging in the

explicit form of F aµν from (1.359) we see that (1.366) not only leads to terms quadratic in the derivatives

of each of the fields, but also to interactions among the gauge fields: there will be a triple interaction and

a quartic one. This is a crucial feature of non-abelian gauge theories: the gauge bosons interact with each

other, whereas this is not the case for the gauge bosons of the abelian U(1), e.g. the photons. This will

have very important consequences, from the behavior of scattering amplitudes to the renormalization

group flow.

1.3.6 Feynman rules in non-abelian gauge theories

Here we press on with non-abelian gauge theories by deriving their Feynman rules. However, before we

can safely apply them to compute scattering amplitudes in perturbation theory and, specially before we

can study the renormalization of these gauge theories, we will see at the end of this lecture that there is

something missing. In order to solve this problem, we will have to be careful in quantizing non-abelian

gauge theories, as we will do in the next lecture.
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We start by considering a generic a theory of a fermion that transforms as

ψ(x)→ g(x)ψ(x) = eiα
a(x)ta ψ(x) , (1.367)

under a generic non-abelian gauge symmetry. The Lagrangian of the theory is then

L = ψ̄ (i ̸D −m)ψ − 1

4
F aµνF

aµν , (1.368)

where the covariant is given by

Dµψ(x) = (∂µ − ig Aaµ(x) ta)ψ(x) , (1.369)

and the ta are the generators of the gauge group G written in the appropriate representation. The non-

abelian field strength is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.370)

As we saw earlier, this means that there will be interactions terms in the gauge field “kinetic term”, the

last one in (1.368). Thus, for the purpose of deriving all the Feynman rules it is convenient to split the

Lagrangian in (1.368) into a truly free Lagrangian and interacting terms. We define

L = L0 + Lint. (1.371)

where the free Lagrangian is now

L0 ≡ ψ̄(i ̸∂ −m)ψ − 1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν − ∂νAaµ) . (1.372)

On the other hand, the interaction part of the Lagrangian defined in (1.371) can be itself separated into

three terms given by

Lint. = Lfint. + L3Gint. + L4Gint. , (1.373)

denoting the interactions of gauge bosons with fermions,

Lfint. = gAaµψ̄γ
µtaψ , (1.374)

the triple gauge boson interaction
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L3Gint. = −gfabc∂µAaνAbµAcν , (1.375)

and the quartic one

L4Gint. = −
1

4
g2fabcfadeAbµA

c
νA

dµAeν , (1.376)

respectively. It is now straightforward to derive the Feynman rules from (1.374), (1.375) and (1.376).

We start with the fermion interaction. The Feynman rule is very similar to that of QED, but with the

addition of the gauge group generator. This is shown in the figure below:

= i gγµ ta

Next, we consider the triple gauge boson interaction in (1.375). Here we have to be more careful with

the momentum flow since it involves a derivative on one of the gauge fields. To obtain the Feynman rule

from iL3Gint. we need to contract it with all possible combinations of the state

|k, ϵ(k); p, ϵ(p); q, ϵ(q)⟩ . (1.377)

There are 3! such contractions. For instance, if we contract the gauge boson of momentum k with ∂µAaν ,

the one with momentum p with Abµ and the one with momentum q with Acν , we obtain the following

contribution to the Feynman rule

−igfabc(−ikν)gµρ . (1.378)

This corresponds to the last term in the Feynman rule shown in the figure below. All possible 6

contractions result in the Feynman rule shown there.
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k

p q

= g fabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

Finally, we derive the Feynman rule for the quartic interaction from (1.376). coming from the product of

the last term in Gaµν with the similar term in Gaµν . This is given by

= −ig2
[
fabef cde (gµρgνσ − gµσgνρ)

+ facef bde (gµνgρσ − gµσgνρ)
+ fadef bce (gµνgρσ − gµρgνσ)

]
Notice that, although this last Feynman rule starts at order g2, it cannot be considered of a higher order

in perturbation theory than the other two. What matter is the computation of the amplitude o a given

process to the desired order in g. For instance, if we wish to compute the leading order contributions to

the scattering of two gauge bosons going to two gauge bosons, we see that the second Feynman rule can

be used to form contributions with two vertices and one gauge boson propagator. These are of order g2.

On the other hand, the last Feynman rule is a contribution to the amplitude in and on itself. So all the

leading order contributions to this process are of the same order, g2.

2 The electroweak Standard Model

The standard model (SM) of particle physics is first and foremost a gauge theory. It is described by the

product of three groups, SU(2) × SU(2) × U(1). Two of them non-abelian and one abelian. Most

commonly this is written as

SU(3)c × SU(2)L × U(1)Y , (2.379)

where the subscript c in the first factor stands for “color”, the L in the second stands for “left” and the Y

in the third factor refers to hypercharge. The group SU(3)c describes the interactions of quarks with the

gauge fields called gluons. These are the degrees of freedom and interactions relevant at energies above

the O(1) GeV scale, where the theory of the strong interactions is quantum chromodynamics (QCD).

This theory and its applications in various topics in particle physics are the subject of the lectures by

Giulia Zanderighi [3]. Here, we concentrate on the other two factors in (2.379),

SU(2)L × U(1)Y , (2.380)
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which we call the electroweak standard model (EWSM). This will be the subject of the rest of these

lectures.

The EWSM is built from experimental observations, coupled to our understanding of gauge theo-

ries. All SM fermions transform under the gauge theory in (2.380). In the next section we briefly review

how is it that we know this.

2.1 Building the electroweak Standard Model

Let us review the main evidences leading to the gauge structure of the electroweak theory.

– Weak Interactions (Charged): Weak decays, such as β decays n → p e−ν̄e or µ− → νµ ν̄e e
−

among many others, are mediated by charged currents. Let us look at the case of muon decay. It

is very well described by a four fermion interaction, i.e. with a non renormalizable coupling GF ,

the Fermi constant. In fact, all other weak interactions can be described in this way with the same

Fermi constant ( to a very good approximation, more later). The relevant Fermi Lagrangian is

LFermi = −4
GF√
2

(
µ̄LγµνL

) (
ēLγ

µνe
)
, (2.381)

where we already included the fact that the charged weak interactions only involve left handed

fermions. That is, the phenomenologically built Fermi Lagrangian above tells us that the weak

decay of a muon is described by the product of two charged vector currents coupling only left

handed fermions. The fact that only left handed fermions participate in the charged weak inter-

actions is an experimentally established fact, observed in all charged weak interactions. This is

done by a variety of experimental techniques. For instance, in the case of muon decay, the an-

gular distribution of the outgoing electron is very different if this is left or right handed. Precise

measurements (performed over decades of increasingly accurate experiments) have concluded that

the outgoing electron is left handed only. The different couplings involving left and right handed

fermions require parity violation. Moreover, the charged weak interactions require maximal parity

violation: only one handedness participate. Now, if we assume that the non renormalizable four

fermion interaction is the result of integrating out a gauge boson with a renormalizable interaction,

this would point to the need of 2 charged gauge bosons.This is schematically shown in Fig. 15.

Assuming that mµ ≪MW , we integrate out the massive vector gauge boson to obtain

GF√
2
=

g2

8M2
W

, (2.382)

where g is the renormalizable coupling of the gauge bosons to fermions in diagram (b). The

charged vector gauge bosons, W± were discovered in the 1980s and studied with great detail ever

since.

– Weak Neutral Currents: In addition to the charged currents described by (2.381), we have known

since experimental evidence first appeared in the 1970s, that there are also weak neutral currents.

These were first observed by neutrino scattering off nucleons. Normally, the charged currents
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−
e

e−
− −

e−

−
e

W
−

(a) (b)

Fig. 15: Diagram (a) is the Feyman diagrams associated with the four fermion Fermi Lagrangian (2.381).
Diagram (b) shows the corresponding exchange of a massive charged gauge boson, W±

µ .

would result in νeN → e−N ′, with N and N ′ protons and neutrons. This is just a crossed

diagram of β decay. But the reaction ν N → ν N was also observed. Many other reactions

involving neutral currents have been observed since then. They also violate parity. However, they

do not do so maximally. This means that the neutral currents, or the vector gauge boson that we

need to integrate out to obtain them at low energies, couple differently to left and right handed

fermions but, unlike the charged currents, the do couple to right handed fermions. The neutral

vector gauge boson, Z0, was also discovered in the 1980s and its properties studied with great

precision.

– Electromagnetism: Of course, we know that the electromagnetic interactions are described by a

quantum field theory, QED, mediated by a neutral massless vector gauge boson, the photon. One

important feature to remember is that the photon coupling in QED is parity invariant. No parity

violation is present in QED.

The elements described above suggest that we need: 4 gauge bosons for a unified description of

the weak and electromagnetic interactions. Three of them appear to be massive: the W± and the Z0.

One, the photon, must remain massless. The SM gauge group is thenG = SU(2)×U(1) which matches

the number of gauge bosons. However, we know that two of these only couple to left handed fermions.

whereas the massive neutral one couples differently to left and right handed fermions. Finally, the photon

must remain massless and its couplings parity invariant. The choice of gauge group is then

G = SU(2)L × U(1)Y , (2.383)

where the three gauge bosons couple to left handed fermions only, and the U(1)Y is not identified with

the U(1)EM, the abelian gauge symmetry responsible for electromagnetism. As we will see below, two

of the SU(2)L gauge bosons will result in the W±
µ . On the other hand to obtain the Z0.

2.2 The electroweak gauge theory

The EWSM is a chiral gauge theory. As we discussed in the previous section, this means that in general

the gauge fields do not couple equally to left and righ handed fermion chiralities. The fact that the gauge
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group is SU(2)L × U(1)Y tells us the transformation properties of left and right handed fermions under

a given gauge transformation. For instance, the left handed fermion fields transform as

ψL(x)→ eiα
a(x)σ

a

2 eiβ(x)YψL ψL(x) , (2.384)

where σa (a = 1, 2, 3) are the Pauli matrices, which are twice the generators of SU(2), and YψL is

the hypercharge of the fermion ψL. Here, αa(x) is the arbitrary gauge parameter corresponding to

an SU(2)L transformation (one per generator σa/2), whereas β(x) is the arbitrary gauge parameter

corresponding to the U(1)Y gauge transformation, both acting on the left handed fermion. On the other

hand, a right handed fermion would transform as

ψR(x)→, eiβ(x)YψR ψR(x) , (2.385)

where YψR is the right handed fermion hypercharge. As we discussed in the previous lecture, for each

generator in a gauge group there is a gauge parameter function. The EWSM gauge group has four

generators so the gauge transformations introduce the four functions of spacetime α1(x), α2(x), α3(x)

and β(x). This means that we need to introduce four gauge bosons for the theory to be invariant under

local SU(2)L × U(1)Y transformations. Then, the covariant derivative acting on left handed fermion

fields is given by

DµψL(x) =
(
∂µ − igAaµta − ig′YψLBµ

)
ψL(x) , (2.386)

where Aaµ(x) are the three SU(2)L gauge bosons, B(x) is the U(1)Y hypercharge gauge boson, and g

and g′ are the corresponding (dimensionless) gauge couplings. On the other hand, since right handed

fermions do not feel the SU(2)L interaction, their covariant derivative is given by

DµψR(x) =
(
∂µ − ig′YψRBµ

)
ψR(x) , (2.387)

with YψR its hypercharge.

Next, we have to see how to accommodate all the SM fermions in representations of SU(2)L ×
U(1)Y . Starting with left handed fermions, since they transform under SU(2)L they must carry a non-

abelian gauge group index. We can see this from the expression for the covariant derivative in (2.386):

the covariant derivative here must be a 2 × 2 matrix since one of the terms is an SU(2) generator. The

other two terms must be thought of as implicitly multiplied by the identity matrix. i.e. writing explicitly

the SU(2)L indices, we have

(Dµ)ijψj(x) , (2.388)

where j = 1, 2. Thus, left handed fermions are doublets of SU(2)L. In the SM there are two types of

left handed doublets: lepton and quark doublets. For instance, for the first generation these are

L =

(
νeL

e−L

)
, Q =

(
uL

dL

)
, (2.389)

and similarly for the second and third generations. Notice that the SU(2)L covariant derivative in (refl-
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hcd1) is applied to the doublets L(x) and Q(x) as a whole. This means that the hypercharges quantum

numbers YL and YQ apply to the doublets, not just the individual components. For instance, in DµL(x),

the hypercharge matrix acting on L(x) is (
YL 0

0 YL

)
. (2.390)

Moving on to the right handed fermions, since they are singlets under SU(2)L (they only transform

under U(1)Y ), they just have their own hypercharge assignment. For instance, e−R has hypercharge Ye−R ,

uR has YuR , etc.

Now that we know how to accommodate fermions in representations of the EW gauge group

SU(2)L × U(1)Y we can address a problem of the electroweak gauge theory: masses. We know that

fermions have masses. If we write the mass term of a generic fermion of mass m this is

mψ̄ψ = mψ̄LψR + h.c. , (2.391)

where h.c. stands for “hermitian conjugate. But if we subject the mass term to an SU(2)L × U(1)Y

gauge transformations in (2.384) and (2.385)

ψ̄LψR → ψ̄L e
−iαa(x)ta e−iβ(x)YψL eiβ(x)YψRψR ̸= ψ̄LψR , (2.392)

we see that it is not invariant. The ψ̄L transformation is not balanced since ψR does not transforms

under SU(2)L, and also YψL ̸= YψR . So we conclude that fermion masses are forbidden by EW gauge

invariance.

Nest, we can consider the electroweak gauge boson sector. The kinetic terms for the SU(2)L and

U(1)Y gauge boson fields are

LGB = −1

4
F aµνF

aµν − 1

4
BµνB

µν , (2.393)

where F aµν and Bµν are the SU(2)L and U(1)Y field strengths respectively. Absent in this gauge boson

Lagrangian are gauge boson mass term just as

M2
BBµB

µ or M2
AaA

a
µA

aµ , (2.394)

are not invariant under the gauge transformations

Bµ(x)→ Bµ(x) +
1

g′
∂µβ(x) , (2.395)

and

Aaµ(x) t
a → g(x)

(
Aaµ(x) t

a
)
g†(x)− i

g
(∂µg(x)) g

†(x) , (2.396)

where in the last expression

g(x) = eiα
a(x)ta . (2.397)
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Thus, we arrive at the conclusion that neither fermions nor gauge bosons can have masses in the EWSM

due to gauge invariance. But we know that all fermions and some of the EW gauge bosons are massive!

The solution of this problem requires that we introduce a new concept: the spontaneous breaking of a

gauge symmetry.

2.3 The origin of mass in the electroweak Standard Model

To solve the problem of mass in the EWSM we need to implement the Anderson-Brout-Englert-Higgs

(ABEH) mechanism. This is what is at play when a gauge theory like the EWSM is spontaneously

broken. Then masses are generated out of gauge invariant operators, unlike the mass terms for fermion

and gauge bosons in the previous section, which constitute an explicit breaking of the gauge symmetry.

In order to apply the ABEH mechanism to the case of the EWSM we need to consider in turn: 1) The

Spontaneous Breaking of a global symmetry and Goldstone’s theorem and 2) The Spontaneous Breaking

of a gauge or local symmetry, the case of the SM. We will go through these two in turn.

2.3.1 Spontaneous breaking of a global symmetry

Noether’s theorem tells us that for each continuous symmetry in the Lagrangian L(ϕ, ∂µϕ) there is a

conserved current Jµ, i.e.5

∂µJ
µ = 0 . (2.398)

We can restate this by saying that the charge associated with this symmetry

Q =

∫
d3xJ0 , (2.399)

is conserved. This is easily checked by computing

dQ

dt
=

∫
d3x ∂0J

0 =

∫
d3x ▽⃗ · J =

∫
S∞

ds · J = 0 , (2.400)

where in the last step we assume there are no sources at infinity.

Now, in the presence of a continuous symmetry, quantum states transform under the symmetry as

|ψ⟩ → eiαQ |ψ⟩ , (2.401)

where α is a real constant, i.e. a continuous parameter. In particular, if the ground state is invariant under

the symmetry this means that

|0⟩ → eiαQ|0⟩ = |0⟩ , (2.402)
5Here we go back to relativistic notation and Minkowski space.

77



GUSTAVO BURDMAN

with the last equality implying

Q|0⟩ = 0 . (2.403)

In other words, if the ground state is invariant under a continuous symmetry the associated charge Q

annihilates it. This is the normal realization of a symmetry.

But if

Q|0⟩ ≠ 0 , (2.404)

then this means that

|0⟩ → eiαQ|0⟩ ≡ |α⟩ ≠ |0⟩ , (2.405)

where we defined the states |α⟩ by the continuous parameter of the transformation connecting it to the

ground state. In general, this is the situation when a symmetry is broken. But it is possible to have

(2.404) and still have a conserved charge. In other words to have

dQ

dt
= 0 . (2.406)

Having both (2.404) and (2.406) satisfied at the same time corresponds to what we call spontaneous

symmetry breaking (SSB): the charge is still conserved, but the ground state is not invariant under a

symmetry transformation.

(
Q|0⟩ ≠ 0,

dQ

dt
= 0

)
⇒ SSB . (2.407)

For instance, this is what happens in a ferromagnet below a critical temperature. The free energy

F = E − TS , (2.408)

can be minimized, at high temperature, by increasing the entropy S. So at high T disorder rules. How-

ever, below a critical temperature, the free energy would be minimized by minimizing E, which is

achieved by aligning the interacting spins, resulting in a macroscopic magnetization. This is an ordered

phase. But since the magnetization picks a direction in space it corresponds to the spontaneous breaking

the symmetry of the system, i.e. O(3).

Since the charge is conserved we have that [H,Q] = 0. Then, given a Hamiltonian H acting on a state

|α⟩ connected to the ground state, we can write
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H|α⟩ = HeiαQ|0⟩ = eiαQH|0⟩ = E0e
iαQ|0⟩

= E0|α⟩ . (2.409)

So we conclude that (2.407) results in a continuous family of degenerate states |α⟩ with the same energy

of the ground state, E0. Going from the ground state |0⟩ to the |α⟩ states costs no energy. These are

the gapless states characteristic of SSB. They are the Nambu-Goldstone modes. In a relativistic quantum

field theory they correspond to massless particles, as we will see in the following example.

Spontaneous Breaking of a Global U(1) Symmetry

We will consider a complex scalar field, the simplest systems to illustrate the spontaneous breaking

of a global symmetry and the appearance of massless particles. This is the relativistic version of the

superfluid. The Lagrangian is

L =
1

2
∂µϕ

∗∂µϕ− 1

2
µ2ϕ∗ϕ− λ

4
(ϕ∗ϕ)2 . (2.410)

As we well know, L is invariant under the U(1) symmetry transformations

ϕ(x)→ eiαϕ(x) , ϕ∗(x)→ e−iαϕ∗(x) , (2.411)

where α is a real constant. Here the U(1) symmetry is equivalent (isomorphic) to a rotation in the

complex plane defined by

ϕ(x) = ϕ1(x) + iϕ2(x) , ϕ∗(x) = ϕ1(x)− iϕ2(x) , (2.412)

where ϕ1,2(x) are real scalar fields. Then we see that U(1) ≃ O(2). For instance, had we started with a

purely real field ϕ(x) = ϕ1(x), i.e. ϕ2(x) = 0, the U(1) transformations (2.411) would result in

ϕ(x) = ϕ1(x)→ cosαϕ1(x) + i sinαϕ1(x) , (2.413)

as illustrated in Fig. 16 below.

We now consider the (classical) potential

V =
1

2
µ2ϕ∗ϕ+

λ

4
(ϕ∗ϕ)2 . (2.414)

For µ2 > 0 V has a minimum at (ϕ∗ϕ)0 = 0. On the other hand, if µ2 < 0 there is a non trivial minimum

for λ > 0 resulting from the competition of the first and second terms in (2.414). Redefining
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1

Fig. 16: The U(1) rotation ϕ→ eiαϕ for an initially real field.

µ2 ≡ −m2 , (2.415)

with m2 > 0, the minimum of the potential now is

(ϕ∗ϕ)0 =
m2

λ
≡ v2 . (2.416)

Here v2 is the expectation value of the ϕ∗ϕ operator in the ground state, i.e.

⟨0|ϕ∗ϕ|0⟩ = v2 . (2.417)

The potential looks just as the one for the superfluid case in the previous lecture, shown in Fig. 8.1. The

projection onto the (ϕ1, ϕ2) plane is shown in Fig. 17 below.

The radius is fixed through

(ϕ∗ϕ)0 = v2 = ϕ21 + ϕ22 , (2.418)

but the phase is undetermined. We need to fix it in order to choose a ground state to expand around. Any

choice should be equivalent

⟨ϕ1⟩ = v ⟨ϕ2⟩ = 0

⟨ϕ1⟩ =
v√
2

⟨ϕ2⟩ =
v√
2

...
...
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2

1

v

Fig. 17: The red circle represents the locus points of the minimum of the potential (2.414) for µ2 < 0.
The radius is v, a real number. The phase is not determined by the minimization.

⟨ϕ1⟩ = 0 ⟨ϕ2⟩ = v .

This particular choice is what constitutes spontaneous symmetry breaking. We need to fix the phase

θ = θ0 arbitrarily in order to expand around this ground state. For instance, let us choose the first line

above, i.e. ⟨ϕ1⟩ = v, and ⟨ϕ2⟩ = 0. This allows us to expand the field ϕ(x) around this ground state as

ϕ(x) = v + η(x) + iξ(x) , (2.419)

where η(x) and ξ(x) are real scalar fields statisfying

⟨0|η(x)|0⟩ = 0, ⟨0|ξ(x)|0⟩ = 0 . (2.420)

This obviously corresponds to ϕ1(x) = v+iη(x) and ϕ2(x) = ξ(x). We can now rewrite the Lagrangian

(2.410) in terms of η(x) and ξ(x). This is

L =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
m2 (v + η − iξ) (v + η + iξ)

−λ
4
[(v + η − iξ) (v + η + iξ)]2 , (2.421)

where we used (2.415). Using (2.416) and focusing on the terms quadratic in the fields, we obtain

L =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ −m2η2 + interactions . (2.422)

So we see that when we expand around the ground state defined by (2.419) we end up with a theory of a
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real scalar field with mass (η) and a massless state ξ. That is

mη =
√
2m, mξ = 0 . (2.423)

This result is a reflection of Goldstone’s theorem: a spontaneously broken continuous symmetry, here

a U(1), results in massless states. Notice that the result would be exactly the same had we chosen any

other angle in Fig. 17 instead of θ = 0. One simple way to check this is to use a different parametrization

of ϕ(x). We write

ϕ(x) ≡ [v + h(x)] eiπ(x) , (2.424)

where h(x) and π(x) are real scalar fields, also satisfying

⟨0|h(x)|0⟩ = 0, ⟨0|π(x)|0⟩ = 0 . (2.425)

Then from (2.424) it is pretty obvious that π(x) does not enter in the potential, and therefore will not

have a mass term. It is very simple to obtain the Lagrangian (2.410) in terms of h(x) and π(x) using

(2.424). This is

L =
1

2
∂µh∂

µh+
1

2
∂µπ∂

µπ −m2h2 + interactions , (2.426)

which is exactly the same theory as the one in (2.422), i.e. a massive state with mh =
√
2m and a

massless particle, here the π(x).

To understand more intuitively the appearance of the massless state it is helpful to look at the

possible excitations of the potential, as illustrated in Fig. 18.

Fig. 18: The scalar potential. There are two types of independent excitations about the minimum: the
radial excitation implies a cost of energy since results in a larger value of V (ϕ) than the minimum. The
excitation along the circle cost no energy and so it corresponds to a massless state.
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We can see that in order to obtain the particle states we must expand about the minimum of the potential.

But there are two independent (orthogonal) directions we can choose. If the expand in the radial direction,

no matter how small the fluctuation it will cost energy. This fluctuation corresponds to the massive field

h(x). On the other hand, if we expand about the minimum along the circle, this has no energy cost

since all the points in the circle have the same energy as the minimum we picked arbitrarily. This is the

massless fluctuation π(x), the Nambu-Godstone bosons.

We will later see a derivation of Goldsone’s theorem that is more geared towards quantum field

theory. We will see that there will be a NGB for each broken symmetry generator, i.e. for each sponta-

neously broken symmetry.

2.3.2 Spontaneous breaking of a gauge symmetry

We have seen that the spontaneous breaking of a continuous symmetry results in the presence of massless

states in the spectrum, the Nambu–Goldstone Bosons (NGB). We have seen this in particular for a U(1)

global symmetry where the potential was such that the ground state was not U(1) invariant. In that case,

the NGB corresponded to the degeneracy of the ground state, i.e. it was the fluctuation going around the

degenerate minimum and as such it corresponded to a massless state. We will see later that this picture

generalizes for non-abelian global continuous symmetries so that the number of NGBs corresponds to

the number of degenerate directions in group space, i.e. the number of broken generators.

Before we go into non-abelian symmetries, we will consider the situation when theU(1) symmetry

studied earlier is gauged. That is, is a local U(1) symmetry such as for example in QED. As we will soon

see, the consequences for the spectrum when the spontaneously broken symmetry is gauged are drastic.

We start with the Lagrangian of a scalar field charged under a gauged U(1) symmetry just as QED. This

is given by

L =
1

2
(Dµϕ)

∗Dµϕ− V (ϕ∗ϕ)− 1

4
FµνF

µν , (2.427)

where the covariant derivative is defined by

Dµϕ = (∂µ + ieAµ)ϕ , (2.428)

and the scalar and gauge field transformations under the U(1) gauge symmetry are

ϕ(x) → eiα(x)ϕ(x)

(2.429)

Aµ(x) → Aµ(x)−
1

e
∂µα(x) .

Finally, the gauge field Aµ(x) has a kinetic term given by the square of the gauge invariant field strength

as usual
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Fµν = ∂µAν − ∂νAµ . (2.430)

With (2.428), (2.429) and (2.430) the Lagrangian in (2.427) is clearly gauge invariant.

In order to implement spontaneous breaking we choose the potential as

V (ϕ∗ϕ) =
1

2
µ2ϕ∗ϕ+

λ

4
(ϕ∗ϕ)2 , (2.431)

which is the same form we used for the breaking fo the global U(1) and corresponds to the only renor-

malizable terms allowed by the symmetry in four spacetime dimensions. What follows next pertaining

the minimum of the potential is identical to what we saw for the global symmetry case. If µ2 > 0 the

minimum of V in (2.431) is ϕ = 0. However if µ2 < 0 then we rewrite the potential as

V (ϕ∗ϕ) = −1

2
m2ϕ∗ϕ+

λ

4
(ϕ∗ϕ)2 , (2.432)

where we have defined the positive constant m2 = −µ2. As before, in this case the minimum is now

given by the solution of

−1

2
m2 +

λ

2
(ϕ∗ϕ)0 = 0 , (2.433)

which results in

(ϕ∗ϕ)0 = ⟨0|ϕ∗ϕ|0⟩ =
m2

λ
≡ v2 . (2.434)

Choosing the value of the field to be real at the minimum, we use the expansion

ϕ(x) = v + η(x) + iξ(x) , (2.435)

such that the physical real fields satisfy

⟨0|η(x)|0⟩ = ⟨0|ξ(x)|0⟩ = 0 . (2.436)

Just as we expect, writing the potential in terms of η(x) and ξ(x)

V (ϕ∗ϕ) = V ((v2 + η(x)2) + ξ(x)2) , (2.437)

allows us to identify the spectrum which is given by
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mη =
√
2m =

√
2λv

(2.438)

mξ = 0 .

Thus, we identify ξ(x) with the massless NGB. The difference with respect to the SSB of a global U(1)

comes in when we look at what happens in the scalar kinetic term. This is

1

2
(Dµϕ)

∗Dµϕ =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
e2 v2AµA

µ

(2.439)

+ e v Aµ ∂
µξ + · · · ,

where we have explicitly written the terms quadratic in the fields, and the dots denote interactions terms

that are cubic or quadratic in them. Besides the kinetic terms for η(x) and ξ(x) we notice two terms.

The first one is an apparent gauge boson mass term. It implies that the gauge boson has acquired a mass

given by

mA = e v . (2.440)

However, this does not mean that the gauge symmetry is not been respected. In fact, all we have done

with respect to the (2.427 ) is to expand the theory around the ground state in terms of fields that have

zero expectation values there. In other words, we just performed a change of variables. However, the

fact the we are expanding the theory around a minimum that does not respect the symmetry is resulting

in a mass for the gauge boson. This means that the gauge symmetry has been spontaneously broken. But

since we have not added any terms that violated explicitly the U(1) gauge symmetry, the symmetry has

not been explicitly broken and therefore currents and charges must still be conserved.

The second notable aspect in (2.439) is the term mixing the gauge boson with the ξ(x) field, the would-

be NGB. Having a term like this, i.e. non-diagonal two-point function, implies that we have to include

a Feynman diagram as the one in Fig. 19. Although in principle there is no problem with having a non-

diagonal Feynman rule such as this as long as we always remember to include it, it is interesting to see

how to diagonalize it and what are the consequences of doing that. The idea is to choose a gauge for

Aµ(x) such that we can cancel this term once we go to the new gauge. The theory has to be physically

equivalent to the one with (2.439). Choosing a specific gauge corresponds to choosing a scalar function

α(x) in the gauge transformations (2.429). In particular, if we choose
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=  i e v (−i q  ) = m   q    
A

Fig. 19: Feynman rule for the non-diagonal contribution to the two-point function in (2.439).

α(x) = −1

v
ξ(x) , (2.441)

we then have the gauge transformation

Aµ(x)→ A′
µ(x) = Aµ(x) +

1

ev
ξ(x) . (2.442)

Replacing Aµ(x) in terms of A′
µ(x) and ξ(x) in (2.439) we have

1

2
(Dµϕ)

∗Dµϕ =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
e2 v2

(
A′
µ −

1

ev
∂µξ

)(
A′µ − 1

ev
∂µξ

)
(2.443)

+ e v

(
A′
µ −

1

ev
∂µξ

)
∂µξ + · · · , ,

Carefully collecting all the terms in (2.443) we arrive at the surprisingly simple expression for the scalar

kinetic term:

1

2
(Dµϕ)

∗Dµϕ =
1

2
∂µη∂

µη +
1

2
e2 v2A′

µA
′µ + · · · . (2.444)

We see that the gauge boson mass term is still the same as before. However, the ξ(x) field, the massless

field that we thought would be the NGB is now gone. Its kinetic term is gone and, as we will see later, no

term with ξ(x) remains in the Lagrangian after this gauge transformation. So the would-be NGB is not!

When a degree of freedom disappears from the theory just by performing a gauge transformation, we say

that this is not a physical degree of freedom. This particular gauge without the NGB ξ(x) is called the

unitary gauge, since it exposes the actual degrees of freedom of the theory: a real scalar field η(x) with

mass mη =
√
2m and a gauge boson with mass mA = ev. In fact if we count degrees of freedom before

and after we expanded around the non-trivial ground state, we see that before we had two real scalar

fields, and two degrees of freedom corresponding to the two helicities of a massless gauge boson, for a

total of four degrees of freedom. But after we expanded around the ground state, we have one real scalar

field, plus three polarizations for the now massive gauge boson, again a total of four degrees of freedom.

It is in this sense that sometimes we say that when a gauge symmetry is spontaneously broken, the NGB

is “eaten” by the gauge boson to become its longitudinal polarization. This statement can be made more

precise through the equivalence theorem, which says that in processes at energies much larger than v (so

that it does not matter that the expectation value of the field is not zero in the ground state) computing
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any observable by using the theory with a massive gauge boson should yield the same result as using the

theory with a massless gauge boson and a massless NGB, up to corrections that go like v2/E2, where

E is the characteristic energy scale of the process in question. We will come back to the equivalence

theorem later on when we consider the spontaneous breaking of non-abelian gauge symmetries.

There is another, perhaps more direct, way to see that the NGB can be gauged away, i.e. it disappears

from the theory by performing a gauge transformation. For this purpose, it is advantageous to parame-

terize the scalar field not in terms of real and imaginary parts, but of modulus and phase. We write

ϕ(x) = eiπ(x)/f (v + σ(x)) , (2.445)

where we see that this automatically satisfies (2.434). We have two real scalar fields, just as before. One

is the modulus field σ(x) and the other one is the phase field π(x). The scale f is defined so that the

argument of the exponent is dimensionless. To fix f we demand that the π(x) field has a canonically

normalized kinetic term, i.e. we impose it be

1

2
∂µπ∂

µπ . (2.446)

This fixes

f = v , (2.447)

so that we have

ϕ(x) = eiπ(x)/v (v + σ(x)) , (2.448)

instead of (2.435). From the form above, it is immediately clear that π(x) will not appear in the potential.

In fact, this is given by

V (ϕ∗ϕ) = −m
2

2
[v + σ(x)]2 +

λ

4
[v + σ(x)]4 . (2.449)

From this form above we see that σ(x) is the massive real scalar field with

mσ =
√
2λ v , (2.450)

just as before. This also means that π(x) cannot get a mass, i.e.

mπ = 0 , (2.451)
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= +

q

Fig. 20: New contributions to the gauge boson two-point function at tree level in the presence of spon-
taneous symmetry breaking. The first diagram is the gauge boson mass term insertion. The second one
corresponds to the massless NGB contribution.

and therefore is the NGB. In fact, it will only appear in the Lagrangian in derivative form since it is the

only way it will come down from the exponentials before these annihilate in the kinetic scalar term.

From the parameterization (2.448) it is also obvious how to remove π(x) by means of a gauge transfor-

mation. Clearly, choosing the gauge transformation

ϕ(x)→ ϕ′(x) = e−iπ(x)/v ϕ(x) , (2.452)

results in

ϕ′(x) = [v + σ(x)] . (2.453)

Of course, the gauge transformation (2.452) is the same we introduced earlier in (2.441) only substituting

π(x) for ξ(x), and it therefore results in the same transformation for the gauge fields as in (2.442).

Therefore, our conclusions are exactly the same as the ones we derived by using (2.435) as the field

expansion: there is a massive gauge boson field with mass mA = e v and a massive reals scalar with

mass given by (2.450).

We finally comment on the meaning of spontaneously breaking a gauge symmetry. Specifically, we want

to address the point that although the gauge boson has acquired a mass, the gauge symmetry is still

present. To show this, let us go back to the gauge where we have both the gauge boson and the NGB. We

want to compute the gauge boson two-point function at tree level. In particular we want to consider the

effect of spontaneous symmetry breaking. We will need to use the Feynman rule illustrated in Fig. 19.

The calculation is illustrated in Fig. 20. In addition to the tree-level gauge boson propagator, there are

two new terms contributing: the gauge boson mass insertion and the massless NGB pole. They are

iδΠµν = im2
Agµν +mAqµ

i

q2
mA(−qν)

(2.454)

= im2
A

(
gµν −

qµqν
q2

)
.

In the first line in (2.454) we used the gauge boson–NGB mixing Feynman rule of Fig. 19. The result is
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that the new additions to the two-point function result to be actually transverse. That is, we have that

qµδΠµν = 0 , (2.455)

so that the two-point function remains transverse, therefore respecting the Ward identities. Since the

Ward identities are equivalent to current conservation, we conclude that the gauge symmetry is still

preserved, even in the presence of the gauge boson mass term. We can see that this required the presence

of the NGB pole. Just having the gauge boson mass term would have resulted in a non-transverse

contribution to the two-point function, and an explicit violation of the gauge symmetry. So having a

gauge boson mass is compatible with gauge invariance as long as it is the result of spontaneous symmetry

breaking.

2.3.3 Spontaneous breaking of non-abelian global symmetries

Before we can finally go into the application of the ABEH mechanism to the EWSM, we need to gener-

alize the spontaneous breaking to the cases of non-abelian symmetries, both global and gauged. We start

with the simpler case of the global symmetry and we will restate Goldstone’s theorem in a more gen-

eral way so as to include different symmetry breaking patterns, which will result in a different number

of Nambu–Goldstone Bosons (NGBs). Then we will consider the spontaneous breaking of non-abelian

gauge symmetries, i.e. the most general version of the ABEH mechanism.

We start with the Lagrangian for a scalar field ϕ,

L = ∂µϕ
†∂µϕ− µ2

2
ϕ†ϕ− λ

4

(
ϕ†ϕ

)2
. (2.456)

The Lagrangian above is invariant under the transformation

ϕ(x)→ eiα
a ta ϕ(x) , (2.457)

where the ta are the generators of the non-abelian groupG, and the arbitrary parameters αa are constants.

Here the scalar field ϕ(x) must carry a group index in order for (2.457) to make sense. We say the

symmetry is spontaneously broken if we have

µ2 = −m2 < 0 , (2.458)

then the potential has a non trivial minimum at

(
ϕ†ϕ

)
0
= ⟨ϕ†ϕ⟩ = m2

λ
≡ v2 . (2.459)

However, we need to ask how is the symmetry spontaneously broken. In other words, Spontaneous
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Symmetry Breaking (SSB) means that the value of the field at the minimum, let us call it the vacuum

expectation value (VEV) of the field ⟨ϕ⟩ , is not invariant under the symmetry transformation (2.457).

That is,

⟨ϕ⟩ → eiα
ata ⟨ϕ⟩ =

(
1 + iαata + · · ·

)
⟨ϕ⟩ , (2.460)

can be either equal to ⟨ϕ⟩ or not. This tells us that if

ta⟨ϕ⟩ = 0 , (2.461)

the ground state is invariant under the action of the symmetry (unbroken symmetry directions ), whereas

if

ta⟨ϕ⟩ ≠ 0 , (2.462)

the ground state is not invariant (broken symmetry directions). We see that some of the generators will

annihilate the ground state ⟨ϕ⟩, such as in (2.461), whereas others will not. In the first case, these

directions in group space will correspond to preserved or unbroken symmetries. Therefore, there should

not be massless NGBs associated with them. On the other hand, if the situation is such as in (2.462),

then the ground state is not invariant under the symmetry transformations defined by these generators.

These directions in group space defined broken directions or generators and there should be a massless

NGB associated with each of them. Thus, as we will see in more detail below, the number of NGB will

correspond to the total number of generators of G, minus the number of unbroken generators, i.e. the

number of broken generators.

Example: SU(2)

As a first example, let us consider the case where the symmetry transformations are those associated with

the group G = SU(2). The three generators of SU(2) are

ta =
σa

2
, (2.463)

with σa the three Pauli matrices. This means that the scalar fields appearing in the Lagrangian (2.456)

are doublets of SU(2), i.e. we can represent them by a column vector

ϕ(x) =

 ϕ1(x)

ϕ2(x)

 , (2.464)
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and that the symmetry transformation can be written as6

ϕi(x) =
(
δij + iαataij + · · ·

)
ϕj(x) , (2.465)

where i, j = 1, 2 are the group indices for the scalar field in the fundamental representation. We now

need to choose the vacuum ⟨ϕ⟩. This is typically informed by either the physical system we want to

describe or by the result we want to get. Let us choose

⟨ϕ⟩ =
(

0

v

)
. (2.466)

Clearly this satisfies (2.459). This choice corresponds to having

⟨Re[ϕ1]⟩ = 0 ⟨Im[ϕ1]⟩ = 0

⟨Re[ϕ2]⟩ = v ⟨Im[ϕ2]⟩ = 0 , (2.467)

in (2.464). We can now test what generators annihilate the vacuum (2.466) and which ones do not. We

have

t1 ⟨ϕ⟩ = 1

2

(
0 1

1 0

) (
0

v

)
=

1

2

(
v

0

)
̸=
(

0

0

)
. (2.468)

Similarly, we have

t2 ⟨ϕ⟩ = 1

2

(
0 −i
i 0

) (
0

v

)
=

1

2

(
−iv
0

)
̸=
(

0

0

)
, (2.469)

and

t3 ⟨ϕ⟩ = 1

2

(
1 0

0 −1

) (
0

v

)
=

1

2

(
0

−v

)
̸=
(

0

0

)
. (2.470)

So we conclude that with the choice of vacuum (2.466), all SU2) generators are broken. This means

that all the continuous symmetry transformations generated by (2.457) change the chosen vacuum ⟨ϕ⟩.
Thus, Goldstone’s theorem predicts there must be three massless NGBs. In order to explicitly see who

are these NGBs, we write the Lagrangian (2.456) in terms of the real scalar degrees of freedom as in

6We put the group indices in the fields upstairs for future notation simplicity. There is no actual meaning to them being “up” or
“down” indices, but the summation convention still holds.
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ϕ(x) =

 Re[ϕ1(x)] + i Im[ϕ1(x)]

v +Re[ϕ2(x)] + i Im[ϕ2(x)]

 , (2.471)

which amounts to expanding about the vacuum (2.466) as long as (2.467) is satisfied. Substituting in

(2.456) we will find that there are three massless states, namely, Re[ϕ1(x)] , Im[ϕ1(x)] and Im[ϕ2(x)],

and that there is a massive state corresponding to Re[ϕ2(x)] with a mass given by m. this looks very

similar to what we obtain in the abelian case, of course. Also analogously to the abelian case, we could

have parameterized ϕ(x) as in

ϕ(x) = eiπ
a(x)ta/f

(
0

v + c σ(x)

)
, (2.472)

where σ(x) and πa(x), with a = 1, 2, 3 are real scalar fields, and the scale f and the constant c are to be

determined so as to obtain canonically normalized kinetic terms for them in L. In fact, choosing

f =
v√
2
, c =

1√
2
, (2.473)

we arrive at

L =
1

2
∂µσ∂µσ +

1

2
∂µπa∂µπ

a − m2

2

(
v +

σ(x)√
2

)2
+
λ

4

(
v +

σ(x)√
2

)4
, (2.474)

from which we see that the three πa(x) fields are massless and are therefore the NGBs. Furthermore,

using m2 = λv2, we can extract

mσ = m = λ v (2.475)

The choice of vacuum ⟨ϕ⟩ resulting in this spectrum could have been different. For instance, we could

have chosen

⟨ϕ⟩ =
(
v

0

)
. (2.476)

But it is easy to see that this choice is equivalent to (2.466), and that it would result in an identical real

scalar spectrum. Similarly, the apparently different vacuum

⟨ϕ⟩ = 1√
2

(
v

v

)
, (2.477)
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results in the same spectrum. All these vacuum choices spontaneously break SU(2) completely, i.e.

there are not symmetry transformations that respect these vacua. Below we will see an example of

partial spontaneous symmetry breaking.

2.3.3.1 Goldstone theorem revisited

We now can reformulate Goldstone theorem for the case of the spontaneous breaking of the global non-

abelian symmetry. We go back to considering the infinitesimal transformation (2.465), but we rewrite it

as

ϕi → ϕi +∆i(ϕ) , (2.478)

where we defined

∆i(ϕ) ≡ iαa (ta)ijϕj . (2.479)

If the potential has a non trivial minimum at Φi(x) = ϕi0, then it is satisfied that

∂V (ϕi)

∂ϕi

∣∣∣
ϕ0

= 0 . (2.480)

We can then expand the potential around the minimum as

V (ϕi) = V (ϕi0) +
1

2

(
ϕi − ϕi0

) (
ϕj − ϕj0

) ∂2V

∂ϕi∂ϕj

∣∣∣
ϕ0

+ · · · , (2.481)

where the first derivative term is omitted in light of (2.480). The second derivative term in (2.481) Above

defines a matrix with units of square masses:

M2
ij ≡

∂2V

∂ϕi∂ϕj

∣∣∣
ϕ0
≥ 0 . (2.482)

where the last inequality results from the fact that ϕ0 is a minimum. M2
ij is the mass squared matrix. We

are now in the position to state Goldstone’s theorem in this context.

Theorem:

“For each symmetry of the Lagrangian that is not a symmetry of the vacuum ϕ0, there is a zero eigenvalue

of M2
ij .”

Proof:
The infinitesimal symmetry transformation in (2.478) leaves the Lagrangian invariant. In particular, it
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also leaves the potential invariant, i.e.

V (ϕi) = V
(
ϕi +∆i(ϕ)

)
. (2.483)

Expanding the right hand side of (2.483) and keeping only terms leading in ∆i(ϕ), we can write

V (ϕi) = V (ϕi) + ∆i(ϕ)
∂V (ϕi)

∂ϕi
, (2.484)

which, to be satisfied requires that

∆i(ϕ)
∂V (ϕ)

∂ϕi
= 0 . (2.485)

To make this result useful, we take a derivative on both sides and specified for ϕi = ϕi0, i.e. we evaluate

all the expression at the minimum of the potential. We obtain

∂∆i(ϕ)

∂ϕj

∣∣∣
ϕ0

∂V (ϕ)

∂ϕi

∣∣∣
ϕ0

+∆i(ϕ0)
∂2V (ϕ)

∂ϕj∂ϕi

∣∣∣
ϕ0

= 0 . (2.486)

But by virtue of (2.480), the first term above vanishes, leaving us with

∆i(ϕ0)
∂2V (ϕ)

∂ϕj∂ϕi

∣∣∣
ϕ0

= 0 . (2.487)

There are two ways to satisfy (2.487):

1. ∆i(ϕ0) = 0.

But this means that, under a symmetry transformation, the vacuum is invariant, since according to

(2.478) this results in

ϕi0 → ϕi0 . (2.488)

2. ∆i(ϕo) ̸= 0.

This requires that the second derivative factor in (2.487) must vanish, i.e.

M2
ij = 0 . (2.489)

We then conclude that for each symmetry transformation that does not leave the vacuum invariant

there must be a zero eigenvalue of the mass squared matrix M2
ij . QED.
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2.3.4 Spontaneous breaking of non-abelian gauge symmetries

We will now consider the case when the spontaneously broken non abelian symmetry is gauged. As we

saw for the case of abelian gauge symmetry, the spontaneous breaking of the symmetry will be realized in

the sense of the ABEH mechanism, i.e. the NGBs would not be in the physical spectrum, and the gauge

bosons associated with the broken generators will acquire mass. We will derive these results carefully

in what follows.

We consider a Lagrangian invariant under the gauge transformations

ϕ(x)→ eiα
a(x) ta ϕ(x) , (2.490)

where ta are the generators of the group G, and the gauge fields transform as they should. If we consider

infinitesimal gauge transformations and write out the field ϕ(x) in its groups components, we have

ϕi(x)→
(
δij + iαa(x) (ta)ij

)
ϕj(x) (2.491)

In general, we consider representations where the ϕi(x) fields in (2.491) are complex. But for the purpose

of our next derivation, it would be advantageous to consider their real components. So if the original

representation had dimension n, we now have 2n components in the real fields ϕi(x). If this is the case,

then the generators in (2.491) must be imaginary, since the αa(x) are real parameter functions. This

means we can write them as

taij = i T aij , (2.492)

where the T aij are real. Also, since the ta are hermitian, we have

(
taij
)†

= taij , (2.493)

we see that

T aij = −T aji , (2.494)

so the T a are antisymmetric. In general, the Lagrangian of the gauge invariant theory for a scalar field in

terms of the real scalar degrees of freedom would be7

L =
1

2

(
Dµϕi

)(
Dµϕi

)
− V

(
ϕi
)
, (2.495)

7Here we concentrate on the scalar sector of L since it is here that SSB of the gauge symmetry arises. We can imagine adding
fermion terms to L coupling them both to the gauge bosons through the covariant derivative, as well as Yukawa couplings
between the fermions and the scalars. Of course, all these terms must also respect gauge invariance.
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where the repeated i indices are summed. We can write the covariant derivatives above as

Dµϕ(x) =
(
∂µ − igAaµ(x)ta

)
ϕ(x) =

(
∂µ + gAaµ(x)T

a
)
ϕ(x) , (2.496)

where we omitted the group indices for the fields and the generators. We are interested in the situation

when the potential in (2.495) induces spontaneous symmetry breaking. To see how this affects the gauge

boson spectrum we must examine in detail the scalar kinetic term:

1

2

(
Dµϕi

) (
Dµϕi

)
=

1

2
∂µϕi ∂

µϕi +
1

2
g2AaµA

bµ
(
T aϕ

)
i

(
T bϕ

)
i

(2.497)

+ gAaµ
(
T aϕ

)
i
∂µϕi ,

where we used the notation

(
T aϕ

)
i
= T aijϕj , (2.498)

and as usual repeated group indices i, j are summed. If the potential V (ϕi) has a non trivial minimum

then, the vacuum expectation value (VEV) of the fields ϕi at the minimum is

⟨0|ϕi|0⟩ = ⟨ϕi⟩ ≡
(
ϕ0
)
i
, (2.499)

which says that we are singling out directions in field space which may have non trivial VEVs. Then the

terms in L quadratic in the gauge boson fields, i.e. the gauge boson mass terms, can be readily read off

(2.497):

Lm =
1

2
M2
abA

a
µA

bµ , (2.500)

where the gauge boson mass matrix is defined by

M2
ab ≡ g2

(
T aϕ0

)
i

(
T bϕ0

)
i
. (2.501)

Since the T a’s are real, the non zero eigenvalues of M2
abv are definite positive. We can clearly see now

that if

T aϕ0 = 0, (2.502)
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= + +

(a) (b) (c)

Fig. 21: Contributions to the gauge boson two point function in the presence of spontaneous gauge
symmetry breaking. Diagram (a) includes the tree level as well as loop diagrams, all of which are
transverse contributions. Diagram (b) is the contribution from the gauge boson mass term. Diagram (c)
depicts the contribution from the massless NGBs.

then the associated gauge boson Aaµ remains massless. That is, the unbroken generators, which as we

saw in the previous lecture, do not have NGBs associated with them, do not result in a mass term for the

corresponding gauge boson. On the other hand, if

T aϕ0 ̸= 0 , (2.503)

then we see that this results in a gauge boson mass term. The generators satisfying (2.503) are of course

the broken generators which result in massless NGBs. However, just as we saw for the abelian case,

these NGBs can be removed from the spectrum by a gauge transformation. To see how this works we

consider the last term in (2.497), the mixing term. This is

Lmix. = gAaµ
(
T aϕ0

)
i
∂µϕi . (2.504)

Thus, we see that if the associated generator is broken, i.e. (2.503) is satisfied, then there is mixing of the

corresponding gauge boson with the massless ϕi fields, the NGBs. It is clear that, just as in the abelian

case, we can eliminate this term by a suitable gauge transformation on Aaµ. This would still leave the

mass term unchanged, but would completely eliminate the NGBs mixing in (2.504) from the spectrum.

