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Abstract

The Asia–Europe–Pacific School of High-Energy Physics is intended to give young physicists an introduction
to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture
notes on quantum field theory and the electroweak Standard Model, the theory of quantum chromodynamics,
flavour physics and CP violation, neutrino physics, heavy-ion physics, cosmology and a brief introduction to
the principles of instrumentation and detectors for particle physics.
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Preface

The second event in the series of the Asia–Europe–Pacific School of High-Energy Physics took place in
Puri, India, from 4 to 17 November 2014. A strong team from IISc, IOP, NISER, TIFR and VECC, took
care of the local local organization, while CERN and KEK collaborated to provide administrative support in
preparation for the School.

The staff and students were housed in comfortable accommodation in the Toshali Sands Hotel that also
provided the conference facilities. The students shared twin-bed rooms, mixing nationalities to foster cultural
exchange between participants from different countries.

A total of 64 students of 22 different nationalities attended the school. About 70% of the students were
from Asia-Pacific countries, most of the others coming from Europe. More than 80% of the participants were
working towards a PhD, while most of the others were advanced Masters students; the School was also open to
postdocs. Over 80% of the students were experimentalists; the school was also open to phenomenologists.

A total of 33 lectures were complemented by daily discussion sessions led by five discussion leaders.
The teachers (lecturers and discussion leaders) came from many different countries: Australia, China, France,
Germany, India, Japan, Korea, the Netherlands, Russia, Switzerland and Taiwan.

The programme required the active participation of the students. In addition to the discussion sessions that
addressed questions from the lecture courses, there was an evening session in which many students presented
posters about their own research work to their colleagues and the teaching staff.

Collaborative student projects in which the students of each discussion group worked together on an in-
depth study of a published experimental data analysis were an important activity. This required interacting,
outside of the formal teaching sessions, with colleagues from different countries and different cultures. A
student representative of each of the five groups presented a short summary of the conclusions of the group’s
work in a special evening session.

In addition to the academic side of the School, the participants had the occasion to experience many aspects
of Indian culture, including visits to the Sun Temple at Konark, to numerous sites and temples in and around
the city of Bhubaneswar, and to observe the natural beauty of Lake Chilka and its associated wildlife. They
also had ample opportunity to appreciate excellent Indian food, including some delicious dinners served in the
open air with live performances of Indian dance.

Our thanks go to the local-organization team and, in particular, to Subhasis Chattopadhyay, Rohini Godbole,
Gobinda Majumdar, Prolay K. Mal, Sreerup Raychaudhuri and Pradip K. Sahu, for all their work and assistance
in preparing the School, on both scientific and practical matters, and for their presence throughout the event.
Our thanks also go to the hotel management and staff who assisted the School organizers and the participants
in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, undoubtedly appreciated listening to and discussing with the teaching staff of world
renown.
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We would like to express our special appreciation to Professor Rolf Heuer, Director General of CERN, and
Professor Atsuto Suzuki, Director General of KEK, for their lectures on the particle-physics programmes in
Europe and in Asia. We would also like to thank Professor K. Vijayaraghavan, Secretary of the Department
of Science and Technology, for his welcome address, and Professor Naba Mondal, leader of the India-based
Neutrino Observatory, for his presentation on high-energy physics in India.

We are very grateful to Kate Ross from CERN, and to Misa Miyai and Ritsuko Ota from KEK, for their
untiring efforts on administration for the School. We would also like to thank the members of the International
Committees

Sponsorship from numerous bodies in many countries covered the cost of travel and/or local expenses of
their staff and students who attended the School. In addition, general sponsorship is gratefully acknowledged
from: Bose Institute, India; CEA/Irfu, France; CNRS/IN2P3, France; CERN; DESY, Germany; ICTP; KEK,
Japan; TIFR, India.

Nick Ellis
(Chair of the International Organizing Committee)
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Field Theory and the Electro-Weak Standard Model

R. M. Godbole
Centre for High Energy Physics, Indian Institute of Science, Bangalore, India.

Abstract
In this set of four lectures I will discuss some aspects of the Standard Model
(SM) as a quantum field theory and related phenomenological observations
which have played a crucial role in establishing the SU(2)L × U(1)Y gauge
theory as the correct description of Electro-Weak (EW) interactions. I will
first describe in brief the idea of EW unification as well as basic aspects of the
Higgs mechanism of spontaneous symmetry breaking. After this I will discuss
anomaly cancellation, custodial symmetry and implications of the high energy
behavior of scattering amplitudes for the particle spectrum of the EW theory.
This will be followed up by a discussion of the ’indirect’ constraints on the SM
particle masses such as Mc,Mt and Mh from various precision EW measure-
ments. I will end by discussing the theoretical limits on Mh and implications
of the observed Higgs mass for the SM and beyond.

Keywords
Lectures; Standard Model; electroweak interaction; gauge theory; spontaneous
symmetry breaking; field theory; unitarity; indirect constraints.

1 Introduction
I am asked to discuss ’Field Theory and the EW Standard Model’ in these four lectures. The title
encompasses developments of the last 60-70 years. These lectures are happening on the backdrop of the
discovery of the Higgs at the LHC [1], the concluding finale of the establishment of the correctness of
the Standard Model as the theoretical description of EW interactions. To cover this entire journey in four
lectures, clearly I have had to pick and choose a few topics. I have done after sharing a questionnaire
with all of you.

I would like to focus on the salient and non negotiable aspects of EW phenomenology which
helped establish the SU(2)L×U(1)Y gauge field theory as the correct theory of the EW interactions. In
this I will like to tell the story of how requirements of consistency of EW theory itself have guided us in
the development of Standard Model (SM), as we know it today, by setting up the goal posts for theory
and experiments. I will begin by discussing some aspects of the pre-gauge theory description of weak
interactions in terms of a current-current Lagrangian. As we understand today this is the effective theory
which results from the SU(2)L × U(1)Y description, when the heavy gauge boson fields have been
integrated out. It is interesting to understand the role that various features of this effective description
have played in helping us ’infer’ the more fundamental theory which is the SM. I will try to point out
some of these. I will then begin a discussion of SM as a gauge theory, by first setting up the notation of
the SM Lagrangian followed by a somewhat brief discussion of the Higgs mechanism. Then I give a very
brief summary of the successes of the SM all the way from its formulation till date. I will then discuss
relationship between the particle spectrum of the SM and the twin issues of anomaly cancellation and
custodial symmetry. I will then sketch how one can understand the development of the SM as a theory
in terms of taming bad high energy behavior of scattering amplitudes. Then will come a discussion
of the GIM mechanism and ’prediction’ of the mass of the charm quark Mc from the measured mass
difference between K0 and K̄0. This will be followed by a discussion of the experimental measurements
which established the EW part of the SM as a quantum gauge field theory based on the gauge group
SU(2)L × U(1)Y , albeit where the symmetry is broken spontaneously. I will assume essentially that
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people are aware of some of the details of the Spontaneous Symmetry Breaking (SSB) and hence will
only sketch it here. As we know establishing the SU)2)L×U(1)Y theory with SSB as the correct theory
of EW interactions was done by testing the precision measurements of various EW observables against
the predictions for the same including radiative corrections. Inclusion of these radiative corrections
is possible only in a renormalisable quantum field theory. In particular I will discuss the history of
determination of Mt and Mh from ’indirect’ effects on observables through loop corrections. In the last
lecture I will discuss various theoretical bounds on the Higgs mass and also the theoretical implications
of the observed mass of the Higgs at the LHC [2, 3] for the SM.

2 Preliminaries
2.1 Periodic table of particle physics
The SM stands on the joint pillars of relativistically invariant quantum field theories and gauge symme-
tries. The SM is a quantum gauge field theory based on the gauge group SU(3)C × SU(2)L × U(1)Y
which describes the strong and electro-weak(electromagnetic and weak) interactions. The subject matter
of these lectures is going to cover only the EW part of the SM. Gauge theory of strong interactions, QCD,
will be discussed in a different set of lectures at this school.

As things stand today, the periodic table of the SM is complete. One part of this periodic table are
the spin-1

2 matter particles: the quarks and the leptons and their anti-particles. Table 1 summarises the
details of the currently available information on all the matter fermions.

Table 1: Elementary fermions of the Standard Model, all of spin 1
2 . The three quark colours are indicated explicitly,

while leptons are colourless. Electric charges in units of the positron charge, are displayed on the left side. The
anti-particles form a similar table with opposite charges.

Quarks Leptons

2/3

−1/3

(
u
d

) (
c
s

) (
t
b

)
0

−1

(
νe
e

) (
νµ
µ

) (
ντ
τ

)

2/3

−1/3

(
u
d

) (
c
s

) (
t
b

)

2/3

−1/3

(
u
d

) (
c
s

) (
t
b

)

Mu = 2 MeV Mν1 = 0− 0.13× 10−6 MeV
Md = 5 MeV Me = 0.511 MeV
Mc = 1, 300 MeV Mν2 = 0.009− 0.13× 10−6 MeV
Ms = 100 MeV Mµ = 106 MeV
Mt = 173.000 MeV Mν3 = 0.04− 0.14× 10−6 MeV
Mb = 4.200 MeV Mτ = 1.777 MeV

Of course, a gauge field theoretic description of the interactions among these elementary particles
needs in the SM particle spectrum, also the gauge bosons which would be the carrier of the various
interactions. This leads to the second set of members of the ’periodic table’ of particle physics, viz. the
spin-1 gauge bosons: the photon, W and Z bosons and gluons. Their details are indicated in Table 2.

As we will discuss in detail later, gauge invariance, which guarantees the renormalisability of this
theory, would require that all of the gauge bosons should be massless. Not only that, the same invariance
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Table 2: Elementary bosons of the Standard Model. There are no separate anti-particles: W− is the anti-particle
of W+ and the rest are neutral. Q indicates the electromagnetic charge of the boson in units of positron charge.

Electromagnetic and weak Strong Higgs
(Spin 1) (Spin 1) (Spin 0)

γ (photon) g (gluons) h (Higgs)

W±, Z (weak bosons)

Mγ = 0, Qγ = 0 Mg = 0, Qg = 0 Mh = 125.4± GeV, Qh = 0
MW = 80.404 GeV, QW = ±1
MZ = 90.1876 GeV, QZ = 0

would require the matter fermions also to be massless. However, other than the gluon and the photon
all the other members of this periodic table (cf. Tables 1 and 2) are patently massive. In fact, it is the
mechanism of Spontaneous Symmetry Breaking (SSB), which allows these particles to have non zero
masses and helps keep the theory still consistent with gauge invariance. SSB of the EW gauge symmetry
via the Higgs mechanism (or Brout-Englert-Higgs mechanism for the purists) [4], is the key ingredient
of renormalisable gauge theories of the EW interaction. This requires existence of yet another member
of the periodic table, which is the Higgs boson. This too has been included in the list of the SM bosons
in Table 2, now that its existence has been established firmly and the discovery awarded a Nobel prize!

2.2 Weak interactions: pre-gauge theory
Fermi’s theory of β decay [5], was the blueprint of the early theoretical description of the weak inter-
actions which are responsible not just for the radioactive β decays of nuclei but also for the strangeness
conserving and strangeness changing weak decays of the mesons and baryons. This culminated in the
famous V-A theory of weak interactions [6, 7]. According to this theory, the µ decay µ− → νµe

−ν̄e for
example, could be described by an effective Hamiltonian

Hµ decayeff = −Gµ√
2

[
Jρ+†
νe J+

νµ,ρ + h.c.
]
, (1)

where
Jρ+

12 = ψ̄1γ
ρ(1− γ5)ψ2 ≡ JρCC12 . (2)

In the same way, the β decay of the neutron could be described by an effective interaction given by

Hβdecayeff = −GF√
2

[
Jµ+†
eν J+

µ,pn + h.c.
]
, (3)

with
Jµ+
pn = ψ̄p(1− 1.26γ5)γµψn (4)

In fact, it was established that when written in terms of the quarks which make up the mesons and
baryons, all the weak processes could be described in terms of a four fermion, current-current interaction
depicted in left panel of Figure 1 which shows a transition 1→ 2̄+3+4. For example, the basic transition
describing the n decay n(udd)→ p(uud) + e−+ ν̄e, is given by the current-current interaction depicted

3

FIELD THEORY AND THE EW STANDARD MODEL

3



1 3

42

d u

e−
νe

Fig. 1: Generic four fermion interaction responsible for the weak processes (left panel) and the basic process
describing the β decay (right panel)

in the right panel. The crux of V −A theory is that only the left chiral fermions are involved in this weak
interaction Hamiltonian. The effective Hamiltonian is then written as

H4fermion
eff = −Gµ√

2

[
Jµ+†

24 J+
31,µ + h.c.

]
= −4

Gµ√
2

[(
ψ̄3Lγ

µψ1L

) (
ψ̄4Lγµψ2L

)
+ h.c.

]
(5)

The appearance of ψL = 1/2(1 − γ5)ψ in Eq. 5, indicates that only left chiral fermions are involved
in this charged weak current. As we will see later, it is this fact that decides the representation of the
SU(2)L gauge group to which the various fermion fields belong.

We understand the electromagnetic interaction in terms of the electromagnetic current Jemµ =
ψ̄LγµψL + ψ̄RγµψR and the electromagnetic field Aµ. The corresponding vertex is depicted in the left
panel of Fig. 2. Eq. 5 means that one can similarly think of the weak current J+

µ (for example) coupled
to a charged gauge boson (a weak boson W ) W+

µ . The basic transition brought about by the charged
current could then be depicted as shown in the right panel of Fig. 2. The electromagnetic charge of f ′

fL(fR)

fL(fR)

γµ

Jem
µ = qf (ψ̄fLγµψfL + ψ̄fRγµψfR)

fL

f ′
L

Wµ

J+
µ = gweakψ̄f ′

L
γµψfL

Fig. 2: The left panel shows the usual QED vertex depicting the interaction with the QED gauge boson γµ and the
right panel shows the generic vertex describing the universal weak interaction among quarks and leptons.

differs from that of f by one unit and in case f is strange quark, the strangeness changes by one unit as
well. In that case this current indicates a transition which brings about ∆S = ∆Q = 1, where S and
Q stand for the strangeness and the electromagnetic charge respectively. While the decay of a neutron n
involves the current Jµ+

ud , the decay of Λ for example, involves the current Jµ+
us . The strength of the four-

fermion interaction is then decided by gweak of Fig. 2. Experimentally measured values ofGµ andGF of
Eqs. 1, 3 were somewhat different from each other, though very close, GF ∼ 0.98Gµ. For the effective
Hamiltonian for Λ decay, for example, the corresponding coefficient was yet again different from both
Gµ, GF , GΛ being 0.20Gµ

1. It was Cabibbo’s observation [8] that all this could be consistent with a
1The very near equality between Gµ and GF was an indication that the vector current was not affected by the strong
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completely universal charged weak current i.e., a current which has the same strength for the leptons
as well as the quarks and also for ∆S = 0 and ∆S = 1 alike, if in case of quarks, the basic charged
current in Fig. 2 describes a transition with f ′ = u, f = d′ = d cos θc + s sin θc, with sin θc ∼ 12◦.
This means that the interaction eigenstate d′ is a linear combination of the mass eigenstates d and u.
Clearly, the orthogonal combination s′ = −d sin θc + d cos θc, is an interaction eigenstate coupling with
a W± and a new quark with charge +2

3 . This thus indicates existence of the fourth quark : the charm
quark c. As we will see later its existence ensures flavour conservation of the weak neutral currents at
tree level automatically. This then helps one understand the experimentally observed suppression of the
Flavour Changing Neutral Currents (FCNC) which will be discussed in detail later. Thus the states to be
identified with the interaction eigenstates would be:

(
u′

d′

)
=

(
u

d cos θc + s sin θc

)
;

(
c′

s′

)
=

(
c

−d sin θc + s cos θc

)

At this point let us also mention one more feature of the phenomenology of quark mixing which
will be relevant later. In fact, the physics of the K0, K̄0 mesons not only revealed the existence of
suppressed nature of the FCNC but also CP violation in K0–K̄0 system. This CP violation can also be
understood as coming from the above quark-mixing but ONLY if the mixing matrix involves a phase. For
this to be possible we have to have at least three generations of quarks. This was noted by Kobayashi-
Maskawa [9]. This makes it possible to understand the CP violation observed in the neutral meson
system, in the context of a gauge theory of EW interactions, in terms of the mixing in the quark sector.
However, this requires existence of at least three generations. Thus one sees that in some sense, the need
to understand the observed phenomenology of FCNC and CP violation, in the framework of a gauge
theory, predicted the existence of the c and the t quark respectively.

For future reference note that the connection between the mass eigenstates u, d, c, s, t and b and
the interaction eigenstates u′, d′, c′, s′, t′ and b′ is given by u′ = u, c′ = c, t′ = t and




d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






d
s
b


 , (6)

where Vud etc. are elements of the CKM matrix V Refs. (cf. [8]– [9]). This describes the interaction
eigenstates in terms of the mass eigenstates.

At this point let us also note that the same four fermion interaction that describes the decay µ− →
e− + ν̄e + νµ can also describe, for example, the scattering processes such as νµ + e− → νe + µ−,
corresponding to 1 = e−, 2 = νµ, 3 = νe and 4 = µ− in the left panel of Fig. 1. The same effective
Hamiltonian as in Eq. 5 then also describes this scattering process as well. If one calculates the total
cross-section one gets,

σtot =
G2
µs

π
=

2G2
µmeEνµ
π

. (7)

This linear rise of scattering cross-section with s, the square of the centre of mass energy or alternatively
Eνµ , is a reflection of the ’pointlike’ nature of the Fermi interaction of Eq. 5. It can be seen, by doing
a partial wave analysis of the scattering amplitude, that this behaviour implies violation of unitarity
when

√
s ≥ 300 GeV. Of course, in practical terms it corresponds to a Eνµ ≥ 108 GeV and hence

perhaps not very relevant. However, it is the principle that matters. A cure to this problem of the
current -current interaction was indeed offered by postulating the existence of a massive, charged boson
(called the weak-boson W±) by Schwinger. This is the same W± we have already introduced while

interactions of the n and p and is the same for e− to ν transition as for n to p. This was called the ’Conserved Vector Current
hypothesis’ (CVC). In all the discussions regarding the mixing angle, we are referring to the coefficient of this conserved vector
part of the current at the hadron level.
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writing the weak vertex in Fig. 2. Thus the point interaction of Eq. 5 can be understood as an interaction
resulting from the exchange of a W± boson, in the limit of the said mass MW being much bigger
than all the energies in the system. This is depicted in Fig. 3. The observed short range of the weak

e−

νµ

νe

µ−

W

M2
W >> q2 g2W

M2
W

e− νe

µ−
νµ

Fig. 3: Contact interaction resulting from MW →∞ limit

force causing the β decay, indicated that the W± boson is massive, unlike the photon mediating the
electromagnetic interaction which is massless. The success of the effective Hamiltonian of Eq. 5 implies
a lower bound much bigger than MeV and hence∼ O (GeV). To summarize, we see that the requirement
that unitarity bound be respected, indicates the existence of a massive charged vector boson W± and the
four-fermion weak interactions can be understood as caused by an exchange of this massive boson. The
’massive’ nature of the exchanged boson was also consistent with the observed ’short’ range of the weak
interactions. However, if it is a gauge boson, then the massive nature will also break gauge invariance!
Further, the massive nature of the gauge boson causes problems such as bad high energy behavior of
scattering amplitudes as well as non renormalisability of the theory. How a massive gauge boson is to
be accommodated in the framework of a gauge theory is going to be the topic of discussion in the next
section.

2.3 Observations meet predictions of the SM
Before beginning with a discussion of details of a gauge theory, let us just briefly take a look how the
establishment of the SM has been a synergistic activity between theoretical and experimental develop-
ments. We saw already how the form of the pre-gauge theory, effective Hamiltonian description of weak
interactions, obtained phenomenologically from the data hinted at a possible gauge theoretic description
of the same. Equally interesting are the hints at existence of new particles given by the theory. While
some of the members of this periodic table, like the µ, were unlooked for and some like the ν were met
with quite a bit of disbelief when postulated theoretically, for most of the recent additions their existence
and in some cases even their masses were predicted if the EW interactions were to be described by a
renormalisable gauge theory.

In fact, the existence of strange particles which contain the strange quarks, coupled with experi-
mental features such as the suppression of the FCNC in EW processes alluded to before, indicated the
existence of the charm quark, as already indicated above. Further, the small mass difference betweenKL

and KS (or alternatively the K0–K̄0 mixing) could be used to obtain an estimate of its mass. Acciden-
tal discovery of some members of the third lepton and quark family, combined with the requirement of
anomaly cancellation, an essential feature for a renormalisable theory, meant that the remaining mem-
bers of the same family had to exist. Hence t and the ντ were hunted for very actively once the b and
the τ made their appearance! The properties of a renormalisable quantum field theory were the essential
reasons behind the belief in these predictions. The mass of the t quark could also be predicted in the SM,
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using experimental information on neutral B meson mixing and properties of the Z boson, as we will see
below.

The story is not very different for the EW gauge bosons. As was already mentioned, requiring
consistency of the pre gauge theory description of the weak interactions with unitarity, had indicated a
nonzero mass for the charged W± but had not indicated what the mass would be, except that it should
be much larger than the typical energy scales involved in the weak decays ∼ MeV. It is the unified
description of the EW interactions of the Glashow-Weinberg-Salam (GSW) model [11] that actually
gave a lower limit on its mass. Note that the correctness of the V − A nature of weak interactions and
pure vector nature of the electromagnetic interactions predicted existence of a neutral boson other than
the photon γ. In the GSW model, the masses of the W and the new Z boson required in the unified EW
theory, were all predicted in terms of the life time of the µ and the weak mixing angle θW which was
a free parameter in the model. This could be determined from measurements of rates of various weak
processes.

Not just this, the SM also predicted existence of yet another boson, this time spin 0; viz. the Higgs
boson. The mass of the said Higgs boson, however, is a free parameter in the framework of the SM.
Comparisons of the EW observables with precision measurements can constrain the Higgs mass through
the corrections caused by the loop effects which can be computed in a renormalisable quantum field
theory. One can also put limits on this parameter from theoretical considerations of consistency of the
SM as a field theory at high scales: the triviality and vacuum stability, all to be discussed in the lectures.

Let us discuss in detail the case of the t quark which is quite interesting. The existence of the t
quark and the information on its mass came from a variety of theoretical and phenomenological obser-
vations in flavour physics and physics of the W/Z bosons. As already mentioned the explanation of the
experimentaly observed CP violation in terms of the quark mixing matrix requires at least three genera-
tions of quarks. This mixing is described by the famous CKM mixing matrix Refs. [8]– [9]. So in that
sense existence of the t and b was indicated by this observation.2 Experimental manifestation of B0–B̄0

oscillations at the ARGUS experiment [10] was a harbinger of the presence of the t quark. Further indi-
cations for the expected mass actually came from precision measurements of many EW observables, ie.
properties of the Z and the W boson and the quantum corrections caused to them by loops containing
top quarks.

Experimental observation of the t quark at the Tevatron [12], with a mass value consistent with the
implications of the EW precision measurements, provided a test of the description, at loop level, of EW
interaction in terms of an SU(2)L × U(1)Y gauge field theory with SSB. Fig. 4 shows, by open circles,
evolution with time of the values of the top mass extracted indirectly by comparing the measured EW
parameters with the SM predictions. Also shown are the 95% c.l. upper limits from direct searches from
the e+e− experiments (solid line) and from pp̄ experiments (the dashed line). In the last part of the plot
the solid triangles show the mass of the top quark measured directly at the Tevatron and the ’indirectly’
extracted values of Mt at the same time. The remarkable agreement between directly measured and the
’indirectly’ extracted values around the time of the discovery, was a test of the SM at loop level.

Once this was achieved, the same information could be used to obtain constraints on the Higgs
mass, now looking at quantum corrections to the W,Z mass as well as to the Z couplings, caused by
loops containing the Higgs boson. Finally finding a Higgs boson in 2012 [2] with a mass consistent with
these constraints was the biggest success of the SM 3 Fig. 5 reproduced from the Gfitter webpage [14]
illustrates this. The various dark and light shaded regions correspond to 68% and 95% c.l. contours in all
cases. The green bands between the vertical and horizontal lines indicate experimentally measured values
of Mt and MW . The region shaded in blue (the long and narrow ellipses) indicates the region allowed in

2The requirement of anomaly cancellation for the gauge theory of EW interactions to be renormalisable, further indicated
existence of an additional generation of leptons, τ, ντ as well.

3 Knowledge of QCD, the part of the SM which we are not discussing in these lectures, was essential in making precision
predictions for the Higgs signal and hence to this mass determination!
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Fig. 4: Comparison of the limits on the mass of the top quark from direct searches at the e+e− collider (solid
line) and the hadronic colliders (red dashed line) with the indirect limits, indicated by open circles, coming from
precision EW measurements as a function of time. The dot dashed line is an indirect lower limit obtained from the
observed rates of inclusive W/Z production in pp̄ colliders.The solid triangles indicate directly measured values
of the mass of the observed t-quark. This is taken from [13].

the Mt–MW plane, by fits of the SM prediction for precision measurements of EW observables where
the Higgs mass [2] information is used. The big elliptical regions, one of them open at one end, shaded
in light and dark grey, are the ones allowed when none of the mass measurements are used as input and
one lets the EW precision data choose the best fit values. Consistency of the values obtained in these
fits with each other and with the experimental measurements indicated by the small oval with dark and
pale green regions, leaves us with no doubt about the correctness of the SM. This tests the correctness of
quantum corrections to MW coming from the loops containing the t and h; hence of the quantum field
theoretic description of the EW interactions as a gauge theory.

Alongside this spectacular testimonial of the correctness of the EW part of the SM, is also the
equally impressive demonstration of a highly accurate description of all the CP violating phenomena
in terms of the flavour mixing in the quark sector. In the three flavour picture the 3 × 3 CKM matrix
is unitary. Making detailed fits of theoretical predictions to a large variety of data on meson mixing
and decays, to determine the elements of the CKM matrix with high precision, is an involved exercise
as it requires a synthesis of a variety of theoretical tools and high precision data. These elements are
parameterised in terms of two parameters : ρ̄ – η̄ [3]. Fig. 6 taken from PDG-2015 shows the constraints
in the ρ̄ – η̄ plane from a variety of measurements around the global fit point. Various shaded areas
indicate the regions allowed at 95% c.l. from a given measurement. The unitarity of the CKM matrix is
indicated by the fact that the ’tip’ of the unitarity triangle lies in the small intersection region allowed by
all the various measurements. Since for many of these observables their relationship with the parameters
of the SM is given by loop computations, this success too provides a test of the SM as a quantum gauge
field theory.
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3 SU(2)L × U(1)Y gauge theory
3.1 Gauge principle
Gauge principle is the basis of the theoretical description of three of the fundamental interactions viz.
strong, weak and electromagnetic, among the quarks, leptons and the force carrying gauge bosons. QED
is the first gauge theory to be established. We therefore can begin our discussion of gauge theories, by
looking at QED: a theory of a Dirac fermion field ψ(x ≡ ~x, t) of charge e. For a free Dirac fermion
of mass m the Lagrangian density consists of the kinetic term supplemented with the mass term and is
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given by
Lf = iψ̄γµ∂µψ −mψ̄ψ.

However, this Lagrangian density is not invariant under a local U(1) gauge transformation,

ψ(x)→ eiαψ(x),with α = α(x). (8)

Note that this non invariance of the Lagrangian density is true only for the local gauge transformation
with α = α(x). To construct a gauge invariant Lagrangian density, one needs to introduce a vector field
Aµ and generalise the derivative ∂µ → ∂µ + iqf |e|Aµ where qf is the charge of the fermion in units of
positron charge |e|. Thus for the electron, the covariant derivative is

Dµ = ∂µ − ieAµ (9)

Combining this generalization of the kinetic term for the fermion, with the gauge transformation of the
vector field

Aµ → Aµ +
1

e
∂µα(x), (10)

one can show that (∂µ − ieAµ)ψ → eiα(x)(∂µ − ieAµ)ψ. Thus, under the gauge (phase) transformation
of the fermion field, the vector field too has to transform with the same transformation parameter α(x).
Note now that the Lagrangian density

LQED = iψ̄γµDµψ −mψ̄ψ −
1

4
FµνF

µν = iψ̄γµ(∂µ − ieAµ)ψ −mψ̄ψ − 1

4
FµνF

µν

= iψ̄γµ∂µψ −mψ̄ψ −
1

4
FµνF

µν + e ψ̄γµψAµ

= Lf + Lgauge + e ψ̄γµψA
µ = Lf + Lgauge + Lint, (11)

with Fµν = ∂µAν − ∂νAµ, is gauge invariant. Note that a mass term for the vector field viz. M2
AAµA

µ

will break this gauge invariance (cf. Eq. 10). Further, this Lagrangian density is just the sum of three
Lagrangian densities: Lf for the free fermion field ψ of mass m as given by the first two terms in the
third line of Eq. 11, Lgauge for free massless gauge field Aµ given by the third term and the interaction
term Lint being given by the last one. Note that the form of the interaction of the fermion with the gauge
field is completely fixed by the form of the covariant derivative Dµ. Further, the mass term

mψ̄ψ = m(ψ̄LψR + ψ̄RψL)

will not be invariant under an U(1) local gauge transformation similar to that given by Eq. 8 if, for
example, the left and right chiral fermions have different U(1) charges. This will be the case with U(1)Y
gauge group of the Standard Model, as we will see very soon.

Note also the interaction term given by:

LQEDint = eψ̄γµψAµ = eJµ,emAµ. (12)

The current Jemµ of Eq. 12 is the vector bilinear constructed out of the fermion fields ψ and ψ̄. As opposed
to this, the weak current J±µ12 defined in section 2.2 contains a linear combination of both the vector and
axial vector bilinears. This phenomenologically ascertained form of the weak current therefore pointed
already towards a gauge theory of weak interactions albeit with parity violation. The form of this chirality
conserving current indicated existence of two charged vector bosons which however couple only to left
chiral fermions. Thus the V –A form of the current-current interaction already gives indications about
the representation of this gauge group, to which different types of fermions should belong since, as seen
above, in a gauge theory it is this representation that decides the interaction of the fermions with the
vector gauge bosons. The similarity and the differences in the nature of the weak and electromagnetic
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current and description of electromagnetic interactions in terms of a U(1) gauge theory, paved the way
towards an unified description of electromagnetic and weak interactions as the electro-weak gauge theory
based on the gauge group SU(2)L × U(1)Y .

Before we formally write down the complete Lagrangian density for the EW part of the SM, let us
discuss the generalisation of the above discussion to non ablian gauge transformations. To that end let
us begin by summarising some of the relevant observations for QED, which we have stated above. The
local phase transformations given by Eq. 8 form an unitary group and is called U(1). The Lagrangian
density of matter fields is invariant under this U(1) transformation only if there exists a vector field
which simultaneously transforms with the same transformation parameter and the matter field interacts
with this vector field in a specific manner. We consider now, a generalisation of this simple symmetry
transformation of Eq. 8 to a case where matrix valued analogues of this simple phase transformations
act on a set of fields and again the elements of the matrices can depend on the space time coordinates
of the point : ~x, t. Again, invariance of the matter Lagrangian density under this local transformation
requires a set of spin 1, vector fields which transform under the local gauge transformation according
to a generalisation of Eq. 10 in addition to a modification of the kinetic term of the matter fields by
replacing ∂µ by the covariant derivative Dµ as done above. Thus there exists now a multiplet of gauge
bosons. Another curious property of the Lagrangian density involving these gauge fields is that even
in absence of matter fields and interactions, the equations of motion are non linear. This in turn means
that the associated spin 1 particles interact with each other in the absence of matter. Further, unlike the
phase transformations of the QED, these matrix valued transformations do not commute with each other.
Hence these generalized gauge theories are also called non-abelian gauge theories.

Lagrangian density of a free, massless non-Abelian gauge theory is given by

Lnonabelian = −1

4
F aµνF

a,µν (13)

with
F aµν = ∂µW

a
ν − ∂νW a

µ + gfabcW c
µW

c
ν (14)

Here fabc are structure constants which are specific to each gauge group defined by,

[T a, T b] = ifabcT c, (15)

T a being the generators of the gauge transformation. fabc are called the structure constants. T a are called
generators because, in general if Φ represents a matter field (spin 1

2 or spin 0) transforming according to
a representation TIJ of the gauge group then

ΦI → exp−ig(T
a)IJα

a(x) ΦJ , (16)

where g is the coupling constant. The repetition of index a indicates sum over all the generators of the
transformation. The covariant derivative is then given by

DµΦI = ∂µΦI − igV a
µ (T a)IJΦJ , (17)

where V a
µ denote the associated spin 1 vector fields. The kinetic term for the matter fields, defined in

terms of the Dµ along with the one for massless gauge fields given by Eq. 13, are both invariant under
the gauge transformation if the gauge field also transforms as

V a
µ → V a

µ +
1

g
∂µα

a + fabcV a
µ α

c. (18)

Again the couplings of the matter particles with the gauge bosons V a
µ , are then given by the kinetic term

written down using the covariant derivative given by Eq. 17, just like we did in Eqs. 11 and 12. We can

11

FIELD THEORY AND THE EW STANDARD MODEL

11



then write down currents JVµ analogous to Jemµ of Eq. 12. This is completely determined once we specify
the gauge group, i.e., T a, the representation of the gauge group to which the matter particles belong and
the coupling g.

When a = 1, i.e., when there exists only one gauge boson, these gauge transformations and
covariant derivative given by Equations 16–18 reduce to those for simple phase transformation corre-
sponding to the U(1) case, viz., Equations 8–10. For the case where a is different from 1, because of
the commutator relation, the normalisation of the charge g is fixed for all the representations. For U(1)
gauge transformation on the other hand the normalisation of the charge can be different for different
representations. For future reference, let us also note here that for the SU(2) gauge group we have

T a =
τa

2
and fabc = εabc, a = 1− 3

where τa, a = 1 − 3 are the Pauli matrices and εabc is the constant, completely antisymmetric tensor.
Hence, for SU(2) the index a takes values 1–3 in Eq. 16.

3.2 GSW model
Let us first write down the gauge boson and matter particle content for the GSW model along the in-
teractions among all these. The gauge group for the GSW model is SU(2)L × U(1)Y . The subscript
L means that the gauge transformations corresponding to this gauge group are non trivial ONLY for
the left chiral(handed)4 fermions and the right chiral fermions remain unchanged under it. The direct
product means that these two groups are independent, i.e., the left handed fermions belonging to a given
representation of SU(2)L will all have the same value of the charge under U(1)Y . Thus ONLY the left
chiral fermions belong to the nontrivial representation of the SU(2)L group and the right chiral fermions
are singlets under the SU(2)L gauge group. Therefore these have NO interactions with the gauge bosons
corresponding to the SU(2)L gauge group.

3.2.1 Particle content and Currents of the GSW model
For the SU(2) group, each representation is labelled by two quantum numbers TL and T3L, where TL
takes integral or half integral values: 0, 1/2, 1, 3/2... etc. and for a given TL, T3L takes values from−TL
to +TL in steps of 1. Thus number of fields belonging to representation labelled by TL is then 2TL + 1.
For singlet representation TL = 0 and for the doublet it is 1/2. Thus a doublet of SU(2)L contains two
members with T3L = ±1/2. The gauge bosons belong to the T = 1 representation (called the adjoint
representation) and hence they are three in number called W a

µ , a = 1 − 3. The U(1)Y gauge group
has only one generator like the QED case discussed above. We denote the corresponding single gauge
bosonBµ. The corresponding current is JYµ and the charge is called “hypercharge”. The electromagnetic
charge of a charged fermion is independent of its chirality. On the other hand, the two left chiral fermions
of different electromagnetic charges have to have the same U(1)Y charge. Thus it is clear that the U(1)Y
can not be identified with U(1)em, i.e., the hypercharge is different from the electromagnetic charge.
Thus U(1)em arises out of a linear combination of U(1)Y and a U(1) subgroup ofSU(2)L.

First let us discuss the physics in terms of W a
µ , a = 1 − 3 and Bµ. The gauge groups, the

corresponding spin-1 huge bosons and the couplings are indicated in Table 3. As we will see in a minute,
if the left handed fermions belong to the doublet representation of SU(2)L, the corresponding charge
changing gauge current JWµ we would construct from the covariant derivative, has the same form as the
JCCµ of Eq. 2, of the V − A current Lagrangian describing the charge changing weak interactions. Let
Y
2 denote the charge of the fermion under the U(1)Y gauge group. The corresponding transformation is
given by

ψ → e−i(g1Y/2)αY (x) ψ (19)
4The word handedness and chirality can be used interchangeably for massless fermions.
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Gauge Group Gauge Boson Fields Coupling

SU(2)L W a
µ , a = 1, 2, 3 g2

U(1)Y Bµ g1

Table 3: Gauge group, gauge bosons and couplings for the GSW model

whereas, for a SU(2)L doublet the gauge transformation is given by

Ψ =

(
f1

f2

)
→ Ψ′ = e−ig2(τa/2)αa(x)Ψ. (20)

f1 and f2 are the T3L = ±1/2 members of this doublet Ψ respectively. τa/2 are the generators T a for
the 2-dimensional fundamental representation.

The fermion content of the GSW model can then be written as shown in Table 4. All the left chiral

Quarks Leptons

(
u
d

)

L

(
c
s

)

L

(
t
b

)

L

(
νe
e−

)

L

(
νµ
µ−

)

L

(
ντ
τ−

)

L

uR, cR, tR eR, µR, τR
dR, sR,bR

+anti-quarks + anti-leptons

Table 4: The fermions and the representation of SU(2)L to which they belong.

fermions belong to the doublet representation, with the up-type quarks and neutrinos having T3L = 1/2
and d-type quarks and negatively charged leptons having T3L = −1/2. Note that according to this
there are no right handed neutrinos in the particle spectrum of the SM. The colour gauge group SU(3)c
commutes with the electroweak gauge group : SU(2)L × U(1)Y . Hence the electroweak interactions of
a quark are independent of its colour. Therefore we suppress here the colour index.

As already discussed U(1)em is a linear combination of U(1)Y and a U(1) subgroup of SU(2).
This is really the essence of Electro-Weak unification and is embodied in Glashow’s observation:

Qf = T3L + Y/2. (21)

Here Qf is the electromagnetic charge in units of |e|, where e is electron charge, T3L and Y/2 denote the
SU(2)L and U(1)Y charges respectively. Writing the electromagnetic charge as a linear combination
of T3L and the hyper-charge Y , embodies the fact that the carrier of electromagnetic interactions, the
photon Aµ will appear as a linear combination of the neutral vector boson W 3

µ and the U(1)Y gauge
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boson Bµ. We can discuss this mixing without making any explicit reference to the Higgs sector. This is
what we will do first and then summarise the details of the SSB. Note that the three gauge boson fields
W 1
µ ,W

2
µ ,W

3
µ : all couple only to left handed fermions and Bµ couples to both the left handed and right

handed fermions. Bµ and W 3
µ mix, giving one zero mass eigenstate γ. One then identifies the other one

with a new neutral vector boson called Z. One can schematically represent this as shown in the diagram
in Fig. 7. Note here that one can discuss this simply at the level of currents which give interactions among
matter and gauge bosons in terms of the gauge principle enunciated in Section 3.1, without making any
reference to a specific model which will generate these mixing and masses. The essence of this mixing

Fig. 7: A schematic description of mixing between the W 3
µ and Bµ. This is taken from [15].

is to define two fields Aµ and Zµ as a linear combination of Bµ and W 3
µ as:

Aµ = cosθWBµ + sin θWW
3
µ , Zµ = − sin θWBµ + cos θWW

3
µ (22)

Here, θW , called the ‘weak mixing angle’, is just an arbitrary parameter denoting the mixing between the
W 3
µ and Bµ. To see how the electric charge e is related to g1, g2 and sin θW , let us construct the currents

JWµ and JYµ the way electromagnetic current was constructed in Section 3.1. To do this we need to know
the Y values for the different fermion fields written in Table 4. Let us consider a single generation of

leptons: e−, νe. Eq. 21 means that the lepton doublet L1
L =

(
νe
e−

)

L

has Y = −1 and e1R = eR which

is an SU(2)L singlet has to have Y = −2. Let us indicate the three lepton doublets written in the last
three rows of the Table 4 by Li with i = 1, 3 respectively. We also use QiL with i = 1, 3 to indicate the

doublets
(
ui

di

)

L

where u1 = u, d1 = d etc., as written in the first three rows of the same table. For the

quark doublets Qi the hypercharge Y has value 1/3. For all the right handed quarks the hypercharge is
twice the quark charge and Y = 2Qq, since the value of T3L is zero for all the right handed fields.

Following the discussions in Section 3.1, let us start from the kinetic part of the Lagrangian for
all the fermions in Table 4, to construct the physical currents of the GSW model. For the quarks it is
simplest when written in the gauge eigenstate basis u′i, d′i, i = 1, 3. The kinetic term for a fermion field
ψ is given by

Lfermionkin = iψ̄L ∂/ψL + iψ̄R ∂/ψR, (23)

For the SU(2)L × U(1)Y gauge theory the ∂/ is to be replaced by the covariant derivative. This can be
written in terms of the hyper charges for the fermions given in the earlier paragraph. For a fermion f
which is a member of the doublet Ψ this is given by:

∂µΨL → DµΨL = ∂µΨL − i
g1YΨ

2
BµΨL − ig2W

a
µ

τa

2
ΨL. (24)
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where ΨL = LiL,QL and YΨ is the hypercharge for the doublet Ψ. For the case of SU(2)L singlets the
covariant derivative is given by

DµfR = ∂µfR − i
g1YfR

2
BµfR. (25)

The kinetic terms for all the fermions can be written as:

Lfermkin =
3∑

i=1

[
iLiLD/LiL + ieiRD/e

i
R + iQ′iLD/Q

′i
L + iu

′i
RD/u

′i
R + id′iRD/d

′i
R

]
. (26)

Since there are no right handed neutrinos in the strictest version of the SM, for the lepton sector the mass
basis and interaction basis are the same. Using the expressions for the covariant derivativeDµ of Eqs. 24,
25, along with Eq. 6, we find the interaction Lagrangian to be

∆Lint =
1

2
g1J

µYBµ + g2

( 1

2
√

2
(Jµ+W+

µ + Jµ−W−µ ) + Jµ 3W 3
µ

)
(27)

where:

Jµ+ = 2
(
ν̄iL γ

µeiL + ūiL γ
µVijd

j
L

)
, Jµ− = (Jµ+)†,

JµY = −ν̄iL γµνiL − ēiL γµeiL − 2ēiR γ
µeiR +

1

3
ūiLγ

µuiL +
1

3
d̄′iLγ

µd′iL +
4

3
ūiRγ

µuiR −
2

3
d̄′iRγ

µd′iR,

Jµ3 =
1

2
ν̄iL γ

µνiL −
1

2
ēiL γ

µeiL +
1

2
ūiL γ

µuiL −
1

2
d̄′iL γ

µd′iL,

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ). (28)

The couplings must now be rewritten so that one linear combination of Bµ,W 3
µ couples to the electro-

magnetic current and an orthogonal one couples to Jµ 3. For this purpose we may ignore the terms in
∆L depending on W±. For the remaining part, we may think of the physical fields Aµ, Zµ as the result
of a rotation in the Bµ,W 3

µ plane, as already discussed in Eq. 22. We write the inverse rotation:

W 3
µ = cos θWZµ + sin θWAµ, Bµ = − sin θWZµ + cos θWAµ (29)

Inserting into the Lagrangian Eq. 27, we find:

∆L(Bµ,W
3
µ) =

[
1

2
g1 cos θW JµY + g2 sin θW Jµ 3

]
Aµ +

[
−1

2
g1 sin θW JµY + g2 cos θW Jµ 3

]
Zµ

(30)
The expression in the first square bracket in Eq. 30 must be equal to eJµ emAµ where e is the unit of
electric charge and Jµ em is given by an expression for all the charged fermions according to Eq.12 and
can be written as

Jem
µ = −ēiLγµeiL − ēiRγµeiR +

2

3

(
ūiLγµu

i
L + ūiRγµu

i
R

)
− 1

3

(
d̄′iLγµd

′i
L + d̄′iRγµd

′i
R

)
. (31)

This can happen only if
e = g1 cos θW = g2 sin θW (32)

It follows that:
tan θW =

g1

g2
, e =

g1g2√
g2

1 + g2
2

(33)

Inserting this into Eq. 30 we learn that the coupling of the Z-boson is:

1√
g2

1 + g2
2

(
−1

2
g2

1J
µY + g2

2J
µ 3

)
Zµ ≡ gzJµNCZµ (34)
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Thus the weak neutral current is given by:

gzJ
NC
µ =

1√
g2

1 + g2
2

(
−1

2
g2

1J
Y
µ + g2

2J
3
µ

)
(35)

where gz is the coupling constant we associate to the Z-boson. This is a convention, because only the
combination gzJNC

µ appears in formulae. For convenience we choose:

gz =
g2

cos θW
=
√
g2

1 + g2
2 (36)

With this, the weak neutral current is:

JZ
µ = JNC

µ = −1

2

g2
1

g2
1 + g2

2

JYµ +
g2

2

g2
1 + g2

2

J3
µ

= −1

2
sin2 θWJ

Y
µ + cos2 θWJ

3
µ = J3

µ − sin2 θWJ
em
µ (37)

where we have written two different forms that are both useful.

Taking a look at the first of Eqs. 28 show us that the charged currents Jµ± involve only the left
chiral fermions and have the so called V(ector)−A(xial vector) structure. Jem

µ given by Eq. 31 has pure
vector nature. Eqs. 28 and 37 clearly show that, unlike the W± bosons, the Z-boson does not have V−A
couplings with the fermions. It must be kept in mind that when coupling it to Zµ, this current should be
multiplied by gz =

g2

cos θW
. Note that the expression of the current will remain the same even when it is

written in terms of the mass eigenstates di of instead of d′i.

The weak neutral current can also be written in terms of the T3 and Y of the various fermions and
also as a combination of V and A currents as follows.

JZ
µ =

∑

f

JZ,f
µ =

∑

f

[
f̄γµfLg

f
L + f̄γµfRg

f
R

]

=

[
1

2
gfV f̄γµf −

1

2
gfAf̄γµγ5f

]
. (38)

Here the sum is over all fermions f i = ui, di, ei, νi, i = 1− 3. The couplings gfL, g
f
R, g

f
V , g

f
A can be read

off from Eqs. 28 and 37 to be

gfL = T3(fL)− sin2 θW Qf , gfV = T3(fL) + T3(fR)− 2 Qf sin2 θW

gfR = T3(fR)− sin2 θW Qf , gfA = T3(fL)− T3(fR)
(39)

In the above equation, we have written down T3(fR) explicitly, which in the GSW model is zero, with
a view to generalize the expressions for the weak neutral current, should the fermions belong to other
representations of SU(2)L × U(1)Y , other than the one in the GSW model. Recall that Qf is the elec-
tromagnetic charge of the fermion in units of positron charge.

Note now that the form for the neutral current of Eq. 38 is exactly the same, for all the fermions
of a given electrical charge and given values of theSU(2)L quantum numbers. Since in the GSW model,
all the quarks or leptons of a given electric charge and handedness belong to the same representation of
SU(2) the weak neutral current automatically conserves ’flavour’, be it the leptonic one or the quark one.
This is indeed quite reassuring since the experiments had shown that while ’flavour’ changing charged
weak current (Eq. 28) exist, decays caused by ’flavour’ changing weak neutral current, FCNC mentioned
before, are either forbidden or suppressed by orders of magnitude. Their absence at the tree level is
automatically guaranteed in the GSW model, just by the particle content. The values of gfA, g

f
V , g

f
L, g

f
R

for the fermions of the GSW model are given in the Table 5.
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f ν e− u d

gfL
1
2 −1

2 + sin2 θW
1
2 − 2

3 sin2 θW −1
2 + 1

3 sin2 θW

gfR 0 sin2 θW −2
3 sin2 θW

1
3 sin2 θW

gfA
1
2 −1

2
1
2 −1

2

gfV
1
2 −1

2 + 2 sin2 θW
1
2 − 4

3 sin2 θW −1
2 + 2

3 sin2 θW

Table 5: The values of axial and vector neutral current couplings gfA, g
f
V for the fermions of the GSW model. Also

given are the neutral current couplings gfL, g
f
R for the left and right handed fermion fields.

Thus we see that in the GSW model, the weak neutral current couplings are completely determined
by g2 and sin θW . The weak neutral current involving νi is pure left handed just like the corresponding
charged current, where as for the charged fermions the V -A mixture depends on the electromagnetic
charge of the fermion because the relative weight of L and R currents is decided by the hypercharge Y .
While the strength of the axial current is completely decided by the T3 value of f iL, the vector coupling
depends on the weak mixing angle θW . As we will see later, the experimentally determined value of
sin2 θW ∼ 0.25. As a result the weak neutral current coupling of the charged lepton (e, µ, τ ) is in fact
close to zero.

The interaction of all the quarks and leptons with the electroweak gauge bosons is encoded in the
currents Jem

µ , J±µ and JZ
µ given by Equation31, first of Equations 28 and Eq.38. In low energy reactions,

the appropriate way to adjudge the strength of processes mediated by the weak neutral current is to derive
the current-current form of the interaction Lagrangian starting from Eq. 38. This is done by considering
the matrix element of a four fermion scattering process and taking the limit in which the mass of the
exchanged gauge boson is infinite. Let us consider the scattering process f1 + f2 → f1 + f2 through
the exchange of a massive W± (i.e., via charged current:CC) as indicated in the left panel of Fig. 8. The

mW → ∞
W

f2 f1

−igµν

m2
W−q2

f2

f1 f2

f1

g2
2
√
2
J+
µ

f1 f2

g2
2
√
2
J−
ν

g22
8m2

W
= Gµ√

2

J+
µ J

µ−

mZ → ∞

f1 f1

Z

f2 f2

−igµν

m2
Z−q2

gzJ
Z,f2
ν

Gµ√
2

m2
W

m2
Z cos2 θW

= Gµ√
2
ρ

f2 f2

f1f1

JZ,f1
µ JµZ,f2

gzJ
Z,f1
µ

Fig. 8: Effective current current interactions for charged and neutral current processes in the left and right panel
respectively.

17

FIELD THEORY AND THE EW STANDARD MODEL

17



effective current-current Lagrangian for the scattering process of Fig.8 can then be written as

LCC
eff = − g2

2

8M2
W

J+
µ J
−µ = −Gµ√

2
J+
µ J
−µ (40)

with J±µ as given by Eq. 28. On comparing with the current-current interactions of the pre gauge theory
days, one then gets:

Gµ√
2

=
g2

2

8M2
W

=
e2

8M2
W sin2 θW

, (41)

where GµVud = GF . It can be noted here that since | sin θW | < 1, the experimentally measured value of
Gµ and e, tells us that MW > 37.43 GeV. For the limiting value of sin θW ∼ 1 we get MW ∼ 100 GeV.

One can similarly write down the effective neutral current interaction effective Lagrangian under
the approximation that the Z boson mass is large, by considering the four-fermion scattering process
shown in the right panel of Fig. 8. This is given by

LNC
eff = −g

2
z

2


∑

f

JZ,f
µ




∑

f

Jµ,Z,f


 (42)

If one calculates the matrix elements for scattering process νe + e− → νe + e− taking place via the
interaction of Eq. 40 and Eq. 42 respectively, viz., MCC and MNC , it can be seen that their ratio is
given in terms of MZ ,MW and sin θW as:

MNC

MCC
=

M2
W

M2
Z cos2 θW

≡ ρ. (43)

Note further, that this effective Lagrangian involves couplings g2, g1 and MW ,MZ . More directly we
can use the two measured couplings Gµ and αem along with ρ and one arbitrary parameter of the model
the weak mixing angle sin θW . MW ,MZ are then given in terms of these and we have traded g1, g2 for
Gµ and αem. We will come back to this later in our discussion of the experimental validation of the SM.

Note also that in these discussions we have completely sidestepped the issue of how the non-zero
masses for the gauge bosons and the fermions written can be made consistent with gauge invariance. In
case of the gauge bosons the loss of gauge invariance also means loss of renormalisability and hence
consequently of the ability to make any predictions. So one of the problems to be addressed is how to
generate the mass terms below in a gauge invariant manner.

Lmass =
1

2
M2
ZZµZ

µ +M2
WW

+
µ W

−µ +
∑

i

mi

[
ψ̄iLψiR + ψ̄iRψiL

]
. (44)

It should be noted that the sum in Eq. 44 is over all the fermions except the neutrinos which are assumed
to be massless here in this discussion.

3.2.2 SSB and generation ofW/Z masses.
Before we move on to discuss more about the novel phenomenon of the existence of the weak neutral
current, which was but the first step in testing and establishing the GSW model, let us first look at the
issue of how nonzero masses for the gauge bosons and all the fermions can be generated in a gauge
invariant manner. This is achieved [4] through the famous SSB mechanism [16].

One starts with the SU(2)L × U(1)Y gauge invariant Lagrangian, for the nonabelian gauge fields
W i
µ, i = 1, 3 and the abelian gauge field Bµ, analogous to Eqs. 13 and 11 respectively.

Lmassless = Lgauge + Lfermikin
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= −1

4
BµνB

µν − 1

4
F aµνF

a,µν + Lfermikin.

Here Bµν = ∂µBν − ∂νBµ and F aµν = ∂µW
a
ν − ∂νW

a
µ + gfabcW c

µW
c
ν with fabc = εabc. Further,

Lfermkin is given by Eq. 26.

The considerations of SSB begin by considering a complex scalar field Φ, which is a colour singlet
and an SU(2)L doublet with hypercharge Yφ = 1, given by

Φ =

(
φ1

φ2

)
≡
(
φ+

φ0

)

where φi = Re(φi) + iIm(φi) and similarly for φ+, φ0. Thus we have four real scalar fields and the
Lagrangian we consider is,

LΦ = (DµΦ)†DµΦ− V (Φ) = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2, (45)

with µ2 > 0. Note that compared to the Lagrangian for a free complex scalar field, this has the wrong
sign for the quadratic term. So µ is not the mass and we can not interpret the excitations of the field Φ as
propagating degrees of freedom. But it is precisely this wrong sign that is required for the spontaneous
symmetry breaking to occur.

Fig. 9: A sketch of the mexican hat potential

Let us look at Figure 9 which shows a sketch of a similar potential, but for a single complex scalar
field φ: V (φ) = −µ2φ†φ + λ|φ†φ|2. This shows clearly that classically the point <eφ = =mφ = 0
is in fact a maximum and there exist a continuum of minima where the field is nonzero, all related to
each other by the symmetry transformation of the Lagrangian, which is a U(1) transformation for the
case shown in Fig. 9. SSB occurs when the quantum field configuration is such that the field has a
nonzero vacuum expectation value corresponding to one of these minima, thus breaking the symmetry.
The system is then described by the fluctuations of the fields around this minimum.

For the V (Φ) of Eq. 45 the minimum occurs for

Φ†Φ =
µ2

2λ
≡ v2

2
. (46)

The SU(2) symmetry is broken when the vacuum field configuration chooses a particular direction in the
φ1, φ2 space. The choice of the representation of the Higgs field decides pattern of symmetry breaking.
For the case of SU(2)L×U(1)Y case under consideration, the unbroken symmetry should correspond to
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theU(1)em invariance since the γ is massless. Glashow’s partial symmetry breaking withQ = T3L+Y/2
aids in deciding how to implement and helps us decide which of the four scalar fields can acquire a
nonzero vev. The charge operator should annihilate the vacuum and hence only the electrically neutral,
real scalar field can have a nonzero vev. The required symmetry breaking pattern is guaranteed (with the
choice YΦ = 1) by

< 0|Φ|0 >=< Φ >0=

(
0

v/
√

2

)
(47)

As follows from Eq. 46, v =
√

µ2

λ . Since Φ is a SU(2)L doublet clearly this choice for the vev means
that the vacuum configuration breaks the symmetry and chooses a particular minimum from amongst the
continuum of minima, similar to the situation depicted in the picture in Fig. 9. Since the electromagnetic
charge still annihilates the vacuum, the symmetry breaking pattern is SU(2)L × U(1)Y → U(1)em

One can rewrite the field Φ using the following parameterisation in terms of θa, a = 1, 3 and h all
of which have vacuum expectation value to be 0.

Φ(x) =
1√
2

(
θ2 + iθ1

v + h(x)− iθ3

)
. (48)

If θa(x), h(x) are small then we get

Φ(x) = exp(iθaτ
a/v)

(
0

v/
√

2 + h(x)/
√

2

)
. (49)

This is then an expansion of the field Φ in terms of the fluctuations around the minimum. One recognizes
the factor outside as that for a gauge transformation for a SU(2)L doublet. Comparing this expression
with Eq. 16 we see immediately that by doing a gauge transformation Φ′ = − exp(iθaτ

a/v)Φ we get,

Φ′(x) =

(
0

v/
√

2 + h(x)/
√

2

)
(50)

This gauge is called the Unitary gauge. Equation 47 also means that the vev is zero for field h. The three
scalar degrees of freedom θi in fact have disappeared from the spectrum in this gauge. Indeed these three
correspond to three Goldstone Bosons corresponding to the three generators of the symmetry group that
are broken spontaneously.