But even if we leave the NGBs in the spectrum, and we still have to deal with the mixing term (2.504),

we can still see that the gauge boson two point function remains transverse, a sign that gauge invariance

is still respected despite the appearance of a gauge boson mass. This is depicted in Fig. 21.

In order to obtain diagram (c) we need to derive the Feynman rule resulting from the mixing term Lmix

(2.504). In momentum space this becomes

q
a

= g
(
T aϕ0

)
i
qµ ,

where the NGB momentum is flowing out of the vertex (its sign changes if it is flowing into the vertex).

The contributions to diagram (a) are transverse as they come from either the leading order propagator or

the loop corrections to it, both already shown to be transverse. Then the two point function for the gauge
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boson in the presence of spontaneous symmetry breaking is

Πµν = Π(a)
µν + iM2

ab gµν + g
(
T aϕ0

)
i
qµ
iδab
q2

g
(
T bϕ0

)
i
(−qν

)
= Π(a)

µν + iM2
ab

(
gµν −

qµ aν
q2

)
, (2.505)

where to obtain the second line we used (2.501). Then, just as we saw for the abelian case, we see that

the gauge boson two point function is transverse even in the presence of gauge boson masses.

Example: SU(2)

In this first example we gauge the SU(2) of the first example in the previous lecture. The Lagrangian

L =
(
Dµϕ

)†
Dµϕ− V (ϕ†ϕ)− 1

4
F aµνF

aµν , (2.506)

with the covariant derivative on the scalar field is8

Dµϕ(x) =
(
∂µ − igAaµ(x)ta

)
ϕ(x) , (2.507)

where the SU(2) generators are given in terms of the Pauli matrices as

ta =
σa

2
, (2.508)

with a = 1, 2, 3. Since they transform according to

ϕ(x)j → eiα
a(x)tajk ϕk(x) , (2.509)

with j, k = 1, 2, then that are doublets of SU(2). Since each of the ϕj(x) are complex scalar fields, we

have four real scalar degrees of freedom. We will consider the vacuum

⟨ϕ⟩ =
(

0
v√
2

)
, (2.510)

such that, as required by imposing a non trivial minimum, we have

⟨ϕ†ϕ⟩ = v2

2
, (2.511)

8We have gone back to complex scalar fields for the remaining of the lecture.
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where the factor of 2 above is chosen for convenience. We are particularly interested in the gauge boson

mass terms. These can be readily obtained by substituting the vacuum value of the field in the kinetic

term. This is

Lm =
(
Dµ⟨ϕ⟩

)†
Dµ⟨ϕ⟩ ,

=
g2

2
AaµA

bµ
(
0 v

)
tatb

(
0

v

)
, (2.512)

where we used (2.510) in the second line. But for the case of SU(2) we can use the fact that

{
σa, σb

}
= 2δab , (2.513)

which translates into

{
ta, tb

}
=

1

2
δab , . (2.514)

Then, if we write

AaµA
bµ ta tb =

1

2
AaµA

bµ ta tb +
1

2
AbµA

aµ tb ta

=
1

2
AaµA

bµ
{
ta, tb

}
=

1

4
AaµA

aµ , (2.515)

where in the last equality we used (2.514). Then we obtain

Lm =
1

8
g2 v2AaµA

aµ , (2.516)

which results in a gauge boson mass of

MA =
g v

2
. (2.517)

Notice that all three gauge bosons obtain this same mass. It is interesting to compare this result with

what we obtained in the previous lecture for the spontaneous breaking of a global SU(2) symmetry

using the same vacuum as in (2.510). In that case, we saw that all generators were broken, i.e. there are

three massless NGBs in the spectrum and the SU(2) is completely (spontaneously) broken in the sense

that none of its generators leaves the vacuum invariant. In the case here, where the SU(2) symmetry is

gauged, we see that all three gauge bosons get masses. This is in fact the same phenomenon: none of the
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gauge symmetry leaves the SU(2) vacuum (2.510) invariant. However, the end result is three massive

gauge bosons, not three massless NGBs. We argued in our general considerations above that, just as for

the abelian case before, the NGBs can be removed by a gauge transformation. Let us see how this can

be implemented. We consider the following parameterization of the SU(2) doublet scalar field:

ϕ(x) = eiπ
a(x)ta/v

 0

v+σ(x)√
2

 , (2.518)

where σ(x) and πa(x) with a = 1, 2, 3 are real scalar fields satisfying

⟨σ(x)⟩ = 0 = ⟨πa(x)⟩ , (2.519)

so that this choice of parameterization is consistent with the vacuum (2.510). Clearly, the potential will

not depend on the πa(x) fields

V (ϕ†ϕ) = −m
2

2
ϕ†ϕ+

λ

2

(
ϕ†ϕ

)2
, (2.520)

The minimization results in9

⟨ϕ†ϕ⟩ = m2

2λ
, (2.521)

which results in

v2 =
m2

λ
. (2.522)

Replacing this in the potential (2.520) we obtain

mσ =
√
2λ v . (2.523)

And of course, the implicit result of having

mπ1 = mπ2 = mπ3 = 0 . (2.524)

But how do we get rid of the massless NGBs? If we define the following gauge transformation

9Notice the different factor in the denominator of the second term. This is due to the factor of
√
2 in the definition of the

vacuum.
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U(x) ≡ e−iπa(x)ta/v (2.525)

under which the fields transform as

ϕ(x) → ϕ′(x) = U(x)ϕ(x) =

 0

v+σ(x)√
2

 ,

(2.526)

Aµ → A′
µ = U(x)Aµ U

−1(x)− i

g

(
∂µU(x)

)
U−1(x) ,

where we used the notation Aµ = Aaµt
a. It is clear from the first transformation above, that ϕ′(x) does

not depend on the πa(x) fields. Thus, the gauge transformation (2.526) has removed them from the

spectrum completely. However, the number of degrees of freedom is the same in both gauges. We had

three transverse gauge bosons (i.e. 6 degrees of freedom) and four real scalar fields. In this new gauge

we have three massive gauge bosons (i.e. 9 degrees of freedom) plus one real scalar, σ(x). The total

number of degrees of freedom is always the same. The gauge were the NGBs disappear of the spectrum

is called the unitary gauge.

2.3.5 The ABEH mechanism in the electroweak Standard Model

In order to apply what we learned in the previous section to the EWSM, we have to introduce a scalar

field in to it. We must define the representation of SU(2)L × U(1)Y for this new field. We consider a

scalar field Φ in the fundamental representation of SU(2)L and with assignment of hypercharge U(1)Y ,

YΦ = 1/2 . (2.527)

That the scalar is in the fundamental representation of SU(2)L means that it is a scalar doublet, dubbed

the Higgs doublet. It can be written as

Φ =

(
ϕ+

ϕ0

)
, (2.528)

where ϕ+ and ϕ0 are complex scalar fields, resulting in four real scalar degrees of freedom10. Under a

SU(2)L × U(1)Y gauge transformation, the Higgs doublet transforms as

Φ(x)→ eiα
a(x)ta eiβ(x)YΦ ,Φ(x) , (2.529)

10At this point, the labels “+” and “0” are just arbitrary, since we have not even defined electric charges But these labels will
be consistent in the future, after we have done this.
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where ta are the SU(2)L generators (i.e. Pauli matrices divided by 2), αa(x) are the three SU(2)L

gauge parameters, β(x) is the U(1)Y gauge parameter, and it is understood that the U(1)Y factor of the

gauge transformation contains a factor of the identity I2×2 after the hypercharge YΦ. Thus, the covariant

derivative on Φ is given by

DµΦ(x) =
(
∂µ − igAaµ(x)ta − ig′Bµ(x)YΦI2×2

)
Φ(x) . (2.530)

Here, Aaµ(x) is the SU(2)L gauge boson, Bµ(x) the U(1)Y gauge boson, and g and g′ are their corre-

sponding couplings. The Lagrangian of the scalar and gauge sectors of the SM is then

L =
(
DµΦ

)†
DµΦ− V (Φ†Φ)− 1

4
F aµνF

aµν − 1

4
BµνB

µν , (2.531)

where F aµν is the usual SU(2) field strength built out of the gauge fields Aaµ(x) and Bµν is the U(1)Y

field strength given by the abelian expression

Bµν = ∂µBν(x)− ∂νBµ(x) . (2.532)

As usual, we consider the potential

V (Φ†Φ) = −m2
(
Φ†Φ

)
+ λ

(
Φ†Φ

)2
, (2.533)

which is minimized for

⟨Φ†Φ⟩ = m2

2λ
≡ v2

2
. (2.534)

In order to fulfil this, we choose the vacuum

⟨Φ⟩ =
(

0
v√
2

)
. (2.535)

Just as in the previous examples of SSB of non-abelian gauge symmetries, the next question is what is the

symmetry breaking pattern, i.e. what gauge bosons get what masses, if any. In particular, we want one

of the four gauge bosons in G to remain massless after imposing the vacuum ⟨Φ⟩ in (2.535). This means

that there must be a generator or, in this case, a linear combination of generators of G that annihilates

⟨Φ⟩, leaving the vacuum invariant under a G transformation. This combination of generators must be

associated with the massless photon inU(1)EM, the remnant gauge group after the spontaneous breaking.

One trick to identify this combination of generators is to consider the gauge transformation defined by
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α1(x) = α2(x) = 0

α3(x) = β(x) . (2.536)

The exponent in the gauge transformation has the form

iα3(x)t3 + iβ(x)YΦI2×2 = i
β(x)

2

[( 1 0

0 −1

)
+

(
1 0

0 1

)]
=

iβ(x)

2

(
1 0

0 0

)
. (2.537)

Then we see that this combination

(
t3 + YΦ

)
⟨Φ⟩ = 0 , (2.538)

indeed annihilates the vacuum, leaving it invariant. Thus, we suspect that this linear combination of

SU(2)L × U(1)Y generators must be associated with the massless photon. We will come back to this

point later.

We now go to extract the gauge boson mass terms from the scalar kinetic term in (2.531). This is

Lm =
(
Dµ⟨Φ⟩

)†
Dµ⟨Φ⟩

=
1

2
(0 v)

(
gAaµt

a + g′YΦBµ
)(
gAbµtb + g′YΦB

µ
) ( 0

v

)
. (2.539)

For the product of the two SU(2) factors we will use the trick in (2.515). Then, the only terms we need

to be careful about are the mixed ones: one SU(2) times one U(1)Y contribution. There are two of them,

and each has the form

1

2
(0 v) g g′

σ3

2
YΦ

(
0

v

)
= −1

2

v2

4
g g′A3

µB
µ , (2.540)

where in the second equality we used YΦ = 1/2. We then have

Lm =
1

2

v2

4

{
g2A1

µA
1µ + g2A2

µA
2µ + g2A3

µA
3µ + g′2BµB

µ − 2gg′A3
µB

µ
}
. (2.541)
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From this expression we can clearly ee that A1
µ and A2

µ acquire masses just as we saw in the pure SU(2)

example. It will be later convenient to define the linear combinations

W±
µ ≡

A1
µ ∓ iA2

µ√
2

, (2.542)

which allows us to write the first two terms in (2.541) as

LWm =
g2 v2

4
W+
µ W

−µ . (2.543)

These two states have masses

MW =
g v

2
. (2.544)

On the other hand, the fact that A3
µ and Bµ have a mixing term prevents us from reading off masses.

We need to rotate these states to go to a bases without mixing, a diagonal basis. In order to clarify what

needs to be done, we can write the last three terms in (2.541 in matrix form

Lneutralm =
1

2

v2

4
(A3

µ Bµ)

(
g2 −g g′
−g g′ g′2

) (
A3µ

Bµ

)
, (2.545)

where the task is to find the eigenvalues and eigenstates of the matrix above. It is clear that one of the

eigenvalues is zero, since the determinant vanishes. Then the squared masses of the physical neutral

gauge bosons are

M2
γ = 0

(2.546)

M2
Z =

v2

4
(g2 + g′2)

The eigenstates in terms of A3
µ and Bµ, the original SU(2)L and U(1)Y gauge bosons respectively, are

Aµ ≡
1√

g2 + g′2

(
g′A3

µ + gBµ
)

(2.547)

Zµ ≡
1√

g2 + g′2

(
gA3

µ − g′Bµ
)
. (2.548)
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Alternatively, we could have obtained the same result by defining an orthogonal rotation matrix to diag-

onalize the interactions above. That is, rotating the states by

(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

) (
A3
µ

Bµ

)
, (2.549)

results in diagonal neutral interactions if we have

cos θW ≡
g√

g2 + g′2
, sin θW ≡

g′√
g2 + g′2

, (2.550)

where θW is called the Weinberg angle. It is useful to invert (2.549) to obtain

A3
µ = sin θWAµ + cos θWZµ (2.551)

Bµ = cos θWAµ − sin θWZµ . (2.552)

Using these expressions for A3
µ and Bµ we can replace them in the covariant derivative acting on the

scalar doublet Φ. Their contribution fo Dµ is

−igA3
µt

3 − ig′YΦBµ = −iAµ
(
g sin θW t

3 + g′ cos θWYΦ
)
− i
(
g cos θW t

3 − g′ sin θWYΦ
)
Zµ

(2.553)

= −ig sin θW
(
t3 + YΦ

)
Aµ − i

g

cos θW

(
t3 − (t3 + YΦ) sin

2 θW

)
Zµ ,

where it is always understood that the hypercharge YΦ is always multiplied by the identity, and in the last

identity we used the fact that

g′ cos θW = g sin θW , (2.554)

and trigonometric identities. We can conclude that is Aµ is to be identified with the photon field, then its

coupling must be e times the charged of the particle it is coupling to (e.g. −1 for an electron. Thus we

must impose that

e = g sin θW , (2.555)

and that the charge operator, acting here on the field Φ coupled to Aµ is defined as
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Q = t3 + YΦ . (2.556)

Then we can read the photon coupling to the doublet scalar field Φ from

−i eAµQΦ(x) = −i eAµQ
(
ϕ+

ϕ0

)
. (2.557)

Substituting YΦ = 1/2 we have

Q

(
ϕ+

ϕ0

)
=

(
1 0

0 0

) (
ϕ+

ϕ0

)
=

(
ϕ+

0

)
, (2.558)

which tells us that the top complex field in the scalar doublet has charge equal to 1 (in units of e, the

proton charge), whereas the bottom component has zero charge, justifying our choice of labels. On the

other hand, we see that fixingQ to be the electromagnetic charge operator, completely fixes the couplings

of Zµ to the scalar Φ. This is now, from (2.553),

−i g

cos θW
Zµ

(
t3 −Q sin2 θW

)
Φ . (2.559)

We will see below that the choice of fixing the Aµ couplings to be those of electromagnetism, fixes

completely the Zµ couplings to all fermions, giving a wealth of predictions.

2.3.6 Gauge couplings of fermions

The SM is a chiral gauge theory, i.e. its gauge couplings differ for different chiralities. To extract the left

handed fermion gauge couplings, we look at the covariant derivative

DµψL =
(
∂µ − igAaµta − ig′YψLBµ

)
ψL , (2.560)

where YψL is the left handed fermion hypercharge. On the other hand, since right handed fermions do

not feel the SU(2)L interaction, their covariant derivative is given by

DµψR =
(
∂µ − ig′YψRBµ

)
ψR , (2.561)

with YψR its hypercharge. Using the covariant derivatives above, we can extract the neutral and charged

couplings. We start with the neutral couplings, which in terms of the gauge boson mass eigenstates are

the couplings to the photon and the Z.

Neutral Couplings: From (2.560), the neutral gauge couplings of a left handed fermions are
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(
−igt3A3

µ − ig′YψLBµ
)
ψL = ig sin θW

(
t3 + YψL

)
Aµ ψL

− i

(
g2t3 − ig′2YψL

)√
g2 + g′2

Zµ ψL , (2.562)

where on the right hand side we made use of (2.551) and (2.552). Now, we know that the photon coupling

should be

−ieQψL , (2.563)

with QψL the fermion electric charge operator. Thus, we must identify

QψL = t3 + YψL , (2.564)

as the fermion charge. We can use our knowledge of the fermion charges to fix their hypercharges. As

an example, let us consider the left handed lepton doublet. For the lightest family, this is written in the

notation

L =

(
νeL

e−L

)
. (2.565)

The action of t3 on L is

t3 L =

(
1/2 0

0 −1/2

) (
νeL

e−L

)

=

(
(1/2) νeL
(−1/2) e−L

)
≡
(
t3νeL

νeL

t3eL e
−
L

)
, (2.566)

where in the last equality we defined t3νeL = 1/2 and t3eL as the eigenvalues of the operator t3 associated

to the electron neutrino and the electron. Then, we have

QL L =

(
1/2 + YL 0

−1/2 + YL 0

) (
νeL

e−L

)
=

(
(1/2 + YL) νeL
(−1/2 + YL) eL

)
. (2.567)

But we know that the eigenvalue of the charge operator applied to the neutrino must be zero, as well as

that the eigenvalue of the electron must be−1. Thus, we obtain the hypercharge of the left handed lepton

doublet
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YL = −1

2
, (2.568)

which is fixed to give us the correct electric charges for the members of the doublet L. We can do the

same with the right handed fermions. These, however do not have t3 in the covariant derivative (see

(2.561) ). Then, for e−R, the right handed electron, we have that t3eR = 0, which means that, since

Qe−R
= −1 , (2.569)

then the right handed electron’s hypercharge is equal to it:

Ye−R
= −1 . (2.570)

Similarly, the right handed electron neutrino has zero electric charge, which results in

YνR = 0 . (2.571)

Now that we fixed all the lepton hypercharges by imposing that they have the QED couplings to the

photon, we can extract their couplings to the Z as predictions of the electroweak SM. From (2.562) we

have

−i
(
g cos θW t3 − g′ sin θW Yψ

)
Zµ ψ = −i g

cos θW

(
cos2 θW t3 − sin2 θW Yψ

)
Zµ ψ

= −i g

cos θW

(
t3 − sin2 θW Qψ

)
Zµ ψ , (2.572)

where the initial expressions makes use of cos θW and sin θW in terms of g and g′, in the first equality we

used that tan θW = g′/g and, in the final equality, we used that in general Qψ = t2 + Yψ, independently

of the fermion chirality, as long as we generalize (2.564) for right handed fermions using t3ψR = 0. For

instance, from (2.572) we can read off the lepton couplings of the Z boson. These are,

νeL : −i g

cos θW

(1
2

)
e−L : −i g

cos θW

(
−1

2
+ sin2 θW

)
(2.573)

e−R : −i g

cos θW

(
sin2 θW

)
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νeR : 0 .

From the couplings above, we see that every lepton has a different predicted coupling to the Z. These

are, of course, three level predictions. Measurements of these Z couplings have been performed with

subpercent precision for a long time, and the SM predictions for the fermion gauge couplings have passed

the tests every time. Another, interesting point, is that right handed neutrinos have no gauge couplings

in the SM: no Z coupling, certainly no electric charge and no QCD couplings. Thus, from the point of

view of the SM, the right handed neutrino need not exist.

Charged Couplings:

We complete here the derivation of the gauge couplings of leptons by extracting their charged cou-

plings.These come from the SU(2)L gauge couplings, as we see from

−ig
(
A1
µt

1 +A2
µt

2
)
= −i g√

2

(
0 W+

µ

W−
µ 0

)
, (2.574)

which then involve only left handed fermions. Then, from the gauge part of the left handed doublet

kinetic term

LL = L̄iD̸L , (2.575)

we obtain their charged couplings

Lch.L = (ν̄eL ēL) γ
µ g√

2

(
0 W+

µ

W−
µ 0

) (
νeL
eL

)
(2.576)

=
g√
2

{
ν̄eLγ

µeLW
+
µ + ēLγ

µνeLW
−
µ

}
,

where we can see that, as required by hermicity, the second term is the hermitian conjugate of the first.

The Fermi Lagrangian can be obtained from Lch.L by integrating out the W± gauge bosons.

We now briefly comment on the electroweak gauge couplings of quarks. Just as for leptons, we concen-

trate on the first family. The left handed quark doublet is

qL =

(
uL

dL

)
, (2.577)

We know that, independently of helicity, the charges of the up and down quarks are Qu = +2/3 and

Qd = −1/3. Then we have
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QqL =
(
t3 + YqL

)
=

(
+2/3 0

0 −1/3

)
, (2.578)

which results in

YqL =
1

6
. (2.579)

The hypercharge assignments for the right handed quarks are again trivial and given by the quark electric

charges. We have

YuR = +
2

3
, YdR = −1

3
. (2.580)

With these hypercharge assignments we can now write the quark couplings to the Z. Using (2.572) we

obtain

uL : −i g

cos θW

(1
2
− sin2 θW

2

3

)
dL : −i g

cos θW

(
−1

2
+ sin2 θW

1

3

)
uR : −i g

cos θW

(
− sin2 θW

2

3

)
dR : −i g

cos θW

(
sin2 θW

1

3

)
. (2.581)

Once again, we see that each type of quark has a different coupling to the Z. All of these predictions

have been tested with great precision, confirming the SM even beyond leading order.

The charged gauged couplings of left handed quarks are trivial to obtain: they are dictated by SU(2)L

gauge symmetry and therefore there must be the same as those of the left handed leptons in (2.576). So

we have

Lch.q =
g√
2

{
ūLγ

µdLW
+
µ + d̄Lγ

µuLW
−
µ

}
. (2.582)

2.3.7 Fermion masses

We have seen that SSB leads to masses for same of the gauge bosons, preserving gauge invariance. We

now direct our attention to fermion masses. In principle these terms

Lfm = mψψ̄LψR + h.c. , (2.583)
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are forbidden by SU(2)L× U(1)Y gauge invariance since thy are not invariant under

ψL → eiα
a(x)ta eiβ(x)YψL ψL

ψR → eiβ(x)YψR ψR .

But the operator

ψ̄LΦψR , (2.584)

is clearly invariant under the SU(2)L gauge transformations, and it would be U(1)Y invariant if

−YψL + YΦ + YψR = 0 . (2.585)

Since YΦ = 1/2, this form of the operator will work for the down type quarks and charged leptons. For

instance, since YL = −1/2 and YeR = −1, the operator

−Lme = λe L̄Φ eR + h.c., (2.586)

is gauge invariant since the hypercharges satisfy (2.585). In (2.586) we defined the dimensionless cou-

pling λe which will result in a Yukawa coupling of electrons to the Higgs boson. To see this, we write

Φ(x) in the unitary gauge, so that

−Lme = λe (ν̄eL ēL)

 0

v+h(x)√
2

 eR + h.c.

= λe
v√
2
ēLeR + λe

1√
2
h(x) ēLeR + h.c. , (2.587)

where the first term is the electron mass term resulting in

me = λe
v√
2
, (2.588)

and the second term is the Yukawa interaction of the electron and the Higgs boson h(x). We can rewrite

(2.587) as
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−Lme = me ēLeR +
me

v
h(x) ēLeR + h.c. , (2.589)

from which we can see that the electron couples to the Higgs boson with a strength equal to its mass in

units of the Higgs VEV v. Similarly, for quarks we have that the operator

−Lmd = λe q̄LΦ dR + h.c., (2.590)

is gauge invariant since YqL = 1/6 and YdR = −1/3 satisfy (2.585). Them we obtain

−Lmd
= md d̄LdR +

md

v
h(x) d̄LdR + h.c. , (2.591)

and where the down quark mass was defined as

md = λd
v√
2
. (2.592)

As we can see, it will be always the case that fermions couple to the Higgs boson with the strengthmψ/v.

Thus, the heavier the fermion, the stronger its coupling to the Higgs.

Finally, in order to have gauge invariant operators with up type right handed quarks we need to use the

operator

−Lmu = λu q̄LΦ̃uR + h.c. , (2.593)

where we defined

Φ̃(x) = iσ2Φ(x)∗ =


v+h(x)√

2

0

 , (2.594)

where in the last equality we are using the unitary gauge. It is straightforward11 to prove that Φ̃(x) is an

SU(2)L doublet with YΦ̃ = −1/2, which is what we need so as to make the operator in (2.593) invariant

under U(1)Y . Then we have

−Lmu = mu ūLuR +
mu

v
h(x) ūLuR + h.c. , (2.595)

with

11Only need to use that σ2σ2 = 1, and that σ2(σa)∗σ2 = −σa.
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mu = λu
v√
2
. (2.596)

The fermion Yukawa couplings are parameters of the SM. In fact, since there are three families of quarks

their Yuakawa couplings are in general a non diagonal three by three matrix. This fact has important

experimental consequences. On the other hand, we could imagine having something similar if we intro-

duce a right handed neutrino. This however, might be beyond the SM, since this state does not have any

SM gauge quantum numbers. Overall, the SM is determined by the parameters v, g, g′ and sin θW in the

electroweak gauge sector, plus all the Yukawa couplings in the fermion sector leading to all the observed

fermion masses and mixings.

2.3.8 Fermion mixing

In the previous section, we considered the fermion masses arising from Yukawa couplings assuming only

one generation of fermions. But instead of (2.586), (2.590) and (2.593), the most general interactions of

fermions with the Higgs doublet can be written as

−LHF = λiju q̄L,iΦ̃uR,j + λijd q̄L,iΦdR,j + λijℓ ℓ̄L,iΦℓR,j , (2.597)

where (i, j) = 1, 2, 3 are generation indices, we denote the quark and lepton three generation doublets as

qL,i and ℓL,i respectively, and similarly with the right handed fermions uR,i, dR,i and ℓR,i. The Yukawa

couplings now are 3 × 3 matrices in flavor space: λiju , λijd and λije . These matrices are generally non

diagonal and complex. Therefore, so are the mass matrices

M ij
u = λiju

v√
2
, M ij

d = λijd
v√
2
, M ij

ℓ = λijℓ
v√
2
. (2.598)

These matrices need to be diagonalized by unitary transformation on the fermion fields. For instance, for

the up quark mass matrix we want

Mdiag.
u =

 mu 0 0

0 mc 0

0 0 mt

 , . . . , (2.599)

where the eigenvalues above are the physical (real) masses of the up type quarks, and similarly forMdiag.
d

and Mdiag.
ℓ .

We now concentrate on the quark sector. A similar procedure can be followed in the lepton sec-

tor [4]. The quark mass terms before diagonalization are

−Lmass = ūiLM
ij
u ujR + d̄iLM

ij
d djR + h.c. , (2.600)

To obtain diagonal mass matrices, we define four unitary transformations acting separately on left and
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right handed up and down type quarks. These are

uL → SuL uL uR → SuR uR

dL → SdL dL dR → SdR dR . (2.601)

We choose these quark field unitary transformations such that they satisfy

Mdiag.
u = (SuL)

†Mu S
u
R and Mdiag.

d = (SdL)
†Md S

d
R . (2.602)

At the same time that the quark field rotations above not diagonalize the mass matrices, it also does so

with the Yukawa couplings of the Higgs bosons to fermions, which are diagonal and in fact given by

mf

v
. (2.603)

However, we should rotate the quark fields appearing in the vector currents, both neutral and charged.

Let us first consider the neutral currents. Since vector currents do not change chirality, we always have

ūLγ
µuL or ūRγ

µuR , (2.604)

or alternatively,

d̄Lγ
µdL or d̄Rγ

µdR . (2.605)

But these currents are clearly invariant under the unitary transformations in (2.601), since they involve

the product of a unitary transformation and its hermitian adjoint, i.e. its inverse. We then conclude that

in the SM there are no flavor changing neutral currents (FCNC) at leading order in perturbation
theory.12

We now consider the quark charged currents . Their contribution to the Lagrangian is given by

Lch. =
g√
2
ūiLγ

µdiLW
+
µ + h.c. , (2.606)

where the repeated flavor index is summed over, and the fields above are those before the diagonalization

of the mass matrices. But once we applied the different field transfomations on uiL and diL defined in

(2.601), the charged current becomes

Lch → g√
2
((SuL)

†SdL)ij ū
i
Lγ

µdjLW
+
µ + h.c.

=
g√
2
(VCKM)ij ū

i
Lγ

µdjLW
+
µ + h.c. , (2.607)

where we defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix as

VCKM ≡ (SuL)
† SdL . (2.608)

The CKM matrix is non-diagonal which results in generation-changing charged currents. As an example,

12FCNC can be generated in the SM at one loop order. We will see this briefly below, but in much more detail in [5] .
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Fig. 22: Charged current vertices with an up quark. In addition to the generation-conserving vertex with
a down quark, the CKM matrix allows the generation-changing vertices with the strange and bottom
quarks.

Fig. 22 shows the possible charge current vertices involving an up quark. Not only can it go to a first

generation anti-down quark, but also –thanks to the CKM matrix being non-diagonal – it can go to an

anti-strange or an anti-bottom quarks. As indicated in (2.607), each of these vertices is accompanied by

a factor of the corresponding CKM matrix element: in this case Vud, Vus and Vub. The conjugate vertices

involving a W− and a ū quark, are multiplied by the complex conjugate of the CKM matrix elements

mentioned above. Of course, similar vertices can be obtained for the other up-type quarks, c and t.

These charged current vertices and the CKM matrix are at the heart of a wealth of phenomena that

we typically call quark “flavor physics”. Not only are behind the typical (unsuppressed, leading order)

decays of heavier quarks, but also enter crucially in the loop generated FCNC in the SM, such b → sγ,

as well as b→ sℓ+ℓ−, K0 − K̄0, D0 − D̄0 and B0 − B̄0 mixing among others.

Of all the possible phases in VCKM all but one can be removed by fields redefinitions. This leads to the

phenomenon of CP violation, which was first observed in kaon decays in 1964, and was further observed

in B meson decays, leading to a precise mapping of the CKM matrix elements and phase structure. A

detailed presentation of these topics can be found in [5]. A similar application to leptons is in the lectures

of Ref. [4].

3 Testing the electroweak Standard Model

Now that we know how all the particles in the electroweak SM couple to each other, we can turn to testing

the SM. In this lecture we review the past, present and future tests of the various sectors of the SM that

consolidated our understanding of particle physics in the last decades. We divide this in three distinct

parts: testing the couplings of fermions to gauge bosons, the gauge boson self-couplings and finally the

Higgs couplings to all particles in the SM. However, due to the high precision the experimental tests have

achieved, we need to match this with theoretical precision. This requires that, in many cases we need to

go beyond leading order calculations in order to make predictions in the EWSM that can be meaningfully

tested by these experiments. This forces us to introduce one more aspect of the quantum field theory tool

box: renormalization. We start with a brief summary of renormalization and its applications to some of

the electroweak observables of interest. Then we move to the tests of the electroweak SM.

3.1 Renormalization

Virtual processes in quantum field theory will modify the parameters of a theory, i.e the parameters in the

Lagrangian. In perturbation theory these contributions are ordered by an expansion parameter, typically
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a coupling constant, in order to have a controlled approximation. For instance, in a theory with a real

scalar with the Lagrangian given by

L =
1

2
∂µϕ∂

µϕ− 1

2
m2 ϕ2 − λ

4!
ϕ4 , (3.609)

the two-point function to order λ admits the one-particle irreducible diagrams (1PI) shown in Fig. 23.

Fig. 23: 1PI diagrams contributing to the two-point function in the theory with Lagrangian (3.609), to
order λ.

The first diagram is the free propagator. The second one gives a contribution to the two-point function

that must be integrated over the undetermined four-momentum k, and is

(−iλ)
2

∫
d4k

(2π)4
i

k2 −m2 + iϵ
, (3.610)

where the factor of two is due to the symmetry of the diagram. The need for the integration is a con-

sequence of the momentum conservation at the vertex and is consistent with the quantum mechanical

character of the computation: all possible values of the four-momentum k contribute to the amplitude,

such as we saw in the first lecture when deriving the Feynman rules. The contribution form (3.610) will

result in a shift of the two-point function. It will change the position of the pole of the propagator through

a shift δm2 in the parameter m2 in (3.609), and will change the residue at the pole. The latter will be

absorbed by a redefinition of the field ϕ(x) itself.

In addition to shifting the parameters of the theory entering in the two-point function, the one-loop

diagram in Fig. 23 diverges for large values of the momentum. This is a consequence of the fact that

the momentum integration is not limited. This is an example of an ultra-violet (UV) or high momentum

divergence.13 We can also think of the UV divergence as a consequence of taking a distance to zero.

It is interesting to look closely at the UV limit of the integral in (3.610). To this effect, we define the

Euclidean four-momentum by k0 → ik4 =⇒ k2 = k20 − k2 = −k24 − k2 ≡ −k2E , such that now the

integral in (3.610) can be written in terms of the 4D Euclidean momentum kE as

(−iλ)
2

∫
d4kE
(2π)4

1

k2E +m2
=

(−iλ)
2

∫
dkE k

3
E dΩE

(2π)4
1

k2E +m2
, (3.611)

where the 4D solid angle is ΩE = 2π2.14 Finally, the remaining Euclidean momentum integral can be

13There also infra-red (IR) divergences, or low momentum divergences. We will focus here solely on UV divergences.
14You may need to think a bit about this. We will derive a general expression later on.
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cutoff at some value Λ giving

(−iλ)
16π2

∫ Λ

0

dkE k
3
E

k2E +m2
≃ −i λ

32π2
Λ2 + . . . , (3.612)

where the dots denote terms diverging with less than two powers of Λ, or terms that are finite after the

limit Λ → ∞ is taken. In this example, we say that this quantity is quadratically sensitive to the UV

cutoff Λ.

Similarly, the 1PI contributions to the four-point function up to order λ2 include loop diagrams that result

in a quantum correction of the sort given by

−iλ)2
2

∫
d4k

(2π)4
i

k2 −m2

i

(p− k)2 −m2
,

=
iλ2

16π2

∫ Λ

0

dkEk
3
E(

k2E +m2
)
(p− kE)2 +m2)

,

≃ iλ2

16π2
ln Λ2 + . . . , (3.613)

which is logarithmically sensitive to the UC cutoff Λ. The UV sensitivity is smaller since there is one

extra propagator with respect to (3.610). This will result in shifts to the coupling λ. UV divergences like

these are always present in relativistic quantum field theory. They come from the fact that undetermined

momenta can be as large as possible, or the distance between any two positions in spacetime can be made

as small as possible. Although their presence requires care, it is still possible to define the changes in

the theory due to the quantum corrections in loop diagrams. The process of regularizing divergences is

part of the renormalization procedure. Renormalization redefines all the parameters of a theory in the

presence of interactions. That is, as in our example, redefinitions ofm, λ and the field ϕ(x) itself. In what

follows, we describe a well defined method for absorbing the UV sensitivity in loops into counterterms.

3.1.1 Renormalization by counterterms

Starting from the Lagrangian for a real scalar field with quartic self-interactions

L =
1

2
∂µϕ0∂

µϕ0 −
1

2
m2

0ϕ
2
0 −

λ0
4!
ϕ40 , (3.614)

with unrenormalized parameters m2
0, λ0 and the unrenormalized field ϕ0, we defined the renormalized

parameters m2, λ and ϕ. First, we start by the field, just as we did in the previous lecture.

ϕ = Z
−1/2
ϕ ϕ0 . (3.615)

Then, we rewrite (3.614) replacing the renormalized field ϕ for ϕ0 to obtain
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L =
1

2
Zϕ∂µϕ∂

µϕ− 1

2
m2

0Zϕϕ
2 − λ0

4!
Z2
ϕϕ

4 , (3.616)

We now define

δZϕ ≡ Zϕ − 1

δm2 ≡ m2
0Zϕ −m2

δλ ≡ λ0Z
2
ϕ − λ , (3.617)

which we can rewrite in a more convenient way as

Zϕ = 1 + δZϕ

m2
0Zϕ = m2 + δm2

λ0Z
2
ϕ = λ+ δλ . (3.618)

Replacing (3.618) in (3.616) we obtain

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − λ

4!
ϕ4

+
1

2
δZϕ ∂µϕ∂

µϕ− 1

2
δm2ϕ2 − δλ

4!
ϕ4 , (3.619)

where we see that the first line is the renormalized Lagrangian whereas the second line is what we will

call the counterterms. These new terms will result in new Feynman rules for the theory and will cancel

divergencies in the renormalized theory. We have seen (see lecture 19) that for this theory the degree of

divergence of diagrams is given by

D = 4−
∑
f

Ef (sf + 1) (3.620)

where Ef is the number of external lines of the field type f in the diagram and here sf = 0 for a scalar

field. This meant that there are divergences in the two-point function (Ef = 2 ⇒ D = 2) and in the

four-point function (Ef = 4 ⇒ D = 0). The divergences in the two-point function affect the terms

in L quadratic in the fields and there will be cancelled by the counterterms δZϕ and δm2, whereas the

ones in the four-point function impact the quartic term and are canceled by δλ. The cancellation takes

place at a given order in the perturbative expansion in the coupling constant λ. In order to define the

physical parameters we need to impose renormalization conditions. To compute a given process up to
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some order in perturbation theory we need to use the Feynman rules that include the counterterms. These

new contributions will ensure that the cancelation takes place in every process.

3.1.1.1 Counterterm Feynman rules

The Feynman rules of the theory in terms of renormalized parameters are shown below, and derived from

the first line in (3.619). In addition to the tree-level Feynman rule, we now need to derive new rules from

the second line. This results in

i
(
δZϕp

2 − δm2
)
, (3.621)

−iδλ , (3.622)

where the dots indicate the insertion of the counterterm. To understand the form of the counterterm for

the two-point function we should imagine inserting it as one more 1PI contribution to −iΣ(p2) in the

summed propagator, as we did in lecture 20. With the form (3.621) the propagator now would be

i

p2 −m2 − Σℓ(p2) + δZϕ p2 − δm2
, (3.623)

where −iΣℓ(p2) is the sum of the actual loop contributions to the two-point function. Notice that since

the mass squared in the propagator is already the renormalized mass, the divergences in −iΣℓ(p2) will

now be canceled exclusively by the counterterms δZϕ and δm2. To implement the program of renormal-

ization by counterterms, we compute any desired amplitude up to the desired order in λ, including all the

counterterms. Divergent integrals must be regulated, i.e. expressed in terms of an appropriate regulator

that respects the symmetries of the theory. In the next lectures we will specify regularization procedures.

But the regulator is typically either an euclidean momentum cut off Λ, or some other parameter that ex-

poses the divergences in some limit. The answer of the calculation initially depends on the couterterms

δZϕ, δm2 and δλ. These are fixed by imposing renormalization conditions that result in the cancellation

of divergences. The resulting expression is then independent of the regulator. This procedure removes

all divergences in a renormalizable theory.

3.1.1.2 Fixing δZϕ and δm2

These counterterms are fixed by the renormalization of the two-point function. The 1PI diagrams that

need to be summed in order to obtain the propagator (3.623) now include the counterterm contribution,

as shown in Fig. 24, where we show the 1PI up to O(λ). In addition to the one-loop diagram we now
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have to consider the couterterm contribution to the two-point function as in (3.621) . The sum of the two

Fig. 24: The 1PI diagrams contributing to the two-point function toO(λ). The last diagram corresponds
to the counterterm in (3.621).

diagrams is

−iΣ(p2) = (−iλ)
2

∫
d4k

(2π)4
i

k2 −m2 + iϵ
+ i
(
δZϕp

2 − δm2
)
. (3.624)

We will impose the renormalization conditions on the propagators

∆F (p) =
i

p2 −m2 − Σ(p2)
, (3.625)

we now we use the renormalized mass parameter m2 from the Lagrangian in (3.619) and Σ(p2) has the

expansion

Σ(p2) = Σ(m2) + (p2 −m2) Σ′(m2) + Σ̃(p2) , (3.626)

where the first two terms are divergent, but the last is not. Now, the renormalization conditions are

a little different than before because here we are adding the contributions of the loop plus those of

the counterterms and ger the renormalized propagator. This means that the renormalization condition

now should leave m2 as the pole and the residue should be unity times i, since the field is already

renormalized. This translates into the conditions

Σ(m2) = 0, Σ′(m2) = 0, (3.627)

with the first condition ensuring that m2 is the pole of the propagator, whereas the second one leads to

the desired residue of i. We can see from (3.624) that, since the loop integral does not contain any p2

dependence, the second renormalization condition in (3.627) leads to δZϕ = 0. However, this is only the

case at this order in λ. In fact, going to O(λ2) there will be such dependence in the integral, leading to

the more accurate statement

δZϕ = 0 +O(λ2) . (3.628)

Finally, we may use the first condition in (3.627) in (3.624) to obtain the mass squared counterterm
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δm2 = −λ
2

∫
d4k

(2π)4)

i

k2 −m2 + iϵ
. (3.629)

To actually compute δm2 we will need to regulate the integral above. We will do this in detail in the next

two lectures. In any case, the answer will not depend on the details of the regularization procedure.

3.1.1.3 Fixing δλ through the four-point function

The renormalization of the four-point function leads to the fixing of the coupling counterterm δλ. In this

case the first loop corrections will introduce a momentum dependence absent at leading order. Let us

consider a scattering process in the ϕ4 theory up to one loop. The relevant diagrams are shown in Fig. 25.

The amplitude for scattering two scalars of momenta p1 and p2 into two scalars of momenta p3 and p4 is

Fig. 25: The diagrams contributing to the four-point amplitude. The leading order, i.e. O(λ) diagram is
followed by the three possible O(λ2) 1PI diagrams. The last diagram is the counterterm δλ.

iA(p1, p2 → p3, p4) = −iλ+ Γ(s) + Γ(t) + Γ(u)− iδλ , (3.630)

where the Mandelstam variables are s = (p1 + p2)
2, t = (p3 − p1)2 and u = (p4 − p1)2. Since the

loop diagrams introduce kinematic dependence, we need once again to choose a point in order to impose

the renormalization condition on the four-point function. This time we choose the zero-momentum

condition, i.e.

s0 = 4m2, t0 = 0, u0 = 0 , (3.631)

which corresponds to p1 = p2 = (m,0). We then impose the renormalization condition

iA(s0, t0, u0) = −iλ , (3.632)

which results in
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δλ = −i
(
Γ(4m2) + 2Γ(0)

)
. (3.633)

We can then rewrite the amplitude as

iA(s, t, u) = −iλ+ Γ̃(s) + Γ̃(t) + Γ̃(u) , (3.634)

where the Γ̃’s are finite and satisfy Γ̃(s0) = Γ̃(t0) = Γ̃(u0) = 0. The amplitude in (3.634) is expressed

in terms of the renormalized coupling λ and it has a well defined kinematic dependence acquired at order

λ2 through the finite parts of the loop diagrams.

We see in this example the full extent of the renormalization procedure. The renormalization condition is

used in order to remove the UV sensitivity of the parameter λ. But this is done at one specific, arbitrarily

chosen, kinematic point defined by (3.631). Once this is done, the amplitude and its dependance on

s, t and u are obtained. This is a physical result: the amplitude up to one loop in perturbation theory

contains the physical kinematic dependance induced by the quantum corrections. The renormalization

condition fixes the value of the amplitude at (3.631) and removes the UV sensitivity in the process. The

same is true of the other parameters of the theory. Thus, despite the appearance of divergences, the

renormalization procedure yields physically meaningful predictions in perturbation theory coming from

the quantum corrections.

3.2 Electroweak precision constraints and fermion couplings to gauge bosons

We start by considering the low energy charged and neutral current effective Lagrangians. The weak

charged current Fermi effective Lagrangian in (2.381) can be generalized as as

Lch. = −
GF√
2
f̄γµ (1− γ5) f f̄ ′γµ (1− γ5) f ′ . (3.635)

On the other hand, the weak neutral current results from integrating out the Z0 and is given by

Lnt. = −ρ0
GF√
2
f̄γµ

(
g
(f)
v,0 − g

(f)
a,0γ5

)
f f̄ ′γµ

(
g
(f ′)
v,0 − g

(f ′)
a,0 γ5

)
f ′ , (3.636)

where the 0 subscript denotes the unrenormalized or tree-level quantities, and the vector and axial-vector

couplings are obtained from the left and right handed couplings to the Z0 in Section 2.3.6 and are given

by

g
(f)
v,0 = t3f − 2Qfs

2
W,0 g

(f)
a,0 = t3f , (3.637)

where t3f is the eignevalue of the third component of isospin for the fermion f . e.g. t3ν = +1/2 ,

t3e− = −1/2, etc. Notice that we defined the tree-level Weinberg angle above, in anticipation of the

renormalization processs. Finally, in (3.636) we defined the tree-level ρ parameter as

ρ0 ≡
1

c2W,0

M2
W

M2
Z

, (3.638)
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which measures the relative strengths of the weak neutral to the charged effective Lagrangians (3.636)

and (3.635). In the SM, the tree-level value is ρSM0 = 1. However, this is not necessarily the case in

extensions beyond the SM, and it certainly is not the case in the SM beyond tree-level. In particular, since

the measurements of electroweak observables has achieved such a large precision, it become necessary

to go beyond tree level in order to compare experimental values with the SM predictions.

As a first step, let us write the renormalized vector and axial-vector couplings as

g
(f)
v,0 → g(f)v =

√
ρf

(
t3f − 2κf s

2
W Q(f)

)
, g

(f)
a,0 → g(f)a =

√
ρf t

3
f , (3.639)

where we defined the non-universal factors ρf in such a way that they absorb the renormalized universal

overall factor of ρ0 → ρ but also allows for non-universal vertex corrections specific to f . Also defined

in (3.639) above is the factor κf , which is unity at tree level, but when considering quantum corrections it

changes the relationship between the two terms in g(f)v . As we will see below, it is possible to re-interpret

κf as a renormalization of the effective weak angle. The corrections defined by (3.639) affecting the

Z → ff̄ couplings are some of the leading electroweak corrections. Others are the running of the QED

coupling α(µ), as well as the Fermi constant GF . They all are integral part of the precision electroweak

constraints.

There have been a large number of tests of the electroweak interactions at relatively low energies over

the years. These include deep inelastic neutrino scattering, atomic parity violation in cesium, as well as

polarized Möller scattering. Although these measurements were able to probe neutral currents with some

precision, the most precise tests have come from the neutral current interactions at the Z0 pole, both at

LEP at CERN and at the SLD at SLAC. This is due to the very large statistics achieved at theZ0 pole,

where the e + e− → Z0 → ff̄ cross section is more than three orders of magnitude larger than that of

photon exchange.

In order to analyse the experiments at the Z pole it has become customary to use the so-called effective

description of the renormalized vector and axial-vector couplings in (3.639). This is defined by

ḡ(f)v =
√
ρf

(
t3f − 2 s̄2f Q

(f)
)
, ḡ(f)a =

√
ρf t

3
f , (3.640)

where the bars on top refers to the use of the effective renormalization scheme, which uses µ = MZ .

In this scheme, the effective renormalized weak mixing angle depends on the fermion flavor f and its

defined as

s̄2f ≡ κfs2W , (3.641)

which can be extracted by measuring ḡv/ḡa. This is done by measuring asymmetries at the Z pole. In

particular it is convenient to define the fermion f asymmetry parameter

Af ≡ 2
ḡ
(f)
v ḡ

(f)
a

ḡ
(f)2
v + ḡ

(f)2
a

= 2
ḡ
(f)
v /ḡ

(f)
a

1 +
(
ḡ
(f)
v /ḡ

(f)
a

)2 , (3.642)

which can be extracted from the angular data. We start by defining the forward and backward cross
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sections

σF = 2π

∫ 1

0
d cos θ

dσ

dΩ
, σB = 2π

∫ 0

−1
d cos θ

dσ

dΩ
. (3.643)

Also useful in the context of e+e− → ff̄ at the Z0 pole are the cross sections σL and σR denoting the

case of a left-handed and right-handed electron beam, respectively. Then, defining the asymmetries at

the Z0 pole we can have:

AFB ≡
σF − σB
σF + σB

, (3.644)

which is the forward-backward asymmetry;

ALR ≡
σL − σR
σL + σR

, (3.645)

which defines the left-right asymmetry. For instance, in the presence of electron polarization Pe we have

that

A
(f)
FB =

3

4
Af
Ae + Pe
1 +AePe

, (3.646)

and

ALR = Ae Pe . (3.647)

But before we go into the details of the electroweak precision data and the derived constraints on

the SM, we must discuss the various possible definitions of the weak mixing angle. This variety appears

when going beyond tree level and reflects the various possible renormalization conditions imposed. We

have already introduced the effective mixing angle, s̄2f in (3.641). It can be directly determined by

experimentally measuring the vector to axial ratio ḡv/ḡa in asymmetries, such as A(f)
FB in (3.646) and

(3.642). Alternatively, we can define the modified minimal substruction scheme (MS) weak mixing

angle, ŝ2W , a renormalization scale dependent quantity, as

ŝ2W (q2) ≡ e2(q2)

g2(q2)
, (3.648)

and that can be implemented by using dimensional regularization for the renormalization of the couplings

above. Finally, we can also define the on-shell weak mixing angle as

s2W ≡ 1− M2
W

M2
Z

, (3.649)

which is given in terms of the physical masses of the W and the Z and is therefore directly determined

experimentally from the measurements of MW and MZ . All these definitions of the weak mixing angle

agree at tree-level. It is possible to relate the different weak mixing angles at a given order in perturbation

theory. For instance, we have

s̄2ℓ = κ̂ℓ ŝ
2
W (M2

Z) ≃ ŝ2W (M2
Z) + 0.00032 , (3.650)

where the MS) weak mixing angle is evaluated at theZ pole, q2 =M2
Z . The great experimental precision

obtained at the Z pole both at LEP 1 and at SLD requires great precision in the loop corrections. Here,

124



FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

s̄2ℓ must be computed at full two-loop precision, as well as partial higher orders. Extracting the ratios of

vector to axial vector couplings from asymmetry measurements, and the sum of their squares from the

decay widths, i.e.

Γ(Z → ff̄) = ηf
Nc

6π

GFM
3
Z√

2

(
ḡ2v + ḡ2a

)
, (3.651)

where Nc = 3 and ηf = δQCD if f is a quark, or both are unity otherwise, and

δQCD = 1 +
αs(M

2
Z)

π
+ 1.41

(
αs(M

2
Z)

π

)2

+ · · · ≃ 1.04, (3.652)

it is possible to measure the effective couplings for all SM fermions. For instance , in Fig. 26 we see

the results of the measurements at LEP and SLC at the Z pole for the lepton couplings. In the figure,

we see the combination of the three measurements assuming lepton universality in the black contour.