Let us now evaluate LΦ of Eq. 45 in the unitary gauge using Φ′ from Eq. 50. We use

DµΦ = ∂µΦ− ig1

2
BµΦ− ig2W

a
µ

τa

2
Φ. (51)

The covariant derivative term in Eq. 45 gives rise to terms quadratic in the gauge boson fields which are
given as below:

∣∣∣∣∣

(
g1

2
Bµ + g2

τa

2
W a
µ

)(
0
v√
2

)∣∣∣∣∣

2

=
g2

2v
2

8

(
W a
µW

aµ
)

+
g2

1v
2

8
BµB

µ

−g1g2v
2

4
W 3
µB

µ

=
g2

2v
2

4
W+
µ W

−µ +
v2

8

(
g1Bµ − g2W

3
µ

)2

=
g2

2v
2

4
W+
µ W

−µ +
(g2

1 + g2
2)v2

8
ZµZ

µ (52)
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This then tells us directly that three of the four gauge bosons become massive: the W± and one linear
combination of Bµ,W 3

µ which we call Zµ and the orthogonal linear combination remains massless. This
also tells us

M2
W =

g2
2v

2

4
, M2

Z =
(g2

1 + g2
2)v2

4
=

M2
W

cos2 θW
. (53)

Identifying g1Bµ − g2W
3
µ with Zµ with proper normalisation we see that expression for Zµ is the same

as that given in Eq. 22 and tan θW same as that in Eq. 33.

The new thing compared to the earlier discussion of the GSW model, is that now one has a model
for generating masses for the gauge bosons from the gauge invariant kinetic term of the scalar field. The
combination Aµ remains massless as it must. The fact that the same linear combination which has mass
zero also has the couplings to fermions that a photon field Aµ must have (cf. Eqs. 30,31) means that the
SSB has achieved the desired symmetry breaking pattern. Further, in the earlier discussion MW ,MZ

were unknowns, put in by hand; but now we find that the two are related to each other.

Another fact worth noticing is that the value of the vev v gets determined in terms of measured
value of Gµ. Using the expression for MW in Eq. 53 and that for Gµ in Eq. 41, we get

v =

(
1√
2Gµ

)1/2

' 246 GeV. (54)

Using the expression for g2 in terms of e and sin θW and Eq. 53, one can then see that,

MW =

√
π√
2Gµ

αem

sin2 θW
=

37.3

sin θW
GeV; MZ =

37.3

sin θW cos θW
GeV. (55)

This is the promised reduction in the number of free parameters. Now everything in the GSW model is
predicted in terms of the two known constants αem, Gµ and one free parameter sin2 θW . An accurate
determination of Gµ is possible via life time of the muon, τµ. Since | sin θW | < 1 this also means we
have an automatic lower limit on the masses of the W,Z bosons of 37.3 GeV.

We further notice from Eq. 53 that the ratio ρ defined in Eq. 43 is predicted to be unity in the GSW
model and we have

ρ =
M2
W

M2
Z cos2 θW

= 1.

Noting, in addition, from Table 5 that gfA, g
f
A are numbers of O(1), we can then conclude from Eqs. 40–

42 that one should expect the ν induced scattering processes via neutral current interactions to happen
at rates similar to those via charged current interactions. This conclusion is of course independent of the
actual values of MW ,MZ with the proviso that the energies are much smaller compared to these masses.
Thus the GSW model not only predicted the existence of a weak neutral gauge boson and weak neutral
current processes mediated by it, but it also predicted their strength to be O(Gµ).

The experiments with the bubble chamber Gargamelle at CERN, found evidence for the processes
induced by neutral current interactions as predicted by the GSW model. The energies involved were
smaller than the lower bound on the W/Z masses implied by Eq. 55. Hence one can use the effective
lagrangian description of Eqs. 40 and 42. In addition, measurements of cross-sections for neutral current
processes further showed the ratio ρ to be close to 1. Thus these provided both the qualitative and
quantitative support for the GSW model. This was before W,Z were experimentally discovered and
their masses measured.

It was further seen that the model prediction of ρ = 1 is true even with additional Higgs fields as
long as the scalars responsible for the SSB belong to the doublet representation. This can be understood
in terms of an accidental symmetry that the scalar potential V (Φ) seems to have for this choice of the
representation of the Higgs field. We shall discuss later this symmetry called the Custodial Symmetry.
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After working out the remaining terms also in terms of the field Φ′ in the unitary gauge we get,

LUΦ′ =

[
M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

](
1 +

h

v

)2

+
1

2
(∂µh)2 − µ2h2 − λvh3 − λ

4
h4

= LV V h + Lh. (56)

The first two terms are the mass terms for theW,Z as well as the term describing the interaction between
a pair of gauge bosons and the h. The form of this term makes it very clear that the strength of the V V h
coupling is simply proportional to the mass of the corresponding gauge boson. This proportionality
between the mass and the coupling is the most critical prediction of the SSB.

The remaining terms describe now a real, scalar field which is a propagating degree of freedom
with mass Mh =

√
2µ2. Since v =

√
µ2/λ, the mass of the Higgs boson is given in terms of self

coupling λ. This being an arbitrary parameter of the Higgs potential, not fixed by any condition, Mh too
is a free parameter of the SM, with no prediction for it. We will come back to this later when we look at
theoretical constraints on the Higgs mass!

In the unitary gauge now the propagating degrees of freedom are the three massive gauge bosons
W±, Z , one massless gauge boson γ and ONE propagating massive scalar. A massless vector boson
has two degrees of freedom corresponding to the two degrees of polarisation it can have whereas a
massive gauge boson has three degrees of freedom as it can also have longitudinal polarisation. Out
of the four scalar degrees of freedom only one, h, is left in the particle spectrum and the other three
provide the remaining degrees of freedom corresponding to the longitudinal polarisation necessary for
the three gauge bosons to be massive. The total number of bosonic degrees of freedom before SSB are
twelve: eight corresponding to four massless gauge boson fields W a,a=1,3

µ , Bµ and the four scalars in
Φ. After the SSB one has again twelve bosonic degrees of freedom : nine corresponding to the three
massive gauge bosonsW±, Z, two corresponding to the massless photon γ and one corresponding to the
massive neutral scalar h. In the unitary gauge the particle spectrum contains only the physical fields and
the Goldstone boson fields θa, a = 1, 3 of Eq. 48, are absent from the spectrum. The same is depicted
somewhat pictorially below:

Lmasslessgauge + LΦ Lmassivegauge + Lh

4 massless 4 scalar
SSB,Unitarygauge−−−−−−−−−−−−→ 3 massive, 1 massless 1 physical

gauge bosons fields gauge bosons scalar

8 d.o.f. 4 d.o.f. 11 d.o.f 1 d.o.f.

Table 6: Bosonic degrees of freedom before and after the SSB.

3.2.3 SSB and generation of lepton masses
It was really Weinberg’s genius that he saw that exactly the same mechanism can be used effectively to
give masses to all the fermions. He did so by postulating a gauge invariant term for interaction between
the fermionic matter fields and the Higgs field! For the electron, it can be written as

Leyukawa = −f∗eL̄′1LΦe′1R + h.c. (57)

The ’prime’ on the lepton fields are to indicate that these the interaction eigenstates. One can also see
clearly that this is a singlet under SU(2)L and U(1)Y ). Using Φ′ of Eq. 50, we get we get

Le,Uyukawa = −f
∗ev√
2

(ē′Le
′
R)(1 + h/v) + h.c. (58)

22

R.M. GODBOLE

22



The first term in the bracket is clearly the mass term. Hence we have

me = +f∗ev/
√

2 e′ = e (59)

Second term in the bracket also then tells us that the hee coupling is just me. One can do the same for all
the charged leptons. Thus the gauge invariant Lagrangian Liyukawa, gives rise to the mass term for the
leptons.

The original paper by Weinberg [11] talked only of leptons. With some extra work the procedure
works for the case of quarks as well. The most general Yukawa interaction can be written as,

Lqyukawa = −f∗dij Q̄
′i
LΦd′iR − f∗uij Q̄

′i
LΦ̃u

′j
R + h.c. (60)

where Φ̃ = iσ2Φ∗. We want the L to be invariant under SU(2)L×U(1)Y transformations. The SU(2)L
invariance is guaranteed by construction. Recall, for the right handed quark fields the hyper charges are
Y = −2

3 and 4
3 for the down-type and up-type quarks respectively whereas Q̄i′ has Y = −1

3 . As a result,
the second term involving up-type quarks in Lqyukawa is invariant ONLY if the hypercharge of the scalar
doublet has Y = −1. The most economical choice for such a field is then Φ̃. Again the ′ for the quark
fields indicate that these are interaction eigenstates. In the unitary gauge, using Φ′ of Eq. 50 we get,

Lq,Uyukawa = −
f∗dij√

2
v d̄′iL(1 + h/v)d′jjR −

f∗uij√
2
v ū′iL(1 + h/v)u′jR + h.c. (61)

We see that after the SSB, the SU(2)L×U(1)Y gauge invariant Lagrangian Lqyukawa of Eq. 60 contains
mass terms for both the up-type and down-type quarks. These are matrices in the generation space and
are given by;

md
ij =

f∗dij√
2
v , mu

ij =
f∗uij√

2
v. (62)

Since in general f∗dij , f
∗u
ij are completely arbitrary matrices in the generation space, these mass matrices

are not diagonal in the basis d
′i, u

′i, in the most general case. The states d
′i, u

′i, i = 1− 3 are therefore
clearly not mass eigenstates. di, ui, i = 1, 3 are thus linear combinations of d

′i, u
′i, i = 1, 3. In the

most general case, after diagonalisation of both the md,mu matrices given above, we can write the weak
charged current in terms of the mass eigenstates ui, di as indicated in Eqs. 27 and 28. An alert reader
might have wondered why one does not have such a mixing matrices for the charged leptons. This has
to do with the fact that the mixing matrix V given in Eq. 6, arises from a mismatch in the matrices
which diagonalise the d and u mass matrices, and will be different from each other in the most general
case. However, for the charged lepton case, the neutrinos being massless, the corresponding mismatch
between matrices diagonalising the charged lepton and neutrino mass matrices, can not have any physical
implications.

3.2.4 Flavour changing neutral currents
An alert reader might wonder why we emphasize the issue of FCNC so much. To appreciate this, we have
to discuss briefly one more puzzle that the weak decays of the K mesons had presented to the theorists
during the development of a theory of weak interactions. Let us consider the leptonic decay of K+ →
l+νl. The big difference in the measured branching ratios for the leptonic decays lνl, (63.55 ± 0.11)%
and (1.581± 0.007)× 10−5 for l = µ, e respectively, can be understood in terms of the V −A structure
of the leptonic current in first of the equations in Eq. 28. The K± were known to have a non-leptonic
decay as well, with a branching ratio of about 25%. On the other hand, the K0 mesons were found to
decay only in the non-leptonic final states. For example, even today only an upper limit of 9 × 10−9 is
available for the branching ratio for K0

S → µ+µ−, meaning thereby that this decay is not yet seen. This
big difference in the leptonic branching ratios for the K± on the one hand and K0

S on the other, was
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interpreted as suppression of strangeness changing weak neutral current as compared to the strangeness
changing, weak charged current. However, there was no ’understanding’ as to why this should be so.
So after the postulation of weak neutral currents in the GSW model, it was an obvious question to ask
whether the model provides a ’natural’ understanding of the observed fact of suppression of the flavour
changing weak neutral currents.

Weak decays of hadrons can be understood (and calculated) in the framework of the quark model
and W± bosons. The left panel of Fig. 10 shows the diagram which needs to be computed for (say)
the ∆S = 1 weak decay, K+ → νll

+ taking place via charged current. The hadronic decays of the

u

s

K+

l+

νl

W

Weak CC

d

s

K0
S

µ+

µ−Z

Weak NC

Fig. 10: Leptonic decay of mesons via currents. The blob indicates that the quarks are bound in the K mesons.

K± mesons can then be understood in terms of hadronic decays of the W±. Both the non-leptonic and
leptonic decays of the K± thus happen at the weak rate; amplitude being proportional to Gµ, the relative
branching ratios being controlled by those of the W± which are known in the GSW model.

The existence of the weak neutral Z boson, in principle, could have given rise to weak leptonic
decay of K0

S mediated by the Z as depicted in the right hand panel of Fig. 10 with rates similar to the
charged weak current processes, should a u − d − Z vertex exist. This too would be then a ∆S = 1
process. The happy instance of absence of such a term in the JZµ of Eq. 38, explains the absence of pure
leptonic decays of K0

S via the weak neutral current at the tree level. This is then consistent with the
experimentally observed suppression of such decays. As has been already mentioned, absence of this
current is due to the fact that the fermions of the SM with a given electromagnetic charge and handedness,
belong to the same representation of the EW gauge group. Thus, the observed suppression of the FCNC
decays, in fact indicated the need of the existence of the c quark with Q = 2

3 , which is a T3 = 1
2 member

of the SU(2) doublet along with the s quark. The mere presence of a c-quark in the spectrum is enough to
achieve this absence of the FCN. Further, this result is independent of the masses of the quarks involved.

Even though such a decay is forbidden at the tree level by the absence of FCNC couplings in
Eq. 38, it can take place through loop processes at a higher order in Gµ through the charged current (CC)
interactions. In a renormalisable gauge theory such as the GSW model, one should be able to compute
the rate at which it is predicted to occur. This can then be compared with the observed suppression of
less than one part in 109.

Fig. 11 depicts two of the possible four box diagrams which would give rise to this decay at the
loop level, in a world with only four quarks u, d, s and c. The difference between the left and the right
panel is in identity of the charge +2

3 quark which is exchanged in the t-channel. There will also be two
more diagrams where the W ’s form the vertical legs of the box. One calculates these loops explicitly
in a gauge theory with SSB as it is renormalisable. In a world with only 3 quarks, one would compute
only the diagram in the left panel where the u quark is exchanged in the t channel and the amplitude of
a second diagram where it is W which is exchanged in the t channel and u forms the horizontal leg of
the box. Recall we already know that for a unified theory MW > 37.3 GeV. The loop amplitude, can
then be computed in the approximation m2

u << M2
W . The amplitude of the box will be proportional to

G2
µ sin θc cos θc × loop function, modulo the wave function factors which will describe how the s̄ and

24

R.M. GODBOLE

24



νµ

W−

u

W+s

d

µ+

µ−
cos θc

sin θc

O(G2
F sin θc cos θcm

2
W ) ∼ GF sin θc cos θcGFm

2
W

K0

νµ

W−

c

W+s

d

µ+

µ−
− sin θc

cos θc

O(G2
Fm

2
W sin θc cos θc) ∼ 10−5GF sin θc cos θcm

2
W

K0

Fig. 11: One loop diagrams giving rise to K0
S → µ+µ−

d quarks are held together to form a K̄0
S . One then gets

Mloop
µµ (K0 → µ+µ−) ∝ g2

2

M4
W

cos θc sin θc g
2
2 ×M2

W (1 +O(m2
u/M

2
W ) (63)

The factors of sin θc, cos θc that appear at various vertices in these diagrams are a reflection of Cabibo
mixing. In the limit where all the masses can be neglected, the loop function can only involveM2

W , which
is what explicit computations will yield. The M4

W in the denominator comes from the W -propagators.
Remembering the relation between Gµ and M2

W (Eq. 41), we then find that the amplitude can be written
as:

Mloop
µµ (K0 → µ+µ−) ∼ G2

µ cos θc sin θcM
2
W . (64)

Let us compare then the order of magnitude for this amplitude with the one expected for the non leptonic

K0

s

W

u

d

d

π+

π−

Fig. 12: One loop diagrams giving rise to K0
S → π0π0

weak decay K0
S → π0π0. The latter takes place not through a loop diagram but via the weak charged

current at tree level and occurs at O(Gµ). A possible digram is shown in Fig. 12. Amplitude for this de-
cay will be proportional toGµ sin θc cos θc, modulo the aforementioned wave function factors describing
qq̄′ bound state. If it were not for the factor of M2

W (MW > 37.3 GeV2), the additional factor of Gµ
present in the loop amplitude of Eq. 64, could have suppressed theMloop

µµ by a factor 10−5 compared to
the charged current induced, tree level amplitude for K0 → π0π0. Thus the rate for the µ+µ− decay
could have been suppressed to the experimentally observed low level as compared to the π0π0 decay.
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However, the factor M2
W removes this suppression of theMloop

µµ (K0 → µ+µ−). As a result, in the three
quark picture, the amplitude for the µ+µ− decay is suppressed though not hugely compared to the π0π0

decay which in turn occurs at the usual weak rate. This then is in contradiction with the experimentally
observed branching ratio of about ∼ 31% for the π0π0 final state and the observed upper limit on the
branching ratio for the µ+µ− channel of 10−9.

When one adds to the loop amplitude of Eq. 63 the contribution coming from c loop as well,
something interesting happens. Due to the relative negative sign of the term containing sin θc, we note
that the amplitudes from the two box diagrams in the left and right panel of Fig. 11, will cancel each
other exactly in the case where the masses of the u and c quarks are equal. The large term independent
of the mass of the quark in the loop thus cancels between these two diagrams! The non leading terms
dependent on the mass of the quark in the loop, will give zero when mu = mc and will be proportional
to m2

c −m2
u. So the factor with mass dimension two, in the amplitudeMµµ is no longer the large M2

W ,
but m2

c −m2
u ∼ m2

c . Thus, in the four quark picture, the observed suppression happens due to the very
existence of the charm quark and is guaranteed here by the orthogonality of the quark mixing matrix.
Further, any deviation from zero for the branching ratio will then depend on the difference in the masses
of the quarks being exchanged in the loops and in fact can give indirect information on these, in the
framework of a gauge theory when the various parameter values g1, g2, v and mixing angles are known.
However, particularly in the case of K0 → µ+µ− no firm constraint on the charm mass can be drawn
due to the existence of additional contributions to this process which do not come from the weak charged
current interactions along with some accidental cancellations.

A similar suppression of FCNC is also observed experimentally in the the K0-K̄0 mixing which
is a ∆S = 2 transition. In principle, this could occur at higher order in the CC weak interactions which
are strangeness changing with ∆S = 1. The KL–KS mass difference is ∆mK = |mKL − mKS | =
(3.484 ± 0.006) × 10−12 MeV, with ∆mK

mK0
' 8.5 × 10−15. Recall here that the strength of weak

interactions is given by Gµ ∼ 1.01×10−5

m2
p

. The strength of the ∆S = 2 transition which causes the K0–

K̄0 oscillations and gives rise to the KL–KS mass difference, is thus clearly weaker than that expected
from just two insertions of the CC weak interaction and is thus suppressed perhaps even further. In the
early days of gauge theory it was not clear whether the K0–K̄0 mixing is caused by a new interaction
weaker than the weak or whether it can be understood as a higher order effect of the |∆S| = 1 weak
charged current interaction.

In a gauge theory one can compute the expected value of this mixing in terms of loop diagrams
very similar to those shown in Fig. 11, where at the right hand end of the box the νµ is replaced by a
u or c-quark line and the µ+, µ− lines are replaced by the d̄ and s quark line which are bound in a K̄0

meson. Again, we show only two of these diagrams contributing to it and that too in the 4-quark picture,
in Fig. 13. Again one can make very similar observations as before. If the model had only three quarks
u, d, s then only the digram involving the u quarks would have contributed and it is very clear that the
predictedK0–K̄0 mass difference will not be proportional toG2

µ in the limit that u, d, s quark masses are
much smaller thanMW . As a result this contribution would have been much bigger than the experimental
measurement mentioned above. On the other hand, in the four quark picture, if the masses of u and c
quarks were equal the contribution from the two diagrams will just cancel each other due to the factors
of cos θc and sin θc appearing with appropriate signs and will be zero in this limit of mc = mu. Further,
the actual value of the predicted mass difference will now depend on mc,mu as well as experimentally
measured values of Gµ, θc etc. The observed mass difference could then be interpreted as an upper limit
on the mass difference mc −mu and further as a limit on mc of about a few GeV neglecting mu. This
is perhaps the first example of prediction of the ’scale’ of new physics (in this case the charm quark)
through virtual effects on quantities measured at energies much below the scale.

There are two parts to this calculation. One is evaluation of the transition amplitude indicated
by the box diagram drawn involving the W ’s and the quark lines, and the other is conversion of that
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K0
K̄0
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Fig. 13: One loop diagrams giving rise to K0 − K̄0 mixing.

amplitude into mass difference between the mesons. This requires evaluation of the matrix element
between the meson states of the effective Lagrangian which in turn has been extracted from the transition
amplitude at the quark level. One can relate the former to the meson wave function factor encoded in the
decay constant fK which in turn can be extracted from the measured life times of the kaons. The loop
calculation, yields a result for the mass difference ∆MK = |MK0 −MK̄0

|,

∆MK

MK
=

2

3

G2
µ

4π2
m2
c cos2 θc sin2 θcf

2
K (65)

In principle, the large mass of the t quark means that this could change substantially in the six-quark
picture. A calculation of the mass difference in the six-quark case can be shown to be

∆MK

MK
=

2

3

G2
µ

4π2
m2
c cos2 θc sin2 θcf

2
KX (66)

with

X = (sin2 θc cos2 θc)
−1<e

[
(VcsV

∗
cd)

2 +
m2
t

m2
c

(VtsV
∗
td)

2 + VcsV
∗
cdVtsV

∗
td

2m2
c

m2
t −m2

c

ln

(
m2
c

m2
t

)]
(67)

For the four-quark case the CKM matrix is just a 2 × 2 matrix and hence Eq. 66 just reduces to Eq. 65.
For the six quark case, indeedX in Eq. 67 contains terms∝ m2

t . These terms can, in principle, dominate
the mass difference ∆MK . However, since the elements of the CKM matrix which connect the third gen-
eration with the first and the second generation, Vtd, Vts, are extremely small, the dominant contribution
to ∆MK

MK
is still given by Eq. 65.

In fact, even without calculating the loop one could try to estimate the size of expected value of
∆mK assuming that the ∆S = 2 transitions are caused by an interaction with strength proportional to
G2
K = G2

µ sin2 θc. Since Gµ has mass dimension −2, we need to add appropriate factors of the only
mass available at the meson level, viz. mK . Thus the expected mass difference is

∆MK

MK
= G2

µ ×m4
K = (1.01× 10−5)2 ×

(
mK

mp

)4

sin2 θC ' O(10−14) (68)

which is indeed the right order of magnitude. This thus means that this amplitude must be ∝ G2
µ sin2 θc

and can NOT be ∼ O(Gµ).

Thus one sees that the suppression of FCNC that has been observed experimentally is ’understood’
neatly, both at the tree and loop level in a gauge theory, in terms of the chosen particle spectrum of the
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SM. At the tree level case it is just guaranteed by the representation of the group to which quarks of a
given electromagnetic charge and handedness belong where as at the loop level it is the orthogonality
of the mixing matrix. I.e, the mere presence of charm quark in the spectrum is sufficient to achieve
both. The latter observation is the celebrated GIM mechanism [17]. In the six quark case, it is not the
orthogonality of the mixing matrix but the Unitarity of V matrix that guarantees the GIM cancellation.
Further, the actual observed suppression can give a hint about the masses of the quarks involved. In fact,
the first ’prediction’ [18] for the charm mass around a scale<∼ a few GeV was made, using the GIM idea
by comparing the observed ∆M , with the one calculated theoretically. The uncertainties in the upper
limit were mainly due to the gaps in the theoretical understanding of strong interactions at the time. As
explained above, while in principle this ’prediction’ could have had ’large’ corrections, for the values of
the mixing matrix elements realised in nature, the prediction was correct.

3.2.5 Anomaly cancellation
As we have seen above, the GSW model contains both the vector and the axial vector currents. This
causes a problem when we try to renormalise the theory and do loop computations. The gauge invariance
of axial vector currents of the type

J5
µ = ψ̄γµγ5ψ

′,

(ψ′ = ψ for neutral currents) is not preserved by dimensional regularization due to the presence of γ5 in
the current. This means that even though,

∂µJ
µ
5 = 0

classically, at loop level due to the non invariance of the regulator,∂µJ
µ
5 6= 0 and the RHS develops a

nonzero term on the RHS. Hence, this axial gauge current is no longer conserved. The current is said
to be ‘anomalous’. As we know from Noether’s theorem if the current is not conserved, it means gauge
invariance is broken. Gauge symmetry along with Higgs mechanism is needed to have a consistent quan-
tum theory with massive gauge bosons. Thus if the theory has an anomalous current (or has anomaly) the
theory may not make sense at quantum level. It was shown by Adler and Bell-Jakciw, that there is only
one type of loop diagram with a logarithmic divergence which can make ∂µJ

µ
5 non- vanishing and poses

a danger to the conservation of the axial gauge current. This is a triangle diagram with a fermion loop
and two gauge boson legs and one current insertion; equivalently one can also consider a fermion loop
with three gauge boson legs. In the GSW model with its SU(2)L gauge bosons which have couplings
only to left chiral fermions and the U(1)Y gauge bosons which have unequal couplings to the left and
right chiral fermions, these triangle diagrams are in general not zero. Further, one can show that the
anomalous contribution is independent of the mass of the fermions in the internal loop.

There are in fact four types of triangle diagrams we need to consider out of which three are shown
in Fig. 14. Consider the diagram in the left most panel which contains matrix element of a pure V − A

∂µJ
µa
5

W c
ν

W b
ρ

∂µJ
Bµ
5

W b
ν

W a
ρ

∂µJ
Bµ
5

Bν

Bρ

Fig. 14: Triangle diagrams with anomalies.

current insertion along with two SU(2)L gauge boson legs. Only left handed fermions contribute to this
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anomaly and it can be shown that

∂µJ
µa
5 ∼ trτa{τ b, τ c}εαρβνF bαρF cβν . (69)

Here the ’tr’ refers to the trace over representation matrices and indicates the sum over all the fermions in
the representation. Since {τ b, τ c} = 2δbc and τa are traceless matrices this anomaly is zero identically.
In fact, the diagram with just one SU(2)L V–A current insertion not shown here will also give zero
contribution to the anomaly due to the traceless property of τa, a = 1, 3 matrices. The central diagram
also gets contribution only from the left chiral fermions and is given by

∂µJ
µ
5 ∼ tr(YL)εαρβνF aαρF

a
βν (70)

The notation tr(YL) indicates that only the left chiral fermions contribute to this quantity and sum is to
be taken over one SU(2)L representation. The contribution of the rightmost diagram in Fig. 14 is given
by

∂µJ
µ
5 ∼ tr

(
Y 3
L − Y 3

R

)
εαρβνBαρBβν . (71)

We see that for a single lepton generation the anomaly of Eq. 70 is proportional to 2 × YL = −2.
Summing over all the lepton doublets it will have a value −6. However, one notices that, for a single
quark generation it is 2× 1/3. The three colours add another factor of 3. Thus we find,

tr(YL)|l + tr(YL)|q = −2 + 3× 2× 1/3 = 0.

Thus this anomaly vanishes identically for the particle content of the left chiral fermions in the GSW
model. Further, we also notice that while (2Y l

L)3 − (Y e
R)3 = −2 + 8 = 6 is not zero, it is again

compensated by the value for the quark doublets which is 3× (−2/27−
(

4
3

)3
+
(

2
3

)3
) = −6. Thus again

tr
(
Y 3
L − Y 3

R

)
|l + tr

(
Y 3
L − Y 3

R

)
q

= 6− 6 = 0.

Hence contributions to both the anomalies, from loops of fermions of one quark and one lepton doublet
of the GSW model, are equal and opposite in sign. This means that the numbers of the lepton and quark
doublets have to be exactly equal so that the anomalies do not spoil the gauge invariance of the GSW
model and hence the renormalisability.

3.2.6 Custodial Symmetry
Let us discuss further the ρ parameter. To that end let us understand in a little more detail the origin
of the prediction of unity for ρ defined Eq. 43. Let us begin first writing down the most general gauge
boson mass terms that one could generate by spontaneous symmetry breaking. In the W a

µ , a = 1, 3 and
Bµ basis this can be written as




M2
W 1 0 0 0
0 M2

W 2 0 0
0 0 M2

W 3 MWB

0 0 MWB M2
B


 (72)

The mass terms MWa , a = 1 − 3,MB and MW 3B arise from the covariant derivative term DµΦ†DµΦ
(cf. Eq. 51), after the field Φ acquires a non zero vev. The expressions for MW 3B , MWa , a = 1, 3 and
MB that one would get as a result by expanding the field around the minimum, will depend on the weak
isospin charges T, T3L of the field Φ. Demanding that the EW minimum conserves electromagnetic
charge, as it must because SU(2)L×U(1)Y breaks to U(1)em after Φ acquires the nonzero vev, implies
that the T3L value of field which acquires the nonzero vev will be given by Q = 0 = T3L + Y/2.
While various entries in this mass matrix will then depend on the isospin and the hyper charge of the Φ,
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conservation of the electromagnetic charge will mean that the mass matrix will have a block diagonal
form. The same also implies m2

W 1 = M2
W 2 = M2

W where MW is the mass of the W± boson, defined
via the last of equations in Eq. 28. The W 3

µ and Bµ will mix. Irrespective of the representation to which
the scalar Φ belongs we are interested in the symmetry breaking patterns where SU(2)L×U(1)Y breaks
to U(1)em on , on Φ achieving a nonzero vev. Hence one of the eigenvalue of the 2 × 2 block diagonal
matrix aught to be 0. The value of MZ as well as the ρ parameter will thus depend on the representation
of Φ. In fact, it is possible to write a general expression for ρ.

For the present, let us continue with this general form of the matrix without committing to a
representation for Φ. Again defining Zµ, Aµ as in Eq. 29, to be the eigenstates of the above block
diagonal mass matrix, it is easy to see

M2
γ = M2

W 3 cos2 θW +M2
B sin2 θW + 2M2

WB sin θW cos θW = 0

M2
Z = M2

W 3 cos2 θW +M2
B sin2 θW − 2M2

WB sin θW cos θW

0 = (M2
W 3 −M2

B) sin θW cos θW +M2
BW (cos2 θW − sin2 θW )

(73)

This also means M2
B +M2

W 3 = M2
Z +M2

γ = M2
Z , as it should be since the trace of a matrix is equal to

sum of the eigenvalues. Thus we can eliminate M2
B in favor of M2

Z . Using Eq. 73, we can easily see that

−M2
WB =

M2
W 3(sin2 θW − cos2 θW ) +M2

Z cos2 θW

2 sin θW cos θW
=

(2M2
W 3 −M2

Z) sin θW cos θW

cos2 θW − sin2 θW
(74)

Thus cos θW can be expressed in terms of M2
W 3 and M2

Z . On comparing Eq. 52 with Eq. 72, we see that
for the case of the Higgs doublet we would have

M2
W 1 = M2

W 2 = M2
W 3 =

g22v
2

4 , M2
B =

g21v
2

4 ,

MWB = −g1g2v
2

4
(75)

Using Eq. 74, we then getMW = MZ cos θW , precisely the result of Eq. 53. Thus, we see that the ρ = 1
prediction is tied to the equality of M2

Wa , a = 1, 3 terms in Eq. 72.

In fact a closer inspection of the scalar potential of Eq. 45 reveals that this equality of all m2
Wa is

in fact due to an accidental symmetry of the scalar potential for doublet Φ. The doublet Φ contains, in
all, four real fields as φ+, φ0 are both complex fields. Writing,

Φ =




<eφ+

=mφ+

=mφ0

<eφ0


 (76)

we can see that the scalar potential

V (Φ) = −µ2
[
(<eφ+)2 + (=mφ+)2 + (<eφ0)2 + (=mφ0)2

]

+λ
[
(<eφ+)2 + (=mφ+)2 + (<eφ0)2 + (=mφ0)2

]2 (77)

has an O(4) symmetry under a rotation of the vector Φ of Eq. 76.

Upon SSB, the lowermost component of Φ acquires a non zero vev v√
2
, whereas all the three

components have zero vev.. Hence the scalar potential loses this O(4) symmetry. However, there is
still a left over O(3) symmetry corresponding to rotations of the first three components of Φ. among
each other. It is this left over O(3) symmetry, called the Custodial Symmetry, which reflects itself in the
equality of the masses M2

Wa for a = 1, 3 in the matrix Eq. 72, yielding ρ = 1.
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This also means that even though in the original formulation we had discussed the case of just a
single Higgs doublet Φ being involved in the SSB, as long as we use only doublet fields, Eq. 43 is always
guaranteed. Of course the statement is true only at the tree level. The custodial symmetry, is isomorphic
to an SU(2) involving the W a. This SU(2) is broken by the different masses of the fermions of a
SU(2)L doublet. The value of ρ can change due to contributions coming from loops (as we will discuss
in the next section) and also if there exist Higgs belonging to a representation of SU(2)L other than the
doublet.

3.2.7 High energy scattering
Recall the discussion around Eq. 7. We saw there how the postulate of massive vector boson was inspired
by the demand to restore unitarity to the ν induced processes. For example, the amplitude (say) for
νe → νe scattering calculated in Fermi theory (current-current interactions) violates tree level unitarity
for
√
s<∼300 ∼ G−1/2

µ GeV. Hence, one could also take this value as an upper bound on the mass of the
’massive’ W boson.

However, theories with massive vector bosons have problems with gauge invariance and hence
renormalisability. The SSB via Higgs mechanism solved the problem by generating these masses in a
gauge invariant manner. This then meant that the theory has renormalisability even with massive gauge
bosons. In fact, as we will discuss below, we can see explicitly that gauge invariance also renders nice
high energy behaviour to all the scattering amplitudes of the EW theory.

The existence of massive vector gauge bosons restore unitary behavior to processes like (say)
νµ + e− → µ−+ νe. But now due to the same non zero mass of the W bosons, amplitudes for processes
involving longitudinal W ’s have a bad high energy behaviour. For example, the matrix element for the
process νeν̄e →W+W− through a t-channel exchange of an e, shown in the left panel of Fig. 15, grows
too fast with energy and violates unitarity. One can show that

M(νeν̄e →W+W−) ∼ 8
g2

2

M2
W

Ep′ sin θ, (78)

whereE is the energy of the incoming νe and p′, θ are the momentum and the angle of scattering of theW
boson in the final state. Here we write only the dominant term of the amplitude involving the longitudinal
gauge bosons, which is the one with bad high energy behavior. If one does a partial wave analysis of this

amplitude, one finds that this amplitude will violate partial wave unitarity, for s <∼
M2
W

2g2
2

However, what

is interesting is that the contribution to the matrix element of the process νeν̄e → W+W−, from the s
channel exchange of a Z boson, shown in the right panel of Fig. 15 has exactly the same magnitude as the
t channel contribution written above but opposite in sign. This happens only if the strength and structure
of the couplings of the Z with a ν and W pair is exactly the same as given by the SU(2)L×U(1) theory.
Thus the violation of unitarity in the amplitude νeν̄e → W+W− due to the longitudinal gauge boson
scattering is cured in a gauge theory.

In fact, the GSW model contains more such amplitudes which, in principle, could have had bad
high energy behaviour but which are rendered safe by the particle content and the coupling structure of
the SM. It was demonstrated [19] that in the GSW model where the masses are generated through SSB
by a Higgs doublet (SM), ALL such amplitudes satisfy tree level unitarity. In fact the leading divergence
of theM(WW →WW ) which goes like s2 and hence is much worse, is also cured by the Z exchange
contribution and the contribution of the quartic coupling among the W bosons which arise from the non
abelian gauge invariance of the theory. Further, the divergent term proportional to s is cancelled by the
contribution of the process W+W− → h → W+W−, where the Higgs boson is exchanged in the s-
channel. Also if one were to calculate high energy behavior of the amplitude e+e− →W+W− obtained
by replacing the νe, ν̄e in the initial state in Fig. 15 by e−, e+, then the same cancellation between the
divergent parts of the t-channel and s-channel amplitudes is seen to take place.
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Fig. 15: Gauge theory restoration of tree level unitarity to the νeν̄e →W+W− process.

+

W−

W+

e+

e−

γ/Z

W+

W−

e+

e−

νe

e−

e+

h

W+

W−

Fig. 16: e+e− →W+W− process in the SM

After this observation, a variety of authors [20] investigated the conditions necessary for cancel-
lation of these divergences so that the amplitudes will satisfy tree level unitarity. In fact their analysis
indicated that this requires existence of partial wave contributions in the spin 1 and spin 0 channel, with
the couplings of these particles exchanged in the s-channel to be precisely those that are given the SM.
Recall here that this proportionality of the coupling of the Higgs to the masses of the particles to which
it couples is the key prediction of the SSB by Higgs mechanism. The other couplings are of course given
by the gauge invariance itself. Thus one could have derived the existence of the Higgs boson as well as
the structure of the couplings of the fermions and the gauge bosons to it, without making any reference
to the Higgs mechanism and hence the renormalisability.

The fact that the two different requirements, unitarity and renormalisability, lead us to the same
result, indicates that there must be a deep connection between the two. In fact, for the νeν̄e → W+W−

scattering, there is a residual logarithmic violation of unitarity that is left after all the cancellations, which
gets cancelled by the scale dependence of g2 which is a loop effect which can be computed reliably only
in a renormalisable theory.

3.3 Predictions of GSW model
Here we summarize some of the qualitative and quantitative implications of the SU(2)L × U(1)Y in-
variance. Note that almost all of them are result of the invariance and hence not specific to the actual
mechanism of symmetry breaking as long as it preserves the symmetry.

1. First and foremost, this is a unification of weak and electromagnetic interaction: i.e., e, g1, g2 all
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are of similar order and the apparent difference in strengths of electromagnetic interactions (αem

and Gµ), is only caused by the large value of the masses of the weak gauge bosons compared to
that of the massless photon. The model predicts existence of a new weak gauge boson Z and that
of the weak neutral current (cf. Eq. 38) mediated by it, analogous to the weak charged current
of Eq.28 mediated by the W . Further, the strength of this new weak interaction is similar to that
of the charged current weak interaction. This is particularly transparent once we use the ρ = 1
prediction of the GSW model wherein W/Z masses are generated by SSB using a Higgs doublet.

2. Further, FCNC currents are absent at tree level if and only if all the quarks of a given electrical
charge belong to the same representation of SU(2)L. Thus the experimentally observed absence of
FCNC implied existence of the charm quark c, in addition to the already known u, d and s quarks.
Not only this, one could also ‘predict’ the mass of the c quark from the measured K0–K̄0 mass
difference.

3. Since Gµ and the electron charge e are measured experimentally, Eq. 41 implies that the model
has two free parameters, sin θW and MW . If g2 = e, i.e., sin θW = 1, then we get MW ∼
O(100) GeV. However, when the gauge boson masses are generated through the SSB, MW can
be expressed in terms of Gµ, αem and sin2 θW .

4. The model predicts precise nature of the WWZ coupling, the strength being given by g2.
5. As Table 5 shows, couplings of all the fermions with the new gauge boson Z, are then determined

in terms of sin θW once the representations of the two gauge groups to which the fermions belong
are specified.

6. Requirement of anomaly cancellation, necessary for the renormalisability, predicts that the number
of lepton and quark generation seen in nature should be equal. So while the model can not predict
how many families of quarks and leptons there should be, it predicts their equality.

7. The conditions of anomaly cancellation and observed closeness of ρ to unity, then gives strong
constraints on new particles that one can be added to the spectrum of the GSW model.

8. As already stated above, generation of gauge bosons masses via SSB provides some more relations
among physical quantities and hence reduces the number of free parameters of the model to one,
that parameter being sin θW .

Thus this model could be easily subjected to experimental tests. This is what we will discuss in the next
sections.

4 Validation and precision testing of the SM.
4.1 Early validation.
Historically, the earliest validation of the correctness of the description of the electromagnetic weak
interaction in terms of the EW theory, came from the points 1 and 2 in the list given at the end of
the last section. By 1972, the renormalisability of the GSW model was proved explicitly [21] and the
discovery of weak neutral currents had become very urgent. As we have already noted from Table 5,
the NC couplings are entirely decided by the (anti)fermion charge and sin θW . Neutrino scattering with
nuclei offer possibility of studying neutral current interactions of quarks. These typically have higher
event rates compared to the pure leptonic scattering processes due to the possibility of using nuclear
targets. However, analysis of these processes requires an understanding and knowledge of the proton
structure. Hence the cleanest probe of the neutral current couplings can come from analysing pure
leptonic reactions. We will discuss both of these below.

4.1.1 Discovery of the Weak Neutral Current.
To study the properties of the weak neutral current it was necessary first to establish its existence. To
that end, it was necessary to predict the characteristics of the events that would result from interactions
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of νµ, ν̄µ and ν̄e beams with electrons, as that would be the cleanest probe. Let us list different types of
elastic scattering processes involving just leptons that can take place through weak charged current and
neutral current interactions using the ν beams and the electron targets. These are

1. νµ + e− → νe + µ−, which can take place only through the CC interaction
2. νµ+e− → νµ+e− and ν̄µ+e− → ν̄µ+e−, which can take place only through the NC interaction,
3. νe + e− → νe + e−; ν̄e + e− → ν̄ee

−, which can take place both through the NC and CC
interactions.

Calculation of the scattering amplitudes of various NC and CC processes listed above (which are depicted
in Fig. 8, with appropriate assignments for fi, i = 1, 4) proceeds using the usual rules of field theory. For
the low energies of ν- beams that were available then, the MW ,MZ →∞ approximation could be used.
In situations where both the weak currents (charged and neutral) contribute to a process, the derivation
of the effective four fermion interaction in the above limit is a little more involved than our derivations
of Eq. 42, but finally leads to very compact expressions very similar to Eq. 42. For the e−νe scattering
mentioned above, for example, the expression resulting from the manipulations is the same as obtained
by replacing geA, g

e
V in Eq. 42 by geV + 1, geA + 1. Here, we have used ρ = 1 prediction of the SM.

Table 7 shows the differential cross-section in terms of the variable y =
Ee
Eν

and the integrated

cross-section. A few comments are in order. The above expressions use ρ = 1 as well as the fact that

Process dσ/dy σ

νµ + e− → µ− + νe A s(gνL)2(geL)2 A s (gνL)2(geL)2

νµ + e− → νµ + e− A s(gνL)2
[
(geL)2 + (1− y)2(geR)2

]
A s (gνL)2[(geL)2 + 1

3(geR)2]

ν̄µ + e− → ν̄µ + e− A s (gνL)2
[
(geR)2 + (1− y)2(geL)2

]
A s (gνL)2

[
1
3(geL)2 + (geR)2

]

νe + e− → νe + e− A s (gνL)2
[
(geL + 1)2 + (1− y)2(geR)2

]
A s (gνL)2

[
1
3(geR)2 + (geL + 1)2

]

ν̄e + e− → ν̄e + e− A s (gνL)2
[
(geR)2 + (1− y)2(geL + 1)2

]
A s (gνL)2

[
1
3(geL + 1)2 + (geR)2

]

Table 7: The differential and total cross-sections for a few ν, ν̄ induced CC and NC processes, with A = 4G2
µ/π.

values of gL, gR for the µ and the e are the same. All the neutrino induced cross-sections are indeed
proportional to the square of the centre of mass (com) energy s as we have noted before. The variable
y is related to the scattering angle θ in the com frame. One can see after some manipulations that the
angular distribution of the scattered charged lepton is different for the case of ν and ν̄. In the first row
we have written the cross-section for the CC process νµ + e− → µ− + νe , so that one can indeed see
that the size of the expected cross-sections for the NC processes are of the same order of magnitude as
the CC process and depend on sin θW . Note the last two rows of Table 7. As one changes from the
νµ, ν̄µ beams to νe, ν̄e beams the factors of (geL)2 in the total cross-section expressions gets changed to
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(geL + 1)2. Further, note also the different weights of the (geL)2 and (geR)2 contributions as one changes
from ν to ν̄ beams. Both these observations tell us that the contours of constant cross-section for these
four processes are ellipses in the gA–gV plane with different centers and with major axes of differing
orientations. Thus a measurement of these cross-sections can then help us determine geV , g

e
A, albeit upto

sign ambiguities.

Note also from the table that as one changes from ν to ν̄, the terms in the angular distribution
proportional to (geL)2 and (geR)2 get interchanged. This behavior can be understood very easily in terms
of the chirality conservation of the gauge interaction and the angular momentum conservation. As a
result, one can write the weak NC cross-sections for all the different pairs of fermions rather easily by
inspection. In particular, the same table can be used to calculate the cross-section for the weak NC
induced processes with nucleon (nuclear) targets as well. The hadronic weak neutral current events
arise from the scattering of the u, d, s quarks in the nucleon (nucleus). In the parton model the net
rate is then given by the incoherent sum over all the quarks contained in the nucleon (nucelus). Using
the information on the momentum distributions of quarks/antiquarks in the nucleon (nucleus), it is also
possible to estimate the expected cross-section. Again these too depend only on sin2 θW as far as the
EW model parameters are concerned.

At the time of the discovery of weak neutral currents in hadronic and leptonic production, theoret-
ical estimates were available for the upper limit on the ratio of neutral current to charged current elastic
scattering. This was obtained by using experimental knowledge of the form factor of the proton and neu-
tron. The same was also available for the inelastic process of the inclusive production of hadrons using
the language of structure functions of the target nucleus. Two points are worth noting here. While the use
of nuclear targets increased the expected rates for NC induced hadron production, establishing that the
events are indeed due to weak NC was difficult because of the large neutron induced background. The
pure leptonic processes on the other hand, were predicted to be very rare and hence difficult to observe,
but could unambiguously prove existence of weak NC as soon as even one event was observed.

Neutral currents were discovered in 1973 in the study of elastic scattering of νµ and ν̄µ off nuclear
targets [22, 23]. The experiment discovered evidence for the neutral current induced hadronic processes

νµ +N → νµ + hadrons; ν̄µ +N → ν̄µ + hadrons.

as well as pure leptonic processes,
ν̄µ + e− → ν̄µ + e−,

using the giant bubble chamber Gargamelle. In fact the discovery came in an experiment which had been
designed to study the charged current interactions:

νµ +N → µ− + hadrons; ν̄µ +N → µ+ + hadrons.

Thus the experiment could easily extract the ratio of the CC to NC events, after the observation of
NC in hadronic events. The experiment had seen O ∼ 100 events of different categories (NC and CC)
containing hadrons, with

NC

CC

∣∣∣∣∣
ν

= 0.21± 0.03;
NC

CC

∣∣∣∣∣
ν̄

= 0.45± 0.09

As already mentioned, the same experiment also found evidence for the pure leptonic process, where the
νµ was scattered off the atomic electron. Figure 17, taken from Ref. [23], shows the image of the first
unambiguous, weak neutral current event ever observed. The incoming antineutrino, interacts with an
atomic electron and knocks it forward. The electron is identified from the characteristic shower created
by the electron-positron pairs. This was a considered to be clear evidence for the weak neutral current.
The theoretical predictions summarised in Table 7 were used to justify the interpretation. With just one ν̄

35

FIELD THEORY AND THE EW STANDARD MODEL

35



Fig. 17: Observation of the first leptonic interaction induced by weak neutral current. The incoming ν̄ knocks off
the e−, which then appears as a track accompanied by the shower of e+e− pairs the passage of e− creates. Taken
from [23]

event, the experiment could only quote a range 0.1 < sin2 θW < 0.6 at 90% c.l. The number of hadronic
NC events on the other hand, was big enough to extract a value of sin2 θW to be in the range of 0.3–0.4.
This was the first qualitative validation of the prediction of neutral currents.

4.1.2 Observation of charm with ‘predicted’ mass
Soon after the observation of the weak neutral current, the charm quark was also discovered with mass
very close to that predicted by the analysis of the ∆S = 2, K0–K̄0 mixing caused by FCNC. We have
discussed already details of this prediction in the earlier section. As we understand now, in view of
the very large mass of the top quark, it was somewhat ’fortuitous’ that the charm quark contribution
to the ∆S = 2 mass difference was the dominant one. Be as it may, this was an extremely important
second validation of the correctness of the gauge theory of EW interactions based on the gauge group
SU(2)L × U(1)Y . Note that one of the validation came from tree level couplings and the other from
loop induced effects.

4.1.3 Determination of sin2 θW and prediction ofMW ,MZ .
The same leptonic couplings which contribute to the neutral current scattering processes involving ν’s
can also make their presence felt in processes like

e+ + e− → µ+ + µ−. (79)

This proceeds through a γ∗ exchange in the s-channel and a Z/Z∗ exchange shown in Fig. 18. Whether
the Z will be on shell or off shell of course depends on the com energy. The cross-section for this
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Fig. 18: Weak neutral current effects in e+e− → µ+µ−.

process can be easily computed. Electromagnetic interactions being the same for the left and right chi-
ral fermions, γ∗ exchange diagram gives a forward-backward symmetric contribution whereas both, the
square of the amplitude of the Z exchange diagram itself and the interference term, will give contri-
butions which are forward backward asymmetric. Hence the presence of the weak neutral current will
manifest itself in the form of a forward-backward asymmetry in (say) µ production. Both the size and
sign of this asymmetry depends on the centre of mass energy of the process

√
s = 2Eb where Eb is the

beam energy, relative to the mass of the Z boson.

In fact if θ is the angle made by the outgoing lepton with the incoming lepton, then one can show that

dσ(e+e− → µ+µ−)

d cos θ
=
πα2

em

2s

[
A(1 + cos2 θ) +B cos θ

]
(80)

where

A = 1 + 2<e(χ)g2
V + |χ|2(g2

V + g2
A)2; B = 4<e(χ)g2

A + 8|χ|2g2
V g

2
A,

χ =

(
GµM

2
Z

2
√

2πα

)
s

s−M2
Z + iMZΓZ

. (81)

Here gV , gA denote the (common) vector and the axial vector NC couplings for the e and the µ, ΓZ is
the width of the Z. In the chosen normalisation, deviation of A from 1 and that of B from zero is then
indication of the contribution of the weak NC to the process. Both A and B contain terms linear in
<e|χ| and g2

V or g2
A. Hence, even for small values of |χ|, both the total cross-section and the angular

distribution can be used to probe the weak NC contribution. B is zero without the Z contribution. It is
however nonzero for both, the interference terms containing <e(χ) and the square of the Z-exchange
diagram alone, containing |χ|2. Hence the angular distribution contains an asymmetric term at all s. If
we analyze these expressions we find that the results for this asymmetry are very different for

√
s�MZ

and
√
s = MZ .

The forward-backward asymmetry, AµFB defined as the ratio of the difference of cross-sections
with the µ− in the forward and the backward hemisphere and the total cross-section, is then expected to
be nonzero due to the Z contribution and the interference term. It is clear that this is also the same as
charge asymmetry between the muons in the forward hemisphere. Thus one has two asymmetries AµFB
andAµC :

AµFB =
σ(cos θµ > 0)− σ(cos θµ < 0)

σ(cos θµ > 0) + σ(cos θµ < 0)
; AµC =

σ(µ−)− σ(µ+)

σ(µ−) + σ(µ+)
. (82)

and these are equal. The reason for the equality of these two asymmetries is the CP invariance of the
gauge Lagrangian, even if the Z has parity violating interactions. Using Eqs. 80 and 81 one can calculate
the AµFB , which in general depends on s. For two different values of s of interest, it can be shown that:

AµFB

∣∣∣∣
s�M2

Z

= − 3√
2

Gµs

e2
g2
A

1

1− 4Gµs√
2e2
g2
V

; AµFB

∣∣∣∣
s=M2

Z

∼ g2
Ag

2
V(

g2
A + g2

V

)2 . (83)
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In the first case MZ drops out as we have made an approximation where s � M2
Z . In the second

case in Eq. 83 , while writing the value for
√
s = MZ , we have used the fact that MZ/ΓZ � 1 and

hence the dependency on the precise value of MZ drops out. The small width is guaranteed by the
weak nature of the NC couplings of the Z with the fermions. The factor in the denominator of χ gives a
characteristic resonant shape to the cross-section for the process e+e− → µ+µ−, the interference term
being negative causing the cross-section to reduce below the value expected for the γ exchange alone
and to start rising again as

√
s approaches MZ . For

√
s � MZ the value of A differs from 1, the value

expected in QED, by
(
− Gµs√

2παem

g2
V

)
. Further the coefficient of the asymmetric, linear term in cos θ

is given by the same expression with the replacement of g2
V by g2

A. Thus it is possible to get information
on both g2

V and g2
A from measurements of A and B even with beam energies that are much lower than

MZ . Since Gµ ∼ 10−5/M2
p , the effects can become substantial only when s ∼ O(104 GeV2). Indeed

the first hints of weak NC in this process were obtained in e+e− collisions with
√
s ∼ 35 GeV. It is

worth noting at this point that the calculation of cross-section for quark (and hence hadron) production
via γ/Z exchange proceeds exactly in the same manner, except the expressions will involve gqA, g

q
V in

addition to geV , g
e
A in Eqs. 80 and 81. All the observations about e+e− → γ/Z → µ+µ− then apply for

the e+e− → γ/Z → qq̄ → hadrons as well.

Note that just like the various cross-sections in Table 7, the asymmetries of Eqs. 82 and 83 too,
depend only on one unknown quantity, viz., sin2 θW through the vector and axial vector NC couplings
of the charged lepton. The above expressions tell us therefore, that a study of the leptonic scattering
processes given in the Table 7 along with the energy dependence of the FB asymmetry and that of the
cross-section for the reaction given in Eqs. 80 and 81, can provide information about sin2 θW much
before reaching the beam energies close to MZ . If all the measurements of the leptonic cross-sections as
well as the asymmetries yielded a unique value of sin θW , which is the only free parameter of the model,
this can then provide a quantitative validation of the GSW model. It is interesting to note that the energy
dependence of the cross-section σ(e+e− → µ+µ−) can also provide indirect information about MZ ,
much before the energy values close to MZ are reached.

Note that production of hadrons by weak NC processes while being very useful for validation
of the weak NC due to the large rates possible with nuclear targets, also needed knowledge about the
nuclear structure functions to interpret the data. Both the theoretical and experimental understanding of
this structure at that time was somewhat rudimentary. Hence the validation of the SM would be much
more unambiguous, if one would extract sin2 θW using pure leptonic processes alone, viz. the ν-charged
lepton scattering and e+e− collisions.

Fig. 19 shows compilation of such extraction of gV , gA and hence sin2 θW from pure leptonic
processes. These results were among the early quantitative validation of the SM. As explained above the
leptonic processes were better suited for a clean and unambiguous extraction of sin2 θW . Further, the
com energies of the early ν experiments were limited to s < 200 GeV2, whereas the e+e− experiments
at PETRA at DESY(Hamburg) had s <∼ 1400 GeV2. The e+e− experiments could also probe the NC
couplings of the quarks as well, by studying the hadron production along with the µ+µ− pair production.
Thus the information about the weak neutral processes at the e+e− colliders was a value addition to
the analysis, even though the beam energies were much below than those required to produce an ’on-
shell’ Z boson. The left panel shows results on the deviation from the QED expectations of the angular
distribution for the µ i.e., evidence for both : a nonzero value of B and value of A different from 1. It
was indeed comparable to the deviation of few percents to be expected at these energies as was argued
above. The plot shows comparisons with predictions of the GSW model (cf. Eq. 83) for different
values sin2 θW showing clear sensitivity to the same. Indeed this as well as measurements of µ charge
asymmetry defined in the Eq. 82 for a limited region in the forward hemisphere and the cross-section
measurement were used to delineate a region in the gA–gV plane that was allowed by the data at 95% c.l.
This is indicated by the grey shaded region in the right panel of the Fig. 19. Superimposed on this grey
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Fig. 19: Quantitative validation of the weak NC. Details of the data taken from [24] are discussed in the text.
The left panel shows evidence of asymmetric angular distributions expected from the weak NC contribution. The
right panel indicates regions in the gV , gA plane and hence values of sin2 θW extracted from the leptonic data at
different level of confidence.

area are also the regions in the same plane allowed by measurements of ν̄ee−, ν̄µe− and νµe− scattering.
We notice from Table 7 that all the cross-section expressions define different ellipses in the gA–gV plane.
The area between two ellipses is the region allowed at 68% c.l. by the measurement of the cross-section
for that particular neutrino scattering reaction.

We see from the right panel that if one uses just the elastic ν-charged lepton scattering data, there
is a two fold ambiguity in the values of gA, gV that are consistent with the totality of the available data.
This is indicated by the two dark black regions. This ambiguity is removed on using the e+e− → l+l−

data. The solution with negative gA and positive gV , corresponding to the dark region in the upper left
corner of the grey shaded square region, is chosen uniquely, after we add determination of gV , gA from
the e+e− measurements. This dark region in the upper left corner corresponds to

sin2 θW = 0.234± 0.011. (84)

This was the unique value of sin2 θW consistent with all the ’leptonic’ NC measurements mentioned
before. One could also use only the e+e− data. Combining all the e+e− → l+l− measurements with
those for e+e− → q+q−, sin2 θW was determined to be

sin2 θW = 0.27± 0.08. (85)

Clearly the two determinations are consistent with each other. These measurements thus conclusively
proved existence of the weak NC as predicted by the GSW model. One could then use the value of
sin θW so determined, to further make predictions for the W,Z masses as well as their phenomenology.

The weak neutral couplings of the electron can also be probed by studying interference between
the t-channel γ∗ and Z exchange in the Deep Inelastic Scattering (DIS) processes indicated in Fig. 20.
This is very similar to the e+e− → l+l− case. However, in this case one needs to have longitudinally
polarised electron beams, to be able to see the effect experimentally. The diagram with γ∗ exchange
will give a symmetric result for both left and right polarised e− but the Z treats them differently. Recall
here the different values of geL and geR in Table 5. Thus there will be a polarization asymmetry in the
cross-section. At lower energies and hence smaller values of the invariant mass −Q2 of the exchanged
γ∗/Z∗, it is the interference term between the two diagrams which dominates the size of the observed
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Fig. 20: Weak NC contributions to the deep inelastic scattering with polarised e− beams.

polarisation asymmetry and hence the evidence for parity violation. The interference effect can be shown
to be ∼ Gµs in this case as well and is linear in geV . As mentioned before, for the value of sin θW
realized in nature the vector coupling of the electron is very small. Hence an asymmetry which is linear
in this small parameter, provides a more sensitive probe of geV than the one provided by the asymmetry
AµFB of Eq. 82. Measurements of this asymmetry also yielded a value of sin2 θW consistent with the
determination from the pure leptonic probes.

Finally the best determination of sin2 θW came from high statistics data on ν-induced Deep In-
elastic Scattering and polarised e- Deuterium scattering (both not discussed here at all) and the value
was [25]:

sin2 θW = 0.224± 0.015, ρ = 0.0992± 0.017; sin2 θW = 0.229± 0.009 assuming ρ = 1. (86)

In the first case both ρ and sin2 θW were taken to be unknown and fitted to the data and in the second
case ρ was fixed at 1. Thus ρ was determined to be ∼ 1 as expected in the GSW model. Assuming this,
around 1981 one could then predict using Eq. 55:

MW ' 78.15± 1.5 GeV; MZ ' 89± 1.3 GeV. (87)

This then sets the goal posts to design experiments which could produceW,Z directly and study them. In
principle, the predictions above receive radiative corrections. A more accurate prediction would require,
for example, discussion of radiative corrections to the couplings involved in the relations given by Eq. 32.
We will come to that in the next subsection.

So the take home message of the above discussion is that the early ν experiments as well scat-
tering experiments with polarised electron beams and nuclear targets, along with the e+e− → l+l−

experiments, tested the structure of the NC couplings of the leptons AND those of the quarks predicted
by the GSW model. The experiments conclusively proved that all the measurements were consistent
with a unique value of the one undetermined parameter of the model sin2 θW . This then also predicted a
narrow range of possible masses for both the W and the Z bosons. Inter alia, these measurements also
established ρ ' 1, consistent with the GSW prediction again. Thus at this stage, apart from the direct
verification of the tree level ZWW coupling which must exist in this gauge theory, all the other tree level
predictions of the model seemed to have been tested.

Given the knowledge of the quark content of the p available from the DIS experiments, it was also
possible to predict the rate of production of these bosons in the process

p+ p̄→W +X → l + νl +X; p+ p̄→ Z +X → l+ + l− +X.
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In fact the CERN super proton synchrotron (SPS) was converted into Spp̄S, to collide protons on an-
tiprotons, so as to have enough energy to produce the W,Z in the pp̄ collisions. The observation of
the W and the Z bosons in the UA-1 and UA-2 experiments [26, 27], with mass values and production
rates which agreed with these predictions, was a very important step in confirming the correctness of the
GSW model. Later data confirmed the V –A coupling of the W bosons to fermions from the angular
distribution of the events, even though the original observation had only a handful of these: 6 in UA-1
and 4 for UA-2.

The masses of the W and the Z measured in the UA2 experiment [27], for example, were

MW = 80 + 10− 6 GeV; MZ = 91.9± 1.3± 1.4 GeV.

The larger errors forMW reflect the uncertainties in the measurement of ’missing’ transverse momentum
due to the ν which evades detection. ForMZ , the first number indicates the statistical error and the second
systematic. The use of final state containing leptons allowed for much more accurate determination of the
invariant mass in the case of the Z boson. These masses were certainly consistent with the predictions:
see, for example, Eq. 87. One can in principle extract ρ AND sin2 θW from this ’direct’ measurement
of masses (in particular the accurate measurement of MZ) and compare these with the values obtained
from the earlier ’indirect’ information from ν scattering, for further tests of the SM. This already used
the more accurate predictions using energy dependence of the couplings as well EW corrections to the
weak processes used to extract sin2 θW . We will discuss this in the context of precision testing of the
SM.

4.2 Direct Evidence for the ZWW coupling.
Before moving on to the discussion of calculation and validation of loop effects in the precision mea-
surements of the EW observables, we need to discuss the validation of the existence of another tree level
coupling of the gauge bosons, viz., the triple gauge boson ZW+W− coupling which is characteristic of
the non abelian nature of the gauge theory. As already discussed, contribution of the Z exchange diagram
is crucial in curing the bad high energy behavior of the e+ + e− →W+W− cross-section. W+W− pair
production in e+e− collisions was studied at LEP-II where the centre of mass energy was increased from
the Z-pole value of 91 GeV to the two W threshold of 161 GeV and then finally to 209 GeV. Fig. 21
shows the LEP-II data along with the theory prediction. The data is well described by the solid line
which represents the sum of the contribution of the νe exchange diagram and Z/γ exchange diagrams
shown in the left and the central panel of Fig. 16. One sees that the contribution to the cross-section
of just the νe exchange diagram of the left most panel, shown by the blue dashed curve, rises very fast
with energy. The cross-section after including contribution of the s-channel γ exchange alone, where the
ZWW coupling is put to zero in the diagram in the central panel of Fig. 16, is shown by the red dashed
curve. This addition tames the bad high energy behavior to some extend but not completely. Only af-
ter adding the s-channel Z-exchange diagram does the cross-section have a good high energy behavior,
shown by the blue-green solid curve which also describes the data well. Thus we see that the temperate
energy dependence of the e+ + e− → W+W− cross-section shown by the data, is ’direct’ proof of the
ZW+W− triple gauge boson coupling.

The threshold rise of this cross-section also offers an accurate determination of W mass and the
width [28]:

MW = 80.376± 0.033 GeV,ΓW = 2.195± 0.083GeV.

The same experiment offered a precision measurement of the hadronic decay width of the W as well.
These measurements served later as an input to the precision analysis of the EW observables which we
will discuss in the next section.

Note further also that since the energy dependence of the total cross-section is crucially decided
by the ZW+W− coupling, it is possible to use the energy dependence and the angular dependence of
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Fig. 21: Energy dependence of the W+W− cross-section at LEP-II. Taken from [28].

the process to probe any possible deviations of the ZWW vertex from the SM structure and value. This
process can therefore be successfully used to look for deviations of this coupling from the SM prediction.
In view of the important role played by the ZWW coupling in curing the bad high energy behavior of
the W -pair production cross-section, it is theoretically very important to probe its possible deviations
from the SM predictions so as to get indications, if any, of the physics beyond the SM (BSM physics).
Measurements of the cross-section and angular distributions of the produced W at LEP-II, constrained
strongly any anomalous ZWW couplings; i.e., couplings which differ from the SM in either structure or
strength.

4.3 Precision testing of the SM
Thus we see that the various lepton-lepton and lepton-hadron scattering experiments along with the pp̄
experiments helped establish the correctness of GSW model predictions at the tree level. These tested
the tree level SM predictions for the new NC couplings of the Z boson with all the known fermions
as in terms of the single ’free’ parameter of the model. The prediction of SU(2)L symmetry for the
structure and strength of the ZWW vertex was also tested. Last but not the least the experiments also
tested the correctness of the tree level predictions for the W and Z masses. This indeed established
the SU(2)L × U(1)Y structure of the EW gauge theory. However, even with the somewhat imprecise
determined values of W,Z masses, the need for including the effects of loop corrections, an essential
feature of QFT’s, on all these tree level predictions was already clear. Since the effect of radiative
corrections on the extraction of sin2 θW is different for different processes, it is necessary to correct the
experimentally extracted value for these effects, before the sin2 θW extracted from various observables
can be compared at high precision.

4.3.1 Radiative corrections and ρ/sin2 θW determination.
In case of the SM, a QFT with SSB, renormalisability of the theory guarantees that the loop corrections
to the tree level relations such as given by Eqs. 32,43 and 53, will be finite and can be computed order by
order in perturbation theory. Precision measurements can then test these corrected relations and hence
the correctness of these calculations of loop effects. This can then help establish the renormalisability of
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the SU(2)L×U(1)Y gauge theory of EW interactions. Below follows an extremely sketchy discussions
of the issues involved.

Some of the one loop diagrams contributing to the corrections to the vertices and two point func-

Fig. 22: Some of the one loop EW corrections to vertices and two point functions in the SM.

tions are shown in Fig. 22. The two diagrams in the top row and the diagram on the left in the lower panel
are the ones that need to be considered while calculating the loop corrections to the masses MW ,MZ .
The diagram on the right in the lower panel is an example of diagrams that give rise to corrections to
the Zff̄ vertex. The dominant corrections come from loops containing quarks of the third generation
viz. t, b. We already notice that corrections to the W and the Z mass will be different, since the former
involves a tb loop where as the latter involves the tt̄, bb̄ loops. As a result the corrections to sin2 θW from
these diagrams, for example, will be different for the CC and NC processes. Let us recall Eq. 55. We
have used Eqs. 32 and 53 in deriving this. One needs to take into account radiative corrections to the
weak processes used to extract sin2 θW as well as the energy dependence of the couplings and hence of
sin2 θW obtained via Eq. 32. The latter too is an integral part of QFT. The extraction of sin2 θW from
weak processes, taking into account all the weak corrections yielded [29]

sin2 θW (MW ) = 0.215± 0.010± 0.004.

In Eq. 55 one now needs to use αem(MW ) = 1/127.49 instead of the value αem = 1/137.03 used
therein. The expression for MW (MW ) then becomes

MW (MW ) =

√
π√
2Gµ

αem(MW )

sin2 θW (MW )
=

38.6

sin θW (MW )
GeV. (88)

This then gives,
MW = 83.5± 2.2 GeV; MZ = 94.2± 1.8 GeV. (89)

Thus loop effects change the predicted values from those in Eq. 87 by O(∼ 5%). This sets the scale for
the precision with which one needs to measure the values of the masses of the W,Z to be able to test
theory at loop level. The UA-1 and UA-2 measurements were clearly consistent with these predictions
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within the accuracy of the measurement as well as predictions. In Ref. [27] these loop corrected predic-
tions for MW ,MZ were used to extract both sin θW (MW ) and ρ just from the measured masses of the
W,Z in the UA-2 experiment, yielding

sin2 θW = 0.226± 0.014, ρ = 1.004± 0.052.

This value of ρ is consistent with the expectation of the SM i.e., the GSW model where W/Z masses
are generated via SSB. These values are also consistent with the corresponding determinations from the
lower energy ν experiments (cf. Eq. 86). Agreement of these two independent determinations of ρ and
sin2 θW (MW ) from two completely different sets of measurements, already showed consistency of the
measurements with theory predictions at loop level.

Diagrams shown in Fig. 22 cause ρ to change from 1, the prediction at tree level, since the correc-
tions are different for M2

W and M2
Z . In fact, one can write

∆ρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

,

where ΣV , (V = W/Z) are the one loop corrections to the propagator. As emphasized above these are
different for the W and the Z and hence ∆ρ is different from 0. At one loop one gets, keeping only the
dominant corrections ∝M2

t ,

ρcorr = 1 + ∆ρ ' 1 +
3GµM

2
t

8π2
√

2
(90)

Thus one sees that the relation ρ =
M2
W

M2
Z cos2 θW

= 1 gets corrected by loop effects. The corrections are

finite as advertised before: a result of the renormalisability of the EW theory. Assuming the (at that time)
unknown Mt to be as large as the largest mass in the theory, ∼ O(MW ), one finds corrections to the tree
level value of unity of ρ, to ∼ few parts in 1000. Thus one would need a high precision measurements
of MW ,MZ to get a precision value of ρ which can then be contrasted with above prediction given in
Eq. 90. This can then be used to estimate Mt and comparing it with the experimentally observed value
of the t quark mass would then constitute a precision test of the SM.

In reality, indeed this is what happened. Recall the discussion around Fig. ??. The precision
measurements at the Z pole in e+e− → Z → ff̄ , to be discussed momentarily, indicated a value for
the top mass Mt ' 2MW before the top quark was actually discovered. Agreement of the measured
mass of the t at the Tevatron with this value was then a big success story, testing the SM at loop level.
For the much higher value of the mass that the t quark has in real life compared to the MW taken in the
numerical estimation above, corrections to ρ in reality are about 1 part in 100 and hence measurable in
precision experiments. For future reference, let me also add here that the corrections to M2

V , from the
third diagram in Fig. 22 involving the V H loop, depend on the Higgs mass Mh only logarithmically.

A detailed discussion of the theoretical significance of the all important quadratic dependence
of these corrections on Mt, the logarithmic dependence on Mh and the non decoupling nature of the
corrections to the Zbb̄ vertex from the tt̄ loop, are beyond the scope of the discussion in these lectures.
The former comes from violation of the SU(2)L invariance, reflected in the mass difference between
the two members of the doublet : the t and the b. ∆ρ is in fact proportional to M2

t −M2
b . The loops

involving h and the V give contributions to ∆ρ which depend on the Higgs mass, but the accidental
Custodial Symmmetry (cf. section 3.2.6), guarantees that this dependence will be only logarithmic.
This is consistent with the so called Veltman screening theorem [30]. The corrections to the Zbb̄ vertex,
originating from the triangle diagram, one of which is shown in Fig. 22, also depend onMt quadratically.
This quadratic dependence, on the other hand has a different source. It arises from contributions of
the longitudinal W bosons in the loop. In a non-unitary gauge this can be seen as coming from the
unphysical Goldstone bosons φ±, which are ’eaten up’ to become the longitudinal degree of freedom
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of the W -boson. This then clearly explains the non decoupling nature of the correction, coming from
the proportionality of tφ± coupling ht or equivalently Mt. Even when we do not discuss these issues in
detail, suffice it be said that the M2

t dependence of the vertex correction is the tell tale sign of the SSB
via the Higgs mechanism. Since the origins of the M2

t dependence, or equivalently the non-decoupling
nature of the corrections, are quite different for the ∆ρ and δgZµµ and further only the ∆ρ receives
contribution from the Higgs, it is quite important to confirm both of these independently. Let us now
follow the story of precision measurements and comparison with the precision predictions further.

Note here that these corrections can be calculated only if theory is renormalisable. The renormal-
isability of a gauge field theory with SSB was proved by ’t Hooft [21]. This theory necessarily has a
physical scalar, the Higgs boson in the spectrum. As we will see shortly, the precision measurements at
the LEP-I of the Z properties along with weak neutral current couplings of all the fermions, as well as
precision measurements of the properties of the W at LEP-200, tested these corrections. A test at the
loop level of the various relations such as Eq. 32 or Eq. 53, could then indicate the need for a finite mass
for the Higgs and thus could be an indirect proof for the Higgs! However, we have seen that even with a
quadratic dependence of ∆ρ on Mt and the large mass Mt, the effects are only 1 part in 100, it is clear
that with the logarithmic dependence of these corrections on Mh, this program would require indeed
very high precision measurements.

4.3.2 Precision measurements at LEP
Let us first begin by a discussion of precision measurements of the mass and the coupling of the Z boson
at LEP 1 and the SLC in e+e− → Z → ff̄ . The four LEP experiments studied decays of about 17
Million Z, whereas the SLC studied about 600,000 Z decays, but with polarized e+/e− beams. These
precision studies of the Z have been summarised in Ref. [31]. At the end of the day these experiments
determined the mass and the width of the Z boson and also the values of ρ and effective value of sin2 θW ,
to a great accuracy using only the leptonic sector. The use of ’effective’ implies that radiative corrections
have been suitably included while extracting these values.

MZ = 91.18750.0021GeV, ΓZ = 2.49520.0023GeV,

ρl = 1.00500.0010, sin2θefflept = 0.231530.00016. (91)

As already explained these high precision measurements require also high precision calculations, to test
the SM at high accuracy. Higher order QCD corrections play a highly important and nontrivial role
while using results from the hadronic decays of the Z. One also requires an excellent understanding of
QCD to calculate correctly the observables from quark final states in terms of what the detectors actually
observe viz. the jets. This ushered in an era of extremely close and extensive collaboration between
experimentalists and theorists resulting in a number of LEP Yellow Reports. These provide the best
summary of both the theoretical and experimental issues involved in studies at LEP.

Fig. 23 shows a compilation of the cross-section for the process e+ + e− → hadrons, span-
ning the entire energy range from PEP/PETRA to LEP II. Solid line is theory prediction, including
the electromagnetic and the QCD radiative corrections. Recall the expression for the cross-section for

e+e− → µ+µ− given in Eq. 81. The initial fall off of the cross-section reflects the
1

s
dependence of

the first γ exchange diagram in Fig. 18. One can then see the onset of the rise in the cross-section due
to interference between the γ and Z exchange contributions. Recall that it is these interference terms,
at energies quite far away from the Z resonance, that had allowed the first glimpse of effects of weak
neutral current in the process e+e− → µ+µ−. Thus we see that the Z resonance makes its presence felt
much before the resonant energy is reached, by just the shape of the cross-section curve. This line shape
of the Z resonance depends on ΓZ ,MZ , partial decay width Γ(Z → ff̄) and through them on gV , gA of
the electron and the fermions in the final state being considered. The extremely accurate measurements
of MZ ,ΓZ mentioned above, were extracted by fitting the shape of this curve near resonance, taking
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Fig. 23: The figure shows summary of the data on e+e− → hadrons over a wide energy range taken from [31].

into account effects such as the initial state radiation etc. This precision study of the line shape of Z
was made possible by the unprecedented energy resolution of the collider LEP-I. The thin solid line is
then the theoretical prediction for the cross-section including the QED and QCD radiative correction.
The asymmetric shape of the curve near the resonance is the effect of the initial state radiation. The
agreement between the data and theory needs no comment.

Recall now the discussion in Sec. 4.1.3 and Eqs. 81 -83. One can extend constructions of these
asymmetries of Eqs. 81-83, for all the fermionic final states accessible in the Z decay, viz. the leptons
e, µ, τ and the quarks b, c. Looking at the expressions in Eqs. 81 – 83 one can see that a precision
measurement of these asymmetries as well as partial widths, lead to an accurate determination of gfV , g

f
A.

The Z-decay data from SLC, which employed linearly polarised e−/e+ beams, allowed for constructing
polarisation asymmetries just like the forward-backward asymmetry of Eq. 83. This too is a measure
of parity violation, with the additional advantage that it involves gV linearly instead of the quadratic
dependence in Eq. 83. This linear dependence is similar to the case of polarization asymmetries in case
of polarized electron-Deuterium scattering mentioned before. Recall also that for the value of sin2 θW
of Eq. 86 which is rather close to 0.25, the vector coupling of the electron involving (4 sin2 θW − 1) is
very small. Hence this linear dependence of the asymmetries on gV allowed the experiments at the SLC
to reach a competitive accuracy for the extraction of gA, gV with the much smaller luminosity and hence
smaller number of the Z decays (600000 versus 17 million at LEP) available there.

Fig. 24 shows values of geV , g
e
A obtained using the LEP-I data, juxtaposed with the data from

elastic ν scattering from 1987. The latter is a more refined version of the of the plot of Fig. 19. To truly
appreciate the phenomenal improvement, compare the size of the region in the gV , gA plane selected
by all the measurements (shown in an inset at the left of the figure, blown up by roughly a factor of
1000) with the size of the corresponding region in Fig. 19. Thus we see that at the Z pole the weak NC
couplings of the Z with the fermions, were tested to about one part in 1000.

It goes without saying that with such precision in measurements, if one were to repeat the earlier
exercise of extracting the value sin2 θW , ρ from them, such as given in Eq. 91, one HAS to use theo-
retical predictions which include all the relevant higher order corrections. This was already discussed
in Sec. 4.3.1. Since these corrections have a dependency on the masses of the particles like the W, t
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Fig. 24: the plot shows determination of gV , gA of the electron using Z decays taken from [31].

and the Higgs, if the measurements are precise enough then they can be sensitive to these masses. We
already saw this for the mass of t quark and the radiative corrections to the ρ parameter. The precision
measurements of EW observables then indicate ’indirectly’, in the framework of the SM, the values of the
masses of these particles preferred by the precision EW data. A comparison of these masses determined
’indirectly’, with the ones measured directly, can then be a powerful precision test of the SM.

4.3.3 Precision testing and indirect bounds
Let us describe the logical steps in such a program to perform precision testing of the SM. In principle
the EW part of the SM has following free parameters: g1, g2, v and λ. In addition to this of course there
is the QCD coupling g3, the nine masses (or equivalently the Yukawa couplings) of the massive charged
leptons and quarks, the four parameters of the CKM matrix and the strong phase θQCD. At tree level all
the couplings of the gauge bosons to fermions as well as to each other and their masses are completely
given in terms of the first three parameters in this list, viz. g1, g2 and v. In section 3.2.2 we already
discussed an analysis where we traded these three for the more accurately known αem, Gµ and one free
parameter sin θW (cf. Eq. 55). With the very precise knowledge of MZ provided by the LEP-I, it made
sense to trade the g1, g2 and v for MZ , αem and Gµ. As before, one can then use the relationships such
as given by Eqs. 32, 53 etc., of course corrected for radiative effects, to express all the EW observables
as functions of these three chosen quantities.

A really large number of EW observables have been measured very accurately, beginning from the
total width of Z boson, ΓZ , the various forward-backward and polarisation asymmetries on the Z-pole,
masses MW ,Mt, polarised e-Deuterium scattering, atomic parity violation etc. All these observables
depend on Gµ,MZ and αem through their dependencies on gfA, g

f
V ,MV as well as on αs and Mt,Mh

through the higher order QCD and EW corrections.

Precision calculation for all these EW observables, including the 1 loop EW radiative corrections
in the framework of the SM, are available. The idea is to make then a fit to the measured values of the
EW observables and test the SM predictions. In these fits, one keeps Mt,MW and Mh as free param-
eters. As already noted the radiative corrections depend on Mt quadratically and Mh logarithmically.
Then compare the MW ,Mt values so obtained with experimentally determined values of the same, thus
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providing a test of the SM. Afterwords one can perform the exercise by varying the Higgs mass, find the
value of Mh that minimises the χ2 and then find the limits on the Higgs mass for which the data will be
consistent with the predictions of the SM.

Fig. 25, taken from the url of the LEP EW working group [32], shows the result of such an exercise.
The figure lists the measured values of a variety of EW obsevables, most of which we have discussed.
The various R-ratios: Rb, Rc, Rl etc. are a measure of the relative production of the various final states
and hence of the partial decay width of the Z into them. Al(Pτ ) is the polarisation asymmetry for the τ ’s
produced in e+e− → Z → τ+τ− on the Z–pole. The second column shows the result of the SM fit for
the observable and the third column the pull which is the difference between the measurement and the
fit value normalized by the error of the measurement. The pull is less than three for all the observables
and above 2 for only one of the measurements viz. AbFB . This particular fit is the last one before the

Measurement Fit |O
meas

−O
fit
|/σ

meas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α
(5)

0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ
0

41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA
0,l

0.01714 ± 0.00095 0.01645

Al(Pτ
)Al(Pτ
) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA
0,b

0.0992 ± 0.0016 0.1038

AfbA
0,c

0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin
2
θeffsin

2
θ

lept
(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

Fig. 25: Pull for the SM fit for the totality of the EW precision observables. Taken from [32].

discovery of the Higgs at the LHC, using the most accurate measurement of MW from the Tevatron,
which has an error of 0.15 GeV, again a ’one per mille’ measurement. The χ2 of this fit is not very
small, mainly due to the discrepancy between the best fit values and measured values for Ab from LEP
as well as at the SLC. Hence before the ’direct’ discovery of the Higgs there were a few physicists who
used to be a little uncomfortable about the goodness of the fit and accepting this as ’the proof’ for the
correctness of the SM at loop level.

Note the values in the last two rows. The measured values and the best fit values ofMW ,Mt agree
with each other to a great precision and the pull is is rather small, providing thus a stringent test of the SM
at loop level. This is the agreement between the Mt predicted ’indirectly’ from the LEP EW precision
measurements and the ’direct’ measurement from the Tevatron, that was alluded to before a few times.
In fact this spectacular agreement was the QFD (Quantum Flavour Dynamics) equivalent of testing the
(g − 2)µ prediction with the measurement in QED. The important role played by renormalisabilty and
loop corrections in this context can be understood by doing a small numerical exercise of predicting
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MW from the very accurately measured values αem = 1/137.0359895(61), Gµ = 1.16637(1) ×
10−5 GeV−2, MZ = 91.1875± 0.0021 GeV and the tree level relations given by the SM among these
quantities and MW . Notice that Eq. 55 can be written as,

Gµ√
2

=
g2

2

8M2
W

=
παem

2M2
W (1−M2

W /M
2
Z)

by using the tree level relation MZ =
MW

cos θW
. This gives, M tree

W = 80.939 GeV. Compare this now

with the value of MW given in the second column of Fig. 25, M expt
W = 80.385± 0.015 GeV. Of course,

this points out the need for calculating loop corrections to the tree level relations. Renormalisability
guarantees that all the corrections are finite and can be computed. Hence the value of MW obtained
’indirectly’ from the fits using theoretical predictions which include these loop corrections, then famously
agrees with the ’direct’ measurement as shown in Fig. 25. Agreement with the SM prediction would have
been impossible unless the predicted values included higher order corrections calculated in perturbation
theory.

The fit values and the pull for Mt,MW depends on the value of Mh, albeit very weakly, due to
the logarithmic dependence on Mh of the EW corrections to MW ,MZ etc. Some of these effects can
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Fig. 26: Left panel shows the dependence on Mh of the MW –Mt values obtained from the EW precision data.
Taken from [32]. The right panel shows the status of the ’indirect’ limits on Mh obtained by fits to the EW
precision data. This is taken from [14]. Both these are from the eve of the Higgs discovery, March 2012.

be seen from the two panels in Fig. 26. The plot in the left panel shows the dependence of the fit values
for MW ,Mt for different values of Mh. The long lopsided ellipse used the EW observables measured
at LEP-I and the SLC, to determine allowed regions in the Mt–MW plane at 95% c.l. Using the MW

measurements at the LEP-II/Tevatron as input, one now obtains the small blue ellipse which is consistent
with the precision measurements. The dark green (grey) region and the large red ellipse show that with
results from LEP-I alone, the measurements were not sensitive toMh at all. On the other hand, the highly
accurate LEP-II/Teavtron measurements of MW and the Tevatron measurement of Mt is consistent with
somewhat small values of the Higgs mass at the left most boundary of the green(grey) region. This was
also consistent with the exclusion (from direct searches at the LHC) of a SM Higgs over a very large
range as indicated by the Mh values labeling the inclined lines in the region shaded in yellow (a shade
of lighter gray).

The right panel shows the same information in a different format, where we show a plot of ∆χ2

as a function of Mh. In fact the fact that this minimum of ∆χ2 occurs at a nonzero, finite mass Mh is
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already an indication of the ’existence’ of the Higgs and hence a feather in the cap of the SM. The dotted
and solid black lines are the best fit with and without including the theory errors. The region shaded in
light blue (grey) indicates effect of the theoretical uncertainties as well as uncertainties in the EW fit. In
the absence of any information from ’direct’ searches for the Higgs, the indirect constraints will allow
a region around the minimum of χ2 (Mh ' 90 − 100 GeV) upto Mh values where ∆χ2 is 9: the 3σ
value. Remaining values of Mh will be disfavored by this ’indirect’ search. The ∆χ2 ≤ 9 corresponds
to an allowed mass range 40− 45<∼Mh<∼ 180− 200 GeV at 3σ. However a lot of this ’allowed’ region
is ruled out from direct searches at the LEP, at the Tevatron and at the LHC. These bounds are indicated
by the vertical red lines in this figure. The region ruled out by LEP is indicated by the dark grey region
hatched with slanted lines. The region ruled out by the hadronic collider Tevatron is indicated by the
cross-hatched region. The above mentioned red lines mark the edges of these regions giving us the pre-
LHC exclusion. The region excluded by the LHC in March 2012 is indicated by light grey region marked
by lines slanted in a direction opposite to the LEP exclusion region.

As one can see from this figure, before the LHC direct search constraints, the allowed mass range
for the Higgs was 115 ≤ Mh<∼150 − 160 and 180<∼Mh<∼200 GeV. The LHC experiments ruled out
existence of an SM Higgs in a major part of this range. As a result in March 2012, the mass value allowed
for a SM Higgs by a combination of the EW precision measurements and ’direct’ collider constraints was
as indicated by the small white slit around 125 GeV. Failure to find a Higgs in this small ’allowed’ mass
range would then have meant the death for the SM. Indeed a new boson was found with properties very
similar to a SM Higgs in precisely this mass range. This discussion should make it very clear to us
that the value of the mass of the observed Higgs boson itself tested the SM at loop level to a very great
accuracy.

In fact it won’t be out of place to recapitulate at this point how the SM was validated and tested
at various levels by discovery of new particles whose masses were predicted : either in terms of a free
parameter of the model which could be determined from experiments OR ‘indirectly’ by comparing loop
effects on physical observables with their precision measurement.

– Observation of suppression of FCNC implied that the quarks must come in isospin doublets. Thus
charm was predicted since the existence of the s quark was known and top was predicted to be
present once the b was found. Further, the very demand of cancellation of anomalies so as avoid
these spoiling the renormalisability, implied existence of third generation of quarks AND leptons
once the τ was found.

– One could get indirect information on Mc,Mt from flavour changing neutral current processes
induced by loops. Agreement of this ’indirect’ information with ’direct’ measurements ’proved’
the correctness of description of EW interactions in terms of a gauge theory.

– CP violation in meson systems could be explained in terms of the SM parameters and measured
CKM mixing in quark sector only if three generations of quarks exist.

– MW ,MZ was predicted in terms of sin θW and direct observation of the W,Z at the predicted
mass tested the particle content and tree level coupling of the matter fermions with the gauge
bosons W,Z.

– Study of energy dependence of the e+e− → W+W− process gave direct evidence for the tree
level ZWW coupling and also for the role played by this vertex in taming the bad high energy
behaviour of the cross-section. So in that sense, Fig. 21 gives evidence for the gauge symmetry
(ZWW coupling as indicated by symmetry) and the symmetry breaking (nonzero W mass) as
well.

– Further, Teavtron found evidence for ’direct’ production of the top quark at the mass Mt which
was in ageeement with the value obtained ‘indirectly’ from precision measurement of MW ,MZ ,
considering effect of radiative corrections to these masses.

– Last but not the least the existence of a minimum of ∆χ2 at a finite nonzero mass for the SM fits
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to the EW precision measurements, gave an ’indirect’ proof of the existence of the Higgs. Before
the ’direct’ discovery of the Higgs this was also an ’indirect’ probe of the couplings of the Higgs
with gauge bosons and the t quarks. Further, the same fits gave an ’indirect’ determination of Mh

which now agrees completely with the measured mass of the observed Higgs.

Now we can turn once again to the discussion of Fig. 5. As was already indicated by the right
panel of Fig. 26, the ’directly’ measured value of the Higgs mass Mh = 125.09 ± 0.24 GeV is right in
the ’allowed’ white slit and indeed confirms the SM at loop level most spectacularly. At this point, it is
worth noting that if we improve upon the accuracy of measurements of Mt,Mw and Mh we can indeed
hope to look for effects by loops of heavy particles which are not present in the SM but are expected to
exist in various extensions of the SM, which are in turn postulated to address various shortcomings of
the SM!

As already mentioned, the Higgs mass range allowed by the EW precision measurements can
change when one goes away from the SM. In fact before the ’direct’ discovery of the Higgs, a lot of
effort had gone on, in constructing models which would allow one to avoid these constraints, should
experiments reveal a Higgs boson not consistent with the bounds from the EW precision measurements.
Of course, not only that many of these are not required, but some are now even ruled out, by the obser-
vation of the light state. An example of one such model is the SM with a fourth sequential generation
of fermions, leptons and quarks. Since in the SM there is no guiding principle for total number of gen-
erations of fermions, except that they should be the same for quarks and leptons, this in principle is the
simplest extension of the SM by addition of more matter particles to it. Observation of the low mass
∼ 125 GeV scalar ruled out this extension very conclusively.

5 Observed mass of Higgs and the SM
As we saw above the EW precision measurements did put ’indirect’ bounds on the Higgs mass. However,
theoretically there is no information on the mass of the Higgs in the SM, as it is determined by λ an
arbitrary parameter. Recall Mh and λ are related by M2

h = 2λv2 . The observed mass of the Higgs
determines the self coupling λ:

λ = 0.5M2
h/v

2 ' 0.13

This is the last free parameter of the SM that needed to be determined. Thus the only part of the scalar
potential now that needs to be experimentally verified ’directly’ is the triple Higgs and the quartic Higgs
coupling in Eq. 56. Now that one ’knows’ the value of λ one can assess the possibilities of measuring it
at current and future colliders. One might ask the question whether this is the only nontrivial information
about the SM that we can extract from the observed value of the mass of the Higgs. Asked differently,
can one use this observed value of Mh to infer something about the SM as well as the physics beyond
the SM, viz. the BSM. Since in these lectures we restrict ourselves to the SM, I will only talk about the
possible implication of the observed Higgs mass for the SM itself.

While the SM has no ’prediction’ for Mh, requirement of theoretical consistencies imply bounds
on the same. These theoretical limits on the mass of the Higgs boson come from demanding good high
energy behavior of scattering amplitudes in the SU(2)L × U(1)Y gauge theory and from the quantum
corrections that the self coupling λ of Eq. 45 receives. These limits are thus essentially an artifact of the
quantum field theoretical description. Let us discuss this one by one.

5.1 Unitarity bound
Recall our discussion in section 3.2.7 of the high energy behaviour of scattering amplitudes. We dis-
cussed therein the high energy behavior of the scattering amplitude W+W− → W+W−. Various
contributing diagrams are shown in Fig. 27. Each of these diagrams gives a contribution which grows
as sα with α = 1, 2 where s is the centre of mass energy of the WW . This divergence appears in the
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Fig. 27: The upper panel shows digrams involving h bosons contributing to W + W → WW scattering. The
s-channel diagram will of course contribute only for W+W− → W+W− scattering. The lower panel shows the
all the diagrams which involve exchange of the gauge bosons Z and γ as well as the one involving pure gauge
vertex.

scattering of longitudinal W ’s. However in the SM all the divergent terms in the WW → WW ampli-
tude cancel among each other after adding the contributions of all the diagrams shown in Fig. 27. The
contribution of the h exchange diagrams as well as the that from the diagrams with pure gauge vertices
play an essential role in this cancellation as mentioned before. The cancellation of the power divergences
is independent of the Higgs mass and thus the requirement of non-divergent behavior does not single out
any scale. Among the non divergent part of the amplitude A(WW →WW ), left over after all this can-
cellations, the contributions of the Higgs exchange diagrams shown in the top panel of Fig. 27 dominate
and are dependent on the Higgs mass. These were investigated in [33] and they showed that though
not divergent these can become non negligible for large values of Mh. The non-divergent part of this
invariant amplitude can be written as [33]

A(W+
LW

−
L →W+

LW
−
L ) = −

√
2GµM

2
h

(
s

s−M2
h

+
t

t−M2
h

)
.

From a partial wave analysis of this amplitude one can show that this amplitude will violate tree level
unitarity if

Mh >

(
8π
√

2

3Gµ

)1/2

∼ 1000 GeV.
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Thus, the theory will be strongly interacting if Mh were to exceed this value. As things stand, the
observed value of Mh implies λ ' 0.13, far from the strongly interacting region and also safe from any
unitarity violation. Thus the observed mass of the Higgs boson satisfies the unitarity bound.

5.2 Triviality and Stability bound
Effect of loop corrections to the self coupling λ in a scalar field theory, in the presence of a high scale and
additional interactions of the scalar with gauge bosons and matter, was first studied decades ago [34] with
an aim to examine whether one could constrain the scalar mass and other high scale masses from pure
theoretical considerations. Triviality bound results from considering loop corrections to the scalar poten-
tial in Eq. 56. One demands that the quartic coupling λ in the Higgs potential from Eq. 56 reproduced
below,

Vh = λvh3 + λ/4h4,

remains perturbative as well as positive at all energy scales under loop corrections. The corrections
come from two sets of diagrams shown somewhat schematically in Fig. 28. The top panel shows loop

Fig. 28: The top panel shows loop corrections to the quartic coupling λ from the Higgs sector itself. The diagrams
in the lower panel show contributions to the running of λ from fermion and gauge loops.

corrections to the quartic coupling λ from the Higgs sector itself whereas the diagrams in the lower panel
show contributions to the running of λ from fermion and gauge loops. So the diagrams shown in the top
panel are applicable to any scalar with quartic self interaction. The ones in the lower panel are specific
to a gauge theory.

5.2.1 Triviality Bound
The triviality bound comes from demanding that λ should always remain perturbative. To understand the
origin of this bound let us consider the case of large Mh. Since M2

h = λv2, at large mh and hence large
λ, loop corrections are dominated by the h–loops shown in the top panel of Fig. 28. A straightforward
evaluation of this gives us

dλ(Q2)

d logQ2
=

3

4π
λ2(Q2) (92)
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Solving this, one gets

λ(Q2) =
λ(v2)

[1− 3
4π2λ(v2) log(Q

2

v2
)]
. (93)

A look at Eq. 93 shows us that at large Q2 � v2, λ(Q2) can develops a pole, the so called Landau pole,
at some high scale Q depending on the value λ at the EW scale v. If we demand that λ remains always
in perturbative regime, then the ONLY solution would be λ = 0. This would then mean that the theory
will be trivial. That of course does not make for a sensible theory. Thus the starting value of λ(v) and
hence Mh is not allowed by these considerations.

One can understand this in yet another way. If we demand that the scale at which λ blows up is
above a given scale Λ, then using Eq. 93 we find that for a given value of Mh and hence λ(v), the scale
at which the Landau pole lies will be given by

ΛC = v exp

(
2π2

3λ

)
= v exp

(
4π2v2

3M2
h

)
. (94)

Thus, for example, using ΛC = Λ = 1016 GeV, we will find Mh <∼ 200 GeV.

This bound is called the triviality bound. In simple terms it means that the value of λ at the EW
scale (and hence the mass Mh) should be small enough so that λ(Q2) does not develop a pole up to a
scale Q = ΛC . Hence, if Mh were found to have a mass larger than the triviality bound, it would have
meant existence of new physics below the scale ΛC . This thus tells us that just the mass of the h can give
us an indication about the scale at which SM must be complemented by additional new physics. The
mass of the Higgs being only 125.09 GeV this is rather an academic discussion as this small value of the
coupling λ at the EW scale, implies that the loop effects will not be driving the self coupling λ toward
the Landau pole at an energy scale of interest. There are other issues that we need to address given that
the observed mass is so small. But we will not discuss them here.

5.2.2 Stability bound
WhenMh is small and λ is not large, the fermion/gauge boson loops are important. Even more important
is that the fermions loops come with a negative sign. This means that if the fermion mass is large enough
the loop corrections may drive λ negative at some scale, unless the starting value of λ(v) is large enough.
These considerations will imply a lower bound for λ(v) and hence for Mh. This limit on Mh is called
the vacuum stability bound. Now one works in the limit of small λ, opposite to the one used when
considering the triviality bound. Hence the contribution of the h-loops shown in the upper panel of
Fig. 28 can be neglected. Hence the equation for energy dependence of λ now can be written as:

dλ(Q2)

d log(Q2)
' 1

16π2
[12λ2 + 6λf2

t −3f4t −
3

2
λ(3g2

2 + g2
1)

+
3

16
(2g4

2 + (g2
2 + g2

1)2)] (95)

ft =

√
2Mt

v
is the Yukawa coupling for the top. Since Mt ∼ 173 GeV and v ' 246 GeV, one can see

that the Yukawa coupling is ' 1. Thus it will dominate the scale dependence of λ. At small Mh and
hence small λ(v), λ can turn negative at some value of Q. Recall the Higgs potential. A negative value
of λ will mean an unbounded potential and clearly the vacuum will be unstable. The condition for non
negativity of λ and hence vacuum stability, is

M2
h >

v2

8π2
log(Q2/v2)

[
12m2

t /v
4 − 3

16
(2g4

2 + (g2
2 + g2

1)2)

]
. (96)

Again, depending upon the scale up to which we demand the potential to be positive definite, we find
that the starting value λ(v) (and hence Mh) has to be above a critical value dependent on the scale. If
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we demand that the λ(Q) is positive up to ΛC we then get a lower bound on Mh. For example choosing,
ΛC = 103GeV we get Mh >∼ 70 GeV. This bound is called the stability bound.

In the above analysis we have demanded that λ(Λ) does not become negative so that the potential
is stable. This is the condition for absolute stability of vacuum. However, Planck scale dynamics might
stabilise the vacuum for |Φ| >> v and we might be living in a metastable vacuum which has a life time
bigger than that of the Universe. The cartoon shown in Fig. 29 indicates such a situation. One can then
obtain lower bounds on Mh demanding that vacuum is metastable with a life time bigger than the life
time of the Universe. Clearly evaluation of these bounds can not be presented in the simplistic analysis
that we have given here.

Fig. 29: Cartoon of a field configuration that would give rise to metastable vacuum.

A complete and sophisticated analysis of Ref. [35] in fact gives the vacuum stability bounds on
the Higgs mass taking into account the effect of renormalisation group evolution(RGE) as well as that
of metastability of the vacuum. Fig. 30 taken from Ref. [35] shows the stability bounds, indicated by
the pale yellow green area, as a function of scale at which the instability sets in. The spread is due to
the theoretical uncertainties, major ones being the top mass uncertainty and the missing higher order
contributions to the equations. RGE takes into account not just the one loop corrections shown in Fig. 28
but also includes the resummation of leading logarithmic corrections. As one can can see even from the
simple minded analysis presented here, the bound depends critically on the value of ft and hence on Mt.
If one overlays the bounds on the Higgs mass of Fig. 26 obtained ’indirectly’ from the EW precision
analysis as well as the LEP/Teavtron/LHC searches then we realise that the thin white silver which was
still allowed by March 2013 corresponds to the boundary of the pale yellow-green region indicating
the stability bound. Due to the finite width of these bands caused by various uncertainties mentioned
above, the observed mass of the Higgs Mh may or may not be consistent with the hypothesis that the
SM remains consistent all the way to Planck scale. Given that everything depends logarithmically on
different scales and with the high accuracy of the experimental measurement of Mh, the need to do the
evolution of λ taking into account higher order effects is thus clear.

In fact the need for more accurate calculation was already apparent, even before the Higgs discov-
ery, with the rather low values of Mh indicated by the ’indirect’ limits. To appreciate this, look at Fig. 26
again disregarding the vertical red lines corresponding to the LHC 95% bound, which delineate the pale
grey region hatched with inclined lines. The 3σ region around the minimum of ∆χ2 and hence preferred
by the EW precision data, allowed by Tevatron data, 115 ≤Mh ≤ 150 GeV, covers the range of masses
where the stability bound is operative and the upper limits on the possible scale of new physics indicated
by the vacuum (in)stability interesting. The need for accuracy in the theoretical prediction of stability
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Fig. 30: The vacuum stability bound on Mh as a function of the scale. Bounds are shown for absolute stability as
well as metastability. Taken from [35].

bound is thus very apparent. In May 2012, with the discovery of the Higgs imminent, an NNLO analysis
of the problem became available [36], which reduced the theoretical error on the bounds coming from
the unknown higher order corrections to ∼ 1 GeV.

Fig. 31: λ(µ) as a function of scale for different values of αs,Mt varied within the experimental errors. The plot
is taken from [36].

However, there still remains a sizable error due to the errors in experimentally determined param-
eters Mt, αs. Fig. 31, taken from [36], shows behavior of λ(µ) as a function of the energy scale µ. One
now sees clearly that the scale at which λ becomes zero and hence the vacuum unstable, depends criti-
cally on Mt and the strong coupling αs. For example, for the central value of Mt used, µ value at which
λ becomes zero changes by at least an order of magnitude as αs is varied within errors. The dependence
on Mt is even stronger. We will comment later on the range of Mt used in this analysis. According to
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this analysis the absolute stability of the vacuum up to Planck scale Mpl is guaranteed for,

Mh [ GeV] > 129.4 + 1.4

(
Mt [GeV]− 173.1

0.7

)
− 0.5

(
αs(MZ)− 0.1184

0.0007

)
± 1.0 th. (97)

In this analysis the error on pole mass of the top was taken to be ∆mt = ±0.7 GeV. Taking into
account the errors, Eq. 97 then means that for mh < 126 GeV, vacuum stability of the SM all the way
to Planck Scale is excluded at 98% c.l. Clearly, this value is far too close to the observed value of
125.09± 0.24 GeV to require careful considerations of various issues before we draw conclusions about
the validity of the SM at high scale. For the measured value of the Higgs mass, the exact scale where λ
crosses zero, though not Mpl seems close to it and depends entirely on the exact value of Mt and Mh.
Indeed these considerations may be relevant for consideration of BSM or models of inflation etc.

The same can be seen clearly from Fig. 32 taken from [36]. This shows the results of this NNLO
analysis of the region in Mh–Mt plane from the vacuum stability considerations. The left panel shows

Fig. 32: The left panel shows the regions in the Mt–Mh plane where the vacuum is absolutely stable, metastable
and unstable. Right panel shows the zoom-in the region of values preferred experimentally. The grey areas show
allowed regions at 1,2 and 3 σ. The three curves on the boundary of two regions correspond to three values of αs.
Superimposed on it are the contours of constant value of the high scale where the instability occurs. The plot is
taken from [36]

the regions in the Mt–Mh plane where the vacuum is absolutely stable, metastable and unstable. To
understand the role and size of various ’experimental’ uncertainties the right panel shows a zoom in of
the region around the experimentally determined Mh–Mt values. The grey areas show allowed regions
at 1,2 and 3 σ. The three curves on the boundary of two regions correspond to three values of αs.
Superimposed on it are the contours of constant value of the high scale where the instability occurs. We
see that the experimentally determined values lie right on the boundary of the stable/metastable region.
The answer to the question as to whether or not, the experimentally determined value ofMh (known now
to a high accuracy Mh = 125.09 ± 0.24 GeV) is consistent with SM vacuum being (meta)stable all the
way to Planck scale, very much depends on Mt values.

Let us discuss this issue in a little more detail. The stability bounds given in [36] used errors on
mt as measured at the hadronic colliders the Tevatron and the LHC. This is the so called Monte Carlo
or kinematic mass, which is a parameter in the Monte Carlos used while analysing the data and studying
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the top quark production at the colliders. Conversion of this parameter into the pole mass, which is the
parameter required in these theoretical considerations and for the RGE, has uncertainties coming from
hadronisation and fragmentation models, underlying event etc. These are typically non perturbative in
character. Another way to extract the pole mass in a well defined manner is to extract MMS

t , the mass of
the top quark in the MS scheme from the measurement of the top quark cross-sections at the Tevatron
and the NNLO calculation of the same. The procedure to convert this mass to the pole mass Mt(Mt),
leads to uncertainties in Mt larger than the 0.7 GeV taken in Eq. 97. This exercise, using the available
information in 2012 led to an estimate of the pole mass for the top [37]:

Mpole
t = 173.3± 2.8 GeV.

Compare this with the error of 0.7 GeV that was used in the estimate obtained in [36]. The vacuum
stability constraint now becomes Mh > 129.4± 5.6 GeV instead of the one in Eq. 97. This observation
then can weaken the conclusion about the high scale upto which the SM remains valid without getting
into conflict with stability. The future International Linear Collider(ILC) can measure the top mass Mt

to a high accuracy of 100 MeV. What is more important is the fact that the determination of the t mass

Fig. 33: This is the same figure as in the right panel of Fig. 32, where the zoomed region around experimentally
determined values from [36] has ben overlaid with the uncertainties of Mt determination as extracted in [37]. This
was done by G. Isidori in his talk at SUSY 2014.

at the ILC comes directly from measurement of the tt̄ production cross-section in e+e− collisions, near
the tt̄ threshold. This can be measured very accurately and has been computed theoretically to a high
precision as well. This measurement can be converted into the pole mass in an unambiguous way. Fig. 33
shows how such a precision measurement of the mass at the ILC can really shed light on whether the
currently measured higgs mass points to the NEED of BSM physics at any particular high scale. In the
above figure, the bigger blue circle has been drawn assuming an LHC accuracy of t mass measurement
of 1 GeV. However, a reduction of this error to about 500 MeV looks possible and is an active area of
research. These kind of investigations are just the next logical step in our efforts to test the SM through
a combination of the ’direct’ and ’indirect’ observations.
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6 Concluding remarks
In any case the days of Standard Model are coming to an end in some sense! Hopefully it will be the case
of ’The King is Dead’ and ’Long live the King’! We have, however, not much idea what particular BSM
option, if any, would be the new king. As we have discussed above, already the mass of the observed
state can be used to answer the question about the scale upto which the SM is valid. In fact, this has
been one of the most impressive facts about the SM. It has held the ability to ask and answer questions
about its own consistency within its structure. Just like the gauge principle and the unitarity were the
guiding principle so far, now the small mass of the discovered Higgs (∼ O weak scale) might be the
guiding principle for future theoretical developments! This will be discussed in other lectures at the
school. We should get a peek at the BSM land through the ’window’ of measurement of the properties
of the Higgs and the top quark! Exciting days are ahead for sure! If 14 TeV LHC should also fail to find

Fig. 34: The Higgs and Top portal for BSM physics.

’direct’ evidence for the BSM physics we would really have to understand what is so special about the
Standard Model. Precision measurements of the observed Higgs mass and Higgs couplings will be then
our window to this world of physics beyond the SM.
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8 About References
In the bibliography I have listed the original theory papers and the early experimental papers which are
referred to in the text from time to time. After that I list a large number of very good text books where
one can find detailed discussions of many of the issues involved.
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Abstract
These lecture notes are directed at a level suitable for graduate students in High
Energy Physics. They are intended to give an introduction to the theory and
phenomenology of quantum chromodynamics (QCD), focusing on collider-
physics applications. The aim is to bring the reader to a level where informed
decisions can be made concerning different approaches and their uncertain-
ties. The material is divided into five main areas: (1) fundamentals, (2) fixed-
order perturbative QCD, (3) Monte Carlo event generators and parton show-
ers, (4) Matching at Leading and Next-to-Leading Order, and (5) Soft QCD
physics.

Keywords
Lectures; quantum chromodynamics; gauge theory; jet: fragmentation; Monte
Carlo; PYTHIA.

Useful complementary references

List of additional general study/reference material:

– basic quantum field theory: Ref. [1],
– textbooks on QCD: Refs. [2, 3],
– jets and jet algorithms: Ref. [4],
– general-purpose event generators: Ref. [5],
– the string model: Ref. [6],
– step-by-step PYTHIA tutorial: see ‘worksheet’ available on the PYTHIA

homepage,
– Monte Carlo methods and random numbers: Refs. [7, 8].

1 Introduction
When probed at very short wavelengths, quantum chromodynamics (QCD) is essentially a theory of
free ‘partons’—quarks and gluons—which only scatter off one another through relatively small quantum
corrections that can be systematically calculated. At longer wavelengths, of the order of the size of the
proton ∼1 fm = 10−15 m. However, we see strongly bound towers of hadron resonances emerge, with
string-like potentials building up if we try to separate their partonic constituents. Due to our inability
to perform analytic calculations in strongly coupled field theories, QCD is, therefore, still only partially
solved. Nonetheless, all its features, across all distance scales, are believed to be encoded in a single
one-line formula of alluring simplicity: the Lagrangian1 of QCD.

*Originally based on lectures given at ESHEP 2010 (Raseborg, Finland) and subsequently updated for TASI 2012 (Boulder,
Colorado) and AEPSHEP 2014 (Puri, India).

1Throughout these notes we let it be implicit that ‘Lagrangian’ really refers to Lagrangian density, L, the four-dimensional
space–time integral of which is the action.

Proceedings of the 2014 Asia–Europe–Pacific School of High-Energy Physics, Puri, India, 4–17 November 2014, edited by
M. Mulders and R. Godbole, CERN Yellow Reports: School Proceedings, Vol. 2/2017, CERN-2017-005-SP (CERN, Geneva, 2017)

2519-8041– c© CERN, 2017. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence (CC BY 4.0).
https://doi.org/10.23730/CYRSP-2017-002.63
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The consequence for collider physics is that some parts of QCD can be calculated in terms of
the fundamental parameters of the Lagrangian, whereas others must be expressed through models or
functions whose effective parameters are not a priori calculable, but which can be constrained by fits to
data. However, even in the absence of a perturbative expansion, there are still several strong theorems
which hold, and which can be used to give relations between seemingly different processes. (This is,
e.g., the reason it makes sense to constrain parton-distribution functions (PDFs) in ep collisions and then
re-use the same ones for pp collisions.) Thus, in the sections dealing with phenomenological models,
we shall emphasize that the loss of a factorized perturbative expansion is not equivalent to a total loss of
predictivity.

An alternative approach would be to give up on calculating QCD and use leptons instead. For-
mally, this amounts to summing inclusively over strong-interaction phenomena, when such are present.
While such a strategy might succeed in replacing what we do know about QCD by ‘unity’, even the most
adamant chromophobe must acknowledge a few basic facts of collider physics for the next decade(s).
(1) At the Large Hadron Collider (LHC), the initial states are hadrons, and hence, at the very least, well-
understood and precise PDFs will be required. (2) High precision will mandate calculations to higher
orders in perturbation theory, which, in turn, will involve more QCD. (3) The requirement of lepton
isolation makes the very definition of a lepton depend implicitly on QCD. (4) The rate of jets that are
misreconstructed as leptons in the experiment depends explicitly on QCD. (5) Finally, although many
new-physics signals do give observable signals in the lepton sector, this is far from guaranteed, nor is
it exclusive when it occurs. It would, therefore, be unwise not to attempt to solve QCD to the best of
our ability, the better to prepare ourselves for both the largest possible discovery reach and the highest
attainable subsequent precision.

Moreover, QCD is the richest gauge theory we have, so far, encountered. Its emergent phenomena,
unitarity properties, colour structure, non-perturbative dynamics, quantum versus classical limits, inter-
play between scale-invariant and scale-dependent properties and its wide range of phenomenological
applications are still very much topics of active investigation, about which we continue to learn.

In addition, or perhaps as a consequence, the field of QCD is currently experiencing something
of a revolution. On the perturbative side, new methods to compute scattering amplitudes with very
high particle multiplicities are being developed, together with advanced techniques for combining such
amplitudes with all-orders resummation frameworks. On the non-perturbative side, the wealth of data
on soft-physics processes from the LHC is forcing us to reconsider the reliability of the standard frag-
mentation models, and heavy-ion collisions are providing new insights into the collective behaviour of
hadronic matter. The study of cosmic rays impinging on the Earth’s atmosphere challenges our ability to
extrapolate fragmentation models from collider energy scales to the region of ultra-high-energy cosmic
rays. And finally, dark-matter annihilation processes in space may produce hadrons, whose spectra are
sensitive to the modelling of fragmentation.

In the following, we shall focus on QCD for mainstream collider physics. This includes the basics
of the gauge group SU(3), colour factors, the running of αs, factorization, hard processes, IR safety, par-
ton showers and matching, event generators, hadronization and the so-called underlying event. While not
covering everything, hopefully these topics can also serve at least as stepping stones to more specialized
issues that have been left out, such as twistor-inspired techniques, heavy flavours, polarization or forward
physics, or to topics more tangential to other fields, such as axions, lattice QCD or heavy-ion physics.

1.1 A first hint of colour
Looking for new physics, as we do now at the LHC, it is instructive to consider the story of the discovery
of colour. The first hint was arguably the ∆++ baryon, discovered in 1951 [9]. The title and part of the
abstract from this historical paper are reproduced in Fig. 1. In the context of the quark model—which
first had to be developed, successively joining together the notions of spin, isospin, strangeness, and the

2

P. SKANDS

64



“[...] It is concluded that the apparently anomalous features of the scattering can be interpreted to be
an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with spin
3
2 , isotopic spin 3

2 , and with an excitation energy of 277 MeV.”

Fig. 1: The title and part of the abstract of the 1951 paper [9] (published in 1952) in which the existence of the
∆++ baryon was deduced, based on data from Sachs and Steinberger at Columbia [10] and from Anderson et
al. at Chicago [11]. Further studies at Chicago were quickly performed in Ref. [12, 13]. See also the memoir by
Nagle [14].

eightfold way2—the flavour and spin content of the ∆++ baryon is
∣∣∆++

〉
= |u↑ u↑ u↑〉 , (1)

clearly a highly symmetric configuration. However, since the ∆++ is a fermion, it must have an overall
antisymmetric wave function. In 1965, 14 years after its discovery, this was finally understood by the
introduction of colour as a new quantum number associated with the group SU(3) [15, 16]. The ∆++

wave function can now be made antisymmetric by arranging its three quarks antisymmetrically in this
new degree of freedom, ∣∣∆++

〉
= εijk |ui↑ uj↑ uk↑〉 , (2)

and hence solving the mystery.

More direct experimental tests of the number of colours were provided first by measurements
of the decay width of π0 → γγ decays, which is proportional to N2

C, and later by the famous ‘R’
ratio in e+e− collisions (R = σ(e+e− → qq̄)/σ(e+e− → µ+µ−)), which is proportional to NC, see,
e.g., Ref. [3]. Below, in Section 1.2 we shall see how to calculate such colour factors.