Also shown, is the SM best value show in the black cross and according to the definition of the effective

couplings in (3.640). Notice the agreement with the Z pole data requires the higher order calculations

Fig. 26: 1σ(39.35C.L.) contours for the Z pole observables ḡfv and ḡfa , for f = e, µ, τ obtained at LEP
and at SLC, compared to the SM expectation as a function of ŝ2Z , with the best value (ŝ2Z = 0.23122)
indicated. Also, in black, is the 90% C.L. allowed region when assuming lepton universality. From [6].

named earlier. Many more tests of the gauge couplings to fermions have been performed since, most

notably at hadron colliders such as the Tevatron and the LHC. From the figure, we can see that the

agreement in the effective coupling is at the sub-percent level. So we can conclude that the electroweak

gauge couplings to fermions in the SM are tested with a great level of precision.

To show the extent of this success, we close this section showing the SM fit for electroweak

observables at the Z pole, Fig. 27. The electroweak sector has three fundamental parameters, i.e. g, g′ and

v. However, it is advantageous to use a combination of these that is measured with the greatest precision.
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Fig. 27: Fit of electroweak observables at the Z Pole. From [6].

These are: MZ , GF and α. In addition, it is necessary to incorporate the dependence of observables

of the Higgs mass mh, the quark masses and mixings, and the strong coupling αs, all entering through

radiative corrections. In general we have the parameter set given by

{p} ≡ {α,MZ , GF , αs, λ,mh,mt, · · · } , . (3.653)

As we already discussed, simple tree level relations that only involve α, GF and MZ , such as the W

mass

MW = cos θW MZ , (3.654)

or the Weinberg angle

sin 2θW =

(
2
√
2πα

GFM2
Z

)1/2

, (3.655)

will now be affected by loop corrections. These, in effect, will make all the floating parameters depend

of all others. That is, we can write for some observable Oi

Otheory
i ({p}) = Otree−level

i ({α,GF ,MZ}) + δOi({p}) , (3.656)

where the δOi are the loop corrections. Measuring a large number of electroweak observables with large

enough precision to be sensitive to the loop corrections we can extract information on all parameters.

The strategy is to have some parameters that are kept fixed and others are let float in the fit. We consider

as fixed parameters: α(MZ), measured at low energies and then evolved to MZ ; GF , as measured

from the muon lifetime; and the fermion masses (originally with the exception of mt). The rest of the

parameter set is let to float in the fit. Thus, for each observable in Table in (27), there is an experimental
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measurement and, next to it, the SM prediction resulting from the fit including all the parameter set in

(3.656). Finally, the “pulls” are computed using

pull =
Oth. −Oexp.

σth.
, (3.657)

where σth. are the errors in Oth.. We see that the agreement of the SM fit with experiment is very good

with a high level of precision.

The electroweak data is so precise that allows for a determination ofMZ ,mh,mt and αs(MZ). Although

the Higgs boson mass enters only logarithmically in electroweak loop corrections, it is possible to obtain

mh = 90+17
−16 GeV , (3.658)

once the kinematic constraints from the LHC are removed. All this information can be seen in Fig. 28

below.

Fig. 28: Fit result and one-standard-deviation (39.35% for the closed contours and 68% for the others)
uncertainties in mh as a function of mt for various inputs, and the 90% CL region allowed by all data.
αs(MZ) = 0.1187 is assumed except for the fits including the Z lineshape. From [6].

Finally, precision electroweak data like these can be used to constrain new physics beyond the SM. The

model independent approach to constrain new physics in precision data is to make use of the effective

field theory framework. The Lagrangian of the SM contains only renormalizable (i.e. dimension 4)

operators. But higher dimensional operators (HDO) coming from physics BSM at higher energy can

modify the physics at the electroweak scale. The systematic expansion of the electroweak SM as an

effective field theory (EFT) in terms of HDOs can be schematically written as [20, 21]

LSMEFT = LSM +
∑
i

ci
Λ2
Od=6
i +

∑
j

cj
Λ4
Od=8
j + · · · , (3.659)
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where the Od=nj are the dimension n operators, Λ is the UV scale where the physics integrated out

resides and gives rise to the HDOs, and the coefficients cj are in principle unknown and depend on the

UV physics. This so called SMEFT is a road map for using high precision data to constrain new physics

BSM coming from higher energy scales. This will be an important part of the program of the HL-LHC

and even beyond in a scenario where the energy frontier remains at around 14 TeV. Already it is possible

to put bounds on the coefficient of the dimension 6 operators [22], although much more data will be

necessary for a tighter set of constraints [24]. One of the reasons is that, even if we restrict ourselves to

dimension 6 operators, there are 59 of them [23]. Is even possible that for some observables dimension

8 operators, of which there are thousands) might be necessary. All of these is beyond the scope of these

lectures. But we can give a glimpse of this procedure by selecting a couple of dimension 6 operators,

which are quite well known and very well constrained by electroweak precision data. These are

OS = H†σiHAiµνB
µν OT = |H†DµH|2 , (3.660)

where the σi are the Pauli matrices,Aiµν are the SU(2)L gauge field strength andBµν is theU(1)Y gauge

field strength. Once the Higgs field H is replaced by its VEV, the operator OS induces kinetic mixing

between A3
µ and Bµ, absent in the SM15. On the other hand, the operator OT induces a shift on the Z0

mass, but none on the W± mass. This is then a new physics contribution to the ρ parameter defined in

(3.638) as a tree level relation. The SM contributions to ρ have been both computed and measured with

great precision, so the coefficient of this operator is greatly constrained by electroweak data. These type

of corrections are called oblique, since they really are only corrections to the gauge two point functions,

ignoring the corrections to vertices. The rationale behind considering these type of corrections alone

in a fit is that maybe the new physics states (e.g. heavy fermions or scalars) have electroweak quantum

numbers so they would induce loop corrections to the electroweak gauge boson two point functions as

picture in Fig. 29. The corrections arising from these two dimension six operators give rise to universal

Fig. 29: Oblique corrections to the electroweak gauge boson two point functions. They can be one loop
contributions from new fermions or scalars carrying electroweak quantum numbers and contribute to the
coefficient of the operators OS and OT , among others.

electroweak corrections, in the sense that they will appear in all electroweak amplitudes independently of

the identity of the external fermions. So the data constraining them could be coming from muon decay,

Z pole observables such as the Z → ff̄ widths to hadrons or leptons, asymmetries, etc.

Another important aspect of these quantities, i.e. cS and cT , is that they are finite, since there are no

counterterms to absorbe divergences coming from loops that would have this form. So, even if individual

loop diagrams contributing to either cS and cT could be divergent, the sum of all of them must give a

15The mass mixing between A3
µ and Bµ, which leads to the need to diagonalize the neutral gauge boson mass matrix, is of a

different character.
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finite answer. So these are indeed measurable effects of quantum corrections to the EWSM. Originally

[25] these two parameters where defined as S and T , as given by

S ≡ 4sW cW v
2

α
cS , T ≡ − v

2

2α
cT , (3.661)

where the Weinberg angle and α are to be evaluated at the weak scale, and v ≃ 246 GeV. For instance,

adding these dimension six operators to the SM Lagrangian LSM, we can add their contributions to the

predictions forOth.
i in (3.656) through the corrections in δOth.

i , where the operatorsOi are the dimension

four SM operators affected by the shifts induced by the dimension 6 operatorsOS,T . For instance the W

mass is shifted as [6]

M2
W =M2

W,SM

1

1−GFM2
W,SM S/2

√
2π

, (3.662)

whereas the Z mass is given by

M2
Z =MZ,SM

1− α(MZ)T

1−GFM2
Z,SM S/2

√
2π

, (3.663)

and similarly for all observables in the fit. For any neutral current amplitude Ai, we would have

Ai = Ai,SM
1

1− α(MZ)T
, (3.664)

where the Ai,SM are the corresponding SM amplitudes. Then, adding S and T as floating parameters in

the fit, one obtains [6]

S = 0.02± 0.10 , T = 0.07± 0.12 . (3.665)

We see from the results above that S and T , and therefore the coefficients cS and cT corresponding to

the dimension 6 oblique operators defined in (3.660), are consistent with zero. This constitutes a very

important constraint to possible extensions of the SM, which typically generate non zero values of these

parameters. Since the SM predictions in the expressions above are computed to two loop accuracy, any

increased precision in electroweak precision observables tightens the bounds on new physics.

Many extensions of the SM have been severely constrained by electroweak precision observables such

as S and T . These continue to be one the most important bounds on extensions of the SM. In order

to test a BSM model against these measurements, one needs to consider the quantum corrections to the

electroweak gauge bosons as depicted in Fig. 29. The most general form of the gauge boson two point

function is

ΠµνV V ′(q
2) = ΠV V ′(q2)gµν +ΣV V ′(q2)qµqν , (3.666)

where qµ is the momentum going through the gauge boson line. The second term in (3.666) can be safely

neglected since either the gauge boson is coupled to a conserved current or its effects are suppressed if

the external particles have small masses. Since we can assume that the scale of new physics giving rise

to these corrections to the SM come from some energy scale Λ such that Λ2 ≫ q2, then we can expand

the ΠV V ′(q2) functions around q2 = 0 and keep only the first terms as in

ΠV V ′(q2) ≃ ΠV V ′(0) + q2Π′
V V ′(0) + · · · , (3.667)
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where Π′
V V ′ denotes the derivative with respect to q2. So, in principle, we have 8 quantities we need:

(Πγγ ,ΠγZ ,ΠZZ ,ΠWW ,Π
′
γγ , . . . ). However, from the renormalization conditions on the electric charge

(e.g. from QED) we know that

Πγγ(0) = 0 , ΠγZ(0) = 0 . (3.668)

Then we are down to 6 quantities. But another 3 can be absorbed in to the renormalization of α, GF and

MZ as shifts defined by

δα

α
= −Π′

γγ(0),
δGF
GF

= ΠWW (0) ,
δM2

Z

M2
Z

= −Π′
ZZ(0) , (3.669)

The remaining 3 parameters then must be accounting for the loop corrections coming from new physics.

These are [25] the Peskin-Takeuchi parameters S, T and U . While in this formalism S and T can be

matched to the coefficients of dimension 6 operators, in this case OS and OT , On the other hand, the

third one, U , would correspond to a dimension 8 operator in the SMEFT, and this is the reason why in

BSM models it typically gives no important contributions. The S and T parameters can be defined in

terms of the gauge boson two point functions as [6, 25]

αT ≡ ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

, (3.670)

and
α

4ŝ2W ĉ
2
W

S ≡ ΠZZ(M
2
Z)−ΠZZ(0)

M2
Z

− ĉ2W − ŝ2W
ĉW ŝW

ΠZγ(M
2
Z)

M2
Z

− Πγγ(M
2
Z)

M2
Z

, (3.671)

Given a BSM theory, if it contains fermions and/or scalars charged under the electroweak gauge group,

it is possible to compute the loop contributions to S and T directly, resulting on tight constraints on the

masses and couplings of the new particles.

Finally, to make clear contact with the dimension 6 operators defined earlier, we can express the gauge

boson two point functions in the basis before electroweak symmetry breaking, i.e. in terms of the SU(2)L

and U(1)Y gauge bosons. Then, we define the Π11,Π22,Π33,ΠY Y and Π3Y vacuum polarization func-

tions of q2 in terms of which we can write

T =
4π

ŝ2W ĉ
2
W

Π11 +Π22 −Π33

M2
Z

, (3.672)

and

S = −16πΠ3Y (M
2
Z)−Π3Y (0)

M2
Z

= −16πΠ
′
3Y (0)

M2
Z

. (3.673)

Writing T and S in this way it is easier to understand their physical significance. The T parameter

measures the breaking of the isospin symmetry present in the EWSM 16, which is the difference between

the (identical) (11, 22) components and the 33 component. So, for instance, if there is a new heavy

SU(2)L doublet (U D)T , then the T parameter measures the different contribution from the charged

16This so called custodial symmetry is a remnant of the electroweak symmetry breaking and is an accidental global symmetry
in the EWSM.
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loop containing both U and D to the neutral loops containing either U or D. This contribution goes like

(M2
U −M2

D) is this is a chiral doublet and like ln(MU/MD) if is a vector-like one. Also new scalars

in various representations can contribute to T . On the other hand, the S parameter clearly measures

the amount of kinetic mixing (as opposed to mass mixing) between the A3
µ and the Bµ gauge bosons,

as evidenced by the presence of the q2 derivative of Π3Y . For instance, early on the S parameter was

used used to exclude heavy chiral fermions. More recently, the contributions of resonances in composite

Higgs models, gives rise to an important contribution to S putting pressure on the mass scale of these

models vector resonance masses.

3.3 Gauge boson self couplings

In addition to testing the gauge boson couplings to fermions as seen in the previous section, a crucial test

of the electroweak theory is its non-abelian character. Recalling the form of the electroweak pure gauge

boson sector:

LGB = −1

4
F aµνF

aµν − 1

4
BµνB

µν , (3.674)

where

F aµν = ∂µA
a
ν − ∂νAaµ + gϵabcAbµA

c
ν , (3.675)

is the SU(2)L gauge field strength and

Bµν = ∂µBν − ∂νBν , (3.676)

is the U(1)Y one, we can then derive the self-couplings of the electroweak gauge bosons. We can

immediately see that the SU(2)L term in (3.674) will result in triple as well as quartic gauge boson

couplings. This is a direct consequence of the non-abelian nature of the SU(2)L electroweak sector.

In order to test this experimentally however, we need to rewrite (3.674) in terms of the mass eigenstate

gauge bosons. So we again make the transformation from the (Aa, B) basis to the (W±, Z0, γ) basis.

We will concentrate on triple gauge boson couplings (TGC). A general form of their interactions can be

schematically written as

LWWV = i gWWV

[(
W †
µνW

µ −WµνW
µ
)
V ν +W †

µWν V
µν
]
, (3.677)

with V = γ, Z0, and we defined the tensors

Wµν = ∂µWν − ∂νWµ , and Vµν = ∂µVν − ∂νVµ . (3.678)

In the SM, we have

gWWγ = −e and gWWZ = −e cot θW . (3.679)

The first experimental tests of these TGC were performed at LEP II in the early 1990s through W+W−

pair production. The corresponding diagrams are shown in Fig. 30. In Fig. 31 below, we see the early

data testing the electroweak TGCs. Already with these data it was clear that the triple gauge boson

couplings must be included in the calculations in order to have agreement with the experiment. Even if
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Fig. 30: Tree-level diagrams for W pair production . The second type of diagrams are described by
(3.677)

one argues that the γW+W− TGC does not really test the non-abelian nature of the electroweak gauge

sector since it is just the coupling of a charged particle to the photon as expected in QED, the presence

of the Z0W+W− contribution to W pair production is necessary to bring agreement with data. Current

data are much more constraining. In order to compare with more modern data, we first define an effective

Fig. 31: Early LEP II data onW pair production: testing the non-abelian nature of the electroweak sector.
For the data to agree with the SM prediction, all diagrams in Fig. 30 must be considered, including the
Z0W+W−.

Lagrangian for the TGCs that allows for anomalous deviations from the SM, although still maintaining

parity and charge conjugation invariance. This is conventionally written as

LWWV = igWWV

[
gV1

(
W †
µνW

µ −WµνW
µ
)
V ν + κVW

†
µWνV

µν + i
λV
M2
W

W †
ρµW

µ
ν V

νρ

]
,

(3.680)

where gWWV is still given by (3.679) and, in the SM we have

gV1 = 1 κV = 1 λV = 0 . (3.681)
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The introduction of the last term in (3.680) corresponds to a higher dimensional operator, as seen by the

appearance of an energy squared in the denominator, here chosen to be M2
W . If we further impose gauge

invariance, the couplings defined in (3.680) are constrained to satisfy

λγ = λZ , κZ = gZ1 − (κγ − 1) tan2 θW . (3.682)

Various experiments have constraints these TGC over the years. In order to compare with them, it is

customary to define quantities that are zero in the SM:

∆gZ1 ≡ gZ1 − 1, ∆κZ ≡ κZ − 1, ∆κγ ≡ κγ − 1 , (3.683)

in addition to λγ and λZ . We can see that all TGC measurements are consistent with the SM within
NS67CH02-Hamel-de-Monchenault ARI 18 September 2017 10:8

Table 1 Observed 95%-CL limits on WWγ and WWZ anomalous trilinear gauge boson couplings

Channel 95%-CL interval Experiment
√

s ( TeV)
Luminosity

(fb−1) Reference
"κγ LEP combined [−0.099, +0.066] LEP 0.2 0.7 115

D0 combined [−0.16, +0.25] D0 1.96 8.6 132
W γ [−0.41, +0.46] ATLAS 7 4.6 63
W γ [−0.38, +0.29] CMS 7 5.0 64
WW [−0.21, +0.22] CMS 7 4.9 71
WW+WZ [−0.21, +0.22] ATLAS 7 4.6 93
WW+WZ [−0.11, +0.14] CMS 7 5.0 94
WW [−0.12, +0.17] ATLAS 8 20.3 72
WW [−0.13, +0.095] CMS 8 19.4 73

λγ LEP combined [−0.059, +0.017] LEP 0.2 0.7 115
D0 combined [−0.036, +0.044] D0 1.96 8.6 132
W γ [−0.065, +0.061] ATLAS 7 4.6 63
W γ [−0.050, +0.037] CMS 7 5.0 64
WW [−0.048, +0.048] CMS 7 4.9 71
WW+WZ [−0.039, +0.040] ATLAS 7 4.6 93
WW+WZ [−0.038, +0.030] CMS 7 5.0 94
WW [−0.019, +0.019] ATLAS 8 20.3 72
WW [−0.024, +0.024] CMS 8 19.4 73

"g Z
1 LEP combined [−0.054, +0.021] LEP 0.2 0.7 115

D0 combined [−0.034, +0.084] D0 1.96 8.6 132
WW [−0.039, +0.052] ATLAS 7 4.6 70
WW [−0.095, +0.095] CMS 7 4.9 71
WW+WZ [−0.055, +0.071] ATLAS 7 4.6 93
WW [−0.016, +0.027] ATLAS 8 20.3 72
WW [−0.047, +0.022] CMS 8 19.4 73
WZ [−0.19, +0.29] ATLAS 8 20.3 78
WZ [−0.28, +0.40] CMS 8 19.6 79

"κZ WZ [−0.19, +0.30] ATLAS 8 20.3 78
WZ [−0.29, +0.30] CMS 8 19.6 79

λZ WZ [−0.016, +0.016] ATLAS 8 20.3 78
WZ [−0.024, +0.021] CMS 8 19.6 79

analyses, ATLAS (67) and CMS (66) set 95%-CL limits at the level of 1.5×10−3 on |hγ
3 | and |hZ

3 |,
and at the level of 4 × 10−6 on |hγ

4 | and |hZ
4 |. These limits are already an order of magnitude more

stringent than those obtained at the Tevatron, thanks to the extended range in photon energy at
the LHC, and one can expect another increase in sensitivity with the 13-TeV data. Likewise, the
sensitivity for neutral aTGCs at the ZZZ vertex has been improved with the recent νν̄Z analyses
at 8 TeV. ATLAS (85) and CMS (90) have reported 95%-CL limits on the | f γ ,Z

4 | and | f γ ,Z
5 |

parameters that are at the level of or better than 4 × 10−3. These results are an improvement on
the first LHC-combined limits on aTGCs in ZZ production based on 7-TeV data (112).

The VBS analyses are used to set first limits on a number of aQGC parameters, which corre-
spond to different dimension-eight operators of the EFT. One of these operators, which involves

www.annualreviews.org • Electroweak Measurements at the LHC 37

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 2
01

7.
67

:1
9-

44
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 2

00
.5

4.
47

.1
55

 o
n 

03
/1

5/
23

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 

Fig. 32: Measurements of TGC at various experiments. From [7].

experimental errors.

3.4 Higgs boson couplings

The Lagrangian for the EWSM is schematically given by

LEW = (DµΦ)
†DµΦ− V (Φ†Φ) + LHF + LGB + LGF , (3.684)

where LGF contains the interactions of fermions with gauge bosons, LGB contains just the gauge bosons

including their TGC and quartic self-interactions and LHF contains the fermion Yukawa couplings to the
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Higgs bosons which will be discussed below. Working in the unitary gauge with

Φ(x) =

(
0

v+h(x)√
2

)
, (3.685)

we can read off the couplings to gauge bosons from the first term in (3.684). For instance, for the Higgs

couplings to W ’s, these can be written as

LhWW =
[
ghWW h+

ghhWW

2!
h2
]
W+µW−

µ , (3.686)

where we defined

ghWW =
2M2

W

v
, ghhWW =

2M2
W

v2
. (3.687)

Analogously, we can obtain the couplings of the Higgs boson to the Z:

LhZZ =

[
ghZZ
2!

h+
ghhWW

(2!)2
h2
]
ZµZµ , (3.688)

with

ghZZ =
2M2

Z

v
, ghhZZ =

2M2
Z

v2
. (3.689)

The way the couplings are defined above allows us to write them in (3.686) and (3.688) with the explicit

factors of 2! counting the number of identical particles in the vertex.

The triple vertices ghVV, with V = (W±, Z), have been tested at the LHC with considerable precision.

Defining the coupling strengths normalized to the SM values

κV =
gexp.hVV

gSMhVV

. (3.690)

We can see some recent results for κW and κZ in Fig. 33. The best measurements of κW and κZ come

from pp → h → V V ∗, as well as indirectly from the loop W± contribution to pp → h → γγ. We can

see that the agreement with the SM predictions is quite remarkable, already somewhat better than 10%

in the couplings. At the moment, the LHC is not directly sensitive to the quartic couplings ghhVV, which

will require detailed understanding of double Higgs production.

We move now to tests of the Higgs boson couplings to fermions. We go back to the discussion of

Section 2.3.8, and rewrite (2.597), i.e. the third term in (3.684):

−LHF = λiju q̄L,iΦ̃uR,j + λijd q̄L,iΦdR,j + λijℓ ℓ̄L,iΦℓR,j , (3.691)

where we remind ourselves that qL,i is the quark SU(2)L doublet of generation i, uR,I and dR,i are

the corresponding right handed up and down type quarks of generation i, and we denoted the SU(2)L

lepton doublet by ℓL,i, and the right handed lepton (SU(2)L singlet) by ℓR,i. The dimensionless Yukawa

matrices λu, λd and λℓ are parameters of the EWSM, and are generically complex and non diagonal in the

basis where the gauge interactions of fermions are diagonal, the gauge basis. As we saw in Section 2.3.8,
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CMS

Observed

11SD(stat®syst)
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Fig. 33: Measurements of the Higgs boson couplings. From CMS (left) and ATLAS (right). In the
latter, the left column assumes no invisible (Bi = 0) or undetected (Bu = 0) events, whereas in the right
column these are allowed to float in the fit.

the mass matrices that result from taking just the VEV of Φ in (3.691)

M ij
u , M ij

d , M ij
ℓ , (3.692)

are diagonalized by bi-unitary transformations on the quark and lepton fields. As a result, when writing

the theory in terms of the fermion mass eigenstates, the Higgs couplings to fermions will be automatically

diagonal and given by

λf =
mf

v
, (3.693)

where we see that the Yukawa coupling to a given fermion is generation diagonal (as it should be so

as to not result in tree level FCNCs! ) and is proportional to the fermion mass. Once again, we may

define κf as the fermion Yukawa coupling normalized by the SM prediction (3.693). Although the

top quark has the strongest coupling to the Higgs, its measurement can only achieved indirectly due to

the fact that h → t̄t is kinematically forbidden. The indirect measurement is performed thorough the

measurement of the Higgs production cross section, σ(pp→ h) which is dominated by the gluon fusion

channel. This, in turn is dominated by the top quark loop, as is shown in Fig. 34. We see in Fig. 33

that κt is in agreement with the SM value of 1 within the error bars. The next fermion with the largest

coupling is the b quark, which in fact dominates the Higgs boson decays, with the largest branching

ratio. We, see that κb also agrees with the SM prediction. Despite the b̄b mode being directly observable,

the error in its determination of κb is similar to that of κt since the b quark modes suffers from large
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Fig. 34: Quark loop contributing to gg → h. It is largely dominated by the top quark in the loop.

backgrounds. Regarding couplings to leptons, the LHC has achieved measurements of h → τ+τ− with

similar error bars. More recently, h → µ+µ− has been observed but the errors in the determination of

κµ are considerably larger. All of this information about the Higgs couplings to SM particles can be seen

summarized in Fig. 35, where the couplings as measured by the CMS collaboration are plotted versus

the fermion masses. We see that the agreement with the predictions of the EWSM is excellent within the

experimental errors.

Finally, we consider the Higgs boson self couplings. These come from the Higgs potential:

V (Φ†Φ) = −m2Φ†Φ+ λ
(
Φ†Φ

)2
. (3.694)

Using the unitary gauged form for Φ in (3.685), as well as expressing the Higgs VEV as

v =

√
m2

λ
, (3.695)

allows us to write the Higgs self interaction as

Lh = −1

2
m2
hh

2 − gh3

3!
h3 − gh4

4!
h4 , (3.696)

where we defined the triple and quartic Higgs self couplings as

gh3 = 3
m2
h

v
, gh4 = 3

m2
h

v2
, (3.697)

In order to experimentally access these couplings we need double Higgs production data. Before we go

into some details of double Higgs production, let us make clear why this is such a fundamental test of

the EWSM and, in particular of the whole picture of electroweak symmetry breaking. To see this, let us
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Fig. 35: Couplings of the Higgs boson to SM particles vs. the particle mass, as measured by the CMS
collaboration.

recall that the Higgs mass is given by

mh =
√
2λv. (3.698)

Thus, using mh ≃ 125 GeV and v ≃ 246 GeV (from various electroweak precision measurements) we

arrive at the SM prediction for the Higgs quartic coupling in the potential (3.694)

λ ≃ 0.13 . (3.699)

This is a value extracted from the Higgs mass measurements, plus our knowledge of the electroweak

scale from electroweak data (e.g. muon decay, MW measurements, etc.). Thus, a fundamental test of the

shape of the Higgs potential, is the direct measurement of the quartic coupling λ. If we rewrite the triple

and quartic Higgs self couplings in (3.697) using the SM prediction (3.698) we obtain

gh3 = 6λv, gh4 = 6λ . (3.700)

It is possible to measure gh3 in double Higgs production, so as to experimentally test the SM prediction

in (3.700). The main contribution to double Higgs production come from gg → hh as illustrated in

Fig. 36. The two contributing diagrams interfere destructively. The box diagram, which does not depend
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Fig. 36: One loop diagrams contributing to gg → hh. Only the diagram on the right is sensitive to the
triple Higgs self coupling gh3 .

on gh3 , dominates for the SM value of the coupling. If we define

κλ ≡
λexp.

λSM
, (3.701)

the SM computations show that for values of κλ sufficiently larger than unity (about κλ > 2.5) or

negative there could be an enhancement in the double Higgs production cross section [8]. The current

status of searches for Higgs pair production and bounds on the Higgs triple self coupling are shown in

Fig. 37. Shown are the bounds on κλ as a function of κt. It is clear that this are preliminary studies

since the allowed values of κλ when fixing all other couplings to the SM values, including κt , span a

huge interval, roughly −5 ≤ κλ ≤ 10. More meaningful constraints on κλ will be available with the

HL-LHC. For instance, simulations for the ATLAS experiment in the HL-LHC with 3ab−1 accumulated

luminosity point to a measurement of the SM value of λ (i.e. κλ = 1 of about 3.2σ from a combination

of channels [11]. Although this will be quite an improvement over the current situation, it is clear that

a precision in κλ comparable to the one attained in the other couplings will require to go beyond the

HL-LHC. We will comment on the importance of this measurement in the next section.
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Fig. 37: Bounds on the Higgs self coupling, normalized to the SM prediction, vs the top Yukawa coupling
κt. ATLAS result (left panel) from [9]. CMS result (right panel) from [10].
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4 Conclusions and outlook

As we have seen in the previous sections, the EWSM is a quantum field theory, a spontaneously broken

gauge theory that describes all available data so far used to test it. The SU(2)L × U(1)Y gauge theory,

spontaneously broken to U(1)EM, When we add the unbroken SU(3)c interaction (QCD), it describes

with great experimental success all the interactions of all elementary particles known today. The preci-

sion achieved in this description varies. It is great for the interactions of fermions to gauge bosons and

the gauge boson self interactions. The interactions of the Higgs boson with gauge bosons and fermions

are being tested with increasing precision. However, the Higgs self interactions are yet to be experimen-

tally observed. This is of great importance since it would constitute a direct test of the form of the Higgs

potential (more on this below). The HL-LHC will begin to make this observation possible. But it will be

very short of a precise test of the Higgs sector of the EWSM. This one of the main reasons why the high

energy physics community must consider options for future accelerators [12].

4.1 The electroweak Standard Model: Open questions

Despite all of its successes, there are many open questions that are not answered by the SM of particle

physics. Some of these exist independently of the theory, others are actually raised by it. We first briefly

mention some of the first type.

Dark matter: It appears that more than 80% of the matter in the universe does not behave as the matter

described by the SM. All we know so far about it is that it gravitates.In fact, cosmological data are rather

precise about the abundance of dark matter necessary to fit them. The SM cannot accommodate anything

of the sort [13]. Extensions of the SM have can be proposed that would accommodate the correct dark

matter abundance. Experimental bounds coming from direct and indirect detection

The baryon–anti-baryon asymmetry: The asymmetry between the number of baryons and anti-baryons

in the universe can be measure in terms of the number density of photons. This is

η =
nB − nB̄
nγ

. (4.702)

Observations result in η ≃ 10−10 [14]. Although this appears to be a small number, the problem for the

SM is to explain why is not zero. The existence of η ̸= 0 is incompatible with the SM. The SM respects

both baryon and lepton numbers in the form of accidental global U(1)B and U(1)ℓ symmetries in the

Lagrangian. These global symmetries are however anomalous due to the existence of non trivial gauge

field configurations associated with the non-abelian nature of the SM. Then, in principle, these anomalies

could produce baryon violating processes. However, these processes are exponentially suppressed since

their rate is essentially that of a tunnelling process and at zero temperature this is roughly suppressed as

e−1/α, with α the QED coupling. The only hope to overcome this enormous suppression is to consider

it at large enough temperatures such that they are unsuppressed due to thermal effects (going over the

potential barrier). This is the situation expected to occur, in the cosmological history of the universe,

around the temperature of the electroweak phase transition, TEW ≃ 150 GeV, the critical temperature for

the vacuum to go from its symmetric value of ⟨Φ⟩ = 0 to the broken phase value of ⟨Φ⟩ = v/
√
2. Thus, it

looks like there is hope that one can explain η ̸= 0 in the SM. Unfortunately, it has been known for some

time that in order to generate the baryon asymmetry η three conditions, called Sakharov’s conditions,
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must be met: 1) Baryon number violation; 2) C and CP violation; and 3) Out of equilibrium dynamics.

Although, as we just discussed, baryon number violation via the anomaly is present in the SM, the need

of out of equilibrium dynamics requires the electroweak phase transition to be first order. This is not

satisfied in the SM with the measured Higgs boson mass since it is too large and results in a smooth

crossover (not even a second order phase transition). In addition, the second condition is only partially

fulfilled in the SM, since the amount of CP violation is many orders of magnitude too small to be enough

to produce the observed value of η. So it appears that, just as in the case for dark matter, an extension

beyond the SM is needed to explain the baryon asymmetry.

Dark energy: For about 25 years, we have known that the expansion of the universe is accelerating.

The source of this is an energy density in the energy momentum tensor that does not behave like matter

or radiation. It can be a constant (i.e. the cosmological constant), and the data is up to now consistent

with this interpretation, or it can be a more complex effect, perhaps associated with a cosmic fluid. The

cosmological standard model assumes that this dark energy (dark for lack of a better name) is indeed

just the cosmological constant, ΛCC. Assuming this plus the correct abundance of cold dark matter, in

addition to all the SM interactions for baryons, all the cosmological data can be fit rather well with what is

called the ΛCDM model [15]. On the other hand, although the SM of particle physics can accommodate

dark energy just by adding a cosmological constant in it, its value ΛCC ≃ (10−3eV )4, appears to be

orders of magnitude smaller to what QFT would generically estimate. We will discuss this further below

when we talk about other problems created by the SM. But the origin of this particular energy scale of

dark energy is a mystery that cannot be ignored, since it represents about 70% of the energy budget of

the universe.

In addition to the points above, there are several questions that are actually raised by the SM itself.

The hierarchy of fermion masses. The EWSM allows for fermion masses in a way that is consistent

with the gauge theory SU(2)L × U(1)Y by introducing Yukawa couplings of the Higgs doublet and

fermions which result in masses after electroweak symmetry breaking. But the resulting fermion Yukawa

couplings are all over the place. For instance, the top Yukawa coupling is λt ≃ O(1) whereas the up

quark has a Yukawa coupling of O(10−5). These two fermions have exactly the same SM quantum

numbers. They only differ by this aspect. The same can be said about the electron Yukawa, λe ≃ 10−6,

but the tau Yukawa is λτ ≃ 10−2. This is of course all consistent with the SM, but whay are there three

generations of fermions? And why do they have so greatly differing Yukawa couplings ?

The strong CP problem. The simplest way to state the problem is the fact that the gauge symmetry in

QCD allows for a term like

GaµνG̃
aµν , (4.703)

where Gaµν is the SU(3)c gluon field strength, and

G̃aµν =
1

2
ϵµναβGaαβ , (4.704)

is called the dual field strength. The presence of this operator in QCD would lead to CP violation in the

strong interactions. The story is a bit more nuanced and in fact this operator is related to the anomalies

mentioned earlier. In particular the chiral anomalies in QCD require the presence of this operator, despite
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the fact that in principle it can be written as a total derivative. The reason this total derivative cannot be

ignored once this term is integrated in all of spacetime, as so often we do in QFT, is that it can be shown

that in non-abelian gauge theories ∫
d4xGaµνG̃

aµν ̸= 0 . (4.705)

As a matter of fact, the integral is proportional to an integer characterizing the vacuum of the theory. The

true vacuum of QCD then is a superposition of these vacua. As a result, this operator can and should be

included in the QCD action. Its coefficient is related to the arbitrary phase associated to the true vacuum

superposition, referred to as θ. Thus,

LQCD = Lθ=0
QCD + θ

αs
4π2

GaµνG̃
aµν , (4.706)

where αs is the QCD coupling strength. A final complication is the fact that chiral quark rotations are in

fact equivalent to a shift in θ. So the final coefficient is given by

θphys. = θ − arg (det [M ]) , (4.707)

where M is the original, non diagonal mass matrix. Thus, unless there is at least one massless quark,

in which chase is always possible to choose the arbitrary chiral rotation parameter (αL or αR), then the

value of the θ coefficient in (4.706) is physical. This implies that CP violation in the strong interactions

should be observed, a way to extract θphys.. The leading effect is to generate an electric dipole of the

neutron. Since this has not been observed we can put a bound:

θphys. ≤ 10−11 . (4.708)

This is the strong CP problem: why is this dimensionless parameter of the SM bound to be so small?

Once again, all possible answers require extending the SM [16].

The origin of neutrino masses. As we have seen in Section 2.3.6, the EWSM does not include a

right handed neutrino. On the other hand, we have plenty of experimental evidence for the existence of

neutrino masses [17], however small. In principle, one could add a right handed neutrino to the SM just

so as to be able to write down a gauge invariant operator as in (2.586), which would look like

λνe ℓ̄LΦ̃νR . (4.709)

This would result in a neutrino mass, with a rather tiny Yukawa coupling. But we already have a problem

with the Yukawa couplings of the other fermions. So this in and on itself is not a new problem. The

problem with (4.709 is that we added a new field, νR with no SM quantum numbers just in order to

generate a neutrino mass. Then, building a Dirac neutrino mass as in (4.709) requires extending the

SM. Another possibility to accommodate neutrino masses without the need to add a new field to the SM

spectrum is to write an operator containing only left handed neutrinos. This is

c

Λ

(
ℓ̄LΦ̃

)2
. (4.710)
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where c is an order one constant and Λ is an energy scale needed to make this term dimension four since

the operator itself is dimension five. Then the price we pay in order to write a neutrino mass term just

with the SM fields is to need a higher dimensional (non renormalizable) operator, suppressed by the UV

scale Λ. The neutrino mass resulting from such operator (sometimes referred to as Weinberg’s operator)

is

mν =
c√
2

v2

Λ
. (4.711)

This is a Majorana neutrino mass. There various extensions of the SM that would result in this effect

once the new particles are integrated out. The most common models are seesaw models [18]. But the

main message is that in order to obtain the operator in (4.711), we need to go beyond the SM, even if

we insist in only using SM fields. It is not yet know what the nature of the neutrino mass is: Dirac

or Majorana. This question can be settled in the future, for instance, in neutrinoless double beta day

experiments [19]. But what is already clear is that neutrino masses require an extension of the SM.

The origin of the electroweak energy scale: If we write down the entire SM Lagrangian as the EW

Lagrangian of (3.684) plus the QCD Lagrangian

LSM = LEW + LQCD , (4.712)

we would notice that among the dozens of terms there is only one energy scale in the entire LSM. This

corresponds to the coefficient of the quadratic term in the Higgs potential in (3.694), the mass scale

that appears here as −m2, gives rise to the VEV of the Higgs field Φ(x) and all the masses of the SM

particles, including the Higgs boson mass

mh =
√
2m =

√
2λv . (4.713)

Using the measured value of the Higgs mass we have m ≃ 89 GeV. Where does this energy scale come

from? In the SM it is put by hand in V (Φ†Φ). It is true that the EWSM has a large number of unexplained

parameter, mostly in the form of Yukawa couplings. But all of these are dimensionless. The one and

only energy scale in the SM is yet another unexplained quantity, but one rather central in defining all the

masses of all the elementary particles. This is not to say that there are no other energy scales in the low

energy theory. For instance, in the QCD sector at low energy confinement and chiral symmetry breaking

lead to a spectrum of hadrons. This happens at an energy scale Λhadronic ≃ O(1) GeV, a scale that defines

the hadron spectrum. However, this scale can be understood as dynamically generated by the underlying

QCD interactions of quarks and gluons: the QCD gauge coupling becomes stronger at lower energies,

so that eventually it will be strong enough for spontaneous chiral symmetry breaking and confinement

at a scale called ΛQCD ≃ few hundred MeV. Thus, the hadronic scale is generated by a process called

dimensional transmutation, by which a dimensionless coupling generates an energy scale when it gets

very strong due to its running. Fermion masses are not new scales, since they are all proportional to the

electroweak scale, multiplied by a dimensionless Yukawa coupling (perhaps with the exception of the

neutrino mass, but outside of the SM). In the SM, the electroweak scale is the only scale put a priori (by

hand) in the theory. It is determined experimentally.

In fact, the only other energy scales in the fundamental theory describing particle physics and cosmology
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are the Planck scale,

MP = 1.2 1019 GeV , (4.714)

and the cosmological constant/dark energy density given by which is

ΛCC ≃ (10−3 eV)4. (4.715)

Are these three scales in (4.713), (4.714 and (4.715) the only ones introduced ad hoc in all of the standard

models of particle physics and cosmology, really independent, or they are related to each other? Since

MP is a scale associated with the extreme UV of the quantum field theory, the scale at which quantum

gravity effects become important, it appears that this might be a more fundamental energy scale. Can

the other two, i.e. the electroweak scale and ΛCC, be derived from it? If this was the case, would there be

any experimentally accessible consequences, particularly just above the electroweak scale? So the mere

origin of the Higgs mass scale is not understood and it might lead to interesting phenomena if we explore

Higgs physics further.

The Hierarchy Problem: In addition to the question of the origin of the electroweak scale v ≃ 246 GeV,

the Higgs sector of the EWSM posses a more formal question: the apparent lack of radiative stability of

this scale. Another way to state this problem, is to say that a sector involving a fundamental scalar field,

such as the Higgs sector, is greatly sensitive to UV physics. To see what is meant by this let us consider

the one loop corrections to the Higgs boson mass in the SM. These include loops of all SM fermions, as

well as the massive gauge bosons W±, Z0 as well as the Higgs boson itself. (See Fig. 38.)

Fig. 38: One loop diagrams contributing to the quantum corrections to the Higgs mass. Show as exam-
ples are the top and the Higgs boson contributions.

The corrections to m2
h resulting from these one loop diagrams can be generically written as

∆m2
h =

c

16π2
Λ2 + · · · , (4.716)

where Λ is a momentum scale signifying the highest momentum where the EWSM is valid, and c is a

constant that can be computed and depends on the SM particles going around the loop. For instance, for

a top quark, gauge bosons and the Higgs boson, respectively in the loop, we have

ctop = −2Ncy
2
t , cgauge = g2 , ch = λ2 , (4.717)

where Nc = 3 is the number of colors, yt is the top quark Yukawa coupling to the Higgs, g is a generic

electroweak gauge couplings and λ is the Higgs self-coupling. . The dots in (4.716) denote either terms

that depend logarithmically on the cutoff Λ, i.e. proportional to ln Λ, or terms that are finite in the Λ→∞
limit. For a given value of Λ, it is clear that the top quark loop will dominate. For instance, if the cutoff
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is Λ = 10 TeV, we have that the top loop contributes to ∆m2
h with about (2 TeV)2, the gauge boson

loops with (700 GeV)2, and the Higgs boson loop wiht about (100 GeV)2). Then, the renormalization

condition that we need to impose on the physical Higgs boson mass is roughly:

m2
h,phys. = m2

0 − (256− 31− 0.7) (125 GeV)2 , (4.718)

wherem0 is the unrenormalized Higgs mass. We see that the top quark loop already requires a fine tuning

of the renormalization condition of more than 1 part in 100. The tuning only gets worse (quadratically)

as we increase the cutoff Λ. To avoid this tuning, the cutoff should be as close to the electroweak scale

as possible. This is the hierarchy problem.

But is this really a problem? After all, in QFT we are allowed to take the cutoff all the way to infinity,

i.e. Λ→∞, since once the renormalization procedure is completed, no physical quantity should depend

on it. Then, QFT does not have a hierarchy problem, even in theories where there is an elementary

scalar field and its mass squared parameter is quadratically sensitive to UV scales. In fact, once the

renormalization condition (4.718) is imposed, the Higgs mass evolves logarithmically with the energy

scale
dm2

h

d lnµ2
= βSMmh m

2
h , (4.719)

with the Higgs mass beta function to one loop given by

βSMmh =
1

16π2
(
12λ+ 12y2t − (9g2 + 3g′2) + · · ·

)
. (4.720)

This logarithmic dependence of course is just the statement of the fact that, after renormalization, the

evolution of physical parameters with the scale µ corresponds to the re-scaling of energies/distances,

which is logarithmic. This logarithmic evolution of m2
h seems to belie the problem of having quadratic

sensitivity to UV scales. So, no hierarchy problem then ?

It turns out that the problem resurfaces if we have heavy states, with masses well above the TeV scale,

coupled to the Higgs. Let us consider as an example, a vector like fermion coupled to the Higgs as in

L ⊃ yN L̄HN +MNNN , (4.721)

where the vector-like mass MN can be arbitrarily large and we coupled this singlet (or “right handed

neutrino”) to H through the lepton doublet L. Independently of what this state does to neutrino masses,

one thing we can see is that it results in a threshold correction to the RGE evolution of m2
h(µ) in (4.719).

This is given by
dm2

h

d lnµ2
|threshold =

Y 2
N

16π2
M2
N . (4.722)

The above correction represents a large jump in the logarithmic evolution of the Higgs mass, so that for

µ = ΛUV > MN now we have a much larger value of mh that we would have otherwise obtained by the

SM RGE evolution. This quadratic (in MN ) jump is one more reflection of the quadratic sensitivity of

m2
h to the UV scales. So when integrating out heavy scales, it would require a large tuning in order to

obtain the observed Higgs mass in the IR, very much like what happened in (4.718).
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One could think to solve the problem either by 1) forbidding any heavy particle to couple to the Higgs in

the UV, or 2) by imposing the renormalization condition on m2
h only once we run the RGEs all the way

up to the UV, and therefore know of all the possible threshold corrections. However, either of these two

ways involves knowledge of the UV, which is not supposed to be necessary to define the theory in the IR

! So the UV sensitivity of the Higgs sector is real and we have to live with it. At this point, we should

remind ourselves that the Higgs is the only particle in the SM for which this problem arises. Fermion

masses are protected by chiral symmetry, resulting in only a mild logarithmic dependence on the cutoff

Λ. Gauge boson masses are IR phenomena arising from (soft) spontaneous symmetry breaking. They

are not UV sensitive. The Higgs boson is unique in its role of introducing an ad hoc energy scale in the

SM, as well as having this scale (or its mass, which is the same) very UV sensitive.

The central question is then not whether the hierarchy problem exists or not, but what does it imply for

the scale of new physics. We used to believe that it implied the existence of new physics at roughly the

1 TeV scale. The experimental absence of evidence for new physics so far has turn this question into a

more puzzling and interesting, nor less.

4.2 The EWSM and the future

We have seen that the EWSM is an extremely successful description of the electroweak interactions. It

is a spontaneously broken gauge theory, SU(2)× U(1)Y → U(1)EM which has been tested extensively

over several decades. The couplings of gauge bosons to fermions are the best tested ones, as detailed

in Section 3.2. Similarly, the gauge boson self-couplings are the subject of increasing precision at the

LHC. On the other hand, the Higgs sector, introduced in order to trigger the spontaneous breaking of

the electroweak gauge theory, is the less tested. Although we have measured several of the Higgs boson

couplings to other SM particles, such as gauge bosons and the heavier fermions, it remains the least

precisely tested. In particular the Higgs potential, introduced in an ad hoc to break the gauge symmetry

in the desired way, and introducing the only dimensionfull quantity in the theory, has not been tested. In

fact, as seen in Section 3.4, the only parameter in the Higgs potential in (3.694) that we have had access

to so far is m2. We extract this from the measurement of the Higgs boson mass by making use of the

relation (3.698) between mh, v and λ, the Higgs quartic coupling in (3.694), i.e. mh =
√
2λ v, which

results in λ ≃ 0.13 and

m ≃ 89 GeV . (4.723)

But these values are obtained by making use of the minimization procedure assuming the form of the

potential in (3.694). It corresponds to the only two terms that are renormalizable and gauge invariant.

But we do not know if there are additional terms either involving other fields or coming from higher

dimensional operators. For this purpose we need to measure the triple Higgs couple gh3 with some

precision in double Higgs production. This alone would take a lot of data in the HL-LHC and it is not

clear that would be enough to settle the issue. To “map” the Higgs potential with precision it might be

necessary to go to a new experimental facility such as a Higgs factory.

Still on the issue of the Higgs sector, there is the question of its origin. As we mentioned earlier, this

sector of the EWSM appears for the specific purpose of breaking the gauge symmetry spontaneously

in the way it is observed experimentally. Although the discovery of the Higgs boson has confirmed the
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Higgs mechanism beyond any doubt, it is not clear where the Higgs sector comes from. In other physical

systems where a scalar degree of freedom is introduced to spontaneously break a symmetry, it has turned

out that the scalar or scalars are collective excitations and not elementary fields. For instance, we can

describe superconductivity [26] by the Higgs mechanism, but the Higgs is a fermion composite. In QCD

at low energies, the spontaneous breaking of chiral symmetry can be modeled as occurring through the so

called σ model, where the only remnant light degrees of freedom are the pNGB (e.g. the pions) whereas

the σ particle, which would be playing the role of the Higgs, is known to be heavy and strongly coupled.

Technicolor models [27] from the 1970s and 1980s played with this analogy by postulating that the

Higgs boson would be heavy and strongly coupled, as well as a composite of fermion/anti-fermion pairs.

Clearly this is not the case in the EWSM, since the Higgs seems to be weakly coupled λ ≃ 0.13, which

means is light. But what if instead of being the σ the Higgs boson is a pNGB just as the pions? This would

explain why is lighter than the new physics scale and why is weakly coupled. This idea goes by the name

of Composite Higgs Models (CHM) [28, 29]: the Higgs is a pNGB of the spontaneously broken global

symmetry (just as chiral symmetry in QCD). But what are the observable consequences of the Higgs

boson compositeness? First, in most CHM there are resonances, both bosonic spin 1 and fermionic,

that should be present at a scale considerably above the electroweak scale, perhaps several TeV. So, as

it appears that the LHC has had not enough energy to produce them, we should look for the effects of

the new physics in deviations in the Higgs behavior, particularly its couplings. Deviations in the Higgs

couplings with respect to the SM predictions are almost certain in these models [29,30], even momentum

dependent ones [31]. Thus, very precise measurements in various different channels will be necessary to

fully test this hypothesis at the HL-LHC and perhaps beyond.

Beyond the better understanding of the Higgs sector of the SM, we are left with a number of fundamental

questions that the SM does not answer. Both theoretical and experimental exploration of these will be

a central part of particle physics in the next decades. The search for particle dark matter will continue

in direct [32] and indirect [33] detection experiments, as well as at the LHC. New kinds of experiments

are being proposed to look for dark sectors in many different mass ranges from the ones looked at so far.

Neutrino experiments such as DUNE [34] and HYPER-K [35] will explore the neutrino question with

great detail.

The interaction of particle physics with astrophysics and cosmology will continue through some of these

questions. Will the CMB [36] data exclude any new relativistic degrees of freedom through a very

precise measurement of Neff., the effective number of neutrinos? Will the precise determination of the

dark energy equation of state or the age of the universe, point in the direction of new physics in the

cosmic history? Many new gravitational wave detectors will be built. In particular, LISA [37] will be

sensitive to gravitational wave signals from the electroweak phase transition. But in the EWSM, the

Higgs potential is unable to produce such signal. Observation of it would point to new physics in the

Higgs potential (3.694).

The EWSM is a great success of quantum field theory and experimental ingenuity. But it leaves and/or

creates enough open questions that the future experimental and theoretical programs based on it are very

broad and increasingly exciting.
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1 Introduction

These lectures cover some of the key concepts and practices of statistics as well as the basic ideas of

supervised machine learning. We aim to provide just enough detail to make the lectures self-contained.

In discussing supervised machine learning, the focus is on foundational ideas rather than the nuts and

bolts so that you gain an understanding of the probabilistic nature of machine learning. Given the striking

abilities of computational models such the transformer, which powers systems like ChatGPT, it may

not be immediately obvious where probability enters. But, as we shall see, systems like ChatGPT are

“merely” highly sophisticated probabilistic machines.