1.2 The Lagrangian of QCD
QCD is based on the gauge group SU(3), the Special Unitary group in three (complex) dimensions,
whose elements are the set of unitary 3× 3 matrices with determinant one. Since there are nine linearly
independent unitary complex matrices3, one of which has determinant −1, there are a total of eight
independent directions in this matrix space, corresponding to eight different generators as compared
with the single one of quantum electrodynamics (QED). In the context of QCD, we normally represent
this group using the so-called fundamental, or defining, representation, in which the generators of SU(3)
appear as a set of eight traceless and hermitean matrices, to which we return below. We shall refer to
indices enumerating the rows and columns of these matrices (from 1 to 3) as fundamental indices, and we
use the letters i, j, k, . . . , to denote them. We refer to indices enumerating the generators (from 1 to 8), as
adjoint indices4, and we use the first letters of the alphabet (a, b, c, . . . ) to denote them. These matrices
can operate both on each other (representing combinations of successive gauge transformations) and on a
set of 3-vectors, the latter of which represent quarks in colour space; the quarks are triplets under SU(3).
The matrices can be thought of as representing gluons in colour space (or, more precisely, the gauge

2In physics, the ‘eightfold way’ refers to the classification of the lowest-lying pseudoscalar mesons and spin-1/2 baryons
within octets in SU(3)-flavour space (u, d, s). The ∆++ is part of a spin-3/2 baryon decuplet, a ‘tenfold way’ in this terminol-
ogy.

3A complex N ×N matrix has 2N2 degrees of freedom, on which unitarity provides N2 constraints.
4The dimension of the adjoint, or vector, representation is equal to the number of generators, N2− 1 = 8 for SU(3), while

the dimension of the fundamental representation is the degree of the group, N = 3 for SU(3).
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A1
µ

ψqG ψqR

∝ − i
2gs ψ̄qR λ1 ψqG

= − i
2gs

(
1 0 0

)



0 1 0
1 0 0
0 0 0







0
1
0




Fig. 2: Illustration of a qqg vertex in QCD, before summing/averaging over colours: a gluon in a state represented
by λ1 interacts with quarks in the states ψqR and ψqG.

transformations carried out by gluons), and hence there are eight different gluons; the gluons are octets
under SU(3).

The Lagrangian density of QCD is

L = ψ̄iq(iγµ)(Dµ)ijψ
j
q −mqψ̄

i
qψqi −

1

4
F aµνF

aµν , (3)

where ψiq denotes a quark field with (fundamental) colour index i, ψq = (ψqR, ψqG, ψqB)T, γµ is a Dirac
matrix that expresses the vector nature of the strong interaction, with µ being a Lorentz vector index,
mq allows for the possibility of non-zero quark masses (induced by the standard Higgs mechanism
or similar), F aµν is the gluon field strength tensor for a gluon with (adjoint) colour index a (i.e., a ∈
[1, . . . , 8]) and Dµ is the covariant derivative in QCD,

(Dµ)ij = δij∂µ − igst
a
ijA

a
µ , (4)

with gs the strong coupling (related to αs by g2
s = 4παs; we return to the strong coupling in more

detail below) Aaµ the gluon field with colour index a, and taij proportional to the hermitean and traceless
Gell–Mann matrices of SU(3),

QCD lecture 1 (p. 5)

What is QCD Lagrangian + colour

Quarks — 3 colours: ψa =




ψ1

ψ2

ψ3




Quark part of Lagrangian:

Lq = ψ̄a(iγ
µ∂µδab − gsγ

µtC
abAC

µ − m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1
ab . . . t

8
ab

corresponding to 8 gluons A1
µ . . .A8

µ.

A representation is: tA = 1
2λ

A,

λ1 =

0

@

0 1 0
1 0 0
0 0 0

1

A , λ2 =

0

@

0 −i 0
i 0 0
0 0 0

1

A , λ3 =

0

@

1 0 0
0 −1 0
0 0 0

1

A , λ4 =

0

@

0 0 1
0 0 0
1 0 0

1

A ,

λ5 =

0

@

0 0 −i
0 0 0
i 0 0

1

A , λ6 =

0

@

0 0 0
0 0 1
0 1 0

1

A , λ7 =

0

@

0 0 0
0 0 −i
0 i 0

1

A , λ8 =

0

B

@

1√
3

0 0

0 1√
3

0

0 0 −2√
3

1

C

A
,

. (5)

These generators are just the SU(3) analogues of the Pauli matrices in SU(2). By convention, the con-
stant of proportionality is normally taken to be

taij =
1

2
λaij . (6)

This choice, in turn, determines the normalization of the coupling gs, via Eq. (4), and fixes the values of
the SU(3) Casimirs and structure constants, to which we return below.

An example of the colour flow for a quark–gluon interaction in colour space is given in Fig. 2.
Normally, of course, we sum over all the colour indices, so this example merely gives a pictorial repre-
sentation of what one particular (non-zero) term in the colour sum looks like.
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Hadronic Z decay Drell–Yan DIS

e−e+ → γ∗/Z0 → qq̄ qq̄→ γ∗/Z0 → `+`− `q̄
γ∗/Z∗→ `q̄

∝ NC ∝ 1/NC ∝ 1

Fig. 3: Illustration of the three crossings of the interaction of a lepton current (black) with a quark current (red)
via an intermediate photon or Z boson, with corresponding colour factors.

1.3 Colour factors
Typically, we do not measure colour in the final state—instead we average over all possible incoming
colours and sum over all possible outgoing ones, wherefore QCD scattering amplitudes (squared), in
practice, always contain sums over quark fields contracted with Gell–Mann matrices. These contractions
in turn produce traces which yield the colour factors that are associated with each QCD process, and
which basically count the number of ‘paths through colour space’ that the process at hand can take5.

A very simple example of a colour factor is given by the decay process Z → qq̄. This vertex
contains a simple δij in colour space; the outgoing quark and antiquark must have identical (anti-)colours.
Squaring the corresponding ME and summing over final-state colours yields a colour factor of

e+e− → Z→ qq̄ :
∑

colours

|M |2 ∝ δijδ∗ji = Tr{δ} = NC = 3, (7)

since i and j are quark (i.e., three-dimensional fundamental) indices.

A next-to-simplest example is given by qq̄→ γ∗/Z→ `+`− (usually referred to as the Drell–Yan
process [17]), which is just a crossing of the previous one. By crossing symmetry, the squared ME,
including the colour factor, is exactly the same as before, but since the quarks are, here, incoming, we
must average rather than sum over their colours, leading to

qq̄→ Z→ e+e− :
1

9

∑

colours

|M |2 ∝ 1

9
δijδ

∗
ji =

1

9
Tr{δ} =

1

3
, (8)

where the colour factor now expresses a suppression which can be interpreted as due to the fact that only
quarks of matching colours are able to collide and produce a Z boson. The chance that a quark and an
antiquark picked at random from the colliding hadrons have matching colours is 1/NC.

Similarly, `q → `q via t-channel photon exchange (usually called deep inelastic scattering—
DIS—with ‘deep’ referring to a large virtuality of the exchanged photon), constitutes yet another crossing
of the same basic process, see Fig. 3. The colour factor in this case comes out as unity.

5The convention choice represented by Eq. (6) introduces a ‘spurious’ factor of two for each power of the coupling αs.
Although one could, in principle, absorb that factor into a redefinition of the coupling, effectively redefining the normalization
of ‘unit colour charge’, the standard definition of αs is now so entrenched that alternative choices would be counter-productive,
at least in the context of a pedagogical review.
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Table 1: Trace relations for t matrices (convention-independent). More relations can be found in Ref. [2, Section
1.2] and in Ref. [1, Appendix A.3].

Trace relation Indices Occurs in diagram squared

Tr{tatb} = TR δ
ab a, b ∈ [1, . . . , 8]

a b

∑
a t

a
ijt

a
jk = CF δik

a ∈ [1, . . . , 8]
i, j, k ∈ [1, . . . , 3]

i kj

a

∑
c,d f

acdf bcd = CA δ
ab a, b, c, d ∈ [1, . . . , 8]

a b

taijt
a
k` = TR

(
δjkδi` − 1

NC
δijδk`

)
i, j, k, ` ∈ [1, . . . , 3] ∝ −1

NC

j

k ℓ

i

(Fierz)

To illustrate what happens when we insert (and sum over) quark–gluon vertices, such as the one
depicted in Fig. 2, we take the process Z → 3 jets. The colour factor for this process can be computed
as follows, with the accompanying illustration showing a corresponding diagram (squared) with explicit
colour-space indices on each vertex:

Z→ qgq̄ :
∑

colours

|M |2 ∝ δijt
a
jk (ta`kδ

∗
i`)
∗

= Tr{tata}

=
1

2
Tr{δ} = 4,

δij

tajk taℓk

δiℓ

qi qi

qj

qk qk

qℓ

gajk gaℓk (9)

where the last Tr{δ} = 8, since the trace runs over the eight-dimensional adjoint indices.

The tedious task of taking traces over t matrices can be greatly alleviated by use of the relations
given in Table 1. In the standard normalization convention for the SU(3) generators, Eq. (6), the
Casimirs of SU(3) appearing in Table 1 are6

TR =
1

2
CF =

4

3
CA = NC = 3. (10)

In addition, the gluon self-coupling on the third line in Table 1 involves factors of fabc. These are called
the structure constants of QCD and they enter via the non-Abelian term in the gluon-field-strength tensor
appearing in Eq. (3),

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (11)

The structure constants of SU(3) are listed in the box below. They define the adjoint, or vector, rep-
resentation of SU(3) and are related to the fundamental-representation generators via the commutator
relations

tatb − tbta = [ta, tb] = ifabctc, (12)

6See, e.g., Ref. [1, Appendix A.3] for how to obtain the Casimirs in other normalization conventions.
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A4
ν(k2)

A6
ρ(k1) A2

µ(k3)

∝ −gs f
246 [(k3 − k2)ρgµν

+(k2 − k1)µgνρ

+(k1 − k3)νgρµ]

Fig. 4: Illustration of a ggg vertex in QCD, before summing/averaging over colours: interaction between gluons
in the states λ2, λ4, and λ6 is represented by the structure constant f246.

or equivalently,
ifabc = 2Tr{tc[ta, tb]}. (13)

Thus, it is a matter of choice whether one prefers to express colour space on a basis of fundamental-
representation tmatrices, or via the structure constants f , and one can go back and forth between the two.

Structure constants of SU(3)

f123 = 1 (14)

f147 = f246 = f257 = f345 =
1

2
(15)

f156 = f367 = −1

2
(16)

f458 = f678 =

√
3

2
(17)

Antisymmetric in all indices

All other fabc = 0

Expanding the FµνFµν term of the Lagrangian using Eq. (11), we see that there is a 3-gluon and a
4-gluon vertex that involve fabc, the latter of which has two powers of f and two powers of the coupling.

Finally, the last line of Table 1 is not really a trace relation but instead a useful so-called Fierz
transformation, which expresses products of t matrices in terms of Kronecker δ functions. It is often
used, for instance, in shower Monte Carlo applications, to assist in mapping between colour flows in
NC = 3, in which cross sections and splitting probabilities are calculated, and those in NC → ∞
(‘leading colour’) are used to represent colour flow in the Monte Carlo (MC) ‘event record’.

A gluon self-interaction vertex is illustrated in Fig. 4, to be compared with the quark–gluon inter-
action in Fig. 2. We remind the reader that gauge boson self-interactions are a hallmark of non-Abelian
theories and that their presence leads to some of the main differences between QED and QCD. One
should also keep in mind that the colour factor for the vertex in Fig. 4, CA, is roughly twice as large as
that for a quark, CF .

1.4 The strong coupling
To first approximation, QCD is scale invariant. That is, if one ‘zooms in’ on a QCD jet, one will find
a repeated self-similar pattern of jets within jets within jets, reminiscent of fractals. In the context of
QCD, this property was originally called light-cone scaling, or Bjørken scaling. This type of scaling
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is closely related to the class of angle-preserving symmetries, called conformal symmetries. In physics
today, the terms ‘conformal’ and ‘scale invariant’ are used interchangeably7. Conformal invariance is
a mathematical property of several QCD-‘like’ theories which are now being studied (such as N = 4
supersymmetric relatives of QCD). It is also related to the physics of so-called ‘unparticles’, although
that is a relation that goes beyond the scope of these lectures.

Regardless of the labelling, if the strong coupling did not run (we shall return to the running of
the coupling below), Bjørken scaling would be absolutely true. QCD would be a theory with a fixed
coupling, the same at all scales. This simplified picture already captures some of the most important
properties of QCD, as we shall discuss presently.

In the limit of exact Bjørken scaling—QCD at fixed coupling—properties of high-energy interac-
tions are determined only by dimensionless kinematic quantities, such as scattering angles (pseudorapidi-
ties) and ratios of energy scales8. For applications of QCD to high-energy collider physics, an important
consequence of Bjørken scaling is, thus, that the rate of bremsstrahlung jets, with a given transverse
momentum, scales in direct proportion to the hardness of the fundamental partonic-scattering process
they are produced in association with. This agrees well with our intuition about accelerated charges; the
harder you ‘kick’ them, the harder the radiation they produce.

For instance, in the limit of exact scaling, a measurement of the rate of 10 GeV jets produced in
association with an ordinary Z boson could be used as a direct prediction of the rate of 100 GeV jets
that would be produced in association with a 900 GeV Z′ boson, and so forth. Our intuition about how
many bremsstrahlung jets a given type of process is likely to have should, therefore, be governed, first
and foremost, by the ratios of scales that appear in that particular process, as has been highlighted in a
number of studies focusing on the mass and p⊥ scales appearing, for example, in beyond-the-standard-
model (BSM) physics processes [18–21]. Bjørken scaling is also fundamental to the understanding of jet
substructure in QCD, see, for example, Refs. [22, 23].

On top of the underlying scaling behaviour, the running coupling will introduce a dependence on
the absolute scale, implying more radiation at low scales than at high ones. The running is logarithmic
with energy and is governed by the so-called beta function,

Q2 ∂αs

∂Q2
=

∂αs

∂ lnQ2
= β(αs), (18)

where the function driving the energy dependence, the beta function, is defined as

β(αs) = −α2
s (b0 + b1αs + b2α

2
s + · · · ), (19)

with LO (one-loop) and NLO (two-loop) coefficients

b0 =
11CA − 4TRnf

12π
, (20)

b1 =
17C2

A − 10TRCAnf − 6TRCFnf

24π2
=

153− 19nf

24π2
. (21)

In the b0 coefficient, the first term is due to gluon loops while the second is due to quark loops. Similarly,
the first term of the b1 coefficient arises from double gluon loops, while the second and third represent
mixed quark–gluon loops. At higher loop orders, the bi coefficients depend explicitly on the renormal-
ization scheme that is used. A brief discussion can be found in the Particle Data Group (PDG) review on

7Strictly speaking, conformal symmetry is more restrictive than just scale invariance, but examples of scale-invariant field
theories that are not conformal are rare.

8Originally, the observed approximate agreement with this was used as a powerful argument for pointlike substructure in
hadrons; since measurements at different energies are sensitive to different resolution scales, independence of the absolute
energy scale is indicative of the absence of other fundamental scales in the problem and hence of pointlike constituents.
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Fig. 5: Illustration of the running of αs at one- (open circles) and two-loop order (filled circles), starting from the
same value of αs(MZ) = 0.12.

QCD [24], with more elaborate ones contained in Refs. [2, 3]. Note that, if there are additional coloured
particles beyond the standard-model ones, loops involving those particles enter at energy scales above the
masses of the new particles, thus modifying the running of the coupling at high scales. This is discussed,
for example, for supersymmetric models in Ref. [25].

Numerically, the value of the strong coupling is usually specified by giving its value at the specific
reference scale Q2 = M2

Z, from which we can obtain its value at any other scale by solving Eq. (18),

αs(Q
2) = αs(M

2
Z)

1

1 + b0αs(M2
Z) ln Q2

M2
Z

+O(α2
s )
, (22)

with relations including the O(α2
s ) terms available, for example, in Ref. [2]. Relations between scales

not involving M2
Z can obviously be obtained by just replacing M2

Z by some other scale Q′2 everywhere
in Eq. (22). A comparison of running at one- and two-loop order, in both cases starting from αs(MZ) =
0.12, is given in Fig. 5. As is evident from the figure, the two-loop running is somewhat faster than the
two-loop.

As an application, let us prove that the logarithmic running of the coupling implies that an intrin-
sically multi-scale problem can be converted to a single-scale one, up to corrections suppressed by two
powers of αs, by taking the geometric mean of the scales involved. This follows from expanding an
arbitrary product of individual αs factors around an arbitrary scale µ, using Eq. (22),

αs(µ1)αs(µ2) · · ·αs(µn) =

n∏

i=1

αs(µ)

(
1 + b0 αs ln

(
µ2

µ2
i

)
+O(α2

s )

)

= αns (µ)

(
1 + b0 αs ln

(
µ2n

µ2
1µ

2
2 · · ·µ2

n

)
+O(α2

s )

)
, (23)

whereby the specific single-scale choice µn = µ1µ2 · · ·µn (the geometric mean) can be seen to push the
difference between the two sides of the equation one order higher than would be the case for any other
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combination of scales9.

The appearance of the number of flavours, nf , in b0 implies that the slope of the running depends
on the number of contributing flavours. Since full QCD is best approximated by nf = 3 below the charm
threshold, by nf = 4 and 5 from there to the b and t thresholds, respectively, and then by nf = 6 at scales
higher thanmt, it is, therefore, important to be aware that the running changes slope across quark-flavour
thresholds. Likewise, it would change across the threshold for any coloured new-physics particles that
might exist, with a magnitude depending on the particles’ colour and spin quantum numbers.

The negative overall sign of Eq. (19), combined with the fact that b0 > 0 (for nf ≤ 16), leads to the
famous result10 that the QCD coupling effectively decreases with energy, called asymptotic freedom, for
the discovery of which the Nobel prize in physics was awarded to D. Gross, H. Politzer and F. Wilczek
in 2004. An extract of the prize announcement runs as follows.

What this year’s Laureates discovered was something that, at first sight, seemed com-
pletely contradictory. The interpretation of their mathematical result was that the closer
the quarks are to each other, the weaker is the ‘colour charge’. When the quarks are
really close to each other, the force is so weak that they behave almost as free particlesa.
This phenomenon is called ‘asymptotic freedom’. The converse is true when the quarks
move apart: the force becomes stronger when the distance increasesb.

aMore correctly, it is the coupling rather than the force which becomes weak as the distance decreases.
The 1/r2 Coulomb singularity of the force is only dampened, not removed, by the diminishing coupling.

bMore correctly, it is the potential which grows, linearly, while the force becomes constant.

Among the consequences of asymptotic freedom is that perturbation theory becomes better be-
haved at higher absolute energies, due to the effectively decreasing coupling. Perturbative calculations
for our 900 GeV Z′ boson from before should, therefore, be slightly faster converging than equivalent
calculations for the 90 GeV one. Furthermore, since the running of αs explicitly breaks Bjørken scaling,
we also expect to see small changes in jet shapes and in jet-production ratios as we vary the energy. For
instance, since high-p⊥ jets start out with a smaller effective coupling, their intrinsic shape (irrespective
of boost effects) is somewhat narrower than for low-p⊥ jets, an issue which can be important for jet
calibration. Our current understanding of the running of the QCD coupling is summarized by the plot in
Fig. 6, taken from a recent comprehensive review by S. Bethke [26, 27].

As a final remark on asymptotic freedom, note that the decreasing value of the strong coupling
with energy must eventually cause it to become comparable to the electromagnetic and weak ones, at
some energy scale. Beyond that point, which may lie at energies of order 1015–1017 GeV (although it
may be lower if as-yet-undiscovered particles generate large corrections to the running), we do not know
what the further evolution of the combined theory will actually look like, or whether it will continue to
exhibit asymptotic freedom.

Now consider what happens when we run the coupling in the other direction, towards smaller
energies. Taken at face value, the numerical value of the coupling diverges rapidly at scales below 1
GeV, as illustrated by the curves disappearing off the left-hand edge of the plot in Fig. 6. To make this
divergence explicit, one can rewrite Eq. (22) in the following form,

αs(Q
2) =

1

b0 ln Q2

Λ2

, (24)

where
Λ ∼ 200 MeV (25)

9In a fixed-order calculation, the individual scales µi, would correspond, for example, to the n hardest scales appearing in
an IR-safe sequential-clustering algorithm applied to the given momentum configuration.

10 Perhaps the highest pinnacle of fame for Eq. (19) was reached when the sign of it featured in an episode of the TV series
‘Big Bang Theory’.

10

P. SKANDS

72



Landau Pole

& Confinement

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

Asymptotic Freedom

& Grand Unification?

Fig. 6: Illustration of the running of αs in a theoretical calculation (band) and in physical processes at different
characteristic scales, from Refs. [24, 26]. The little kinks at Q = mc and Q = mb are caused by discontinuities in
the running across the flavour thresholds.

specifies the energy scale at which the perturbative coupling would nominally become infinite, called the
Landau pole. (Note, however, that this only parameterizes the purely perturbative result, which is not
reliable at strong coupling, so Eq. (24) should not be taken to imply that the physical behaviour of full
QCD should exhibit a divergence for Q→ Λ.)

Finally, one should be aware that there is a multitude of different ways of defining both Λ and
αs(MZ). At the very least, the numerical value one obtains depends both on the renormalization scheme
used (with the dimensional-regularization-based ‘modified minimal subtraction’ scheme, MS, being the
most common one) and on the perturbative order of the calculations used to extract them. As a rule
of thumb, fits to experimental data typically yield smaller values for αs(MZ) the higher the order of
the calculation used to extract it (see, e.g., Refs. [24, 26–28]), with αs(MZ)|LO ∼> αs(MZ)|NLO ∼>
αs(MZ)|NNLO. Further, since the number of flavours changes the slope of the running, the location
of the Landau pole for fixed αs(MZ) depends explicitly on the number of flavours used in the running.
Thus, each value of nf is associated with its own value of Λ, with the following matching relations across
thresholds guaranteeing continuity of the coupling at one loop,

nf = 5↔ 6 : Λ6 = Λ5

(
Λ5

mt

) 2
21

Λ5 = Λ6

(
mt

Λ6

) 2
23

, (26)

nf = 4↔ 5 : Λ5 = Λ4

(
Λ4

mb

) 2
23

Λ4 = Λ5

(
mb

Λ5

) 2
25

, (27)

nf = 3↔ 4 : Λ4 = Λ3

(
Λ3

mc

) 2
25

Λ3 = Λ4

(
mc

Λ4

) 2
27

. (28)

It is sometimes stated that QCD only has a single free parameter, the strong coupling. However,
even in the perturbative region, the beta function depends explicitly on the number of quark flavours,
as we have seen, and thereby also on the quark masses. Furthermore, in the non-perturbative region
around or below ΛQCD, the value of the perturbative coupling, as obtained, for example, from Eq. (24),
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gives little or no insight into the behaviour of the full theory. Instead, universal functions (such as parton
densities, form factors, fragmentation functions, etc), effective theories (such as the operator product
expansion, chiral perturbation theory, or heavy quark effective theory), or phenomenological models
(such as Regge theory or the string and cluster hadronization models) must be used, which in turn depend
on additional non-perturbative parameters whose relation to, for example, αs(MZ), is not a priori known.

For some of these questions, such as hadron masses, lattice QCD can furnish important additional
insight, but for multi-scale and/or time-evolution problems, the applicability of lattice methods is still
severely restricted; the lattice formulation of QCD requires a Wick rotation to Euclidean space. The
time-coordinate can then be treated on an equal footing with the other dimensions, but intrinsically
Minkowskian problems, such as the time evolution of a system, are inaccessible. The limited size of
current lattices also severely constrain the scale hierarchies that it is possible to ‘fit’ between the lattice
spacing and the lattice size.

1.5 Colour states
A final example of the application of the underlying SU(3) group theory to QCD is given by considering
which colour states we can obtain by combinations of quarks and gluons. The simplest example of this
is the combination of a quark and antiquark. We can form a total of nine different colour–anticolour
combinations, which fall into two irreducible representations of SU(3):

3⊗ 3 = 8⊕ 1. (29)

The singlet corresponds to the symmetric wave function 1√
3

(∣∣RR̄
〉

+
∣∣GḠ

〉
+
∣∣BB̄

〉)
, which is invariant

under SU(3) transformations (the definition of a singlet). The other eight linearly independent combi-
nations (which can be represented by one for each Gell–Mann matrix, with the singlet corresponding
to the identity matrix) transform into each other under SU(3). Thus, although we sometimes talk about
colour-singlet states as being made up, for example, of ‘red–antired’, that is not quite precise language.
The actual state

∣∣RR̄
〉

is not a pure colour singlet. Although it does have a non-zero projection onto the
singlet wave function above, it also has non-zero projections onto the two members of the octet that cor-
respond to the diagonal Gell–Mann matrices. Intuitively, one can also easily realize this by noting that an
SU(3) rotation of

∣∣RR̄
〉

would in general turn it into a different state, say
∣∣BB̄

〉
, whereas a true colour

singlet would be invariant. Finally, we can also realize from Eq. (29) that a random (colour-uncorrelated)
quark–antiquark pair has a 1/N2 = 1/9 chance to be in an overall colour-singlet state; otherwise it is in
an octet.

Similarly, there are also nine possible quark–quark (or antiquark–antiquark) combinations, six of
which are symmetric under interchange of the two quarks and three of which are antisymmetric:

6 =




|RR〉
|GG〉
|BB〉

1√
2

(|RG〉+ |GR〉)
1√
2

(|GB〉+ |BG〉)
1√
2

(|BR〉+ |RB〉)



, 3̄ =




1√
2

(|RG〉 − |GR〉)
1√
2

(|GB〉 − |BG〉)
1√
2

(|BR〉 − |RB〉)


 . (30)

The members of the sextet transform into (linear combinations of) each other under SU(3) transforma-
tions, and similarly for the members of the antitriplet, and hence neither of these can be reduced further.
The breakdown into irreducible SU(3) multiplets is, therefore,

3⊗ 3 = 6⊕ 3. (31)
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interac2on	  

p2 p4

Fig. 7: Left: Rutherford scattering of quarks in QCD, exemplifying the type of process that dominates the short-
distance interaction cross section at hadron colliders. Right: an example of what such a reaction looks like in a
detector, in this case the ATLAS experiment.

Thus, an uncorrelated pair of quarks has a 1/3 chance to add to an overall anti-triplet state (corresponding
to coherent superpositions like ‘red + green = antiblue’11); otherwise it is in an overall sextet state.

Note that the emphasis on the quark–(anti)quark pair being uncorrelated is important; production
processes that correlate the produced partons, like Z → qq̄ or g → qq̄, will project out specific compo-
nents (here the singlet and octet, respectively). Note also that, if the quark and (anti)quark are on opposite
sides of the universe (i.e., living in two different hadrons), the QCD dynamics will not care what overall
colour state they are in, so for the formation of multi-partonic states in QCD, obviously the spatial part
of the wave functions (causality at the very least) will also play a role. Here, we are considering only the
colour part of the wave functions. Some additional examples are

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1, (32)

3⊗ 8 = 15⊕ 6⊕ 3, (33)

3⊗ 6 = 10⊕ 8, (34)

3⊗ 3⊗ 3 = (6⊕ 3)⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (35)

Physically, the ‘27’ in the first line corresponds to a completely incoherent addition of the colour charges
of two gluons; the decuplets are slightly more coherent (with a lower total colour charge), the octets
yet more, and the singlet corresponds to the combination of two gluons that have precisely equal and
opposite colour charges, so that their total charge is zero. Further extensions and generalizations of these
combination rules can be obtained, for example, using the method of the Young tableaux [29, 30].

2 Hard processes
Our main tool for solving QCD at high energy scales, Q� ΛQCD, is perturbative quantum field theory,
the starting point for which is matrix elements (MEs) which can be calculated systematically at fixed
orders in the strong coupling αs. At least at the lowest order (LO), the procedure is standard textbook
material [1] and it has also by now been highly automated, by the advent of tools like MADGRAPH [31],
CALCHEP [32] / COMPHEP [33], and several others [34–40]. Here, we require only that the reader
has a basic familiarity with the methods involved from graduate-level particle physics courses based,
for example, on Refs. [1, 3]. Our main concerns are the uses to which these calculations are put, their
limitations and ways to improve on the results obtained with them.

11In the context of hadronization models, this coherent superposition of two quarks in an overall antitriplet state is sometimes
called a ‘diquark’ (at low mqq) or a ‘string junction’ (at high mqq), see Section 5.1; it corresponds to the antisymmetric
‘red + green = antiblue’ combination needed to create a baryon wavefunction.
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Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x,Q
2) = number density of partons i
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Linguistics (example):

F2(x,Q
2) =

∑

i

e2i xfi(x,Q
2)

structure function parton distributions

Fig. 8: Illustration of partonic fluctuations inside a proton beam (from Ref. [41])

For illustration, take one of the most commonly occurring processes in hadron collisions: Ruther-
ford scattering of two quarks via a t-channel gluon exchange—Fig. 7—which at leading order has the
differential cross section

qq′ → qq′ :
dσ

dt̂
=

π

ŝ2

4

9
α2

s

ŝ2 + û2

t̂2
, (36)

with the 2→ 2 Mandelstam variables (‘hatted’ to emphasize that they refer to a partonic 2→ 2 scattering
rather than the full pp→ jets process)

ŝ = (p1 + p2)2 , (37)

t̂ = (p3 − p1)2 = −ŝ(1− cos θ̂)

2
, (38)

û = (p4 − p1)2 = −ŝ(1 + cos θ̂)

2
. (39)

Reality, however, is more complicated; the picture on the right-hand pane of Fig. 7 shows a real
dijet event, as recorded by the ATLAS experiment. The complications to be addressed when going from
left to right in Fig. 7 are: (1) additional jets, a.k.a. real-emission corrections, which can significantly
change the topology of the final state, potentially shifting jets in or out of an experimentally defined
acceptance region; (2) loop factors, a.k.a. virtual corrections, change the number of available quantum
paths through phase space, and hence modify the normalization of the cross section (total and differen-
tial); and (3) additional corrections are generated by confinement and by the so-called underlying event.
These corrections must be taken into account to complete our understanding of QCD and connect the
short-distance physics with macroscopic experiments. Apart from the perturbative expansion itself, the
most powerful tool we have to organize this vast calculation, is factorization.

2.1 Factorization
In high-energy scattering problems involving hadrons in the initial state, we immediately face the compli-
cation that hadrons are composite, with a time-dependent structure illustrated in Fig. 8; there are partons
within clouds of further partons, constantly being emitted and absorbed. Thus, before we can use pertur-
batively calculated partonic-scattering MEs, we must first address the partonic structure of the colliding
hadron(s).

For the hadron to remain intact, the fluctuations inside it must involve momentum transfers smaller
than the confinement scale. Indeed, high-virtuality fluctuations are suppressed by powers of

αs Λ2

|k|2 , (40)
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with Λ the confinement scale (∼ 200 MeV, see Section 1.4) and |k| the virtuality of the fluctuation. Thus,
most fluctuations occur over timescales of ∼ 1/Λ.

A hard perturbative probe, on the other hand, such as the exchanged photon in DIS (Fig. 3),
interacts over a much shorter timescale 1/Q� 1/Λ, during which the partonic fluctuations in the struck
hadron appear almost frozen. The hard probe effectively takes an instantaneous snapshot of the hadron
structure, at a characteristic resolution given by ∼ 1/Q.

This is formalized by the factorization theorem [42] (see also the TASI lectures by George Ster-
man [43]), which expresses the independence of long-wavelength (soft) structure on the nature of the
hard (short-distance) process. Originally formulated for DIS, factorization allows us to write the cross
section for lepton–hadron scattering as a convolution of a non-perturbative but universal (i.e., process-
independent) parton density function (PDF) and a perturbatively calculable partonic-scattering cross sec-
tion. Denoting the fraction of the hadron momentum carried by parton i by xi,

~pi = xi ~ph, (41)

we may write the lepton–hadron cross section in factorized form (see, e.g., Refs. [3, 44]),

σ`h =
∑

i

∫ 1

0
dxi

∫
dΦf fi/h(xi, µ

2
F )

dσ̂`i→f (xi,Φf , µ
2
F )

dxi dΦf

, (42)

with i an index running over all possible parton types12 in the incoming hadron and f enumerating all
possible (partonic) final states, with Lorentz-invariant phase space, Φf .

The PDFs, fi/h, parameterize the distribution of partons inside the target hadron. They are not a
priori calculable and must be constrained by fits to data. This is discussed in Section 2.2.

The partonic cross section, dσ̂, knows nothing of the target hadron apart from the fact that it
contained the struck parton. It is calculable within perturbation theory, as will be discussed in Section 2.3.

The dividing line between the two is drawn at an arbitrary (‘user-defined’) scale, µF , called the
factorization scale. There is some arbitrariness involved in choosing a value for µF . Some heuristic
arguments to guide in the choice of factorization scale are the following. On the long-distance side,
the PDFs include a (re)summation of fluctuations inside fluctuations up to virtualities of order µF . It
would, therefore, not make much sense to take µF significantly larger than the scales characterizing
resolved particles on the short-distance side of the calculation (i.e., the particles appearing explicitly in
Φf ); otherwise the PDFs would be including sums over fluctuations that happen on timescales shorter
than those probed by the physical process. Similarly, µF should also not be taken much lower than the
scale(s) appearing in the hard process. For MEs characterized by a single well-defined scale, such as
the Q2 scale in DIS or the invariant-mass scale ŝ in Drell–Yan production (qq̄ → Z/γ∗ → `+`−), such
arguments essentially fix the preferred scale choice to µF = Q or µF =

√
ŝ, respectively, which may

then be varied by a factor of two (or larger) around the nominal value in order to estimate uncertainties.
For multi-scale problems, however, such as pp → Z/W + n jets, there are several a priori equally good
choices available, from the lowest to the highest QCD scales that can be constructed from the final-
state momenta, usually with several dissenting groups of theorists arguing over which particular choice
is best. Suggesting that one might simply measure the scale would not really be an improvement, as
the factorization scale is fundamentally unphysical and therefore unobservable (similarly to gauge or
convention choices). One plausible strategy is to look at higher-order (NLO or NNLO) calculations, in
which correction terms appear that cancel the dependence on the scale choice, stabilizing the final result.
From such comparisons, a ‘most stable’ initial scale choice can, in principle, be determined, which then
furnishes a reasonable starting point, but we emphasize that the question is intrinsically ambiguous, and

12Typically, only quarks and gluons are included in this sum, but also photons and even leptons can, in principle, be included.
Similarly, PDFs are normally used to describe hadrons, but can also be defined, for example, to describe the cloud of virtual
photons (and fermion pairs) surrounding an electron.
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no golden recipe is likely to magically give all the right answers. The best we can do is to vary the
value of µF not only by an overall factor, but also by exploring different possible forms for its functional
dependence on the momenta appearing in Φf . A complementary useful discussion of the pros and cons
of different factorization scale choices can be found in the TASI lectures by Tilman Plehn [45].

Secondly, and more technically, at NLO and beyond one also has to settle on a factorization scheme
in which to do the calculations. For all practical purposes, students focusing on LHC physics are only
likely to encounter one such scheme, the modified minimal-subtraction (MS) scheme already mentioned
in the discussion of the definition of the strong coupling in Section 1.4. At the level of these lectures, we
shall therefore not elaborate further on this choice here.

We note that factorization can also be applied multiple times, to break up a complicated calculation
into simpler pieces that can be treated as approximately independent. This will be very useful when
dealing with successive emissions in a parton shower, Section 3.2, or when factoring off decays of long-
lived particles from a hard production process, Section 3.4.

We round off the discussion of factorization by mentioning a few caveats the reader should be
aware of. (See Ref. [43] for a more technical treatment.)

Firstly, the proof only applies to the first term in an operator product expansion in ‘twist’ =
mass dimension− spin. Since operators with higher mass dimensions are suppressed by the hard scale
to some power, this leading twist approximation becomes exact in the limit Q→∞, while at finite Q it
neglects corrections of order

Higher Twist :
[ln(Q2/Λ2)]m<2n

Q2n
(n = 2 for DIS). (43)

In Section 5, we shall discuss some corrections that go beyond this approximation, in the context of
multiple parton–parton interactions.

Secondly, the proof only really applies to inclusive cross sections in DIS [42] and in Drell–
Yan [46]. For all other hadron-initiated processes, factorization is an ansatz. For a general hadron–hadron
process, we write the assumed factorizable cross section as

dσh1h2 =
∑

i,j

∫ 1

0
dxi

∫ 1

0
dxj

∑

f

∫
dΦf fi/h1(xi, µ

2
F ) fj/h2(xj , µ

2
F )

dσ̂ij→f
dxi dxj dΦf

. (44)

Note that, if dσ̂ is divergent (as, e.g., Rutherford scattering is) then the integral over dΦf must be
regulated, for example, by imposing some explicit minimal transverse-momentum cut and/or other phase-
space restrictions.

2.2 Parton densities
The PDF, fi/h(x,µ

2
F ), represents the effective density of partons of type/flavour i, as a function of the

momentum fraction13 xi, when a hadron of type h is probed at the factorization scale µF . The PDFs
are non-perturbative functions which are not a priori calculable, but a perturbative differential equation
governing their evolution with µF can be obtained by requiring that physical-scattering cross sections,
such as the one for DIS in Eq. (42), be independent of µF to the calculated orders [47]. The resulting
renormalization group equation (RGE) is called the DGLAP14 equation and can be used to ‘run’ the
PDFs from one perturbative resolution scale to another (its evolution kernels are the same as those used
in parton showers, to which we return in Section 3.2).

This means that we only need to determine the form of the PDF as a function of x in a single
(arbitrary) scale, µ0. We can then get its form at any other scale µF by simple RGE evolution. In the

13Recall: the x fraction is defined in Eq. (41).
14DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi [47–49].

16

P. SKANDS

78



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10
-4

10
-3

10
-2

10
-1

x

xf
(x
,Q
2)

0

1

2

3

4

5

6

7

8

10
-4

10
-3

10
-2

10
-1

x

xf
(x
,Q
2)

Fig. 9: Illustration of the change of the u (black), ū (red, dashed), c (green, dotted), and g (blue, dot-dashed)
distributions, from Q = µF = 2 GeV (left) to Q = µF = 100 GeV (right). Note that a factor 0.1 has been applied
to the gluon distribution. Plots made using the HEPDATA online tool [55].

context of PDF fits (constraining the form of the PDF functions by fitting cross sections to experimental
data, for example, from DIS [50, 51], Drell–Yan [52, 53], and pp → jets [54]), the reference scale µ0 is
usually taken to be relatively low, of order one or a few GeV.

The behaviour of the PDFs as we evolve µF from a low scale, 2 GeV, to a high one, 100 GeV, is
illustrated in Fig. 9, for the MSTW15 2008 LO16 PDF set [56]. At lowQ = µF = 2 GeV (left), the proton
structure is dominated by a few hard quarks (a ‘valence bump’ is clearly visible around x ∼ 0.2), while at
higher scales Q = 100 GeV (right) we predominantly resolve fluctuations within fluctuations, yielding
increasingly large gluon- and sea-quark distributions with rather small x values, while the valence quarks
play a progressively smaller role.

We note that different collaborations, like CTEQ, MSTW, NNPDF, etc., use different ansätze for
the form of f(x, µ2

0). They may also include different data in the fits, and/or treat or weight the data
differently. Thus, results from different groups may not always be mutually compatible. An example
is given in Fig. 10, which shows the difference between the CTEQ6L1 gluon PDF [57] (red dashed)
and the MSTW 2008 LO PDF [56], normalized to MSTW (which would thus be a flat line at zero), at
µF = 10 GeV. The y-axis shows the relative difference between the sets, in percent. Also shown are the
90% CL contours computed from the uncertainty variations included in the MSTW 2008 LO set (black).
Using only the MSTW uncertainty band, one would arrive at an estimated∼5% uncertainty over most of
the x range, while including the CTEQ6L1 set would increase that to∼10%. At NLO, this discrepancy is
reduced, but not removed. A significant effort is currently being undertaken within the PDF community
to agree on common, and more comprehensive, ways of defining PDF uncertainty bands [54, 58]. This
is complicated due to the different ways of defining f(x, µ2

0) and due to the experimental data sets not
always being fully compatible with one another. For the time being, it is recommended to try at least sets
from two different groups, for a comprehensive uncertainty estimate.

Occasionally, the words structure functions and parton densities are used interchangeably. How-
ever, there is an important distinction between the two, which we find often in (quantum) physics: the

15MSTW: Martin–Stirling–Thorne–Watt.
16The ‘LO’ means that the fit was performed using LO MEs in the cross section formulae.
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Fig. 10: Illustration of the difference between the MSTW 2008 and CTEQ6 LO gluon PDFs at µF = 10 GeV.
All curves are normalized to the central MSTW 2008 prediction. The black solid lines show the 90% CL MSTW
variations, while the dashed red line shows the CTEQ6L1 distribution.
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Fig. 11: Illustration of the change between PDF fits using LO and NLO MEs: the g distribution at LO (black) and
NLO (red, dashed), and the u distribution at LO (green, dotted) and NLO (blue, dot-dashed), for the MSTW 2008
PDF sets [56], at Q = µF = 10 GeV. Plots made using the HEPDATA online tool [55].

former is a physical observable used to parameterize the DIS cross sections (see, e.g., Ref. [3]), while
the latter is a ‘fundamental’ quantity extracted from it. In particular, since the parton densities are not,
themselves, physically observable, they can only be defined within a specific factorization scheme, order
by order in perturbation theory. The only exception is at leading order, at which they have the simple
physical interpretation of parton-number densities. When going to higher orders, we tend to keep the
simple intuitive picture from LO in mind, but one should be aware that the fundamental relationship
between PDFs and measured quantities is now more complicated (due to the interplay between the PDFs
and the real and virtual corrections to the LO cross section), and that the parton densities no longer have
a clear probabilistic interpretation starting from NLO.

The reader should also be aware that there is some ambiguity whether NLO PDFs should be
used for LO calculations. In principle, the higher-order PDFs are better constrained and the difference
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between, for example, an NLO and an LO set should formally be beyond LO precision, so that one might
be tempted to simply use the highest-order available PDFs for any calculation. However, higher-order
terms can sometimes be absorbed, at least partially, into effective lower-order coefficients. In the context
of PDFs, the fit parameters of lower-order PDFs will attempt to compensate for missing higher-order
contributions in the matrix elements. To the extent those higher-order contributions are universal, this
is both desirable and self-consistent. This leads to some typical qualitative differences between LO and
NLO PDFs, illustrated in Fig. 11: NLO PDFs tend to be smaller at low x and slightly larger at high x,
than LO ones. Thus, it is quite possible that using an NLO PDF in conjunction with LO MEs can give a
worse agreement with data than LO PDFs do.

Finally, another oft-raised question concerns which PDF sets to use for the parton-shower evo-
lution in Monte Carlo generators. Importantly, the equations driving the initial-state showers in Monte
Carlo models are only sensitive to ratios of PDFs [59]. Since the shower evolution typically only has
leading-logarithmic (LL) precision, it should be theoretically consistent to use any (LO or better) PDF
set to drive the evolution. However, similarly to above, there will be subleading differences between
different choices, and one is justified in worrying about the level of physical effects that could be gen-
erated. Unfortunately, there is currently no way to ensure 100% self-consistency. Since PDF fits are
not done with MC codes, but instead use analytical resummation models (see, e.g., the TASI lectures
by Sterman [43]), which are not identical to their MC counterparts, the PDF fits are essentially ‘tuned’
to a slightly different resummation than that incorporated in a given MC model. In practice, not much
is known about the size and impact of this ambiguity [60]. Known differences include: the size of
phase space (purely collinear massless PDF evolution versus the finite-transverse-momentum massive
MC phase space), the treatment of momentum conservation and recoil effects, additional higher-order
effects explicitly or implicitly included in the MC evolution, choice of renormalization scheme and scale,
and, for those MC algorithms that do not rely on collinear (DGLAP, see Ref. [3]) splitting kernels (e.g.,
the various kinds of dipole evolution algorithms, see Ref. [61]), differences in the effective factorization
scheme.

As a baseline, we recommend simply using whatever PDF set the given MC model was originally
tuned with, since this should de facto (by fitting the available data) reabsorb as much of the inconsistency
as possible. Furthermore, it should be emphasized that underlying-event and minimum-bias models
based on multi-parton interactions (see Section 5.2) usually make the explicit assumption that the PDFs
can be interpreted as physical number densities even down to very low Q and x, a property which is
generally only true for LO PDFs. It must therefore be strongly discouraged to use (N)NLO PDF sets in
this context.

2.3 Fixed-order QCD
Consider the production of an arbitrary final state, F (e.g., a Higgs boson, a tt̄ pair, etc). Schemati-
cally, we may express the (perturbative) all-orders differential cross section for an observable O, in the
following way:

dσF
dO

∣∣∣∣
ME

=
∞∑

k=0

∫
dΦF+k

︸ ︷︷ ︸
Σ legs

∣∣∣
∞∑

`=0

M(`)
F+k

︸ ︷︷ ︸
Σ loops

∣∣∣
2
δ
(
O −O(ΦF+k)

)
, (45)

where, for compactness, we have suppressed all PDF and luminosity normalization factors. M(`)
F+k is

the amplitude for producing F in association with k additional final-state partons, ‘legs’ and with `
additional loops. The sums start at k = 0 and ` = 0, corresponding to the leading order for producing
F , while higher terms represent real and virtual corrections, respectively.

The purpose of the δ function is to project out hypersurfaces of constant value of O in the full
dΦF+k phase space, with O(ΦF+k) a function that defines O evaluated on each specific momentum
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configuration, ΦF+k. (Without the δ function, the formula would give the total integrated cross section,
instead of the cross section differentially in O.)

We recover the various fixed-order truncations of perturbative QCD (pQCD) by limiting the nested
sums in Eq. (45) to include only specific values of k + `. Thus,

k = 0, ` = 0 =⇒ leading order (usually tree-level) for F production

k = n, ` = 0 =⇒ leading order for F + n jets

k + ` ≤ n, =⇒ NnLO for F (includes Nn−1LO for F + 1 jet, Nn−2LO for F +

2 jets, and so on up to LO for F + n jets) .

For k ≥ 1, we are not considering inclusive F production; instead, we are considering the process
F + k jets. If we simply integrate over all momenta, as implied by the integration over dΦF+k in
Eq. (45), we would be including configurations in which one or more of the k partons are collinear or
soft. Such configurations are IR divergent in QCD and hence must be regulated. Since we talk about
collinear and soft divergences (the origins of which will be discussed in more detail in Sections 2.4 and
3.2), cuts on angles and energies and/or cuts on combinations, like transverse momenta, can be used to
cut away the problematic regions of phase space.

Recall, however, that pQCD is approximately scale invariant. This implies that a regularization
cut on a dimensionful quantity, like energy or transverse momentum, should be formulated as a ratio of
scales, rather than as an absolute number. For example, a jet with p⊥ = 50 GeV would be considered
hard and well-separated if produced in association with an ordinary Z boson (with hard scale MZ =
91.2 GeV), while the same jet would be considered soft if produced in association with a 900 GeV Z′

boson (see Refs. [18, 19] for more explicit examples).

The essence of the point is that, if the regularization scale is taken too low, logarithmic enhance-
ments of the type

αns lnm≤2n

(
Q2
F

Q2
k

)
(46)

will generate progressively larger corrections, order by order, which will spoil any fixed-order truncation
of the perturbative series. Here, QF is the hard scale associated with the process under consideration,
while Qk is the scale associated with an additional parton, k.

A good rule of thumb is that if σk+1 ≈ σk (at whatever order you are calculating), then the
perturbative series is converging too slowly for a fixed-order truncation of it to be reliable. For fixed-
order perturbation theory to be applicable, you must place your cuts on the hard process such that σk+1 �
σk. In the discussion of parton showers in Section 3.2, we shall see how the region of applicability of
perturbation theory can be extended.

The virtual amplitudes, for ` ≥ 1, are divergent for any point in phase space. However, as encap-
sulated by the famous KLN theorem [62,63], unitarity (which essentially expresses probability conserva-
tion) puts a powerful constraint on the infrared (IR) divergences17, forcing them to cancel exactly against
those coming from the unresolved real emissions that we had to cut out above, order by order, making
the complete answer for fixed k + ` = n finite18 Nonetheless, since this cancellation happens between
contributions that formally live in different phase spaces, a main aspect of loop-level higher-order calcu-
lations is how to arrange for this cancellation in practice, either analytically or numerically, with many
different methods currently on the market. We shall discuss the idea behind subtraction approaches in
Section 2.4.

17The loop integrals also exhibit ultra-violet (UV) divergences, but these are dealt with by renormalization.
18Formally, the KLN theorem states that the sum over degenerate quantum states is finite. In the context of fixed-order pertur-

bation theory, this is exemplified by states with infinitely collinear and/or soft radiation being degenerate with the corresponding
states with loop corrections; they cannot be told apart by any physical observable.
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Fig. 12: Coefficients of the perturbative series covered by LO calculations. Left: F production at LO. Right:
F + 2 jets at LO, with the half-shaded box illustrating the restriction to the region of phase space with exactly 2
resolved jets. The total power of αs for each coefficient is n = k+`. (Photo of Max Born from nobelprize.org.)
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Fig. 13: Coefficients of the perturbative series covered by NLO calculations. Left: F production at NLO. Right:
F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the region of phase space with exactly one
resolved jet. The total power of αs for each coefficient is n = k + `.

A convenient way of illustrating the terms of the perturbative series that a given ME-based calcu-
lation includes is given in Fig. 12. In the left-hand pane, the shaded box corresponds to the lowest-order
‘Born-level’ ME squared. This coefficient is non-singular and hence can be integrated over all of phase
space, which we illustrate by letting the shaded area fill all of the relevant box. A different kind of
leading-order calculation is illustrated in the right-hand pane of Fig. 12, where the shaded box corre-
sponds to the LO ME squared for F + 2 jets. This coefficient diverges in the part of phase space where
one or both of the jets are unresolved (i.e., soft or collinear), and hence integrations can only cover the
hard part of phase space, which we reflect by only shading the upper half of the relevant box.

Figure 13 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a point
on notation: by σ(1)

0 , we intend

σ
(1)
0 =

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ], (47)

which is of order αs relative to the Born level. Compare, for example, with the expansion of Eq. (45) to
order k+` = 1. In particular, σ(1)

0 should not be confused with the integral over the one-loop ME squared
(which would be of relative order α2

s and hence forms part of the NNLO coefficient σ(2)
0 ). Returning to

Fig. 13, the unitary cancellations between real and virtual singularities imply that we can now extend the
integration of the real correction in the left-hand pane over all of phase space, while retaining a finite
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Fig. 14: Coefficients of the perturbative series covered by an NNLO calculation. The total power of αs for each
coefficient is n = k + `. Green shading represents the full perturbative coefficient at the respective k and `.

total cross section,

σNLO
0 =

∫
dΦ0 |M(0)

0 |2 +

∫
dΦ1 |M(0)

1 |2 +

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ]

= σ
(0)
0 + σ

(0)
1 + σ

(1)
0 ,

(48)

with σ(0)
0 the finite Born-level cross section, and the positive divergence caused by integrating the second

term over all of phase space is cancelled by a negative divergence coming from the integration over loop
momenta in the third term. One method for arranging the cancellation of singularities—subtraction—is
discussed in Section 2.4.

However, if our starting point for the NLO calculation is a process which already has a non-zero
number of hard jets, we must continue to impose that at least that number of jets must still be resolved
in the final-state integrations,

σNLO
1 (p⊥min) =

∫

p⊥>p⊥min

dΦ1 |M(0)
1 |2 +

∫

p⊥1>p⊥min

dΦ2 |M(0)
2 |2 +

∫

p⊥>p⊥min

dΦ1 2Re[M(1)
1 M

(0)∗
1 ]

= σ
(0)
1 (p⊥ > p⊥min) + σ

(0)
2 (p⊥1 > p⊥min) + σ

(1)
1 (p⊥ > p⊥min),

(49)

where the restriction to at least one jet having p⊥ > p⊥min has been illustrated in the right-hand pane
of Fig. 13 by shading only the upper part of the relevant boxes. In the second term in Eq. (49), the
notation p⊥1 is used to denote that the integral runs over the phase space in which at least one ‘jet’
(which may consist of one or two partons) must be resolved with respect to p⊥min. Here, therefore, an
explicit dependence on the algorithm used to define ‘a jet’ enters for the first time. This is discussed in
more detail in the 2009 ESHEP lectures by Salam [4].

To extend the integration to cover also the case of two unresolved jets, we must combine the left-
and right-hand parts of Fig. 13 and add the new coefficient

σ
(2)
0 = |M(1)

0 |2 + 2Re[M(2)
0 M

(0)∗
0 ], (50)

as illustrated by the diagram in Fig. 14.

2.4 The subtraction idea
According to the KLN theorem, the IR singularities coming from integrating over collinear and soft
real-emission configurations should cancel, order by order, by those coming from the IR divergent-loop
integrals. This implies that we should be able to rewrite, for example, the NLO cross section, Eq. (48),
as

σNLO = σBorn + Finite

{∫
dΦF+1 |M(0)

F+1|2
}

+ Finite

{∫
dΦF 2Re[M(1)

F M
(0)∗
F ]

}
,(51)
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with the second and third terms having had their common (but opposite-sign) singularities cancelled out
and some explicitly finite quantities remaining.

The first step towards this goal is to classify all IR singularities that could appear in the amplitudes.
We know that the IR limits are universal, so they can be classified using a set of process-independent
functions that only has to be worked out once and for all. A widely used such set of functions are
the Catani–Seymour (CS) dipole functions [64, 65], a method which by now has even been partially
automated [66, 67]. Here, we shall instead use a formalism based on antennae [68–70]. The distinc-
tion between the two is basically that one antenna is made up of two dipole ‘ends’, and hence the an-
tenna formalism tends to generate somewhat fewer terms. At NLO, however, there is no fundamental
incompatibility—the antennae we use here can always be partitioned into two dipole ends, if so desired.
(Note: only the antenna method has been successfully generalized to NNLO [71, 72]. Other NNLO
techniques, not covered here, are sector decomposition, see Refs. [73,74], and the generic formalism for
hadroproduction of colourless states presented in Ref. [75].)

At NLO, the idea with subtraction is thus to rewrite the NLO cross section by adding and subtract-
ing a simple function, dσS , that encapsulates all the IR limits,

σNLO = σBorn +

∫
dΦF+1

(
|M(0)

F+1|2 − dσNLO
S

)

︸ ︷︷ ︸
finite by universality

+

∫
dΦF 2Re[M(1)

F M
(0)∗
F ] +

∫
dΦF+1 dσNLO

S

︸ ︷︷ ︸
finite by KLN

. (52)

The task now is to construct a suitable form for dσS . A main requirement is that it should be sufficiently
simple that the integral in the last term can be done analytically, in dimensional regularization, so that
the IR poles it generates can be cancelled against those from the loop term.

To build a set of universal terms that parameterize the IR singularities of any amplitude, we start
from the observation that gauge theory amplitudes factorize in the soft limit, as follows:

|MF+1(. . . , i, j, k, . . .)|2 jg→0→ g2
s NC

(
2sik
sijsjk

− 2m2
i

s2
ij

− 2m2
k

s2
jk

)
|MF (. . . , i, k, . . .)|2 , (53)

where parton j is a soft gluon, partons i, j, and k form a chain of colour-space index contractions (we
say they are colour-connected), gs is the strong coupling, and the terms in parentheses are called the
soft-eikonal factor. We here show it including mass corrections, which appear if i and k have non-zero
rest masses, with the invariants sab then defined as

sab ≡ 2pa · pb = (pa + pb)
2 −m2

a −m2
b . (54)

The colour factor, NC, is valid for the leading-colour contribution, regardless of whether the i and k
partons are quarks or gluons. At subleading colour, an additional soft-eikonal factor identical to the one
above but with a colour factor proportional to −1/NC arises for each qq̄ pair combination. This, for
example, modifies the effective colour factor for qq̄ → qgq̄ from NC to NC(1 − 1/NC) = 2CF , in
agreement with the colour factor for quarks being CF rather than CA.

Similarly, amplitudes also factorize in the collinear limit (partons i and j are parallel, so sij → 0),
in which the eikonal factor above is replaced by the famous DGLAP splitting kernels [47–49], which
were already mentioned in Section 2.2, in the context of PDF evolution. They are also the basis of
conventional parton-shower models, to which we return in Section 3.2.

Essentially, what antenna functions, CS dipoles, and the like, all do, is to combine the soft (eikonal)
and collinear (Altarelli–Parisi) limits into one universal set of functions that achieve the correct limiting
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behaviour for both soft and collinear radiation. To give an explicit example, the antenna function for
gluon emission from a colour-connected qq̄ pair can be derived from the MEs squared for the process
Z0 → qq̄→ qgq̄ [76],

∣∣M(Z0 → qigj q̄k)
∣∣2

|M(Z0 → qI q̄K)|2
= g2

s 2CF




2sik
sijsjk︸ ︷︷ ︸
eikonal

+
1

sIK

(
sjk
sij

+
sij
sjk

)

︸ ︷︷ ︸
collinear


 , (55)

where we have neglected mass corrections (see Refs. [77,78] for massive expressions) and we recognize
the universal eikonal soft factor from Eq. (53) in the first term. The two additional terms are less singular,
and are required to obtain the correct collinear (Altarelli–Parisi) limits as sij → 0 or sjk → 0.

However, since the singularity structure is universal, we could equally well have used the process
H0 → qq̄→ qgq̄ to derive the antenna function. Our antenna function would then have come out as [78],

∣∣M(H0 → qigj q̄k)
∣∣2

|M(H0 → qI q̄K)|2
= g2

s 2CF




2sik
sijsjk︸ ︷︷ ︸
eikonal

+
1

sIK

(
sjk
sij

+
sij
sjk

)

︸ ︷︷ ︸
collinear

+
2

sIK︸︷︷︸
finite


 , (56)

where the additional term, 2/sIK , is non-singular (‘finite’) over all of phase space. Thus, we here see an
explicit example that the singularities are process independent while the non-singular terms are process
dependent. Since we add and subtract the same term in Eq. (52), the final answer does not depend on
the choice of finite terms. We say that they correspond to different subtraction schemes. One standard
antenna subtraction scheme, which uses the antenna function defined in Eq. (55) rather than the one in
Eq. (56), is the Gehrmann–Gehrmann–de Ridder–Glover (GGG) one, given in Ref. [70].

If there is more than one colour antenna in the Born-level process, the form of dσS is obtained as
a sum over terms, each of which captures one specific soft limit and either all or ‘half’ of a collinear one,
depending on the specific scheme and the type of parton,

dσS =
∑

j

AIK→ijk |MF (. . . , I,K, . . .)|2 , (57)

with the sum running over all singular 3 → 2 ‘clusterings’ of the (F + 1)-parton state to F partons.
An analysis of the different ways of partitioning the collinear singularity of gluons among neighbouring
antenna is beyond the scope of this introduction, but useful discussions can be found in Ref. [79–81].

2.5 Infrared safety
A further requirement for being able to perform calculations within pQCD is that the observable be IR
safe. Note that by ‘IR’, we here mean any limit that involves a low scale (i.e., any non-UV limit), without
regard to whether it is collinear or soft.

The property of IR safety defines a special class of observables which have minimal sensitivity to
long-distance physics, and which can be consistently computed in pQCD. An observable is IR safe if:

1. (safety against soft radiation): adding any number of infinitely soft particles should not change the
value of the observable;

2. (safety against collinear radiation): splitting an existing particle up into two co-moving particles,
with arbitrary fractions z and 1−z, respectively, of the original momentum, should not change the
value of the observable.
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If both of these conditions are satisfied, any long-distance non-perturbative corrections will be suppressed
by the ratio of the long-distance scale to the short-distance one to some (observable-dependent) power,
typically

IR-safe observables: IR corrections ∝ Q2
IR

Q2
UV

(58)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV).

Due to this power suppression, IR-safe observables are not so sensitive to our lack of ability to
solve the strongly coupled IR physics, unless of course we go to processes for which the relevant hard
scale, QUV, is small (such as minimum-bias, soft jets, or small-scale jet substructure). Even when a high
scale is present, however, as in resonance decays, jet fragmentation or underlying-event-type studies,
IR safety only guarantees us that IR corrections are small, not that they are zero. Thus, ultimately, we
run into a precision barrier even for IR-safe observables, which only a reliable understanding of the
long-distance physics itself can address.

To constrain models of long-distance physics, one needs IR sensitive observables. Hence it is not
always the case that IR-safe observables are preferable—the purpose decides the tool. Instead of the
suppressed corrections above, the perturbative prediction for such observables contains logarithms of the
type already encountered in Eq. (46),

IR sensitive observables: IR corrections ∝ αns logm≤2n

(
Q2

UV

Q2
IR

)
, (59)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities (= number of particles); in the absence of non-trivial IR effects, the number of
partons tends logarithmically to infinity as the IR cutoff is lowered. Similarly, the distinction between
a charged and a neutral pion only occurs in the very last phase of hadronization, and hence observables
that only include charged tracks, for instance, are always IR sensitive19.

Two important categories of IR-safe observables that are widely used are event shapes and jet al-
gorithms. Jet algorithms are perhaps nowhere as pedagogically described as in the 2009 ESHEP lectures
by Salam [4, Chapter 5]. Event shapes in the context of hadron colliders have not yet been as widely
explored, but the basic phenomenology is introduced also by Salam and collaborators in Ref. [82], with
first measurements reported by CMS and ATLAS [83, 84] and a proposal to use them also for the char-
acterization of soft-QCD (‘minimum-bias’) events put forth in Ref. [85].

Let us here merely emphasize that the real reason to prefer IR-safe jet algorithms over unsafe
ones is not that they necessarily give very different or ‘better’ answers in the experiment—experiments
are IR-safe by definition, and the difference between IR-safe and unsafe algorithms may not even be
visible when running the algorithm on experimental data—but that it is only possible to compute pQCD
predictions for the IR-safe ones. Any measurement performed with an IR-unsafe algorithm can only
be compared to calculations that include a detailed hadronization model. This both limits the number
of calculations that can be compared to and also adds an a priori unknown sensitivity to the details of
the hadronization description, details which one would rather investigate and constrain separately, in the
framework of more dedicated fragmentation studies.

For LHC phenomenology, the preferred IR-safe algorithm for jet reconstruction is currently the
anti-kT one [86], with size parameter R varying between 0.4 and 0.7, although larger sizes can be moti-
vated in certain contexts, for example, to look for highly energetic jets and/or the boosted decay products
of high-mass objects [23, 87]. This algorithm generates circular-looking jets, so subtracting the energy
believed to be associated with the underlying event (UE, see Section 5.2) is particularly simple.

19This remains true in principle even if the tracks are clustered into jets, although the energy clustered in this way does
provide a lower bound on QUV in the given event, since ‘charged + neutral > charged-only’.
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For jet substructure, typically either the ‘kT’ or ‘Cambridge/Aachen’ algorithms are used, see,
for example, Ref. [23, 87]. The clustering measures used in these algorithms more closely mimic the
singularity structure of QCD bremsstrahlung and they are therefore particularly well suited to ‘unravel’ a
tree of QCD branchings [4], such as those a parton shower generates. The Cambridge/Aachen algorithm
may also be used to characterize the underlying event, see Ref. [88].

3 Monte Carlo event generators
In this section, we discuss the physics of Monte Carlo event generators and their mathematical founda-
tions, at an introductory level. We shall attempt to convey the main ideas as clearly as possible without
burying them in an avalanche of technical details. References to more detailed discussions are included
where applicable. We assume the reader is already familiar with the contents of the preceding section on
hard processes.

The task of a Monte Carlo event generator is to calculate everything that happens in a high-energy
collision, from the hard short-distance physics to the long wavelengths of hadronization and hadron
decays. Obviously, this requires some compromises to be made. General-purpose generators like HER-
WIG [39, 89], PYTHIA [90, 91], and SHERPA [92], start from low-order (LO or NLO) descriptions of the
perturbative hard physics and then attempt to include the ‘most significant’ corrections, such as higher-
order ME corrections and parton showers, resonance decays and finite-width effects, underlying event,
beam remnants, hadronization and hadron decays. Each of them had slightly different origins, which
carries through to the emphasis placed on various physics aspects today.

– PYTHIA. Successor to JETSET (begun in 1978). Originated in hadronization studies. Main feature:
the Lund string fragmentation model.

– HERWIG. Successor to EARWIG (begun in 1984). Originated in perturbative coherence studies.
Main feature: angular-ordered parton showers.

– SHERPA. Begun in 2000. Originated in studies of the matching of hard-emission MEs with parton
showers. Main feature: CKKW matching.

There is also a large number of more specialized generators, mainly for hard processes within and beyond
the Standard Model (SM), a few that offer alternative shower models, and ones specializing in soft-
inclusive and/or heavy-ion physics.

An important aspect of contemporary generators is the ability to combine specialized ones with
general-purpose ones, via interfaces. The most common interface between partonic hard-process and
parton-shower generators is the Les Houches event file standard, defined in Ref. [93, 94] and ‘spoken’
by most modern generator tools. For interfaces to experimental analysis packages (like RIVET [95]) and
detector simulations (like GEANT [96]), typically the HepMC standard is used [97].

Hard processes were the topic of Section 2. In this section, we shall focus mainly on parton show-
ers, with some brief comments on resonance decays at the end. Section 4 then concerns the matching of
MEs and parton showers. Finally, models of hadronization and the UE are the topic of Section 5.

Several of the discussions below rely on material from the section on Monte Carlo event gener-
ators in the PDG review of particle physics [24] and on the more comprehensive review by the MCnet
collaboration in Ref. [5]. The latter also contains brief descriptions of the physics implementations of
each of the main general-purpose event generators on the market, together with a guide on how to use
(and not use) them in various connections, and a collection of comparisons to important experimental
distributions. We highly recommend readers to obtain a copy of that review, as it is the most compre-
hensive and up-to-date review of event generators currently available. Another useful and pedagogical
review on event generators is contained in the 2006 ESHEP lectures by Torbjörn Sjöstrand [41], with a
more recent update in Ref. [98].
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Table 2: Relative uncertainty after n evaluations, in one and d dimensions, for two traditional numerical integration
methods and stochastic Monte Carlo. The last column shows the number of function evaluations that are required
per point, in d dimensions.

Relative uncertainty with n points 1-Dim d-Dim neval/point

Trapezoidal rule 1/n2 1/n2/d 2d

Simpson’s rule 1/n4 1/n4/d 3d

Monte Carlo 1/
√
n 1/

√
n 1

3.1 The Monte Carlo method
A ubiquitous problem in fundamental physics is the following: given a source located some distance
from a detector, predict the number of counts that should be observed within the solid angle spanned by
the detector (or within a bin of its phase-space acceptance), as a function of the properties of the source,
the intervening medium and the efficiency of the detector. Essentially, the task is to compute integrals of
the form

NCount(∆Ω) =

∫

∆Ω
dΩ

dσ

dΩ
, (60)

with dσ a differential cross section for the process of interest.

In particle physics, phase space has three dimensions per final-state particle (minus four for overall
four-momentum-conservation). Thus, for problems with more than a few outgoing particles, the dimen-
sionality of phase space increases rapidly. At LEP, for instance, the total multiplicity of neutral + charged
hadrons (before weak decays) was typically ∼ 30 particles, for about 86 dimensions.

The standard one-dimensional numerical-integration methods give very slow convergence rates
for higher-dimensional problems. For illustration, a table of convergence rates in one and d dimensions
is given in Table 2, comparing the trapezoidal (2-point) rule and Simpson’s (3-point) rule to random-
number-based Monte Carlo. In one dimension, the 1/n2 convergence rate of the trapezoidal rule is much
faster than the stochastic 1/

√
n of random-number Monte Carlo, and Simpson’s rule converges even

faster. However, as we go to d dimensions, the convergence rate of the n-point rules all degrade with
d (while the number of function evaluations required for each ‘point’ simultaneously increases). The
MC convergence rate, on the other hand, remains the simple stochastic 1/

√
n, independent of d, and

each point still only requires one function evaluation. These are some of the main reasons that MC is the
preferred numerical integration technique for high-dimensional problems. In addition, the random phase-
space vectors it generates can be re-used in many ways, for instance as an input to iterative solutions, to
compute many different observables simultaneously and/or to hand ‘events’ to propagation and detector-
simulation codes.

Therefore, virtually all numerical cross-section calculations are based on Monte Carlo techniques
in one form or another, the simplest being the RAMBO algorithm [99] which can be expressed in about
half a page of code and generates a flat scan over n-body phase space20.

However, due to the IR singularities in pQCD, and due to the presence of short-lived resonances,
the functions to be integrated, |MF+k|2, can be highly non-uniform, especially for large k. This implies
that we will have to be clever in the way we sample phase space if we want the integration to converge in
any reasonable amount of time—simple algorithms like RAMBO quickly become inefficient for k greater
than a few. To address this bottleneck, the simplest step up from RAMBO is to introduce generic (i.e.,
automated) importance-sampling methods, such as those offered by the VEGAS algorithm [100, 101].
This is still the dominant basic technique, although most modern codes do employ several additional
refinements, such as several different copies of VEGAS running in parallel (multi-channel integration),

20Strictly speaking, RAMBO is only truly uniform for massless particles. Its massive variant makes up for phase-space biases
by returning weighted momentum configurations.
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“This risk, that convergence is only given with a
certain probability, is inherent in Monte Carlo
calculations and is the reason why this tech-
nique was named after the world’s most famous
gambling casino. Indeed, the name is doubly
appropriate because the style of gambling in the
Monte Carlo casino, not to be confused with the
noisy and tasteless gambling houses of Las Ve-
gas and Reno, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”,
Rept. Prog. Phys. 43 (1980) 1145

Fig. 15: Left: The casino in Monaco. Right: extract from Ref. [7] concerning the nature of Monte Carlo techniques.

to further optimize the sampling. Alternatively, a few algorithms incorporate the singularity structure of
QCD explicitly in their phase-space sampling, either by directly generating momenta distributed accord-
ing to the leading-order QCD singularities, in a sort of ‘QCD-preweighted’ analogue of RAMBO, called
SARGE [102], or by using all-orders Markovian parton showers to generate them (VINCIA [80, 81]).

The price of using random numbers is that we must generalize our notion of convergence. In
calculus, we say that a sequence {A} converges toB if an n exists for which the difference |Ai>n−B| <
ε for any ε > 0. In random-number-based techniques, we cannot completely rule out the possibility of
very pathological sequences of ‘dice rolls’ leading to large deviations from the true goal, and hence we
are restricted to say that {A} converges to B if an n exists for which the probability for |Ai>n−B| < ε,
for any ε > 0, is greater than P , for any P ∈ [0, 1] [7]. This risk, that convergence is only given with
a certain probability, is the reason why Monte Carlo techniques were named after the famous casino in
Monaco, illustrated in Fig. 15.

3.2 Theoretical basis of parton showers
In Section 2, we noted two conditions that had to be valid for fixed-order truncations of the perturbative
series to be valid. Firstly, the strong coupling αs must be small for perturbation theory to be valid at
all. This restricts us to the region in which all scales Qi � ΛQCD. We shall maintain this restriction in
this section, that, we are still considering pQCD. Secondly, however, in order to be allowed to truncate
the perturbative series, we had to require σk+1 � σk, that is, the corrections at successive orders must
become successively smaller, which—due to the enhancements from soft/collinear singular (conformal)
dynamics—effectively restricted us to consider only the phase-space region in which all jets are ‘hard
and well-separated’, equivalent to requiring all Qi/Qj ≈ 1. In this section, we shall see how to lift this
restriction, extending the applicability of perturbation theory into regions that include scale hierarchies,
Qi � Qj � ΛQCD, such as those which occur for soft jets, jet substructure, etc.

In fact, the simultaneous restriction to all resolved scales being larger than ΛQCD and no large
hierarchies is extremely severe, if taken at face value. Since we collide and observe hadrons (→ low
scales) while simultaneously wishing to study short-distance physics processes (→ high scales), it would
appear trivial to conclude that fixed-order pQCD is not applicable to collider physics at all. So why do
we still use it?

The answer lies in the fact that we actually never truly perform a fixed-order calculation in QCD.
Let us repeat the factorized formula for the cross section, Eq. (44), now inserting also a function, D, to

28

P. SKANDS

90



I

K

k

i

j
I

K

k

i

j

Fig. 16: Diagrams (squared) giving rise to collinear (left) and soft (right) singularities

represent the fragmentation of the final-state partons into observable hadrons,

dσ

dO =
∑

i,j

∫ 1

0
dxi dxj

∑

f

∫
dΦf fi/h1(xi, µ

2
F )fj/h2(xj , µ

2
F )

dσ̂ij→f
dÔ

Df (Ô → O, µ2
F ) , (61)

with Ô denoting the observable evaluated on the partonic final state, and O the observable evaluated
on the hadronic final state, after fragmentation. Although the partonic cross section, dσ̂ij→f , does
represent a fixed-order calculation, the parton densities, fi/h1 and fj/h2 , include so-called resummations
of perturbative corrections to all orders from the initial scale of the order of the mass of the proton,
up to the factorization scale, µF (see Section 2.2 and/or the TASI lectures by Sterman [43]). Note that
the oft-stated mantra that the PDFs are purely non-perturbative functions is therefore misleading. True,
they are defined as essentially non-perturbative functions at some very low scale, µ0 ∼ a few GeV,
but, if µF is taken large, they necessarily incorporate a significant amount of perturbative physics as
well. On the ‘fixed-order side’, all we have left to ensure in dσij→f is then that there are no large
hierarchies remaining between µF and the QCD scales appearing in Φf . Likewise, in the final state, the
fragmentation functions, Df , include infinite-order resummations of perturbative corrections all the way
from µF down to some low scale, with similar caveats concerning mantras about their non-perturbative
nature as for the PDFs.

3.2.1 Step one: Infinite legs
The infinite-order resummations that are included in objects such as the PDFs and fragmentation func-
tions in Eq. (61) (and in their parton-shower equivalents) rely on some very simple and powerful proper-
ties of gauge-field theories that were already touched on in Section 2. In particular, we saw in Section 2.4
that we can represent all the IR limits of any NLO amplitude with a set of simple universal functions,
based solely on knowing which partons are colour-connected (i.e., have colour-space index contractions)
with one another.

The diagrams in Fig. 16 show the basic origin of the universal IR singularities of gauge-theory
amplitudes. On the left is shown a diagram (squared) in which an emission with small sij interferes with
itself. In the collinear limit, sij → 0, the propagator of the parent parton, I , goes on shell; the singularity
of the associated propagator factor is the origin of the 1/sij collinear singularities. On the right is shown
the interference between a diagram with emission from parton I and a diagram with emission from parton
K. The resulting term has propagator singularities when both partons I and K go on shell, which can
happen simultaneously if parton j is soft. This generates the 2sik/(sijsjk) soft singularity, also called
the soft-eikonal factor or the dipole factor.

We now understand the fundamental origin of the IR singularities, why they are universal, and
why amplitudes factorize in the soft and collinear limits—the singularities are simply generated by inter-
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Fig. 17: Illustration of the branching phase space for qq̄→ qgq̄, with the original dipole-antenna oriented horizon-
tally, the two parents sharing the transverse component of recoil, and the azimuthal angle φ (representing rotations
of the emitted parton around the dipole axis) chosen such that the gluon is radiated upwards. From Ref. [80].

mediate parton propagators going on shell, which is independent of the nature of the hard process, and
hence can be factorized from it.

Thus, for each pair of (massless) colour-connected partons I and K in F , the squared amplitude
for F + 1 gluon, |MF+1|2, will include a factor

|MF+1|2 = g2
s NC

(
2sik
sijsjk

+ collinear terms
)

︸ ︷︷ ︸
antenna function

|MF |2 , (62)

where g2
s = 4παs is the strong coupling, i and k represent partons I and K after the branching (i.e., they

include possible recoil effects) and sij is the invariant between parton i and the emitted parton, j.

The branching phase space of a colour dipole (i.e., a pair of partons connected by a colour-index
contraction) is illustrated in Fig. 17. Expressed in the branching invariants, sij and sjk, the phase space
has a characteristic triangular shape, imposed by the relation s = sij + sjk + sik (assuming massless
partons). Sketchings of the post-branching parton momenta have been inserted in various places in the
figure, for illustration. The soft singularity is located at the origin of the plot and the collinear regions lie
along the axes.

The collinear terms for a qq̄ → qgq̄ ‘antenna’ are unambiguous and are given in Section 2.4.
Since gluons are in the adjoint representation, they carry both a colour and an anticolour index (one
corresponding to the rows and the other to the columns of the Gell–Mann matrices), and there is therefore
some ambiguity concerning how to partition collinear radiation among the two antennae they participate
in. This is discussed in more detail in Ref. [80]. Differences are subleading, however, and for our
purposes here we shall consider gluon antenna ends as radiating just like quark ones. The difference
between quark and gluon radiation then arise mainly because gluons participate in two antennae, while
quarks only participate in one. This is related to the difference between the colour factors, CA ∼ 2CF .

The problem that plagued the fixed-order truncations in Section 2 is clearly visible in Eq. (62):
if we integrate over the entire phase space including the region sij → 0, sjk → 0, we end up with
a double pole. If we instead regulate the divergence by cutting off the integration at some minimal
perturbative cutoff scale µ2

IR, we end up with a logarithm squared of that scale. This is a typical example
of ‘large logarithms’ being generated by the presence of scale hierarchies. Also note that the precise
definition of µIR is not unique. Any scale choice that properly isolates the singularities from the rest
of phase space will do, with some typical choices being, for example, invariant-mass and/or transverse-
momentum scales.

Before we continue, it is worth noting that Eq. (62) is often rewritten in other forms to emphasize
specific aspects of it. One such rewriting is thus to reformulate the invariants sij appearing in it in terms
of energies and angles,

sij = 2EiEj (1− cos θij) . (63)

Rewritten in this way, the differentials can become partial fractions,

dsij
sij

dsjk
sjk

∝ dEj
Ej

dθij
θij

+
dEj
Ej

dθjk
θjk

. (64)
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Fig. 18: A selection of parton-shower evolution variables, represented as contours over the dipole phase space.
Note: the right-most variable corresponds to evolution of only one of the parents, the one with no collinear singu-
larity along the bottom of the plot.

This kind of rewriting enables an intuitively appealing categorization of the singularities as related to
vanishing energies and angles, explaining why they are called soft and collinear, respectively. Argu-
ments based on this rewriting have led to important insights in QCD. For instance, within the framework
of conventional parton showers, it was shown in a sequence of publications (see Refs. [103,104] and ref-
erences therein) that the destructive interference effects between two or more colour-connected partons
(coherence) can be described by using the angle of the emissions as the shower-ordering variable. One
should still keep in mind, however, that Lorentz-non-invariant formulations come with similar caveats
and warnings as do gauge-non-invariant formulations of quantum field theory: while they can be practical
to work with at intermediate stages of a calculation, one should be careful with any physical conclusions
that rely explicitly on them.

We shall therefore here restrict ourselves to a Lorentz-invariant formalism based directly on Eq. (62),
pioneered by the dipole formulation of QCD cascades [76]. The collinear limit is then replaced by a more
general single-pole limit in which a single parton–parton invariant vanishes (as, for instance, when a pair
of partons become collinear), while the soft limit is replaced by one in which two (or more) invariants
involving the same parton vanish simultaneously (as, for instance by that parton becoming soft in a frame
defined by two or more hard partons). This avoids frame-dependent ambiguities from entering into the
language, at the price of a slight reinterpretation of what is meant by collinear and soft.

In the generator landscape, angular ordering is used by the HERWIG [104] and HERWIG++ [105]
programs, and an angular veto is imposed on the virtuality-ordered evolution in PYTHIA 6 [106]. Vari-
ants of the dipole approach is used by the ARIADNE [107], SHERPA [108, 109], and VINCIA [110]
programs, while the p⊥-ordered showers in PYTHIA 6 and 8 represent a hybrid, combining collinear
splitting kernels with dipole kinematics [111]. Phase-space contours of equal value of some of these
choices are illustrated in Fig. 18. During the shower evolution, each model effectively ‘sweeps’ over
phase space in the order implied by these contours. For example, a p⊥-ordered dipole shower (left-
most plot in Fig. 18) will treat a hard-collinear branching as occurring ‘earlier’ than a soft one, while a
mass-ordered dipole shower (second plot) will tend to do the opposite. This affects the tower of virtual
corrections generated by each shower model via the so-called Sudakov factor, discussed below. Experi-
mental tests of the subleading aspects of shower models can therefore be quite important, see Ref. [112]
for a recent example.

Independently of rewritings and philosophy, the real power of Eq. (62) lies in the fact that it is
universal. Thus, for any process F , we can apply Eq. (62) in order to get an approximation for dσF+1 .
We may then, for instance, take our newly obtained expression forF+1 as our arbitrary process and crank
Eq. (62) again, to obtain an approximation for dσF+2 , and so forth. What we have here is therefore a
very simple recursion relation that can be used to generate approximations to leading-order cross sections
with arbitrary numbers of additional legs. The quality of this approximation is governed by how many
terms besides the leading one shown in Eq. (53) are included in the game. Including all possible terms,

31

QCD

93



F @ LO×LL(non-unitary)

`
(l

oo
ps

)

2 σ
(2)
0 σ

(2)
1

. . .

1 σ
(1)
0 σ

(1)
1 σ

(1)
2

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2 σ

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Fig. 19: Coefficients of the perturbative series covered by LO + LL approximations to higher-multiplicity tree-
level ME. Green (darker) shading represents the full perturbative coefficient at the respective k and `. Yellow
(lighter) shading represents an LL approximation to it. Half-shaded boxes indicate phase spaces in which we are
prohibited from integrating over the IR singular region, as discussed in Sections 2.3 and 4.

the most general form for the cross section at F +n jets, restricted to the phase-space region above some
IR-cutoff scale µIR, has the following algebraic structure,

σ
(0)
F+n = αns

(
ln2n + ln2n−1 + ln2n−2 + · · ·+ ln + F

)
(65)

where we use the notation lnλ without an argument to denote generic functions of transcendentality λ
(the logarithmic function to the power λ being a ‘typical’ example of a function with transcendentality
λ appearing in cross section expressions, but also dilogarithms and higher logarithmic functions21 of
transcendentality > 1 should be implicitly understood to belong to our notation lnλ). The last term, F ,
represents a rational function of transcendentality, 0. We shall also use the nomenclature singular and
finite for the lnλ and F terms, respectively, a terminology which reflects their respective behaviour in the
limit µIR → 0.

The simplest approximation one can build on Eq. (65), dropping all but the leading ln2n term
in the parenthesis, is thus the leading-transcendentality approximation. This approximation is better
known as the double logarithmic approximation, since it generates the correct coefficient for terms which
have two powers of logarithms for each power of αs, while terms of lower transcendentalities are not
guaranteed to have the correct coefficients. In so-called LL parton-shower algorithms, one generally
expects to reproduce the correct coefficients for the ln2n and ln2n−1 terms. In addition, several formally
subleading improvements are normally also introduced in such algorithms (such as explicit momentum
conservation, gluon polarization and other spin-correlation effects [113–115], higher-order coherence
effects [103], renormalization scale choices [116], finite-width effects [117], etc), as a means to improve
the agreement with some of the more subleading coefficients as well, if not in every phase-space point
then at least on average. Although LL showers do not magically acquire NLL (next-to-leading-log)
precision from such procedures, one, therefore, still expects a significantly better average performance
from them than from corresponding ‘strict’ LL analytical resummations. A side effect of this is that it
is often possible to ‘tune’ shower algorithms to give better-than-nominal agreement with experimental
distributions, by adjusting the parameters controlling the treatment of subleading effects. One should
remember, however, that there is a limit to how much can be accomplished in this way—at some point,
agreement with one process will only come at the price of disagreement with another, and at this point
further tuning would be meaningless.

Applying such an iterative process on a Born-level cross section, one obtains the description of
the full perturbative series illustrated in Fig. 19. The yellow (lighter) shades, used here for k ≥ 1,
indicate that the coefficient obtained is not the exact one, but rather an approximation to it that only

21Note: due to the theorems that allow us, for instance, to rewrite dilogarithms in different ways with logarithmic and lower
‘spillover’ terms, the coefficients at each λ are only well-defined up to reparameterization ambiguities involving the terms with
transcendentality greater than λ.
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Fig. 20: Coefficients of the perturbative series covered by LO + LL calculations, imposing unitarity order by order
for each n = k + `. Green (darker) shading represents the full perturbative coefficient at the respective k and `.
Yellow (lighter) shading represents an LL approximation to it.

gets its leading singularities right. However, since this is still only an approximation to infinite-order
tree-level cross sections (we have not yet included any virtual corrections), we cannot yet integrate this
approximation over all of phase space, as illustrated by the yellow boxes being only half filled in Fig. 19;
otherwise, the summed-total cross section would still be infinite. This particular approximation would
therefore still appear to be very useless indeed—on one hand, it is only guaranteed to get the singular
terms right, but on the other, it does not actually allow us to integrate over the singular region. In order
to obtain a truly all-orders calculation, the constraint of unitarity must also be explicitly imposed, which
furnishes an approximation to all-orders loop corrections as well. Let us therefore emphasize that Fig. 19
is included for pedagogical purposes only; all resummation calculations, whether analytical or parton-
shower based, include virtual corrections as well and consequently yield finite total cross sections, as
will now be described.

3.2.2 Step two: Infinite loops
Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused by
integration over unresolved radiation in the tree-level MEs must be cancelled, order by order, by equal
but opposite-sign singularities in the virtual corrections at the same order. That is, from Eq. (62), we
immediately know that the one-loop correction to dσF must contain a term,

2Re[M(0)
F M

(1)∗
F ] ⊃ −g2

s NC

∣∣∣M(0)
F

∣∣∣
2
∫

dsij dsjk
16π2sijk

(
2sik
sijsjk

+ less singular terms
)
, (66)

that cancels the divergence coming from Eq. (62) itself. Further, since this is universally true, we may
apply Eq. (66) again to get an approximation to the corrections generated by Eq. (62) at the next order
and so on. By adding such terms explicitly, order by order, we may now bootstrap our way around the
entire perturbative series, using Eq. (62) to move horizontally and Eq. (66) to move along diagonals of
constant n = k + `. Since real-virtual cancellations are now explicitly restored, we may finally extend
the integrations over all of phase space, resulting in the picture shown in Fig. 20.

The picture shown in Fig. 20, not the one in Fig. 19, corresponds to what is actually done in re-
summation calculations, both of the analytic and parton-shower types22. Physically, there is a significant
and intuitive meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary sample
of events, say dijets. At a very crude resolution scale, corresponding to a high value for Q, you find that

22In the way these calculations are formulated in practice, they in fact rely on one additional property, called exponentiation,
that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since the two different directions
furnished by Eqs. (62) and (66) are already sufficient to move freely in the full two-dimensional coefficient space, we shall use
exponentiation without extensively justifying it here.
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everything is clustered back to a dijet configuration, and the two-jet cross section is equal to the total
inclusive cross section,

σtot = σF ;incl . (67)

At finer resolutions, decreasing Q, you see that some events that were previously classified as two-jet
events contain additional, lower-scale jets, that you can now resolve, and hence those events now migrate
to the three-jet bin, while the total inclusive cross section of course remains unchanged,

σtot = σF ;incl = σF ;excl(Q) + σF+1;incl(Q), (68)

where ‘incl’ and ‘excl’ stands for inclusive and exclusive cross sections23, respectively, and the Q-
dependence in the two terms on the right-hand side must cancel so that the total inclusive cross section
is independent of Q. Later, some three-jet events now migrate further, to four and higher jets, while still
more two-jet events migrate into the three-jet bin, etc. For arbitrary n and Q, we have

σF+n;incl(Q) = σF ;incl −
n−1∑

m=0

σF+m;excl(Q). (69)

This equation expresses the trivial fact that the cross section for n or more jets can be computed as the
total inclusive cross section for F minus a sum over the cross sections for F + exactly m jets including
all m < n. On the theoretical side, it is these negative terms which must be included in the calculation,
for each order n = k + `, to restore unitarity. Physically, they express that, at a given scale Q, each
event will be classified as having either zero, one, two, or whatever jets. Or, equivalently, for each event
we gain in the three-jet bin as Q is lowered, we must loose one event in the two-jet one; the negative
contribution to the two-jet bin is exactly minus the integral of the positive contribution to the three-jet
one, and so on. We may perceive this detailed balance as an evolution of the event structure with Q,
for each event, which is effectively what is done in parton-shower algorithms, to which we shall return
in Section 3.3.

3.3 Perturbation theory with Markov chains
Consider again the Born-level cross section for an arbitrary hard process, F , differentially in an arbitrary
IR-safe observable O, as obtained from Eq. (45):

dσ
(0)
F

dO

∣∣∣∣∣
Born

=

∫
dΦF |M(0)

F |2 δ(O −O(ΦF )), (70)

where the integration runs over the full final-state on-shell phase space of F (this expression and those
below would also apply to hadron collisions were we to include integrations over the PDFs in the initial
state), and the δ function projects out a one-dimensional slice defined by O evaluated on the set of
final-state momenta which we denote ΦF .

To make the connection to parton showers, we insert an operator, S, that acts on the Born-level
final state before the observable is evaluated, that is,

dσF
dO

∣∣∣∣S
=

∫
dΦF |M(0)

F |2 S(ΦF ,O). (71)

Formally, this operator—the evolution operator—will be responsible for generating all (real and virtual)
higher-order corrections to the Born-level expression. The measurement δ function appearing explicitly
in Eq. (70) is now implicit in S.

23F inclusive = F plus anything. F exclusive = F and only F . Thus, σF ;incl =
∑∞

k=0 σF+k;excl
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Algorithmically, parton showers cast S as an iterative Markov (i.e., history-independent) chain,
with an evolution parameter, QE, that formally represents the factorization scale of the event, below
which all structure is summed over inclusively. Depending on the particular choice of shower algorithm,
QE may be defined as a parton virtuality (virtuality-order showers), as a transverse-momentum scale
(p⊥-ordered showers) or as a combination of energies times angles (angular ordering). Regardless of the
specific form of QE, the evolution parameter will go towards zero as the Markov chain develops, and
the event structure will become more and more exclusively resolved. A transition from a perturbative
evolution to a non-perturbative one can also be inserted, when the evolution reaches an appropriate
scale, typically around 1 GeV. This scale, called the hadronization scale, thus represents the lowest
perturbative scale that can appear in the calculations, with all perturbative corrections below it summed
over inclusively.

Working out the precise form that S must have in order to give the correct expansions discussed in
Section 3.2 takes a bit of algebra and is beyond the scope we aim to cover in these lectures. Heuristically,
the procedure is as follows. We noted that the singularity structure of QCD is universal and that at least
its first few terms are known to us. We also saw that we could iterate that singularity structure, using
universality and unitarity, thereby bootstrapping our way around the entire perturbative series. This was
illustrated by Fig. 20 in Section 3.2.

Skipping intermediate steps, the form of the all-orders pure-shower Markov chain, for the evolu-
tion of an event between two scales Q1 > QE > Q2, is,

S(ΦF , Q1, Q2,O) = ∆(ΦF , Q1, Q2) δ (O −O(ΦF ))︸ ︷︷ ︸
F + 0 exclusive above Q2

+
∑

r

∫ QE1

QE2

dΦr
F+1

dΦF

Sr(ΦF+1) ∆(ΦF , Q1, QF+1) S(ΦF+1, QF+1, Q2,O)

︸ ︷︷ ︸
F + 1 inclusive above Q2

,
(72)

with the so-called Sudakov factor,

∆(ΦF , Q1, Q2) = exp

[
−
∑

r

∫ Q1

Q2

dΦr
F+1

dΦF

Sr(ΦF+1)

]
, (73)

defining the probability that there is no evolution (i.e., no emissions) between the scales Q1 and Q2, ac-
cording to the radiation functions Sr to which we shall return below. The term on the first line of Eq. (72)
thus represents all events that did not evolve as the resolution scale was lowered from Q1 to Q2, while
the second line contains a sum and phase-space integral over those events that did evolve—including the
insertion of S(ΦF+1) representing the possible further evolution of the event and completing the iterative
definition of the Markov chain.

The factor dΦr
F+1 /dΦF defines the chosen phase space factorization. Our favourite is the so-

called dipole-antenna factorization, whose principal virtue is that it is the simplest Lorentz-invariant fac-
torization which is simultaneously exact over all of phase space while only involving on-shell momenta.
For completeness, its form is

dΦr
F+1

dΦF

=
dΦr

3

dΦ2

= dsa1 ds1b
dφ

2π

1

16π2sr
, (74)

which involves just one colour–anticolour pair for each r, with invariant mass squared sr = (pa +
p1 + pb)

2. Other choices, such as purely collinear ones (only exact in the collinear limit or involving
explicitly off-shell momenta), more global ones involving all partons in the event (more complicated,
in our opinion), or less global ones with a single parton playing the dominant role as emitter, are also
possible, again depending on the specific algorithm considered.
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The radiation functions Sr obviously play a crucial role in these equations, driving the emission
probabilities. For example, if Sr → 0, then ∆ → exp(0) = 1 and all events stay in the top line of
Eq. (72). Thus, in regions of phase space where Sr is small, there is little or no evolution. Conversely,
for Sr → ∞, we have ∆ → 0, implying that all events evolve. One possible choice for the radiation
functions Sr was implicit in Eq. (62), in which we took them to include only the leading (double) singu-
larities, with r representing colour–anticolour pairs. In general, the shower may exponentiate the entire
set of universal singular terms, or only a subset of them (for example, the terms leading in the number
of colours NC), which is why we here let the explicit form of Sr be unspecified. Suffice it to say that in
traditional parton showers, Sr would simply be the DGLAP splitting kernels (see, e.g., Ref. [3]), while
they would be so-called dipole or antenna radiation functions in the various dipole-based approaches to
QCD (see, e.g., Ref. [64, 70, 76, 80, 81, 109]).

The procedure for how to technically ‘construct’ a shower algorithm of this kind, using random
numbers to generate scales distributed according to Eq. (72), is described more fully in Ref. [80], using
a notation that closely parallels the one used here. The procedure is also described at a more technical
level in the review [5], although using a slightly different notation. Finally, a pedagogical introduction to
Monte Carlo methods in general can be found in Ref. [7].

3.4 Decays of unstable particles
In most BSM processes and some SM ones, an important aspect of the event simulation is how decays
of short-lived particles, such as top quarks, Electro-Weak and Higgs bosons and new BSM resonances,
are handled. We here briefly summarize the spectrum of possibilities, but emphasize that there is no
universal standard. Users are advised to check whether the treatment of a given code is adequate for the
physics study at hand.

The appearance of an unstable resonance as a physical particle at some intermediate stage of the
event generation implies that its production and decay processes are treated as being factorized. This is
called the narrow width approximation and is valid up to corrections of order Γ/m0, with Γ the width
and m0 the pole mass of the particle. States whose widths are a substantial fraction of their mass should
not be treated in this way, but rather as intrinsically virtual internal propagator lines.

For states treated as physical particles, two aspects are relevant: the mass distribution of the de-
caying particle itself and the distributions of its decay products. For the mass distribution, the simplest
is to use a δ function at m0. The next level up, typically used in general-purpose Monte Carlo, is to use
a Breit–Wigner distribution (relativistic or non-relativistic), which formally resums higher-order virtual
corrections to the mass distribution. Note, however, that this still only generates an improved picture
for moderate fluctuations away from m0. Similarly to above, particles that are significantly off-shell (in
units of Γ) should not be treated as resonant, but rather as internal off-shell propagator lines. In most
Monte Carlo codes, some further refinements are also included, for instance by letting Γ be a function of
m (‘running widths’) and by limiting the magnitude of the allowed fluctuations away from m0. See also
Ref. [118] for an elaborate discussion of the Higgs boson lineshape.

For the distributions of the decay products, the simplest treatment is again to assign them their
respective m0 values, with a uniform (i.e., isotropic, or ‘flat’) phase-space distribution. A more so-
phisticated treatment distributes the decay products according to the differential decay MEs, capturing
at least the internal dynamics and helicity structure of the decay process, including Einstein-Podolsky-
Rosen(EPR)-like correlations. Further refinements include polarizations of the external states [113–115]
(see also Refs. [119–121] for phenomenological studies) and assigning the decay products their own
Breit–Wigner distributions, the latter of which opens the possibility to include also intrinsically off-shell
decay channels, like H → WW∗. Please refer to the physics manual of the code you are using and/or
make simple cross checks such as plotting the distribution of the phase-space invariants it produces.

During subsequent showering of the decay products, most parton-shower models will preserve the
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Fig. 21: The double-counting problem caused by naively adding cross sections involving MEs with different
numbers of legs.

total invariant mass of each resonance-decay system separately, so as not to skew the original resonance
shape.

4 Matching at LO and NLO
The essential problem that leads to ME/parton-shower matching can be illustrated in a very simple way.
Assume we have computed the LO cross section for some process, F , and that we have added an LL
shower to it, as in the left-hand pane of Fig. 21. We know that this only gives us an LL description of
F + 1. We now wish to improve this from LL to LO by adding the actual LO ME for F + 1. Since we
also want to be able to hadronize these events, etc., we again add an LL shower off them. However, since
the ME for F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of Fig. 21.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross section
for F + 1 twice, since we are now getting them once from the shower off F and once from the ME for
F + 1, illustrated by the dark shaded (red) areas of the right-hand pane of Fig. 21. This double-counting
problem would grow worse if we attempted to add more MEs, with more legs. The cause is very simple.
Each such calculation corresponds to an inclusive cross section, and hence naive addition would give

σtot = σ0;incl + σ1;incl = σ0;excl + 2σ1;incl . (75)

Recall the definition of inclusive and exclusive cross sections, Eq. (68): F inclusive = F plus anything.
F exclusive = F and only F . Thus, σF ;incl =

∑∞
k=0 σF+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation—showers
and matrix elements—more systematically, for each order in perturbation theory, so that the nesting of
inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a ME generator, there are fundamentally three different ways in which
we can consider matching the two [80]: slicing, subtraction and unitarity. The following subsections will
briefly introduce each of these.

4.1 Slicing
The most commonly encountered matching type is currently based on separating (slicing) phase space
into two regions, one of which is supposed to be mainly described by hard MEs and the other of which
is supposed to be described by the shower. This type of approach was first used in HERWIG [89], to
include ME corrections for one emission beyond the basic hard process [122, 123]. This is illustrated
in Fig. 22. The method has since been generalized by several independent groups to include arbitrary
numbers of additional legs, the most well-known of these being the CKKW [124], CKKW-L [125, 126],
and MLM [127, 128] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the presence of
explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions above a certain matching
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Fig. 22: HERWIG’s original matching scheme [122,123], in which the dead zone of the HERWIG shower was used
as an effective ‘matching scale’ for one emission beyond a basic hard process.

scale, as in the CKKW(-L) and MLM approaches. The empty part of phase space can then be filled by
separate events generated according to higher-multiplicity tree-level MEs. In the CKKW(-L) and MLM
schemes, this process can be iterated to include arbitrary numbers of additional hard legs (the practical
limit being around three or four, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity MEs must be as-
sociated with Sudakov form factors (representing the virtual corrections that would have been generated
if a shower had produced the same phase-space configuration), and their αs factors must be chosen so
that, at least at the matching scale, they become identical to the choices made on the shower side [129].
The CKKW and MLM approaches do this by constructing ‘fake parton-shower histories’ for the higher-
multiplicity MEs. By applying a sequential jet clustering algorithm, a tree-like branching structure can
be created that at least has the same dominant structure as that of a parton shower. Given the fake
shower tree, αs factors can be chosen for each vertex with argument αs(p⊥) and Sudakov factors can be
computed for each internal line in the tree. In the CKKW method, these Sudakov factors are estimated
analytically, while the MLM and CKKW-L methods compute them numerically, from the actual shower
evolution.

Thus, the matched result is identical to the ME in the region above the matching scale, modulo
higher-order (Sudakov and αs) corrections. We may sketch this as

Matched (above matching scale) =

ME︷ ︸︸ ︷
Exact ×

corrections︷ ︸︸ ︷
(1 +O(αs)), (76)

where the ‘shower corrections’ include the approximate Sudakov factors and αs reweighting factors
applied to the MEs in order to obtain a smooth transition to the shower-dominated region.

Below the matching scale, the small difference between the MEs and the shower approximation
can be dropped (since their leading singularities are identical and this region by definition includes no
hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate)

= Approximate + non-singular

→ Approximate. (77)

This type of strategy is illustrated in Fig. 23.

As emphasized above, since this strategy is discontinuous across phase space, a main point here is
to ensure that the behaviour across the matching scale be as smooth as possible. CKKW showed [124]
that it is possible to remove any dependence on the matching scale through NLL precision by careful
choices of all ingredients in the matching; technical details of the implementation (affecting the O(αs)
terms in Eq. (76)) are important, and the dependence on the unphysical matching scale may be larger than
NLL unless the implementation matches the theoretical algorithm precisely [125,126,130]. Furthermore,

38

P. SKANDS

100



F @ LO×LL-Soft (excl)
`

(l
oo

ps
)

2 σ
(2)
0

. . .

1 σ
(1)
0 σ

(1)
1

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2

0 1 2
k (legs)

+

F+1 @ LO×LL-Soft (excl)

`
(l

oo
ps

)

2 σ
(2)
0

. . .

1 σ
(1)
0 σ

(1)
1

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2

0 1 2
k (legs)

+

F+2 @ LO×LL (incl)

`
(l

oo
ps

)

2 σ
(2)
0

. . .

1 σ
(1)
0 σ

(1)
1

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2

0 1 2
k (legs)

=

F @ LO2×LL (MLM & (L)-CKKW)

`
(l

oo
ps

)

2 σ
(2)
0

. . .

1 σ
(1)
0 σ

(1)
1

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2

0 1 2
k (legs)

Fig. 23: Slicing, with up to two additional emissions beyond the basic process. The showers off F and F + 1 are
set to zero above a specific ‘matching scale’. (The number of coefficients shown was reduced a bit in these plots
to make them fit in one row.)

since the Sudakov factors are generally computed using showers (MLM, CKKW-L) or a shower-like
formalism (CKKW), while the real corrections are computed using MEs, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity among the
singular parts, see e.g., Ref. [129].

It is advisable not to choose the matching scale too low. This is again essentially due to the
approximate scale invariance of QCD imploring us to write the matching scale as a ratio, rather than
as an absolute number. If one uses a very low matching scale, the higher-multiplicity MEs will already
be quite singular, leading to very large LO cross sections before matching. After matching, these large
cross sections are tamed by the Sudakov factors produced by the matching scheme, and hence the final
cross sections may still look reasonable. But the higher-multiplicity MEs in general contain subleading
singularity structures, beyond those accounted for by the shower, and hence the delicate line of detailed
balance that ensures unitarity has most assuredly been overstepped. We, therefore, recommend not to
take the matching scale lower than about an order of magnitude below the characteristic scale of the hard
process.

One should also be aware that all strategies of this type are quite computing intensive. This is basi-
cally due to the fact that a separate phase-space generator is required for each of the n-parton correction
terms, with each such sample a priori consisting of weighted events such that a separate unweighting
step (often with quite low efficiency) is needed before an unweighted sample can be produced.

4.2 Subtraction
Another way of matching two calculations is by subtracting one from the other and correcting by the
difference, schematically

Matched =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate) . (78)

This looks very much like the structure of a subtraction-based NLO fixed-order calculation, Section 2.4,
in which the shower approximation here plays the role of subtraction terms, and indeed this is what is
used in strategies like MC@NLO [131–133], illustrated in Fig. 24. In this type of approach, however,
negative-weight events will generally occur, for instance in phase-space points where the approximation
is larger than the exact answer.

Negative weights are not in principle an insurmountable problem. Histograms can be filled with
each event counted according to its weight, as usual. However, negative weights do affect efficiency.
Imagine a worst-case scenario in which 1000 positive-weight events have been generated, along with
999 negative-weight ones (assuming each event weight has the same absolute value, the closest one can
get to an unweighted sample in the presence of negative weights). The statistical precision of the MC
answer would be equivalent to one event, for 2000 generated, i.e., a big loss in convergence rate.
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Fig. 24: MC@NLO. In the middle pane, cyan boxes denote non-singular correction terms, while the egg-coloured
ones denote showers off such corrections, which cannot lead to double-counting at the LL level.
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Fig. 25: POWHEG. In the middle pane, cyan boxes denote non-singular correction terms, while the egg-coloured
ones denote showers off such corrections, which cannot lead to double-counting at the LL level.
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Fig. 26: MENLOPS. Note that each of the POWHEG and CKKW samples are composed of separate sub-samples,
as illustrated in Figs. 23 and 25.

In practice, generators like MC@NLO ‘only’ produce around 10% or less events with negative
weights, so the convergence rate should not be severely affected for ordinary applications. Nevertheless,
the problem of negative weights motivated the development of the so-called POWHEG approach [134],
illustrated in Fig. 25, which is constructed specifically to prevent negative-weight events from occurring
and simultaneously to be more independent of which parton-shower algorithm it is used with. In the
POWHEG method, one effectively modifies the real-emission probability for the first emission to agree
with the F + 1 ME (this is covered under unitarity, below). One is then left with a purely virtual
correction, which will typically be positive, at least for processes for which the NLO cross section is
larger than the LO one.

The advantage of these methods is obviously that NLO corrections to the Born level can be system-
atically incorporated. However, a systematic way of extending this strategy beyond the first additional
emission is not available, save for combining them with a slicing-based strategy for the additional legs,
as in MENLOPS [135], illustrated in Fig. 26. These issues are, however, no more severe than in ordinary
fixed-order NLO approaches, and hence they are not viewed as disadvantages if the point of reference is
an NLO computation.
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Fig. 27: PYTHIA (left) and VINCIA (right). Unitarity-based. Only one event sample is produced by each of these
methods, and hence no sub-components are shown.

4.3 Unitarity
The oldest, and in my view most attractive, approach [106, 136] consists of working out the shower
approximation to a given fixed order, and correcting the shower splitting functions at that order by a
multiplicative factor given by the ratio of the ME to the shower approximation, phase-space point by
phase-space point. We may sketch this as

Matched =

shower︷ ︸︸ ︷
Approximate ×

correction︷ ︸︸ ︷
Exact

Approximate
. (79)

When these correction factors are inserted back into the shower evolution, they guarantee that the shower
evolution off n− 1 partons correctly reproduces the n-parton MEs, without the need to generate a sepa-
rate n-parton sample. That is, the shower approximation is essentially used as a pre-weighted (stratified)
all-orders phase-space generator, on which a more exact answer can subsequently be imprinted order by
order in perturbation theory. Since the shower is already optimized for exactly the kind of singular struc-
tures that occur in QCD, very fast computational speeds can therefore be obtained with this method [81].

In the original approach [106, 136], used by PYTHIA [90, 91], this was only worked out for one
additional emission beyond the basic hard process. In POWHEG [134, 137], it was extended to also
include virtual corrections to the Born-level ME. Finally, in VINCIA, it has been extended to include
arbitrary numbers of emissions at tree level [80, 81] and one emission at loop level [138], although that
method has so far only been applied to final-state showers.

An illustration of the perturbative coefficients that can be included in each of these approaches is
given in Fig. 27, as usual with green (darker shaded) boxes representing exact coefficients and yellow
(light shaded) boxes representing logarithmic approximations.

Finally, two more properties unique to this method deserve a mention. Firstly, since the corrections
modify the actual shower evolution kernels, the corrections are automatically resummed in the Sudakov
exponential, which should improve the logarithmic precision once k ≥ 2 is included, and secondly,
since the shower is unitary, an initially unweighted sample of (n − 1)-parton configurations remains
unweighted, with no need for a separate event-unweighting or event-rejection step.

5 Hadronization and soft hadron–hadron physics
We here give a very brief overview of the main aspects of soft QCD that are relevant for hadron–hadron
collisions, such as hadronization, minimum-bias and soft-inclusive physics, and the so-called underlying
event. This will be kept at a pedestrian level and is largely based on the reviews in Refs. [5, 24, 139].

In the context of event generators, hadronization denotes the process by which a set of coloured
partons (after showering) is transformed into a set of colour-singlet primary hadrons, which may then
subsequently decay further. This non-perturbative transition takes place at the hadronization scale Qhad,
which by construction is identical to the IR cutoff of the parton shower. In the absence of a first-principles
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Fig. 28: Static quark–antiquark potential, as a function of separation distance, in quenched lattice QCD, from
Ref. [140]. Note that the axes are scaled by units of the string tension

√
κ ∼ 420 MeV. Additional labels corre-

sponding to 1 GeV and 2 GeV are also provided, on the y-axis, and to 1 fm and 2 fm, on the x-axis. A constant
term, V0, has been subtracted from all the results. The dashed line corresponds to V (R) = R− π/(12R).

solution to the relevant dynamics, event generators use QCD-inspired phenomenological models to de-
scribe this transition.

The problem can be stated as follows: given a set of partons resolved at a scale of Qhad ∼ 1 GeV,
we need a ‘mapping’ from this set onto a set of on-shell colour-singlet (i.e., confined) hadronic states.
MC models do this in three steps:

1. Map the partonic system onto a continuum of high-mass hadronic states (called ‘strings’ or ‘clus-
ters’).

2. Iteratively map strings/clusters onto discrete set of primary hadrons (via string breaks / cluster
splittings / cluster decays).

3. Sequential decays into secondaries (ρ→ ππ, Λ→ nπ, π0 → γγ, ...).

The physics governing this mapping is non-perturbative. However, we do have some knowledge of the
properties that such a solution must have. For instance, Poincaré invariance, unitarity, and causality
are all concepts that apply beyond perturbation theory. In addition, lattice QCD provides us a means
of making explicit quantitative studies in a genuinely non-perturbative setting (albeit only of certain
questions).

An important result in ‘quenched’ lattice QCD24 is that the potential of the colour-dipole field be-
tween a charge and an anticharge appears to grow linearly with the separation of the charges, at distances
greater than about 0.5 fm; this behaviour is illustrated by the plot shown in Fig. 28, from Ref. [140].
(Note that the axes are scaled by units of the string tension

√
κ ∼ 420 MeV. Additional labels corre-

sponding to 1 GeV and 2 GeV are also provided, on the y-axis, and to 1 fm and 2 fm, on the x-axis.)
This is known as ‘linear confinement’, and it forms the starting point for the string model of hadroniza-
tion, discussed below in Section 5.1. Alternatively, a property of pQCD called ‘preconfinement’ [141] is
the basis of the cluster model of hadronization, described in Refs. [5, 24].

In the generator landscape, PYTHIA uses string fragmentation, while HERWIG and SHERPA use
cluster fragmentation. It should be emphasized that the so-called parton level that can be obtained by

24Quenched QCD implies no ‘dynamical’ quarks, i.e., no g→ qq̄ splittings allowed.

42

P. SKANDS

104



switching off hadronization in an MC generator, is not a universal concept, since each model defines
the hadronization scale differently. For example, the hadronization scale can be defined by a cutoff in
invariant mass, transverse momentum, or some other quantity, with different tunes using different values
for the cutoff. Note that the so-called parton level that can be obtained by switching off hadroniza-
tion in an MC generator, is not a universal concept, since each model defines the hadronization scale
differently, with different tunes using different values for it. Comparisons to distributions at this level
(i.e., with hadronization switched off) may therefore be used to provide an idea of the overall impact
of hadronization corrections within a given model, but should be avoided in the context of physical
observables. Note also that the corresponding MC fragmentation functions are intrinsically defined at
the hadronization scale. They can therefore not be compared directly to those that are used in fixed-
order/analytical-resummation contexts, which are typically defined at a factorization scale of the order
of the scale of the hard process.

We use the term ‘soft hadron–hadron physics’ to comprise all scattering processes for which a
hard, perturbative scale is not required to be present25. This includes elastic, diffractive, minimum-bias
and pile-up processes, as well as the physics contributing to the so-called underlying event. We give a
brief introduction to such processes in Section 5.2.

We round off with a discussion of the data constraints that enter in the tuning of Monte Carlo
models in Section 5.4 and give an outline of a procedure that could be followed in a realistic set-up.

5.1 String model
Starting from early concepts developed by Artru and Mennessier [143], several hadronization models
based on strings were proposed in the late 1970s and early 1980s. Of these, the most widely used today
is the so-called Lund model, implemented in the PYTHIA code. We shall, therefore, concentrate on that
particular model here, although many of the overall concepts would be shared by any string-inspired
method. (A more extended discussion can be found in the very complete and pedagogical review of the
Lund model by Andersson [6].)

Consider the production of a qq̄ pair from vacuum, for instance in the process e+e− → γ∗/Z →
qq̄→ hadrons. As the quarks move apart, linear confinement implies that a potential

V (R) = κR (80)

is asymptotically reached for large distances,R. At short distances, there is a Coulomb term proportional
to 1/R as well, cf. Fig. 28, but this is neglected in the Lund model. Such a potential describes a string
with tension (energy per unit length) κ, with the value [140]

κ ∼ (420 MeV)2 ∼ 0.18 GeV2 ∼ 0.9 GeV/fm, (81)

which, for comparison with the world of macroscopic objects, would be sufficient to lift a 16-ton
truck [144].

The string can be thought of as parameterizing the position of the axis of a cylindrically symmetric
flux tube, illustrated in Fig. 29. Such simple q − q̄ strings form the starting point for the string model.
More complicated multi-parton topologies are treated by representing gluons as transverse ‘kinks’, e.g.,
q − g − q̄. The space–time evolution is then slightly more involved [6], and modifications to the frag-
mentation model to handle stepping across gluon corners have to be included, but the main point is that
there are no separate free parameters for gluon jets. Differences with respect to quark fragmentation arise
simply because quarks are only connected to a single string piece, while gluons have one on either side,

25Note, however, that while a hard scale is not required to be present, it is not explicitly required to be absent either. Thus,
both diffractive, minimum-bias, pile-up and underlying-event processes will have tails towards high-p⊥ physics as well. For
example, even tt̄ pair production can be viewed as a tail of minimum-bias interactions, and there is a tail of diffractive processes
in which hard dijets can be produced diffractively (see, e.g., Ref. [142]).
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Fig. 29: Illustration of the transition between a Coulomb potential at short distances to the string-like one of
Eq. (80) at large qq̄ separations.
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Fig. 30: (a) Illustration of string breaking by quark pair creation in the string field. (b) Illustration of the algorithmic
choice to process the fragmentation from the outside-in, splitting off a single on-shell hadron in each step.

increasing the energy loss per unit (invariant) time from a gluon to the string by a factor of two relative
to quarks, which can be compared to the ratio of colour Casimirs CA/CF = 2.25. Another appealing
feature of the model is that low-energy gluons are absorbed smoothly into the string, without leading to
modifications. This improves the stability of the model with respect to variations of the IR behaviour of
the parton shower.