This article should be cited as: Statistics and machine learning for high-energy physics, Harrison Prosper,
DOI: 10.23730/CYRSP-2025-002.151, in: Proceedings of the 2023 CERN Latin-American School of High-Energy Physics,
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© CERN, 2024. Published by CERN under the Creative Commons Attribution 4.0 license.
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Statistics, like physics, is based on a set of mathematical rules. However, unlike physics, the rules

of statistics are not informed by Nature and, consequently, we cannot appeal to Nature to adjudicate

disagreements about whether a proposed statistical rule is valid or not. The primary cause of the dis-

agreements among professional statisticians, which have lingered for more than two centuries, can be

traced to the differing views about the interpretation of probability. In these lectures, we consider the

two most important interpretations: relative frequency and degree of belief. The former interpretation

is the basis of the frequentist approach to statistics, while the latter underpins the Bayesian approach.

These interpretations are discussed later in this section.

The point of mentioning the disagreements is to alert you of the fact that in statistics there is no

such thing as “the answer”; rather there are “answers”, which often agree closely but sometimes do not.

Therefore, in the practice of statistics a degree of pragmatism is necessary to avoid fruitless arguments

about statistical practice that are ultimately about intellectual taste rather than mathematical correctness.

The lecture notes are organized as follows. The rest of the Introduction introduces some basic ter-

minology. Section 2 covers the frequentist approach to statistics, while Section 3 introduces the Bayesian

approach. Section 4 introduces supervised machine learning. Good introductions to statistical analysis

for physicists may be found in the books: [1–4], while [5, 6] give excellent historical perspectives.

1.1 Samples

The result of an experiment is a sample of N data X = x1, x2, · · · , xN , which can be characterized with

quantities called statistics1. A statistic is number that can be computed from the sample and may depend

on one or more parameters. Here are a few well-known statistics that can be computed from the data

alone:

the sample moments xr =
1

N

N∑
i=1

xri , (1.1)

the sample average x̄ =
1

N

N∑
i=1

xi, (1.2)

and the sample variance s2 =
1

N

N∑
i=1

(xi − x̄)2. (1.3)

The sample moments give detailed information about the sample, while the sample average and variance

are measures of the center and spread of the data. Statistics that characterize the data, and are solely

functions of the data, are called descriptive statistics. In these lectures, we shall encounter statistics that

provide more sophisticated information about samples.

1Statisticians tend to use upper case letters to denote random variables and lower case letters to denote actual values. We do not
follow this convention.
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1.2 Populations

An infinitely large sample is an abstraction called a population, or an ensemble. A population can be

summarized with numbers such as those listed below.

Ensemble average E[x]

Mean µ

Error ϵ = x− µ
Bias b = E[x]− µ
Variance V = E[(x− E[x])2]

Standard deviation σ =
√
V

Mean square error MSE = E[(x− µ)2]
Root MSE RMS =

√
MSE (1.4)

(The symbol E[∗] means ensemble average, that is, the average over the population of the quantity

within the brackets.) While it is important to keep in mind the logical distinction between a sample and

its associated population, we frequently approximate populations with samples. Indeed, approximate

populations are the basis of a statistical method called the bootstrap [7], in which various quantities

can be approximated by treating a sample as if it were a population. In technical fields, from finance

to high-energy physics, large simulated samples are often used to assess, for example, the effect of

systematic uncertainties on final results or to confirm that an analysis method performs as claimed. In

a simulated “population" some quantities can be computed exactly, for example the error associated

with each element of the “population" can be computed because x is known and µ, a parameter of the

simulation, is known by construction. Quantities such as bias, however, which require computing E[x]

remain approximate.

While it may not be possible to calculate a population quantity exactly, it is often possible to relate

one population quantity to another, which can sometimes provide useful insight. For example, the mean

square error (MSE), whose square root is called the root mean square (RMS)2, can be written as

MSE = V + b2. (1.5)

Exercise 1: Show this

This is an instructive result. Suppose, for example, that µ is the true Higgs boson mass and x is a

measurement of it. If the MSE is used as a measure of the accuracy of the mass measurements, then the

result in Eq. (1.5) shows that correcting a measurement of the mass for bias makes sense only if, on the

average, the bias-corrected results yield a smaller MSE than that of the uncorrected result. Making a bias

correction may not always be the sensible thing to do if the goal is to arrive at mass measurements, which,

on average, are as close to the true value of the mass as possible in the MSE sense. Using simulations

to study and understand the characteristics of a population is both useful and educational. It is good

practice to do many simple simulations (sometimes called toy experiments) to develop an intuition about

2The RMS and standard deviation are sometimes used interchangeably. The two quantities are identical only if the bias is zero.
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statistical quantities and the behavior of statistical procedures as well as to decide whether a particular

manipulation of a measurement—e.g., a bias correction—is useful.

Another example of the insight gained from studying a population is the calculation of the bias in

the variance of a sample. When we speak of “bias in a measurement x”, for example, a measurement

of the Higgs boson mass, we should remember that this phrasing is shorthand for a precise but more

cumbersome phrase. There is very likely an error in x, which in a real experiment is unknown3 But

bias is not directly a property of x. It is a property of the population to which x is presumed to belong.

However, it would quickly become annoyingly pedantic to avoid the shorthand “bias in x”, so it is

reasonable to use this shorthand provided that we remember it is a proxy for something more precise.

The ensemble average of the sample variance, Eq. (1.3), is given by

E[s2] = E[x2]− E[x̄2],

= V − V

N
,

Exercise 2: Show this

and has a bias of b = −V/N . The result shows that the bias can be calculated exactly only if the variance

V is known exactly.

1.3 Statistical inference

One goal of a theory of statistical inference is to use a sample to infer something about the associated

population. We may wish to estimate (that is, measure) a parameter associated with the population, for

example, the mean Higgs boson signal in the proton-proton to 4-lepton channel. But to make this estimate

meaningful, it is necessary to quantify its accuracy. Then we may wish to assess the degree to which we

can claim the signal is real and not an apparent signal caused by a fluctuation of the background. We shall

consider each of these tasks using the two most commonly used theories of inference, frequentist and

Bayesian. In both theories, the foundational concept is probability, albeit interpreted in two different

ways:

– degree of belief in, or assigned to, a proposition, e.g.,

– proposition: it will rain in San Esteban tomorrow

– probability: p = 5× 10−2

– relative frequency of given outcomes in a large (strictly, infinite) set of trials, e.g.,

– trial: a proton-proton collision at the Large Hadron Collider (LHC)

– outcome: creation of a Higgs boson

– probability: p = 5× 10−10

Since each theory of inference uses a different interpretation of probability it is not surprising that the in-

terpretation of their results differ even when both theories give numerically identical results. When data

are plentiful, these interpretations usually do not affect how the results are subsequently used. Problems
3If the error were known, we could correct the measurement and get a perfect measurement!
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arise when sample sizes are small. This is when the results of the two approaches can differ substan-

tially and when intellectual taste becomes the main arbiter of which approach is considered the more

reasonable.

The next two sections cover the application of frequentist and Bayesian theories of statistical anal-

ysis in particle physics using a simple real-world example, while the last section provides an introduction

to supervised machine learning.

2 Frequentist analysis

In 2014, the CMS Collaboration published its measurement of the properties of the Higgs boson in the

4-lepton final states [8]. We shall analyze the summary results of this analysis, namely,N = 25 observed

4-lepton events with a background estimate ofB±δB = 9.4±0.5 events. The goal is to make statements

about the mean Higgs boson event count s—that is, the signal, where d = s+ b is the mean event count

and b is the mean background count. Although these data are very simple, they are sufficient to illustrate

the essential ideas of frequentist analysis.

Whether the data are to be analyzed using a frequentist or Bayesian approach, the starting point is

the same: constructing an accurate probability, or statistical, model of the mechanism that generated the

data. The terms probability model and statistical model shall be used interchangeably.

2.1 The statistical model

Given the observed count N = 25 events, a particle physicist would immediately model the data gener-

ation mechanism with a Poisson distribution,

Poisson(n, d) =
e−ddn

n!
.

If the data comprises M statistically independent counts Nm,m = 1, · · · ,M the model generalizes to

a product of Poisson distributions4. By statistically independent we mean that E[ninj ] = E[ni]E[nj ]

for i, j ∈ [1, · · · ,M ], where the expectations are over the populations of counts n ∈ N defined by the

Poisson probability mass function (pmf). If the random variables are from a continuous set, the statistical

model is called a probability density function (pdf)5. But why is a Poisson pmf the appropriate model

for a counting experiment? We can make this plausible with the following set of arguments.

2.1.1 Bernoulli trial

A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is an experiment

with only two possible outcomes: S, a success or F, a failure. Each collision between protons at the

LHC is a Bernoulli trial in which either a Higgs boson is created (S) or is not created (F ). Here is a

sequence of collisions results

F F S F F F F S F · · ·
4Statistical analyses based on multiple counts are sometimes referred to as a shape analysis.
5In general, probability models can be made up of both pmfs and pdfs.
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What is the probability of this sequence of results? No meaningful answer can be given. Unless, that is,

we are prepared to make assumptions, such as the following.

1. Let p be the probability of a success.

2. Let p be the same for every collision (trial).

3. Let S and F be exhaustive (the only possible outcomes) and mutually exclusive (one outcome

precludes the occurrence of the other).

Assumption 3 implies that the probability of F is 1− p. Therefore, for a given sequence O of n proton-

proton collisions, the probability P (k|n, p,O) of exactly k successes and exactly n− k failures is

P (k|n, p,O) = pk(1− p)n−k. (2.6)

The specific sequenceO of successes and failures is unknown at the LHC. So how are we to proceed? The

rules of probability provide a general prescription: when a probability contains quantities that are either

irrelevant or unknown, they can be eliminated from the problem by summing over all possible values

of the unknown of irrelevant quantities, here the possible orders, O, of successes and failures. This

prescription is called marginalization and is one of the most important rules in probability calculations.

Applied to the problem at hand this rule yields,

P (k|n, p) =
∑
O

P (k|n, p,O) =
∑
O

pk(1− p)n−k. (2.7)

Notice that every term in Eq. (2.7) is identical and there are
(
n
k

)
of them. Therefore,

P (k|n, p) =
(
n

k

)
pk(1− p)n−k, (2.8)

that is, we arrive at the binomial distribution, binomial(k, n, p). The alert reader may have noticed

the sleight of hand in this derivation. In Eq. (2.7), we have assumed that every sequence O is equally

probable. If a is the mean number of successes in n trials, then

a =

n∑
k=0

k binomial(k, n, p),

= pn. (2.9)

Exercise 4: Show this

For the Higgs boson outcomes, p ∼ 10−10 and n ≫ 1012. Therefore, it is reasonable to consider the

limit p→ 0 and n→∞, while keeping a constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (2.10)

Exercise 5: Show this
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One conclusion that can be drawn from the above is that a Poisson distribution is, indeed, an appropriate

model when the probability of individual events is extremely small and, crucially, when the probability

of two or more events occurring in a very short time interval is negligible compared with the probability

of zero or one event occurring in the given interval. In fact, the Poisson distribution can be derived from

a stochastic model in which that assumption is made explicit. We conclude that it is reasonable to take

p(n|s, b) = Poisson(n, s+ b) =
(s+ b)ne−(s+b)

n!
, (2.11)

as the probability to obtain a count n given mean event count s+ b.

But notice how we keep hedging with imprecise words like “reasonable”. Why do this? Con-

sider the common, and more interesting example, where we have M counts, which we can think of as

constituting a histogram. We could write the following statistical model

p(n|s, b) =
M∏
m=1

(sm + bm)
nme−(sm+bm)

nm!
, (2.12)

for the histogram, which seems eminently sensible in view of our heuristic derivation of the Poisson pmf

and our assumption that the counts are statistically independent. Suppose, however, that the total count

n =
∑M

m=1 nm is taken to be constant. In that case, it would make sense to use a multinomial model,

p(n|s, b) = n!
M∏
m=1

pnmm
nm!

, pm =
sm + bm∑M

m=1 sm +
∑M

m=1 bm
, (2.13)

rather than a multi-Poisson model. But why assume that the total count is fixed? This question raises the

thorny issue of which statistical model is appropriate for a given problem. This issue, which we seldom

consider explicitly, is called the reference class problem [9]. The reference class is the population with

respect to which probabilities are to be computed or assigned: should we consider a population in which

the total count is fixed or should we consider one conditioned on an unconstrained total count? This

ambiguity was well-known to the great British statistician Sir Ronald Fisher (1889 – 1962), who, late in

life, noted that

“None of the populations used to determine probability levels in tests of significance have

objective reality, all being products of the statistician’s imagination”

The point is this: given data D there are many populations into which the data can be conceptually

embedded. Since populations are abstractions, which exist only in the sense that π exists, there is no

operational way to determine to which population the dataD “belongs”. The reference class is defined by

the assumptions that underlie the statistical model. The problem arises when there exists several plausible

alternative assumptions we could adopt: change the assumptions and the reference class changes and

invariably also the statistical model. For example, the N = 25 4-lepton events observed by the CMS

Collaboration could have been acquired after running for a fixed observation period or until N events

were observed or until a certain integrated luminosity was reached. This ambiguity is an example of

why a pragmatic disposition with respect to statistics is helpful and why following established practice,
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including conventions, is often necessary to make progress.

After this small philosophical detour, let’s get back to Earth and build a statistical model for the

background data. In principle, the model should encode in detail how the background estimate was

obtained. But to keep things simple we shall assume that the background estimate was obtained from

a Monte Carlo simulation, which yields m = M simulated background events. The mean count in the

simulation is kb, where k is a known scale factor that relates the mean count in the simulation to that in

the signal region of the experiment that yielded n = N events. The statistical model for the background

is, therefore,

p(m|kb) = Poisson(m, kb). (2.14)

Since the counts n and m are statistically independent, the full statistical model is

p(n,m|s, b) = Poisson(n, s+ b)Poisson(m, kb). (2.15)

2.2 The likelihood function

The likelihood function is the statistical model into which data have been inserted. The data comprise

the counts N and M in the signal and background regions, respectively. Since the data are constants,

the likelihood, p(N,M |s, b), is a function of the parameters s and b only. Sometimes p(N,M |s, b) is

written as L(s, b) to emphasize this point.

Unfortunately, we are given B ± δB, not M and k. But with a plausible Ansatz, progress can be

made. Let’s assume that B and δB are M and
√
M scaled down by the factor k, that is,

B =M/k, (2.16)

δB =
√
M/k. (2.17)

Since by assumption M is the result of a Monte Carlo simulation of the background the scale factor k is

the ratio of the integrated luminosity associated with the simulation to that associated with the observed

event sample of size N . If the background were computed from a signal-free sample that is otherwise

like the signal sample, then k would be the scaling between the backgrounds in the two data samples.

Inverting the equations in Eqs. (2.16) and (2.17) yields

M = (B/δB)2 = 353.4, (2.18)

k = B/δB2 = 37.6. (2.19)

Therefore, the likelihood for the count M is

(kb)Me−kb/Γ(M + 1), (2.20)

written to allow for non-integral values of M . Writing D = N,M , the full likelihood is

p(D|s, b) = (s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
. (2.21)
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In a more sophisticated version of this analysis, a probability model for the scale factor k would be

included that to account for the uncertainty in k.

It is important to appreciate the fact that Eq. (2.21) cannot be said to be the answer to the question:

what is the likelihood function for the data N,B ± δB. A deep dive into how the background estimate

B ± δB was arrived at by the CMS Collaboration would yield a much more sophisticated statistical

model. Indeed, the models in use today at the LHC can be enormously complicated, which effectively

precludes their reconstruction by readers without access to the detailed knowledge known only to the

collaborations. This is one reason why all collaborations are strongly encouraged [10] to make the

publication of statistical models and likelihoods a cultural habit of high-energy physicists.

Now that we have the statistical model and the associated likelihood function, we are equipped to

answer several questions, including the following.

1. How is a parameter to be estimated, that is, measured?

2. How is its accuracy to be quantified?

3. How can an hypothesis be tested?

4. How is the statistical significance of the result to be quantified?

As alluded to, we should not expect unique answers to these questions, but we hope to have answers

founded on plausible and even cogent assumptions and arguments.

2.3 The frequentist principle

The goal of a frequentist analysis is to construct statements with the a priori guarantee that a fraction

f ≥ p of them are true. This stipulation is called the frequentist principle (FP) and was championed

by the Polish statistician Jerzy Neyman [11] and dominates statistical thinking in many scientific fields

including high-energy physics. The fraction f is called the coverage probability, or coverage for short,

and p is called the confidence level (CL). An ensemble of statements that obey the frequentist principle

is said to cover.

Points to Note

1. The FP applies to real ensembles 6, not just the virtual ones simulated on a computer. Moreover, the

ensembles can contain statements about different quantities. Example: all published measurements

x, since the discovery of the electron in 1897, yielding statements of the form θ ∈ [l(x), u(x)],

where θ is a parameter of interest, that is, the parameter to be measured.

2. Coverage is an objective characteristic of samples of statements. However, to verify whether a

sample of statements covers, we need to know which statements are true and which ones are false.

Unfortunately, for real experiments we are not privy to this information; therefore, there is no

operational way to compute the coverage in actual samples. In a simulation, however, we can

compute the coverage because we can identify the true statements. High-fidelity simulations of all

6Strictly speaking, we mean real samples because, as we have defined it, an ensemble is a synonym for a population, which by
definition contains infinitely many elements, and, as noted earlier, is therefore and abstraction.
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published results may give us confidence that the actual coverage of published statements is as the

simulation reports, but that does not prove that it is so.

Example

Consider an ensemble of different experiments, each with a different mean count θ, and each yielding a

count N . Each experiment makes a single statement of the form

N +
√
N > θ,

which is either true or false. As noted above, if these were real experiments, we would not be able to

determine which statements are true and which are false because we would not know the values of θ

and, therefore, we would not be able to determine the coverage. But in a simulation we know which

statements are true and which are false. Suppose that in a simulation each mean count θ is randomly

sampled from a uniform distribution (uniform(0, 10)), with range [0, 10]. Since the mean counts are

known, we can compute the coverage probability f .

Exercise 7: Compute the coverage of these statements; repeat the exercise using uniform(0, 1000)

The next section discusses the important concept of the confidence interval, which is the classic

exemplar of the frequentist principle.

2.4 Confidence intervals

Fig. 1: Plotted is the tensor product of the parameter space, with parameter s, and the space of observa-
tions with potential observations n. For a given value of s, the observation space is partitioned into three
disjoint intervals, labeled L, M , and R, such that the probability to observe a count n in M is f ≥ p,
where p = is the desired confidence level.

In 1937, Neyman [11] introduced the concept of the confidence interval, a way to quantify uncer-

tainty that respects the frequentist principle. Confidence intervals are a concept best explained through
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an example. Consider an experiment that observes n = N events with mean signal count s and no back-

ground. A confidence interval [l(N), u(N)], with confidence level CL = p, permits a statement of the

form

s ∈ [l(N), u(N)], (2.22)

with the a priori guarantee that a fraction f ≥ p of them will be true. Neyman repeatedly emphasized

that the statements need not be about the same quantity or arise from the same kind of experiment. What

matters is that they are constructed using a method that satisfies the frequentist principle. For simplicity,

we consider experiments of the same kind, but which differ by their mean signal count s.

Figure 1 shows the tensor product of the parameter space {s} and the space of potential obser-

vations {N} as well as the potential observations, represented by the dots, of an experiment with mean

count s. The two vertical lines divide the space of observations into the three regions labeled L, M , and

R. The region M is chosen so that the probability to obtain a count in that region is f ≥ p, where p is

the desired confidence level (CL). The probabilities to obtain a count in region L or region R are αL and

αR, respectively. Since the three regions span the space of observations, αL + f + αR = 1.

The choice of the confidence level p does not uniquely specify the region M . Different methods

have been suggested to defineM . The first method was devised by Neyman [11], which we shall consider

shortly. Another method was suggested by Feldman and Cousins [12]. The Feldman-Cousins method

will serve to illustrate a general method to construct confidence intervals that satisfy the frequentist

principle, at least for statistical models with a single unknown parameter.

Feldman-Cousins Method

In the Feldman-Cousins method, every potential count n is associated with a pair of numbers: a weight

p(n|s) / p(n|ŝ), where ŝ(n) = n is the maximum likelihood estimator of s, together with the probability

p(n|s) to obtain that count. (An estimator is a procedure, often just a function but it could be an

entire analysis program, which when data are entered into it furnishes an estimate. To lighten the prose,

we will typically not distinguish between estimators and estimates, though by doing so we are making

what philosophers refer to a category mistake.) The counts are placed in descending order of their

weights. Starting with the first count in the ordered list, a set of counts (n(1), n(2), · · · ) is accumulated

one by one until their summed probabilities f =
∑

(i) p(n(i)|s) ≥ p. The symbol (i) denotes the

ordinal value of a count in the ordered list. The set of counts (n(1), n(2), · · · ) defines an interval in

the space of observations whose lowest (leftmost) and highest (rightmost) counts nL and nR are given

by nL = min(n(1), n(2), · · · ) and nR = max(n(1), n(2), · · · ), respectively. This construction (for this

single parameter problem) guarantees that the probability to obtain a count within region M is f ≥ p 7.

There is, however, a potential pitfall with any algorithm to define M . The region M can only be

defined if the mean count associated with the experiment is known. But if we knew that we wouldn’t

need to do the experiment! It may well be true that we know s within a simulation, but it is not so in real

experiment. Therefore, any algorithm for defining the region M must be repeated for every value of s

7We write f ≥ p rather than f = p because, in general, for a discrete distribution it is not possible to satisfy the equality except
at specific values of s.
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Fig. 2: The algorithm for defining region M (see Fig. 1), must be repeated for every value of s that
is possible a priori. For the experiment whose mean s is represented by the thick horizontal line, the
figure shows three possible outcomes, labeled A, B, and C, and their associated confidence intervals
[l(n), u(n)]. Only outcomes, such as B, which lie within the region M of the experiment will yield
intervals that bracket s. The probability to obtain such an interval is f ≥ p, by construction.

that is possible a priori, as illustrated in Fig. 2. Repeating the Feldman-Cousins algorithm for different

(closely-spaced) values of s produces regions Ms, indexed by the mean count s. The concatenation of

these regions defines two curves labeled l(n) and u(n) in Fig. 2. For a given n, these curves define

the confidence intervals [l(n), u(n)], that is, sets of parameters that depend on n. Over an ensemble of

experiments—and irrespective of their associated mean count s, the fraction of statements of the form

s ∈ [l(n), u(n)] that are true is f ≥ p, by construction.

To see this, consider again Fig. 2. It shows three possible outcomes for the experiment defined by

the thick horizontal line together with three possible confidence intervals (the vertical lines terminated

with dots). If an observation lands in the region M for that experiment, the interval [l(n), u(n)] will

bracket the mean count s, as shown in the figure. If a count lands in region L, then the upper limit u(n)

will lie below s and, consequently, the interval [l(n), u(n)] will exclude s. If n lands in region R, then

the lower limit l(n) will lie above s and the interval will exclude s. Therefore, the interval [l(n), u(n)]

will include s only if n lies inM , for which the relative frequency is f ≥ p. A procedure for constructing

confidence intervals in this manner is called a Neyman construction.

Neyman Method

The algorithm described above requires that a region M be constructed for each value of s. A more

straightforward algorithm was given by Neyman in his 1937 paper and is illustrated in Fig. 3. For every
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Fig. 3: The Neyman method. For every n, an interval [l(n), u(n)] is computed by solving the equations
in the plot. See text for details.

n, the upper and lower limits are found by solving

P (x ≤ n|u) = αL, (2.23)

P (x ≥ n|l) = αR. (2.24)

Equation (2.23) yields the curve u(n) for which the probability to obtain a count x ≤ n, for a given

s, is αL, while Eq. (2.24) yields a curve l(n) for which the probability to obtain a count x ≥ n, for a

given s, is αR. Therefore, every horizontal line will necessarily partition the space of observations into

three regions L, M , and R as described above. The curves l(n) and u(n) can also be made using the

procedure described above for the Feldman-Cousins method, but Neyman’s solution based on Eqs. (2.23)

and (2.24) is computationally more efficient.

Figure 4 shows the coverage probability over the parameter space for the Neyman intervals, in

which we have chosen αL = αR = (1 − p)/2. This choice, the one made by Neyman, define central
confidence intervals. As advertised, these intervals satisfy the frequentist principle. Also shown is

the coverage for intervals of the form [N −
√
N,N +

√
N ] and [N −

√
N,N +

√
N + exp(−N)].

These intervals are approximate confidence intervals in that they do not satisfy the frequentist principle

exactly. Notice, however, that for s > 2.5 the coverage of these intervals bounces around the p = 0.683

line. Therefore, over a large sample of experiments, with a distribution of Poisson means, it is plausible

that the marginal coverage would turn out to be close to the desired confidence level using the simpler

intervals. Marginal coverage, that is, coverage averaged over the parameter space, is a weaker condition

than is required by the frequentist principle, which demands conditional coverage, that is, coverage

point-by-point in the parameter space. In practice, it is seldom possible to achieve this exactly.

A notable feature of Fig. 4 is the jaggedness of the coverage probabilities over the parameter space.

The jaggedness is caused by the discreteness of the Poisson distribution. For a discrete distribution,

coverage equal to the desired confidence level is possible only at specific values of s. Therefore, if we
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insist on the frequentist principle, f ≥ p, the price to be paid is over-coverage over the whole parameter

space except over a set of measure zero.

We have yet to mention the most important probability model in statistics, namely, the Gaussian,

Gaussian(x, µ, σ) =
e−

1
2
(x−µ)2/σ2

σ
√
2π

, (2.25)

or normal, probability density, where µ is the mean of the density and σ its standard deviation. The ran-

dom variable x lies in the set R. If Neyman’s prescription for computing confidence intervals, Eqs. (2.23)

and (2.24), is applied to the Gaussian, where now n is to be regarded as a continuous quantity, the one-

standard-deviation interval [x− σ, x+ σ] satisfies the condition αL = αR = (1− p)/2 with p = 0.683.

That is, fixed-width intervals of this form are confidence intervals with confidence level 68.3%. It is this

fact about the Gaussian that is the origin of the convention to quote 68.3% confidence intervals when

reporting a measurement even for non-Gaussian statistical models. The Gaussian is important because,

stated loosely, every sensible probability distribution becomes Gaussian as the sample size increases

without limit. Another important and closely related probability density is that of the sum z of k quan-

tities of the form (x − µ)2/σ2 with each random variable x in the sum sampled from a Gaussian. The

density of z is given by

Chisquared(z, k) =
1

2k/2Γ(k/2)
zk/2−1e−z/2. (2.26)

The integer k is called the degrees of freedom. Observe that for k = 1 the solutions of the equation

z = (x − µ)2/σ2 = 1 are l(x) = x − σ and u(x) = x + σ, that is, the lower and upper bounds of the

68.3% CL intervals. We’ll return to this important fact later.

2.5 The profile likelihood

The likelihood function,

p(D|s, b) = (s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
, (2.27)

contains two parameters, the mean signal count s and mean background count b. The Neyman con-

struction can be extended to any number of parameters. Therefore, in principle, it is always possible to

construct regions in the full parameter space of a statistical model called confidence sets that satisfy the

frequentist principle exactly. (A confidence interval is just a 1-dimensional confidence set.) However,

in this problem the parameter of interest is the mean signal s. The mean background count is needed

to define the probability model, but is otherwise not of current interest. The parameter b is an example

of a nuisance parameter. If we wish to make inferences about the parameters of interest irrespective

of the true values of the nuisance parameters, we must rid the problem of all nuisance parameters; we

need eliminate b from the problem. A very general and widely accepted method for doing so is to con-

vert the likelihood function into a function called the profile likelihood. But before discussing this, we

briefly describe the most common frequentist method to arrive at estimates of parameters, a method we

mentioned above without comment.
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Fig. 4: Coverage probability f as a function of the Poisson mean s. As expected, the central intervals
satisfy the frequentist principle, namely, f ≥ p, where p = 0.683 is the confidence level. The coverage
for two other sets of intervals are shown for which the frequentist principle is not satisfied exactly.

Given the likelihood function L(s, b) ≡ p(D|s, b), its parameters can be estimated by maximizing

L(s, b) or equivalently maximizing lnL(s, b) with respect to s and b,

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,
∂ ln p(D|s, b)

∂b
= 0 leading to b̂ = B,

as expected, recalling that B = M/k. Estimates found this way (first done by the Prince of Math-

ematicians Karl Frederick Gauss and systematically developed by Sir Ronald Fisher [13]) are called

maximum likelihood estimates (MLE). The method generally leads to satisfactory estimates, but, as is

true of other procedures in statistical analysis, the method has its good and bad features, as noted below.

– The Good

– Maximum likelihood estimates are consistent, that is, the RMS of estimates goes to zero as

more and more data are included in the likelihood. This basically says that acquiring more

data is worthwhile because the accuracy of results is expected to improve.

– If an unbiased estimate of a parameter exists, the maximum likelihood procedure will find it.

– Given the MLE for s, the MLE for any function y = g(s) of s is simply ŷ = g(ŝ). This

is an extremely useful feature because it makes it possible to maximize the likelihood using

any convenient parameterization of it, say s, because at the end we can transform back to the
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parameter of interest using ŷ = g(ŝ).

– The Bad

– In general, MLEs are biased.

Exercise 7: Show this

Hint: Taylor expand ŷ = g(s + ŝ − s) about s and

consider its ensemble average.

– The Ugly

– Most MLEs are biased, which, unfortunately, encourages the routine application of bias cor-

rection. But correcting for bias makes sense only if the RMS of an unbiased result is less

than or equal to the RMS of a biased result. Recall that the RMS =
√
V + b2, where V is

the variance and b is the bias.

Returning to the profile likelihood, we note that to make an inference about the mean signal count,

s, the 2-parameter model L(s, b) must be reduced to one involving s only. In principle, this must be

done while respecting the frequentist principle, that is, f ≥ p, where f is the coverage probability of

an ensemble of statements and p is the desired confidence level. In practice, all nuisance parameters

are replaced by their MLEs conditional on the parameters of interest. For the Higgs boson example, an

estimate of b, b̂(s), is found conditional on s and b is replaced by b̂(s) in L(s, b). This leads to a new

function Lp(s) = L(s, b̂(s)) called the profile likelihood. For the likelihood in Eq. (2.27),

b̂(s) =
g +

√
g2 + 4(1 + k)Ms

2(1 + k)
,

where g = N +M − (1 + k)s. (2.28)

Figure 5 shows a density plot of the likelihood L(s, b) with the function b̂(s) superimposed. Notice that

b̂ goes through the mode of L(s, b), which occurs at s = ŝ = N −B = 15.6 events. Figure 6 shows the

profile likelihood. Replacing the (unknown) true value of b with an estimate of it is clearly an approxi-

mation. Therefore, it should come as no surprise that inferences based on the profile likelihood are not

guaranteed to be satisfy the frequentist principle exactly. However, it is found that for the typical appli-

cations in high-energy physics (as will be evident below), the procedures based on the profile likelihood

work surprisingly well. Moreover, the use of the profile likelihood has a sound theoretical justification.

Consider the profile likelihood ratio

λ(s) = Lp(s)/Lp(ŝ), (2.29)

where ŝ is the MLE of s. Taylor expand the associated quantity

t(s) = −2 lnλ(s) (2.30)

about ŝ,

t(ŝ+ s− ŝ) = t(ŝ) + t′(ŝ)(s− ŝ)
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Fig. 5: The likelihood L(s, b) and the graph of the function b̂(s).

Fig. 6: The profile likelihood Lp(s) ≡ L(s, b̂(s)).

+ t′′(ŝ)(s− ŝ)2/2 + · · ·
≈ (s− ŝ)2/2/σ2 + · · · ,

where σ2 ≈ 2/t′′(ŝ). (2.31)

The quadratic approximation is called the Wald approximation (1943) (see Cowan et al. [14]). An impor-

tant result obtains if certain so-called regularity conditions are met: 1) if ŝ does not lie on the boundary of

the parameter space (in which case the derivative of t at ŝ is zero), 2) the sample is large enough (that is,

when the density of ŝ is approximately Gaussian(ŝ, s, σ)), and 3) if s is the true value of the mean signal

count, then the density of t(s) converges to a χ2 density of one degree of freedom. The result, which is

important because of its generality, is a special case of Wilks’ theorem (1938) (Cowan et al. [14]).

Since t(s) ≈ χ2, we can use the fact noted above that ŝ is Gaussian-distributed then the solution

of χ2 = (s− ŝ)2/σ2 = 1 yields a 68% confidence interval. Therefore, we can compute an approximate
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68% confidence interval by solving

t(s) = −2 lnλ(s) = 1, (2.32)

for the lower and upper limits of the interval. Given N = 25 observed 4-lepton events, a background

estimate of B ± δB = 9.4± 0.5, we can state that

s ∈ [10.9, 21.0] @ 68% CL (2.33)

Exercise 8: Verify this interval.

As noted, intervals constructed using the profile likelihood are not guaranteed to satisfy the frequentist

principle exactly. However, for applications in high-energy physics the coverage of these intervals is

usually very good even for small quantities of data.

2.6 Hypothesis tests

In the previous section, we concluded that s ∈ [10.9, 21.0] @ 68% CL. This result strongly suggests that

a signal exists in the N = 25 4-lepton events observed by CMS. But a qualitative statement such as this

is generally considered insufficient. The accepted practice is to perform an hypothesis test. Indeed, in

particle physics, a discovery is declared only if a certain quantitative threshold has been reached in an

hypothesis test.

An hypothesis test in the frequentist approach is a procedure for rejecting an hypothesis that ad-

heres to the following protocol.

1. Decide which hypothesis is to be rejected. This is called the null hypothesis. At the LHC this is

usually the background-only hypothesis.

2. Construct a function of the data called a test statistic with the property that large values of it would

cast doubt on the veracity of the null hypothesis.

3. Choose a test statistic threshold above which we agree to reject the null hypothesis. Do the exper-

iment, compute the statistic, and reject the null if the threshold is breached.

There are at least two related variants of this protocol, one by Fisher [13] and the other by Neyman,

both developed in the 1930s. Fisher and Neyman disagreed strenuously about hypothesis testing, which

suggests that the topic is rather more subtle than it seems. Fisher held that an hypothesis test required

consideration of the null hypothesis only, while Neyman argued that a proper test required consideration

of both a null as well as an alternative hypothesis. Physicists ignore these disagreements and see utility

in a shotgun marriage of the two approaches. This is eminently pragmatic, whereas our quasi-religious

adherence to a 5σ threshold before declaring a discovery is not always sensible.

We first illustrate Fisher’s theory of hypothesis testing and follow with a description of Neyman’s

theory.
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Fig. 7: The p-value is the tail-probability, P (x > x0|H0), calculated from the probability density under
the null hypothesis, H0. If the null hypothesis is true then the probability density of the p-value under
the null hypothesis is uniform(0, 1).

Fisher’s Approach

Suppose that the null hypothesis, which is denoted by H0, is the background-only hypothesis, that is, the

Standard Model without a Higgs boson8 and compute a measure of the incompatibility of H0 with the

observations, called a p-value, defined by

p-value(x0) = P (x > x0|H0), (2.34)

where x is a test statistic, designed so that large values indicate departure from the null hypothesis, and

x0 is the observed value of the statistic. Figure 7 shows the location of x0. The p-value is the probability

that x could have been equal to or higher than x0. Fisher argued that a sufficiently small p-value implies

that either the null hypothesis is false or something rare has occurred. If the p-value is extremely small,

say ∼ 3 × 10−7, then of the two possibilities the response of the high-energy physicist is to reject the

null hypothesis, that is, the background-only hypothesis and declare that a discovery has been made. The

p-value for our example, neglecting the uncertainty in the background estimate, is

p-value =

∞∑
k=N

Poisson(k, 9.4) = 1.76× 10−5, with N = 25.

Since the value of p-value is somewhat non-intuitive, it is conventional to map it to a Z-value, that is, the

number of standard deviations the observation is away from the null if the distribution were a Gaussian.

The Z-value can be computed using 9.

Z =
√
2 erf−1(1− 2p-value). (2.35)

A p-value of 1.76 × 10−5 corresponds to a Z of 4.14σ. The Z-value can be calculated using the Root

function

Z = TMath::NormQuantile(1-p-value).

If the p-value is judged to be small enough or the Z-value is large enough then the background-only

hypothesis is rejected.

8That is, a thoroughly inconsistent theory!
9erf(x) = 1√

π

∫ x
−x exp(−t2) dt is the error funtion.
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Fig. 8: Distribution of a test statistic x for two hypotheses, the null H0 and the alternative H1. In
Neyman’s approach to testing, α = P (x > xα|H0) is a fixed probability called the significance of the
test, which for a given class of experiments corresponds the threshold xα. The hypothesis H0 is rejected
if x > xα.

Neyman’s Approach

As noted, Neyman insisted that a correct hypothesis test required consideration of two hypotheses, the

null hypothesis H0 and an alternative hypothesis H1. This is illustrated in Fig. 8. The null is the same as

before but the alternative hypothesis is the Standard Model with a Higgs boson, that is, the background

plus signal hypothesis. Again, the statistic x is constructed so that large values would cast doubt on the

validity of H0. However, the Neyman test is specifically designed to respect the frequentist principle.

A fixed probability α called the significance (or size) of the test is chosen, which corresponds to some

threshold value xα defined by

α = P (x > xα|H0). (2.36)

Should the observed value x0 > xα or equivalently the p-value(x0) < α then the hypothesis H0 is

rejected in favor of the alternative. By construction if the null hypothesis is true then repeated application

of this test will reject the null hypothesis a fraction α of the time. These false rejections are called

Type I errors. Neyman’s test discards the p-value and reports only α and whether or not the null was

rejected. However, in high-energy physics, in addition to reporting the results of the test, and perhaps

announcing a discovery, we also report the observed p-value. This is good practice because the observed

p-value provides more information than merely reporting the fact that a null hypothesis was rejected at a

significance level of α.

Given that Neyman’s test requires an alternative hypothesis there is more that can be said than

simply reporting the result of the test and the observed p-value. Figure 8 shows that we can also calculate

β = P (x ≤ xα|H1), (2.37)

which is the relative frequency with which we reject a true alternative hypothesis H1 if it is true. This

mistake is called a Type II error. The quantity 1 − β is called the power of the test and is the relative

frequency with which we would accept the true alternative hypothesis upon repeated application of the

test. The defining feature of the Neyman test is that, in accordance with the Neyman-Pearson lemma (see

for example Ref. [1]), the power is maximized subject to the constraint that α is fixed. The Neyman-
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Fig. 9: See Fig. 8 for details. Unlike the case in Fig. 8, the two hypotheses H0 and H1 are not that
different. It is then not clear whether it makes practical sense to reject H0 when x > xα only to replace
it with an hypothesis H1 that is not much better.

Pearson lemma asserts that given two simple hypotheses—that is, hypotheses in which all parameters

have specified values—the optimal test statistic t for conducting an hypothesis test is the likelihood ratio

t = p(x|H1)/p(x|H0).

Maximizing the power seems like a reasonable procedure. Consider Fig. 9, which shows that the

significance of the test in this figure is the same as that in Fig. 8. Therefore, the Type I error rates are

identical. However, the Type II error rate is much greater in Fig. 9 than in Fig. 8 because the power of

the test is considerably weaker in the former. Consequently, it is debatable whether rejecting the null

is a wise course of action since the alternative hypothesis is not that much better. This insight was one

source of Neyman’s disagreement with Fisher. Neyman objected to the possibility that one might reject

a null hypothesis regardless of whether it made sense to do so. He argued that the goal of hypothesis

testing is always one of deciding between competing hypotheses. Fisher’s counter argument was that an

alternative hypothesis may not be available, in which case we either give up or we have a method to test

the only hypothesis that is available and to decide whether it is worth keeping. In a Bayesian analysis

an alternative hypothesis is also needed, in agreement with Neyman viewpoint, but is used in a way that

neither he nor Fisher agreed with.

So far we have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Alas,

most of the hypotheses that arise in realistic high-energy physics analyses are not of this kind. In the

Higgs boson example, the probability models depend on a nuisance parameter for which only an estimate

is available. Consequently, neither the background-only nor the background plus signal hypotheses are

fully specified. Such hypotheses are examples of compound hypotheses. In the following, we illustrate

how hypothesis testing proceeds in this case using the 4-lepton example.

Compound Hypotheses

In Sec. 2.5, we reviewed the standard way nuisance parameters are handled in a frequentist analysis,

namely, their replacement by their conditional MLEs, thereby converting the likelihood function to the

profile likelihood. In the 4-lepton example, this yielded the function Lp(s) = L(s, f(s)). The justifica-

tion for this is that the statistic t(s) = −2 lnλ(s), where λ(s) = Lp(s)/Lp(ŝ) and ŝ is the MLE of s

can be used to compute (approximate) confidence intervals in light of Wilks’ theorem, which as noted

above essentially states that t(s) ≈ χ2. Therefore, the same statistic can also be used as a test statistic
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with the associated p-values calculated using the χ2 density. Moreover, since, by definition, Z =
√
χ2,

the p-value calculation can be sidestepped altogether. Using N = 25 and s = 0, we find
√
t(0) = 4.13,

which is to be compared with Z = 4.14, the value found neglecting the ±0.5 event uncertainty in the

background.

In summary, the statistic t(s) can be used to test null hypotheses as well as compute confidence

intervals and, therefore, provides a unified way to deal with both tasks. If s is the true value of the mean

signal, then the distribution of t(s) under that hypothesis is a χ2 density with one degree of freedom,

p(χ2|ndf = 1). Sometimes, however, it is necessary to consider t(s) when the value of s in the argument

differs from the value s, say s0, which determines the density of t(s). For example, suppose that a model

of new physics predicts a mean count s0 and an analysis is planned to test this model. We may be

interested to know, for example, what value of t(s) we might expect for a given amount of data. If s = 0,

the goal may be to determine the average or median significance with which we may be able to reject the

background-only hypothesis. Since the predicted signal s0 differs from s = 0, the density of t(s, ŝ)—

where for clarity, the dependence on the estimate ŝ is made explicit—will no longer be χ2, but rather a

non-central χ2 density, p(χ2|ndf = 1, nc) with non-centrality parameter nc. An approximate value for

the non-centrality parameter is nc = t(s, s0), that is, it is the test statistic computed using an Asimov10

data set [14] in which the “observed" count N is set equal to the true mean signal count, s0 + b.

3 Bayesian analysis

Bayesian analysis is merely applied probability theory with the following significant twist: a method is

Bayesian if

– it is based on the degree of belief interpretation of probability and

– it uses Bayes’ theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (3.38)

where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(D|θ, ω) = likelihood,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density,

for all inferences. The posterior density is the final result of a Bayesian analysis from which, if desired,

various summaries can be extracted. The posterior density assigns a weight to every hypothesis about the

10The name of this special data set is inspired by the short story Franchise by Isaac Asimov describing a futuristic United States
in which, rather than having everyone vote in a general election, a single (presumably representative) person is chosen to
answer a series of questions whose answers are analyzed by an AI system. The AI system then decides the outcome of the
election by determining what would have been the outcome had the general election been held!
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values of the parameters of the probability model, which, in addition to the likelihood, also includes a

function called the prior density or prior for short. The parameters can be discrete, continuous, or both,

and nuisance parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (3.39)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The prior π(θ, ω) encodes whatever assumptions we make and information we have about the parameters

θ and ω independently of the data D. A key feature of the Bayesian approach is recursion: the use of the

posterior density p(θ, ω|D) as the prior in a subsequent analysis. The Bayesian approach also permits an

intuitive way to quantify the uncertainty in predictions. Consider the statistical model p(t|x, θ), where

t, x could be random variables and the posterior density p(θ|D) has been computed with data D. For

example, x could be the inputs to a machine learning (ML) model, t the model outputs, θ the model

parameters and D the training data. In principle, we can compute the predictive distribution

p(t|x,D) =

∫
p(t|x, θ) p(θ|D) dθ, (3.40)

which is a probability distribution over the machine learning model outputs. ML models typically provide

only point estimates, that is, estimates without a quantitative measure of uncertainty. But to compute

the predictive distribution requires finding a feasible way to approximate the high-dimensional integral

in Eq. (3.40).

The Bayesian rules are simple, yet they yield an extremely powerful and general inference al-

gorithm. However, high-energy physicists remain wedded to the frequentist approach because of the

still widespread perception that the Bayesian algorithm is too subjective to be useful for scientific work.

However, there is considerable published evidence to contrary, including in particle physics, witness the

successful use of Bayesian analysis in the discovery of single top quark production at the Tevatron [19,20]

and searches for new physics at the LHC [21–23].

So, why do high-energy physicists, for the most part, remain skeptical about Bayesian analysis?

For many, the Achilles heel of the Bayesian approach is the difficulty of specifying a believable prior

over the parameter space of the likelihood function. In our example, to make an inference about the

mean event count s using the data N = 25 events with a background of B ± δB = 9.4 ± 0.5 events,

a prior density π(s, b) must be constructed. Even after more than two centuries of effort, discussion,

and argument, statisticians have failed to reach a consensus about how to do this in the general case.

Nevertheless, Bayesian analysis is widely and successfully used, even within high-energy physics. This

strongly suggests that we should refrain from overstating the difficulties. After all, physics is replete

with approximations, both of a technical and conceptual nature. The same is true of statistical analysis.

But, of course, this is no excuse for sloppy reasoning. Rather it is a reminder not to make perfection the

enemy of the good.

The high-energy physicists who have given this topic some thought generally agree with the statis-
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ticians who argue that the following invariance property should hold for any prior, at least ideally,

πϕ(ϕ)dϕ = πθ(θ)dθ, (3.41)

where ϕ = f(θ) is a one-to-one mapping of the parameter vector θ, e.g., θ = (s, b), to the new parameter

vector ϕ and πϕ and πθ are, in general, different functions of their arguments. If the above invariance

holds, then the posterior density will likewise be reparametrization invariant in the same sense as the

prior. Suppose we have a rule for creating a prior π(∗) and we apply this rule to create the density πϕ.

The same rule is now used to create πθ after which we transform from πθ(θ)dθ to π(ϕ)dϕ. Invariance

with respect to the choice of parametrization demands that π = πϕ. It surely ought not to matter whether

we parametrize the likelihood p(D|s, b) in terms of s and b or in terms of s and u =
√
b. After all, the

likelihood hasn’t really changed, therefore, it would be odd if this “non-change” altered the posterior

density. Whether or not a change occurs depends on the nature of the prior, as the following example

illustrates.

Consider the probability model p(D|s) = Poisson(D|s), written in two different ways: p(D|s) =
exp(−s)sD/D! and p(D|σ) = exp(−σ2)σ2D/D!, where σ =

√
s. To compute the posterior densities

p(s|D) and p(σ|D) priors must be specified. The most widely used rule for doing so is: choose the prior

to be flat, that is, uniform: π(s) = 1 and π(σ) = 1 in the parameter space. For an unbounded parameter

space this choice yields
∫
π(s) ds =

∫
π(σ) dσ = ∞. While this has a bad look it is not necessarily a

problem [15]! The posterior density in the s parametrization is p(s|D) = exp(−s)sD/D!, while it is

p(σ|D) = exp(−σ2)σ2D/Γ(D + 1/2) in the σ parametrization.

We now transform p(σ|D)dσ to p′(s|D)ds. The result is p′(s|D) = exp(−s)sD−1/2/Γ(D+1/2),

which differs from p(s|D). But this is not surprising given that the flat prior is not reparametrization

invariant. Many regard this as a serious problem, one that worsens as the dimensionality of the parameter

space increases. Others point to the numerous successful uses of the flat prior even in problems with high-

dimensional parameter spaces, and accept the lack of invariance as a price worth paying to avoid the not

inconsiderable effort of constructing an invariant prior.

A general method to create invariant priors was suggested by the geophysicist Sir Harold Jeffreys

in the 1930s [18], which in the intervening years has received considerable mathematical validation

through many different lines of reasoning (see, for example, [25]). The Jeffreys prior is given by

π(θ) =
√
det I(θ), (3.42)

where Iij = E

[
∂ ln p(x|θ)

∂θi

∂ ln p(x|θ)
∂θj

]
(3.43)

is the Fisher information matrix and and where the average is with respect to potential observations x

sampled from the density p(x|θ). For most distributions of interest to physicists, the Fisher information

matrix can be written as

Iij = −E
[
∂2 ln p(x|θ)
∂θi ∂θj

]
. (3.44)
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When the Jeffreys prior is applied to p(x|µ, σ) = Gaussian(x, µ, σ) it yields

π(µ, σ)dµ dσ =
dµ dσ

σ2
. (3.45)

Exercise 9: Show this

Ironically, the resulting posterior density was rejected by Jeffreys, and subsequently by statisticians be-

cause it yielded unsatisfactory inferences! The preferred prior for the Gaussian is

π(µ, σ)dµ dσ =
dµ dσ

σ
, (3.46)

because it leads to excellent results.

So what is a confused physicist to make of this? One way forward is to reject the Bayesian omelette

and stick to the frequentist gruel. The gruel may be thin, but it is at least relatively easy to make. The

other way forward is to dismiss the arguments that yield Eq. (3.42) in favor of reasoning that yields

Eq. (3.46) (see, for example, [24]). Yet another way forward is to take seriously the many persuasive

arguments that lead to Eq. (3.42) and try to understand what the reported failures of the Jeffreys prior for

problems involving more than one parameter is telling us. Here is possible path to some understanding.

Note that Eq. (3.46) can be written as

π(µ, σ)dµ dσ = σ

[
dµ dσ

σ2

]
,

= σ0 exp(lnσ/σ0)

[
dµ dσ

σ2

]
. (3.47)

This suggests, in the spirit of [25], that it is better to interpret the Jeffreys prior as nothing more than

an invariant measure on the parameter space of the associated statistical model, one that assigns equal

weight to every probability density labeled by θ. Assigning equal weight to every probability density

is a reparametrization-invariant procedure, while, as we saw above, assigning equal weight to every

parameter is not. If this interpretation is accepted, then the prior density is actually given by

π(θ) = g(θ)
√
det I(θ), (3.48)

where g(θ) is a function that could assign non-equal weights to the probability densities, such as the

term before the brackets in Eq. (3.47). That term is essentially the exponential of the entropy of the

Gaussian density, which assigns a weight∝ σ to every density indexed by µ, σ. This is promising. What

is missing, however, is a convincing theoretical framework for choosing g(θ), a challenge that we leave

to the reader.