As the partonic string endpoints move apart, their kinetic energy is gradually converted to potential
energy, stored in the growing string spanned between them. In the ‘quenched’ approximation, in which
g → qq̄ splittings are not allowed, this process would continue until the endpoint quarks have lost all
their momentum, at which point they would reverse direction and be accelerated by the now shrinking
string.

In the real world, quark–antiquark fluctuations inside the string field can make the transition to be-
come real particles by absorbing energy from the string, thereby screening the original endpoint charges
from each other and breaking the string into two separate colour-singlet pieces, (qq̄) → (qq̄′) + (q′q̄),
illustrated in Fig. 30 (a). This process then continues until only ordinary hadrons remain. (We will give
more details on the individual string breaks below.)

Since the string breaks are causally disconnected (as can easily be realized from space–time di-
agrams like the one in Fig. 30, see also Ref. [6]), they do not have to be considered in any specific
time-ordered sequence. In the Lund model, the string breaks are instead generated starting with the lead-
ing (‘outermost’) hadrons, containing the endpoint quarks, and iterating inwards towards the centre of
the string, alternating randomly between fragmentation off the left- and right-hand sides, respectively,
Fig. 30 (b). One can thereby split off a single well-defined hadron in each step, with a mass that, for
unstable hadrons, is selected according to a Breit–Wigner distribution.

The details of the individual string breaks are not known from first principles. The Lund model in-
vokes the idea of quantum mechanical tunneling, which leads to a Gaussian suppression of the transverse
momenta and masses imparted to the produced quarks,

Prob(m2
q, p

2
⊥q) ∝ exp

(
−πm2

q

κ

)
exp

(
−πp2

⊥q

κ

)
, (82)
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where mq is the mass of the produced quark and p⊥ is the transverse momentum imparted to it by the
breakup process (with the q̄ having the opposite p⊥).

Due to the factorization of the p⊥and m dependence implied by Eq. (82), the p⊥spectrum of
produced quarks in this model is independent of the quark flavour, with a universal average value of

〈
p2
⊥q
〉

= σ2 = κ/π ∼ (240 MeV)2. (83)

Bear in mind that ‘transverse’ is here defined with respect to the string axis. Thus, the p⊥in a frame where
the string is moving is modified by a Lorentz boost factor. Also bear in mind that σ2 is here a purely non-
perturbative parameter. In a Monte Carlo model with a fixed shower cutoff Qhad, the effective amount of
‘non-perturbative’ p⊥may be larger than this, due to effects of additional unresolved soft-gluon radiation
below Qhad. In principle, the magnitude of this additional component should scale with the cutoff, but
in practice it is up to the user to enforce this by retuning (see Section 5.4) the effective σ parameter when
changing the hadronization scale. Since hadrons receive p⊥ contributions from two breakups, one on
either side, their average transverse momentum squared will be twice as large,

〈
p2
⊥h

〉
= 2σ2. (84)

The mass suppression implied by Eq. (82) is less straightforward to interpret. Since quark masses
are notoriously difficult to define for light quarks, the value of the strangeness suppression must effec-
tively be extracted from experimental measurements, for example, of the K/π ratio, with a resulting
suppression of roughly s/u ∼ s/d ∼ 0.2–0.3. Inserting even comparatively low values for the charm
quark mass in Eq. (82), however, one obtains a relative suppression of charm of the order of 10−11.
Heavy quarks can therefore safely be considered to be produced only in the perturbative stages and not
by the soft fragmentation.

Baryon production can be incorporated in the same basic picture [145], by allowing string breaks
to occur also by the production of pairs of so-called diquarks, loosely bound states of two quarks in
an overall 3̄ representation (e.g., ‘red + blue ∼ antigreen’, cf. the rules for colour combinations in
Section 1.2). Again, the relative rate of diquark-to-quark production is not known a priori and must be
extracted from experimental measurements, for example, of the p/π ratio. More advanced scenarios for
baryon production have also been proposed, in particular the so-called popcorn model [146, 147], which
is normally used in addition to the diquark picture and then acts to decrease the correlations among
neighbouring baryon–antibaryon pairs by allowing mesons to be formed inbetween them. Within the
PYTHIA framework, a fragmentation model including explicit string junctions [148] has so far only been
applied to baryon-number-violating new-physics processes and to the description of beam remnants (and
then acts to increase baryon stopping [149]).

This brings us to the next step of the algorithm: assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q (q̄) may combine with
the q̄′ (q′) from a newly created breakup to produce either a vector or a pseudoscalar meson, or, if di-
quarks are involved, either a spin-1/2 or spin-3/2 baryon. Unfortunately, the string model is entirely
unpredictive in this respect, and this is therefore the sector that contains the largest amount of free pa-
rameters. From spin counting alone, one would expect the ratio V/S of vectors to pseudoscalars to be
three, but this is modified by the V –S mass splittings, which implies a phase-space suppression of vector
production, with corresponding suppression parameters to be extracted from data.

Especially for the light flavours, the substantial difference in phase space caused by the V –S mass
splittings implies a rather large suppression of vector production. Thus, for D∗/D, the effective ratio
is already reduced to about ∼ 1.0–2.0, while for K∗/K and ρ/π, extracted values range from 0.3–1.0.
(Recall, as always, that these are production ratios of primary hadrons, hence feed-down from secondary
decays of heavier hadrons complicates the extraction of these parameters from experimental data, in
particular for the lighter hadron species.)
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Fig. 31: Normalized Lund symmetric fragmentation function, for fixed m⊥ = 1 GeV. Left: variation of the a
parameter, from 0.1 (blue) to 0.9 (red), with fixed b = 1 GeV−2. Right: variation of the b parameter, from 0.5 (red)
to 2 (blue) GeV−2, with fixed a = 0.5.

The production of higher meson resonances is assumed to be low in a string framework26. For di-
quarks, separate parameters control the relative rates of spin-1 diquarks versus spin-0 ones and, likewise,
have to extracted from data, with resulting values of order (qq)1/(qq)0 ∼ 0.075–0.15.

With p2
⊥ and m2 now fixed, the final step is to select the fraction, z, of the fragmenting endpoint

quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string picture
is substantially more predictive than for the flavour selection. Firstly, the requirement that the fragmen-
tation be independent of the sequence in which breakups are considered (causality) imposes a ‘left-right
symmetry’ on the possible form of the fragmentation function, f(z), with the solution [150]

f(z) ∝ 1

z
(1− z)a exp

(
−b (m2

h + p2
⊥h)

z

)
, (85)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). The a and b
parameters, illustrated in Fig. 31, are the only free parameters of the fragmentation function, although a
may in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

For massive endpoints (e.g., c and b quarks), which do not move along straight lightcone sec-
tions, the exponential suppression with string area leads to modifications of the form [151], f(z) →
f(z)/zbm

2
Q , with mQ the heavy-quark mass. Strictly speaking, this is the only fragmentation function

that is consistent with causality in the string model, although a few alternative forms are typically pro-
vided as well.

As a by-product, the probability distribution in invariant time τ of q′q̄′ breakup vertices, or
equivalently Γ = (κτ)2, is also obtained, with dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the
colour flux [152], and the average breakup time lying along a hyperbola of constant invariant time
τ0 ∼ 10−23 s [6].

We may also ask, for example, how many units of rapidity does the particle production from a
string span? Measuring pz along the string direction and defining rapidity by

y =
1

2
ln

(
E + pz
E − pz

)
, (86)

26The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are
poorly known and thus may result in a worse overall description when included.
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Fig. 32: Iterative selection of flavours and momenta in the Lund string-fragmentation model

the absolute highest rapidity that can be reached, by a pion traveling exactly along the string direction and
taking all of the endpoint quark’s energy, is ymax = ln(2Eq/mπ). That is, the rapidity region covered by
a fragmenting string scales logarithmically with the energy, and since the density of hadrons produced
per unit rapidity is roughly constant (modulo endpoint effects), the average number of hadrons produced
by string fragmentation likewise scales logarithmically with energy.

The iterative selection of flavours, p⊥, and z values is illustrated in Fig. 32. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p⊥0, p+), where the ‘+’ on the third component denotes ‘light-cone’
momentum, p± = E±pz . Next, an adjacent dd̄ pair from the vacuum is created, with relative transverse
momenta ±p⊥1. The fragmenting quark combines with the d̄ from the breakup to form a π+, which
carries off a fraction z1 of the total lightcone momentum p+. The next hadron carries off a fraction z2 of
the remaining momentum, etc.

5.2 Soft hadron–hadron processes
The total hadron–hadron (hh) cross section is around 100 mb at LHC energies [153], growing slowly
with the CM energy, σtot(s) ∝ s0.096 [154]. There are essentially four types of physics processes, which
together make up σtot:

1. elastic scattering: hh→ hh;
2. single diffractive dissociation: hh→ h + gap + X, with ‘gap’ denoting an empty rapidity region,

and X anything that is not the original beam particle;
3. double diffractive dissociation: hh→ X + gap + X (both hadrons ‘blow up’);
4. Inelastic non-diffractive scattering: everything else.

In principle, higher ‘multi-gap’ diffractive components may be defined as well, the most important one
being central diffraction (CD): hh → h + gap + X + gap + h, see the discussion of diffraction in
Section 5.2.1 below.

Some important differences exist between theoretical and experimental terminology [155]. In the
experimental setting, diffraction is defined by an observable rapidity gap, with |∆y|gap ∼> 3 typically
giving clean diffractive samples. In the MC context, however, each diffractive process type produces a
whole spectrum of gaps, with small ones suppressed but not excluded. Likewise, events of non-diffractive
origin may produce accidental rapidity gaps, now with large ones suppressed (exponentially) but not
excluded, and in the transition region there could even be quantum mechanical interference between
the two. Due to this unphysical model dependence of theoretical definitions of diffraction, we strongly
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advise to phrase measurements first and foremost in terms of physical observables, and only seek to
connect with theory models as a second, separate, step.

The distinction between elastic and inelastic events is, however, unambiguous (modulo pp→ ppγ
events); the final state either contains just two protons, or not. The total hadron–hadron cross section can
therefore be written as a sum of these two physically distinguishable components,

σtot(s) = σel(s) + σinel(s) , (87)

where s = (pA + pB)2 is the beam–beam centre-of-mass energy squared.

Another potentially confusing term is ‘minimum bias’ (MB). This originates from the experimen-
tal requirement of a minimal energy or number of hits in a given (experiment-dependent) instrumented
region near the beam, used to determine whether there was any non-trivial activity in the event, or not.
This represents the smallest possible ‘trigger bias’ that the corresponding experiment is capable of. There
is thus no universal definition of ‘min-bias’; each experiment has its own. We give a brief discussion of
MB in Section 5.2.2 below.

Finally, in events containing a hard parton–parton interaction, the UE can be roughly conceived of
as the difference between QCD with and without including the remnants of the original beam hadrons.
Without such ‘beam remnants’, only the hard interaction itself, and its associated parton showers and
hadronization, would contribute to the observed particle production. In reality, after the partons that
participate in the hard interaction have been taken out, the remnants still contain whatever is left of
the incoming beam hadrons, including also a partonic substructure, which leads to the possibility of
multiple parton interactions (MPI). We discuss MPI-based models of the UE in Section 5.3 below. Other
useful reviews of MPI-based MC models can be found in Refs. [5, 139]. Analytical models are mostly
formulated only for double parton scattering, see, for example, Refs. [156–159].

5.2.1 Diffractive scattering
As mentioned above, if the beam particles A and/or B are not elementary, the inelastic final states may
be divided into ‘diffractive’ and ‘non-diffractive’ topologies. This is a qualitative classification, usually
based on whether the final state looks like the decay of an excitation of the beam particles (diffractive27),
or not (non-diffractive), or upon the presence of a large rapidity gap somewhere in the final state which
would separate such excitations.

Given that an event has been labeled as diffractive, either within the context of a theoretical model,
or by a final-state observable, we may distinguish between three different classes of diffractive topolo-
gies, which it is possible to distinguish between physically, at least in principle. In double-diffractive
(DD) events, both of the beam particles are diffractively excited and hence none of them survive the col-
lision intact. In single-diffractive (SD) events, only one of the beam particles gets excited and the other
survives intact. The last diffractive topology is CD, in which both of the beam particles survive intact,
leaving an excited system in the central region between them. (This latter topology includes ‘central
exclusive production’ where a single particle is produced in the central region.) That is,

σinel(s) = σSD(s) + σDD(s) + σCD(s) + σND(s) , (88)

where ‘ND’ (non-diffractive, here understood not to include elastic scattering) contains no gaps in the
event consistent with the chosen definition of diffraction. Further, each of the diffractively excited sys-
tems in the events labeled SD, DD and CD, respectively, may in principle consist of several subsystems
with gaps between them. Eq. (88) may thus be defined to be exact, within a specific definition of diffrac-
tion, even in the presence of multi-gap events. Note, however, that different theoretical models almost

27An example of a process that would be labeled as diffractive would be if one the protons is excited to a ∆+ which then
decays back to p+ + π0, without anything else happening in the event. In general, a whole tower of possible diffractive
excitations are available, which in the continuum limit can be described by a mass spectrum falling roughly as dM2 /M2.
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always use different (model-dependent) definitions of diffraction, and therefore the individual compo-
nents in one model are in general not directly comparable to those of another. It is therefore important
that data be presented at the level of physical observables if unambiguous conclusions are to be drawn
from them.

5.2.2 Minimum bias
In principle, everything that produces a hit in a given experiment’s minimum-bias trigger, is a subset of
MB. In particular, since there is no explicit veto on hard activity, it is useful to keep in mind that MB
includes a diverse mixture of both soft and hard processes, although the fraction that is made up of hard
high-p⊥ processes is only a small tail compared to the total minimum-bias cross section28.

In theoretical contexts, the term ‘minimum-bias’ is often used with a slightly different meaning;
to denote specific (classes of) inclusive soft-QCD subprocesses in a given model. Since these two usages
are not exactly identical, in these lectures we have chosen to reserve the term ‘MB’ to pertain strictly to
definitions of experimental measurements, and instead use the term ‘soft inclusive’ physics as a generic
descriptor for the class of processes which generally dominate the various experimental ‘MB’ measure-
ments in theoretical models. This parallels the terminology used in the review Ref. [5], from which most
of the discussion here has been adapted. See Eq. (88) above for a compact overview of the types of phys-
ical processes that contribute to minimum-bias data samples. For a more detailed description of Monte
Carlo models of this physics, see Ref. [5].

5.3 Underlying event and multiple parton interactions
In this subsection, we focus on the physics of MPI as a theoretical basis for understanding both inelastic,
non-diffractive processes (MB), as well as the so-called underlying event (a.k.a. the jet pedestal effect).
Keep in mind, however, that especially at low multiplicities, and when gaps are present, the contributions
from diffractive processes should not be ignored.

Due to the simple fact that hadrons are composite, multi-parton interactions (several distinct
parton–parton interactions in one and the same hadron–hadron collision) will always be there—but how
many, and how much additional energy and tracks do they deposit in a given measurement region? The
first detailed Monte Carlo model for perturbative MPI was proposed by Sjöstrand in Ref. [160], and with
some variation this still forms the basis for most modern implementations [5].

The first crucial observation is that the t-channel propagators appearing in pQCD 2→ 2 scattering
almost go on shell at low p⊥, causing the differential cross sections to become very large, behaving
roughly as

dσ2→2 ∝
dt

t2
∼ dp2

⊥
p4
⊥
. (89)

At LHC energies, this parton–parton cross section becomes larger than the total hadron–hadron cross
section at p⊥ scales of order 4–5 GeV. This is illustrated in Fig. 33, in which we compare the integrated
QCD parton–parton cross section (with two different αs and PDF choices) to the total inelastic cross
section measured by TOTEM [153], for pp collisions at

√
s = 8 TeV. In the context of MPI models,

this is interpreted straightforwardly to mean that each hadron–hadron collision contains several few GeV
parton–parton collisions.

In the limit that all the partonic interactions are independent and equivalent, one would simply
have a Poisson distribution in the number of MPI, with average

〈n〉(p⊥min) =
σ2→2(p⊥min)

σtot
, (90)

28 Furthermore, since only a tiny fraction of the total minimum-bias rate can normally be stored, the minimum-bias sample
would give quite poor statistics if used for hard physics studies. Instead, separate dedicated hard-process triggers are typically
included in addition to the minimum-bias one, in order to ensure maximal statistics also for hard physics processes.
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Fig. 33: Proton-proton collisions at 8 TeV. LO QCD parton–parton cross section (integrated above pTmin, for two
different αs and PDF choices) compared to the total inelastic hadron–hadron cross section. Towards the right of
the plot, we see, as expected, that hard dijet events is only a tiny fraction of the total cross section. The fact that
the curves cross at a scale of order 5 GeV is interpreted to mean that this is a characteristic scale relevant for
MPI. [161].

with p⊥min a lower cutoff scale which we shall return to below, and σtot a measure of the inelastic
hadron–hadron cross section. This simple reinterpretation in fact expresses unitarity; instead of the total
interaction cross section diverging as p⊥min → 0 (which would violate unitarity), we have restated the
problem so that it is now the number of MPI per collision that diverges, with the total cross section
remaining finite.

Two important ingredients remain to fully regulate the remaining divergence. Firstly, the interac-
tions cannot use up more momentum than is available in the parent hadron. This suppresses the large-n
tail of the estimate above. In PYTHIA-based models, the MPI are ordered in p⊥ [111, 160], and the par-
ton densities for each successive interaction are explicitly constructed so that the sum of x fractions can
never be greater than unity. In the HERWIG models [162, 163], instead the uncorrelated estimate of 〈n〉
above is used as an initial guess, but the generation of actual MPI is stopped once the energy-momentum
conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⊥ and x, is colour
screening; if the wavelength ∼ 1/p⊥ of an exchanged coloured parton becomes larger than a typical
colour–anticolour separation distance, it will only see an average colour charge that vanishes in the limit
p⊥ → 0, hence leading to suppressed interactions. This provides an IR cutoff for MPI similar to that
provided by the hadronization scale for parton showers. A first estimate of the colour-screening cutoff
would be the proton size, p⊥min ≈ ~/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be far
too low. In current models, one replaces the proton radius rp in the above formula by a ‘typical colour
screening distance’, that is, an average size of a region within which the net compensation of a given
colour charge occurs. This number is not known from first principles, although it may be related to
saturation [164]. In current MPI models, it is perceived of simply as an effective cutoff parameter, to be
determined from data.
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Note that the partonic cross sections depend upon the PDF set used, and therefore the optimal
value to use for the cutoff will also depend on this choice [165]. Note also that the cutoff does not
have to be energy-independent. Higher energies imply that parton densities can be probed at smaller
x values, where the number of partons rapidly increases. Partons then become closer packed and the
colour-screening distance d decreases. The uncertainty on the scaling of the cutoff is a major concern
when extrapolating between different collider energies [165–167].

We now turn to the origin of the observational fact that hard jets appear to sit on top of a higher
‘pedestal’ of underlying activity than events with no hard jets. That is, the so-called UE is much more
active, with larger fluctuations, than the average min-bias event. This is interpreted as a consequence of
impact-parameter-dependence: in peripheral collisions, only a small fraction of events contain any high-
p⊥ activity, whereas central collisions are more likely to contain at least one hard scattering; a high-p⊥
triggered sample will therefore be biased towards small impact parameters, b, with a large number of
MPI (and associated increased activity). The ability of a model to describe the shape of the pedestal
(e.g., to describe both MB and UE distributions simultaneously) therefore depends upon its modelling
of the b-dependence, and correspondingly the impact-parameter shape constitutes another main tuning
parameter. A detailed discussion of impact-parameter dependent models goes beyond the scope of these
lectures; see Refs. [149, 160, 168].

For hard processes at the LHC at 13 TeV, the transverse energy, ET , in the UE is expected to
be about 3.3 GeV per unit ∆R =

√
∆φ2 + ∆η2 area [167] (for a reference case of 100 GeV dijets,

including both charged and neutral particles, with no cut on p⊥), although with large event-to-event
fluctuations of order ±2 GeV [169]. Thus, for example, the total ET originating from the UE, in a cone
with radius 0.4 can be estimated to be ETUE(R = 0.4) ∼ 1.6 ± 1 GeV, while the ET in a cone with
radius 1.0 would be ETUE(R = 1.0) ∼ 10 ± 6 GeV. Note that the magnetic field in realistic detectors
will deflect some fraction of the soft charged component of the underlying event into helix trajectories
that will hence not contribute to the energy deposition in the calorimeters.

5.4 Tuning
A main virtue of general-purpose Monte Carlo event generators is their ability to provide a complete
and fully differential picture of collider final states, down to the level of individual particles. As has
been emphasized in these lectures, the achievable accuracy depends both on the inclusiveness of the
chosen observable and on the sophistication of the simulation itself. An important driver for the latter
is obviously the development of improved theoretical models, for example, by including matching to
higher-order MEs, more accurate resummations or better non-perturbative models, as discussed in the
previous sections, but it also depends crucially on the available constraints on the remaining free param-
eters of the model. Using existing data (or more precise calculations) to constrain these is referred to as
generator tuning.

Keep in mind that generators attempt to deliver a global description of the data; a tune is no good
if it fits one distribution perfectly, but not any others. It is therefore crucial to study the simultaneous
degree of agreement or disagreement over many, mutually complementary, distributions. A useful online
resource for making such comparisons can be found at the MCPLOTS web site [170] (which relies on
computing power donated by volunteers, via the LHC@home project [171]). The analyses come from
the comprehensive RIVET analysis toolkit [95], which can also be run stand-alone to make your own MC
tests and comparisons.

Although MC models may appear to have a bewildering number of independently adjustable pa-
rameters, it is worth noting that most of these only control relatively small (exclusive) details of the event
generation. The majority of the (inclusive) physics is determined by only a few, very important ones,
such as the value of the strong coupling, in the perturbative domain, and the form of the fragmentation
function for massless partons, in the non-perturbative one.
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Armed with a good understanding of the underlying model, an expert would therefore normally
take a highly factorized approach to constraining the parameters, first constraining the perturbative ones
(using IR-safe observables and/or more precise theory calculations) and thereafter the non-perturbative
ones, each ordered in a measure of their relative significance to the overall modelling. This allows one
to concentrate on just a few parameters and a few carefully chosen distributions at a time, reducing the
full parameter space to manageable-sized chunks. Still, each step will often involve more than one single
parameter, and non-factorizable correlations may still necessitate additional iterations from the beginning
before a fully satisfactory set of parameters is obtained.

Recent years have seen the emergence of automated tools that attempt to reduce the amount of
both computer and manpower required for this task, for instance by making full generator runs only
for a limited set of parameter points, and then interpolating between these to obtain approximations to
what the true generator result would have been for any intermediate parameter point, as, for example, in
PROFESSOR [172]. Automating the human expert input is more difficult. Currently, this is addressed by a
combination of input solicited from the generator authors (e.g., which parameters and ranges to consider,
which observables constitute a complete set, etc) and the elaborate construction of non-trivial weighting
functions that determine how much weight is assigned to each individual bin in each distribution. The
field is still burgeoning, and future sophistications are to be expected. Nevertheless, at this point the
overall quality of the tunes obtained with automated methods appear to at least be competitive with the
manual ones.

However, although we have very good LHC tunes for essentially all the general-purpose generators
by now, there are two important aspects which have so far been neglected, and which it is becoming
increasingly urgent to address. The first is that a central tune is not really worth much, unless you
know what the uncertainty on it is. A few individual proposals for systematic tuning variations have
been made [166, 173], but so far there is no general approach for establishing MC uncertainties by tune
variations. The second issue is that virtually all generator tuning is done at the ‘pure’ LL-shower level,
and not much is known about what happens to the tuning when matrix-element matching is subsequently
included.

Finally, rather than performing one global tune to all the data, as is usually done, a more systematic
check on the validity of the underlying physics model could be obtained by instead performing several
independent optimizations of the model parameters for a range of different phase-space windows and/or
collider environments. In regions in which consistent parameter sets are obtained (with reasonable ∆χ2

values), the underlying model can be considered as interpolating well, that is, it is universal. If not, a
breakdown in the ability of the model to span different physical regimes has been identified, and can be
addressed, with the nature of the deviations giving clues as to the nature of the breakdown. With the
advent of automated tools, such systematic studies are now becoming feasible, with a first example given
in Ref. [165].

We round off by giving a sketch of a reasonably complete tuning procedure, without going into
details about the parameters that control each of these sectors in individual Monte Carlo models (a recent
detailed discussion in the context of PYTHIA 8 can be found in Ref. [161]).

1) Keep in mind that inabilities of models to describe data is a vital part of the feedback cycle
between theory and experiment. Also keep in mind that perturbation theory at (N)LO+LL is doing very
well if it gets within 10% of a given IR-safe measurement. An agreement of 5% should be considered the
absolute sanity limit, beyond which it does not make any sense to tune further. For some quantities, for
example, ones for which the underlying modelling is known to be poor, an order-of-magnitude agreement
or worse may have to be accepted.

2) Final-state radiation and hadronization: mainly using LEP and other e+e− collider data. On
the IR safe side, there are event shapes and jet observables. On the IR sensitive side, multiplicities and
particle spectra. Pay attention to the high-z tail of the fragmentation, where a single hadron carries a large
fraction of an entire jet’s momentum (most likely to give ‘fakes’). Depending on the focus of the tuning,
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attention should also be paid to identified-particle rates and ratios (perhaps with a nod to hadron-collider
measurements), and to fragmentation in events containing heavy quarks and/or gluon jets. Usually,
more weight is given to those particles that are most copiously produced. The scaling properties of IR-
safe versus IR-sensitive contributions can be tested by comparing data at several different e+e− collider
energies.

3) Initial-state radiation, and ‘primordial29 kT ’: the main constraining distribution is the dilep-
ton p⊥ distribution in Drell–Yan events in hadron–hadron collisions. Ideally, one would like to use sev-
eral different Q2 values, and/or complementary processes, like p⊥(dijet) or p⊥(tt̄). For any observables
containing explicit jets, be aware that the UE can produce small horizontal shifts in jet p⊥ distributions,
which may in turn result in larger-than-expected vertical changes if the distributions are falling sharply.
Also note that the ISR evolution is sensitive to the choice of PDFs.

4) Initial–final connections: radiation from colour lines connecting the initial and final states.
DIS and jet broadening in hadron collisions. This is one of the most poorly controlled parts of most
MC models, highly sensitive to the treatment of coherence (see, e.g., Ref. [174] for illustrations). Keep
in mind that it is not directly constrained by pure final-state observables, such as LEP fragmentation,
nor by pure initial-state observables, such as the Drell–Yan p⊥ spectrum, which is why we list it as a
separate item here. The modelling of this aspect can have important effects on specific observables, a
recent example being the tt̄ forward-backward asymmetry at the Tevatron [175].

5) Underlying event: good constraints on the overall level of the underlying event can be obtained
by counting the summed transverse energy (more IR safe) and/or particle multiplicities and average trans-
verse momenta (more IR sensitive) in regions transverse to a hard trigger jet (more IR safe) or particle
(more IR sensitive), see, for example, Ref. [176]. Constraints on the fluctuations of the underlying event
are also important, and can be obtained, for example, by comparing to measurements of the RMS of such
distributions [169]. Again, note that the UE is sensitive to the choice of PDFs [165].

6) Colour (re-)connections and other final-state interactions: by final-state interactions, we
intend a broad spectrum of possible collective effects that may be included to a greater or lesser extent
in various models. These effects include: Bose–Einstein correlations (see, e.g., Ref. [177]), rescattering
(see, e.g., Ref. [178]), colour reconnections / string interactions (see, e.g., Ref. [179–181]), hydrody-
namics (see, e.g., Ref. [182]), etc. As a rule, these effects are soft and/or non-perturbative and hence
should not modify hard IR-safe observables appreciably. They can, however, have drastic effects on
IR-sensitive ones, such as particle multiplicities, momentum distributions, and correlations, wherefore
useful constraints are typically furnished by measurements of spectra and correlations as functions of
quantities believed to serve as indicators of the strength of these phenomena (such as event multiplic-
ity), and/or by collective-flow-type measurements. Finally, if the model includes a universal description
of underlying event and soft-inclusive QCD, as many MPI-based models do, then minimum-bias data
can also be used as a control sample, although one must then be careful either to address diffractive
contributions properly or to include only gap-suppressed data samples. A complete MB and UE model
should also be able to describe the rise of the pedestal from MB to UE, for example, in the transverse UE
observables (see above).

7) Beam remnants: constraints on beam remnant fragmentation (see, e.g., Ref. [149]) are most
easily obtained in the forward region, but,for example, the amount of baryon transport from the remnant
to a given rapidity region can also be used to probe how much the colour structure of the remnant was
effectively disturbed, with more baryon transport indicating a larger amount of ‘beam baryon blowup’.

29Primordial kT : an additional soft p⊥ component that is injected on top of the p⊥ generated by the initial-state shower
itself, see Ref. [5, Section 7.1].
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Flavour Physics and CP Violation
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Abstract
We present the invited lectures given at the second Asia-Europe-Pacific School
of High-Energy Physics (AEPSHEP), which took place in Puri, India in Novem-
ber 2014. The series of lectures aimed at graduate students in particle experi-
ment/theory, covering the the very basics of flavour physics and CP violation,
some useful theoretical methods such as OPE and effective field theories, and
some selected topics of flavour physics in the era of LHC.

Keywords
Lectures; flavor; CP violation; CKM matrix; flavor changing neutral currents;
GIM mechanism.

1 Short introduction
We present the invited lectures given at the second Asia-Europe-Pacific School of High-Energy Physics
(AEPSHEP), which took place in Puri, India in November 2014. The physics background of students
attending the school are diverse as some of them were doing their PhD studies in experimental parti-
cle physics, others in theoretical particle physics. The lectures were planned and organized, such that
students from different background can still get benefit from basic topics of broad interest in a modern
way, trying to explain otherwise complicated concepts necessary to know for understanding the current
ongoing researches in the field, in a relatively simple language from first principles.

These notes present a small compilation of several results that over the years has become standard
in particle physics, and more concretely in the area of flavour physics. These are by no means a complete
and self-contained course in flavour physics, but rather a brief introduction to several topics that should
be explored in more detail by additional references for the interested readers. For the topics addressed
in these notes there are several textbooks and review articles that have become standard references; here
we compile an incomplete list:

• For aspects concerning the building blocks of gauge theories and the standard model see, for
example, [1]
• For CP and flavour aspects in particle physics the books [2–4] are two excellent sources, as well

as the more specific reviews [5–18]
• For topics related with effective field theories we refer the reader to [19–23]

2 The building blocks in particle physics
2.1 What is flavour and why do we care?
In Particle Physics one attributes quantum numbers to particles in order to classify them as representa-
tions of the symmetries describing the dynamics of the underlying model. This classification allows us
to extract a lot of information just from first principles. In nature there are several copies of the same
fermionic gauge representation, i.e. several fields that are assigned the same quantum numbers. We
then say that different copies belong to different flavours (or families). Flavour physics describes the
interactions that distinguish between flavours, i.e. between the different copies.

The fermions can interact through pure gauge interactions. These interaction are related to the
unbroken symmetries and mediated therefore by massless gauge bosons. They do not distinguish among
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the flavours and do not constitute part of flavour physics. Fermions can also have Yukawa interactions,
i.e. interactions where two fermions couple to a scalar. These interactions are source of flavour and CP
violation. Within the Standard Model (SM), flavour physics refers to the weak and Yukawa interactions.

Flavour physics can predict new physics (NP) before it’s directly observed. Some examples are:

• The smallness of Γ(KL → µ+µ−)/Γ(K+ → µ+ν) allowed for the prediction of the charm quark
• The size of ∆mK allowed for the charm mass prediction
• The measurement of εK allowed for the prediction of the third generation
• The size of ∆mB allowed for a quite accurate top mass prediction (∼ 150 GeV)

• The measurement of neutrino flavour transitions led to the discovery of neutrino masses

2.2 Discrete symmetries in particle physics
In this section we present the discrete symmetries C, P and T , which play a leading role in the construc-
tion of the present model of particle physics. These three symmetries do not leave, separately, the SM
Lagrangian invariant but their product CPT does (at least everything points on that direction). These
discrete symmetries give rise to multiplicative conservation laws. They have three levels of action: on
the particle states, on the creation and annihilation operators, and on the fields. The action on one level
determines the action on the other two. The main properties of these symmetries are:

• Charge Conjugation
Charge conjugation on the states reverses the quantum numbers of particles that are associated with
internal symmetries. The charge conjugate of a particle is another particle with the same energy
and momentum but opposite charges (anti-particle). Charge conjugation on the fields converts a
field ψ(x) into a field ψc(x) with opposite internal quantum numbers. If charge conjugation is a
symmetry of the quantum field theory, there must exist a unitary operator C which represents it.
We can use charge conjugation in order to eliminate final states for scattering and decay processes
and to provide a link between different processes involving charged particles.
• Parity

Classical parity is any element in the component of the Lorentz group that contains the matrix P =
diag(1,−1,−1,−1). Parity, like charge conjugation, gives rise to a multiplicative conservation
law. For example, the η meson and the pions are pseudoscalars (eigenstates with eigenvalue −1
as opposed "+1 for scars), and so the decay η → π+π− is forbidden by conservation of parity.
However, since parity transforms space, the eigenvalues of parity depend on the orbital angular
momentum of a state and the intrinsic parity of a state is not in general conserved.
• Time Reversal

The idea of time reversal is to take the time evolution of some system and reverse it. To separate
the effects of charge conjugation from those of time reversal, it is customary to assume that time
reversal preserves the internal quantum numbers of all particles. In classical mechanics, time
reversal can be implemented by changing the sign of the Hamiltonian. If we suppose that this
effect is achieved in quantum theory by a unitary transformation UT , we get

U †T e
iHtUT = eiHt ⇒ U †THUT = −H ⇒ HUT |n〉 = −EnUT |n〉 , (1)

for any state |n〉, entering in conflict with the principle that energy should be bounded from below.
The way to solve this is by dropping the unitary operator and represent time reversal by an anti-
unitary operator operator T .

Tables 1–2 summarize some of the most important transformations under these symmetries.
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Table 1: Discrete symmetry transformations for photon, gluon, complex scalar and fermion fields. We have
defined: ψc = Cψ

T
and sa is +1 for a = 1, 3, 4, 6, 8 while −1 for a, 2, 5, 7.

Fields transformations
Photon:
PAµ(t, ~r)P† = Aµ(t,−~r)
T Aµ(t, ~r)T −1 = Aµ(−t, ~r)
CAµ(t, ~r)C† = −Aµ(t, ~r)

CPAµ(t, ~r)CP† = −Aµ(t,−~r)

Gluon:
PGaµ(t, ~r)P† = Gaµ(t,−~r)
T Gaµ(t, ~r)T −1 = saGaµ(−t, ~r)
CGaµ(t, ~r)C† = −sGaµ(t, ~r)

CPGaµ(t, ~r)CP† = −saGaµ(t,−~r)

Complex scalar:
Pφ(t, ~r)P† = eiαpφ(t,−~r)
T φ(t, ~r)T −1 = eiαtφ(−t, ~r)
Cφ(t, ~r)C† = eiαcφ†(t, ~r)
CPφ(t, ~r)CP† = eiαφ†(t,−~r)

Fermion:
Pψ(t, ~r)P† = eiβpγ0ψ(t,−~r)
T ψ(t, ~r)T −1 = eiβtγ∗0γ

∗
5C
∗ψ
†
(−t, ~r)

Cψ(t, ~r)C† = eiβcφc(t, ~r)

CPψ(t, ~r)CP† = eiαγ0Cψ
T

(t,−~r)

Pψ(t, ~r)P† = e−iβpψ(t,−~r)γ0

T ψ(t, ~r)T −1 = e−iβtψ†(−t, ~r)(C−1)∗γ∗5γ
∗
0

Cψ(t, ~r)C† = eiβcψc(t, ~r)

CPψ(t, ~r)CP† = e−iαψT (t,−~r)C−1γ0

Table 2: Symmetry transformation properties of some fermionic bilinears under the action of discrete symmetries.
Overall phases and the coordinates have been omitted.

Bilinear P T C CP CPT
ψχ ψχ ψχ χψ χψ χψ

ψγ5χ −ψγ5χ ψγ5χ χγ5ψ −χγ5ψ −χγ5ψ

ψPL,Rχ ψPR,Lχ ψPL,Rχ χPL,Rψ χPR,Lψ χPR,Lψ

ψγµχ ψγµχ ψγµχ −χγµψ −χγµψ −χγµψ
ψγµγ5χ −ψγµγ5χ ψγµγ5χ χγµγ5ψ −χγµγ5ψ −χγµγ5ψ

ψγµPL,Rχ ψγµPR,Lχ ψγµPL,Rχ −χγµPR,Lψ −χγµPL,Rψ −χγµPL,Rψ
ψσµνχ ψσµνχ −ψσµνχ −χσµνψ −χσµνψ χσµνψ

2.3 Basic Building Blocks of the SM
In this section we shall briefly present the building blocks of the SM, taking special attention to the rel-
evant sector for flavour physics. Modern Quantum Field Theories are based on the gauge principle: The
Lagrangian is invariant under a continuous group of local transformations. For each group generator
there necessarily arises a corresponding vector field called the gauge field, responsible for ensuring the
Lagrangian invariance under the local group transformations.

Following the above principle, modern theories are developed through three simple steps:

(1) Define the gauge symmetry
(2) Choose the representations of the matter content under the symmetry
(3) Choose the way your original symmetry is broken

The first two steps define the model in the unbroken phase. We then need a way to break this symmetry
since at low energies we know that only charge (and colour) is manifestly preserved.

The best example satisfying the above three conditions and having an enormous success when
confronting with data is the SM. The model construct upon the gauge group (step (1))

GSM = SU(3)C × SU(2)L × U(1)Y . (2)
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From the gauge principle, each generator of GSM has a associated gauge vector field (first four lines of
the table on the right in Table 3). The known matter fields are embedded in irreducible representations
of GSM (step (2)) and are presented on the left table in Table 3. The gauge fields interact with matter

Table 3: Standard model particle content, symmetry representations and forces.

Matter Flavour GSM

qLα ≡
(
uLα
dLα

) (
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
(3,2, 1/6)

uRα uR , cR , tR (3,1, 2/3)
dRα dR , sR , bR (3,1,−1/3)

`Lα ≡
(
νLα
eLα

) (
νLe
eL

)
,

(
νLµ
µL

)
,

(
νLτ
τL

)
(1,2,−1/2)

eRα eR , µR , τR (1,1,−1)

Bosons Force
Gaµ Strong
W±µ , Z0

µ Weak
Aµ EM

φ =

(
φ+

φ0

)
Yukawa-type
(1,2, 1/2)

through the covariant derivative, which can be expressed in terms of the physical gauge bosons as

Dµ = ∂µ − igsGaµ
λa
2
− ig

(
W+
µ T+ +W−µ T−

)
− ieAµQ−

ig

cW
Z0
µ

(
T3 − s2

WQ
)
, (3)

with (T±)ij = (|εij | ± εij)/(2
√

2) and (T3)ij = δij(−1)ij/2 for the SU(2) doublet representations.
The electric charge Q is a linear combination of the generator of U(1)Y and the diagonal generator of
SU(2)L, and reads Q = Y + T3. The full SM Lagrangian is now a combination of several “distinct”
parts which can, in many scenarios, be studied separately. We write it as

LSM = Lgauge
Kin + Lfermion

Kin + LHiggs + LYukawa + Lgf + LFP . (4)

The termsLgf andLFP denote the gauge fixing and Faddeev-Popov Lagrangian, respectively. While these
contributions are very important for the self-consistency of the model, for flavour physics they play no
role and, therefore, shall be ignored in these notes. The other Lagrangian terms are presented in Table 4.
A useful summary of Feynman rules for the SM can be found in [24].

Table 4: Standard model Lagrangian equations for the four relevant sectors. With the following definitions: Gaµν =

∂µG
a
ν − ∂νGaµ + gsf

abcGaµG
b
ν , (a, b, c = 1, ..., 8), W a

µν = ∂µW
a
ν − ∂νW a

µ + gεabcW a
µW

b
ν (a, b, c = 1, ..., 3),

Bµν = ∂µBν − ∂νBµ, Y u,d,` the up, down and charged-lepton Yuwaka coupling matrices and φ̃ = iτ2φ
∗.

Sector Lagrangian

Lgauge
kin −1

4G
aµνGaµν − 1

4W
aµνW a

µν − 1
4B

µνBµν

Lfermion
kin q0

LαiD/ q
0
Lα + u0

RαiD/u
0
Rα + d0

RαiD/ d
0
Rα + `0LαiD/ `

0
Lα + e0

RαiD/ e
0
Rα

LHiggs (Dµφ)† (Dµφ)− V (φ)

LYukawa −Y d
αβ q

0
Lαφd

0
Rβ − Y u

αβ q
0
Lαφ̃u

0
Rβ − Y `

αβ `
0
Lαφe

0
Rβ + h.c.

In the SM, step (3) is is achieved through the scalar doublet field φ, or Higgs field. In the Higgs
sector, the Lagrangian LHiggs contains the scalar potential V (φ) which has the general form

V (φ) = µ2
φ φ
†φ+

λφ
2

(φ†φ)2 =
λφ
2

(
φ†φ+

µ2
φ

λφ

)2

+ const. . (5)
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The Higgs potential is responsible for the electroweak symmetry breaking SU(2)L ⊗U(1)Y → U(1)Q.
This can be achieved spontaneously when the mass parameter µ2

φ, in Eq. (5), becomes negative. In
this scenario 〈φ†φ〉 = 0 becomes a local maximum and the absolute minimum is shifted to the non-
zero vacuum expectation value 〈φ†φ〉 ≡ v2 = −2µ2

φ/λφ. The Higgs field can be rewritten in a more
convenient basis, making use of the gauge freedom, in which only the physical components (the ones
associated with physical particles) are present. This is known as the unitary gauge and the scalar doublet
takes the form

φ =




0
v + h√

2


 ,

degrees
of

freedom
:





φ+ and Im{φ0} are the Goldstone bosons. “Rotated away”;

Re{φ0} was shifted, such that h represents the true
oscillations around the absolute minimum.

(6)

In this basis it becomes clear that the gauge part of the kinetic term in the Higgs Lagrangian induces
masses to some of the gauge bosons, i.e. to the ones associated with the broken generators,

(Dµφ)† (Dµφ) ∼ m2
WW

+
µ W

µ−+
1

2
m2
ZZ

0
µZ

µ0+· · · , with:





m2
W =

g2v2

4
, m2

Z =
g2v2

4c2
W

,

mA = 0 and mG = 0 .

(7)

Before closing this short overview on the SM building blocks, it is useful to do a simple consistency
check and look at the degrees of freedom in the process of spontaneous symmetry breaking (SSB).
We can restrict ourself to the SU(2)L ⊗ U(1)Y → U(1)Q sector. Before SSB, the theory consists
of one complex scalar doublet field (four degrees of freedom) and four gauge bosons (two degrees of
freedom each); there are 4 + 2 × 4 = 12 degrees of freedom. After the SSB, only U(1)Q remains as
an explicit symmetry, i.e. only one generator leaves the vacuum invariant, so one would expect three
Nambu-Goldstone bosons associated to the broken generators. Since we are working with a local gauge
group, the Higgs mechanism allows these bosons to be absorbed as the longitudinal polarization of gauge
bosons, W± and Z0. So, in the end, we will have one real scalar field (one degree of freedom), three
massive gauge bosons (three degrees of freedom each), and one massless gauge boson (the photon with
two degrees of freedom). Summing up, after SSB there are 1 + 3× 3 + 2 = 12 degrees of freedom, the
same as in the unbroken phase.

Note that no field except for the Higgs has a mass term in the unbroken phase. The Higgs mecha-
nism is responsible for the mass generation of fermions and gauge bosons, but not of its own mass!

2.4 The flavour structure of the SM
The origin of a non-trivial flavour structure in the SM is directly related with the presence of Yukawa
interactions and gauge currents. The fermionic kinetic term is responsible for the weak charged currents
(CC), weak neutral currents (NC) and for the electromagnetic neutral currents. They are given by

Charged Current: LCC =
g√
2

(
u0
Lαγ

µd0
LαW

+
µ + e0

Lαγ
µν0
LαW

−
µ

)
+ h.c. , (8a)

Neutral Current: LNC = eQff0γµf0Aµ +
g

cW
f0γµ

(
gfV − g

f
Aγ5

)
f0Zµ , (8b)

where
gfV =

1

2
T f3 − s2

WQf , gfA =
1

2
T f3 , (9)

are the vector (V) and axial (A) couplings of the the gauge boson Z0 to the fermions, respectively. The
letter f denotes any of the fermion fields. The charge of a fermion is denoted by Qf , while T f3 denotes
the weak isospin associated with the left-handed fermion.
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When a theory has several fields with the same quantum numbers (flavours) one is free to rewrite
the Lagrangian in terms of new fields, obtained from the original ones by means of a unitary transfor-
mation which mixes them. Why only unitary transformations? In principle, one can mix particles with
the same quantum numbers in ‘any way’ we want. However, by keeping it unitary we guarantee that
the kinetic terms remain unaltered. This is important since having the kinetic Lagrangian with no cross
terms, known as the canonical basis, allow us to easily identify our field content. We can define a set of
transformations called weak basis transformations (WBTs) which are defined as transformations of the
fermion fields which leave invariant the kinetic terms as well as the gauge interactions, i.e. they respect
the gauge symmetry in the unbroken phase. The WBTs depend on the gauge theory that one is consid-
ering because, if there are more gauge interactions, then, in principle there will be less freedom to make
WBTs. In the SM we define the WBTs as

WBTs:





q0
L = W q

Lq
′
L , u

0
R = W u

Ru
′
R , d

0
R = W d

Rd
′
R ,

`0L = W `
L`
′
L , e

0
R = W e

Re
′
R ,

−→





Y ′u = W †LYuW
u
R ,

Y ′d = W †LYdW
d
R ,

Y ′e = W `†
L YeW

e
R .

(10)

where W q,`
L and W u,d,e

R are 3× 3 unitary matrices acting in the flavour space. The transformed Yukawa
matrices Y ′u,d,e have the same physical content as the original ones. To see the usefulness of WBTs let
us start from a general basis where the mass matrix Yu,d,e have 18 free parameters each (9 modulus and
9 phases). An arbitrary n × n complex matrix A can be diagonalized by a bi-unitary transformation as
U †LAVR = diag. This is known as single value decomposition. Using this information we can pass from
a general basis to the new basis

flavour basis I:



Yu = UuLλuV
u†
R

Yd = UdLλdV
d†
R

Ye = U eLλeV
e†
R

WBTs

W q
L = UdL , W

u
R = V u

R , W
d
R = V d

R

W `
L = U eL , W

e
R = V e

R

flavour basis II:



Y ′u = V †CKMλu

Y ′d = λd

Y ′e = λe

,
(11)

with λu = diag(yu, yc, yt), λd = diag(yd, ys, yb) and λe = diag(ye, yµ, yτ ) the real and positive fermion
Yukawas (defined from the fermion masses, i.e. yf =

√
2mf/v), and VCKM = Uu†L UdL. This unitary

matrix is the well known Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrix [25, 26]. As we
shall see in a while, this matrix only has four degrees of freedom. Therefore, in the flavour basis II we
only have 6(masses) + 4(mixing) = 10 free parameters in the quark sector, mush less than in the general
flavour basis I. Note that this is actually the minimal number of free parameters that one can have, since
it is equal to the physical ones. Basis with less free parameters cannot be obtained by WBTs and they
would have physical implications (correlations between physical observables).

The WBTs become much a more fundamental aspect of the model when Y u,d,` → 0. In this
limit the WBTs given in Eq. (10) leave the whole Lagrangian invariant and therefore are promoted to
symmetry generators of a global U(3)5 symmetry

Gglobal ≡ U(3)5 = SU(3)3
q × SU(3)2

l × U(1)5 , (12)

where

SU(3)3
q = SU(3)qL × SU(3)uR × SU(3)dR and SU(3)2

l = SU(3)`L × SU(3)eR . (13)

In the presence of Yukawa terms only a reminiscent of the original global symmetry Gglobal remains
unbroken. The easiest way to see which symmetry is left invariant is to look at the flavour basis II,
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introduced in Eq. (11), in which the number of parameters is reduced to the physical ones. In this
basis the only field transformations that leave the Lagrangian invariant are rephasing rotations, and the
presence of the VCKM matrix only allows one rotation in the quark sector. From this simple inspection
we see that after the introduction of the Yukawa terms we are left with the residual symmetry

Gglobal −→ Gaccidental
global ≡ U(1)B × U(1)e × U(1)µ × U(1)τ , (14)

with, of course, the gauge U(1)Y symmetry unbroken. These are called accidental symmetries, they
were not imposed in the SM construction but end up appearing as a consequence of renormalizability
and perturbativity.

Looking at the WBTs as symmetry generators is actually very convenient in order to count the
number of physical parameters present in the model. No mater which parameterization we choose for the
SM flavour couplings Yu,d,e, the number of physical parameters always remains unaltered. To learn how
to count these parameters, let us first look at the charged lepton relevant flavour couplings Y e

αβ`
0
Lαφe

0
Rβ .

Our goal is to find out how many of the 18 real parameters are actually physical. Now, if we look at
the limit Y e → 0, we know that the Lagrangian will enjoy of a larger global symmetry, i.e. a U(3)`L ×
U(3)eR global symmetry. Another piece of information that is crucial is the residual symmetry of our
model. Concerning the leptonic sector, as was seen above, we have the accidentalU(1)e×U(1)µ×U(1)τ .
In other words, the presence of Ye induces the breaking

Higgs︷ ︸︸ ︷
U(1)φ×

Leptons︷ ︸︸ ︷
U(3)`L × U(3)eR︸ ︷︷ ︸

1+9+9 generators

−→
Ye

U(1)e × U(1)µ × U(1)τ × U(1)Y︸ ︷︷ ︸
1+1+1+1 generators︸ ︷︷ ︸

15 broken generators

, (15)

leading to the existence of 15 broken generators. We have included the Higgs and the hypercharge
symmetries for completeness1. We can now use the broken generators to rotate Y e into a “convenient”
symmetry-breaking direction. These rotations are nothing more that the WBTs described in Eq. (11),
resulting in three physical parameters, i.e. the charged lepton masses. The result found in this simple
exercise is actually more general and can be stated as follows

# Physical parameters = # Total parameters−# Broken generators (16)

Let us apply this result to the quark sector, we have

# Total parameters:

Yd︷ ︸︸ ︷
(9 + 9) +

Yu︷ ︸︸ ︷
(9 + 9) = 36

# Broken generators: 3× 9︸ ︷︷ ︸
U(3)3

− 1︸︷︷︸
U(1)B

= 26
=⇒ # Physical parameters: 10 . (17)

Note that Eq. (14) is only true at the classical level since non-perturbative quantum effects break this
down to just one abelian group U(1)3B−L. However, this does not affect the parameter counting.

The Yukawa sector of the SM is responsible for the mass generation of the fermion species, after
SSB. The fermion mass assignment in the SM is given by a Dirac mass term, −mf f̄f = −mf (f̄LfR +
f̄RfL). Although it is invariant under U(1)Q, the fermion mass term is not invariant under SU(2)L ⊗
U(1)Y . Indeed, a fermion mass term is not a singlet under SU(2)L, and, besides, the right- and left-
handed components of f have different weak hypercharges. As a result, no pure fermionic mass terms

1Note that while in the SM these symmetries can be ignored in the process of counting broken generators, they play a crucial
role in several extension of the SM.
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can be constructed consistently with gauge invariant principles, as it was mention in the prevous sec-
tion. In the SM fermion masses can arise from Yukawa interactions with the scalar Higgs doublet, i.e
the Lagrangian part LYukawa. Using the Higgs filed given in Eq. (6), one can see that the Yukawa La-
grangian splits into two parts, one relative to the fermion masses, Lmass, and another corresponding to
the interaction of the Higgs field with the fermions, Lhff,

Mass: − Lmass = M e
αβ e

0
Lαe

0
Rβ +Mu

αβ u
0
Lαu

0
Rβ +Md

αβ d
0
Lαd

0
Rβ + h.c. , (18a)

hff: − Lhff =
1√
2
Y `
αβ e

0
Lαe

0
Rβ h+

1√
2
Y u
αβ u

0
Lαu

0
Rβ h+

1√
2
Y d
αβ d

0
Lαd

0
Rβ h+ h.c. , (18b)

with the fermion mass matrices given by

Mf =
v√
2
Y f , with f = {u, d, e} . (19)

At this stage it is worth pointing out that, in the SM, no renormalizable mass term for neutrinos can be
constructed due to the absence of the right-handed fields νR. Also, a particular feature of the SM is to
have the mass terms proportional to the Yukawa couplings, leading to the absence of flavour changing
neutral currents (FCNC) in the scalar sector. Extensions beyond SM in general “struggle”, i.e. need
additional assumptions beyond new particles, in order to reproduce this alignment [27].

The Higgs mechanism breaks the SU(2)L group, which means that in the broken phase we are able
to rotate the fields in the same SU(2)L multiplet through different unitary transformations. Therefore,
we see from the new weak basis defined in Eq. (11) that we can redefine the field dL as d′L = VCKMdL
such that the mass matrices are both diagonal and charged current sector becomes

LCC =
g√
2

(
uLα (VCKM)αβ γ

µdLβW
+
µ + eLαγ

µνLαW
−
µ

)
+ h.c. , (20)

with

VCKM ≡ Uu†L UdL =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (21)

The unitary matrix present in the leptonic sector is the identity matrix since ν0
L can be rotated freely

through a unitary transformation, due to the absence of a mass term. Therefore, in the SM the only
tree-level flavour-changing interactions are present in the charged currents. Since the matrix VCKM is a
3× 3 unitary matrix, it has 9 free parameters. However, the additional freedom

VCKM −→ K†uVCKMKd , (22)

with Ku,d phase diagonal matrices, reflecting the freedom in redefining the phases of the quarks in the
mass basis, leads to 4 mixing parameters. Therefore, as stated before the weak basis in Eq. (11) has
4 mixing + 6 masses = 10 parameters. This is known as the quark physical basis, since the number of
free parameters coincides with the number of physical ones. Working in the mass eigenbasis, i.e. in the
basis where the mass matrix of the fermions are real and positive, one can shift all the non-trivial flavour
structure into the charged current sector. This is a very convenient basis to work in, since the fermion
propagation gets quite simple. Still, we could opt to work in another basis at the cost of introducing extra
complexity in the model.

In the SMCP violation shows up in the complex Yukawa couplings. If weCP conjugate a typical
Yukawa term we get, see Table 2,

CP
(
ψLαφψRβ

)
CP† = ψRβφ

†ψLα . (23)
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We then see that by requesting CP invariance in the Yukawa sector we get

CPLYukCP† = LYuk ⇒ Yαβ = Y ∗αβ , (24)

i.e. real Yukawa couplings are the necessary condition for CP -invariance. We can do the same exercise
but now for the charged current Lagrangian, in the mass eigenbasis,

CPLCCCP† = LYuk ⇒ Vαβ = V ∗αβ , (25)

i.e. real CKM mixing matrix as the necessary condition. Therefore, the complex nature of the Yukawa
couplings (or CKM mixing matrix) is the origin of CP violation in the SM. The above results are basis
dependent. We know, that there are always phases that can be rotated away. So the question is whether
we have a basis independent way of checking forCP violation. The answer is yes, the above conclusions
can be formulated in a basis invariant way through the quantity [28]

Tr[Hu, Hd]
3 = 6i

∑

α,β=u,c,t,...

∑

α′,β′=d,s,b,...

= m4
αm

2
βm

4
α′m

2
β′ ImQαα′ββ′ (26)

where
Qαα′ββ′ ≡ Vαα′Vββ′V ∗αβ′V ∗βα′ (27)

is the rephasing-invariant quartet. For three generations, the above invariant reads

Tr[Hu, Hd]
3 = 6i(m2

t −m2
c)(m

2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) J , (28)

with J ≡ ImQuscb = Im[VusVcbV
∗
ubV

∗
cs] known as the Jarlskog invariant [29]. The CKM-mechanism is

the origin of CP violation in the SM and lead to the nobel prize attribution in 2008 to Kobayashi and
Maskawa who were the first to propose three flavours of quarks as the origin of CP violation [26].

Different parametrizations for the CKM mixing matrix can be used. We shall follow the standard
procedure and use the Particle Data Group (PDG) parametrization [30]

VCKM = R1(θ23)Γ(δ)R2(θ13)Γ(−δ)R3(θ12)

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 (29)

where cij ≡ cos θij , sij ≡ sin θij , R(θij) is the rotation in the plane i − j and Γ(δ) = diag(1, 1, eiδ).
The three sij are the real mixing parameters and δ is the Kobayashi-Maskawa phase. While the range
of this phase is 0 ≤ δ < 2π, the measurements of CP violation in K decays force it to be in the range
0 < δ < π. From experiments we know that there exists a strong hierarchy on the mixing angles, i.e.
s13 � s23 � s12 � 1. We can write the mixing angles as

s12 =λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb
Vus

∣∣∣∣ ,

s13e
iδ =V ∗ub = Aλ3(ρ+ iη) =

Aλ3(ρ̄+ iη̄)
√

1−A2λ4

√
1− λ2[1−A2λ4(ρ̄+ iη̄)]

.