For our example, to keep things simple we shall forego invariance and use a flat prior in both s

and b. But before returning to the example, we review hypothesis testing from a Bayesian perspective.

175



HARRISON PROSPER

3.1 Model selection

Hypothesis testing (also known as model selection) in Bayesian analysis requires the calculation of an

appropriate posterior density or probability, as is true of all fully Bayesian calculations,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (3.49)

where we have explicitly included the index H to identify the different hypotheses. By marginalizing

p(θ, ω,H|D) with respect to all parameters except the ones that label the hypotheses or models, H , we

arrive at

p(H|D) =

∫
p(θ, ω,H|D) dθ dω, (3.50)

that is, the probability of hypothesis H given observed data D. In principle, the parameters ω could also

depend on H . For example, suppose that H labels different parton distribution function (PDF) models,

say CT14, MMHT, and NNPDF, then ω would depend on the PDF model and should be written as ωH .

Like a Ph.D., it is usually convenient to arrive at the end-point, here the probability p(H|D), in stages.

1. Factorize the prior, e.g.,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H). (3.51)

In many cases, we can assume that the parameters of interest θ are independent, a priori, of

both the nuisance parameters ωH as well as the model label H , in which case we can write,

π(θ, ωH , H) = π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ωH |H) dθ dωH . (3.52)

3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (3.53)

Clearly, to calculate the probabilities p(H|D) it is necessary to specify the priors π(θ, ω|H) and π(H).

With some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly

unlikely that consensus could ever be reached on the prior π(H). At best we would have to agree on a

convention. For example, we could by convention assign equal probabilities to the two hypotheses H0

andH1, that is, π(H0) = π(H1) = 0.5. But do we really believe that the Standard Model and the MSSM

are equally probable models?

One way to sidestep the polemics of assigning π(H) is to compare probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
, (3.54)
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but use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.

The Bayes factor is the factor by which the relative probabilities of two hypotheses changes as a result of

incorporating the data, D. The word global indicates that we have marginalized over all the parameters

of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (3.55)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (3.56)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ

and ωH1 . We have further assumed that the marginal likelihood that depends on H0 is independent of θ,

which is a very common situation. For example, θ could be the expected signal count s, while ωH1 = ω

could be the expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it

is the same as H1 with s = 0. An hypothesis that is a special case of another is said to be nested within

the more general hypothesis. All this will become clearer when we work through the Bayesian analysis

of the 4-lepton data.

There is a notational subtlety that may be missed: because of the way we have defined p(D|θ,H),

we need to multiply p(D|θ,H) by the prior π(θ) and then integrate with respect to θ to calculate p(D|H).

3.2 Bayesian analysis of 4-lepton data

In this section, as a way to illustrate a Bayesian analysis, we

1. compute the posterior density p(s|D),

2. compute a 68% credible interval [l(D), u(D)], and

3. compute the global Bayes factor B10 = p(D|H1)/p(D|H0),

associated with the 4-lepton data.

Statistical model

The likelihood is the same as that used in the frequentist analysis, namely, Eq. (2.27). But in a Bayesian

analysis the likelihood is only part of the model; we also need a prior π(s, b) that encodes what we know,

or assume, about the mean background and signal independently of the observations D. How exactly

that should be done remains an active area of debate and research. Below, we take the easy way out!

One point that should be noted is that the prior π(s, b) can be factorized in two ways,

π(s, b) = π(s|b)π(b),
= π(b|s)π(s). (3.57)

It is worth noting because π(s, b) is routinely written as π(s, b) = π(s)π(b), which is not true, in general.

The a priori independence of s and b is an assumption, one that we shall make. What do we know about

s and b? We know that s and b are ≥ 0. We also know the probability model and how s and b enter it.
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Fig. 10: Posterior density for 4-lepton data. The shaded area is the 68% central credible interval.

Given this information, there are well-founded methods to construct π(s, b). However, for simplicity for

b we shall use the improper prior π(b) = k, where k is the scale factor in the likelihood p(D|s, b), and

either the improper prior π(s) = 1, or the proper prior π(s) = δ(s − 15.6). An improper prior is one

that integrates to infinity, which as noted above is not necessarily problematic [15].

Marginal likelihood

Having completed the probability model, the rest of the Bayesian analysis proceeds in a routine manner.

First it is convenient to eliminate the nuisance parameter b, using the improper prior π(b) = k,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b) db,

=
1

M
(1− x)2

N∑
r=0

Beta(x, r + 1,M)Poisson(N − r|, s), (3.58)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1). The symbol H1 has been introduced to repre-

sent the hypothesis that the signal is non-zero.

Posterior density

Given the marginal likelihood p(D|s,H1) and π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (3.59)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Setting π(s) = 1 yields,

178



STATISTICS AND MACHINE LEARNING FOR HIGH-ENERGY PHYSICS

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1,M)Poisson(N − r|s)∑N

r=0 Beta(x, r + 1,M)
. (3.60)

Exercise 11: Derive an expression for p(s|D,H1) assuming

π(s) = Gamma(qs, 1, U + 1) where q and U are known con-

stants.

The posterior density p(s|D,H1) completes the inference about the mean signal s. In principle we could

stop there, but in practice summaries of the posterior density are furnished, such as a credible interval,
which is the Bayesian analog of a confidence interval. Like confidence intervals credible intervals,

[l(D), u(D)], at credible level p defined by∫ u(D)

l(D)
p(s|D,H1) ds = p (3.61)

are not unique. The analog of Neyman’s central interval is the central credible interval defined by∫ l(D)

0
p(s|D,H1) ds = (1− p)/2,∫ ∞

u(D)
p(s|D,H1) ds = (1− p)/2. (3.62)

For the 4-lepton data this leads to the central credible interval [11.5, 21.7] for s with p = 0.683, which is

shown in Fig. 10. The statement s ∈ [11.5, 21.7] at 68% CL means there is a 68% probability that s lies in

the specified interval. Unlike the analogous frequentist statement this one is about this particular interval

and the 68% is a degree of belief, not a relative frequency. Statements of this form do, of course, have

a coverage probability. However, a priori, there is no reason why the coverage probability of credible

intervals should satisfy the frequentist principle. In practice, it is found that credible intervals with

appropriately chosen priors can moonlight as approximate confidence intervals. But when this happens

it does not mean that their interpretations somehow are the same, it simply means that a misinterpretation

of the intervals is likely to be benign.

Bayes factor

We noted above that

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Furthermore, p(D|H1) < ∞ even with the improper prior π(s) = 1. However, another arbitrary

constant besides unity could have been chosen, for example, π(s) = C. That constant would not have

altered the posterior density p(s|D,H1) and therefore choosing C = 1 as a matter of convenience was

fine. However, here we wish to compute the global Bayes factor B10 = p(D|H1) / p(D|H0). The

background-only hypothesis, H0, is nested in H1 and has marginal likelihood p(D|H0) ≡ p(D|0, H1).

Since the constant k in the background prior π(b) = k scales both p(D|H1) and p(D|H0) the constant

cancels and no issue arises from using an improper background prior. However, for H1 π(s) = C and

the parameter s appears only in the calculation of p(D|H1). Therefore, the Bayes factor is scaled by the

arbitrary constant C. Consequently, the Bayes factor can be assigned any value merely by choosing an
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appropriate value for C. This is clearly unsatisfactory. The upshot is that while improper priors may

yield reasonable results for the posterior density p(s|D,H1), albeit ones that are not reparametrization

invariant unless the priors are chosen carefully, that is not the case for Bayes factors. To arrive at a

satisfactory Bayes factor, a proper prior must be used. The simplest such prior is π(s) = δ(s− ŝ), where

ŝ = N −B = 15.6 events. With this prior, the Bayes factor is

B10 =
p(D|H1)

p(D|H0)
= 4967.

We conclude that the 4-lepton observations increase the probability of hypothesis s = 15.6 events relative

to the probability of the hypothesis s = 0 by≈ 5000. Large numbers can be avoided if we map the Bayes

factor to a measure akin to the frequentist “n-sigma",

Z =
√

2 lnB10, (3.63)

which gives Z = 4.13.

The Bayesian and frequentist results are approximately the same, which is typically the case when

the data are sufficient. This is because the influence of the prior is smaller than when the data are sparse.

This brings to a close our discussions of the frequentist and Bayesian approaches to statistical

analysis. We conclude these lecture notes with a brief look at machine learning, which is now widely

used in many domains.

4 Introduction to supervised machine learning

For millennia visionaries have dreamed of creating artificial beings exhibiting human and superhuman

characteristics. In 1950, the great English mathematician Alan Turing whose genius helped save millions

of lives during the World War II proposed an operational definition of an intelligent agent, a test now

known as the Turing test [26]. The test cuts to the chase: if it is impossible for you to tell whether you

are conversing with a person or a machine and it turns out that you are in fact conversing with a machine

then the latter is intelligent. In the decades following the publication of the Turing test progress towards

creating such agents was slow in part because the required conceptual breakthroughs were lacking and

in part because the available computing power was severely limited.

During the past two decades algorithmic breakthroughs and the exponential growth in the size

of data sets and computing power has caused the field of artificial intelligence (AI)—powered by ma-

chine learning (ML), that is, computer-based algorithms to construct useful models of data—to go from

research lab to impressive commercial applications. There are many things humans do that seem far

beyond current machine learning capabilities. It is still the case that we are unable to replicate a young

child’s ability to intuit the fact that the noises she hears from the people around her have meaning. Nor

can we replicate the extraordinary human ability to be “trained” on a relatively small number of instances

of, say, pictures of the Golden Gate bridge and yet be able to identify the Golden Gate in other pictures

of the bridge taken from perspectives that may never have been seen before. Nevertheless, impressive

progress has been made recently. A notable breakthrough was made by the Google subsidiary DeepMind

in creating an agent that taught itself to play to superhuman levels the ancient Chinese game of Go, as
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well as Chess and Shogi (Japanese chess) tabula rasa. These self-teaching feats were achieved in a mere

24 hours [27]! And then there is ChatGPT, the chatbot that took the world by storm in 2023.

Our purpose here is considerably more modest; it is to emphasize something that can get lost in the

hype, namely, that most contemporary AI systems are, for the most part, large highly non-linear functions

that are capable of mapping from one space to another, where large refers to the parameter space of these

functions. For example, ChatGPT uses a mathematical function called a large-language model (LLM)

with 175 billion parameters. This function, in a way that is far from clear, has encoded everything useful

or interesting that is on the web. ChatGPT leverages this vast encoded knowledge to generate new text

following prompts from the user. In many cases, including for ChatGPT, these mathematical functions

approximate probabilities. The breakthrough has been the ability to fit these enormously complicated

functions on timescales that are practical. Since our scope is relatively modest and we wish to emphasize

key ideas that span many classes of machine learning models, we avoid unnecessary complications by

considering a simplified version of the following problem: separating Higgs boson events in which the

Higgs boson is produced via vector boson fusion (VBF) from events in which the Higgs boson is created

via gluon gluon fusion (ggF). But to give a taste of the state-of-the-art, we end with a brief qualitative

description of the transformer, the machine learning model that powers ChatGPT and similar chatbots.

First with discuss a few key ideas of machine learning.

Most machine learning algorithms fall into five broad categories:

1. supervised learning,

2. semi-supervised learning,

3. unsupervised learning (i.e., pattern detection)

4. reinforcement learning, and

5. generative learning.

The simplest category of algorithm is supervised learning in which the data for fitting models, i.e.,

training them, consist of labeled objects. If the labels define the class to which objects belong, for

example, 0, for gluon gluon fusion events and +1 for vector boson fusion events, then as shown below

the resulting function will be a classifier. If the labels form a continuous set, then the resulting function

will be a regression function (sometimes called a “regressor”). For example, suppose the objects are

jets characterized by their transverse momentum pT and pseudo-rapidity η and possibly other detailed

characteristics such as the electromagnetic fraction, while the labels are the true jet transverse momenta.

The regressor will be a correction function that maps the jet characteristics to an approximation of the

true jet pT . Our example will be a simple VBF/ggF classifier.

4.1 A bird’s eye view of supervised machine learning

Supervised machine learning can be construed as a game in which winning means picking the best

function (or functions) from a function space. The game includes three elements:

1. a function space F = {f(x,w)} containing parametrized functions f(x,w), where x are object

characteristics—features in machine learning jargon—and w are the parameters;
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2. a loss function L(t, f), which measures the cost of making a bad function choice, and where t are

labels associated with the features x, and

3. a constraint C(w) that places some restriction on the choices of functions.

The best function f(x,w∗) is found by minimizing the constrained empirical risk,

R(w) =
1

K

K∑
i=1

L(ti, fi) + C(w), where fi = f(xi, w), (4.64)

with respect to the choice of function f , which in practice means with respect to the parameters w.

4.1.1 Minimization via gradient descent

A loss function, through the empirical risk, defines a high-dimensional “landscape” in the space of model

parameters, or equivalently in the space of functions. The goal is to find the lowest point in that landscape

through repeated application of the algorithm

w ← w − η∇R, (4.65)

where η is the so-called learning rate and ∇R is the gradient of the empirical risk. Why does the update

algorithm in Eq. (4.65) reduce R? Consider the value of the empirical risk R(w − η∇R) at the updated

parameter point w − η∇R. The function R(w − η∇R) can be expanded as follows

R(w − η∇R) = R(w)− η∇R · ∇R+O(η2). (4.66)

Equation (4.66) shows that R(w − η∇R) < R(w) provided that η is small enough.

Used as-is the algorithm in Eq. (4.65) would fail miserably because of the complexity of the

landscape defined byR(w) and the possibility that the minimizer could get stuck in a bad local minimum

or diverge away from the minimum because of the instability caused by a saddle point. To alleviate this

problem the standard approach is to replace the exact gradient ∇R by a noisy estimate of it at any given

point. This is usually achieved by replacing R by an approximation that uses a small subset—that is,

batch—of the training data in the sum that defines R. Typically, a new batch is used at every step of the

minimization algorithm. This minimization algorithm is called stochastic gradient descent, of which

there are many variants. The addition of noise increases the chance that the minimizer will escape from

an unfavorable location in the parameter space and move towards a better minimum.

4.1.2 Minimizing the risk functional

It is intuitively clear that a successful minimization of the empirical risk, Eq. (4.64), will yield a solution

f(x,w∗) that is as close as possible to the labels, or targets, t. But in mathematics, as in physics, we can

often gain a clearer understanding of a construct by taking a suitable limit of it. To that end consider the

limit of R(w), that is, the empirical risk (aka the average loss) as K → ∞. In that limit and assuming
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the effect of the constraint goes to zero the empirical risk becomes the risk functional

R[f ] =

∫
dx

∫
dtL(t, f) p(t, x),

=

∫
dx p(x)

[∫
dtL(t, f) p(t|x)

]
, (4.67)

where we have used p(t|x) = p(t, x)/p(x). The function p(t, x) is the (typically unknown) joint prob-

ability density of the data (t, x). Whether the features x represent an event, a jet, an image, or piece of

writing and t represents known data about each instance of x all the information about the mapping from

x to t is contained in the joint probability density p(t, x). This is an important point because the failures

of machine learning are almost always due to an object with known characteristics x′ but unknown label

t′ not being a member of the population {(t, x)} that defines p(t, x). If an agent is trained on a million

images of dogs and cats it is not surprising that it will classify a horse as either a dog or a cat because

the probability p(t, x)dt dx does not encompass images of horses. The point is that the function f(x,w)

will do what it is designed to do. Which prompts the question: what exactly is f(x,w) designed to do?

To answer this question we need to minimize the risk functional, Eq. (4.67), by setting its func-

tional derivative δR/δf to zero for all values of x, if possible. This will be possible if the function f is

sufficiently flexible. If this is the case then δR/δf = 0 leads to the very important result

∫
∂L
∂f p(t|x) dt = 0. (4.68)

From the above we conclude that 1) with sufficient training data, 2) a sufficiently flexible function f ,

and 3) a minimizer capable of finding the global minimum the quantity approximated by the function f

depends solely on the form of the loss function L(t, f) and the conditional density p(t|x) of the training

data. Equation (4.68) is a general result that does not depend on the nature or form of the function f ;f

does not have to be a neural network. The reason neural network models have become so popular is

because they have proven to be highly flexible functions.

4.1.3 Loss functions

Let us apply Eq. (4.68) to the widely used quadratic loss,

L(t, f) = (t− f)2. (4.69)

From ∂L/∂f = −2(t− f) and noting that
∫
p(t|x) dt = 1 we find

f(x,w∗) =
∫
t p(t|x) dt , (4.70)

where w∗ is the best-fit value of the parameter vector w. Equation (4.70) is an important result because

it tells us precisely what the function f(x,w∗) approximates. If one uses the quadratic loss then the

function f(x,w∗) approximates the conditional average of the targets. This result was first derived in the

context of neural networks [28–30], however, as noted it is not restricted to this (admittedly large) class

of functions.
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The quadratic loss is often used in regression problems. But it may not always be appropriate.

Consider the task of approximating the mapping f : Rd → U ∈ R, with U a compact subset of R, say

the unit interval. Equation (4.70) informs us that we should not be surprised to find an upward bias in

regression values near t = 0 and a downward bias near t = 1. Another point worth noting is that if

we minimize the average quadratic loss using training data in which one class of objects is labeled with

target t = 0 and the other with target t = 1, the function f(x,w∗) will approximate the probability that

the object with features x belongs to the class labeled with t = 1; that is, f(x,w∗) will be a classifier

that approximates the class probability p(1|x), which from Bayes’ theorem can be written as

p(1|x) = p(x|1) p(1)
p(x|1) p(1) + p(x|0) p(0) , (4.71)

where p(1) and p(0) are the prior probabilities associated with the two classes. If this were indeed a

classification problem one typically trains with a balanced data set for which p(1) = p(0). In this case

p(1|x) is referred to as a discriminant, D(x), given by

D(x) =
p(x|1)

p(x|1) + p(x|0) . (4.72)

Notice that p(1|x) and D(x) are related:

p(1|x) = D(x)

D(x) + [1−D(x)]/[p(1)/p(0)]
. (4.73)

This is useful because sometimes we need to model Eq. (4.71) with p(0) ̸= p(1). For example, in a

signal/background discrimination task p(1)/p(0) would be the expected prior signal to background ratio.

If that ratio is very far from unity it would be very difficult to model Eq. (4.72) directly. Suppose that the

ratio was 10−3 and the training sample size was 105 events. This sample would contain only 100 signal

events out of 100,000. Almost any numerical algorithm to construct a classifier would struggle with

such an unbalanced data set. Equation (4.73) shows, however, that it not necessary to use an unbalanced

data set to model p(1|x). We can use a balanced data set to approximate D(x) and use Eq. (4.73) to map

D(X) to the correct class probability p(1|x). This discussion illustrates the utility of understanding what

the function f(x,w) approximates.

In practice, for binary classification the preferred loss function is the binary cross-entropy loss,

L(t, f) = −

log(f) if t = 1

log(1− f) if t = 0,
(4.74)

which for algebraic purposes can be conveniently written in terms of Dirac delta functions as

L(t, f) = − log(f)δ(t− 1)− log(1− f)δ(t). (4.75)

This loss function is less sensitive to outliers than the quadratic loss, but yields the same result as
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Eq. (4.71). The binary cross entropy loss is a special case of the cross entropy loss

L(t, f) = −
K∑
k=1

log(fk),

K∑
k=1

fk = 1, (4.76)

for a function fk with K outputs that sum to unity with each output associated with a different class.

Boosted Decision Trees

Boosted decision trees (BDT) [31] are a popular machine learning method in particle physics; and for

good reason. They perform well, they are faster to train than neural networks, they are insensitive to

poorly performing variables, and they are resistant to over-fitting. In view of their widespread use it is

worth taking the time to understand exactly what this machine learning model entails. We shall highlight

key features of BDTs using a simple example in which we seek to separate Higgs boson events produced

via vector boson fusion (VBF) from gluon gluon fusion (ggF) produced events. In this section, we first

discuss decision trees (DT) and then the notion of boosting, that is, enhancing the performance of a

machine learning model by averaging over many models.

A decision tree is a nested sequence of if then else statements, which can also be viewed as a

histogram whose bins are created recursively through binary partitioning. The VBF/ggF example uses

two discriminating variables (features) |∆η|jj and mjj , the absolute pseudo-rapidity difference between

the two most forward (i.e., largest rapidity) jets in the event and the associated di-jet mass, respectively.

Fig. 11 shows two representations of a decision tree for our VBF/ggF discrimination example.

At face value, decision trees do not seem to fit into the mathematical ideas about loss functions

discussed above. In particular, it is far from clear what loss function, if any, is being minimized when

a decision tree is grown. However, all successful uses of decision trees entail averaging over many of

them. As we shall see, it is the averaging that provides the connection to a loss function. Averaging

also mitigates a serious problem with decision trees, namely, their instability. Even minor changes to the

training data can radically alter the structure of a tree.

The first successful averaging algorithm, called AdaBoost, was published by AT&T researchers

Freund and Schapire in 1997 [32] who showed that it was possible to create high performance classifiers

by averaging ones (called weak learners) that perform only marginally better than classification via a

coin toss. The algorithm builds a classifier using training data labeled by the discrete labels t = −1 or

t = +1. In the VBF/ggF example below, t = −1 is assigned to ggF events and +1 is assigned to VBF

events. The algorithm, for N training events and K decision trees, proceeds as follows:

1. initialize event weights ω1,n = 1/N, n = 1, · · · , N
2. repeat for k ∈ 1, · · ·K

(a) fit a tree fk(x) that returns either −1 or +1, using the current event weights {wk,n}
(b) compute error rate ϵk =

∑N
n=1 ωk,nI[−tnfk(xn)], I(z) = 1 if z > 1, 0 otherwise

(c) compute coefficient αk = 1
2 ln[(1− ϵk)/ϵk]

(d) update weights wk+1,n = wk,n exp(−αktnfk(xn))/Zk,

where Zk =
∑N

n=1 ωk,n exp(−αktnfk(xn))
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Fig. 11: Two representations of a decision tree to separate VBF from ggF events based on the variables
|∆η|jj and mjj . On the right, the decision tree is represented as a branching structure in which the
circles, called nodes, represent if then else decisions, that is, binary decisions. The boxes terminate
the tree and are referred to, appropriately, as leaves. On the left, the decision tree is represented as a
2D histogram in which the bins, which correspond to the leaves, have been defined by recursive binary
partitioning. The bin boundaries, that is, the binary partitions, correspond to the decisions. At a given
node, the left branch is taken if x < xcut otherwise the right branch is taken; xcut is an optimal cut on the
variable x ∈ {|∆η|jj ,mjj}. The numbers within the leaves are the VBF purity p = S/(S + B), where
S and B are the VBF and ggF event counts in a given bin, that is, leaf.

3. classifier f(x) =
∑K

k=1 αk fk(x)

In step 2(d) the weight of incorrectly classified events, that is events for which tnfk(xn) = −1, is

increased, while that of correctly classified events, for which tnfk(xn) = +1, is decreased.

AdaBoost is a cryptic algorithm. However, a few years after its publication Friedman, Hastie, and

Tibshirani [33] showed that AdaBoost can be viewed as a smart way to minimize the risk functional,

E[f ] =

∫
dx

∫
dt exp[−tf(x)] p(t, x), (4.77)

whose minimum occurs at

f(x) =
1

2
ln
p(t = +1|x)
p(t = −1|x) . (4.78)

Therefore, despite appearances boosted decision trees fit into the mathematical framework sketched

above. Moreover, while the boosted decision tree f(x) cannot be interpreted as a probability it can

be mapped to a probability by inverting Eq. (4.78),

p(t = +1|x) = 1

1 + exp(−2f(x)) . (4.79)
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Fig. 12: Simulated distributions of the discriminating variables (|∆ηjj |,mjj) for VBF and ggF events.
As expected, there is a larger rapidity gap between the jets inVBF events than those in ggF, which arise
from gluon radiation.

Below we illustrate the use of the AdaBoost algorithm using the Toolkit for Multivariate Analysis

TMVA [34], which is released with the ROOT [35] package from CERN. Note, in the TMVA implemen-

tation, αk is defined omitting the factor of 1/2, therefore, in order to convert the un-normalized BDT,

f(x), in TMVA to a probability the appropriate mapping is

p(t = +1|x) = 1

1 + exp(−f(x)) (TMVA). (4.80)

VBF/ggF discrimination

In this example, a BDT is trained using the AdaBoost algorithm in TMVA to discriminate between events

in which the Higgs boson is created via vector boson fusion (VBF) and events in which the Higgs boson

is created via gluon gluon fusion (ggF). The key difference between VBF events and ggF events is that

the former features a pair of forward (i.e., large rapidity) jets that is absent from the latter. It is found

that the two most discriminating variables between these two classes of events are the absolute pseudo-

rapidity difference |∆η|jj between the two jets and the associated di-jet mass mjj and. The predicted

distributions of the two variables is shown in Fig. 12.

We use a training sample size of N = 20, 000 events, split equally between VBF and ggF

events with assigned targets of t = +1 and t = −1, respectively. The TMVA training parameters are

BoostType=AdaBoost, NTrees=800—the number of trees K, nEventsMin=100—the minimum num-

ber of events per bin, and nCuts=50—the number of binary partitions per variable to search for the

optimal partition, i.e., cut. The optimal cut is the one which gives the greatest decrease in impurity as
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Fig. 13: The first six of the 800 decision trees, displayed as 2D histograms, showing the coefficients
α1, · · · , α6 associated with the threes.

measured by the Gini index11, defined by p(1 − p) where p = S/(S + B) is the purity and S and B

are the signal and background counts, respectively, in a given bin. A bin is maximally pure, either pure

signal or pure background, when the Gini index is zero.

Fig. 13 shows the first six decision trees as histograms, each with its associated coefficient αk =

ln[(1−ϵk)/ϵk]12 printed on the histogram. A decision tree is a piecewise constant function in which each

bin (i.e., leaf) is assigned a value. In the AdaBoost algorithm the values are t = ±1; in our example,

t = −1 for bins in which B > S (i.e., ggF bins) and +1 for bins in which S > B (i.e., VBF bins).

A given feature vector x = |∆η|jj ,mjj , characterizing an event, will fall in a bin in each of the six

decision trees of Fig. (13) and the BDT is equal to the average
∑6

k=1 αkfk(x) where each tree fk(x)

returns either +1 or−1 depending on the bin in which x falls. In other words a BDT is an un-normalized

weighted average over histograms each with a different set of bins. While the piece-wise constant nature

remains, the more histograms (that is, trees) that are averaged the smoother one expects the BDT output

to become. This is illustrated in Fig. 14, which shows the effect of averaging over an increasing number

of trees. Finally, Figs. 15 and 16 show the distribution of the BDT in which the output has been mapped

to the probability p(VBF |x) ≡ p(t = +1 |x) = 1/[1 + exp(−BDT (x))], and the receiver operating

characteristic (ROC) curve of the BDT. The ROC curve, and the area underneath it (AUC), are often

used as simple measures of the performance of a binary classifier. The larger the AUC the better the

performance of the classifier.

Several general-purpose toolkits exist today that feature a wide range of machine learning models

including the excellent toolkit scikit-learn [36]13 and the research-level toolkit pytorch [37], which

11After Italian statistician Corrado Gini, 1884-1965.
12As noted, TMVA omits the factor of 1/2.
13AdaBoost is available in the Python module scikit-learn. But in version 1.4.2 of scikit-learn the value returned
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Fig. 14: The outputs of boosted decision trees averaged over differing numbers of decision trees, 25,
50,...,800. Each BDT (x), with x = |∆η|jj ,mjj , is mapped to the probability p(y = +1 |x) = 1/[1 +
exp(−BDT (x))].

Fig. 15: The distributions of the discriminant D(x) = 1/[1 + exp(−BDT (x))], where BDT (x) is a
boosted decision tree with K = 800 trees.

makes it possible to build arbitrarily sophisticated machine learning models including models such as

the transformer, to which we now turn.

by the decision_function method of the AdaBoostClassifier differs from that returned by step 3 of the AdaBoost
algorithm. The decision_function returns 2

∑K
k=1 αkfk(x)/

∑K
j=1 αj , while the predict_proba method returns

1/[1 + exp(−f(x))].
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Fig. 16: Receiver operating characteristic (ROC) curve. The area under the curve (AUC) is a commonly
used global measure of the discrimination power of a classifier.

4.2 Transformers

To give a sense of the impressive advances that have occurred recently in artificial intelligence/machine

learning, we end with a qualitative description of the model that underpins the chatbot ChatGPT [38].

The latter uses a machine learning model called the transformer [39], which translates one sequence

of tokens to another, where tokens can be, for example, the words or parts of words of natural languages

or even mathematical symbols. The key features of transformers that makes these models extraordinary

is that 1) they work on all the tokens of a sequence in parallel and 2) they are very good at encoding

relationships between tokens.

A collection of sequences defines a vocabulary of tokens from which all sequences can be

formed. For example, suppose the task is to build a model that outputs the Taylor series expansion

to 5th order of a mathematical expression built from elementary functions, e.g, exp(−ax)[exp(3ax) −
sin(cx)/ sinh(gx)]. The vocabulary would presumably include the tokens x, a, c, g as well as sin, sinh,

and exp, coded as integers. In the case of ChatGPT, the vocabulary for English is thought to be of order

50,000 tokens.

The transformer model uses one or more vocabularies and neural networks that consist of

– embedding layers that embed the tokens and their relative positions within sequences as points in

a vector space;

– transformer layers that implement the syntactic and semantic encoding of the sequences, and

– the output layer that computes weights, one for every possible token in the output vocabulary,

which can be converted to probabilistic predictions for the next token in the output sequence given

the input sequence and the current predicted output sequence.
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4.2.1 Sequence to sequence model

A transformer, which is an example of a sequence-to-sequence (seq2seq) model, comprises an encoder
and a decoder. The encoder embeds every token in the source (that is, input) sequence x in a vector

space and then processes these vectors through a chain of algorithms called attention. The transformed

vectors together with the current target sequence t or current predicted output sequence y are sent to the

decoder, which embeds the targets in the same vector space. The target vectors are likewise processed

through a chain of attention algorithms, while the target vectors and those from the encoder are processed

with another attention algorithm. The decoder assigns a weight to every token in the target vocabulary

and these weights are used to choose the next output token.

The transformer model is autoregressive: the predicted token is appended to the existing predicted

output sequence and the model is called again with the same source sequence and the updated predicted

output sequence. The procedure repeats until either the maximum output sequence length is reached or

an end-of-sequence (EOS) token is predicted as the next token.

4.2.2 Attention

When we translate from one sequence of tokens to another sequence of tokens, for example from one

natural language to another, the meaning of the sequences is encoded in the tokens, their relative order,

and the degree to which a given token is related to the other tokens. Consider the phrases “the white

house" and “la maison blanche". In order to effect a correct translation the model needs to encode the

fact that “la" and “maison" are strongly related, while “the" and “house" are less so. The model also needs

to encode the strong relationship between “the" and “la", between “house" and “maison" and between

“white" and “blanche". That is, the model needs to pay attention to grammatical and semantic facts and

structures.

The need for the model to pay attention to relevant linguistic facts is the basis of the so-called

attention mechanism [39]. In the encoding stage, the model associates a vector to every token that

tries to capture the strength of a token’s relationship to other tokens. Since this association mechanism

operates within the same sequence (that is, within the same point cloud in the vector space in which

the sequence is embedded) it is referred to as self attention. Presumably an effective self attention

mechanism will note the fact that “la" and “maison" are strongly related and that the relative positions

of “maison" and “blanche" is important as are the relative positions of “white" and “house". In the

decoding stage of the model, in addition to the self attention over the target sequences another attention

mechanism should pay attention to the fact that “the" and “la", “house" and “maison" and “white" and

“blanche" are strongly related. We, therefore, expect a successful seq2seq neural network to model self

attention in both the encoding and decoding phases and source-to-target attention in the decoding phase.

While the optimal way to do this is unknown, the transformer model implements an attention mechanism

that empirically appears to be highly effective.

4.2.3 Prediction

As noted the transformer is trained and used autoregressively: given source, i.e., input, sequence

x = x0, x1, · · · , xk, xk+1 of length k + 2 tokens, where x0 ≡ <sos>, and xk+1 ≡ <eos> are se-
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quence delimiters and the current output sequence yl = y0, y1, · · · , yl−1 of length l tokens, the model

approximates a discrete conditional probability distribution over the target vocabulary of size m tokens,

pij ≡ p(yij |x,yl), i = 0, · · · , l, j = 0, · · · ,m− 1.

For a vocabulary of size m and a sequence of size k every position in the sequence can be filled

in m ways. Hence there are mk possible sequences of which the most probable is sought. This presents

a severe computational challenge. Consider, for example, a sequence of size k = 85 tokens and a

target vocabulary of size m = 28 tokens. There are ∼ 1 × 10123 possible sentences. Even at a trillion

probability calculations per second an exhaustive search would be utterly futile as it would take far longer

to complete than the current age of the universe (∼ 4 × 1017 s)! We have no choice but to use heuristic

strategies to search for the best output sequence. The simplest heuristic strategy is the greedy search
in which one chooses the most probable token as the next token. A potentially better strategy is beam
search in which at each prediction stage the n most probable sequences so far at kept. At the end the

most probable output sequence among the n output sequences is chosen.

Stephen Wolfram [40] has noted that it is both astonishing and unexpected that the transformer

model works as well as it does as there is no reason a priori why the human encoding of information

using natural language should be amenable to mathematical modeling with neural networks. Wolfram

further argues that the fact that ChatGPT works at all should be considered a major discovery about the

nature of natural languages and how they encode information.

Summary

We have given an overview of the frequentist and Bayesian approaches to statistical inference and a brief

survey of the main mathematical ideas that underpin supervised machine learning. Frequentist analysis

is based on the relative frequency interpretation of probability and, ideally, adheres to the frequentist

principle: repeated application of a statistical procedure will yield statements a fraction f ≥ p of which

are guaranteed to be true, where p is the desired confidence level. The Bayesian approach uses the

degree of belief interpretation of probability and Bayes theorem as the primary inference algorithm. In

both approaches, the key task is building an accurate probability model.

A brief introduction to supervised machine learning was given in which the emphasis was clarify-

ing the critical role of the loss function. We noted the mathematical fact that the quantity approximated

by a machine learning model is determined by the loss function and not by the particulars of the model

provided that sufficient training data are used, the model is sufficiently flexible, and a good approxima-

tion to the minimum of the average loss can be found.
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Collider experiments: the LHC and beyond
Roger Forty

CERN

The basic concepts of experimental particle physics at colliders are presented, over four introductory
lectures, using examples taken from the highest energy collider in the world: the LHC at CERN.
The physics motivation for collider experiments is discussed, followed by an introduction of the
accelerators and experiments at CERN and elsewhere. An overview of the principles of particle
detection and of the different types of detectors is given. The physics highlights at the LHC are
discussed and an outlook beyond the Standard Model and the LHC is given.
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Introduction

These are four introductory lectures covering the basic concepts of experimental particle physics at col-

liders, including the highest energy collider in the world: the LHC (Large Hadron Collider). I am an

experimental particle physicist working at CERN, the European centre for particle physics based near

Geneva on the border between Switzerland and France, the laboratory which organized this school. I

work on LHCb (one of the LHC experiments) but have tried my best to be unbiased. Most lectures

presented at this school were theoretical in nature, but testing theory with experiments is essential for

scientific progress: a broad experimental programme, pushing back all of the frontiers (energy, intensity,

and cosmic) is particularly relevant at this time, when there are compelling arguments for new physics

but no clear guidance from theory as to where it will be found.

Lecture 1: Accelerators and experiments, introduces the field, discussing the physics motivation

for collider experiments, including the Standard Model and beyond, and the dark sector. It also covers

(briefly) particle acceleration, including accelerator design, and the LHC. Then colliders around the

world are discussed, at CERN and elsewhere, categorised according to their collider types. Finally

collider experiments are introduced, including general aspects of proton collisions at the LHC.

Lecture 2: Detectors and data, discusses the detection of particles in collider experiments. It

starts with tracking detectors, describing particle interactions, and gaseous, silicon and vertex detectors.

Calorimetry is explained, both for electromagnetic and hadronic types, including a discussion of photon

detection. This is followed by the techniques of particle identification, including a description of particle

signatures, and methods of hadron identification. The lecture ends with a brief overview of aspects

related to data taking, including triggering, data acquisition, and data analysis.

Lecture 3: LHC physics highlights presents a whistle-stop tour through a personal selection of

highlights from LHC physics analyses to date, presented roughly in order of increasing rarity of the pro-

cess. Starting with strong interactions, the measurement of cross-sections, jets, the quark–gluon plasma,

and the top quark are discussed. The latter sits on the boundary with flavour physics (which follows next)

as well as electroweak physics discussed afterwards. The selected highlights for flavour physics concern

particle–anti-particle mixing, CP violation and rare decays, while for electroweak physics the study of

the vector bosons, the W and Z, are covered. The lecture ends with a summary of the current knowledge

of the Higgs boson’s properties.

Lecture 4: Looking beyond is meant in two senses—looking beyond the Standard Model and also

beyond the LHC. It begins with a summary of searches for physics beyond the Standard Model at the

LHC, including supersymmetry or other extensions, and dark matter. Possible hints of new physics in

existing results are reviewed, in the flavour anomalies, W mass, and magnetic moment of the muon.

Potential avenues for widening the search are discussed, such as for long-lived or feebly-interacting

particles, including experiments at non-collider facilities. Finally, the prospects for future colliders to

follow the LHC are reviewed, including the HL-LHC, Higgs Factories and beyond.
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1 Accelerators and experiments

1.1 Physics overview and motivation

Particle physics is the study of the world around us, at the forefront of the human quest to understand what

the world is made of and how it works. Understanding the make-up of the universe can be pursued in two

ways, either looking outward at what surrounds us at the largest scales (astronomy and cosmology) or

inwards to see what things are made up of at the smallest scales (particle physics). The latter is achieved

by depositing energy into a small volume, since the resolving power increases with energy—recall the

dependence of wavelength λ on momentum, p: λ = h/p (from de Broglie [1])—hence the alternative

name of High Energy Physics.1

The two approaches are fundamentally linked, since cosmology tells us that the universe has a

finite lifetime, following the Big Bang approximately 14 billion years ago: it was created at high energy

and has expanded and cooled since—so studying high energy collisions is like looking back in time

to the conditions of the early universe. The current knowledge of particle physics is encapsulated in a

theoretical framework, the Standard Model of particle physics.2 The constituents of matter are fermions

(with spin half, quarks and leptons), the carriers of forces are bosons (with integer spin), and there is one

scalar fundamental particle (spin zero): the Higgs boson. The masses of the particles vary over more

than 14 orders of magnitude, see Fig. 1 (a). The reason for this highly non-trivial structure is one of the

open questions in particle physics.

The forces experienced in Nature have been progressively unified, as shown in Fig. 1 (b); the

remaining four fundamental forces are the following:

– Strong: that binds nuclei together, carried by the gluon; coupling3 αs ∼ 1;

– Electromagnetic: responsible for electricity and magnetism as well as electromagnetic waves,

carried by the photon; coupling α ∼ 1/137;

– Weak: plays a role in radioactivity e.g. the β decay n→ pe−νe, and the shining of the Sun, carried

by the weak vector bosons (W and Z); coupling (derived from the Fermi constant GF) ∼ 10−6;

– Gravitation: assumed to be carried by the graviton, coupling (derived from the gravitational

constant G) ∼ 10−39.

They are described by quantum field theory, except gravitation, for which the current description in

General Relativity has not yet been made compatible with quantum mechanics.

Each elementary particle has a corresponding antiparticle with opposite electrical charge, such as

the negatively charged electron (e−) and its antiparticle the positron (with positive charge, e+). Symme-

tries and invariance play an important role in particle physics: Noether’s theorem states that if a system

remains invariant under a continuous transformation, there is a corresponding conservation law, e.g. mo-

mentum conservation is a consequence of the invariance under spatial translation [4]. In addition to

continuous transformations there are three possible discrete transformations:

1Energies are quoted in eV, the energy gained by a charged particle if accelerated by 1 V (1 eV = 1.6 × 10−19 joule); masses
also quoted in eV via the equivalence of energy and mass, E = mc2 (strictly they should be written eV/c2); 1 GeV = 109 eV.

2Bear in mind that there are also other Standard Models, e.g. of cosmology and the Sun.
3Note: couplings are scale dependent.
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Fig. 1: (a) The masses of particles that make up the Standard Model [2]; (b) the progressive unification
of the forces seen in Nature [3] (read from right to left, as the energy increases).

– C = Charge conjugation: particles↔ antiparticles;

– P = Parity inversion: spatial coordinates x, y, z ↔ −x,−y,−z;

– T = Time reversal: time t↔ −t.

The combined operation of all three is represented as CPT. Invariance under CPT is fundamental prop-

erty of essentially all field theories, and guarantees that particles have exactly the same mass as their

antiparticles. Although very rare in the every-day world, antiparticles are abundantly produced in high-

energy collisions, in an equal amount as particles. Energy is transformed into matter (via E = mc2) and

particles and antiparticles are produced in pairs e.g. photon conversion: γ → e+e−. 4

The kinematics of two-particle scattering is described using the Mandelstam variables (s, t, u),

combining particles’ 4-momenta, as shown in Fig. 2 (a). The centre-of-mass energy in a collision of

two particles is given by
√
s. Feynman diagrams are used to describe the interaction of particles, as

illustrated in Fig. 2 (b)—technically, they show the spatial coordinate vertically and time horizontally,

so the “s-channel” (e.g. e+e− annihilation followed by creation) and “t-channel” (e.g. scattering of two

electrons) processes are distinct.

The Standard Model’s particle content was not complete when the LHC was built, 20 years ago.

It was originally formulated for massless particles, but while mγ = 0, the carriers of the weak force

have mW,Z ∼ 100GeV. The mechanism of spontaneous electroweak symmetry breaking was added

via the Higgs mechanism5 to fix this. The Higgs field gives particles mass and implies the existence of

neutral scalar particle, the Higgs boson H. The Higgs boson massmH is not predicted, but must be below

∼ 1TeV to avoid violating unitarity in W+W− scattering. The width of Higgs boson ΓH increases with
4Bringing antiparticles together to make antimatter e.g. e+ + p → H (antihydrogen) is studied at CERN at the antiproton
decelerator (AD).

5More correctly the BEH mechanism after those credited with its formulation: Robert Brout, Francois Englert, and Peter Higgs
(around 1964) [5].
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Fig. 2: (a) Definition of the Mandelstam variables describing two-particle interactions; (b) examples of
Feynman diagrams, for an s-channel process (left) and t-channel (right).

Fig. 3: The Standard Model Lagrangian, including neutrino mass terms [6].

mH; for mH greater than about 1 TeV, the width would exceed the mass. The search for the Higgs boson

was the Holy Grail of the LHC, and I will use that to illustrate the techniques of particle physics (spoiler

alert: the Higgs boson was discovered, in 2012).6

For completeness, the full theoretical description of the Standard Model is given by its La-

grangian,7 presented in Fig. 3. The Lagrangian is related to the action S which describes how a physical

system changes over time, choosing the path of least action; S =
∫
L d4x.

Free quarks are not seen: this is the confinement property of QCD, they are bound together by

gluons into colourless hadrons.8 Hadrons mostly take the form of qq (mesons) or qqq (baryons), as

illustrated in Fig. 4 (a). There are many types of them, corresponding to permutations of the six quarks

q plus antiquarks q. Most of their mass comes from their binding energy. Clear evidence has now been

found at the LHC (and beyond) for “exotic” hadrons that do not fit into this scheme: tetraquarks (qqqq)

and pentaquarks (qqqqq). The detailed structure of such hadrons is actively studied, but they can be

accommodated within the Standard Model. The 70 new hadrons (and counting) so far found at the LHC,

6For more details see the lectures of John Ellis.
7For more details see the lectures of Gustavo Burdman.
8For more details see the lectures of Giulia Zanderighi.
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Fig. 4: (a) The quark composition of some common hadrons [3]; (b) new hadrons found at the LHC,
with their mass plotted versus the date of their discovery [7]—the first convincing pentaquark was found
in 2015 [8].

including such exotic types, are shown in Fig. 4 (b)—so the LHC has not “just found the Higgs boson

and nothing else”.

With the discovery of the Higgs boson, the Standard Model is complete. But there are compelling

reasons why it cannot be the full story, including:

1. Gravity: The description of gravity (General Relativity) does not fit into the model. Why is

natural scale of gravity, mP =
√
ℏc/G ∼ 1019 GeV (the Planck mass), so much larger than the

electroweak scale ∼ 102 GeV? This is known as the “hierarchy problem”.

2. Baryogenesis: Why is the world we observe made up almost entirely of matter, while it is expected

that equal quantities of matter and antimatter were produced in the Big Bang?

3. Dark matter: Astrophysical measurements such as the rotations of galaxies indicate that normal

“baryonic” matter makes up only ≈ 5% of the total energy density of the universe—what is the

rest? Is it made up of elementary particles?

Answering these key questions drives the continued use of colliders. Let me add a few details concerning

baryogenesis: in the Big Bang, matter and antimatter should have been equally produced, as in γ →
e+e−, and this would then have been followed by their mutual annihilation. We find nbaryon/nγ ∼
10−10, so why didn’t all of the matter annihilate (luckily for us)? No evidence has been seen for an

“antimatter world” elsewhere in the universe. One of the requirements to produce an asymmetric final

state (our world) from a symmetric matter/antimatter initial state (the Big Bang) is that CP symmetry

must violated [9]. CP is violated in the Standard Model (SM), through the weak mixing of quarks. For

CP violation to occur there must be at least three generations of quarks, so the problem of baryogenesis

may be intimately connected to why three generations exist, even though all normal matter is made up

from the first: (u,d, e, νe). One way to probe CP violation is through the study of quark mixing: in
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Fig. 5: (a) Fine structure seen in the temperature fluctuations of the cosmic microwave background;
(b) analysis of the corresponding observed power spectrum, compared to the model [10].

particular, hadrons containing the b quark show large CP asymmetries. However, the CP violation seen

in the SM is not sufficient to explain baryogenesis, and other sources of CP violation are expected, so

this is a good place to search for new physics.

The cosmic microwave background is the “afterglow” of the Big Bang. Since its accidental dis-

covery in 1965, the CMB has been studied in greater and greater detail, detecting our relative motion to

the rest of the universe, and eventually resolving primordial structure, as shown in Fig. 5 (a). Analysis

of its power spectrum, illustrated in Fig. 5 (b), has driven the development of the current cosmological

model “ΛCDM” (cosmological constant Λ + cold dark matter).9 The expansion of the universe is accel-

erating, as discovered in 1998, and this is ascribed to “dark energy”, a mysterious phenomenon that acts

like the cosmological constant in the Einstein field equations of General Relativity, which represents the

vacuum energy of empty space. Quantum fluctuations in the vacuum are expected, but when calculated

they exceed the observed value by 120 orders of magnitude (known as “the worst prediction in physics”,

the cosmological constant problem). The evidence for dark energy is presented in Fig. 6 (a). It is a very

rarefied phenomenon ∼ 10−27 kg/m3, and is unlikely to be detectable at colliders: it is the province of

the cosmic frontier, and it may e.g. require modifying our understanding of gravity.10

Of the remaining 28% of the mass-energy density of the universe ascribed to matter, most does not

appear to be normal “baryonic” matter—which leads to star formation and visible light. 23% is a form

of matter that only appears to interact gravitationally, and not electromagnetically, known as dark matter.

Clear evidence is seen for it from the rotation curves of stars in galaxies, as a function of distance from

their centre (see Fig. 6 (b)), as well as from gravitational lensing. Only less than 5% of the mass-energy

density is normal matter, so a lot remains to be understood! If dark matter is made up of particles, they

are of unknown mass, and could be anywhere between 10−22 eV (from galaxy formation) up to black

holes of tens of solar masses (from observational limits)—a vast space to be searched! Considering the

possible two-particle interactions between normal matter (SM) and dark matter (DM) three avenues can

be considered for investigation, as illustrated in Fig. 7:

9For more details see the lectures of Celine Boehm.
10Breaking news at the time of the school was a new suggestion that the accelerating expansion might instead be explained by

black hole evolution [13].
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Fig. 6: The dark sector: (a) the evidence for dark energy, where Ω is the ratio of mass-energy density to
the critical value for universe to be flat; cosmological measurements indicate that∼ 72% of mass-energy
density of universe should be attributed to dark energy [11]; (b) evidence for dark matter in the rotation
curve of stars in a galaxy [12].

Fig. 7: The different approaches to searching for dark matter, direct detection (left), indirect detection
(middle), and production at a collider (right).

1. Direct detection: nuclear recoil when a DM particle scatters off the atomic nucleus of a target

(the province of underground experiments);

2. Indirect detection: looking for the products of the annihilation or decay of DM particles (astro-

physics or cosmic ray experiments);

3. Production at a collider: producing DM particles by colliding SM particles at high energies (the

province of collider experiments).

All three approaches are important and are being followed, providing complementary limits. The advan-

tage of collider experiments is that parameters of the interaction are under control in the laboratory, and

reproducible. On the other hand, cosmic rays reach higher energies than today’s colliders. I will return

to this topic in the 4th lecture.
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Fig. 8: (a) The design of the Cyclotron [14]; (b) the energy of colliders over the years (on a logarithmic
scale) [15].

1.2 Particle acceleration

Charged particles are influenced by applied electric and magnetic fields according to the Lorentz force:

F = q(E + v × B) = dp/dt. The affect of the electric field E is to increase the particle’s energy,

while the magnetic field B leads to curvature of the particle trajectory. In a simple particle gun the

energy gained by an electron for an applied voltage of 1 V is 1 eV, while the energy per beam of the

LHC is 7 TeV (i.e. 7000,000,000,000 eV). To achieve such high energies, a magnetic field is used to

deflect particles in a roughly circular orbit, so that they pass the accelerating gap many times, as first

implemented in the Cyclotron back in 1929, see Fig. 8 (a). Varying the fields with time in a synchronised

way allows the particles to be kept inside a small beam pipe, giving rise to the Synchrotron, widely used

since the 1950s. The electric field to accelerate particles is applied using radio-frequency (RF) cavities,

running at a frequency of 400 MHz for the LHC.

Early experiments used the extracted beam from the accelerator, fired onto a target (“fixed target”).

The energy in the centre-of-mass frame ECM =
√
2mpEbeam,11 = 115 GeV for an LHC beam hitting a

proton target. By colliding beams rotating in opposite directions ECM = 2Ebeam = 14, 000 GeV at the

LHC, a dramatic increase! The previous collider at CERN before the LHC, the Large Electron Positron

collider (LEP), used oppositely charged beams (e+ and e−) so they follow the same trajectory through

the magnets, and stay inside a single beam pipe. The energy was limited by synchrotron radiation losses:

the power radiated dE/dt ∝ E4q2/m4ρ2 for a particle of mass m and charge q, and a bending radius

ρ, which gave ∼ 2 GeV/turn at LEP, requiring ∼ 10 MW of electrical power to replace that lost by

radiation. To reach higher energy, heavier particles can be used instead to reduce the synchrotron loss,

hence the choice of protons in the LHC.12 ELHC/ELEP = 70, but mp/me = 1800, so the synchrotron

loss at the LHC is only ∼ 6 keV/turn.

The increasing energy of colliders over the years is shown in Fig. 8 (b), illustrating the roughly ex-

ponential increase in energy versus time, although this will be difficult to maintain in the future. Lepton

colliders like LEP are good for precision studies. Hadron colliders like the LHC are typically designed to

11Relativistic kinematics need to be used: at 7 TeV a proton has 99.999999% of the speed of light.
12Or one can go back to linear acceleration, and make the accelerator very long.
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Fig. 9: (a) Event displays from experiments at LEP (above) and the LHC (below) illustrating the dif-
ference in complexity; (b) early results for the W mass vs top-quark mass compared to the prediction
as a function of the Higgs boson mass (green band), with a diagram of a quantum contribution to the
radiative corrections to the W mass (below); (c) the resulting constraints on the Higgs mass that came
from LEP [16].

probe the energy frontier and are discovery machines, but are more challenging to use for precision stud-

ies due to the complex environment: protons are not elementary particles, and have strong interactions

giving rise to many background tracks. LEP ran from 1989 to 2000 and collided e+ e− at
√
s = 91 GeV

(mZ) then 160 GeV (2 mW) and finally ∼ 210 GeV to search for the Higgs boson. Each recorded col-

lision in an experiment is known as an event, and a view of an event in one of the LEP experiments in

the plane transverse to the beams is shown in Fig. 9 (a), showing the hits in the different detectors. This

can be contrasted to a typical event at the LHC from proton-proton collisions at 13 TeV shown below,

where one gets an impression of the complex, high-multiplicity events! I will return to a discussion of

the detectors involved in making such event displays in the 2nd lecture.

Many measurements were made at LEP of the electroweak properties of the Z and W bosons.

All were consistent with Standard Model predictions e.g. for the W mass. This is subject to radiative

corrections, mW = m0/
√
1−∆r, as sketched in Fig. 9 (b), which depend in turn on the top quark and

Higgs boson masses: ∆r = f(m2
t , logmH) ≈ 3%—this is example of an indirect search, where the

measured results could constrain the Higgs mass, before it had been seen directly. Direct searches for the

Higgs boson were also made at LEP, and led to a lower limit of mH > 114 GeV (at 95% CL). Including

this along with result of the electroweak fit gave mH < 200 GeV (at 95% CL), see Fig. 9 (c), i.e. after

analysis of the LEP data the Higgs boson was predicted to be “just around the corner” for discovery at

the LHC.

The CERN accelerator complex is shown in Fig. 10. CERN has a wide variety of accelerators,

some dating back to the 1950s. The LHC machine re-uses the tunnel that was excavated for LEP. Others

(such as the PS or SPS) are used to accelerate protons before injection into the LHC, as well as maintain-

ing their own physics programmes. Following the path of the protons that are accelerated in the LHC,
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Fig. 10: The complex of accelerators at CERN; note that CNGS was an earlier neutrino beam sent to the
LNGS lab at Gran Sasso in Italy, now replaced by studies for wake-field acceleration.

they start their lives as hydrogen nuclei in a gas bottle, from which they are extracted at 90 keV; a linac

then accelerates the beam to 50 MeV over 33 m, providing one beam pulse every 1.2 s; the PS Booster

is the first synchrotron in the chain, with 157 m circumference, which increases the proton energy to

1.4 GeV in 1.2 s; the PS is the oldest operating synchrotron at CERN, with 628 m circumference, and

increases the proton energy to 26 GeV; the SPS has 6.9 km circumference, 30 m underground, and in-

creases proton energy to 450 GeV, with up to 5 × 1013 protons per cycle; it provides beam both to the

LHC and fixed-target areas. Finally the LHC itself has 26.7 km circumference and is located about 100 m

underground, with four interaction points where the major experiments are sited, shown in Fig. 11 (a).

Dipole magnets are used to deflect the particles around the ring. The resulting radius of curvature

r [m] = p [GeV] /0.3B [T]. For the LHC, the machine had to fit in the existing 27 km tunnel, about 2/3

of which is used for active dipole field. Hence r ≈ 2800 m, so to reach p = 7 TeV requires B = 8.3 T.

The beams are focused using quadrupole magnets. By alternating focusing and defocusing quadrupoles,

one can arrange for focusing in both the horizontal and vertical planes. The LHC has 1232 dipoles and

858 quadrupoles in total. Earlier hadron colliders, such as the Tevatron in the US or the SppS at CERN,

collided protons against antiprotons, with the simplification that they would follow the same trajectory in

the beam pipe, but their luminosity was limited by the available supply of p. The LHC beams are instead

formed from counter-rotating bunches of protons (see Fig. 11 (b)) so separate beam pipes are needed,

and a clever two-in-one design was devised where the two beam pipes sit inside the same magnet with

opposite B field in each pipe, visible in Fig. 11 (c). High vacuum is needed in the pipes to avoid losing

protons through collision with the residual gas: the pressure is kept below 10−10 mbar, similar to outer

space. Care needs to be taken to ensure that the beams collide at the interaction points.

To achieve the high field required to reach 14 TeV the dipole magnets are wound using cable of

niobium-titanium alloy (embedded in copper). This is a superconductor (i.e. suffers from no electrical
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Fig. 11: (a) Artist’s impression of the LHC tunnel and its experiments in underground caverns; (b) the
bunches of protons that make up the counter-rotating beams; (c) an LHC dipole magnet, with twin beam
apertures side by side.

resistance) if it is kept below the “critical surface” in the space of current density, flux density and

temperature. To reach 8.3 T the coils are cooled to 1.9 K (−271◦C, colder than outer space!). They

carry a current of 11,700 A. The cooling is performed using liquid helium, and about 700,000 litres are

required, making this the largest cryogenic system in the world.

Taking the search for the Higgs boson as a guide for the choice of the LHC parameters, there are

various possible production diagrams, shown in Fig. 12; the gg → H process dominates at the LHC,

and the predicted production cross-section is the order of a few picobarns, depending on mass.13 On the

other hand the total production cross-section at the LHC, σ(pp → anything) ≈ 0.1 barn, as shown in

Fig. 12 (c). A 10 pb cross-section for the Higgs boson corresponds to one being produced every 1010

interactions! (and this is further reduced by the branching ratio to a given final state and the efficiency

to reconstruct that state). Experiments have to be designed so that they can separate such a rare signal

process from the background. The rate of interaction = L · σ, where luminosity L is a measure of how

intense the beams are (in units cm−2s−1). A “fill” of the LHC with beam can last a few hours, with the

luminosity gradually decreasing as the protons interact, until eventually the beams are dumped and the

machine refilled.

The luminosity of two colliding beams is given by: L = N1N2kbf/A, where (at the LHC)

N1 = N2 = 1011 p/bunch, the number of bunches kb = 2808, the revolution frequency f = c/27 km =

11 kHz, the effective area of the beam A ≈ 4π σx σy, and the transverse beam size σx ≈ σy ≈ 16µm

(RMS). The beams are strongly focused at the interaction points (IP) to maximize the luminosity. There

is an additional factor O(1) that accounts for the beam crossing angle. This gives L = 1034 cm−2s−1

13Reminder: cross-section σ measures the probability of a reaction taking place; its unit is the barn (b): 1 barn = 10−24cm2

(∼ area of the nucleus), so 1 pb = 10−36cm2.
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Fig. 12: (a) the Higgs production cross-section as a function of its mass [17]; (b) the various diagrams
that contribute; (c) a compilation of cross-sections for different processes versus the collision energy [18].

(the design luminosity of the LHC), corresponding to about 0.6 amps of beam current. The integrated

luminosityLint =
∫
Ldt is what the experiments care about: it gives the total number of events produced

for a given process, when multiplied by its cross-section. Assuming ∼ 107 seconds of physics running

per year (about 4 months, operating 24 hours/day) gives Lint = 100 fb−1/year (“inverse femtobarns”).14

The luminosity can also be expressed in accelerator-physics terms, replacing A in the equation above

with εβ∗/γ: the emittance ε quantifies the beam brightness, given by its area in (x, x′) phase-space, and

Liouville’s theorem [19] states that ε is a conserved quantity around the ring; β∗ is the focusing strength

at the IP (a parameter of the beam-optics function) and γ is the relativistic boost (= E/m0).

At the design luminosity of the LHC the stored energy in each beam is 2808 bunches ×1011p ×
7TeV = 400 MJ. This corresponds to the explosive energy of about 100 kg of TNT, or the kinetic energy

of a train travelling at 165 km/h! Extreme care has to be taken that none of this energy is lost into the

superconducting magnets—it would cause them to quench, i.e. lose superconductivity and heat up, with

potentially stressful consequences for the magnet construction—so an efficient collimator system and

beam dump are essential, using e.g. graphite absorbers. Magnets have to be “trained” to reach high field,

which requires many quenches, and is why the LHC beam energy is currently limited to 6.8 TeV, i.e. not

quite reaching the design energy of 7 TeV (yet).

14An integrated luminosity of 100 fb−1/year means that a process with cross-section of 1 fb will occur with a rate of 100
times/year (on average).
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Fig. 13: (a) Major particle physics laboratories around the world [21]; (b) the luminosity of the LHC
as a function of time, instantaneous (above) and integrated (below), as delivered to the general-purpose
experiments ATLAS and CMS; (c) preliminary schedule for HL-LHC.

1.3 Colliders around the world

The title of this section brings to mind Fermi’s speculation in 1954 about the highest possible energy that

could be reached on Earth. He assumed fixed-target operation, 2 T magnets, and only reached 3 TeV for

a circumference of 50,000 km encircling the entire world, with an estimated cost of 200 billion dollars.

The LHC achieved 13.6 TeV, 50 years later, at a fraction of that cost (∼ 5 B$) in a 27 km tunnel:

due to unforeseen developments in technology (8 T superconducting magnets) and clever idea (collider

operation) that Fermi had not foreseen. The moral of the story is that we should keep optimistic, and

look out for future breakthroughs!15 Meanwhile, the colliders operating around the world, currently or

recently, will be discussed.

The major particle physics laboratories are shown in Fig. 13 (a). CERN is the largest: it is named

from its original title Conseil Européen pour la Recherche Nucléaire, but is more usually referred to as the

European laboratory for particle physics. It was founded in 1954 by intergovernmental treaty, and now

has 23 member states, 10 associate member states, 4 observers (including the US), and about 50 interna-

tional cooperation agreements with non-member states. The CERN annual budget is 1.3 BCHF, provided

by the member states based on their net income. It is devoted to science for peace, with no military re-

search permitted and all results published—those from the LHC are all open access. CERN’s community

includes more than 16,000 people from over 110 nationalities, made up of 2700 staff, 800 post-doctoral

fellows, 12,700 users and other associates, and 3000 PhD students from all over the world. The labora-

tory takes care of running the accelerators on its site (such as the LHC), while the experiments are built

and run by collaborations of users from institutes around the world—ATLAS and CMS each have about

15Pop quiz: if its circumference of 50,000 km is increased by 1 m, how far from the earth’s surface would Fermi’s collider
move? (the answer is given in Ref. [20]).
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Table 1: The parameters of colliders that are currently in operation, or which recently completed.

Lab. Country Collider Beams Energy Lumi. Circ. Dates Experiments
[GeV] [1030/cm2s] [km]

FNAL US Tevatron pp 900+900 400 6.3 1983-2011 CDF, D0
CERN Europe LEP e+e− 45+45 (Z) 100 26.7 1989-1995 ALEPH, OPAL,

LEP II 104+104 1996-2000 DELPHI, L3
SLAC US SLC e+e− 45+45 (Z) 3 3.2∗ 1989-1998 SLD
DESY Germany HERA e±p 27+920 15 6.4 1992-2007 H1, HERMES,

ZEUS, HERA-B
LNF Italy DAFNE e+e− 1+1 (ϕ) 240 0.1 1999-2018 KLOE
SLAC US PEP II e+e− 3+9 (Υ) 5000 2.2 1999-2008 BaBar
KEK Japan KEKB e+e− 4+7 (Υ) 13000 3.0 1999-2010 Belle

SuperKEKB 46000 2019- Belle II
BNL US RHIC pA, AA 250+250 160 3.8 2000- STAR, PHENIX
IHEP China BEPC II e+e− 2+2 (ψ) 10 0.2 2006- BES III
CERN Europe LHC pp, pA, 6800+6800 25000 26.7 2009- ALICE, ATLAS,

AA CMS, LHCb, ...
∗linear

3000 authors.16

There are many thousands of accelerators in operation today, mostly for medical or industrial

applications, but only a few colliders—the latter are only used for particle physics research. Current and

recent examples are listed in Table 1. They can be grouped into different categories: (i) particle factories,

(ii) heavy-ion, (iii) electron-proton, and (iv) discovery machines.

Particle factories arrange their beam energy to sit on the resonance of a known particle, so that

they are copiously produced. LEP was a Z factory in its first phase (as was SLC) then moved to higher

energy, above the W+W− threshold (since the W is charged, it cannot be made singly in e+e− colli-

sions). DAFNE’s energy was chosen to sit on the ϕ (ss meson) which decays to K+K− or K0K
0. BES

III sits on (or near) the ψ (cc), decaying to charm and τ -leptons. BaBar and Belle were B factory ex-

periments, with their colliders tuned to sit on the Υ(4S), an excited state of the Υ (bb meson), which is

heavy enough to decay to BB meson pairs. In the future, plans are being made for a Higgs factory (I will

return to this in the 4th lecture). In B Factories the beam energies are chosen to be asymmetric between

e+ and e− so that the BB pairs are boosted in the laboratory frame, allowing the lifetime information to

be measured, important for CP violation studies. The Belle collider has been upgraded, to reach higher

luminosity: now known as SuperKEKB it is one of the few colliders currently operating outside CERN

(in KEK, Japan), with beam spot σy ≈ 100 nm (referred to as “nanobeams”). It currently holds the

world record for luminosity of 4.6× 1034 cm−2s−1, as a leading programme on the so-called “intensity

frontier”. Belle II aims to integrate 50 ab−1 (= 50,000 fb−1) in its current run and will compete with

LHCb in the study of flavour physics (b hadrons, etc.).17

16Specific programmes to encourage CERN-Latin America collaboration have included HELEN: High-Energy physics Latin-
American European Network (2005-9) and EPLANET: European Particle physics Latin-American NETwork (2011-15).

17The cross-section is much larger at the LHC energy for LHCb, so 1 fb−1 there is equivalent to about 1 ab−1 at a B factory.
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Heavy-ion colliders include RHIC (the Relativistic Heavy Ion Collider) that collides the nuclei

of heavy atoms (Al, Au, Cu, Zr, Ru, U) as well as protons. The atoms are fully ionized before being

accelerated. Due to their large mass, the energy density that can be achieved in the collisions is phe-

nomenal, and the properties of matter at high temperature and density can be studied, as it was soon

after the Big Bang (< 10−6 s): hadrons are expected to “melt” to form a quark-gluon plasma. The LHC

can also collide heavy-ions, usually Pb-Pb, although this requires a dedicated mode of operation so is in

competition with the pp running, with about 4 weeks/year typically being devoted to heavy-ion running.

HERA was a classic example of an electron-proton collider. The main physics programme there

was deep inelastic scattering, allowing detailed study of the proton structure. The EIC (Electron-Ion

Collider) has been approved in the US to continue such studies, including polarized electrons to study

spin effects. It aims to be operating at BNL by around 2030.

The final category of collider types is discovery machines like the Tevatron, the previous highest

energy collider before the LHC. It collided protons and antiprotons up to 1.8 TeV. The experiments

integrated about 10 fb−1 of luminosity, and made important discoveries such as the top quark (1995),

before it finished operation in 2011. The SSC (Superconducting Super Collider) was proposed in the US

as a competitor to the LHC, with circumference of 87 km and beam energy 20 TeV, but was cancelled

in 1993 after cost overrun. Like them, the LHC is a discovery machine, pushing to the highest possible

collision energy: the “energy frontier”.

The LHC time-line illustrates the long-term nature of modern high-energy collider projects:

1984: first discussions took place of installing the LHC in tunnel of LEP, at a workshop in Lausanne;

2008: during the LHC startup an “incident” occurred with a magnet interconnect: a superconductor

joint failed, causing catastrophic He-release that caused serious local damage to the magnets;

2010: the machine started up again, at lower energy (3.5 TeV beams, Run 1);

2016: run with 6.5 TeV beams (Run 2);

2022: run with 6.8 TeV beams (Run 3, in progress);

2029: high luminosity running (HL-LHC) is expected to start.

After the early teething trouble, the LHC has performed superbly, with over 200 fb−1 delivered to the

general-purpose experiments, see Fig. 13 (b).18 It is planned to continue running the LHC for another 20

years, with upgrades to reach higher luminosity (HL-LHC), see Fig. 13 (c).

1.4 Experiments at the LHC

The LHC collides protons, that are composite objects made up of partons (quarks and gluons), as illus-

trated in Fig. 14 (a). For each proton there is a probability that an individual parton carries a fraction “x”

of the proton momentum, the “parton distribution function” shown in Fig. 14 (b). The effective centre-

of-mass energy
√
s =
√
x1x2s. Partons typically only carry about 10% of the proton momentum, hence

7 TeV proton beams are needed to explore up to around 1 TeV in the parton collision centre-of-mass.

The initial longitudinal momenta (along the beam axis, z) of the collision is not known (x1 ̸= x2) and

particles escape down the beam-pipe, so it is usual to work in the transverse plane where momentum is

conserved. The variables used to describe pp interactions are:
18The luminosity delivered to LHCb can be tuned separately to the general-purpose experiments, and is chosen to be about an

order of magnitude lower, to limit the complexity of the collisions; that delivered to ALICE is lower still.
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Fig. 14: (a) Schematic collision of partons from protons; (b) the parton distribution functions [22].

– Transverse momentum (perpendicular to the beam): pT = p sin θ, where θ is the dip angle

relative to the beam axis;

– Azimuthal angle: ϕ, around the beam axis;

– Rapidity: y = 1
2 ln

E+pz
E−pz ;

– Pseudorapidity: η = − ln tan θ/2 (equal to rapidity in the massless limit, and easier to calculate).

pT, ∆y and ∆ϕ are invariant under Lorentz boosts parallel to the z axis, i.e. the same when measured in

the centre-of-mass or lab system. Particle production is roughly uniform when plotted vs rapidity, just

extending to higher y as the energy increases.

Most pp interactions involve small momentum transfer: particles in the final state have large lon-

gitudinal momentum but small pT: these are known as soft or “minimum bias” events. In a hard scatter,

large-x partons collide head-on, and this comes with an “underlying event” from beam remnants, mul-

tiple parton interactions and radiation. Pileup refers to when there is more than one hard scatter in the

same beam crossing, while out-of-time pileup (also known as spillover) refers to electronic signals be-

longing to earlier beam crossings. At the nominal LHC luminosity, the rate of inelastic pp interactions:

Lσtot = 1034 cm−2s−1 × 0.1 b = 109/s. The bunch crossing rate is given by the crossing frequency

(11 kHz) × the number of bunches (2808) / 0.8 = 40 MHz, where the factor 0.8 is the fraction of the

ring filled with bunches (gaps are needed for injection and beam dump). The ratio of these two numbers

implies a pileup of about 25 pp interactions per bunch crossing, as illustrated in Fig. 15 (a), increasing

with L, which gives an indication of the high occupancy seen in the general-purpose experiments.

If a pair of partons from each proton scatter off each other, this will usually lead to multiple jets

of hadrons in the final state, but few leptons or photons; if, on the other hand, leptons with high pT are

observed then something interesting may have happened, such as Higgs boson production and decay.

High pT leptons and photons are important experimental signatures of such interesting events. Neutrinos

and other escaping particles lead to missing energy, so the general-purpose detectors are designed to

be “hermetic”, i.e. as far as possible to catch all particles, over a large fraction of the 4π solid angle.

However, energy can always escape down the beam pipe, so they measure the transverse energy balance

to detect escaping particles: missing ET is another important signature of interesting physics. Different

types of massive particles have a chance of being created in each event, given by their cross-section.

Most decay immediately into a few stable particles which are seen in the detectors. To look for the
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Fig. 15: (a) View of tracks in a general-purpose experiment at the LHC, showing the view along the
beam axis with many piled-up interactions [23]; (b) the branching ratios of the Higgs boson to different
final states as a function of its mass [24].

various decay products multi-component detectors are used, surrounding one other like layers of an

onion: these are the “sub-detectors" of the experiment. General-purpose detectors are usually cylindrical,

with central barrel and removable endcaps for access to the sub-detectors. Each component measures

different properties such as the energy or particle type of decay products, so the particles originally

created in the collision can be identified. In particular, these experiments were designed to discover the

Higgs boson. Since it couples to mass, the Higgs boson tends to decay into the highest mass particles that

are kinematically allowed, as seen in Fig. 15 (b). At high mass, H → ZZ∗ → 4µ is the easiest channel

to detect. At low mass, the dominant H→ bb has a huge QCD jet background, so H→ γγ is preferred

instead: despite its low branching ratio, it is easier to pick out experimentally.

The LHC has four interaction points (IP) around which detectors are installed, shown in Fig. 16.

Two are occupied by the general-purpose experiments ATLAS and CMS. They concentrate on high-

pT physics, such as searching for the Higgs boson and new particles, or precision physics with heavy

particles (W, Z, top quark). ATLAS (A Toroidal Lhc ApparatuS, a rather contrived acronym) is the

biggest HEP experiment ever, about the size of a five-story building: it is 45 m long and weighs 7000

tons; CMS (Compact Muon Spectrometer) might be compact compared to ATLAS, but is almost 2×
heavier: 21 m long, weighing 12,500 tons. The third experiment is dedicated to flavour physics—the

physics of particles containing the b (beauty) and c (charm) quarks: LHCb. The fourth is designed for

the study of heavy-ion collisions: ALICE (A Large Ion Collider Experiment) investigating properties of

nuclear matter at high temperature and density. There are also other interesting (smaller) experiments

sited near the large ones:

– TOTEM: measures protons that escape down the CMS beam pipe, for the total cross-section

measurement and diffractive production;

– LHCf: studies forward production of neutral particles, at the ATLAS IP;
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Fig. 16: The major LHC experiments: (a) ATLAS, (b) CMS, (c) LHCb, (d) ALICE.

– MoEDAL: searches for magnetic monopoles at the LHCb IP, using e.g. plastic sheets to detect

highly ionizing tracks;

– FASER and SND: new experiments sited along the beam axis about 500 m either side of ATLAS,

looking for penetrating particles, dark matter, or neutrinos.

1.5 Summary of the first lecture

The Standard Model is a remarkable theoretical framework that is consistent with essentially all particle

physics measurements to date, but there are strong reasons why it cannot be the full description. Particle

colliders are the best way to reach the highest possible energies in the laboratory, to study the structure

of matter and confront it with theory. There are various types, including particle factories at the intensity

frontier. The LHC is the highest-energy collider in the world, at the energy frontier: based at CERN, it

was designed to provide proton collisions at a high enough energy (14 TeV) and high enough luminosity

(over 1034 cm−2s−1) to discover the Higgs boson and search for new particles. The experiments at the

LHC have been designed to study the collisions and directly observe any new particles that are produced:

two general-purpose (ATLAS, CMS) and two dedicated experiments (ALICE, LHCb), as well as five

smaller experiments (TOTEM, LHCf, MoEDAL, FASER, SND), which will feature in the 3rd and 4th

lectures. Meanwhile, the next lecture aims to explain why the big experiments look like they do, and

how they detect particles.
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Fig. 17: Interaction of charged particles with matter [26]: (a) scattering off a nucleus; (b) multiple
scattering in a layer of material; (c) the distribution of scattering angle; (d) functional dependence of
the cross-section on the scattering angle, and the scattering distribution’s width with momentum; (e) the
dependence of ionization energy loss on βγ, for different materials [6].

2 Detectors and data

We wish to reconstruct as fully as possible the events where particles from the colliding beams have

interacted, typically with many particles emerging from the interaction point. Tracking detectors deter-

mine whether the particles are charged, and (in conjunction with a magnetic field) measure the sign of

the charge and the momentum of the particle. Vertex detectors are a subset of tracking detectors that are

very precise, mounted close to the interaction point, to measure the vertex structure of the event: e.g. to

see if there are short-lived decays. Calorimeters detect neutral particles, measure the energy of particles,

and determine whether they have electromagnetic or hadronic interactions: typically with separate sub-

detectors for the two interactions. Particle identification detectors determine what type of particles were

produced: most experiments have muon detectors, and use information from their tracking detectors such

as the amount of ionization. Others have dedicated sub-detectors for this, such as RICH detectors. These

different detector types will be discussed in turn.19

Particles can only be detected if they deposit energy in the material of the detector. The cross-

section as a function of solid-angle Ω for a particle with charge z to interact elastically with a target of

nuclear charge Z, as illustrated in Fig. 17 (a), is given by the Rutherford formula [25]:

dσ

dΩ
(θ) = 4zZr2e

(
mec

βp

)2 1

sin4 θ/2
, (2.1)

where θ is the scattering angle of the particle and re is the classical radius of the electron. However,

scattering does not lead to significant energy loss, since nuclei are heavy. In a sufficiently thick layer of

material a particle will undergo multiple scattering, which is relevant to tracking, see Fig. 17 (b). The

final distribution of scattering angle shown in Fig. 17 (c) is result of many random scatters, leading to a

19This is the most technically applied of the lectures: those of you studying theoretical physics can treat this as broadening your
scientific culture, to understand how experiments actually work.
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Fig. 18: (a) Cross-section through a wire chamber cell, showing the ionisation deposited by a charged
particle passing through [27]; (b) the increasing electric field as the radius reduces, until the threshold
for further ionization is passed; (c) an array of wires forming an MWPC.

Gaussian distribution (by the central limit theorem), with width:

θ0 ∝
1

p

√
L

X0
, (2.2)

where L is the length of the layer, and X0 is the “radiation length”, a property of the material. As indi-

cated in Fig. 17 (c) there are non-Gaussian tails to the multiple-scattering distribution, due to occasional

large scatters; also illustrated in Fig. 17 (d) are the dependence of the cross-section for scattering on θ,

that is strongly forward peaked, and the width of the multiple-scattering distribution on momentum, that

falls off like 1/p.

Energy is deposited through discrete collisions with the atomic electrons of the absorber material

(as noted above, collisions with nuclei are not important for energy loss), which leads to ionization. The

Bethe-Bloch formula for energy loss by ionization, dE/dx, depends only on the velocity β = v/c of the

particle [6]: 〈
dE

dx

〉
= 4πNAr

2
emec

2z2
Z

A

1

β2

[
1

2
ln

2mec
2γ2β2

I2
Tmax − β2 − δ

2

]
, (2.3)

where the relativistic boost γ = E/m0c
2 = 1/

√
1− β2, and details of the other parameters can be

found in [6]. The resulting dependence of dE/dx on βγ is plotted in Fig. 17 (e) for a variety of different

materials. It is striking that the dependence is similar for most materials when plotted this way, except

for the lightest ones (H2 and He). In particular, there is an increase at low βγ, ⟨dE/dx⟩ ∝ 1/β2 then the

curve goes through a minimum for βγ ≈ 3, referred to as “minimum ionizing particles” (MIP), before a

gradual “relativistic rise” in the ionization loss at higher βγ.

2.1 Tracking detectors

A simple wire chamber is illustrated in Fig. 18: an anode wire is placed at high voltage (positive HV) in

a gas volume, and electrons liberated by ionization in the gas drift towards the wire. The electrical field

close to the wire is sufficiently high (above 10 kV/cm) for the drifting electrons to gain enough energy

to ionize the gas further, leading to an avalanche: an exponential increase of number of electron-ion
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Fig. 19: Micropattern gas detectors [27]: (a) GEM, showing the perforated foil and the resulting field
lines (b) GEM foils arranged in a stack to form a detector; (c) Micromegas, showing the wire grid and
how it is arranged in the detector; (d) cross-section through a Micromegas chamber showing the signal
formation.

pairs to several thousand, so that the signal becomes detectable with electronics. Simply repeating the

cell using multiple wires gives the Multi-Wire Proportional Chamber (MWPC). “Drift chambers” are a

variant where the time taken by the ionisation to reach the wire is measured, which allows the position

of the incident particle to be determined more accurately.

Wires are not the only way to provide the accelerating field required. Modern versions of gaseous

tracking detectors use Micro-Pattern Gas Detectors (MPGD): these allow higher precision, can operate

at a higher rate and survive longer. Examples illustrated in Fig. 19 are the GEM (Gas Electron Multi-

plier) which uses holes in a foil for the accelerating structure; and Micromegas, which uses a fine wire

mesh. The time projection chamber (TPC) shown in Fig. 20 could be considered the “ultimate” gaseous

detector: the detection planes (wire chambers or MPGDs) are moved to the end-plates and the ionization

drifts across the full volume, with its arrival time measured to determine the longitudinal coordinate.

There are drawbacks of gaseous detectors: the charge drift is slow ∼ 3 cm/µs, so it can take tens

of microseconds for the charge to reach the end-plate of a TPC, causing events to overlap in a high-rate

environment. The small primary signal needs amplification, which can lead to ageing and rate limitations.

They traditionally have limited spatial resolution (∼ 100µm), require massive frames to support the wire

tension, and the supply of services such as HV and gas flow. Solid-state (usually silicon) trackers address

some of those limitations, and are at the heart of many modern collider detectors, see Fig. 21 (a). They

are required to be radiation hard, and have low mass (be thin) to minimize the multiple scattering of

detected tracks.

Semiconductors such as silicon crystals are doped with impurities to alter their band structure (n

or p-type, typically using phosphorus or boron, see Fig. 21 (b)). Features such as strips are implanted

with different doping to the bulk material. Applying an external reverse voltage to a p-n junction depletes

the bulk of free charges, as illustrated in Fig. 21 (c). Bringing two doped regions in contact leads to a

218



COLLIDER EXPERIMENTS: THE LHC AND BEYOND

Fig. 20: (a) Cut-away view of the ALICE TPC; (b) display of an event taken in November 2022 showing
a heavy-ion collision in the upgraded TPC, which uses GEMs for the readout chambers [28].

Fig. 21: (a) Silicon detectors arranged to form a tracker barrel, with (below) the many wafers tiling the
CMS pixel barrel and endcap wheels; (b) the crystal structure of silicon, doped with phosphorus (above)
and boron (below); (c) depletion layer that results when two doped silicon wafers are brought together
(above) and the detection of a crossing charged particle (below); (d) how tracks are formed by “joining
the dots” from hits on each layer of a silicon detector [22].

“depletion zone” with few free charges. The resulting electric field separates any newly created free

charges, such as those from the ionisation of a passing charged particle, leading to a signal current that

can be detected with low-noise electronics. The implants can be chosen to be microstrips with pitch

∼ 50µm, providing an accurate measurement of one coordinate, see Fig. 22. The other coordinate

can be measured with strips at a different angle, so that one knows that the track passed where the hit

strips cross. At high occupancy this can lead to ambiguities, which can be countered by moving to pixel

detectors. Trajectories are reconstructed from consecutive measurements as particles traverse layers of

silicon sensors filling the detector volume, see Fig. 21 (d).
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Fig. 22: (a) Cross-section through a silicon microstrip detector; (b) photograph of a typical microstrip
detector, extended in length by wire-bonding two wafers [26].

Fig. 23: (a) Typical layout of readout electronics [22]; (b) neutron fluencies around the ATLAS interac-
tion point, where the beam axis is at the bottom of the plot [29].

The signals are readout via dedicated application-specific integrated circuits (ASIC). Pulses are

small: 80 electron-hole pairs per mm × 150 mm-thick detector = 12,000 electrons = 2 fC. The readout

electronics as sketched in Fig. 23 (a) can measure the time-over-threshold or just the presence of charge

(binary). At the LHC bunch crossing rate of 40 MHz, the time between successive bunches is 25 ns. Fast

electronics is therefore required, with a shaping time less than 25 ns to avoid overlapping events from the

previous bunch crossing. The electronics also needs to be radiation resistant: the dose from pp collision

products is high, especially in the forward region, as illustrated in Fig. 23 (b): > 1015 n/cm2 over 10

years, so deep sub-micron chip technology is used (0.25µm CMOS, or now even smaller feature sizes).

Experiments use a magnetic field to separate charges of particles and measure their momenta. The

choice of magnet configuration determines the overall experiment layout. In a uniform magnetic field,

charged particles follow circular trajectories in the transverse plane: R = pT/0.3B using units [m],

[GeV], [T], and in 3D the trajectories are helical, as shown in Fig. 24 (a). The tracks of charged particles

are measured using particle detectors with given spatial precision σ(x), and the pT resolution:

σ(pT)

pT
∝ σ(x) · pT

B L2
. (2.4)
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Fig. 24: (a) Effect of a magnetic field on a charged particle, in projection (left) and in 3D (right); (b) an
iconic picture of the toroidal magnet of ATLAS, with (inset) the field configuration; (c) the solenoidal
magnet of CMS with (inset) the field configuration [26].

Fig. 25: (a) Definition of track parameters in theR-ϕ projection (above) andR-z projection (below) [22];
(b) display of tracks in a simulated Z decay in the same projections; (c) dependence of the tracking
uncertainty on momentum; (d) plot of track residuals [31].

To measure to higher momentum, one needs to increase the field B or the length L that the track is

measured over. General-purpose experiments at the LHC were designed to measure muons out to 1 TeV:

they used the highest available field (superconducting magnets, up to 4 T) but still need to be very large,

L ∼ O(20m).

The type of magnet construction dominates their appearance. ATLAS has a toroidal field, illus-

trated in Fig. 24 (b): this has the advantages of being air cored and providing stand-alone muon measure-

ment, but drawbacks of a tricky endcap configuration and requiring an additional solenoid for central

tracking. CMS has a more traditional solenoidal field, see Fig. 24 (c): with higher flux density (4 T)

and allowing for a more compact layout, but at the cost of being very heavy (from the iron of the return
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Fig. 26: (a) Cut-away view of a hybrid vertex detector [32]; (b) cross-section of a monolithic vertex
detector [33]; (c) the LHCb VELO, where hybrid chips are visible as L-shaped elements for each layer,
mounted in mechanics for retracting the detector half; (d) example of a monolithic vertex detector, the
ALICE ITS.

yoke), and giving limited space for the calorimeter inside the coil. In projection, helical tracks give cir-

cular segments in (x, y),20 or sinusoids in (y, z), which are almost straight lines for high pT tracks in the

longitudinal plane of the beam axis. A helical trajectory is defined by five track parameters: two impact

parameters (d0, z0), two angles (θ, ϕ), and the track curvature ∝ q/pT for charge q, see Fig. 25.

The CMS tracker, illustrated in Fig. 21 (a), has 210 m2 of silicon detectors! Thousands of wafers

all have to be carefully aligned to each other e.g. using tracks that pass through overlap region between

two adjacent wafers. Tracks are seeded with hits in the vertex detector, then a Kalman filter [30] is used

for track extrapolation, with a subsequent fit to the helical trajectory. Recall σ(p)/p ∝ σ(x) · pT from

Eq. 2.4, and the multiple scattering contribution to the measurement error σ(x) ∝ θ0 ∝ 1/p from Eq. 2.2,

so the contribution to the momentum resolution from multiple scattering is constant vs momentum, as

shown in Fig. 25 (c). The resolution can be determined by refitting the track after removing one of its hits,

and comparing the “residual” distance between the hit and the refitted track—an example of a residual

plot from the CMS tracker is shown in Fig. 25 (d). Generally it is harder to measure the curvature of

straighter (higher-momentum) tracks, so the momentum resolution degrades at high momentum, and it

is harder to extrapolate lower-momentum tracks: scattering in material matters, so the impact-parameter

resolution is worse at low momentum.

Silicon pixel detectors are used for the precise vertex detectors. There are two major varieties,

shown in Fig. 26: hybrid (with separate sensor and electronics chips) or monolithic (where the sensor

and electronics are on the same silicon wafer). The LHCb VELO is an example of the first type, with

55µm×55µm pixels, bump-bonded to a readout chip. The sensors approach to a few mm from the LHC

20For Cartesian coordinates with the beam axis along z, y vertical, and x roughly horizontal to make up a right-handed system.
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Fig. 27: Energy loss of (a) electrons and (b) photons passing through matter, as a function of energy,
with the dominant processes highlighted [6, 26].

beams with a complex motorized system that is used to retract the detector while beams are injected. An

incident with vacuum system occurred in January 2023 leading to the RF foil that separates the detector

from the LHC vacuum been deformed by about 1 cm—it will have to be replaced at end of the year.

The ALPIDE chip of the ALICE ITS is an example of a monolithic vertex detector: each chip has

15×30mm2 area with over half a million pixels organised in 1024 columns and 512 rows. The sensitive

volume is a 25µm-thick layer of high-resistivity p-type silicon (> 1 kΩ cm) grown epitaxially on top of

a standard CMOS wafer. It is radiation tolerance to beyond 1013 n/cm2 (1 MeV equivalent), which is

sufficient for the application in ALICE [33].

2.2 Calorimeters

Calorimeters measure energy: in a thermodynamics lab the temperature change of a known volume of

water can be measured to determine the energy released in a reaction, sharing the reaction energy with

many molecules evenly to determine its total. HEP calorimeters convert the energy of an incoming single

particle into many lower-energy particles, and the number of particles can be counted to determine the

total original energy. Basic properties of calorimeters include the use of dense material to cause particles

to interact; the inclusion of active material to produce a measurable quantity: ionization charge or light;

and they are thick, aiming to completely contain the energy in the detector. Calorimeters complement the

magnetic spectrometers: they also measure the energy of neutral particles, and their energy resolution

improves with energy while the track resolution degrades.

Electrons are stable particles and have low mass (me = 0.51MeV). When passing through matter

they produce Bremsstrahlung radiation, and this effect scales with the radiation lengthX0 of the material:

seen earlier in the context of track scattering, it is the mean distance to reduce the energy by 1/e,21 see

Fig. 27 (a). Photons interact with material via various processes, dominating at different energies, as

shown in Fig. 27 (b)—at high energy they produce e+e− pairs. Put those effects together at high energy:

1γ → 2e → 2γ → 4e..., leading to a shower of particles, as sketched in Fig. 28 (a). In this way

electromagnetic calorimeters convert the energy of incoming particle into many lower-energy particles,

until reaching the critical energy Ec at which showering stops. Eventually, the low-energy particles

deposit their kinetic energy by ionizing or exciting the absorber. Hadronic calorimeters use showers

21e = base of natural logarithms ≈ 2.718.
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Fig. 28: (a) Electromagnetic shower from Bremsstrahlung and pair production; (b) contributions to a
hadronic shower; (c) shower profiles vs depth in the calorimeter [22].

Fig. 29: (a) Simulation of an electromagnetic shower (above) and hadronic shower (below), where the
less uniform energy deposition of the latter can be seen, the EM component shown in red comes from
π0 → γγ decays; (b) energy resolution of the CMS ECAL; (c) crystals of the CMS ECAL (above) and
construction of the ATLAS Tilecal (below) [34].

based on nuclear interactions, as sketched in Fig. 28 (b). The basic principle is to determine the total

number of particles produced in the shower, which is proportional to the position of the peak of the

energy deposit, as shown in Fig. 28 (c).

There are two major classes of calorimeter construction:

– Homogeneous: a single medium serves both as absorber and active detector. Plastic scintillators,

glass or crystals produce light, that is read out by photodiodes or photomultipliers—they tend to

be expensive.

– Sampling: reduce cost, by using layers of cheap, dense passive absorber (Pb, Cu, Fe) for the

shower development alternated with active detector layers (silicon, scintillators or liquid argon)

for signal measurement.

Scintillators are materials that convert ionization energy into light, typically by excitation of molecular

energy levels.

Electromagnetic showers scale with the radiation length X0 (= 1.8 cm for Fe, for example).

Hadronic showers scale with the nuclear interaction length λI (= 17 cm for Fe). λI ≫ X0 so hadronic

showers are longer, and hadron calorimeters are placed behind the electromagnetic ones (see Fig. 29 (a)).
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Fig. 30: (a) Traditional jet energy measurement in calorimeters; (b) the particle flow approach, using
the more precise tracking information for charged showers; (c) simulation of an event in an e+e− Higgs
factory experiment, with deposits shown in the high-granularity calorimeters [35].

The general expression for the energy resolution of a calorimeter:

σ(E)

E
=

a√
E
⊕ b⊕ c

E
, (2.5)

where a is known as the “stochastic” term, coming from fluctuations in the number of signal processes;

b is the constant term, due to inhomogeneities, bad cell inter-calibration, or non-linearities; and c is

the “noise” term: due to electronic noise, radioactivity, or pileup. The transverse size of a shower is

given by the Molière radius: RM ≈ (21MeV/Ec)X0. The position of the shower maximum: tmax =

(lnE0/Ec)X0/ ln 2 for EM calorimeters. As an example, for an incident particle with E0 = 100GeV

in lead glass, Ec = 11.8MeV, giving tmax ≈ 13X0, RM = 1.8 ·X0 ≈ 3.6 cm.

Examples of electromagnetic calorimeters: CMS uses scintillating crystals (PbWO4), giving very

good energy resolution: σE/E = 2.8%/
√
E ⊕ 0.3% ⊕ 0.128GeV/E, as shown in Fig. 29 (b), but

with no longitudinal segmentation; ATLAS uses a sampling calorimeter: Pb plates embedded in liquid

argon to collect the charge produced in showers: σE/E ∼ 10%/
√
E, but with the advantage of being

very radiation hard. Due to their large size hadron calorimeters are usually sampling, to save cost. An

example is the ATLAS Tilecal: iron plates interleaved with scintillator, see Fig. 29 (c). Wavelength

shifting fibers trap the light via internal reflection and transport it to photon detectors that convert it into

electrical signals: σE/E ∼ 50%/
√
E ⊕ 0.03.

In general the hadronic component (h) of a hadron shower produces a smaller signal than the EM

component (e) so e/h > 1. Compensating hadron calorimeters seek to restore e/h = 1 to achieve better

resolution and linearity e.g. using 238U as absorber, where its fission releases additional neutrons (as was

done in ZEUS and L3); or dual readout with different fibres (scintillating/Cherenkov)—discussed for use

in future colliders.

The particle flow technique is at borderline between tracking, calorimetry and particle ID. In a

typical jet 60% of the energy comes from charged hadrons; 30% is from photons (mainly from π0); and

10% is from neutral hadrons (n and K0
L). The traditional approach to jet reconstruction is to measure

all of the jet energy in the calorimeters, as shown in Fig. 30 (a), in which case ∼ 70% of the energy is

measured in the HCAL, and its relatively poor resolution limits the jet resolution: σE/E ∼ 60%/
√
E. In

the particle flow approach charged particles are well measured in the tracker, photons in the ECAL, and
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Fig. 31: (a) Schematic cross-section of a photomultimplier, showing the electron amplification at the
dynodes [36]; (b) a multi-anode photomultiplier with (insert) its internal structure [37]; (c) quantum
efficiency of a production series of vacuum photodetectors [38]; (d) photon detection efficiency of a
SiPM for different values of one of the operating voltages, vs wavelength [39].

neutral hadrons (only) in the HCAL, as shown in Fig. 30 (b). As a result, only ∼ 10% of the jet energy

is taken from the HCAL, and σE/E ∼ 30%/
√
E can be achieved. The main remaining contribution to

the jet energy resolution comes from the confusion of contributions, from overlapping showers, etc. For

the particle flow approach it is important to have high granularity calorimeters to help the (complicated)

pattern recognition, as illustrated in Fig. 30 (c). This is the approach being studied for detectors at a future

Higgs factory, that I will return to in the 4th lecture. A similar technology (Si-W) has been adopted for

the CMS forward calorimeter upgrade (HGCAL) for HL-LHC—with 6 million channels.

Photon detection is necessary for many detectors performing calorimetry or particle identifica-

tion. The requirements include high efficiency, good spatial granularity, and single-photon sensitivity

(for RICH detectors). An incident photon is converted to an electron by the photoelectric effect in a pho-

tocathode, typically formed out of alkali metals e.g. Sb-Na-K-Cs. The photoelectron signal needs to be

amplified to give a measurable electronic pulse. This is achieved in traditional photomultiplier (PM) by

a dynode chain, with the charge multiplied at each dynode, as illustrated in Fig. 31 (a): e.g. if the number

of electrons triples at each stage of a 12 dynode chain, the gain = 312 ∼ 106. The multianode PM is

a marvel of miniaturization, with up to 64 pixels in a single tube, each ∼ 2 × 2mm2; its dynodes are

formed from a stack of metal foils, as shown in Fig. 31 (b). The quantum efficiency of a photocathode is

the probability that an incident photon produces a photoelectron. Its peak value is typically 20–30%, as

shown in Fig. 31 (c). This needs to be multiplied by the collection efficiency: the efficiency for detecting

the photoelectron (which is typically 80–90%). The photocathode type is chosen according to the de-

sired spectral sensitivity (mostly near to visible light with wavelength of a few hundred nm, i.e. Eγ = a

few eV).22

22Remember: E = hc/λ, λ [nm] ≈ 1240/E [eV].
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Fig. 32: The identification of different particle types in the layers of an experiment.

Other photon detectors have been developed that are faster than traditional photomultipliers. Time-

of-flight detectors need fast timing precision at the picosecond (10−12 s) level; 1 ps ≈ 0.3 mm for a

relativistic particle, so this requires small feature sizes. MCP (micro-channel plate) photon detectors

use electron multiplication in small (∼ 10µm) glass pores, as used in image intensifiers, and a timing

precision of ∼ 10 ps is achieved. Fully solid-state photon detectors known as silicon PMs (SiPM) are a

very active field of development: they use a p-n junction in Geiger mode (above the breakdown voltage),

giving large gain, a binary signal, and long recovery time—an array of∼ 100 such elements are combined

to make up a single pixel. Its advantages include being very compact, and having high photon detection

efficiency (see Fig. 31 (d)); disadvantages include high noise, and susceptibility to neutron damage.

2.3 Particle identification

In an experiment, detectors are arranged in successive layers, moving out from the interaction point, as

illustrated in Fig. 32. The tracking detectors are located closest to the beam pipe to minimize multiple

scattering of tracks before they are measured, and they detect charged particles. They are followed by

the electromagnetic calorimeter, where (e, γ) produce showers; then the hadronic calorimeter, where

(π,K,p,n) produce showers; and finally muon detectors. Neutrinos escape undetected, leading to miss-

ing energy. Enough information is provided by the combination of these detectors to separate all of the

particle types, except the charged hadrons (π,K, p)—for this, specialized detectors are required.

I will now briefly review how the different particle types are identified, returning to the event dis-

play that was shown in the 1st lecture from the ALEPH experiment at LEP, where the different detectors

can now be recognized. These “simple” events illustrate how different particle types can be identified, as

shown in Fig. 33. Electrons and photons give similar showers in the ECAL, and are distinguished by the

existence (or not) of an associated track. For electrons, E (energy in the ECAL) and p (momentum from

the tracker) should be equal: E/p = 1—which is not the case for other particles.

Muons act like heavier versions of the electron, with mass 105.7 MeV. They decay to electrons,

µ− → e−νeνµ, with (proper) lifetime τµ = 2.2µs, the mean of their exponential decay distribution.

The distance they travel (on average) before they decay: d = βγcτµ, where velocity β = v/c, boost

γ = E/m = 1/
√
(1− β2). A 10 GeV muon flies ∼ 60 km before decay≫ detector size, and so they

are effectively stable. Since the mass is large, Bremsstrahlung radiation is small, and as a lepton it
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Fig. 33: Event displays of e+e− → Z → ff events, where the final state particles f are (a) electrons;
(b) muons; (c) tau leptons; (d) quarks.

Fig. 34: (a) Muon chambers of the ATLAS end-cap (above), and a cross-section through a drift cham-
ber from CMS (below); (b) track reconstruction in an emulsion detector after development, where the
ionisation deposits are visible as microscopic dots (above), and display of an event in OPERA where a
neutrino has produced a τ (below) [40].

does not feel the strong interaction, so they are the most penetrating charged particles. Since they are

sited on the outside of an experiment, muon detectors tend to dominate their appearance, see Fig. 34 (a).

Tracking for muons covers an area of∼ 10,000 m2 in these LHC detectors! 23 They must be inexpensive,

low granularity, but precise enough for momentum measurement, e.g. wire chambers with long drift

volume.

The tau lepton is heavier still, mτ = 1.78GeV. It is heavy enough that can decay to many final

states: τ− → µ−νµντ , π−ντ , π−π0ντ , π−π−π+ντ , ... Its lifetime ττ = 0.29 ps, so a 10 GeV tau flies

∼ 0.5 mm. This is typically too short to be seen directly in the detectors. Instead the decay products are

seen: low multiplicity, “few prong” decays. Accurate vertex detectors can detect that they do not come

exactly from the interaction point (i.e. measure their impact parameter).

Neutrinos are neutral (i.e. produce no track) and only feel the weak interaction, so they pass though

matter easily. Their interaction length λint = A/(ρ σNA) [6], with cross-section σ ∼ 10−38 cm2 × E

23For more details see the lecture of George Mikenberg.
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Fig. 35: (a) Reconstructing a b-quark decay by tagging offset tracks in a jet; (b) distribution of discrimi-
nating variables to select c vs b-quark or light-quark events, with the pattern expected from the different
jets indicated by coloured points; (c) misidentification probability vs b-jet efficiency for a number of
different tagging algorithms [41].