(30)

With these relations we ensure that
ρ̄+ iη̄ = −VudV

∗
ub

VcdV
∗
cb

(31)

is independent of any phase convention. The above expression allows us to express the CKM matrix in
terms of: λ, A, ρ̄ and η̄. While the parametrization in term of these parameter is exact, it is common to
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approximate this result for small λ. Up to fourth power corrections, we can expand the bar parameters
as ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2) known as Wolfenstein parametrization [31]

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (32)

The unitarity on the CKM matrix implies relations between its entries:

Columns Orthogonality:
∑

i

VijV
∗
ik = δjk ,

Rows Orthogonality:
∑

i

VijV
∗
kj = δik .

(33)

The six vanishing combinations are sums of complex number, so that they can be represented as triangles
in the complex plane. The most used triangle is given by

Fig. 1: Unitary triangle representation in the complex plane ρ̄, η̄

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , . (34)

In Fig. 1 we have divided each side by the best-known value, i.e. VcdV ∗cb. The angles of the unitary
triangle are also represented in Fig. 1 and are given by

β = φ1 = arg
(
−VcdV

∗
cb

VtdV
∗
tb

)
, α = φ2 = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, γ = φ3 = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (35)

Measurements of CP -violating observables can constraint these angles and also the parameters η̄, ρ̄.
Using the Wolfenstein parametrization as a give line, we can get simpler expressions for the unitary
triangle angles

β =π + arg(VcdV
∗
cb)− arg(VtdV

∗
tb) ' −arg(Vtd) ,

γ =π + arg(VudV
∗
ub)− arg(VcdV

∗
cb) ' −arg(Vub) .

(36)

With the help of the unitary triangle where the d-quark is replaced by the s-quark, i.e.

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (37)
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we can define another angle

βs = arg
(
−VtsV

∗
tb

VcsV ∗cb

)
= π + arg(VtsV

∗
tb)− arg(VcsV

∗
cb) ' π + arg(Vts) . (38)

This allow us to write the CKM mixing matrix up to O(λ5) as

VCKM '



|Vud| |Vus| |Vub|eiγ
−|Vcd| |Vcs| |Vcb|
|Vtd|eiβ −|Vts|eiβ |Vtb|


 . (39)

The area of all triangles is the same and is given by half of the absolute value of the Jarlskog invariant,
i..e Area∆ = |J |/2. The Jarlskog invariant in the parametrizations presented above take the form

J = Im [VudVcsV
∗
usV

∗
cd] =

1

8
sin(2θ12) sin(2θ13) sin(2θ23) sin δ ' A2λ6η . (40)

The absolute values of the CKM matrix can be found in the following processes:

• |Vud|: β-decay (A,Z)→ (A,Z + 1) + e− + ν̄e;
• |Vus|: K-decay K+ → π0 + `+ + ν`;
• |Vcd|: ν-production of c’s ν` + d→ `− + c;
• |Vcs|: charm decay D± → K0 + `± + ν`;
• |Vub|: B-decay b→ u+ `− + ν̄`;
• |Vcb|: B-decay b→ c+ `− + ν̄`;
• |Vtd| and |Vts| : ∆m in B0 −B0;
• |Vtb|: top decays.

The result of a global fit gives [30]

|VCKM | =




0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012

0.00886+0.00033
−0.00032 0.04050.0011

−0.0012 0.99914± 0.00005


 (41)

or in terms of the Wofenstein parameters

λ = 0.22537± 0.00061 , A = 0.814+0.023
−0.024 , ρ̄ = 0.117± 0.021 and η̄ = 0.353± 0.013 . (42)

The Jarlskog invariant is J = (3.06+0.21
−0.20) × 10−5. The angles of the unitary triangle can be tested in

B-decays:

• sin 2β: B0
d → J/ΨKS

• sin 2α: B0
d → π+π−

• sin 2γ: B0
s → D±SK

∓

2.5 GIM mechanism
We have learned that the structure of the SM is such that it ensures the absence of the tree level flavour
changing neutral currents. Both neutral gauge boson and Higgs boson couplings are diagonal in the
flavour mass eigenstate basis. Thus, the flavour changing neutral-current processes involving quarks are
generated in higher orders in the electroweak interactions. Since they are strongly suppressed in Nature,
it is interesting to discuss the predictions for them in the electroweak theory. For the quark sector, the
generic examples of flavour changing neutral-current transitions are the reactions:
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• ds̄→ d̄s (∆S = 2), bd̄→ b̄d (∆B = 2);
• s→ dγ (∆S = 1), b→ sγ (∆B = 1).

Such transitions are responsible for physical processes like K0 −K0 and B0 −B0 mixing, for radiative
flavour changing decays of strange and bottom mesons and for decays like K → πe+e− or B →
K∗e+e−. On dimensional grounds, we then get the following estimate for the s̄d → s̄d transition

Fig. 2: In (a) ∆S = 2 box diagrams. In (b) ∆S = 1 penguin contribution.

amplitude, depicted in Fig. 2a , with doubleW -boson, u- and/or c-quark exchange (the contribution from
the top quark exchange is strongly suppressed by its very small mixing with the first two generations of
quarks):

A ∼
(

e√
2sW

)4 1

M2
W

∑

i,j=u,c

V ∗isVidV
∗
jsVjd

[
1 +O

(
m2
qi

M2
W

,
m2
qj

M2
W

)]

∼αGF


(V ∗tsVtd)

2 +O


 ∑

i,j=u,c

V ∗isVidV
∗
jsVjd

m2
q

M2
W






(43)

In the last step we have used the CKM unitarity condition:
∑

i,j=u,c V
∗
isVid = −V ∗tsVtd. We then see that

the leading term is suppressed by very small CKM angles as the double top quark exchange contribution.
The remaining terms, which are proportional to larger CKM angles, are in turn suppressed by light quark
masses.

Such a mechanism of suppression of the flavour changing neutral-current amplitudes is known as
the Glashow-Iliopoulos-Maiani (GIM) mechanism [32]. The strong suppression of the flavour changing
neutral-current transitions is indeed a SM prediction. However, this follows not only from the structure
of the theory but also depends on the empirical pattern of the quark masses and mixing angles. Therefore,
from the SM point of view, the successful predictions for the flavour changing neutral-current processes
are rather accidental.

Let us now look at the ∆F = 1 transitions at the qualitative level. At one-loop, they receive
contributions from box diagrams and also from the so-called penguin diagrams like in Fig. 2b. The
corresponding amplitude goes as

A ∼ αGF
∑

i,j=u,c

V ∗idVis ln
m2
qi

M2
W

+O(V ∗tdVts) = αGFV
∗
udVus ln

m2
u

m2
c

+O(V ∗tdVts) . (44)

Note that the dimensionless coefficient of the first term contains logarithms of light quark masses. Since
the masses of the up and charm quarks are quite different, there is no additional suppression except for
the usual one in this case (unlike the previously considered box diagrams). We can then say that the GIM
mechanism is power-like in the case of box diagrams, but only logarithmic in the case of certain penguin
diagrams.
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3 Effective theories and their use in flavour physics

Fig. 3: General schematic idea behind effective field theories

Effective field theory formalism is a very powerful tool when several scales are present in a quan-
tum field theory. The principle in effective field theories is to just include the appropriate degrees of
freedom to describe physical phenomena occurring at a given scale. By integrating out degrees of free-
dom at shorter distances we try to simplify the model at longer distances. This approach works best when
there is a large separation between length scale of interest and the length scale of the underlying dynam-
ics. Figure 3 summarizes the general philosophy behind this approach. We summarize the effective field
theory formalism in three simple steps [23]:

• Step 1: Choose a cutoff scale Λ . M (with M some fundamental scale) and divide the field into
high- and low-frequency modes, i.e.

φ = φH︸︷︷︸
Fourier modes

ω > Λ

+ φL︸︷︷︸
Fourier modes

ω < Λ

. (45)

The component φL describes the low-energy physics through the correlation functions

〈0|T{φL(x1) · · ·φL(xn)}|0〉 =
1

Z[0]

(
−i δ

δJL(x1)

)
· · ·
(
−i δ

δJL(xn)

)
Z[jL]

∣∣∣∣
JL=0

, (46)

where the generating functional is

Z[JL] =

∫
DφLDφH eiS(φL,φH)+i

∫
dDxJL(x)φL(x) and S(φL, φR) =

∫
dDxL(x) . (47)

We have used D for the space-time dimension and only the external source of the low-frequency
modes is relevant for the correlation functions computed at low energy.
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• Step 2: Integrate out the high-frequency modes below the scale Λ, i.e.

Z[JL] ≡
∫
DφL eiSΛ(φL)+i

∫
dDxJL(x)φL(x)

︸ ︷︷ ︸
No φH dependence

and eiSΛ(φL) =

∫
DφHeiS(φL,φH) . (48)

The action SΛ(φL) is known as “Wilsonian effective action”, which is non-local on scale ∆xµ ∼
1/Λ and depends on the choice made for the cutoff scale Λ.
• Step 3: Expand the non-local action in terms of local operators composed of light fields, which is

known as operator-product expansion (OPE). This expansion is possible in the low-energy regime,
i.e. E � Λ, and leads to

SΛ(φL) =

∫
dDxLeff

Λ (x) , with Leff
Λ (x) =

∑

i

Wilson
coeff.
︷︸︸︷
Ci

local
operator
︷ ︸︸ ︷
Qi(φL(x))

︸ ︷︷ ︸
Effective Lagrangian

(49)

The procedure described above is quite general and powerful, allowing us to obtain the Lagrangian
relevant for a given scale. However, the effective Lagrangian is a sum of infinite operators which would
naively destroy the predictability of the effective theory. In order to understand why this is not the case
one can use the remarkably simple and powerful “naive dimensional analysis” (NDA) approach:

NDA:
(c = ~ = 1)





[m] = [E] = [p] = [x−1] = [t−1] = 1

Assuming [Ci] = −γi
then Ci = giM

−γi . (50)

The coupling gi is dimensionless and form “naturalness”O(1), whileM is the fundamental energy scale
of the theory. Taken for simplicity the effective Lagrangian dimensionless, the effective operator Qi
scales for E � Λ < M as

gi

(
E

M

)γi
=




O(1) if γi = 0
� 1 if γi > 0
� 1 if γi < 0

(51)

This tell us that only the couplings that have γi < 0 are relevant. Therefore, given a precision goal we can
truncate the series inLΛ in a given order inE/M . This implies a finite number of operators, which brings
back the predictability of the effective theory. The dimension γi can change due to interactions, this is
known as anomalous dimension. We can be more formal and require the action to be dimensionless. In
this case if δi = [Oi] the coefficient dimension is γi = δi − D. We summarize the operator relevance
classification in Table 5.

As a final comment note that while most of the time φH is identified with a heavy particle, the
method presented above is much more general. As opposed to integrate out some heavy particle, we
can work on a scenario where only light particles are present. In this case we can lower the cutoff scale
Λ by a small amount Λ − δΛ and integrate out high frequencies of the light particle. This implies that
the operators Oi(φL) will remain the same, as no contribution from extra particles are present. And the
effects of lowering the cutoff scale must enter into the effective couplings Ci(Λ). This approach gives an
intuitive understanding of the running of the coupling constants.

3.1 Weak currents and OPE
Hadrons can decay through weak interaction mediation, between their quark constituents. The typical
binding energy of quarks in hadrons is O(1 GeV), much below the weak scale O(MW,Z). The idea
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Table 5: Classification of operators based on their dimension.

Dimension Importance for E → 0 Terminology

δi < D, γi < 0 grows
Relevant operators (super-renormalizable)
• usually unimportant;
• protected by symmetries

δi = D, γi = 0 constant
Marginal operators (renormalizable)
• renormalizable QFT

δi > D, γi > 0 falls
Irrelevant operators (non-renormalizable)
• the most important (relevant)
• sensitive to fundamental scale

behind the OPE treatment is to start from short-distance dynamics and refine it step-by-step with non-
perturbative corrections. Let us look at the part of generating functional containing the W boson [6],
i.e.

ZW ∼
∫

[dW+][dW−]Exp
(
i

∫
d4xLW

)
, (52)

with

LW =− 1

2

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW−ν − ∂νW−µ

)
+M2

WW
+
µ W

−µ

+
g2

2
√

2
(J+
µW

+µ + J−µW
−µ)

(53)

the Lagrangian density containing the kinetic terms of the W boson and its interactions with charged
currents. These interactions can be extracted from Eq. (20). Since we are not interested in W as external
sources, we have omitted gauge self-interactions. Following the usual procedure in QFT, we can perform
a Gaussian functional integration which leads us to a non-local action for quarks

Snl =

∫
d4xLkin −

g2
2

8

∫
d4xd4y J−µ (x)∆µν(x, y)J+

ν (y) , (54)

where ∆µν(x, y) is the W boson propagator. In the unitary gauge it reads

∆µν(x, y) =

∫
d4k

(2π)4
∆µν(k)e−ik(x−y) , ∆µν(k) =

−1

k2 −M2
W

(
gµν −

kµkν
M2
W

)
. (55)

The idea now is to formally expand in 1/M2
W powers the propagator, which allows us to get a local

action. To lowest order the propagator becomes

∆µν(x, y) ' gµν

M2
W

δ(4)(x− y) , (56)

which in turns lead to the effective Hamiltonian

Heff = −GF√
2
J−µ J

+µ(x) = −GF√
2
V ∗αβVα′β′(dαuβ)V−A(dα′uβ′)V−A . (57)

We have adopt the notation (ψ̄χ)V∓A ≡ ψ̄γµ(1 ∓ γ5)χ. This simple example introduces the main
idea behind OPE, as already mentioned in the previous section. The above computation is nothing more
than the usual ‘integrating out’ in effective theories. While we have used a path integral approach, the
computation done is equivalent to the expansion of the W boson propagator in the amplitude matrix
element, obtained from the usual Feynman rules approach (Fig. 4).
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Fig. 4: Diagrammatic representation of the new local operators obtain from OPE formalism

Therefore, in general the OPE allows us to write an effective Hamiltonian of the form

Heff =
GF√

2

∑

i

λiCKMCi(µ)Qi , (58)

where λiCKM contains CKM factors (1 for semi-leptonic operators, 2 for quark operators), Ci(µ) are the
Wilson coefficients and Qi is a local operator governing the process in question. The coefficients Ci(µ)
are weights of the operatorsQi on the effective Hamiltonian, i.e. they describe the strength with which a
given operator contributes to the Hamiltonian. These are scale dependent couplings and can be calculated
using perturbative methods (as long the scale µ is not too small). The operators Oi are the leading terms
in the short-distance expansion described above; in the cases we are interested in, these will correspond
to four-fermion operators. Therefore, at short distances we see processes mediated by heavy particles as
point-like interactions.

We are interested in evaluating decay amplitude for a given type of meson P . With the help of the
effective Hamiltonian this can be done quite ‘easily’ using

A(P → F ) = 〈F |Heff |P 〉 =
GF√

2

∑

i

λiCKMCi(µ)〈F |Qi(µ)|P 〉 , (59)

where F denotes the final state, i.e we are looking at P → F . The matrix element 〈F |Qi(µ)|P 〉 is
evaluated at the renormalization scale µ and is the step that in general requires non-perturbative methods.

Equation (59) and Fig. 5 compiles the essence of the OPE method which allow the calculation of
an amplitude A(P → F ) to be factorize into two contributions:

Fig. 5: Typical full theory description vs. OPE description

Short-distance effects
The computation of short-distance effects, or perturbative calculation, are all contained in the
Wilson coefficients Ci(µ). These coefficients will include the contributions from integrating out
the heavy particles such as top quarks, gauge bosons W and Z, and any new heavy field present
in SM extensions. All effects of QCD interactions above the factorization scale µ are contained
in these coefficients. Ci(µ) are independent of external states. This means that they are always
the same no matter we consider the physical amplitudes where quarks are bound inside mesons, or
any other unphysical amplitude with on-shell or off-shell quarks in the external lines.
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Long-distance effects
The computation of long-distance effects is present in the calculation of the matrix element 〈Qi(µ)〉.
This means that all low-energy contributions below the factorization scale µ are encoded in the ma-
trix element. The task is then to evaluate local operators between hadron states. This is the hardest
task to do in the OPE treatment, since it requires in general a non-perturbative analysis.

As we saw, the most difficult aspect of OPE is the non-perturbative computation of 〈Qi(µ)〉. Still the
method offers a considerably simplified approach to the full amplitude computation. Next we shall
illustrate the OPE in the context of K0 → π+π− decay. We are, therefore, interested in the transition

Fig. 6: General representation of K0 → π+π− decay. The two diagrams on the right are the typical leading
contributions.

s → uud as shown in Fig. 6. A convenient choice is to take all the light quarks to be massless and with
the same off-shell momentum p. The Wilson coefficients Ci(µ) can then be found in perturbation theory
from the 3 simple steps:

(1) Compute the amplitude (Afull) of the process in the full theory, i.e. in the presence of the W
propagator, for arbitrary external states

(2) Compute the matrix element 〈Qi(µ)〉 with the same treatment for external states
(3) Compute Ci(µ) from the relation Afull = Aeff = GF√

2

∑
i λ

i
CKMCi(µ)〈Qi(µ)〉; this is known as

matching of the full theory onto the effective one

Note that the choice of momenta leads to a gauge dependent amplitude. However, this cancels out
with the gauge dependence from 〈Qi(µ)〉 such that Ci(µ) is physical. To order O(αS) we have four
diagrams contributing: 1 with just W propagator; 1 (× 3 combinations) with W and gluon. Without
QCD corrections we get the effective dimension 6 operator

Q2 = (siui)V−A(ujdj)V−A , (60)

with i, j color indices (the notation Q2 is for historical reasons.). When QCD corrections are taken into
account we at at order O(αS) the effective operator

Q1 = (siuj)V−A(ujdi)V−A , (61)

which resembles Q2 apart from the different color structure (see Fig. 7). This structure is obtained with
the help of the SU(N) Gell-Mann matrices identity

(siT
a
ikuk)(ujT

a
jldl) = − 1

2N
(siui)(ujdj) +

1

2
(siuj)(ujdi) . (62)
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Fig. 7: Colour structure of typical QCD correction

Gluonic corrections to the matrix element of the original operatorQ2 involve not just contributions from
itself but additional structure fromQ1. We say that the operatorsQ1 andQ2 mix under renormalization.
Therefore, a convenient basis for the above operators is

Q± =
Q2 ±Q1

2
, C± = C2 ± C1 , (63)

where the renormalization of + and − are independent. We can then evaluate the full amplitude, which
gives

−iAfull = −iGF√
2
V ∗usVud

[(
1 + γ+αs ln

M2
W

−p2

)
S+ +

(
1 + γ−αs ln

M2
W

−p2

)
S−

]
, (64)

where S± is the tree-level matrix elements of Q± and γ± some numbers to be specify. This ends our
first step. Next, we compute the matrix elements in the effective theory, which is given by

−i〈Q±〉 = −iGF√
2
V ∗usVud

[
1 + γ±αs

(
1

ε
+ ln

µ2

−p2

)]
S± . (65)

The last step is matching. From Eq. (64) and Eq. (65) one easily reads the Wilson coefficient to be

C± = 1 + γ±αs ln
M2
W

µ2
. (66)

A note of caution is in order. In the computation of the amplitude we did not perform any quark field
renormalization. However, the renormalization in the effective theory can be explicitly seen in Eq. (65).
Having divergent Wilson coefficients would be a clearly signal of inconsistency. Therefore, the above
result was obtained after a renormalization on 〈Q±〉 and using the MS scheme [6]. The presence of this
divergence in Eq. (65) is directly linked to the lnMW dependence of the decay amplitude in the full
theory, which diverges in the limit MW →∞.

Summing up, the effective Hamiltonian describing K0 → π+π− decay is given by

Heff =
GF√

2
V ∗usVud (C+(µ)Q+ + C−(µ)Q−) (67)

up to O(αslog) and with C± given by Eq. (66). In obtaining the decay amplitude from Eq. (67), the
matrix elements 〈2π|Q±|K〉 have to be taken, normalized at an appropriated scale µ. A typical scale for
K decays is µ ' 1 GeV � MW . Going beyond leading logarithmic approximation O(αslog) makes
the Wilson coefficients and matrix elements scheme dependent. This scheme dependence is unphysical
and cancels out in the product of Wilson coefficient and matrix elements, as long as both quantities are
evaluated with the same scheme.
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In the example above we have whitenessed in first hand the OPE factorization. Schematically, its
has the following structure

(
1 + αSγ± ln

M2
W

−p2

)
→
(

1 + αSγ± ln
M2
W

µ2

)(
1 + αSγ± ln

µ2

−p2

)
, (68)

which is achieved from the splitting of the logarithm into the sum of two terms. From the integration
over virtual moment point of view this splitting reads

∫ M2
W

−p2

dk2

k2
=

∫ M2
W

µ2

dk2

k2

︸ ︷︷ ︸
Short-distance effects

or
large virtual momenta

+

∫ µ2

−p2

dk2

k2

︸ ︷︷ ︸
Long-distance effects

or
low virtual momenta

. (69)

At this stage it is important to have a closer look to the Wilson coefficients found above. We can
rewrite them, for convenience, as

C± = 1 +
γ±(αS)

2
ln

µ2

M2
W

, with γ±(αS) =
αS(µ)

4π
γ

(0)
± , and γ

(0)
± =

{
4
−8

. (70)

The factor multiplying the logarithm is O(1/10) for µ = 1 GeV and therefore sizeable for perturbation
theory; the logarithm itself is large O(10) making perturbation theory to fail. We then have the scenario
where the coupling constant is small, but we have large logarithms. This is actually a common situation
in QFTs. The naive perturbation done in terms of the coupling constant is no longer enough, and we must
resum the terms (αS lnµ/MW )n to all orders n. This procedure reorganizes the pertubation series by
solving the renormalization group equation (RGE) for the Wilson coefficients. The RGE for the Wilson
coefficients follows from the fact that the unrenormalized coefficients C(0)

± = ZcC± are µ independent.
This then leads us to

d

d lnµ
C±(µ) = γ±(αS)C±(µ) with γ± = −Z−1

c

d

d lnµ
Zc . (71)

The parameters γ±(αS) are also known as anomalous dimension of C±. The Wilson coefficients are
dimensionless numbers in the usual sense. However, because of the presence of the scaleMW in the log-
arithm, these coefficients will depend on the energy scale µ. Therefore, γ±(αS) are scaling dimensions,
measuring the rate of change of these coefficients with a changing scale µ. In general, when not working
in the diagonal basis, these scaling dimensions are matrices mixing all Wilson coefficients. Using the
RGE for the coupling constant

dαS
d lnµ

= −2β0
α2
S

4π
, (72)

we can solve Eq. (71)

C±(µ) =

[
αS(MW )

αS(µ)

]γ(0)
± /2β0

C±(MW ) =

[
1

1 + β0(αS(µ)/4π) ln(M2
W /µ

2)

]γ(0)
± /2β0

, (73)

where we have used the condition C±(MW ) = 1, since no large logarithms should be present at µ =
MW . The expression above contains the logarithmic corrections αS lnMW /µ to all orders in αS . This
shows the general result that renormalization group method allows us to go beyond the naive perturbation
theory.

Two final remarks are in order. This approach can be generalized to go from MW down to mc,
for example. Then we can do this by steps, first evolving down to the scale mb and then see the theory
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below this scale as an effective theory where the b quark has been integrated out. One should satisfy the
continuity of the running coupling at the threshold, also known as threshold effects. These effects should
be, in general, taken in consideration in the running. The second important effect is the generation of
QCD penguin operators.

3.2 Effective Hamiltonians: Some examples
In this section we summarize the Standard Model operator basis for FCNC processes, which is useful
when computing quantities based on the OPE formalism. We use the notation q = u, d, s, c, b. The loop
functions appearing in the Wilson coefficients are given by

Ẽ0(x) =− 7

12
+O(1/x)

f(x) =
x

2
+

4

3
lnx− 125

36
+O(1/x)

g(x) =− x

2
− 3

2
lnx+O(1/x).

(74)

• Current-current operators

Fig. 8: Tree-level contribution and typical QCD correction topologies

Qp1 =(sip
i)V−A(pjb

j)V−A , C1(MW ) = 1− 11

6

αs(mW )

4π

Qp2 =(sip
j)V−A(pjb

i)V−A , C2(MW ) =
11

2

αs(mW )

4π

(75)

• QCD Penguin operators:

Fig. 9: QCD penguin topology

Q3(5) =(sib
i)V−A

∑

q

(qjq
j)V∓A , C3(5) = −1

6
Ẽ0

(
m2
t

m2
W

)
αs(mW )

4π

Q4(6) =(sib
j)V−A

∑

q

(qjq
i)V∓A , C4(6) =

1

2
Ẽ0

(
m2
t

m2
W

)
αs(mW )

4π

(76)
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Fig. 10: Electroweak penguin topologies

• Electroweak Penguin operators:

Q7(9) =(sib
i)V−A

∑

q

3

2
Qq(qjq

j)V±A ,

C7 = f

(
m2
t

m2
W

)
α(mW )

6π
, C9 =

[
f

(
m2
t

m2
W

)
+

1

s2
W

g

(
m2
t

m2
W

)]
α(mW )

4π

Q8(10) =(sib
j)V−A

∑

q

3

2
Qq(qjq

i)V±A , C8(10) = 0

(77)

• Electromagnetic and chromo-magnetic dipole operators:

Fig. 11: Topology for electro- and chromo-magnetic dipoles. The cross means mass insertion.

Q7γ =− e

8π2
mb sLiσ

µνbiRFµν , C7γ = −1

3
+O

(
m2
W

m2
t

)

Q8g =− g

8π2
mb sLiσ

µν(T a)ijb
j
RG

a
µν , C8g = −1

8
+O

(
m2
W

m2
t

) (78)

• ∆S = 2 and ∆B = 2 operators

Fig. 12: Box topology

Q(∆S = 2) =(sid
i)VA(sjd

j)V−A , Q(∆B = 2) = (bid
i)VA(bjd

j)V−A (79)
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• Semileptonic operators:

Fig. 13: Semileptonic penguin topology

Q7V,A =(sid
i)V−A(ee)V,A , Q9V,10A = (sib

i)V−A(µµ)V,A ,

Qν̄ν =(sid
i)V−A(νν)V−A , Qµ̄µ = (sid

i)V−A(µµ)V−A
(80)

With the list of d = 6 operators we are able to describe several SM flavour changing processes.
For example, the relevant interactions to the parton process b → s + q̄q can be parametrized though the
Hamiltonian

Hb→s+qq̄SM = −GF√
2


∑

p=u,c

V ∗pbVps
∑

i=1,2

Ci(µ)Qpi + V ∗tbVts
∑

i=3,··· ,10

Ci(µ)Qi


 . (81)

If we are also interested in b → s transitions with a photon or a lepton pair in the final state, additional
dimension-six operators must be included. We then get,

Hb→s+γ(ll̄)
SM = Hb→s+qq̄SM − GF√

2
V ∗tbVts [C7γ(µ)Q7γ + C8g(µ)Q8g + C9V (µ)Q9V + C10A(µ)Q10A] .

(82)

3.3 Effective theories for heavy flavours: a brief introduction
What is there to integrate out, when there are no heavy particles? The answer to this question is in looking
for different scales, e.g. in B−physics mb � ΛQCD. Then we can use the effective theory approach and
integrate out all short-distance fluctuations associated with scales� ΛQCD. In this scenario physics at the
mb scale are short-distance effects, while heavy quark related hadronic physics governed at confinement
scale ΛQCD reflect long-distance effects. The separation of the short-distance and long-distance effects
associated with these two scales is vital for any quantitative description in heavy-quark physics.

The prime example of this separation is on heavy quark effective field theory (HQET) [19]. What
is the physical picture behind HQET?

• Scale hierarchy mb � ΛQCD, α2(mB) is perturbative (asymptotic freedom)
• Heavy quark - heavy quark system is perturbative
• Heavy-light bound states are not perturbative
• Characterized by a small Compton wavelength; λQ ∼ 1/mQ � 1/ΛQCD ∼ Rhad(typical

hadronic size)

These requirements simplify the physics of hadrons made up of a heavy quark. In mesons composed
of a heavy quark, Q, and a light antiquark, q̄ (and gluons and qq̄ pairs), the heavy quark acts as a static
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color source with fixed four-velocity, vµ , and the wave function of the light degrees of freedom becomes
insensitive the mass (flavour) of the heavy quark. Since the magnetic moment of a heavy quark scales
like µQ ∼ 1/mQ, its spin also decouples. This results in

SU(2nQ) spin-flavour symmetry: In heavy-quark limit (mQ → ∞), configuration of light
degrees of freedom is independent of the spin and flavour of the heavy quark.

Fig. 14: Pictorial representation of the Hadron. The black central dot represents the heavy quark and the gay are
the light degrees of freedom. Rh is the size of the hadron while λQ the Compton wave length of the heavy quark.

In the effective description that we are looking there are some other important aspects:

• Heavy quarks carries almost all momentum;
• The momentum exchange between heavy quark and light degrees of freedom is predominantly soft

(soft gluon exchange):

∆PQ = −∆Plight = O(ΛQCD) ⇒ ∆vQ = O(ΛQCD/mQ) ; (83)

• Heavy-quark velocity becomes a conserved quantum number in mQ →∞ limit. This is known as
the Georgi “velocity superselection rule”;
• Spin doublets such as (B,B∗) should be degenerate in the heavy quark limit: mB∗ − mB =

46 MeV� ΛQCD;
• Away from the heavy-quark limit, 1/mQ corrections are expected: mB∗−mB = (c1−c0)λ2/mb+
O(1/m2

b);
• The approach gives a prediction for (mB∗ −mB)/(mD∗ −mD) ' mc/mb ' 1/3; Not far from

the experimental value of 0.32.

We can now construct an effective theory that makes the effects of the heavy-quark symmetry
explicit, i.e. the HQET. The heavy quark Q in the interactions with soft partons (ligh quark q and gluon
g) is almost on-shell, such that we can expand the momentum as

pµQ = mQv
µ

︸ ︷︷ ︸
hadron

rest frame
vµ = (1, 0, 0, 0)

+ kµ︸︷︷︸
residual off-shell

momentum
|k| = O(ΛQCD)

(84)

Expanding the heavy quark propagator we get

i

p/−mQ
=
i(p/+mQ)

p2 −m2
Q

=
i(mQv/+ k/+mQ)

2mQv.k + k2
=

i

v.k

1 + v/

2
+ · · · . (85)

We can see that in this expansion the propagator is no longer dependent on the mass of the heavy quark, a
clear manifestation of the heavy quark flavour symmetry. To derive the effective Lagrangian is convenient
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to decompose the Dirac spinor components into ‘upper’ (large) and ‘lower’ (small) pieces

Q(x) = e−imQc.x[hv(x) +Hv(x)︸ ︷︷ ︸
carry the
residual k

] , with




hv(x) = eimQv.xP+Q(x)

Hv(x) = eimQv.xP−Q(x)
(86)

and P± = (1 ± v/)/2 are projector operators. In the rest frame of the heavy quark P+ = (1 + γ0)/2
project onto the heavy quark components. An useful identity of these projectors is

P+γ
µP+ = P+v

µP+ = vµP+ . (87)

Note that hv(x) and Hv(x) are eigenstates of the velocity operator, i.e. v/hv(x) = hv(x) and v/Hv(x) =
−Hv(x). In terms of these fields the QCD Lagrangian can now be written as

LQ =Q(iD/−mQ)Q

=hviD/hv +Hv(iD/− 2mQ)Hv + hviD/Hv +HviD/hv

=hviv.Dhv +Hv(−iv.D − 2mQ)Hv + hviD/⊥Hv +HviD/⊥hv

(88)

where we defined i ~Dµ
⊥ = iDµ − vµiv.D, orthogonal to the heavy-quark velocity v.D⊥ = 0. In the

rest frame, Dµ
⊥ = (0, ~D) contains the spatial components of the covariant derivative. We see from the

Lagrangian above that the component hv(x) is a massless mode describing a quantum fluctuation around
mass-shell, while Hv(x) is a massive mode with mass 2mQ describing a hard quantum fluctuation. This
heavy component can be integrated out by using the classical equation of motion

Hv =
1

2mQ + iv.D
iD/⊥hv =

1

2mQ

∞∑

n=0

(
− iv.D

2mQ

)n

︸ ︷︷ ︸
small

k � mQ

iD/⊥hv −→ Hv '
(
D

mQ

)
hv ∼

(
ΛQCD
mQ

)
hv .

(89)
The effective Lagrangian can then be written as

LHQET = hviv.Dshv + hviD/⊥
1

2mQ + iv.D
iD/⊥hv −→ non-local

= hviv.Dshv +
1

2mQ

∑∞
n=0 hviD/⊥

(
− iv.D

2mQ

)n
iD/⊥hv −→ local

(90)

Therefore at leading only hv(x) contributes, and the effects of Hv(x) are suppressed by powers of
ΛQCD/mQ, i.e.

LHQET = hviv.Dshv +O(1/mQ) , with iDµ
s = i∂µ + gsG

µ
s︸ ︷︷ ︸

soft gluons

. (91)

It is straightforward to extend the above result for higher order of power corrections. At the next to
leading order we get

LHQET = hviv.Dshs︸ ︷︷ ︸
SU(2nQ)

spin-flavour
symmetry

+
1

2mQ
[

−hv(i ~Ds)
2hv

↑
hv(iDs⊥)2hv︸ ︷︷ ︸
kinetic-energy

operator

+

−4hv ~S. ~Bchv
↑

Cmag(µ)
gs
2
hvσµνG

µν
s hv

︸ ︷︷ ︸
chromo-magnetic
from pert. theo.

] + · · · , (92)
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where we have make use of the identity

P+iD/⊥iD/⊥P+ = P+

[
(iD⊥)2 +

gs
2
σµνG

µν
]
P+ (93)

and i[Dµ, Dν ] = gsG
µν is the gluon fields-strength tensor. Here ~S is the spin operator and Bi

c =
−1/2εijkGjk are the components of the colour-magnetic field. The Wilson coefficient is computed
through RGE-improved perturbation theory [33]. The leading term is SU(2nQ) spin-flavour invariant,
i.e. no reference to the heavy-quark mass (flavour symmetry) and invariant under the spin rotations
hv → (1 + i/2~ε.~σ)hv. The flavour symmetry is broken by the operators arising at order 1/mQ and
higher. Note, however, that at this order the kinetic term conserves the spin symmetry, while the chromo-
magnetic operator breaks the both flavour and spin symmetry. Figure 15 shows the changes in the
Feynman rules in the new formalism.

Fig. 15: Feynman rules QCD vs. HQET

Up to now we have integrated out small components in the heavy-quark fields and obtained an
effective local Lagrangian that describes the long-distance physics in the full theory. The way heavy-
quarks participate in the strong interaction is through their couplings to gluons. These can be soft (virtual
momentum small, of the order of the confining scale) or hard (virtual momentum large, of the order of the
heavy quark mass). In the approach used above we have integrated out the hard gluons as they, contrarily
to the soft ones, break the heavy-quark symmetries. However, hard gluons are important once we decide
to add short-distance effects. Their effects lead to a renormalization of the coefficients of the operators
in the HQET Lagrangian, which are calculable in perturbation theory. There is no renormalization at
leading order. Nor renormalization of the kinetic operator due to Lorentz invariance (“reparametrization
invariance”). However, the chromo-magnetic interaction will be affected.

Heavy-quark symmetry is particularly predictive for exclusive semi-leptonic B decays such as
B → D(∗)`ν̄. It allow us to extract the CKM matrix elements |Vcb| and |Vub| with controlled theoretical
uncertainties, through the correlations shown in Fig. 16 .

A clever use of heavy-quark symmetries allows us to calculate the decay rate at the special kine-
matic point of maximum momentum transfer to the leptons (v = v′), i.e. “zero recoil” point. How can
we deal with confinement effects in this hadronic process? We can consider elastic scattering of a B me-
son, B̄(v) → B̄(v′), induced by the vector current Jµ = b̄γµb. The heavy quark acts as a static source
of color, and the light quarks orbit around it before the action of the vector current. On average, the b
quark and the B meson have the same velocity. The action of the current is to replace instantaneously (at
t = t0) the color source by one moving at speed v′. Nothing happens if v = v′, i.e. the final state remains
a B meson with probability 1 (case (a) in Fig. 17). However, for v 6= v′, the probability for an elastic
transition is less than 1. The light constituents find them selfs interacting with moving source. Soft
gluons will have to be exchanged in order to rearrange them and form a B meson moving at a different
speed, leading to a form factor suppression. In the Heavy-quark mass limit, i.e. mb →∞, the process is
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Fig. 16: Spin-flavour symmetry between B- and D-system

described by a dimensionless probability function ξ(v.v′) called the Isgur-Wise function. The hadronic
matrix elements describing the scattering process is then

1

mB
〈B̄(v′)|bv′γµbv|B̄(v)〉 = ξ(v.v′)(v + v′)µ , with ξ(v.v′) ≤ 1 , ξ(1) = 1 . (94)

The 1/mB factor on the left-hand side of the equation compensates the normalization of the meson state,
i.e. 〈B̄(p′)|B̄(p)〉 = 2mBv

0(2π)3δ(~p − ~p′). We can then use the flavour symmetry to replace b− by
c−quark in the final state, thereby obtaining a B → D transition. This transforms the scattering process
into a weak decay process.

Nothing will happen to the matrix element since in the heavy-quark limit the Lagrangian is invari-
ant under the bv′ → cv′ replacement (case (b) in Fig. 17), i.e.

1√
mBmD

〈D̄(v′)|cv′γµbv|B̄(v)〉 = ξ(v.v′)(v + v′)µ . (95)

This is a very interesting prediction of the heavy-quark symmetry. Since in general the matrix element
of a flavour-changing current between two pseudo-scalar mesons is given by

〈D̄(v′)|cv′γµbv|B̄(v)〉 = f+(q2)(p+ p′)µ − f−(q2)(p− p′)µ , (96)

with f±(q2) the form factors and q = p − p′. The heavy-quark symmetry relates the two a priori
independent form factors to one and the same function, i.e. the Isgur-Wise function (f±(q2) ∝ ξ(v.v′)).

Next, we can use the spin symmetry to flip the spin of c−quark in final state, thereby obtaining a
B → D∗ transition (case (c) in Fig. 17). The current gets transformed to

〈D∗(v′, ε)|cv′γµ(1− γ5)bv|B(v)〉 = 〈D∗(v′, ε)|cv′γµbv|B(v)〉 − 〈D∗(v′, ε)|cv′γµγ5bv|B(v)〉 (97)

with
1√

mBmD∗
〈D∗(v′, ε)|cv′γµbv|B(v)〉 =iεµναβε∗νv

′
αvβξ(v.v

′)

1√
mBmD∗

〈D∗(v′, ε)|cv′γµγ5bv|B(v)〉 =[ε∗µ(v.v′ + 1)− v′µε∗.v]ξ(v.v′)
(98)

26

S.J. LEE

150



Fig. 17: Evolution with time of the hadron for the different scenarios where spin-flavour symmetry is applied.

where ε denotes the polarization of the D∗ meson. The general Lorentz-invariant matrix elements of
these hadron currents are given by

〈D∗(v′, ε)|cv′γµbv|B(v)〉 =
2i

mB +mD∗
εµναβε

∗νp′αpβV (q2)

〈D∗(v′, ε)|cv′γµγ5bv|B(v)〉 =(mB +mD∗)ε
∗
µA1(q2)− ε∗.p

mB +mD∗
(p+ p′)µA2(q2)

− 2mD∗
ε∗.q
q2

qµA3(q2) + 2mD∗
ε∗.q
q2

qµA0(q2)

(99)

with
A3(q2) =

mB +mD

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2) . (100)

In general, these exclusive semileptonic decays processes can be described by six a priori independent
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hadronic form factors



For 0− → 0− transition: I → F`ν`

〈F (v′)|V cb
µ |I(v)〉 =

√
mImF [ξ+(v.v′)(v + v′)µ + ξ−(v.v′)(v − v′)µ]




For 0− → 1− transition: I → F ∗`ν`

〈F ∗(v′)|V cb
µ |I(v)〉 = i

√
mImF ∗ξV (v.v′)εµναβεµνv′αvβ

〈F ∗(v′)|Acbµ |I(v)〉 =
√
mImF ∗ [ξA1(v.v′)(v.v′ + 1)ε∗µ − ξA2(v.v′)ε∗.vvµ
−ξA3(v.v′)ε∗.vv′µ] .

(101)

with Vµ andAµ the vector- and axial-currents, respectively. The heavy-quark limit imposes the relations:

ξ+(v.v′) = ξV (v.v′) = ξA1(v.v′) = ξA3(v.v′) = ξ(v.v′) and ξ−(v.v′) = ξA2(v.v′) = 0 . (102)

These relations are model independent and are a consequence of QCD in the limit mb,mc � ΛQCD. For
the processes described below the form factor correlations read

ξ(v.v′) =
2
√
mBmD

mB ±mD
f±(q2) =

2
√
mBmD∗

mB +mD∗
V (q2) =

2
√
mBmD∗

mB +mD∗
A0(q2)

=
2
√
mBmD∗

mB +mD∗
A2(q2) =

2
√
mBmD∗

mB +mD∗

[
1− q2

(mB +mD∗)2

]−1

A1(q2) ,

(103)

with q2 = m2
B +m2

D∗−2mBmD∗v.v
′. These from factors play an important role in describing semilep-

tonic decays as B̄ → D(∗)`ν. In terms of the recoil variable ω = v.v′, the differential decay rate in the
heavy quark limit for these processes is given by

dΓ(B → D(∗)`ν̄)

dω
=
G2
F η

2
ew

48π3
|Vcb|2 × F ×





(ω2 − 1)1/2F2
∗ (ω) , for B → D∗

(ω2 − 1)3/2F2(ω) , for B → D

, (104)

with ηew ' 1 a parameter accounting for the electroweak corrections to the four-fermion operator medi-
ating the decay and

F =





m5
Br

3(1− r)2(ω + 1)2

(
1 +

4ω

ω + 1

1− 2rω + r2

(1− r)2

)
, r =

mD∗

mB
for D∗

(mB +mD)2m3
D for D

(105)

Both F(ω) and F∗(ω) are equal in the heavy-quark mass limit and are normalized such that F(∗)(1) = 1,
allowing a model independent extraction of |Vcb|. The above differential decay rate expressions receive
symmetry-breaking corrections, since the mass of the heavy quark is not infinitely large:

• Corrections of order O(αns (mQ)) (hard gluons) can be calculated perturbatively;
• Power corrections of order O((ΛQCD/mQ)n) are non-perturbative and more difficult to control.
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These corrections have been estimated and schematically give

F∗(1) '1 + cA(αs)︸ ︷︷ ︸+

Luke
Theorem
︷ ︸︸ ︷
0× ΛQCD

mQ
+

lattice/
models

︷ ︸︸ ︷
cons×

Λ2
QCD

m2
Q

+ · · ·

Perturbative

F(1) '1 +
︷ ︸︸ ︷
cV (αs) + const× ΛQCD

mQ︸ ︷︷ ︸
lattice/
models

+ · · ·

(106)

The absence of the O(ΛQCD/mQ) term for B → D∗`ν̄` at the zero-recoil limit, i.e. ω = 1, is a
consequence of the Luke theorem:

The matrix elements describing the leading 1/mQ corrections to weak decay amplitudes vanish at
zero recoil, to all order in perturbation theory.

The reason why in the semi-leptonic decay B → D`ν̄` this is no longer true is more subtle and can be
found in [34]. Therefore, from the value of F∗(1) the value of |Vcb| is estimated to be

|Vcb| = (39.48± 0.5exp ± 0.74theo)× 10−3 from lattice QCD ,
|Vcb| = (41.4± 0.5exp ± 1.0theo)× 10−3 from QCD sum rules ,

(107)

showing the power of HQET in describing non-pertubative systems.

4 Some aspect of CP violation
4.1 CP violation in the Universe
One of the currents issues related with flavour physics and CP violation is the Baryon asymmetry of
the Universe. Our understanding of the Universe is based on the Standard Cosmological Model, where
the Universe expanded from a primordial hot and dense initial state at some finite time in the past (the
so-called Big Bang) and is then followed by a period of inflationary expansion that ensured the curvature
to become approximately zero [35]. After this inflationary epoch, the Universe continued to expand but
at a low rate. The rate of expansion is determined by the component of energy density that dominates the
total energy density; at the present time this is the so-called dark energy component, which causes the
expansion to accelerate due to its negative pressure.

In our surroundings the objects are mostly made of matter, e.g. planets, stars, etc.. The present
value of the baryon asymmetry of the Universe inferred from WMAP seven-year data combined with
baryon acoustic oscillations is [36]

ηB ≡
nB − nB̄

nγ
= (6.19± 0.14)× 10−10 , (108)

where nB , nB̄ and nγ are the number density of baryons, antibaryons and photons at present time,
respectively. The smallness of this quantity poses a challenge to both particle physics and cosmology. If
we take inflation for granted, then in the early Universe any primordial cosmological asymmetry would
be erased during the inflationary period. This is one argument that strongly suggests this asymmetry
to be dynamically generated, instead of being an initial accidental state. Sakharov realized the need of
three ingredients in order to create a baryon asymmetry from an initial state with baryon number equal
to zero [37]. The three conditions can be stated as follows:
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i) Baryon number violation;
ii) C and CP violation;

iii) Departure from thermal equilibrium.

The first condition is rather obvious. If there is no B violation, the baryon number is conserved in
all interactions and, therefore, commutes with the Hamiltonian at any time, i.e.

[B,H] = 0 ⇒ B(t) =

∫ t

0
[B,H]dt′ = 0 . (109)

The second condition is a little more delicate. Let us start by writing the baryon number operator

B̂ =
1

3

∑

i

∫
d3x : ψ†i (~x, t)ψi(~x, t) : , (110)

where ψi(~x, t) denotes the quark field of flavour i and :: denote the normal ordering. The C, P and T
transformations of these fields are given in Tables 1–2. Thus, the fermionic number satisfies the following
transformations

P : ψ†i (~x, t)ψi(~x, t) : P−1 = : ψ†i (−~x, t)ψi(−~x, t) : ,

C : ψ†i (~x, t)ψi(~x, t) : C−1 =− : ψ†i (~x, t)ψi(−~x, t) : ,

T : ψ†i (~x, t)ψi(~x, t) : T −1 = : ψ†i (~x,−t)ψi(~x,−t) : .

(111)

We can, therefore, find how the baryon number operator transforms under these operators. One gets

CB̂C−1 = −B̂ , (CP)B̂(CP)−1 = −B̂ , (CPT )B̂(CPT )−1 = −B̂ . (112)

Now, if C is conserved, then [C,H] = 0 and the expectation value of the baryon number is given by
〈
B̂(t)

〉
=
〈
eiHtB̂(0)e−iHt

〉
=
〈
C−1CeiHtB̂(0)e−iHt

〉
=
〈
eiHtCB̂(0)C−1e−iHt

〉

=−
〈
eiHtB̂(0)e−iHt

〉
= −

〈
B̂(t)

〉
.

(113)

We see that the expectation value
〈
B̂(t)

〉
is only different from zero if C is not a symmetry of the

Hamiltonian. The same is true for CP .

The last condition can be understood as follows. In thermal equilibrium, the thermal average
are weighted by the density operator ρ = e−βH, with β = 1/T . Assuming CPT invariance of the
Hamiltonian we get

〈
B̂(t)

〉
T

=Tr
[
eβHB̂

]
= Tr

[
(CPT )−1(CPT )eβHB̂

]
= Tr

[
eβH(CPT )B̂(CPT )−1

]

=−
〈
B̂(t)

〉
T
.

(114)

This means that, within a CPT invariant Hamiltonian, the thermal average is zero and no net baryon
asymmetry is generated since the inverse processes will destroy the asymmetry generated in the direct
decays. Departure from thermal equilibrium is very common in the early Universe when interaction rates
cannot keep up with the expansion rate of the Universe.

All three of these condition can be found in the SM, however the amount of CP violation from
the CKM mechanisms is to small in order to generate such an asymmetry.
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4.2 Weak and strong phases
CP is violated in nature by the weak interactions. The imposition of CP invariance in a transition
amplitude is expressed as

(CP) T̂ (CP)† = T̂ . (115)

In classical physics, the square of the CP transformation is identical to the identity transformation, and
therefore (CP)2 corresponds to a conserved quantum number. The value of (CP)2 for initial and final
states must be identical, and is a purely arbitrary phase. Without loss of generality one can choose
(CP)2 = 1. The CP transformations read

CP |i〉 = eiξi
∣∣i
〉
, CP

∣∣i
〉

= e−iξi |i〉 , (116)

with ξi an arbitrary phase. The CP constraints on the transition amplitudes from an initial state i to the
final states f and g are

Final state
f/f̄



〈f | T̂ |i〉 = ei(ξi−ξf )

〈
f
∣∣ T̂
∣∣i
〉

〈
f
∣∣ T̂ |i〉 = ei(ξi+ξf ) 〈f | T̂

∣∣i
〉 ,

Final state
g/ḡ



〈g| T̂ |i〉 = ei(ξi−ξg) 〈g| T̂

∣∣i
〉

〈g| T̂ |i〉 = ei(ξi+ξg) 〈g| T̂
∣∣i
〉 .

(117)
From these transition amplitudes one sees that the modulus of each process is equal to the modulus of
the CP conjugated one. Therefore, the CP -violating quantities are

Final state
f/f̄




∣∣∣〈f | T̂ |i〉
∣∣∣−
∣∣∣
〈
f
∣∣ T̂
∣∣i
〉∣∣∣

∣∣∣
〈
f
∣∣ T̂ |i〉

∣∣∣−
∣∣∣〈f | T̂

∣∣i
〉∣∣∣

,
Final state

b/b̄




∣∣∣〈g| T̂ |i〉
∣∣∣−
∣∣∣〈g| T̂

∣∣i
〉∣∣∣

∣∣∣〈g| T̂ |i〉
∣∣∣−
∣∣∣〈g| T̂

∣∣i
〉∣∣∣

↓ ↓
6= 0 =⇒ CP violation ⇐= 6= 0

(118)

If we only had one final state, say f , the relevant expressions would be the ones presented in the first line
of Eq. (117) and (118). In Eq. (117), we only have two phases for two complex equations and therefore
no other quantity beyond the one presented in Eq. (118) would violate CP . The fact that we have two
final states, f and g, leads to three arbitrary phases but four complex equations. Since we only have four
realCP -violating quantities in Eq. (118), a physicalCP condition on the phases of the decay amplitudes
must remain. One can find that the quantity

〈f | T̂ |i〉
〈
f
∣∣ T̂ |i〉 〈g| T̂

∣∣i
〉
〈g| T̂

∣∣i
〉
− 〈g| T̂ |i〉 〈g| T̂ |i〉 〈f | T̂

∣∣i
〉
〈f | T̂

∣∣i
〉

(119)

must vanish if CP invariance holds.

The presence of complex phases is closely related with CP violation. One simple argument to
support this statement is due to CPT invariance. If CPT is conserved then CP violation is the same as
T violation. Since T transforms a number into its complex conjugate, the CP violation must be related
to the presence of complex numbers. One should stress, however, that the phase of a transition amplitude
is arbitrary and non-physical, due to the freedom of phase redefinition of the kets and bras. Only phases
which are rephasing invariant can lead to CP violation. These are in general relative phases of transition
amplitudes. There are three types of phases that can arise in transitions amplitudes:

• ‘weak’ or CP -odd phases.
The weak phases are defined as the phases that change sign under CP conjugation, and usually
originate from complex couplings in the Lagrangian.
• ‘strong’ or CP -even phases.

The strong phases are the ones that remain unchanged underCP conjugation. They may arise from
the trace of products of an even number of γ matrices together with γ5, or final-state-interaction
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scatterings from on-shell states. The last one appears when the total amplitude for the decay i→ f
includes contributions from i → f ′ → f , where the decay i → f ′ is through weak interactions
and f ′ → f through strong or electromagnetic ones. If the intermediate states are on mass shell
this creates an absorptive part. These are also typical phases appearing on absorptive parts of loops
diagrams in perturbation theory.
• ‘spurious’ CP -transformation phases.

The spurious phases are global, purely conventional relative phases between the amplitude of a
process and the amplitude for the CP -conjugate process. These phases do not originate in any
dynamics, they just come from the assumed CP transformation of the field operators and on the
kets and bras they act upon [2].

4.3 Types of CP Violation
• CP -violation in Decays (direct CP violation)

This type of CP -violation occurs when a meson P and its CP -conjugate decay at different rates
to the same final state (up to CP conjugacy). This can be characterized by the relation

∣∣∣∣∣
Af̄
Af

∣∣∣∣∣ 6= 1 . (120)

In charged meson decays, where mixing is not present, this is the only source of CP violation:

af± =
Γ(P− → f−)− Γ(P+ → f+)

Γ(P− → f−) + Γ(P+ → f+)
=
|Af̄/Af |2 − 1

|Af̄/Af |2 + 1
. (121)

In order to have CP violation in transition amplitudes from i (̄i) to f (f̄), the transition amplitudes
need to be a sum of two or more interfering amplitudes. The way we can see this is through an
explicit example. Consider for instance

〈f |T |i〉 = Aei(δ+φ) ,
〈
f̄
∣∣T |̄i〉 = Aei(δ−φ+θ) , (122)

with A a real positive number, δ a strong phase, φ a weak phase and θ a spurious one. It is easy to
see that these transition amplitudes satisfy the first equation of Eq. (117) with

ξi − ξf = 2φ− θ , (123)

leading to
|〈f |T |i〉| −

∣∣〈f̄
∣∣T |̄i〉

∣∣ = A−A = 0 . (124)

Therefore, no CP violation is generated in such a transition. This is no longer true when there is
interference. For that, we consider

〈f |T |i〉 =A1e
i(δ1+φ1) +A2e

i(δ2+φ2) ,
〈
f̄
∣∣T |̄i〉 =A1e

i(δ1−φ1+θ1) +A2e
i(δ2−φ2+θ2) ,

(125)

where δi, φi and θi are the strong, weak and spurious phases, respectively. Now, it is no longer
possible to satisfy Eq. (117). We can evaluate the CP -violating quantity

|〈f |T |i〉|2 −
∣∣〈f̄
∣∣T |̄i〉

∣∣2

|〈f |T |i〉|2 +
∣∣〈f̄
∣∣T |̄i〉

∣∣2 =
−4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

2A2
1 + 2A2

2 + 4A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
. (126)

This expression will be used later on (in a different form) and, therefore, it is useful to make a few
remarks:
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– The existence of both weak and strong phases is crucial for CP violation;
– Only relative phases (weak and strong) are relevant in physical processes;
– The limiting case |φ1 − φ2| = |δ1 − δ2| = π/2 and A1 = A2 gives the maximum value of

the CP asymmetry;

It is possible to have CP violation without strong phases, if we have more than one final state and
its CP conjugate. For example, having the transition amplitudes

〈f |T |i〉 = A1e
i(δ1+φ1) , 〈f |T |̄i〉 = A1e

i(δ1−φ1+θ) ,

〈g|T |i〉 = A2e
i(δ2+φ2) , 〈g|T |̄i〉 = A2e

i(δ2−φ2+θ) ,
(127)

with f = f̄ and g = ḡ, we can build the quantity

〈f |T |̄i〉 〈g|T |̄i〉 − 〈g|T |i〉 〈f |T |i〉 = 2iA1A2e
i(δ1+δ2+θ) sin(φ1 − φ2) . (128)

In this quantity the strong phases are basically irrelevant and CP violation is dictated by the weak
phases. However, these two distinct final states must be correlated such that the decay involve
both simultaneously, otherwise this can not be an observable. This is actually the case in kaon de
decays to π+π− and π0π0 (see Sec. 4.4).
• CP -violation in mixing (indirect CP violation)

This type of CP violation occurs when degenerated neutral mesons are not the CP eigenstates.
This can be characterized by the relation

∣∣∣∣
q

p

∣∣∣∣ 6= 1 . (129)

This is the only source of CP violation in semileptonic final states such as P 0 → l+X . In such a
scenario the asymmetry can be observed in

aSL =
Γ(P 0

phys(t)→ l+X)− Γ(P 0
phys(t)→ l−X̄)

Γ(P 0
phys(t)→ l+X) + Γ(P 0

phys(t)→ l−X̄)
=

1− |q/p|2
1 + |q/p|2 . (130)

The meson P 0
phys(t) represents the time evolved state. As we shall see in Sec. 4.4,

aSL = Im
(

Γ12

M12

)
. (131)

This means that in our model we just need to know M12 and Γ12, in order to compute the CP
violating observable. However, in general Γ12 is plagued with large hadronic uncertainties, making
this computation more cumbersome.
• CP -violation in interference decays

This type of CP violation only occurs in decays where the final state f is common for both P 0

and P 0. This can be characterized by the relation

Imλf 6= 0 , (132)

where λf = (q/p)(A(P 0 → fCP )/A(P 0 → fCP )). One example is where this asymmetry can
be observed is in decays involving CP eigenstates with ±1 eigenvalues. Then we have the CP
violating observable

afCP (t) =
Γ(P 0 → fCP )− Γ(P 0 → fCP )

Γ(P 0 → fCP ) + Γ(P 0 → fCP )
. (133)
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In the B-system this leads to

afCP (t) = −1− |λfCP |2
1 + |λfCP |2

cos(∆mBt) +
2ImλfCP

1 + |λfCP |2
sin(∆mBt) (134)

The fist term on th l.h.s. corresponds to CP violation through mixing, while the last term is due to
interference. In decays with |λCP | = 1 only the interference effect survives

afCP (t) = ImλfCP sin(∆mBt) . (135)

We know ∆mB so we can measure ImλfCP . This quantity is the phase between mixing and
decay amplitudes. To a good approximation |A(P 0 → fCP )| = |A(P 0 → fCP )| and since in the
standard parametrization q/p = ei2β , we have to a good approximation

ImλfCP = Im

[
q

p

A(P 0 → fCP )

A(P 0 → fCP )

]
' sin 2β . (136)

4.4 Neutral Meson Mixing: General description
In this section we shall follow closely the the discussions in [9]. We are interested in describing how CP
violation arises from the mixing of a neutral meson P0 with its antiparticle P 0. Consider the simplest
scenario where the two states |P 0〉 and |P 0〉 that are degenerated can neither decay or transform into
each other. In such a system an arbitrary state can then be represented as

|ψ(t)〉 = a(t)|P 0〉+ b(t)|P 0〉 (137)

and evolve through the Schrodinger equation with diagonal Hamiltonian. This scenario is exactly what
happens in the neutral meson system when only QCD interactions are active. Turning on the electroweak
interactions will induce, even if small, off-diagonal Hamiltonian entries mixing both states leading to the
breaking of the degeneracy. In general, to describe the time evolution of this new state we would require
the state

|ψ(t)〉 = a(t)|P 0〉+ b(t)|P 0〉+
∑

i

ci(t)|ni〉 , (138)

where ni are final states of the P 0 and P 0 decays. However, we may study the mixing in this particle-
antiparticle system separately from its subsequent decay if the following conditions are satisfied: a(0), b(0) 6=
0 and ci(0) = 0; time scale larger than the typical strong-interaction scale; no interactions between fi-
nal states (Weisskopf-Wigner approximation). In this way the neutral meson mixing is described by
two-component wave function

ψ(t) =

(
a(t)
b(t)

)
(139)

evolving according to a Schrodinger equation

i
d

dt
ψ(t)〉 =

(
M − i

2
Γ

)

︸ ︷︷ ︸
H

ψ(t) =




M11 −
i

2
Γ11 M12 −

i

2
Γ12

M21 −
i

2
Γ21 M22 −

i

2
Γ22


ψ(t) , (140)

with t the proper time, H a 2× 2 matrix written in the P 0−P 0 rest frame and M, Γ its Hermitian parts.
The meson flavour basis

{
|P 0〉, |P 0〉

}
satisfies the following relations:

– Orthogonality: 〈P 0|P 0〉 = 〈P 0|P 0〉 = 0 and 〈P 0|P 0〉 = 〈P 0|P 0〉 = 1.
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– Completeness: |P 0〉〈P 0|+ |P 0〉〈P 0| = 1.