[GeV], so a 10 GeV neutrino can pass through over a million km of rock!24 Neutrinos are usually detected

in HEP experiments through missing energy (applying energy conservation to rest of the event, in the

transverse plane ET). Nevertheless their interactions can be directly detected if you produce enough of

them, and the detector is sufficiently massive. The neutrino flavour (νe, νµ, ντ ) can be determined from

their charged-current interaction: νµN → µ−X , etc. The OPERA experiment searched for ντ created by

neutrino oscillation from a νµ beam (sent 730 km from CERN to LNGS in Italy), with an instrumented

target mass of over 100 kton. The tau decays were seen as track kinks in a high precision emulsion

detector, interleaved with lead sheets to provide the high mass of the target, see Fig. 34 (b).

Quarks feel the strong interaction, mediated by gluons. As discussed earlier, they are not seen

(as bare partons) in the detector, due to the confinement property of QCD. Instead, they hadronise into

hadrons—mostly mesons (qq) or baryons (qqq). The lightest meson is the pion π (ud), the most abundant

charged particle at the LHC. At high energy ≫ mq the initial quark (or gluon) produces a “jet” of

hadrons. Gluon and quark jets are difficult to distinguish: gluon jets tend to be wider, and have a

softer particle spectrum. Jets are reconstructed by summing up the particles assigned to the jet. This

is traditionally performed with a conical cut around the direction of a “seed” particle, or by iteratively

adding up pairs of particles e.g. with lowest invariant mass. Different quark flavours can be separated

(at least statistically) by looking for displaced tracks from b- and c-hadron decays (τ ∼ 10−12 s), as

illustrated in Fig. 35. The decay length L = γβcτ ∼ 1 cm, leading to decay tracks being offset from the

production vertex by d0 ∼ 100µm, so b-tagging requires precision vertexing. The jet properties can be

used to approximate the quark or gluon. I will return to the discussion of jets in the next lecture.

Reconstructing particle decays
The sub-detectors of an experiment are designed to detect the products of the pp interactions, i.e. the

“stable” charged particles (e, µ, π,K, p) and neutrals (γ, ν, n). “Stable” means that they live long enough

to travel through the tracker.25 These are then used to reconstruct the short-lived unstable particles, e.g.

24For more details see the lectures of Renata Zukanovich Funchal.
25Some π or K decay to µν before reaching calorimeter, leading to a kink in the track.
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Fig. 36: Bump hunting: (a) π0 → γγ [42]; (b) H→ γγ [43]; (c) H→ ZZ∗ → 4ℓ [44].

Fig. 37: (a) Event display with a V0 in ATLAS (decay tracks in red); (b) reconstructing V0 decays from
the kinematic properties of the daughter tracks [42].

π0 → γγ, ρ0 → π+π−, K0
S → π+π−, Λ→ pπ−, etc. From relativistic kinematics, the relation between

energy E, momentum p, and (rest) mass m is: E2 = p2 +m2. 26 The invariant mass of two particles

from a decay is given by: M2 = m2
1 +m2

2 + 2(E1E2 − p1p2 cos θ), so to reconstruct the parent mass

M one needs precise knowledge of momenta and opening angle θ between the decay products, as well

as their particle type, which determines their mass.

A typical example of the reconstruction of a particle decay is shown in Fig. 36 (a), for π0 → γγ,

one of the first (well-known) composite particles that was reconstructed in the LHC experiments, where

m(π0) = 135MeV. This technique can also be used to search for more interesting signals, as shown in

Fig. 36 (b), showing the first glimpse of the Higgs boson in the channel H→ γγ, at mH = 125GeV, i.e.

a mass about 1000 times higher than that of the π0. The significance of a signal S = NS/
√
NB (for high

statistics, in a simplistic approach),27 where NS is the number of signal events and NB the background

events under the peak. If S > 5 then the signal is more than 5× the error on the background, and one

can claim discovery (the Gaussian probability that background fluctuates up by > 5σ ≈ 10−7). This

threshold was crossed for the Higgs boson search in July 2012, combining the γγ and ZZ∗ decay mode

(shown in Fig. 36 (c)). The announcement was made that “ATLAS and CMS observe a new particle

compatible with the Higgs boson”. While the Noble prize went to Englert and Higgs (the two surviving

initiators of the BEH mechanism), ATLAS and CMS received an honourable mention for the discovery,

in the Nobel citation.

26The full expression is E2 = p2c2 +m2c4, but factors of c are often dropped.
27For a more sophisticated treatment see the lectures of Harrison Prosper.
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Fig. 38: (a) Slice through the detectors of a general-purpose experiment (CMS); (b) compare the layout
of LHCb, where the additional sub-detectors (RICH) are highlighted.

Table 2: Hadrons that live long enough to be seen in the detector.

Particle Mass Quark content Main decay Lifetime cτ
[MeV/c2] [cm]

π± 140 ud µνµ 2.6× 10−8 s 780
K± 494 us µνµ, ππ0 1.2× 10−8 s 370
K0

S 498 ds ππ 0.9× 10−10 s 2.7
K0

L 498 ds πππ, πℓν 5× 10−8 s 1550
p 938 uud stable > 1025 years ∞
n 940 udd peνe 890 s 2.7× 1013

Λ 1116 uds pπ 2.6× 10−10 s 7.9

Hadron identification
Instead of making do with jet reconstruction, sometimes the physics under study requires the identi-

fication of individual hadrons. There are hundreds of them, all listed in the PDG [6] (∼ 1000 pages

long). However, most are unstable and decay into a few longer-lived particles, listed in Table 2. Neutral

hadrons K0
S and Λ are collectively known as V0s, due to their characteristic two-prong decay vertex, see

Fig. 37. V0s can be reconstructed from the kinematics of their positively and negatively charged decay

products, without needing to identify the p or π. K0
L and neutrons are detected as showers in the hadronic

calorimeter without an associated charged track.

The set of sub-detectors used in a typical “general-purpose” experiment have now been discussed.

One task that such detectors do not do very well is to identify different charged hadrons (π,K,p). This

is the speciality of the dedicated experiments (LHCb and ALICE). LHCb is the dedicated detector for

flavour physics at the LHC. It looks like a slice out of a general-purpose experiment, as shown in Fig. 38,

apart from two extra detectors—for identifying charged hadrons. Production of high mass objects (like

W, Z or Higgs bosons) requires a large momentum fraction x for each parton in the pp collision, leading to

them being centrally produced. Hence the general-purpose experiments ATLAS and CMS are designed

to cover the central rapidity region |η| < 3. B hadrons have a mass of ∼ 5 GeV and therefore tend to

be produced with asymmetric x values of the partons, leading to them being boosted along the beam

direction, as seen in Fig. 39 (a). LHCb therefore covers the forward region (2 < η < 5) with a single-
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Fig. 39: (a) Correlation between production angle of b and b quarks at the LHC: the acceptance of LHCb
is shaded yellow; (b) improvement in signal to background ratio when using a RICH detector to select
ϕ→ K+K− decays [45]; (c) importance of particle identification in separating two-body B decays, such
as B0 → π+π− (shaded red), without use of RICH (above) and with RICH (below) [46].

arm spectrometer, and triggers on lower pT. The charged hadrons (π,K,p) are all effectively stable,

and have similar interactions, giving the same signature of a track and hadronic shower in the general-

purpose experiments. However, identifying them can be crucial, in particular for the study of hadronic

decays: e.g. ϕ → K+K− shown in Fig. 39 (b). Making all two-track combinations in an event and

calculating their invariant mass leads to a large combinatoric background (most tracks are pions, from

other sources), while identifying the two tracks as kaons significantly improves the signal-to-background

ratio. Flavour physics can help understand the matter-antimatter asymmetry: CP violation differentiates

matter from antimatter, e.g: B(B0 → K+π−) > B(B0 → K−π+). Separating such two-body B decays

requires charged hadron identification, as illustrated in Fig. 39 (c).

Since the interactions of charged hadrons are similar, the most direct way to distinguish them is to

determine their (rest) mass. Their momentum is measured by the tracking system, so this is equivalent

to determining their velocity, since p = γmv, and hence m = p/γv = p/γβc. Four main processes are

used, that depend on the velocity of a particle: 28

1. Interaction with matter: recall that the main source of energy loss is via ionization (dE/dx), that

depends on velocity;

2. Perhaps the most direct method: measure the time-of-flight (TOF) of the particles over a fixed

distance;

3. If the local speed of light changes compared to the velocity of the particle it will radiate photons,

detected as transition radiation;

4. If a particle travels at greater than the local speed of light, it will radiate Cherenkov radiation.

28These techniques all provide signals for charged leptons (e, µ) as well as (π,K, p). But mµ ≈ mπ , so they are typically not
well separated—dedicated muon detectors do a better job, and the EM calorimeter for electrons.

232



COLLIDER EXPERIMENTS: THE LHC AND BEYOND

Fig. 40: Particle identification performance, from (a) dE/dx in the ALICE TPC; (b) time-of-flight in the
ALICE TOF detector [47]; (c) Cherenkov radiation in the LHCb RICH1 [48].

Energy loss via ionization, dE/dx, is described by the Bethe–Bloch formula shown earlier in Eq. 2.3,

with universal velocity dependence. This can be used to identify particles, particularly at low momen-

tum where dE/dx varies rapidly, see Fig. 40 (a). The advantage of this technique is that it uses detectors

needed anyway for tracking (but now requiring the accurate measurement of the charge deposited); dis-

advantages include that separation tends to be poor at high momentum, and the dE/dx curves cross over

for different particle types.

Identification via time-of-flight is a simple concept: measure the time difference ∆t between two

detector planes separated by distance d, then β = d/c∆t. However, at high energy particle speeds are

relativistic, closely approaching to c. At 10 GeV, the time for a K to travel 12 m is 40.05 ns, whereas

for a π it would be 40.00 ns, so the difference is only 50 ps. Modern detectors and readout electronics

have resolution σ(t) ∼ 10 ns, fast enough for the LHC (bunch crossings 25 ns apart) but σ(t) < 1 ns is

needed to do useful TOF: it can provide good ID at low momentum, but very precise timing is required

for p > 5GeV. The traditional approach is to use scintillator hodoscopes. ALICE uses multi-gap RPCs

with σ(t) ≈ 60 ps, see Fig. 40 (b).

The local speed of light in a medium with refractive index n is cm = c/n. If a particle’s relative

velocity v/cm changes, it will radiate photons:

– Change of direction v (in magnetic field)→ Synchrotron radiation;

– Change of |v| (passing through matter)→ Bremsstrahlung radiation;

– Change of refractive index n of medium→ Transition radiation.

Transition radiation is emitted whenever a relativistic charged particle traverses the border between two

media with different dielectric constant ε (n ∼ √ε). The energy emitted is proportional to the boost γ

of the particle, so this is particularly useful for electron ID or for hadrons at high energy. The ATLAS

transition radiation tracker also acts as a central tracker, made up of ∼ 300,000 straw tubes.

From special relativity, nothing can go faster than the speed of light c in vacuum. However,

due to the refractive index of a material, a particle can go faster than the local speed of light in the

medium cm = c/n. This is analogous to the bow-wave of a boat travelling over water or the sonic

boom of an airplane travelling faster than the speed of sound. The resulting Cherenkov light is produced
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Fig. 41: (a) Bow-wave of a boat on a lake; (b) schematic design of a RICH detector [49]; (c) the DIRC
detector of BaBar, where Cherenkov light is reflected within a quartz bar [50].

evenly distributed over photon energies, so when transformed to a wavelength distribution it peaks at low

wavelengths—it is responsible for the bluish light that emerges from a nuclear reactor core. Consider

a boat bobbing up and down on a lake, producing waves: while it moves slower than the waves, there

is no coherent wave-front. If it moves faster than the waves, a coherent wave-front is formed, and

as it increases in speed the angle θ of the wave-front changes, with cos θ = vwave/vboat. Using this

construction, you can determine (roughly) the boat speed in Fig. 41 (a): θ = 70◦, vwave = 2m/s on water,

so vboat = vwave/ cos θ ≈ 6m/s. Cherenkov light is produced when a charged particle (vboat = βc) goes

faster than the speed of light (vwave = c/n), giving cos θC = 1/βn, where θC is the “Cherenkov angle”.

There is a threshold for light production at β = 1/n. The light is produced in three dimensions, so the

wavefront forms a cone of light around the particle direction. By measuring the opening angle of the

cone, the particle velocity can be determined.

In a ring-imaging Cherenkov (RICH) detector the Cherenkov light is focused onto a photodetector

plane, usually with a spherical mirror, producing a ring image of single photons, illustrated in Fig. 41 (b).

The LHCb RICH system combines the use of different gaseous radiator materials: fluorocarbons C4F10

and CF4 to cover different momentum ranges, see Fig. 40 (c). Alternative geometries have been devel-

oped for Cherenkov detectors using solid radiators: silica quartz (SiO2) in the form of polished bars, or

aerogel (the lightest solid in the world). They can result in much more compact detectors than gaseous

RICH systems, and are suitable for the low momentum particles at a B factory. Snell’s law of refraction:

n1 sin θ1 = n2 sin θ2, implies that for n1 = 1.45 (quartz) and n2 ≈ 1.0 (air), total internal reflection will

occur if θ1 > sin−1(1/1.45) ≈ 44◦; this is used to transport the Cherenkov light to photon detectors

located at the end of a quartz bar, in a DIRC detector. Originally developed for BaBar (at SLAC) as

shown in Fig. 41 (c), a similar technique is now used in the TOP detector of Belle II (KEK).

2.4 Data taking

The data produced as digital signals from the sub-detectors’ readout electronics have to be collected and

“built” into complete events: this is data acquisition, with typically∼ 1 MB/event. The data are stored for

later “offline” analysis using computers: the speed of such storage is limited, so typically only ∼ 1000

events/s can be recorded to storage, compared to interaction rate at LHC of ∼ 109 events/s. Therefore

∼ 106 events have to be rejected for each one stored, and this is implemented using a trigger system.

1 MB × 1 kHz × 107 s (the canonical length associated to a year of collider operation) = 1010 MB/year

i.e. 10 petabytes (PB) of data—which would fill around ten million CDs. The boundaries of trigger rate
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Fig. 42: (a) Plot of the Level-1 trigger rate vs event size, with the parameters of various experiments
indicated [18]; (b) dimuon mass spectrum from CMS, showing the influence of the various trigger paths
(coloured) used to select specific decays [51]; (c) flow diagram of data taken from a detector, passing
through the trigger system.

and data volume are being pushed by the LHC experiments, as illustrated in Fig. 42 (a).29

Most interesting physics occurs at low rates compared to the 1 GHz input rate at the LHC (e.g.

10 Hz top quark production, and less than a Hz for searches). We want to keep most of the interesting

events while rejecting others, keeping within the allowed bandwidth, see Fig. 42 (b). This is the role of

the trigger. The selection is usually done in stages: Level-1: 1 GHz → 100 kHz; High-Level Trigger:

100 kHz→ 1 kHz. The trigger decision takes a few µs≫ 25 ns bunch crossing rate, so a massive amount

of data is stored in electronic pipelines while special trigger processors perform calculations using part

of the data, as illustrated in Fig. 42 (c). Events rejected by the trigger are lost forever, so one needs to

take great care! Trigger thresholds are set on the electronic signals from detectors (e.g. ADC counts),

and have to be calibrated in terms of efficiency versus the physics quantity of interest. A “menu” of

many triggers run in parallel, finding a suitable compromise between efficiency and bandwidth. The

first trigger level typically looks for signatures like high pT leptons (e, µ) in dedicated electronics i.e.

“hardware”. Data are then read out to high-level triggers (HLT) for more complex selections, running on

a dedicated CPU farm (with ∼ 1000 processors).

LHCb is now running without a hardware trigger: the full detector is readout at 40 MHz, and all

triggering is done in software (HLT) in GPU and CPU farms, see Fig. 43. This is possible due to their

relatively small event size, but is a trend for the future. It requires analysis done in real time to provide

the alignment and calibration of the detectors. Reconstruction of the data involves pattern recognition

(e.g. to find tracks from the hits) and fitting (e.g. to measure the momentum of a track), which takes a lot

of computing power.

29Details are beyond the scope of these lectures.
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Fig. 43: The data flow for the “real time analysis” approach of LHCb, where the triggering is performed
entirely in software [52].

Simulated data are widely used to help design physics analyses, estimate efficiencies, emulate the

trigger, compare results to theoretical expectations etc., see Fig. 44 (a). They can be treated in analysis

like real events. Theoretical expressions are used for the underlying physics, with models for those

features such as hadronisation that cannot be calculated from first principles, and the Monte Carlo method

(based on random numbers) for evaluating integrals. General-purpose event generators (e.g. HERWIG,

PYTHIA, SHERPA): include 1 → 2, 2 → 2, and 2 → 3 fundamental processes, hadronisation and

the underlying event. Matrix Element generators (e.g. ALPGEN, MADGRAPH, MC@NLO) include

expressions for multi-particle final states. In “Full” simulation, the passage of particles through the

detector simulated in detail using the GEANT software package, which is time consuming, so “Fast”

simulations are often developed where the detector response uses parameterized resolution.

User analysis relies on distributed computing and storage all over the world using the Worldwide

LHC Computing Grid (WLCG), analysing reconstructed data, see Fig. 44 (b). The data evolves through

various file-types during this process, from RAW data to “Data Summary Tape” (DST) or reduced-size

mDST, nDST formats. The World Wide Web was invented at CERN, to help with data-intensive work.

A large volume of data is transferred to computer centres around the world, requiring significant CPU

power for their analysis, as illustrated in Fig. 44 (c, d).

2.5 Summary of the second lecture

Detector techniques used in the LHC experiments have been reviewed. The overall layout of detectors

depends on the choice of magnetic field. Tracking detectors detect the ionization deposited by charged

particles: traditionally using gas-based detectors, but more recently dominated by silicon. Along with the

magnetic field, they determine charge and momentum. Calorimeters are important to measure the energy

of particles, both charged and neutral. Particle identification is essential to reconstruct what happened

in events: e.g. using muon detectors, energy loss and missing-energy signatures. Separating charged

hadrons requires specialized detectors like the RICH. Modern experiments produce a mountain of data,

like a multi-megapixel camera taking millions of photos a second. Triggering selects events of interest,
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Fig. 44: (a) Ingredients for simulating an event at the LHC [22]; (b) schematic illustration of the tiered
structure of distributing computing of the WLCG; (c) data recorded during the recent runs of the LHC;
(d) integrated CPU power delivered to the LHC experiments through the WLCG, vs time [53].

data acquisition builds the full events and sends them to storage, and offline computing is used to analyze

them. In the next lecture, selected physics highlights from the analysis of all this data from the LHC

experiments will be presented (including the latest knowledge of the Higgs boson).

3 LHC physics highlights

It is only possible to include a limited selection of highlights, so I have selected them according to my per-

sonal taste—many more results are available from the websites of the experiments: e.g. for ATLAS [42],

CMS [54], LHCb [46], and ALICE [55]. Proton-proton collisions at high energy in the LHC enable a

wide variety of physics processes to be studied. Cross-sections (measuring probability of a given final

state being produced) vary over 12 orders of magnitude (!) as was shown earlier in Fig. 12 (c). This

enables a rich physics programme, and makes model-independent searches possible. But the collision

rate is overwhelmed by mundane processes, so background discrimination and modelling are crucial. In

this lecture I will go “down the SM ladder” of the processes in order of roughly decreasing cross-section,

as sketched in Fig. 45.

First a few words on how cross-sections are measured:

σ =
Nobs −Nbkg

ε ·
∫
L dt , (3.6)

where Nobs is the number of observed candidates (fitted or counted), Nbkg is the number of background

candidates (measured from data or calculated from theory), ε is the efficiency/acceptance, and L is the
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Fig. 45: (a) The cross-section of different selected physics processes at the LHC, discussed in the text;
(b) measured cross-sections compared to the predictions from the Standard Model [56].

luminosity. The relative uncertainty on the cross-section is given by [22]:(
δσ

σ

)2

=
δN2

obs + δN2
bkg

(Nobs −Nbkg)2
+

(
δL
L

)2

+

(
δε

ε

)2

. (3.7)

“Errors” quoted for measurements are the uncertainties on their central value: either statistical from the

fit to the data, quoted as±1σ (RMS), that scale with 1/
√
N ; or systematic from uncertainties in the other

parameters that affect the result, such as the luminosity—estimating the latter is a difficult art.30 Care is

needed when measuring differential cross-sections: resolution effects can bias distributions, particularly

when they have a steeply falling shape.

Measuring cross-sections requires knowledge of the integrated luminosity. The instantaneous

luminosity can be determined via manipulating the beams in a special run, known as a van de Meer

scan: the offset between the two counter-rotating beam positions is adjusted in steps to determine the

beam profile, as shown in Fig. 46 (a), and the bunch charges are measured. That information needs to

be transferred via signals in other detectors, so that the luminosity can be monitored throughout the run;

∼ 1% precision has been achieved in this way on the luminosity measurement in the LHC experiments.

The profiles of the beams can also be seen in beam–gas collisions, e.g. using the LHCb VELO, see

Fig. 46 (b). The luminosity delivered can be levelled by adjusting the beam offset, e.g. to limit pileup or

to provide lower luminosity for LHCb or ALICE—those experiments can then run simultaneously with

ATLAS and CMS, but at different luminosities according to their needs.

The main challenge for most measurements is background, events from other processes which

look like signal events: instrumental (fake) background in the detector, where a different type of object

fakes the one present in the signal decay, or physics (irreducible) background, a different physics process

with same final state as the signal. One approach for estimating the background contribution to the signal

30For more details see the lectures of Harrison Prosper.
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Fig. 46: (a) Measurement of the luminosity in a van de Meer scan, showing the offset of the two beams
(indicated by red and blue bunches, above) and the corresponding variation in event rate as a function of
the offset (below) [57]; (b) reconstructed vertices of beam-gas interactions in the LHCb VELO, shown
in 3D—the vertices from the two counter-rotating beams are indicated in red and blue respectively [58];
(c) estimation of background using the ABCD method, where the grey points show the distribution of
data and the red points the expectation from a simulated signal, in the plane of two selection cuts [59].

region is the so-called “ABCD” method illustrated in Fig. 46 (c): regions are defined by dividing the plane

of two selection variables using cuts; region D is defined as the signal region, A, B and C as control

regions. The expected number of candidates from the background in the signal region D is estimated

from the numbers of observed data candidates in the other regions: ND
data = (NB

data ×NC
data)/N

A
data.

3.1 Strong interactions

Hadron collisions are swamped by multi-jet processes. To discover new physics, we need a quantitative

understanding of QCD processes in rate and shape. In itself, the study of multi-jet final states is a test

of perturbative QCD, and it can also serve as a window to new physics such as compositeness or excited

quarks. Only small datasets are needed, as statistics are not a problem.

Let me first discuss the total cross-section. This is a very basic measurement: the total interaction

probability when two protons hit each other. One can make use of the optical theorem from quantum

mechanics: that the imaginary part of the amplitude between states a and b is given by the product of the

amplitudes from a and b to all available intermediate states f , integrated over their phase space, as shown

graphically in Fig. 47 (a). The total cross-section is equal to the imaginary part of the forward scattering

amplitude, σtot ∝ 4πℑ(fel)t→0. This requires measurement of the differential elastic cross-section as a

function of the Mandelstam variable t [3]:

σ2tot =
1

L

16π

1 + ρ2
dNel

dt

∣∣∣∣
t→0

, where ρ =
ℜ(fel)
ℑ(fel)

∣∣∣∣
t→0

(3.8)

is taken from model extrapolation. Elastically scattered protons will escape from the general-purpose

experiments inside the beam-pipe, so a dedicated “forward physics” detector is required, such as TOTEM
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Fig. 47: (a) Graphical illustration of the optical theorem, relating the total cross-section to the forward
scattering amplitude; (b) photograph of one of the tracking detectors of TOTEM, and their location along
the beam-line near to CMS; (c) measurements of the total and elastic cross-sections vs centre-of-mass
energy, showing the recent results from ATLAS and TOTEM [60].

Fig. 48: (a) Schematic view of the LHCf calorimeters, and location along the beam-line near ATLAS;
(b) energy spectrum of cosmic rays [6]; (c) photon spectrum in LHCf, compared to models [61].

shown in Fig. 47 (b). Silicon tracking detectors are mounted in “Roman pots” very close to the beam to

measure elastically scattered protons (retractable during beam manipulation, following a similar principle

to the LHCb VELO). The result is shown in Fig. 47 (c), in agreement with the expectation.

Another forward-physics experiment is LHCf, close to the ATLAS IP, using a zero-degree

calorimeter to study neutral production relevant to cosmic rays. 13 TeV pp collisions correspond to

1017 eV cosmic rays impinging on the atmosphere (i.e. undergoing fixed-target collisions), above the

“knee” in the CR spectrum (see Fig. 48). LHCf data helps tune the simulation of CR air showers.31

31For more details see the lecture of Miguel Mostafa.
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Fig. 49: (a) Illustration of jet-finding algorithms, using a fixed cone (above) or sequential clustering
(below); (b) application of the different algorithms discussed in the text to the same parton-level event,
showing the different jet boundaries found (coloured) in the space of azimuthal angle vs rapidity [62].

Jet measurements
Jets are collimated sprays of stable charged and neutral particles, as introduced earlier. They can be

reconstructed using different algorithms, illustrated in Fig. 49:

– Fixed cone: with variations in the choice of seed and cone size (R = 0.3 ... 1);

– Sequential clustering: pairwise examination of input 4-vectors; merging is determined by prox-

imity in space and transverse momentum between particles i, j and the beam-axis b. Defining

dij = min(p2βTi, p
2β
Tj)∆R

2
ij/R

2 and dib = p2βTi , if dij < dib the particles are combined, otherwise

i is taken as a jet. The exponent β takes different values for different variants of the algorithm:

(−1, 0,+1) for (Anti-kT, CA, kT) respectively.

Typical characteristics of the different variants are that for the kT algorithm dij is dominated by the soft

component, the jet areas fluctuate significantly and are susceptible to the underlying event and pileup,

but it is good for sub-structure studies; for CA, dij is independent of pT, the areas fluctuate somewhat

and it is somewhat susceptible to the underlying event and pileup, but it is best for sub-structure studies;

while for the Anti-kT algorithm dij is dominated by the hard component, the areas fluctuate little, it is

only slightly susceptible to the underlying event and pileup, but it is worse for sub-structure studies [63].

Jets can be defined at different levels in an event, as shown in Fig. 50 (a):

– Parton jets made of quarks and gluons (after hard scattering, before hadronisation);

– Particle jets composed of final-state colourless particles (after hadronisation);

– Detector jets reconstructed from measured energy depositions and tracks.

The jet energy scale (JES) and resolution (JER) are important ingredients for precision studies. Energy

scale calibration restores the jet energy to that of jets reconstructed at the particle level, correcting for

detector imperfections, pileup, etc., as shown in Fig. 50 (b), achieving a few percent precision on the

JES, and an example of the JER is shown in Fig. 50 (c).
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Fig. 50: (a) Different possible jet definitions, as a function of time from the interaction; (b) uncertainty
on the jet energy scale, as a ratio of data to Monte Carlo simulation [64]; (c) the jet energy resolution, vs
the transverse momentum of the jet [65].

Fig. 51: Sketches of jet topologies corresponding to different underlying processes [22].

Qualitatively, different quarks or gluons produce different jet topologies: the different radiation

patterns and lifetimes can be discriminated via the topologies, as illustrated in Fig. 51. Jets can also be

formed from hadronic decays of high-pT heavy particles. By studying the patterns, information can be

gained about the process in the event, or can be used to identify new physics signatures.

Inclusive jet cross-sections have been studied doubly-differential in pT and y, as shown in

Fig. 52 (a):
d2σ

dpT dy
=

1

εLint
Njets

∆pT (2∆|y|) . (3.9)

The dominant systematic uncertainties are from JES and JER (ranging from 2–30%, largest at low pT and

in high rapidity regions). Next-to-leading-order (NLO) predictions agree well with data, and the fits allow

improved constraints to be made on the parton distribution functions (PDFs). The dijet mass spectrum

also shows good agreement with the expectations from QCD, as shown in Fig. 52 (b). If deviations were

seen at large pT they could hint at substructure inside the quarks (as in Rutherford scattering) or other

new physics.
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Fig. 52: Inclusive jet cross-sections for (a) single jets vs pT for different regions in y [66], and (b) pairs
of jets vs the dijet mass [67]; (c) the extracted value of the strong coupling constant vs the energy scale
Q from measurements of inclusive jets from CMS, compared to values from earlier experiments [68].

Fig. 53: (a) The process by which jets are quenched, by interaction of their parent parton with the QGP
medium (left, shaded region), and illustration of how the effect of jet quenching is seen in an experi-
ment (right); (b) ratio between jets in Pb-Pb and pp collisions (suitably normalized) from ALICE [69];
(c) suppression of the excited Υ states in Pb-Pb compared to pp collisions, from CMS [70].

The strong coupling constant αs can be extracted from the inclusive jet measurements by varying

its value in the theoretical prediction (for a given PDF set) and comparing to the data to find the best

fit. The “running” of αs to lower values as the energy increases is clearly seen, as expected in QCD, see

Fig. 52 (c)—the energy scale Q is taken here to be the jet pT.

Quark-gluon plasma
A deconfined state of strongly interacting matter described by QCD is expected in heavy-ion collisions

at high energy at the LHC.32 Numerous observables including jet quenching, as well anisotropic flow,

J/ψ and Υ (bb) suppression provide evidence that the hot QCD state produced in such collisions is a

quark-gluon plasma, see Fig. 53. Jet quenching refers to the suppression of jets due to their parent parton

losing energy in the medium: larger jet quenching is seen for gluon jets compared to quark jets.

Top quark physics
The top quark is the most massive of the known elementary particles. Within the Standard Model it

can be produced singly or in pairs, and has a very short lifetime: 5 × 10−25 s, so it decays before

hadronisation, providing an unique opportunity to study the bare quark. Top physics lies at the boundary

between strong and EW physics. The top-Higgs Yukawa coupling is large, λt ≈ 1, so it plays a special

role in electroweak symmetry breaking and is a window to new physics that might couple preferentially

32For more details see the lectures of Maelena Tejeda-Yeomans.
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Fig. 54: (a) The main production diagrams of top pairs; (b) top quark decay; (c) sketch of the event types
for different top pair decays; (d) the merging of jets in top decay as the pT increases [22].

to top. Precision measurements allow for stringent tests of the Standard Model. The next heaviest quark,

the b (bottom or beauty), is produced more copiously (as indicated in Fig. 45 (a)) but does hadronise—it

will be discussed later.

The main top production mechanism at the LHC is pair production via the strong interaction, as

shown in Fig. 54 (a). Within the SM the top quark decays into b+W∼ 100% of the time, see Fig. 54 (b).

The W boson can decay into two quarks or into a charged lepton plus neutrino; a tt event should therefore

have either: 6 quarks; 4 quarks, 1 charged lepton and 1 neutrino; or 2 quarks, 2 charged leptons and 2

neutrinos, as sketched in Fig. 54 (c). In all cases, two b-quark jets are present in the event.

Identifying tt events is traditionally done by associating one object to each final state decay prod-

uct, and combining the objects to reconstruct each top decay. The combinatorics can become unwieldy,

however: there are 6 or more jets in the all-hadronic decay mode! If the top quarks are boosted, the

decay products are collimated, and may be reconstructed in same jet, see Fig. 54 (d). These merged

decays can be used in other cases as well, reconstructing W, Z, and Higgs boson decays. A large amount

of acceptance can be gained for hadronic channels by using such substructure, which typically account

for over half of the decays. A “jet mass” can be computed by adding up constituent particle 4-vectors

and calculating their invariant mass, as shown in Fig. 55. A radius parameter R = 0.8 is chosen for for

heavy object reconstruction in the analysis shown there, where the top signal can be distinguished from

the QCD background, with merged W/Z at pT ∼ 200GeV and merged top at pT ∼ 400GeV.

Advanced techniques such as jet grooming algorithms can improve the discrimination between

QCD and top quark jets, by removing soft and wide-angle radiation from within the jet (see Fig. 56).

One can also look inside the jet for the expected substructure: top decays have three sub-jets, while

W/Z/H decays have two. A quantity called N-subjettiness is used, a measure of how consistent a jet is
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Fig. 55: Reconstructed jet mass vs pT for (a) QCD background and (b) top pair events, in simulation [22].

Fig. 56: (a) Jet grooming (the Soft Drop algorithm); (b) impact of jet grooming on the reconstruction
of top decays, where the separation of signal (blue) from background (yellow) is increased, comparing
when grooming is not (left) or is applied (right) [71].

with the hypothesized number of sub-jets.

The measurement of the top-pair cross-section at 13.6 TeV was one of the first new results from

Run 3, see Fig. 57 (a). It is a combination of five channels: eµ, ee, µµ, e+jets, µ+jets. The measurement

is in agreement with predictions at next-to-next-to-leading order (NNLO) in perturbative QCD, including

resummation of the next-to-next-to-leading-logarithmic (NNLL) soft gluon terms using the TOP++ v2.0

program [72].

Single-top production is a probe of the W → tb interaction, with no assumption on the number

of quark families or unitarity of the CKM matrix. The different production mechanisms are shown in

Fig. 57 (b): the t-channel is dominant, then Wt (which both require a b quark from the sea) and finally

the s-channel (which requires an antiquark). All agree with the predictions.

The mass of the top quark is a fundamental parameter of the Standard Model, that affects theory

predictions for exploring Higgs-boson properties and in the search for new physics. The top quark is
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Fig. 57: (a) Measured tt cross-section vs collision energy, including latest Run 3 result at highest en-
ergy [72]; (b) diagrams for single-top production (above) and measured cross-sections (below) [73].

Fig. 58: (a) Reconstructed top mass in the lepton-jet channel (left) and templates for different top masses
(middle) [74]; (b) Predicted tt production cross-sections at

√
s = 7 and 8 TeV for different PDF sets, as

a function of mpole; cross-section measurements from the ATLAS dilepton analysis are overlaid, with
their dependence on the assumed value of the mass [75].

colour charged and does not exist as an asymptotic state: the value of mt extracted from the experiments

depends on the theoretical definition of the mass, which varies according to the renormalisation scheme

adopted: the pole or running mass. Relating the mass extracted based on Monte Carlo simulation and

the (theoretically well-defined) pole mass is subject to an uncertainty of ∼ 1 GeV, comparable to the

present experimental precision. An example is shown in Fig. 58 (a), with templates at different masses

in the lepton-jet final state channel. Alternative approaches have been investigated to measure the top

mass, e.g. extracting it from the measured top cross-section as illustrated in Fig. 58 (b). All values are

consistent, and the current world average is mt = 173.34± 0.76GeV (i.e. 0.4% precision).

Top production is asymmetric: at the Tevatron (pp collisions) the top quarks are emitted prefer-

entially in the direction of incoming quark, and anti-top in the direction of incoming antiquark, leading

to a forward-backward asymmetry, as illustrated in Fig. 59 (a). Inclusive asymmetries measured using

∼ 5 fb−1 at the Tevatron exceeded SM predictions by ∼ 2σ, see Fig. 59 (b). At the LHC the initial state

is symmetric (pp) but there is a related charge asymmetry due to the difference in rapidity distributions,

sketched in Fig. 59 (c). The LHC results for this asymmetry are in agreement with the SM expectations,

so the earlier discrepancy from the Tevatron has not been confirmed.
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Fig. 59: (a) Sketch of the forward-backward asymmetry in top production at the Tevatron; (b) early
measurements from the experiments at the Tevatron [22]; (c) comparison of asymmetries at the Tevatron
and LHC; (d) results on the charge asymmetry AC from the LHC [76].

3.2 Flavour physics

The top is the heaviest quark but does not hadronise; the next heaviest are beauty and charm, with a

rich hadron spectrum and interesting weak decays, the realm of “flavour physics”. The cross-section for

bb production at 14 TeV: σbb ∼ 500µb, and that for charm is even higher, so they have an enormous

production rate at LHC:∼ 1012 bb pairs per year (i.e. much higher statistics than the earlier B factories).

σbb < 1% of the inelastic cross-section, so there is significant background from non-b events that needs

to be rejected. In addition, all b-hadron species are produced: the B0,B+,Bs,Bc,Λb, etc. LHCb is

the main flavour physics experiment at the LHC—ATLAS and CMS also participate but mostly via

lepton triggers, and with poorer hadron identification. LHCb runs at lower luminosity, to limit pileup for

precision vertexing. The proper time of the B decay needs to be measured, as sketched in Fig. 60 (a):

t = mBL/pc, and hence the decay length L (∼ 1 cm in LHCb). For much of the physics one also needs

to tag the production state of the B, i.e. whether it was produced as a B or B: for this one can use the

charge of leptons or kaons from the decay of the other b hadron in the event.

The strong and electromagnetic interactions conserve C, P and T, for example in pion decay via

the electromagnetic interaction: π0 → γγ but not γγγ; the initial state has C(π0) = +1, and for the

final state C(γγ) = (−1)2 = +1 while C(γγγ) = (−1)3 = −1. On the other hand the weak interaction

violates parity, as was first seen in the classic experiment of Wu, Fig. 60 (b). Neutrinos are left-handed,

while antineutrinos are right-handed, so perhaps the weak interaction conserves the combined operation,

CP? e.g. Γ(π+ → µ+νL) = Γ(π− → µ−νR), see Fig. 60 (c). The weak interaction did indeed appear

to conserve CP, until the experiment of Christenson et al. (in 1964) detected rare decays of the K0
L to the

“wrong” CP state: K0
L → π+π−π0 (CP = −1, B = 34%); K0

L → π+π− (CP = +1, B = 2 × 10−3),

i.e. CP violation was observed. CP violation unambiguously differentiates matter from antimatter, e.g.

B(K0
L → π−e+ν) = 19.46% > B(K0

L → π+e−ν) = 19.33% [6]. In the Standard Model, CP violation
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Fig. 60: (a) Sketch of the tracks close to the primary (production) vertex in a bb event; (b) polarised
cobalt-60 atoms undergoing β decay in the experiment of Wu, where a difference was seen in the rates
under the parity transformation [77]; (c) neutrinos transforming under C and P operations; (d) diagram
for b-quark decay, indicating the weak coupling at the decay vertex (here for a b→ c decay).

arises from quark mixing. The weak charged current is given by: (u, c, t)(1−γ5)γµ(d′, s′, b′), where the

weak eigenstates are a “rotated” combination of the flavour states:33

 d′

s′

b′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b

 . (3.10)

V is the unitary CKM (Cabibbo–Kobayashi–Maskawa) matrix. Its elements give the weak couplings

between quark flavours, as illustrated in Fig. 60 (d). Unitarity of the CKM matrix implies relationships

between its rows and columns:
∑
VijV

∗
ik = 0 (j ̸= k). One of these relationships has terms of similar

size: VudV ∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, corresponding to a triangle relationship in the complex plane,

shown in Fig. 61 (a). The (3 × 3) CKM matrix has 4 independent parameters: 3 angles and one non-

trivial phase which gives rise to CP violation—this is only present with ≥ 3 generations, and at present

is the only known source of CP violation in the Standard Model. The CKM matrix is observed to have a

hierarchy of elements, and was parameterized by Wolfenstein [78] expanding in powers of the Cabibbo

angle34: λ = sin θC ≈ 0.22. The parameters (λ,A, ρ, η) are shown in Fig. 61 (b); A ≈ 0.8 is measured,

leaving ρ and η to be determined, i.e. the coordinates of the apex of the unitarity triangle; η ̸= 0 implies

CP violation. The matrix has a rather diagonal form for the quarks, unlike the equivalent (PMNS) mixing

matrix for neutrinos.

Flavour physics observables have sensitivity to new particles at high mass scales via their vir-

tual effects in loop diagrams, including the “penguin” (first order) and “box” (second order) diagrams

shown in Fig. 62 (a). Decays without loops (known as “tree” diagrams) are expected to be less affected.

33For more details see the lectures of Matthias Neubert.
34Not to be confused with the Cherenkov angle, despite sharing the same symbol.
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Fig. 61: (a) Unitarity relation between CKM matric elements (above) and after rescaling the sides by
VcdV

∗
cb to give the “Unitarity Triangle” (below); (b) the CKM matrix elements, expanding in powers of

λ (above), and with boxes indicating their relative size (below).

Fig. 62: (a) Examples of different types of loop diagrams: penguin (above) and box (middle), along with
a tree diagram (below); (b) the power of indirect measurements, plotted as the sensitivity to the scale of
new physics for a variety of observables [79].

Penguins35 contribute to flavour changing neutral current (FCNC) decays like Bs → µµ, which are not

possible at tree-level in the SM. The box diagram is interesting as it allows a particle to transform into its

antiparticle: the quantum mechanical effect of oscillation between neutral states (also seen for neutrinos

and neutrons). As illustrated in Fig. 62 (b), such “indirect” measurements can be very powerful.

The pattern of oscillation of neutral mesons between their particle and antiparticle states, medi-

ated by the box diagram, is shown in Fig. 63 (a): they depend on the mass difference ∆m and width

difference ∆Γ between their weak eigenstates e.g. ∆m ∝ |Vtd|2 for the B0; often expressed in terms

of dimensionless parameters, the frequency x = ∆m/Γ, and the width difference y = ∆Γ/2Γ. Os-

cillations have now been observed for all of the species, and the pattern observed is consistent with

SM expectations. The spectacular measurement of the rapid B0
s–B0

s oscillations in LHCb via the

B0
s → D−

s π
+ channel is shown in Fig. 63 (b), giving the world’s best precision on the frequency:

35Named by John Ellis, who also lectured at this school—so the students could ask him why he chose that name, as well as
photograph him with real penguins.
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Fig. 63: (a) The pattern of oscillation between particle and antiparticle expected for the various neutral
mesons; measurement of oscillations for (b) B0

s [80] and (c) B0 [82].

Fig. 64: (a) Diagram for the B0 decay to the CP eigenstate J/ψK0
S (above) and its possible alternative

path via mixing (below); (b) current constraints on the apex of the unitarity triangle [84].

∆ms = 17.7683± 0.0051± 0.0032 ps−1 [80]. The frequency can be predicted [81]:

∆mq =
G2

F

6π2
ηmBqBBqF

2
BqM

2
WS0(mt) |Vtq|2 , (3.11)

where non-perturbative hadronic factors such as BBq can be estimated by solving QCD on a discrete

space-time lattice, using Lattice gauge theory. For B0 mixing this gave first clear (indirect) evidence

that the top quark mass was heavy [83]. B0 mixing has also been measured in LHCb via the decay to

J/ψK0
S, see Fig. 63 (c), as well as D0 mixing via K0

S π
+π− decays, giving small values for the x and y

parameters O(10−3) in agreement with the SM expectation.

Many of the measurements made of hadrons containing the b quark can be presented as constraints

on the unitarity triangle. In addition, CP violation measures the relative phases of the matrix elements,

and hence measures the angles (α, β, γ) of the triangle, depending on the decay. B0 → J/ψK0
S is a
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Fig. 65: (a) Analysis of B → Dh decays showing clear CP violation [85]; (b) signal for the very rare
decay B0

s → µ+µ− [86]; (c) constraints on the parameter space for new physics models, as a result of
the measurements of B0 and B0

s → µ+µ− [87].

decay to a CP eigenstate, and can occur “via mixing” with a different phase, as shown in Fig. 64 (a). This

depends on the phase of B0–B0 oscillation: arg(Vtd) = angle β. As seen Fig. 64 (b) the measurement

of β is in triumphant agreement with the other constraints on the apex of the triangle. The results from

almost all flavour measurements are consistent,36 and the Standard Model description of CP violation

appears to be correct (at least to the level tested).

An example of a measurement showing clear CP violation is given in Fig. 65 (a): B → DK, that

depends on the CP-angle γ, where the height of the two (red) signal peaks are clearly different in the two

charge-conjugate final states. Many different channels have been studied, and all are consistent with the

CKM picture. CP violation has also been seen in charm decays for the first time: this is expected to be

small in Standard Model, O(10−3), and the observed value is consistent with expectations.

Rare decays of b and c hadrons are also a fertile ground to search for new physics: e.g. the decay

B0
s → µ+µ− is very strongly suppressed, but precisely predicted in the Standard Model, B(B0

s →
µ+µ−) = (3.7± 0.2)× 10−9, so it is an excellent place to search for new physics contributions, which

could modify the branching ratio. As shown in Fig. 65 (b, c) the decay has been measured, in agreement

with the expectation, and a large range of the parameter space for new physics has been constrained.

3.3 Electroweak physics

Study of vector boson production allows precision measurement of Standard Model parameters, tests of

perturbative QCD, and input to PDF fits. There are also irreducible background to many searches where

signal events decay to W or Z’s: top, Higgs and BSM. Leptonic decays provide clean samples, as shown

in Fig. 66, with adequate statistics for performance measurements. The signature for a W decay is a high

pT isolated lepton with large missing ET, while for the Z it is two oppositely charged, same flavour, high

pT leptons. Employing a “tag and probe” method, the clean Z → e+e− or µ+µ− sample can be used

to measure lepton selection efficiencies (trigger, ID, isolation). The tag lepton is required to pass tight

selection requirements to ensure the sample purity, allowing the probe lepton to be unbiased with respect

36The exceptions, the so-called “flavour anomalies”, will be discussed in the 4th lecture.
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Fig. 66: Vector boson signals (a) W→ ℓν [88]; (b) Z→ ℓℓ [89].

Fig. 67: (a) Decay modes of the tau; (b) reconstructing tau decays with an isolation criterion; (c) signal
for W→ τν [90].

to the selection that is being studied, and one counts how often the probe lepton passes the requirement

under study. If the statistics are high enough, this method can be applied in bins of the relevant variables.

The same method can be applied to data and simulation to extract a data-to-MC correction factor for use

in analysis. Other resonances like J/ψ → µ+µ− can also be used for this method.

Tau leptons are an important probe for new physics processes at the LHC, such as searches for

light Higgs bosons, supersymmetry or extra dimensions. Taus decay to either an electron, muon or into

a system of hadrons, as shown in Fig. 67 (a): hadronic decay modes (τhad) are characterized by a highly

collimated jet of low particle multiplicity. The dominant source of tau leptons in the SM is from W

decays; they can selected using isolation criteria, see Fig. 67 (b). The charge asymmetry of the signal

shown in Fig. 67 (c) has been measured:

B(W+ → τ+ν)

B(W− → τ−ν)
= 1.55± 0.19 +0.11

−0.13 , (3.12)

in agreement with the prediction 1.43±0.04 at NNLO based on the various parton distribution functions.

The dominant processes for inclusive W-boson production in pp collisions are annihilation: ud→
W+ and du→W− involving a valence quark from one proton and a sea antiquark from the other. Since

the proton valence quarks are uud the cross-section is higher for ud than for du, leading to a clear charge
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Fig. 68: (a) Missing transverse energy distributions in the analysis of W+ → µ+ν (left) and W− → µ−ν
(right) decays; (b) improved constraints on the proton PDFs from this analysis [91].

Fig. 69: (a) Measurements of mW vs mt, with the constraints from the electroweak fit superim-
posed [92]; (b) inclusive jet multiplicity, for events with a W → eν decay [93]; (c) transverse mass
distribution for events with bb +W→ µν [94].

asymmetry in the production, visible in Fig. 68 (a), with value 1.421 ± 0.006 ± 0.032. Such studies

can be used to improve knowledge of parton distribution functions (PDF), see Fig. 68 (b). The W decay

distributions are also sensitive to the W mass. The target is for an uncertainty ofO(10 MeV) on a mass of

∼ 80 GeV, i.e. 0.01% precision. Statistics are not the issue, but rather the systematic uncertainties from

modelling the missing neutrino, and the PDFs. ATLAS were the first to publish a W-mass measurement

at the LHC, using 8M W → µν plus 6M W → eν decays. The W mass was obtained from template

fits to pT(ℓ) and transverse mass mT, with Z→ ℓℓ used for lepton energy and W recoil calibration. The

result: mW = 80370 ± 7(stat) ± 11(exp. syst) ± 14(model syst)MeV [92]. The mass of the W, top

quark and Higgs boson are related via radiative corrections, as was discussed in 1st lecture: an update of

the plot that was shown then (Fig. 9 (b)) with the latest results is given in Fig. 69 (a), which becomes a

precision test of the SM.

W + jets production has been studied, with events selected with one high pT isolated lepton and

at least one jet, see Fig. 69 (b). These provide valuable input for the u, d and g PDFs of the proton. The

data are well described by ME generators matched to parton shower and normalized to NLO pQCD.

W + b/c samples, as in Fig. 69 (c), are valuable for understanding the background to Higgs searches.

Multiboson events are also of interest: scattering of two vector bosons (VBS) VV → VV (with V = W

or Z) is an important process to study the mechanism of electroweak symmetry breaking. VBS was one

motivation for introducing the Higgs boson: the forward scattering cross-section would violate unitarity
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Fig. 70: (a) Illustration of the diagrams contributing to the VBS process, and how the cross-section
would diverge with increasing energy if it were not for the contribution from the Higgs boson [95];
(b) the signature of VBS in an experiment, with two forward jets and the decay products of the two
vector bosons; (c) signal for W+W−jj production [96].

Fig. 71: The Higgs boson mass determination (a) H→ γγ [97]; (b) H→ ZZ∗ → 4ℓ [98].

at high energy without the Higgs, as illustrated in Fig. 70. W+W−jj production has been seen with

6.9 σ significance, in agreement with the Standard Model expectation.

3.4 Higgs boson properties

As discussed earlier, the Higgs boson was finally discovered in 2012 after 50 years of searching, via the

discovery channels H→ γγ and H→ ZZ∗ → 4ℓ. Precision measurements of the Higgs boson properties

will provide a crucial test of the Standard Model. It represents a potential window to physics beyond the

SM: it is the most recent discovery, and the mechanism feels a little ad hoc—the Higgs boson found may

be the first sighting in a more complex sector. However, so far it does look pretty much like a SM Higgs,

but several aspects still remain to be explored.

Recall that the mass of the Higgs boson is not predicted in Standard Model, it had to be measured.

The discovery modes shown in Fig. 36 are also the ones with the highest sensitivity to the mass, which

have now been updated with much higher statistics (see Fig. 71) giving mH = 125.09 ± 0.24GeV (i.e.

0.2% precision). Precision measurements of Higgs and top masses take a central role in the question

of the stability of the electroweak vacuum: top-quark radiative corrections can drive the Higgs-boson

self-coupling (λ)37 towards negative values, leading to an unstable vacuum, see Fig. 72 (a). New physics

must appear by the energy scale (µ) at which this happens. From the current measured values, shown in

Fig. 72 (b), the universe is at the boundary of stability! It sits in a meta-stable region, but with a lifetime

37Another overused symbol, not to be confused with its use elsewhere to represent wavelength or in the Wolfenstein parameter-
isation of quark mixing.
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Fig. 72: (a) Evolution of the Higgs coupling to high energy scale; (b) stability of the vacuum vs the
top-quark and Higgs masses, with a zoom around the measured values [99].

Fig. 73: (a) Simulated mass distribution for H → ZZ∗ → 4ℓ, showing the on-shell (peak at 125 GeV)
and off-shell production [100]; (b) the gluon-fusion production diagram for H→ ZZ (left) and definition
of decay angles for analysis of ZZ→ 4ℓ (right); (c) measured likelihood as a function of ΓH/Γ

SM
H [101];

(d) observed data are compared to discriminant distributions to calculate a likelihood for different spin
states (left) and different hypotheses are tested (right, where the SM is blue and alternative spin hypothe-
ses red) [103].

≫ that of the universe, so there is no immediate concern that the vacuum will collapse—and no clear

evidence that new physics is needed until high scale.

A direct measurement of the width of the Higgs boson from the mass distribution is limited by the

experimental resolution of ∼ 1 GeV: the observed mass distributions are consistent with a natural width

≪ the resolution. In addition to the peak at 125 GeV from on-shell Higgs production, non-resonant (off-

shell) production is expected at higher masses, as shown in Fig. 73 (a). Assuming no new particles enter

the gluon-fusion diagram loop of Fig. 73 (b), ΓH can be extracted from the ratio of Higgs boson events
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Fig. 74: VH(bb) analysis (a) pT(Z) spectrum showing the dominant Z+jets background (note the log-
arithmic scale); (b) an example of the discrimination of signal using a neural network, here for the
single-lepton (µ) channel; (c) combining all channels, plotted vs S/B; (d) final mass plot showing VZ
(grey) and VH (red) contributions [104].

observed in the two regimes:

σon-shell
gg→H→ZZ ∝

g2ggH g
2
HZZ

mH ΓH
, σoff-shell

gg→H→ZZ ∝
g2ggH g

2
HZZ

m2
ZZ

. (3.13)

Both ATLAS and CMS see ∼ 3σ evidence for off-shell production, and extract values for width consis-

tent with the SM expectation of 4.1 MeV (at mH = 125GeV), see Fig. 73 (c).38

Following its discovery, one of the key questions was to determine the quantum numbers JP of

the new particle: its spin (J = 0 for a scalar) and parity P = +1 in the Standard Model. Since it

decays to two photons, it is not spin-1 (from the Landau-Yang theorem [102]), so it is either spin-0 or

spin-2 (it could also be higher spin, but that is strongly disfavored). Using the angular information in the

H → ZZ∗ → 4ℓ decays, the different spin-parity hypotheses can be tested, as illustrated in Fig. 73 (d).

Alternatives to 0+ are ruled out at > 99% CL.

Once mH has been measured, the production and decay modes can all be calculated. At the LHC,

the dominant prouction modes are gluon fusion (ggF, 83%), vector-boson fusion (VBF, 7%), associated

production with a vector boson (VH, 7%), or with tt (ttH, 3%). As an example, the search for VH(bb) is

illustrated in Fig. 74, i.e. the decay H→ bb—this has the largest branching ratio, but suffers from severe

multi-jet QCD background, so searching for it with associated production with a vector boson (V = W

or Z) helps control the background. There are three channels with 0, 1, and 2 leptons and two b-tagged

38Remember: lifetime ∝ inverse of width, τ = ℏ/Γ. Although the Higgs width is small, its lifetime is still short: ∼ 10−22 s
(ℏ = 6.6× 10−16 eV · s).
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Fig. 75: (a) Summary of measured Higgs boson production and decay modes (arranged vertically and
horizontally, respectively), compared to the SM predictions; (b) the µ values (ratio to the SM expectation)
for the different production modes, and their overall combination giving µLHC = 1.09 +0.11

−0.10 [106].

jets, targeting Z(νν)H, W(ℓν)H and Z(ℓℓ)H processes with H → bb. The W/Z is required to have large

boost (∼ 150 GeV) so that the multi-jet QCD background is highly suppressed. Control regions are used

to validate analysis variables and constrain background normalisations, and a simultaneous fit is made to

the signal and control regions. Machine Learning in the form of a Neural Network discriminator is used to

separate signal from background, via a multivariate analysis exploiting the most discriminating variables:

mbb, pT(V), and b-tagging. It is validated with data/MC comparison, trained separately in each channel.

The performance is optimized using blind analysis (i.e. masking the central value until the selection has

been decided). All signal channels are combined and plotted as a function of signal/background per

event. Overall the data are compatible with the S+B hypothesis, with a signal significance of 4.8σ,

µ = 1.01 ± 0.23 (where µ is the ratio of the observed cross-section to that expected in the Standard

Model). Combined with the Run 1 data, 5.6σ is achieved (5.5σ expected), µ = 1.04 ± 0.20, greater

than the 5σ threshold, so the decay has been observed.39

Enormous effort has been invested in the study of all aspects of the Higgs boson: all of the produc-

tion modes mentioned earlier have been seen, as expected in the Standard Model. For the decay modes,

WW was seen early (in Run 1) then γγ (2017) and bb (2018)—important as it measures the coupling

to fermions rather than gauge bosons. So far only decays to third generation fermions have been seen

clearly (since the Higgs boson couples to mass, they have highest branching ratios). For the second gen-

eration, evidence has been seen for µµ (to be confirmed), and cc is under study but still far from reaching

SM sensitivity.

The Higgs boson couplings are non-universal: it couples to particles with coupling strength pro-

portional to their mass. All results seen so far are consistent with this prediction, and the SM in general,

as shown in Fig. 76. There could be invisible decays of the Higgs boson: in the Standard Model this

only occurs via H → ZZ∗ → 4ν with a tiny branching ratio, B ∼ 0.1%. However, it could be strongly

enhanced if the Higgs couples to dark matter—after all, the evidence for DM is gravitational, and the

Higgs couples to mass. Invisible decays are searched for using associated production (VBF or VH) with

39A similar analysis has been made by ATLAS [105], and as is usually the case the two experiments have similar performance
(including their choice of colours for the final plot!).
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Fig. 76: (a) Higgs couplings as a function of particle mass [107]; (b) measured couplings in different
channels, plotted as fermionic vs bosonic coupling strengths [6].

Fig. 77: (a) Search for H → µµ [109]; (b) search for H → cc [110]; (c) search for H → eµ plotted
vs H → µτ , showing a modest but interesting discrepancy with the SM, that is worth keeping an eye
on [111].

large MET. The best limit so far is B(H→ inv) < 19% at 95% CL [108].

As mentioned, second-generation couplings have been searched for: H → µµ has a branching

ratio (in the SM) of 2.2 × 10−4, and evidence now seen at 3σ significance, see Fig. 77 (a). H → cc is

very tough experimentally, as the H → bb background must be suppressed. The current upper limit is

at 70× the SM, see Fig. 77 (b). Lepton flavour violating decays such as H → eµ or µτ have also been

searched for, as shown in Fig. 77 (c). There is a still a lot to be understood about the Higgs mechanism.

Searching for Higgs pair-production is vital step towards measuring the self-coupling of the Higgs boson,

λ. Measurements of the trilinear Higgs interaction would provide constraints on the shape of the Higgs

potential close to the minimum, and would allow the electroweak symmetry breaking mechanism of the

SM to verified. HH production is also possible via a box diagram, without invoking the self-coupling,

as shown in Fig. 78 (a), and the two diagrams interfere making this a rare process. Upper limits are

currently about 7× higher than the expected signal strength in the Standard Model, see Fig. 78 (b).
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Fig. 78: (a) Diagrams contributing to HH production, via the trilinear coupling (above) and the box
diagram (below); (b) sensitivity to the Higgs self-coupling λ as a function of the coupling modifier κλ,
which would be 1 in the SM [112].

3.5 Summary of the third lecture

There is a very wide range of physics results from the LHC, from which only selected highlights could

be presented. Concerning the strong interaction the total cross-section has been measured, jet production

studied, as well as the quark-gluon plasma (at ALICE and elsewhere), and there are many results for top

quarks. Striking results have been shown in flavour physics (mostly from LHCb), for particle-antiparticle

oscillations, CP violation in beauty and charm decays, and the study of rare decays. Electroweak physics

is mostly the province of the general-purpose experiments ATLAS and CMS, and illustrates the tendency

towards precision measurements, e.g. for the W mass. The Higgs boson can currently only be studied

at the LHC: its properties have started to be measured in detail, but more remain to be revealed—in

particular its self-coupling and potential. Overall the Standard Model continues to be triumphant, with

the measured cross-sections agreeing with predictions over 12 orders of magnitude, as was shown earlier

in Fig. 45 (b). The last lecture will explore why are we not satisfied with this impressive status, and

consider where new physics might be found.

4 Looking beyond

This final lecture looks beyond the Standard Model to consider where evidence for new physics might

be seen, and also beyond the LHC towards future colliders. To recap some of the unanswered questions,

which lead us to think that the Standard Model cannot be the full story:

– Why are there three generations of quarks and leptons?

– Are quarks and leptons fundamental, or made up of even more fundamental particles?

– What is the reason for the pattern of particle masses?

– What gives neutrinos their mass?

– Why do we observe matter and almost no antimatter, if there is symmetry between them?

– What is dark matter that can’t be seen but has gravitational effects in the cosmos?

– How does gravity fit in?

– Why is the Higgs boson so light?

The Standard Model is likely not to be wrong, but a low-energy limit of a more complete theory—similar
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Fig. 79: Quantum corrections to the Higgs boson mass.

to how Newtonian mechanics has been superseded by special relativity.

Considering the last of the points above, the Higgs mass is on the electroweak scale (125 GeV), but

is unstable with respect to large predicted quantum corrections: m2
H = m2

0 + δm2
H, where the quantum

corrections illustrated in Fig. 79 are given by:

δm2
H =

3GF

4
√
2π2

(2m2
W +m2

Z +m2
H − 4m2

t + ...) Λ2 . (4.14)

Assuming new physics appears at scale Λ—unknown, but could be as high as the Planck scale40—the

Higgs boson mass should be huge unless there is incredible fine-tuning in the cancellation between the

quadratic radiative corrections and the bare mass m0. Acceptable fine tuning is a matter of theoretical

taste—if an explanation cannot be found, one may otherwise have to fall back on the anthropic principle:

the hypothesis that copies of the universe exist (the multiverse) with differing parameters, and the pa-

rameters of our universe are special because they must be suitable to sustain life, so that we can measure

them. The drawback of this explanation is that it appears to be untestable.

4.1 Searches at the LHC

When the LHC was built, the front-runner for an explanation of the hierarchy problem was

supersymmetry—-the hypothesis that a symmetry exists related to particles’ spin, between fermions and

bosons: each SM boson would have a fermion “super-partner”, and each fermion have a boson super-

partner, as shown in Fig. 80 (a). Super-partners would then contribute with the opposite sign to the loop

corrections to the Higgs mass providing cancellation of the divergent terms, see Fig. 80 (b). The Higgs

sector would be extended to include 4 other scalar states, plus a whole zoo of new particles.

If supersymmetry was exact, then the super-partners would have the same masses as the SM

particles—and would already have been seen. So the symmetry must be broken, and many of the super-

partners have higher mass to explain why they have not been seen. However, if this breaking is too

great, the cancellation of the divergent terms becomes weaker and fine-tuning would still be required, so

supersymmetry was expected to show up at the TeV scale. It would not be the first time that the particle

content has been doubled: that already happened when antiparticles were introduced, a symmetry based

on electric charge—but they were found soon after their prediction. To avoid proton decay, as shown in

Fig. 80 (c), an extra conservation rule is introduced (R-parity), opposite for SM particles and their super-

partners: in this case the lightest supersymmetric particle (LSP) would be stable and becomes a candidate

to explain dark matter (usually the neutralino, χ̃0
1). For a particle with baryon and lepton numbers B, L

and spin s, R = (−1)3B−3L+2s, giving R = +1 for SM particles, −1 for super-partners.

40The Planck scale is the energy ∼ 1019 GeV at which quantum effects of gravity become significant.
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Fig. 80: (a) The increased particle content of supersymmetry, where the super-partners of the SM par-
ticles (known as sparticles) are indicated with a ˜ over their symbol; (b) the cancellation of divergent
terms; (c) a diagram that would allow proton decay.

Fig. 81: Extrapolating the coupling “constants” to high energy scale (a) in the SM; (b) adding supersym-
metry [113].

Another argument made in favour of supersymmetry concerns the coupling constants of the fun-

damental forces, that “run” with energy due to quantum corrections (as shown earlier for αs). Evolving

the coupling constants of the Standard Model measured at LEP to higher energy, they do not coincide:

α1, α2, α3 are the coupling constants of the SU(3)C ⊗ SU(2)L ⊗ U(1) group corresponding to electro-

magnetic, weak and strong interactions. With the addition of supersymmetry unification of the couplings

becomes possible at a single Grand Unified Theory scale ∼ 1016 GeV, see Fig. 81.

Spectacular signatures were expected from supersymmetry at the LHC, with the complicated de-

cay chains giving multiple jets and missing transverse energy (MET) from the LSP, as illustrated in

Fig. 82 (a). However, no significant signals have been seen, and limits have been set across the param-

eter space of super-partners, see Fig. 82 (b). Is supersymmetry hiding? Most searches for it require the

presence of substantial missing ET, assumed to originate from the neutralinos that escape detection. But

supersymmetry could appear without MET:

– Compressed Supersymmetric spectra, i.e. a small mass difference between the LSP and top

squark, and two LSP momenta balance;

– Top “corridor”: stop pair production can look identical to tt;
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Fig. 82: (a) The signature of supersymmetry in an experiment, with many jets + MET; (insert) a typical
supersymmetry decay chain; (b) examples of limits on supersymmetric particle parameter space.

Fig. 83: Compilation of limits for (a) supersymmetry; (b) other “exotic” BSM searches.

– Stealth Supersymmetry: decays through an approximately supersymmetric hidden sector can re-

move missing momentum from the signal;

– R-parity violating supersymmetry: terms violate either Lepton or Baryon number conservation;

together this could lead to rapid proton decay, so only a few couplings are allowed to be non-zero.

Many of these options contain no invisible particles, but rather extra leptons or extra jets, that may

form resonances. So searches continue, but perhaps the new particle masses are too high for the LHC

(or supersymmetry is not the answer). An overview of current limits on supersymmetry is shown in

Fig. 83 (a).41

Searches for physics beyond the Standard Model (BSM) encompass a wide variety of ideas, in-

cluding new gauge bosons, compositeness, ZZ/WW resonances, Technicolour, extra dimensions, micro-

scopic black holes, little Higgs, hidden valleys, etc. These exotic ideas often repeat similar signatures

in the final state, such as leptons, missing energy, different configurations of jets and vector bosons, etc.

This can encourage an experimentally-driven approach, where one searches for the signatures, keeping

an open mind about the source of any non-Standard Model signals that might be discovered.
41Citations are given in the figures (if you can zoom in far enough).
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Fig. 84: (a) Adding an extra (warped) dimension, to account for the weakness of gravity in our
world [114]; (b) search for a tt resonance, where the signal peak position depends on the mediator
mass; (c) resulting limit on the coupling of gKK vs its mass [115]; (d) search for microscopic black
holes, that would give a high track multiplicity [116].

Taking the example of extra dimensions: why are there four dimensions of space-time (x, y, z, t)

in our world? Extending to additional dimensions is an alternative approach to solving the hierarchy

problem, lowering the cut-off scale Λ to the TeV scale. Extra dimension(s) would need to be “rolled

up” (compactified) to avoid being noticed. Randall–Sundrum models add a 5th warped dimension, so

that gravity can have a similar strength to the other forces (in the bulk) but is weak in our 4-dimensional

world, see Fig. 84 (a). Such models can have new particles that are excitations of SM particles, e.g.

a Kaluza–Klein excitation of the gluon (gKK) which can decay preferentially to top-antitop pairs that

would look like a resonance in the M(tt) spectrum.

Searches for tt resonances have been made by the experiments. They are reconstructed from

daughter top quarks via the t → Wb decay, e.g. using a boosted topology for hadronic decays, or the

single lepton channel. Resonances are produced from colliding valence quarks and sea anti-quarks, and

at high masses the resonance is smeared, as shown in Fig. 84 (b). As an example, requirements from a

generic resonance search setting limits for explicit models, gKK and Z′: exactly one high pT electron or

muon; no isolation requirement; at least two high pT jets; large MET to reject multijet background; 1

top-tagged jet. An enriched W sample is used to measure top-tag misidentification, and M(tt) is used as

the final observable. No signal was seen, so limits are set—the best limits at the time for tt resonances,

see Fig. 84 (c). Models with extra dimensions can also predict the formation microscopic black holes at

LHC collisions, leading to very high multiplicity events, e.g. model of Arkani-Hamed, Dimopoulos and

Dvali (ADD). No evidence has been found for them, e.g. see Fig. 84 (d), or for any other BSM signals so

far, and an overview of current limits is shown in Fig. 83 (b).

If no mass bumps are found, i.e. the object being searched for has higher mass than that accessible

at the LHC, one can still search for deviations in the tails of distributions by making precise measure-

ments. This is the essence of the effective field theory approach, illustrated in Fig. 85—becoming more

important as no clear mass bumps of new particles have yet been seen. Deviations are parametrized by
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Fig. 85: Comparison of direct searches for a mass bump (left) and the EFT approach of searching for
deviations in the tails of distributions (right), in the case of VBS [117].

Fig. 86: (a) The many orders of magnitude in dark matter mass that need to be searched, with some
relevant techniques superposed [118]; (b) example diagram coupling DM to SM particles via a mediator.

higher-order operators from SM fields: LEFT = LSM +
∑
ciOi/Λ2.

The search for dark matter—assuming it is made of particles—is complicated by its unknown

mass, resulting in an extremely wide range of masses to search, see Fig. 86 (a). If DM interacts with SM

particles, it will do so through a mediator, as shown in Fig. 86 (b). Colliders offer a unique opportunity

to study the mediator’s properties (mass, spin). Simplified models describe dark matter without being

constrained to a specific theory: σ ∝ g2SM g2DM/M
4
med [119]. Dark matter is assumed to be weakly

interacting, so it leaves no signal in the detectors. Instead one can identify DM production by looking for

other particles recoiling against it, e.g. from initial-state radiation, as illustrated in Fig. 87 (a). Detailed

understanding of the missing energy spectrum is crucial! Spurious detector signals can cause fake MET,

so control regions are used to derive data-driven corrections to the background expectation.

An example of the results of a dark matter search is shown in Fig. 87 (b), for a monojet-W/Z

search. No signal is seen, and limits are set—here on the DM mass vs mediator mass plane. A

comparison (model-dependent) can be made to non-collider searches—direct detection at underground

experiments—see Fig. 87 (c): the collider results are powerful in the low mass region.
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Fig. 87: (a) Searching for DM signatures, where recoil against SM particles is required for it to be
visible, and (below) how such “monojets” appear in the experiment; (b) limits set on DM vs mediator
mass; (c) comparison of limits on coupling vs mass with non-collider searches [120].

4.2 Hints of new physics?

Although no convincing BSM signal has been found in the searches, there has frequently been excitement

when possible hints have been seen. A good example is the peak in the diphoton mass spectrum seen in

the first 13 TeV data in 2015—like a heavy Higgs signal at a mass of around 750 GeV. The significance of

the peak seen in ATLAS was 3.9σ (local), 2.0σ (global, i.e. accounting for the “look-elsewhere” effect),

and a similar bump was seen by CMS, see Fig. 88! This would clearly have been new physics if it had

been confirmed, and over 200 theory papers were published on its possible interpretation... but then the

following year’s data ruled it out—most likely it was a statistical fluctuation. While that excitement has

passed, are there other hints that currently survive? I will discuss three so-called “anomalies”.

(1) Flavour anomalies
The largest persisting indications of disagreement with the Standard Model that have been found so far

at the LHC are known as the “flavour anomalies”, seen by LHCb. The FCNC processes involving the

transition b→ sℓ+ℓ− provide a rich set of observables to probe for new physics, as shown in Fig. 89 (a).

There is a systematic failure of theory to describe the differential branching fractions at low momentum

transfer q2, or some of the angular distributions, see Fig. 89 (b).

Even more striking signals have been seen when comparing decay modes to electrons or muons.

In the Standard Model gauge bosons have identical couplings with each of the three families of leptons,

known as lepton universality. The decays B+ → K+µµ and B+ → K+ee are both decays of the

form b → sℓ+ℓ− and in the Standard Model they should occur with the same rate (apart from lepton

mass effects, which are small here). Experimentally this is studied by making the double ratio with the

resonant (via J/ψ) and non-resonant decays, as shown in Fig. 90 (a):

RK =
B(B+ → K+µµ)

B(B+ → J/ψ(µµ)K+)

/ B(B+ → K+ee)

B(B+ → J/ψ(ee)K+)
. (4.15)

Early results were surprisingly low, also for a similar channel with an excited kaon (K∗), see Fig. 90 (c).

A different hint of lepton universality violation has been seen in the decays B0 → D(∗)+ℓν, see

Fig. 89 (c), this time comparing the modes with muons or tau leptons. Mass effects are larger here, so the
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Fig. 88: Bumps seen in the γγ mass distribution in 2015 by ATLAS [121] (left) and CMS [122] (right);
(b) event display showing the striking signature of such events (above) and evolution of the probability
for a signal as the 2016 data was added (below) [123].

Fig. 89: (a) Diagrams for b → sℓ+ℓ− decays in the SM (above) or for a model involving leptoquarks
(below); (b) discrepancies seen in such decays vs the momentum transfer q2 for the rate [124] (above) and
one of the many angular distributions [125] (below); (c) tree diagram for B0 → D(∗)+ℓν; (d) combination
of results onRD∗ vs RD [126] (above) and of all anomalies vs coefficients for new physics [127] (below).

SM prediction is around 0.3. These are tree-level decays, so it would be surprising to see new physics.

Similar ratios are constructed, known as RD and RD∗ . The biggest discrepancy has been seen by BaBar,

and combining all results as shown in Fig. 89 (d), the world average is 3.2σ from the SM prediction.

Theorists have tried combining all such anomalies, finding very significant discrepancy with SM,

as illustrated in Fig. 89 (d). However, the situation has evolved: in a recent publication LHCb has

updated (and extended) its analyses of RK and RK∗ , using improved analysis techniques. In addition

to possible statistical fluctuations, a systematic correction was found due to underestimated hadronic

misidentification background in the electron sample, giving the little green peaks under the signal visible

in Fig. 90 (b)—highlighting the importance of systematic studies! The updated results are consistent with

the Standard Model (see Fig. 90 (c)), so this element of the flavour anomalies has therefore gone away.

The other flavour tensions with SM still remain to be understood, but the situation is less dramatic now.
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Fig. 90: (a) Signals for B+ → K+ee (above) and B+ → J/ψ(ee)K+ (below)—the equivalent peaks
in the µµ channels are much cleaner [128]; (b) updated signals for B+ → K+ee in two regions of q2;
(c) early indication of discrepancy for RK(∗) [129] (above) and from the updated analysis (below) [130].

Fig. 91: W mass (a) comparison of the new result from CDF (at bottom) with earlier measurements;
(b) the same data, including a recent LHCb result and superimposing the average of previous measure-
ments (yellow band; citations for the results are given in the figure).

(2) W mass anomaly
A new CDF result for mW was released last year, with 0.01% precision. It uses entire dataset collected

from the Tevatron collider at Fermilab, based on 4.2 million W boson candidates (about four times

the number used in the previous CDF analysis, published in 2012). The result shows an impressive

discrepancy with the SM expectation from EW fits, at level of 7σ, see Fig. 91. However, the result is

also in significant tension with the average of previous measurements from LEP, LHCb, ATLAS, and

D0. Misunderstanding of the proton structure or QCD corrections could manifest differently depending

on the centre-of-mass energy, pp vs pp collisions, or different analysis choices, so it would be prudent

to wait and see if this anomaly persists once the consistency between the experiments has been clarified.
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Fig. 92: (a) Sketch of the principle of the muon g − 2 experiment; (b) the four contributions to the
muon anomalous magnetic moment (in box) and examples (here 5-loop) of diagrams calculated for the
QED contribution [132] (below); (c) oscillations of the muons’ spin, seen in their decay rate to detected
electrons [131].

(3) g−2 anomaly
An elementary particle with intrinsic angular momentum (spin, s) and charge q has magnetic moment:

µ = g
q

2m
s , (4.16)

where g is the gyromagnetic ratio and m is the mass of the particle. Dirac predicted g = 2 at tree-level,

but this receives corrections from virtual particles in loop diagrams, increasing the value. The resulting

“anomalous magnetic moment” of the different leptons ℓ is given by aℓ = (gℓ−2)/2. Their measurement

are long-standing precision tests of the Standard Model:42

– electron: ae = 0.001 159 652 180 7± 3 measured to 0.24 ppb!

SM: 0.001 159 652 182 0± 7 —prediction agrees, a triumph for QED!

– muon: aµ = 0.001 165 920 6± 4 measured to 0.37 ppm,

SM: 0.001 165 918 1± 4 —prediction is close but doesn’t quite agree!

– tau: aτ = − 0.018± 0.017 —difficult to measure due to its short lifetime,

SM: 0.001 177 21± 5.

42The errors quoted here are the uncertainties on the last digit of the measured values, except for aτ .
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Fig. 93: (a) Comparison of the most recent experimental values and the SM prediction for aµ [133];
(b) new calculations of the HVP contribution to aµ, that were not included in the SM prediction shown
in (a) (referred to in this plot as as “WP20”) [134].

There are many contributions to the prediction of aµ, classified as QED, Weak, Hadronic Vacuum Po-

larization, and Hadronic Light-by-Light (see the box in Fig. 92 (b)). Their relative contributions to the

overall value are as follows (in parentheses, in units of 10−12) followed by their contributions to the

uncertainty on the prediction: QED (116584719) 0.001 ppm, Weak (154) 0.01 ppm, HVP (6845) 0.37

ppm, HLbL (92) 0.15 ppm. Although the QED contribution is the largest, it is extremely well known,

and an example of a few of the many diagrams that have been calculated are shown in Fig. 92 (b)—an

amazing amount of work!

The first result was published by a new Fermilab experiment last year for the measurement of the

muon g−2, using the technique sketched in Fig. 92 (a),43 involving the measurement of many oscillations

of the muons’ spin, as shown in Fig. 92 (c). It is in excellent agreement with the previous experiment

(at BNL), and confirms the discrepancy with the SM prediction, currently at 4.2σ significance, see

Fig. 93 (a). However, there are new calculations of the most uncertain part of the prediction (HVP) from

Lattice QCD, see Fig. 93 (b), which would reduce the discrepancy—the theory community are working

to understand this tension between predictions, to consolidate the comparison with experiment.

4.3 Widening the search

No convincing hints of physics beyond the Standard Model have been seen so far at the LHC—but could

we be missing the evidence for new particle decays? 44

Long-lived particles (LLP)
Most searches share a similar basic reconstruction of tracks, requiring them to originate from close to

the IP: even the b-quarks only travel a few mm before decaying. A wide variety of lifetimes is seen

for SM particles, as shown in Fig. 94 (a)—perhaps this is also the case for the dark sector? Requiring

the track to originate near to the IP could miss BSM particles with long lifetimes, for which there are

plenty of theoretical predictions: split supersymmetry, gravitino dark matter, hidden valley, etc. Such

SM extensions predict particles that travel ∼metres with lifetime of hundreds of ns, or that lose so much
43Note that strictly speaking this is a storage ring, rather than collider, experiment.
44This field of study is a breeding ground for three-letter acronyms: FIPs, HIPs and LLPs...
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Fig. 94: (a) Lifetime vs mass for particles in the SM; (b) the many possible signatures of long-lived
particles [135]; (c) diagram for a decay in a dark-sector model with additional dark gauge symmetry,
giving an LLP candidate, Zd.

Fig. 95: (a) Limit on cross-section × branching ratio vs c× lifetime in the Zd LLP search [136];
(b) search for stopping LLPs showing the muon-pair time difference, where the out-of-time background
from cosmic rays is visible; (c) resulting limit for the stopping LLP search vs lifetime [137].

energy that they would stop somewhere in the detector and decay later. The challenge for experiments

is that they need to change triggering strategy and object reconstruction to be sensitive for such decays!

They can look for energy deposits in the calorimeter with no track pointing to it; large energy loss dE/dx;

time of flight less than the speed of light, etc., i.e. signature-driven searches, see Fig. 94 (b).

An example is the search for a Z + single neutral LLP, a popular scenario in dark-sector models

with additional U(1)d dark gauge symmetry, see Fig. 94 (c). The experimental signature is that the Zd

decays within the Hadron calorimeter, jets give little deposits in the ECAL and there are no charged

tracks pointing to the PV. This corresponds to decay lengths for the Zd between a few cm and tens of

metres. The Zd jet selection requires no track with pT > 1GeV and uses jet timing. No excess was

observed, so limits have been set as shown in Fig. 95 (a).

Heavy (∼ 100 GeV) LLPs will lose kinetic energy and stop while traversing the detector. If these

stopped LLPs have lifetimes greater than tens of ns their decays will be reconstructed as separate events

from the beam crossing where they were produced—most easily identified when there are no proton
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Fig. 96: (a) Diagram for pair-production of highly ionising particles (above) and simulation of mag-
netic monopoles in a solenoidal collider experiment (below); (b) the NTDs of MoEDAL (shaded red)
surrounding the LHCb IP; (c) limits on highly ionising particle production vs mass [138].

bunches in the detector. A search is made for out-of-time (with respect to the bunch crossing) deposits in

the HCAL or muon pairs in the muon detector. Backgrounds are from cosmic rays, beam-halo and de-

tector noise, as shown in Fig. 95 (b). Limits are set on the lifetime from 100 ns to 10 days, see Fig. 95 (c).

Highly ionizing particles (HIP)
Magnetic monopoles are a prime example of this type. They would make Maxwell’s equations more

symmetric, but aren’t found in normal matter—if you break a magnetic dipole (e.g. a bar magnet),

you get two more (smaller) dipoles. Dirac (1931) formulated a consistent description of the magnetic

monopole within the framework of quantum physics, related to the quantization of charge: if any mag-

netic monopole exists then the electric charge is quantized in units of e = 2πℏ/(µ0 gD), where gD is the

magnetic charge and µ0 is the permeability of free space. The value of gD is ≈ 68.5 e—so such objects

would be very highly ionizing. Monopoles might be pair-produced at colliders: this would give rise to

unusual tracks, parabolic along the axis of the solenoid field, as illustrated in Fig. 96 (a).

MoEDAL is a small experiment at the LHC dedicated to this type of search. It uses plastic foils

that form Nuclear Track Detectors (NTD), deployed around the LHCb VELO as a passive detector (see

Fig. 96 (b)). HIPs would leave ionization trails in the plastic, revealed as large holes when etched after

exposure to the beam. Aluminium blocks are also deployed to trap monopoles: the material samples

are then passed through superconducting SQUID magnetometers to look for the induced non-decaying

current that would result from a transported monopole. No monopole candidates have been found, and

limits are set as illustrated in Fig. 96 (c).

Feebly interacting particles (FIP)
Weakly interacting massive particles (WIMPs) have long been a popular candidate for dark matter: with

mass in the few× 100 GeV range and an interaction strength like the weak force, they would be produced

thermally in the Big Bang with the right abundance—many searches have been made, but have not found

them so far. However, there could be other dark matter candidates with lower mass (MeV–GeV) and

weaker coupling, such as the dark photon (A′) that would have a long lifetime and decay to e+e−.

FASER is a new small experiment at the LHC to search for such feebly interacting particles. They are

studying the “intensity frontier” at the LHC: since most light hadrons are produced along the beam axis in

the big experiments, perhaps other light new physics particles are too? The FASER experiment is situated
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Fig. 97: (a) Location of FASER at 480 m from the ATLAS IP; (b) schematic of the FASER detectors;
(c) signal seen in the prototype emulsion detector, showing a hint for neutrinos from the LHC [139];
(d) sensitivity curves for the dark photon as a function of integrated luminosity, in the plane of coupling
vs mass [140].

∼ 500 m from the ATLAS collision point, on the beam collision axis line-of-sight, in an unused former

service tunnel. A small spectrometer has been installed to detect the close e+e− tracks, see Fig. 97, with

an emulsion detector added in front to detect neutrinos: FASERν (covering η > 9). Neutrinos produced

in the pp collisions of the LHC will also be mostly in the forward direction, and can be detected by

FASER in that additional detector, allowing another test of the Standard Model. The first candidate

collider neutrino events have been seen in a prototype of the emulsion detector, see Fig. 97 (c).

SND is a similar detector on the opposite side of ATLAS, but slightly off axis (7.2 < η < 8.4),

which enhances the neutrinos coming from heavier hadron decays such as charm. FASER and SND are

making good progress, but the access tunnels where they are sited are too small to exploit the full physics

potential in the forward region of the LHC. A new shaft has been proposed to be dug 620 m from the

ATLAS interaction point, with a 65 m-long underground cavern to host more and larger experiments. At

the moment there are five proposed experiments to be situated in this “Forward Physics Facility”, with

different capabilities and covering different rapidity regions. However, the facility is not yet approved,

and a decision on it will probably only be taken in a few years’ time.

Physics beyond colliders
The LHC (including its future HL-LHC phase) is the flagship of the CERN programme, providing data

at the energy frontier for the next 20 years. A future collider should follow after the LHC, but most

likely not before the mid-2040s. The Physics Beyond Colliders study [141] was initiated to maintain a

diverse physics programme at CERN, help to fill gaps between colliders: using the injector complex at

CERN for fixed-target physics at the intensity frontier—searching for rare or weakly-coupled physics

with high intensity beams. A current example of such experiments is NA62, that searches for the decay

272



COLLIDER EXPERIMENTS: THE LHC AND BEYOND

Fig. 98: (a) Layout of the NA62 spectrometer; (b) the penguin diagram responsible for the K+ → π+νν
decay in the SM (left) and the signature in the experiment (right); (c) the definition of signal regions in
the plane of missing mass squared vs pion momentum (left), and the 2018 data (right); (d) the evolution
of the experimental limit (arrows) and theoretical prediction (pink shaded) for this decay mode over the
years, showing the recent evidence for its discovery [142].

Fig. 99: (a) The proposed SHiP spectrometer, with a decay of an HNL illustrated; (b) sensitivity of SHiP
to HNLs in the plane of coupling vs mass [143].

K+ → π+νν at the SPS, see Fig. 98. This is a very rare decay (BSM ∼ 10−10) but is precisely predicted

in the SM: another good place to look for new physics in loop diagrams. The signal is a single charged

track in the final state: an intense beam containing K+ is used to study the missing mass in the decay due

to the neutrinos. Evidence for the decay has recently been seen, as shown in Fig. 98 (d), in agreement

with the SM expectation. When the NA62 experiment is completed at the end of Run 3 (in 2025) there

will be the opportunity to upgrade the intensity of the beam-line and either extend the study of kaon

physics (proposal HIKE) or make a beam-dump to search for new physics such as heavy neutral leptons

(at the proposed SHiP experiment or a competing off-axis proposal, SHADOWS). This intensity upgrade

has recently been strongly supported by the CERN Research Board45—approval is expected by end of

this year.

45In a meeting that was held in the same week as this school took place.
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Fig. 100: (a) Modifications required to the LHC machine for its high luminosity upgrade; (b) sketch of
the reduced overlap of bunches due to the crossing angle (above) and its influence on luminosity (below),
with the loss being recovered by rotating the bunches using crab cavities (insert) [145].

The Standard Model was originally written down without right-handed neutrinos (the neutrinos

were assumed to be massless). The discovery of neutrino oscillations implies that they must be massive,

and introducing right-handed sterile partners could help to explain dark matter and the baryon asymmetry

of the universe: such sterile neutrinos are referred to as heavy neutral leptons (HNL). SHiP is a proposed

experiment to search for these and other dark-sector particles, via a beam-dump at SPS, see Fig. 99.

4.4 Future colliders

Having a diverse programme of experiments at lower energy is important, but it still remains the case

that much of recent progress in particle physics has been driven by colliders. The long term strategy for

particle physics in Europe (and at CERN) is decided in a process that takes place about every six years:

the European Strategy for Particle Physics (ESPP), for which the latest update was in 2020. There is a

similar consultation in the Americas known as the Snowmass process, that is currently in progress and is

expected to report soon. Clear priorities were set in the latest European strategy update [144]:

1. Full exploitation of the LHC (including its HL-LHC phase: discussed here as a future collider);

2. The next collider after the LHC should be an e+e− Higgs factory;

3. The long-term future of European particle physics should be a collider at the energy frontier with

ECM ≥ 100TeV.

HL-LHC
This is an approved upgrade of the LHC to increase its luminosity to 5 (or even 7) ×1034 cm−2s−1. The

beam energy will not be changed very much, although it may be pushed up to reach the design value of

14 TeV in the centre-of-mass, or just beyond (currently the LHC runs at 13.6 TeV). Significant changes

need to be made to the LHC machine, as presented in Fig. 100 (a), and good progress is being made, to
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Fig. 101: (a) Event display of a high-pileup event at HL-LHC (above) and the dense track occupancy in
the vertex region (below, shown in the view along the beam axis); (b) separating those pileup vertices in
the plane of time vs position [146]; (c) components of the CMS timing layer, scintillating bars for the
barrel (above) and the principle of LGAD operation, used in the endcap (below) [147].

be ready in 2029 and to run until 2042, integrating a total of 3000 fb−1/experiment, i.e. over 10× the

current sample. The luminosity is increased with stronger focusing at the interaction points, using 12 T

inner-triplet magnets that require use of new superconductor, Nb3Sn. The resulting low β∗ requires a

larger beam crossing angle, would reduce luminosity by factorR shown in Fig. 100 (b). To avoid this the

bunches will be rotated so that they collide head on, using RF manipulation in so-called crab cavities.

The increased luminosity will lead to an increase in pileup to ∼ 200 overlapping interactions,

and increased radiation, so the experiments also need to be upgraded (or their life would become hard,

see Fig. 101 (a)). For ATLAS and CMS these are known as their Phase-2 upgrades, which are already

designed and are now moving into production: they include new silicon pixel detectors, trackers, the

HGCAL, etc. To combat the pileup, fast timing is a key ingredient: as the bunches pass through each

other, collisions occur at different times as well as positions, as shown in Fig. 101 (b). Pileup can be

reduced by cutting on both the vertex z-position and the vertex time t: this is known as “4D vertexing”,

(x, y, z, t). Timing layers are being added by both ATLAS (in the endcaps only) and CMS (both in the

endcaps and barrel) as part of their Phase-2 upgrades.

As an example, the components of the MIP timing detector (MTD) of CMS are illustrated in

Fig. 101 (c): the barrel will be instrumented with scintillator bars, and the endcaps with fast silicon

detectors. The technology is selected according to the requirements: both detectors cost∼ 10MCHF, but

the barrel scintillators cover 3× the area of the endcap detector with 25× fewer channels; on the other

hand, they would not be able to handle the 10× higher radiation in the endcap. The fast scintillators used

for the barrel are LYSO crystals (Lutetium Yttrium Orthosilicate), with excellent radiation tolerance, high

light yield (∼ 40,000 photons/MeV), fast scintillation rise-time (< 100 ps), and relatively short decay-

time (∼ 40 ns). 166k LYSO crystals are readout with SiPMs at each end attached to the inner wall of

tracker support tube (radius = 1.15 m, length = ±2.6m). Their expected time resolution will be 35 ps

at the start, degrading to about 60 ps at end of the HL-LHC run. This will also enable time-of-flight

particle ID as a bonus, with 2σ K-π separation up to p ∼ 2GeV/c. The endcaps will use low-gain

avalanche diode (LGAD) silicon detectors, with internal gain. LGADs can achieve 30 ps resolution, but

this degrades with radiation dose, so they may need to be replaced during the run.
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Fig. 102: HL-LHC prospects (a) the increased sensitivity in a supersymmetry search [148]; (b) the
expected improvement in precision on the Higgs boson couplings [149]; (c) combined sensitivity of
ATLAS and CMS to the Higgs self-coupling [6].

Fig. 103: LS4 upgrades: (a) a module of the proposed fast time-of-flight detector for LHCb [150]
(TORCH, above) and lightweight silicon detector for ALICE (using silicon wafers bent into a cylinder,
below); (b) the prospects for the unitarity triangle constraints on flavour physics from LHCb Upgrade II
(worth comparing to the current status that was shown earlier in Fig. 64 (b)) [84]; (c) the proposed layout
of ALICE3 [151].

Concerning the physics prospects for HL-LHC, if any new physics signal is seen in Run 3 it will

allow the first detailed exploration with a well understood machine and experiments. Otherwise it will

extend the direct discovery potential by 20–30% in mass reach, see Fig. 102. In either case, over 100

million Higgs bosons will be produced, allowing the Higgs couplings to be measured to a few percent

including to the 2nd generation via H→ µ+µ−, plus providing first sensitivity to HH production and the

Higgs self-coupling.

LHCb and ALICE have just been upgraded for Run 3, so their future upgrades will be on a longer

timescale than those of ATLAS and CMS. They plan upgrades to make use of the high luminosity avail-

able at HL-LHC, to be installed during Long Shutdown 4 (LS4), currently scheduled in ten years’ time

(2033-34), so there is still time for interesting R&D. LHCb is planning to make use of fast timing, e.g. 4D

tracking in the VELO and a novel time-of-flight system shown in Fig. 103. They aim to record 300 fb−1

of data, leading to greatly improved precision on flavour observables. ALICE is planning a radical all-

new experiment (ALICE3) for their upgrade in LS4. They intend to replace their TPC with an extremely

light-weight silicon tracking system, and run at higher rate. These are exciting ideas, but they first need
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Fig. 104: (a) Diagram for the Higgstrahlung process (left) and simulation of the recoil mass spectrum in
FCC-ee; (b) luminosity (on a logarithmic scale) vs centre-of-mass energy for the different Higgs factory
proposals [152].

to be approved (after checking that sufficient funding is available).

Higgs factory
Now that the Higgs boson has been discovered, the highest priority future collider is an e+e− Higgs

factory, to study it in great detail. There are four (at least) implementations under discussion, none of

them approved yet. All target associated production e+e− → ZH “Higgstrahlung” shown in Fig. 104,

which will allow unbiased Higgs boson properties to be measured by selecting the Z decay and looking

at everything that recoils against it, sensitive to possible invisible Higgs decays. The main choice to be

made is between a linear or circular collider geometry: linear colliders are better at high energy, circular

at low energy, while their performance is quite similar at the energy for ZH (240 GeV). The linear options

are the ILC (in Japan) or CLIC (CERN), see Fig. 105, and circular FCC (CERN) or CEPC (China), see

Fig. 106.

1. ILC (International Linear Collider): a mature technology, discussed for over 20 years, based

on superconducting niobium RF cavities at 1.3 GHz frequency giving an accelerating gradient

∼ 35 MV/m; two separate linacs for e+ and e− beams, with a single IP; baseline 250 GeV (30 km),

upgradable to 1 TeV; a possible site has been selected in Japan, but there has been no recent

progress towards approval from the Japanese government.

2. CLIC (Compact Linear Collider): normal conducting cavities allow for a higher frequency of

12 GHz, leading to higher gradient ∼ 100 MV/m; different stages considered—380 GeV (11 km)

up to 3 TeV (50 km)—and could be sited in the CERN region; two-beam acceleration system with

a low-energy high-current drive beam powering the RF cavities of the main linac.

3. FCC (Future Circular Collider): feasibility of a 91-km circular tunnel is under study at CERN—it

could be ready (technically) by around 2045; it will make use of developments made for the B

Factories, such as continuous injection, leading to enormous luminosity possible at low energy—

running on the Z could repeat whole of the LEP programme in a few minutes, integrating 1012 Z

decays, and over 106 Higgs bosons; possibility of 4 IPs, allowing 4 experiments.

4. CEPC (Circular Electron Positron Collider): proposed in China, with very similar design to FCC.

From a CERN perspective, CLIC (or ILC technology) is kept as a backup in case FCC turns out
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Fig. 105: (a) ILC layout [153]; (b) accelerating structures for the ILC (above) and CLIC (below);
(c) CLIC layout [154]; (d) possible siting of CLIC in the CERN region.

to be too expensive (estimated ∼ 11BCHF for the first phase, FCC-ee). Experiments for an e+e− Higgs

factory are similar to those used at LEP, but aiming for higher precision: radiation and pileup are less

severe than at the LHC, see Fig. 107. Common developments are being discussed between the different

proposed facilities. At FCC-ee it is expected to measure Higgs couplings to better than 1%, mW and mZ

to < 1 MeV, mt to < 20 MeV from a threshold scan, etc. HH production is only directly accessible at

higher energy. An example of R&D towards a future Higgs factory experiment—that I am working on

now—is the adaptation of a twin-radiator RICH (similar to the original design in LHCb) to a 4π detector

at a Higgs factory, such as FCC-ee, aiming to be as compact (20 cm in radial thickness) and lightweight

(5% of X0) as possible, see Fig. 106 (c).

The use of s-channel production might appear attractive for studying the Higgs (i.e. settingECM =

mH, in a similar way to e+e− → Z at LEP) but it is tough: the cross-section is low and ΓH (4 MeV)≪ the

beam energy spread (100 MeV), see Fig. 108 (a). FCC-ee might just be able to measure it, with dedicated

running over a few years, as shown in Fig. 108 (b). One might consider trying to use muons instead of

electrons for this, as their higher mass would give a larger cross-section. Muon Colliders are being

studied, see Fig. 108 (c), but the statistics in the s-channel would still be lower than for e+e− → ZH,

plus the design is complicated: muons decay, giving severe background in the detector. This may be an

option for the longer-term, though, as a Muon Collider could reach high energy.

Sustainability is an important consideration for future colliders: accelerators need to be powered

by electricity, and recently the cost has increased, in addition to the environmental concerns. The LHC
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Fig. 106: (a) Possible siting of the FCC in the CERN region; (b) luminosity as a function of time that
could be achieved in FCC-ee, for operation at various energies [152]; (c) example of detector R&D for
FCC-ee—design for the cells of a lightweight RICH detector [155].

Fig. 107: (a) Layout of a proposed experiment at an e+e− Higgs factory; (b) cross-sections vs centre-
of-mass energy; (c) example of a possible scan of the top-quark pair-production threshold [154].

uses ∼ 200MW when running. Electricity provided to CERN is already climate friendly—nuclear

(from France) and renewable (from Switzerland), 90% carbon-free. But we must continue to strive for

improvement for future colliders: e.g. more efficient RF, increased use of renewable energy, possible use

of Energy-Recovery Linac technology to extract energy from the beams after they have collided, or use

of permanent magnets, etc. FCC-ee is the most energy efficient of the Higgs factory proposals (up to the

energy for tt production), as shown in Fig. 109 (a).

Going further
After the Higgs factory, the priority will be to push the energy frontier as far as possible, in particular if

deviations from the Standard Model have been seen in the precision Higgs + electroweak measurements.

Advanced accelerating techniques are under study to reach higher accelerating gradients, to allow for

more compact colliders. Limitations in current RF structures come from discharges due to material

imperfections, which could be overcome by avoiding solid structures and using a plasma instead. Wake-

fields can be induced in a plasma using a laser or drive beam, and then injected electrons “surf” the waves

to high energy, see Fig. 109 (b). Such developments aim to reach gradients > GV/m: e.g. at the AWAKE

facility at CERN.46

While waiting for a breakthrough in accelerating technology, or demonstration of the feasibility of

46It will be more tricky to accelerate positrons with such an accelerator technology, though.
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Fig. 108: (a) s-channel production of the Higgs boson, e+e− → H, and the influence of realistic beam
energy spread on the measured cross-section; (b) sensitivity to s-channel production at various facili-
ties [156]; (c) the components of a Muon Collider [157].

Fig. 109: (a) The total power vs centre-of-mass energy required for various future colliders (left), and
rescaled to show the luminosity achieved per MW of power (right) [158]; (b) using wakefields in a
plasma to accelerate electrons [159].

the Muon Collider discussed above, it is planned to re-use FCC tunnel for a hadron collider at the energy

frontier in the same way that the LHC followed LEP. Its circumference will be 3.5× that of the LHC, so

it will need to use high-field magnets to reach ≥ 100TeV pp collisions: Nb3Sn should allow 16 T to be

achieved, and high-temperature superconductor (HTS) even higher, see Fig. 110 (a); since the envisioned

start date for FCC-hh is only ∼ 2070 there is plenty of time for R&D! At high energy a detailed study

of HH production and the Higgs potential can be made, and the search for new physics extended by a

big step. The experiments will need to be even larger than at LHC, as illustrated in Fig. 110 (b), and will

have to be designed to survive very high radiation dose and pileup O(1000).

4.5 Summary of the fourth lecture

The Standard Model is very successful, but we know it is not the full story. Many searches have been

made at the LHC, but so far no clear signs of new physics have been seen: supersymmetry, dark matter

or other BSM. Hints of new physics have been claimed in a few corners—the flavour anomalies, the W
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Fig. 110: (a) Increase in magnetic field that has been achieved in different magnet types as a function
of year (although note that accelerator magnet design is more demanding than the test magnets shown
here) [160]; (b) design of an experiment for the FCC-hh [161].

mass from CDF, muon (g−2)—but they remain unconvincing, further experimental and/or theoretical

consolidation is needed. As a result, the searches are being widened: both within the LHC, e.g. looking

for long-lived particles, or going beyond colliders to search for feebly-interacting particles—for which

new experiments are being proposed right now. There is a clear future for collider physics, first with

higher luminosity at HL-LHC, where fast timing will be important to suppress pileup; and then at a new

future collider, that most likely will be an e+e− Higgs factory. The feasibility of the FCC is under study

at CERN, with a decision expected around 2026; if approved it will provide physics for many decades to

come: an electroweak and Higgs factory (FCC-ee) followed by a hadron collider (FCC-hh) at 100 TeV

or beyond—that I see as a very exciting prospect! I hope you will participate in this adventure, furthering

the quest to understand the hidden secrets of the universe.
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