– Effective Hamiltonian decomposition: H =
(
|P 0〉, |P 0〉

)
H

(〈P 0|
〈P 0|

)

In terms of the total Hamiltonian

H =

CP
︷ ︸︸ ︷
HQCD +HQED +

CPV
︷︸︸︷
HEW (141)

we can have the usual perturbation expansion, up to second order,
(
M − i

2
Γ

)

ij

= 〈i|H|j〉+
∑

n

〈i|H|n〉〈n|H|j〉
m0 − (En − iε)

(142)

where i and j can be K0 or K0 and |n〉 any eigenstate of HQCD +HQED with eigenvalue En, but with
n 6= K0, K0. Using the identity

1

m0 − (En − iε)
= P

1

m0 − En
− iπδ(m0 − En) (143)

we can find the Hermitian matrices M and Γ up to second order in perturbation theory. They are given
by

Mij =

m0δij+〈i|HEW|j〉︷ ︸︸ ︷
〈i|H|j〉 +

∑

n

P
〈i|HEW|n〉〈n|HEW|j〉

m0 − En
,

Γij =2π
∑

n

δ(m0 − En)〈i|HEW|n〉〈n|HEW|j〉 ,
(144)

with P projecting out the principal part. The general CP transformation of the states is given by

CP|P 0(~p)〉 = −eiξ|P 0(−~p)〉 and CP|P 0(~p)〉 = −e−iξ|P 0(−~p)〉 . (145)

We then see that the CP -invariant combinations are given by

|P1〉 =
1√
2

(
|P 0〉 − eiξ|P 0〉

)
, |P2〉 =

1√
2

(
|P 0〉+ eiξ|P 0〉

)
, (146)

in such a way that
CP|P1〉 = |P1〉 and CP|P2〉 = −|P2〉 . (147)

Requesting CP invariance is equivalent to the Hamiltonian condition H = (CP)H(CP)†. This in turns
imply H12 = e−2iξH21 and H11 = H22. Note that ξ is a spurious phase without any physical relevance,
therefore, we conclude that the phases of H12 and H21 also lack meaning. We can then summarize, in
Table 6, the physical conditions given the present discrete symmetries. In these notes we are interested
in CPT -invariant theories.2 As a result, the matrix responsible by the evolution of our system is given
by

H =

(
M11 − i

2Γ11 M12 − i
2Γ12

M∗12 − i
2Γ12 M11 − i

2Γ11

)
. (148)

If CP was a symmetry of the system, i.e. [CP,H] = 0, the states |P1,2〉 would be the true eigenstates of
Eq. (140). The presence of CP -violating terms will destroy this result, in order to see this we go to the
mass basis. The time evolution in Eq. (140) becomes trivial in the mass basis where the Hamiltonian H

2the general framework can be found in [2], for example.
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Table 6: Constrains on the mixing matrix when the system respect some or no discrete symmetries.

Conservation Constraints
CPT H11 = H22 (M11 = M22 and Γ11 = Γ22)
CP H11 = H22 and |H12| = |H21|
T |H12| = |H21|

None H is general

is diagonal. The complex eigenvalues (µL,H ) and corresponding eigenvectors (|PL,H〉) of H are given
by (using the phase convention ξ = 0)

Eigenvalues: Eigenvectors:



M11 − i
2Γ11 − pq = µL = mL −

i

2
ΓL ,

M11 − i
2Γ11 + pq = µH = mH −

i

2
ΓH




|PL〉 =
1√

|p|2 + |q|2
(
p|P 0〉 − q|P 0〉

)
,

|PH〉 =
1√

|p|2 + |q|2
(
p|P 0〉+ q|P 0〉

)
(149)

where
p2 = M12 −

i

2
Γ12 , q2 = M∗12 −

i

2
Γ∗12 . (150)

Note that mH,L and ΓH,L are not eigenvalues of M and Γ but, nevertheless, satisfy the relations TrM =
mH +mL = 2M11 and Tr Γ = ΓH + ΓL = 2Γ11. They can also be written as

mL =M11 − Re pq , mH = M11 + Re pq ,

ΓL =Γ11 + 2Im pq , ΓH = Γ11 − 2Im pq .
(151)

We are using a convention in which ∆m = mH −mL > 0. It is also convenient to define

µ ≡ µH + µL
2

≡ m− i

2
Γ , ∆µ ≡ µH − µL ≡ ∆m− i

2
∆Γ . (152)

with

∆m =mH −mL = 2Re pq , m =
mH +mL

2
= M11 ,

∆Γ =ΓH − ΓL = −4Im pq , Γ =
ΓH + ΓL

2
= Γ11 .

(153)

The relation between these parameters and the elements of H in the flavour basis can be found through
the diagonalization procedure, leading to

µ = H11 = H22 , ∆µ = 2
√
H12H21 ,

q

p
=

√
H21

H12
=

2H21

∆µ
(154)

Which in a more familiar form can be written as

(∆m)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2 , (∆m) (∆Γ) = 4Re (M∗12Γ12) ,

1− ε̄
1 + ε̄

=
q

p
=

√
M∗12 − i

2Γ∗12

M12 − i
2Γ12

=
2M∗12 − iΓ∗12

∆m− i
2∆Γ

=
∆m− i

2∆Γ

2M12 − iΓ12
≡ reiκ .

(155)

The small complex parameter ε̄ depends on the phase convention chosen for the P 0−P 0 system. There-
fore, as a spurious phase, it shall not be taken as a physical measure of CP violation. Nevertheless,
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the quantities Re ε̄ and r are independent of phase conventions. Therefore, departures of r from 1 are a
measure of CP violation. If r = 1 (ε̄ = 0) then p = q and the mass eigenstates in Eq. (149) coincide
with the CP eigenstates in Eq. (146). When this parameter is not 1 there is a small admixture of the CP
eigenstates in the final (mass) eigenstates, i.e.

|PL〉 =
1√

1 + |ε̄|2
(|P1〉+ ε̄|P2〉) , |PH〉 =

1√
1 + |ε̄|2

(|P2〉+ ε̄|P1〉) (156)

The physical observables measured in neutral meson oscillations can be parametrized by the dimension-
less parameters

x =
∆m

Γ
, y =

∆Γ

2Γ
, r − 1 =

∣∣∣∣
q

p

∣∣∣∣− 1 . (157)

On can check, after some algebra, that

|p|2 − |q|2
|p|2 + |q|2 =

1− r2

1 + r2
=

Im(M∗12Γ12)

|M12|2 + |Γ12/2|2 + 1
4 [(∆m)2 + (∆Γ/2)2]

, (158)

which is actually the quantity which measures the non-orthogonality between PL,H , i.e.

〈PH |PL〉 =
1− r2

1 + r2
=

2Re ε̄
1 + |ε̄|2 . (159)

Concerning time evolution. For the |P 0
L,H〉 states the solutions is rather trivial

|PL,H(t)〉 = TL,H(t)|PL,H〉 , with TX(t) = e−iµX t = e−ΓX t/2e−imX t . (160)

The states produced in strong interactions are the |P 0〉 and |P 0〉. It turns then useful to look at the times
evolutions for these states. Using Eq. (160) and Eq. (149), we find

|P 0(t)〉 =

√
|p|2 + |q|2

2p
[TH(t)|PH〉+ TL(t)|PL〉] ,

|P 0(t)〉 =

√
|p|2 + |q|2

2p
[TH(t)|PH〉 − TL(t)|PL〉] .

(161)

This form is useful for studies in the K0−K0 system. An alternative expression, useful in the B0−B0

system
|P 0(t)〉 = f+(t)|P 0〉+

q

p
f−(t)|P 0〉 , |P 0(t)〉 = f+(t)|P 0〉+

p

q
f−(t)|P 0〉 , (162)

where

f±(t) =
TH(t)± TL(t)

2
=

1

2

[
e−imH te−ΓH t/2 ± e−imLte−ΓLt/2

]
. (163)

One see right away that for t = 0 one has, for example, a pure |P 0〉 state, which as time evolves mixes
with |P 0〉. The probabilities of finding these states at later time are then given by

P(P 0 → P 0; t) =P(P 0 → P 0; t) = |f+(t)|2 =
1

2
exp

[
−Γt

2

]
(cos(∆mt) + cosh(∆Γ/2))

P(P 0 → P 0; t) =

∣∣∣∣
q

p

∣∣∣∣
2

|f−(t)|2 =
1

2

∣∣∣∣
q

p

∣∣∣∣
2

exp
[
−Γt

2

]
(− cos(∆mt) + cosh(∆Γ/2))

P(P 0 → P 0; t) =

∣∣∣∣
p

q

∣∣∣∣
2

|f−(t)|2 =
1

2

∣∣∣∣
p

q

∣∣∣∣
2

exp
[
−Γt

2

]
(− cos(∆mt) + cosh(∆Γ/2))

(164)

Note that several important aspects in meson oscillations were not covered here. For example, the
existence of a reciprocal basis and its importance, this topic and many others can be found in [2, 9].
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4.5 Neutral Meson Mixing: The K0 −K0 and B0
d,s −B0

d,s systems
The general formalism for meson oscillations, shortly described in the previous section, can now be
applied to the particular systems which we are interested in.

4.5.1 The K0 −K0 system: |K0〉 = |ds̄〉 , |K0〉 = |d̄s〉
In this system instead of using the notation heavy (H) of light (L) for the mass eigenstates we change it
to the standard notation of long (L) and short (S) life time particle. This means

|KS〉 ≡ |PL〉 and |KL〉 ≡ |PH〉 . (165)

From the calculation of the KL −KS mass difference, Gaillard and Lee [133] were able to estimate the
value of the charm quark mass before its discovery. Also, kaon oscillation offers, within the Standard
Model, a viable description of CP violation in KL → ππ decay.

In the kaon system we have

τL ≡
1

ΓL
= 51.16± 0.21 ps , τS ≡

1

ΓS
= (0.8954± 0.0004)× 10−1ps (166)

mK = 497.614± 0.024 MeV , ∆mK = (3.484± 0.006)× 10−12 MeV (167)

end up having to a good approximation

∆mK ' 2|M12| ' −
1

2
∆ΓK ' |Γ12| , (168)

which lead us to
1− r2

1 + r2
' 1

4
Im
(

Γ12

M12

)
(169)

In order to relate ε̄ to measurable quantities we need to look at decays in the kaon system. The best
channels to look at are the decay to pion. The pions are pseudo-scalars, which tell us that under the
discrete symmetriesC, P and T they transform in the same way as the bilinearψγ5χ in Tab. 2. Therefore,
under CP we have

One pion state: CP|π0〉 = −|π0〉 ,
Two pion state: CP|π0π0〉 = +|π0π0〉 , CP|π+π−〉 = +|π+π−〉 ,

Three pion state: CP|π0π0π0〉 = −|π0π0π0〉 , CP|π+π−π0〉 = (−1)l|π+π−π0〉 .
(170)

For the state |π+π−π0〉 the relative angular momentum (l) between π0 and π+π− is relevant. We can
then conclude, from the above properties, that a two pion final state isCP -even and a three pion final state
(with zero angular momentum)CP -odd. The kaon decays to two or three pions can then be characterized
as

CP conserving:



KS → 2π (via K1)

KL → 3π (via K2)
CP violating:



KS → 3π (via K2)

KL → 2π (via K1)
(171)

This type of CP violation is called indirect since it comes from the presence of a small admixture of
CP eigenstates in the final mass eigenstates, and not from a explicit breaking in the decay. We define
the decay amplitudes:

Decays:



〈(ππ)I=0|H|K0〉 = A0e

iδ0

〈(ππ)I=2|H|K0〉 = A2e
iδ2

,
CPT

decays :



〈(ππ)I=0|H|K0〉 = −A∗0eiδ0

〈(ππ)I=2|H|K0〉 = −A∗2eiδ2
. (172)
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Here δ0 and δ2 are the phase shifts where isospin quantum number I = 0 and I = 2 in ππ scattering.
These are strong phases, and thus they do not change sign under CPT conjugation. These phases were
factored out explicitly so that the phases of A0,2 are all of weak nature

A0 = |A0|exp[iφ0] , A2 = |A2|exp[iφ2] . (173)

From the combination of Eq. (172) and Eq. (149) we get

AS,L0 ≡〈(ππ)I=0|HEW |KS,L〉 =
pA0 ± qA∗0√
|p|2 + |q|2)

exp[iδ0] =
(1 + ε̄)A0 ∓ (1− ε̄)A∗0√

2(1 + |ε̄|2)
exp[iδ0] ,

AS,L2 ≡〈(ππ)I=2|HEW |KS,L〉 =
pA2 ± qA∗2√
|p|2 + |q|2)

exp[iδ0] =
(1 + ε̄)A2 ∓ (1− ε̄)A∗2√

2(1 + |ε̄|2)
exp[iδ2]

(174)

Using the isotopic spin decomposition for the two pion states

〈π0π0| = 〈(ππ)I=0|
1√
3
− 〈(ππ)I=2|

√
2

3
,

1√
2

(〈π+π−|+ 〈π−π+|) = 〈(ππ)I=0|
√

2

3
+ 〈(ππ)I=2|

1√
3
,

(175)

where the charged pion state is correctly normalized, the transition amplitudes are defined as follow:

A(KS,L → π0π0) ≡〈π0π0|HEW |KS,L〉 =
1√
3
AS,L0 −

√
2

3
AS,L2 ,

A(KS,L → π+π−) ≡〈π+π−|HEW |KS,L〉 =

√
2

3
AS,L0 +

1√
3
AS,L2 ,

(176)

and

A(K0 → π+π−) ≡〈π+π−|HEW |K0〉 =
1√
3

[√
2A0 + ei(δ2−δ0)A2

]

A(K0 → π+π−) ≡〈π+π−|HEW |K0〉 = − 1√
3

[√
2A∗0 + ei(δ2−δ0)A∗2

]

A(K0 → π0π0) ≡〈π0π0|HEW |K0〉 =
1√
3

[
A0 −

√
2ei(δ2−δ0)A2

]

A(K0 → π0π0) ≡〈π0π0|HEW |K0〉 = − 1√
3

[
A∗0 −

√
2ei(δ2−δ0)A∗2

]
.

(177)

Experimentally the decay of KL to two-pion final state is observed and one can define useful quantities
that measure this CP violation, i.e.

η00 =
A(KL → π0π0)

A(KS → π0π0)
=
AL0 −

√
2AL2

AS0 −
√

2AS2
= ε− 2ε′

1−
√

2ω
,

η+− =
A(KL → π+π−)

A(KS → π+π−)
=

√
2AL0 +AL2√
2AS0 +AS2

= ε+
ε′

1 + ω/
√

2
,

(178)

where ω ≡ Re[A2/A0]ei(δ2−δ0). The experimental values for these quantities are [30]

η00 =(2.221± 0.011)× 10−3 exp[i(43.52± 0.06)◦] , (179)

η+− =(2.232± 0.011)× 10−3 , exp[i(43.51± 0.05)◦] , (180)
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showing how close these two quantities are. However, the fact that η00 6= η+− is the source of CP
violation in the kaon decay to two-pion final states. The parameter ε is the measure of indirect CP
violation, which can be parametrized by amplitude ratio

ε ≡ AL0
AS0
' ε̄+ iξ =

eiπ/4√
2∆mK

(ImM12 + 2ξReM12) , ξ =
Im[A0]

Re[A0]
. (181)

Both ε̄ and ξ have phase dependent conventions; however, since η+− and η00 are experimental quantities
ε is convention independent (similar to ε′). For direct CP violation parameter ε′, where we have a direct
transition of a CP -odd (even) term to a CP -even (odd), it is convenient to parametrize it through the
following relation

ε′ =
1√
2

(
AL2
AS0
− AS2
AS0

AL0
AS0

)
. (182)

For small ε̄, i.e.|ε̄| � 1, we can then write

ε ' ε̄+ i
Im[A0]

Re[A0]
, ε′ ' −ie

iΦ′

√
2

Re[A2]

Re[A0]

[
Im[A2]

Re[A2]
− Im[A0]

Re[A0]

]
. (183)

It is possible by a choice of phase convention to set Im[A0] = 0, known as Wu and Yang phase conven-
tion. The expressions are then simplified to

In Wu-Yang phase convention:





ε ' 1
3(2η+− + η00) ' ε̄

ε′ ' 1
3(η+− − η00) ' eiΦ

′

√
2

Im[A2]

Im[A0]

, (184)

where Φ′ = π/2 + δ2 − δ0 ' π/4. The parameter ε′, which is only non-zero if there is CP violation
in the decay amplitudes is proportional to the difference of η+− and η00, which almost cancel. A more
practical quantity to evaluate ε′ is the ratio given by

Re(ε′/ε) ' 1

6(1 + ω/
√

2)

(
1−

∣∣∣∣
η00

η+−

∣∣∣∣
2
)
. (185)

The parameter ω is small, i.e. |ω| ∼ 1/25, and often ignored. This quantity can be accurately measured
on the rations Γ(KL → π0π0)/Γ(KL → π+π−) and Γ(KS → π0π0)/Γ(KS → π+π−), in terms of
which ∣∣∣∣

η00

η+−

∣∣∣∣
2

=
Γ(KL → π0π0)/Γ(KL → π+π−)

Γ(KS → π0π0)/Γ(KS → π+π−)
. (186)

From the fit to K → ππ data we get [30]

|ε| = (2.228± 0.011)× 10−3 , Re[ε′/ε] = (1/65± 0.26)× 10−3 . (187)

Another important observable is the CP asymmetry of time integrated semi-leptonic decay rates

δL ≡
Γ(KL → `+ν`π

−)− Γ(KL → `−ν̄`π+)

Γ(KL → `+ν`π−) + Γ(KL → `−ν̄`π+)
=

1−
∣∣∣ qp
∣∣∣
2

1 +
∣∣∣ qp
∣∣∣
2 =

2Re[ε̄]

1 + |ε̄|2 −→

Wu-Yang︷ ︸︸ ︷
2Re[ε]

1 + |ε|2 (188)

This observable measure the orthogonality between KL and KS , see Eq. (158).

We can now shortly evaluate ε within the SM. The off-diagonal element M12 in the kaon system
is given by

2mKM
∗
12 = 〈K0|H∆S=2

eff |K0〉 , (189)
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where the factor 2mK is due to the normalization of external states. |H∆S=2
eff is the effective Hamiltonian

for the ∆S = 2 transitions, this in lower order is given by the box diagrams in Fig. 2a. We can integrate
out the heavy internal particles and run down to low energies with the renormalization group. By doing
this we obtain the contact term

Q(∆S = 2) = (s̄d)V−A(s̄d)V−A . (190)

The effective Hamiltonian, including leading and next-to-leading QCD corrections in the improved
RGEs, for scales µ < µc = O(mc) is given by

H∆S=2
eff =

G2
F

16π2
M2
W

[
(V ∗csVcd)

2η1S0(xc) + (V ∗tsVtd)
2η2S0(xt) + 2(V ∗csVcd)(V

∗
tsVtd)η3S0(xc, xt)

]

× [α(3)
s (µ)]−2/9

[
1 +

α
(3)(µ)
s

4π
J3

]
Q(∆S = 2) + h.c.

(191)

with α
(3)
s the strong coupling constant in an effective three flavour theory and J3 = 1.895 in NDR

scheme [6]. The S0 loop functions are given by (xi = m2
i /M

2
W )

S0(xt) =2.39
( mt

167 GeV

)1.52
, S0(xc) = xc ,

S0(xc, xt) =xc

[
ln
xt
xc
− 3xt

4(1− xt)
− 3x2

t lnxt
4(1− xt)2

]
.

(192)

The factors η1,2,3 are correction factors describing short distance QCD effects and at NLO read [6]:
η1 = 1.38 ± 0.20, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.04. We can now take the matrix element of our
contact interaction, the non-perturbative part of the calculation, we get

〈K0|Q(∆S = 2)|K0〉 ≡ 8

3
BK(µ)F 2

Km
2
K , B̂K = BK(µ)[α(3)

s (µ)]−2/9

[
1 +

α
(3)
s (µ)

4π
J3

]
, (193)

where B̂K is a renormalization group invariant parameter andFK = 160 MeV is the kaon decay constant.
We finally find the matrix element to be

M12 =
G2
F

12π2
F 2
KB̂KmKM

2
W

[
(V ∗csVcd)

2η1S0(xc) + (V ∗tsVtd)
2η2S0(xt)

+2(V ∗csVcd)(V
∗
tsVtd)η3S0(xc, xt)] .

(194)

Inserting this last result into Eq. (181) we obtain, in the Wu-Yang phase convention,

ε ' CεB̂KIm[V ∗tsVtd] {Re[V ∗csVcd] [η1S0(xc)− η3S0(xc, xt)]− Re[V ∗tsVtd]η2S0(xt)} eiπ/4 , (195)

with

Cε =
G2
FF

2
KmKM

2
W

6
√

2π2∆mK

' 3.837× 104 . (196)

Corrections of the order Re[V ∗tsVtd]/Re[V ∗csVcd] = O(λ4) have been neglected and we have used the
unitary relation Im[(V ∗csVcd)

∗] = Im[V ∗tsVtd]. Using the standard CKM parametrization, Eq. (29), and
comparing Eq. 195 with the experimental value Eq. (187) we can extract the CKM CP phase δ, important
for the unitary triangle analysis.

The KL −KS mass difference is now trivial to extract from Eqs. (194) and (168). Using the fact
that |V ∗tsVtd| � |V ∗csVcd|, the charm-quark contribution in the loop dominates and we get

∆mK '
G2
F

12π2
F 2
KB̂KmKM

2
W |V ∗csVcd|2S0(xc) . (197)
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4.5.2 The B0
d,s −B0

d,s system: |B0
d〉 = |b̄d〉 , |B0

d〉 = |bd̄〉, |B0
s〉 = |b̄s〉 , |B0

s〉 = |bs̄〉
Contrarily to the K0 −K0 system, in the B0

d,s − B0
d,s system the long distance effects are very small

|Γ12| � |M12| (see discussion in [9]). Therefore, to leading order in |Γ12/M12|, we get

∆mBq = 2|M q
12| , ∆ΓBq = 2Re(M q∗

12 Γq12)/|M q
12| ,

q

p
' M q∗

12

|M q
12|

[
1− 1

2
Im
(

Γq12

M q
12

)]
, (198)

with q = d, s and the notation of H , L states given in the general discussion is kept here. In the B-
system we have |V ∗tdVtb| ∼ |V ∗cdVcb|, however due to the quarks spectrum, i.e. mu,c � mt, the top quark
contribution is now the one dominating.

Fig. 18: Box diagram contributing to B0 = B0 mixing

In a similar way as was done for the K-system, the off-diagonal element M (q)
12 is given by

2mBq |M (q)
12 | = |〈B0

q|H∆B=2
eff |B0

q 〉| . (199)

The effective Hamiltonian , obtained from integrating out the top quark, is given by

H∆B=2
eff =

G2
F

16π2
M2
W (V ∗tbVtq)

2ηBS0(xt)[α
(5)
s (µq)]

−6/23

[
1 +

α
(5)
s (µq)

4π
Jb

]
Q(∆B = 2) + h.c. , (200)

with µq = O(mq) and J5 = 1.627. The contact term is given by

Q(∆B = 2) = (b̄q)V−A(b̄q)V−A . (201)

Taking the matrix element we get, in an analogous ways as for the K system,

〈B0
q|Q(∆B = 2)|B0

q 〉 ≡
8

3
BBq(µ)F 2

Bqm
2
Bq , B̂Bq = BBq(µ)[α(5)

s (µq)]
−6/23

[
1 +

α
(5)
s (µq)

4π
Jb

]
,

(202)
with FBq the decay constant for Bq. Using Eq. (199) and the first relation in Eq. (198) one gets

∆mBq '
G2
F

6π2
ηBmBqB̂BqF

2
BqMWS0(xt)|Vtq|2 . (203)

This relation for the mass difference in important in the standard analysis of the unitary triangle.

5 Flavour Physics Beyond the SM
CP violation in the SM comes from the flavour sector. However, CP violation observed so far is too
small by a factor of 10−16 to explain the absence of anti-matter, which means that physics beyond the
SM (BSM) must exist. Therefore, a right question wouldn’t be whether BSM exist or not, but at which
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scale it will show up. For particle physicists, there are also two different reasons hinting us that surprises
might be awaiting to be discovered by at around TeV scale.

The first reason is coming from so-called ‘the fine-tuning/hierarchy problem, which is related
to the lightness of the Higgs particle compared to a arbitrarily high scale (below PLACK scale). The
recently discovered Higgs particle, which is the only missing piece of the Standard Model (SM), may be
the first fundamental scalar particles we have discovered. It is employed for the electroweak symmetry
breaking (EWSB) and for generating masses for the fermions. While it explains why the weak force,
unlike all other forces, is very short-ranged, it also provide us a problem. In order to obtain the observed
∼ 125GeV, which is far much smaller than the size of quantum corrections from seemingly unrelated
forces, a miraculous fine-tuning has to be invoked. However, this ‘naturalness’ problem can be solved, if
new physics exists beyond the Higgs particle. And the corresponding new physics and new particles are
predicted to be observed in the scale of EWSB.

The other reason is coming from cosmology. According to the standard model of cosmology,
which is now well established, some twenty percent of the energy of the universe comes from matter that
does not shine (that is, electromagnetically neutral), but is much more massive than neutrinos. There
are no candidates among particles in the SM for this type of matter, so called “dark matter (DM)”. The
cosmological and astrophysical observations suggest us that the mass of the DM particles is light enough
to be produced and observed at the TeV scale.

In a general picture of physics beyond the SM one can see the amplitude of a given process being
described in the form

A(in→ out) ' A0

[
CSM
M2
W

+
CNP
Λ2
NP

]
. (204)

The coefficients CSM(NP ) will the depend of the process and SM extension. However, we can see that
flavour physics can place strong constraints on new physics even beyond the LHC reach. In scenarios
where new physics does not respect the SM symmetries or breaking pattern, the coefficients tend to be
hierarchical CSM � CNP , allowing to probe large scales.

For example, in the SM there are only two |∆F | = 2 operators entering in K0− K̄0 and B0− B̄0

mixing, see Sec. 4. A common feature in NP flavour models is the presence of additional four-quark
operators, which change the flavour number by two units. Those interactions can place a strong bounds
on the NP scale. Without specifying its origin we can typically describe them through the effective
Lagrangian

L|∆F |=2
NP =

1

Λ2

5∑

i=1

c
qαqβ
i Qqαqβi +

1

Λ2

3∑

i=1

c̃
qαqβ
i Q̃qαqβi (205)

with the dimension six |∆F | = 2 operators given by [44]

Qqαqβ1 =
(
qβLγµqαL

) (
qβLγµqαL

)
, Q̃qαqβ1 =

(
qβRγµqαR

) (
qβRγµqαR

)
,

Qqαqβ2 =
(
qβRqαL

) (
qβRqαL

)
, Q̃qαqβ2 =

(
qβLqαR

) (
qβLqαR

)
,

Qqαqβ3 = qaβRq
b
αLq

b
βRq

a
αL , Q̃qαqβ3 = qaβLq

b
αRq

b
βLq

a
αR ,

Qqαqβ4 =
(
qβRqαL

) (
qβLqαR

)
,

Qqαqβ5 = qaβRq
b
αLq

b
βLq

a
αR .

(206)

Table 7 summarizes the bounds on the new physics scale or Wilson coefficient. As seen in Table 7 new
physics scale tends to be pushed to very high scales (several orders above the TeV scale) due to flavour
constraints. Saying it in other way, in order to have new physics at the TeV scale we need it to have
specific flavour structure not so different from that of the SM at low energies. The quest for viable
new physics models is known as “New Physics flavour problem". In this section we will look at some
extensions and their confrontation with flavour observables.
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Table 7: Summary of the most relevant bounds on d = 6 four-quark flavour operators. Taken from [42]

Operator Bounds on Λ in TeV (cNP
i = 1) Bounds on cNP

i (Λ = 1 TeV) Observable
Re Im Re Im

(sLγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9

∆mK ; εK(sRdL)(sLdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11

(cLγ
µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7

∆mD; |q/p|, φD(cRuL)(cLuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8

(bLγ
µdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6

∆mBd ; SψKS(bRdL)(bLdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7

(bLγ
µsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5

∆mBs ; Sψφ(bRsL)(bLsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6

5.1 Minimal flavour Violation hypothesis
One popular solution to the flavour puzzle is the minimal flavour violation (MFV) hypothesis [43]. The
MFV is not a model, but a simple framework for the flavour structure on new physics seen from and
effective field theory point of view. The main assumptions are:

– No new operators beyond those present in the SM;
– All flavour changing transitions are governed by CKM , i.e. no new complex phases beyond those

present in the SM
A(in→ out) ∝ λiCKM (F iSM + F iNP )︸ ︷︷ ︸

real

. (207)

In the SM the CKM is the only source of flavour violation and is approximately a unit matrix. The SM
has no flavour changing neutral currents at tree level, and in this way CKM-induced flavour change in-
teractions are guarantee to be small. If new physics is flavour-diagonal such that all the flavour-violation
goes through the CKM, then we are guaranteed to have small effects. Therefore, just like in the SM,
Yukawa couplings are the only sources of flavour symmetry breaking in physics beyond the SM. In MFV
we then have a CKM and GIM suppression working in a similar way to the SM, allowing and EFT-like
approach.

The effective approach of MFV takes into account the larger flavour group in the SM when the
Yukawa intersections are absent, see Eq. (12). This symmetry is explicitly broken in the presence of
the Yukawa terms, but we can formally restore it by promoting the Yukawa matrices to be spurions
(appropriate dimensionless auxiliary fields), which transform under the flavour group in the appropriate
way to make it invariant (see Fig. 19).

Fig. 19: Global flavour symmetry and spurious fields transformations
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Using the SU(3)3
q ×SU(3)2

l symmetry, we can rotate the background values of the auxiliary field
Y , as we did in Eq. (11),

Yd = λd , Yu = V †CKMλu , Y` = λ` . (208)

MFV requires that the dynamics of flavour violation is completely determined by the structure of the
ordinary Yukawa couplings. In particular, all CP violation effects originates from the CKM phase.
From the hierarchical structure of the Yukawa matrix, i.e. only top Yukawa is large, we can define the
new physics flavour coupling

(λFC)ij =

{
(YuY

†
u )ij ' y2

t V
∗

3iV3j , i 6= j
0 , i = j

(209)

The basic building blocks of FCNC operators are

Table 8: Relevant d = 6 MFV flavour operators and their bounds on new physics. Taken from [45].

MFV d = 6 operator Observables Λ [TeV]
1
2(qLλFCγµqL)2 εK , ∆mDd 5.9

φ†(dRλdλFCσµνqL)(eFµν) B → Xsγ, B → Xs`
+`− 6.1

φ†(dRλdλFCσµνT aqL)(egsG
aµν) B → Xsγ, B → Xs`

+`− 3.4
(qLλFCγµqL)(eDνF

µν) B → Xs`
+`− 1.5

i(qLλFCγµqL)φ†Dµφ B → Xs`
+`−, Bs → µ+µ− 1.1

i(qLλFCγµτ
aqL)φ†τaDµφ B → Xs`

+`−, Bs → µ+µ− 1.1
(qLλFCγµqL)(`Lγ

µ`L) B → Xs`
+`−, Bs → µ+µ− 1.7

(qLλFCγµτ
aqL)(`Lγ

µτa`L) B → Xs`
+`−, Bs → µ+µ− 1.7

(qLλFCγµqL)(eRγ
µeR) B → Xs`

+`−, Bs → µ+µ− 2.7

qLYuY
†
u qL , dRY

†
DYuY

†
u qL , dRY

†
d YuY

†
uYddR (210)

expanding in powers of the off-diagonal CKM matrix elements and in powers of the small Yukawa
couplings, such as

qLλFCqL and dRλdλFCqL (211)

The MFV framework is general and can be implemented in a given BSM scenario, e.g. SUSY and
composite Higgs models, resulting in reducing the cutoff scale (flavour bound) from O(1000) TeV to
O(1) TeV, which in turn makes it a very predictive theory framework. Compared to SM, only the flavour-
independent magnitude of the transition amplitudes can be modified. A fingerprint of this framework is
the prediction (sin 2β)B→ψKs = (sin 2β)K→πνν̄ , which can be identified by experiments.

5.2 Partial compositeness
Partial compositeness is a completely different way of flavour protection mechanism [46]. The idea is
to generate quark and lepton masses through linear couplings of the Standard Model fields to composite
operators, i.e.

∆LqLOR + ∆u
RuROuR + ∆d

RdROdR + · · · , (212)

where ∆L,R are known as pre-Yukawa couplings and OL,R are fermionic operators arising from the
strong sector. The nice aspect of this linear coupling is that no relevant operator can be built out ofOL,R,
since both have a classical mass dimension of 5/2. Also, the quadratic operators OLOL, OROR vanish
due to spinor identities and OLOR is forbidden by gauge invariance. Therefore, the lowest-dimension
operators on can build out of the composite operators are OL∂/OL and OR∂/OR, which have classical
dimension six and therefore irrelevant.
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The physical light fermions will then be a mixture of both elementary and composite states, known
as partial compositeness,

|ψphys〉 = cos θ|ψelem〉+ sin θ|ψcomp〉 . (213)

The flavour problem in theories with strong dynamics can be improved if partial compositeness is imple-
mented.

mΨ ' gΨf −→ ySM '
∆L∆R

mΨ
(214)

Partial compositeness provide partial solutions to both flavour and hierarchy puzzles. Still, this is a
partial solution since from the kaon system εK and ε′K/εK one still needs some sort of alignment, at least
in the down sector. On the other hand, in this framework we can have a naturally sizable non-standard
contribution to ∆aCP . This approach can be an alternative to MFV.

5.3 B physics at the LHC
Rare decays based on the flavour transition b → s have for some time call the attention of the flavour
community, as they can be sensitive probes of new physics [47, 48]:

hadronic: B → φK, B → η′K, Bs → φφ, B → Kπ, Bs → KK, · · ·
radiative: B → Xsγ, B → K∗γ, Bs → φγ, · · ·
semi-leptonic: B → Xs``, B → K``, B → K∗``, Bs → φ``, · · ·
leptonic: Bs → µµ

neutrino: B → Kνν̄, B → K∗νν̄

The most relevant ones in order to constrain new physics in the LHC era are the leptonic, semi-leptonic
and radiative exclusive decays.

Recently, the LHCb collaboration observed an excess in B → K∗µ+µ− decay [49] by measuring
the angular observables with a minimal sensitivity to the choice of form factors [50]. This tension can
be soften by the presence of new physics. One useful way to search for new physics that could induce
these deviations is to look at the effective Hamiltonian relevant for this transition. From the complete list
presented in Sec. 3, the current-current, QCD penguin and electroweak penguin operators ar typically
dominated by the SM contribution at low energies and will only contribute to the considered observables
though mixing with the dominant operators. This effect is therefore small. The chromomagnetic dipole
operators, for leptonic and semi-leptonic decays enter only through mixing. Tensor operator do not
appear in d = 6 operator expansion the the SM. Having this information we can write the relevant
effective Hamiltonian

Heff = −GF√
2

α

π
VtbV

∗
ts

∑

i

(
C`iO`i + C ′`i O′`i

)
(215)

with α the fine structure constant and the operators considered are

O7 = mb
e (sσµνPRb)F

µν , O′7 = mb
e (sσµνPLb)F

µν ,

O`9 = (sγµPLb)(`γ
µ`) , O′`9 = (sγµPRb)(`γ

µ`) ,

O`10 = (sγµPLb)(`γ
µγ5`) , O′`10 = (sγµPRb)(`γ

µγ5`) ,

O`S = (sPRb)(``) , O′`S = (sPLb)(``) ,

O`P = (sPRb)(`γ5`) , O′`P = (sPLb)(`γ5`) .

(216)

The operators O7−10 have been listed before, they are just written in the L,R notation instead of V,A
one. The scalar and pseudo-scalar operators were also added, even though their impact is small in the
observables. The prime operators are not present in the SM expansion, they therefore correspond always
to new physics effects.
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The presence of new physics in the relevant observables can be tracked to the corresponding
operators:

• B → Kµ+µ−: C
(′)
7 , C

(′)
9 , C

(′)
10

• B → K∗µ+µ−: C
(′)
7 , C

(′)
9 , C

(′)
10

• B → K∗γ: C
(′)
7

• B → φµ+µ−: C
(′)
10 , C

(′)
S,P

• Lepton-nonuniversality: C(′)
9 , C

(′)
10

• B → µ+µ−: C(′)
10 , CS,P

In B → Kµ+µ−, B → K∗µ+µ−, and B → φµ+µ− the form factors and contributions of the
hadronic weak Hamiltonian are the main theoretical challenges. Direct CP asymmetries in B decays
can give a hint of new physics, specially in B → K∗γ since the B factories measurements and LHCb
are so precise. However, new physics in this observable is proportional to the strong phase that appears
as a sub-leading effect and is also plagued with many uncertainties.

Several global fits have been done [47, 48], under the assumption of new physics entering only
through one operator or two real Wilson coefficients. These analysis tend to favour values CNP9 < 0 in
order to accommodate the recent anomalies. New physics entering through C9 can also contribute to the
meson mixing. Bs-mixing is in general the most constraining observable.

Lepton-nouniversility is also a power probe of new physics. In the SM the process b → s`` is
lepton flavour universal. However, beyond the SM new flavour violating interactions can give substantial
deviation form lepton-universality. Ratios of branching fractions, as well as double ratios can serve as a
clean probe of new physics [52,53]. A big advantage of considering ratios is the automatic cancelling of
several uncertainties. Recently, the LHCb collaborations has reported [51]

RLHCbK = 0.745+0.090
−0.074 ± 0.036 (217)

which shows a 2.6σ deviation form the SM prediction RSMK ' 1 + O(m2
µ/m

2
b) [52], in the dilepton

invariant mass squared bin 1 GeV2 ≤ q2 < 6 GeV2. The branching fractions rations of rare semi-
leptonic B decays of dimuons over dielectrons arge given by [52]

RH =
B(B → Hµµ)

B(B → Hee)
'





1 + ∆+ + Σ+ , H = K
1 + ∆− + Σ− , H = K0(1430)
1 + p(∆− −∆+ + Σ− − Σ+) + ∆+ + Σ+ , H = K∗

1 + 1
2(∆− + ∆+ + Σ− + Σ+) , H = Xs

(218)

while the double ratios are defined as

XH ≡
RH
RK
'





1 + (∆− −∆+ + Σ− − Σ+) , H = K0(1430)
1 + p(∆− −∆+ + Σ− − Σ+) , H = K∗

1 + 1
2(∆− −∆+ + Σ− − Σ+) , H = Xs

(219)

with

∆± = 2
Re
(
CSM9 (CNPµ9 ± C ′µ9 )∗

)
+ Re

(
CSM10 (CNPµ10 ± C ′µ10)∗

)

|CSM9 |2 + |CSM10 |2
− (µ→ e) (220)

the new physics contribution from the interference with the SM, and

Σ± =
|CNPµ9 ± C ′µ9 |2 + |CNPµ10 ± C ′µ10|2

|CSM9 |2 + |CSM10 |2
− (µ→ e) (221)
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the pure new physics contribution. At the mb scale we have for the SM Wilson coefficients CSM9 =
−CSM10 ' 4.2. The factor p is the polarization faction and is close to 1 (it is exactly 1 at zero recoil).
These expression are valid to a very good accuracy given the current experimental uncertainties. The
double ratios are very useful tool for precision tests new physics. They are only sensitive to new physics
coupled to right-handed quarks, and therefore can be seen as complementary to RH .

Another clean probe of new physics in the B sector are the leptonic decays B → ``. The model
independent average time-integrated branching ratio for Bs → `` decays is [54]

B(Bs → ``)

B(Bs → ``)SM
=
∣∣∣1− 0.24(CNP`10 − C ′`10)− y`C`P−

∣∣∣
2

+ |y`C`S−|2 , (222)

with yu = 7.7, ye = (mµ/me)yµ = 1.6 × 103 and CP,S− = CP,S − C ′P,S . The current reported
experimental value for Bs → µ+µ− decays is [55]

B(Bs → µ+µ−)exp

B(Bs → µ+µ−)SM
= 0.79± 0.20 . (223)

Being a purely leptonic final state, the theoretical prediction of these processes is very clean and serves
as a good probe for NP.

6 Brief conclusions
We have presented a short overview in the topics of flavour and CP violation in and beyond the SM. The
most relevant aspects can be summarized as:

• Often we have seen the indirect evidence of New particles in flavour physics before directly dis-
covering them;
• The SM flavour sector has been tested with impressive and increasing precision;
• In the SM, fermions come in 3 generations of quarks and leptons; flavour physics is all about them;
• All flavour violation in the SM is from the CKM matrix;
• CPV in SM is small, and comes from flavour;
• We have developed non relativistic QM tools for meson mixing;
• We have schematically shown how to calculate hadronic observables;
• Theoretical tools to understand the underlying physics is important. For example, effective field

theory allows separation of different scales (separation of calculable parts and nonperturbative
parts);
• Any sensitivity to high scales (including to physics beyond the Standard Model) can be treated

using perturbative methods;
• Flavour structure of New Physics has to be special in order to be compatible with TeV scale New

Physics. A popular example is MFV, but other possibilities exist such a partial compositeness, etc;
• If new particles discovered, their flavour properties can teach us about the underlying structure of

New Physics: masses (degeneracies), decay rates (flavour decomposition), cross sections;
• Flavour physics provide important clues to model building in the LHC era;
• LHC era is also a Flavour Precision era, and a lot of interesting measurements are coming, as we

have already seen some tensions with SM.
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Neutrino Physics
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Abstract
I give a theoretical overview of some basic properties of massive neutrinos in
these lectures. Particular attention is paid to the origin of neutrino masses, the
pattern of lepton flavor mixing, the feature of leptonic CP violation and the
electromagnetic properties of massive neutrinos. I highlight the TeV seesaw
mechanisms as a possible bridge between neutrino physics and collider physics
in the era characterized by the Large Hadron Collider.

Keywords
Lectures; neutrino; particle physics; neutrino oscillations; mixing; standard
model.

1 Finite Neutrino Masses
It is well known that the mass of an elementary particle represents its inertial energy when it exists at
rest. Hence a massless particle has no way to exist at rest — instead, it must always move at the speed of
light. A massive fermion (either lepton or quark) must exist in both left-handed and right-handed states,
since the field operators responsible for the non-vanishing mass of a fermion have to be bilinear products
of the spinor fields which flip the fermion’s handedness or chirality.

The standard model (SM) of electroweak interactions contains three neutrinos (νe, νµ, ντ ) which
are purely left-handed and massless. In the SM the masslessness of the photon is guaranteed by the
electromagnetic U(1)Q gauge symmetry. Although the masslessness of three neutrinos corresponds
to the lepton number conservation 1, the latter is an accidental symmetry rather than a fundamental
symmetry of the SM. Hence many physicists strongly believed that neutrinos should be massive even
long before some incontrovertible experimental evidence for massive neutrinos were accumulated. A
good reason for this belief is that neutrinos are more natural to be massive than to be massless in some
grand unified theories, such as the SO(10) theory, which try to unify electromagnetic, weak and strong
interactions as well as leptons and quarks.

If neutrinos are massive and their masses are non-degenerate, it will in general be impossible to
find a flavor basis in which the coincidence between flavor and mass eigenstates holds both for charged
leptons (e, µ, τ) and for neutrinos (νe, νµ, ντ ). In other words, the phenomenon of flavor mixing is
naturally expected to appear between three charged leptons and three massive neutrinos, just like the
phenomenon of flavor mixing between three up-type quarks (u, c, t) and three down-type quarks (d, s, b).
If there exist irremovable complex phases in the Yukawa interactions, CP violation will naturally appear
both in the quark sector and in the lepton sector.

1It is actually the B−L symmetry that makes neutrinos exactly massless in the SM, where B = baryon number and L =
lepton number. The reason is simply that a neutrino and an antineutrino have different values ofB−L. Thus the naive argument
for massless neutrinos is valid to all orders in perturbation and non-perturbation theories, if B−L is an exact symmetry.
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1.1 Some preliminaries
To write out the mass term for three known neutrinos, let us make a minimal extension of the SM by
introducing three right-handed neutrinos. Then we totally have six neutrino fields 2:

νL =



νeL
νµL

ντL


 , NR =



N1R

N2R

N3R


 , (1)

where only the left-handed fields take part in the electroweak interactions. The charge-conjugate coun-
terparts of νL and NR are defined as

(νL)c ≡ CνL
T , (NR)c ≡ CNR

T
; (2)

and accordingly,
(
νL

)c
= (νL)TC ,

(
NR

)c
= (NR)TC , (3)

where C denotes the charge-conjugation matrix and satisfies the conditions

CγTµ C−1 = −γµ , CγT5 C−1 = γ5 , C−1 = C† = CT = −C . (4)

It is easy to check that PL(NR)c = (NR)c and PR(νL)c = (νL)c hold; namely, (νL)c = (νc)R and
(NR)c = (N c)L hold. Hence (νL)c and (NR)c are right- and left-handed fields, respectively. One may
then use the neutrino fields νL, NR and their charge-conjugate partners to write out the gauge-invariant
and Lorentz-invariant neutrino mass terms.

In the SM the weak charged-current interactions of three active neutrinos are given by

Lcc =
g√
2

(e µ τ)L γ
µ



νe
νµ
ντ




L

W−µ + h.c. . (5)

Without loss of generality, we choose the basis in which the mass eigenstates of three charged leptons
are identified with their flavor eigenstates. If neutrinos have non-zero and non-degenerate masses, their
flavor and mass eigenstates are in general not identical in the chosen basis. This mismatch signifies
lepton flavor mixing.

1.2 Dirac neutrino masses
A Dirac neutrino is described by a four-component Dirac spinor ν = νL + NR, whose left-handed and
right-handed components are just νL and NR. The Dirac neutrino mass term comes from the Yukawa
interactions

−LDirac = `LYνH̃NR + h.c. , (6)

where H̃ ≡ iσ2H
∗ with H being the SM Higgs doublet, and `L denotes the left-handed lepton doublet.

After spontaneous gauge symmetry breaking (i.e., SU(2)L × U(1)Y → U(1)Q), we obtain

−L′Dirac = νLMDNR + h.c. , (7)

where MD = Yν〈H〉 with 〈H〉 ' 174 GeV being the vacuum expectation value of H . This mass matrix
can be diagonalized by a bi-unitary transformation: V †MDU = M̂ν ≡ Diag{m1,m2,m3} with mi

being the neutrino masses (for i = 1, 2, 3). After this diagonalization,

−L′Dirac = ν ′LM̂νN
′
R + h.c. , (8)

2The left- and right-handed components of a fermion field ψ(x) are denoted as ψL(x) = PLψ(x) and ψR(x) = PRψ(x),
respectively, where PL ≡ (1−γ5)/2 and PR ≡ (1+γ5)/2 are the chiral projection operators. Note, however, that νL = PLνL
and NR = PRNR are in general independent of each other.
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where ν ′L = V †νL and N ′R = U †NR. Then the four-component Dirac spinor

ν ′ = ν ′L +N ′R =



ν1

ν2

ν3


 , (9)

which automatically satisfies PLν
′ = ν ′L and PRν

′ = N ′R, describes the mass eigenstates of three Dirac
neutrinos. In other words,

−L′Dirac = ν ′M̂νν
′ =

3∑

i=1

miνiνi . (10)

The kinetic term of Dirac neutrinos reads

Lkinetic = iνLγµ∂
µνL + iNRγµ∂

µNR = iν ′γµ∂
µν ′ = i

3∑

k=1

νkγµ∂
µνk , (11)

where V †V = V V † = 1 and U †U = UU † = 1 have been used.

Now we rewrite the weak charged-current interactions of three neutrinos in Eq. (5) in terms of
their mass eigenstates ν ′L = V †νL in the chosen basis where the flavor and mass eigenstates of three
charged leptons are identical:

Lcc =
g√
2

(e µ τ)L γ
µV



ν1

ν2

ν3




L

W−µ + h.c. . (12)

The 3×3 unitary matrix V , which actually links the neutrino mass eigenstates (ν1, ν2, ν3) to the neutrino
flavor eigenstates (νe, νµ, ντ ), just measures the phenomenon of neutrino mixing.

A salient feature of massive Dirac neutrinos is lepton number conservation. To see why massive
Dirac neutrinos are lepton-number-conserving, we make the global phase transformations

l(x)→ eiΦl(x) , ν ′L(x)→ eiΦν ′L(x) , N ′R(x)→ eiΦN ′R(x) , (13)

where l denotes the column vector of e, µ and τ fields, and Φ is an arbitrary spacetime-independent
phase. As the mass term L′Dirac, the kinetic term Lkinetic and the charged-current interaction term Lcc

are all invariant under these transformations, the lepton number must be conserved for massive Dirac
neutrinos. It is evident that lepton flavors are violated, unless MD is diagonal or equivalently V is the
identity matrix. In other words, lepton flavor mixing leads to lepton flavor violation, or vice versa.

For example, the decay mode π− → µ−+νµ preserves both the lepton number and lepton flavors.
In contrast, µ+ → e+ + γ preserves the lepton number but violates the lepton flavors. The observed
phenomena of neutrino oscillations verify the existence of neutrino flavor violation. Note that the 0ν2β
decay (A,Z)→ (A,Z+2)+2e− violates the lepton number. This process cannot take place if neutrinos
are massive Dirac particles, but it may naturally happen if neutrinos are massive Majorana particles.

1.3 Majorana neutrino masses
The left-handed neutrino field νL and its charge-conjugate counterpart (νL)c can in principle form a
neutrino mass term, as (νL)c is actually right-handed. But this Majorana mass term is forbidden by
the SU(2)L × U(1)Y gauge symmetry in the SM, which contains only one SU(2)L Higgs doublet and
preserves lepton number conservation. We shall show later that the introduction of an SU(2)L Higgs
triplet into the SM can accommodate such a neutrino mass term with gauge invariance. Here we ignore
the details of the Higgs triplet models and focus on the Majorana neutrino mass term itself:

−L′Majorana =
1

2
νLML(νL)c + h.c. . (14)
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Note that the mass matrix ML must be symmetric. Because the mass term is a Lorentz scalar whose
transpose keeps unchanged, we have

νLML(νL)c =
[
νLML(νL)c

]T
= −νLCTMT

L νL
T = νLM

T
L (νL)c , (15)

where a minus sign appears when interchanging two fermion field operators, and CT = −C has been
used. Hence MT

L = ML holds. This symmetric mass matrix can be diagonalized by the transformation
V †MLV

∗ = M̂ν ≡ Diag{m1,m2,m3}, where V is a unitary matrix. After this, Eq. (14) becomes

−L′Majorana =
1

2
ν ′LM̂ν(ν ′L)c + h.c. , (16)

where ν ′L = V †νL and (ν ′L)c = Cν ′L
T

. Then the Majorana field

ν ′ = ν ′L + (ν ′L)c =



ν1

ν2

ν3


 , (17)

which certainly satisfies the Majorana condition (ν ′)c = ν ′, describes the mass eigenstates of three
Majorana neutrinos. In other words,

−L′Majorana =
1

2
ν ′M̂νν

′ =
1

2

3∑

i=1

miνiνi . (18)

The kinetic term of Majorana neutrinos reads

Lkinetic = iνLγµ∂
µνL = iν ′Lγµ∂

µν ′L =
i

2
ν ′γµ∂

µν ′ =
i

2

3∑

k=1

νkγµ∂
µνk , (19)

where we have used a generic relationship (ψL)cγµ∂
µ(ψL)c = ψLγµ∂

µψL. This relationship can easily

be proved by taking account of ∂µ
[
(ψL)cγµ(ψL)c

]
= 0; i.e., we have

(ψL)cγµ∂
µ(ψL)c = −∂µ(ψL)cγµ(ψL)c = −

[
∂µ(ψL)cγµ(ψL)c

]T

=
(
CψL

T
)T

γTµ ∂
µ
[
(ψL)T C

]T
= ψLγµ∂

µψL, (20)

where CTγTµ CT = γµ, which may be read off from Eq. (4), has been used.

It is worth pointing out that the factor 1/2 in L′Majorana allows us to get the Dirac equation of
massive Majorana neutrinos analogous to that of massive Dirac neutrinos. To see this point more clearly,
let us consider the Lagrangian of free Majorana neutrinos (i.e., their kinetic and mass terms):

Lν = iνLγµ∂
µνL −

[
1

2
νLML(νL)c + h.c.

]
= iν ′Lγµ∂

µν ′L −
[

1

2
ν ′LM̂ν(ν ′L)c + h.c.

]

=
1

2

(
iν ′γµ∂

µν ′ − ν ′M̂νν
′
)

= −1

2

(
i∂µν ′γµν

′ + ν ′M̂νν
′
)
, (21)

where ∂µ(ν ′γµν
′) = 0 has been used. Then we substitute Lν into the Euler-Lagrange equation

∂µ
∂Lν

∂
(
∂µν ′

) − ∂Lν
∂ν ′

= 0 (22)
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and obtain the Dirac equation

iγµ∂
µν ′ − M̂νν

′ = 0 . (23)

More explicitly, iγµ∂
µνk −mkνk = 0 holds (for k = 1, 2, 3). That is why the factor 1/2 in L′Majorana

makes sense.

The weak charged-current interactions of three neutrinos in Eq. (5) can now be rewritten in terms
of their mass eigenstates ν ′L = V †νL. In the chosen basis where the flavor and mass eigenstates of three
charged leptons are identical, the expression of Lcc for Majorana neutrinos is the same as that given in
Eq. (12) for Dirac neutrinos. The unitary matrix V is just the 3 × 3 Majorana neutrino mixing matrix,
which contains two more irremovable CP-violating phases than the 3 × 3 Dirac neutrino mixing matrix
(see section 4 for detailed discussions).

The most salient feature of massive Majorana neutrinos is lepton number violation. Let us make
the global phase transformations

l(x)→ eiΦl(x) , ν ′L(x)→ eiΦν ′L(x) , (24)

where l stands for the column vector of e, µ and τ fields, and Φ is an arbitrary spacetime-independent
phase. One can immediately see that the kinetic term Lkinetic and the charged-current interaction term
Lcc are invariant under these transformations, but the mass term L′Majorana is not invariant because of
both ν ′L → e−iΦν ′L and (ν ′L)c → e−iΦ(ν ′L)c. The lepton number is therefore violated for massive
Majorana neutrinos. Similar to the case of Dirac neutrinos, the lepton flavor violation of Majorana
neutrinos is also described by V .

The 0ν2β decay (A,Z)→ (A,Z+2)+2e− is a clean signature of the Majorana nature of massive
neutrinos. This lepton-number-violating process can occur when there exists neutrino-antineutrino mix-
ing induced by the Majorana mass term (i.e., the neutrino mass eigenstates are self-conjugate, νi = νi).
The effective mass of the 0ν2β decay is defined as

〈m〉ee ≡
∣∣∣∣∣
∑

i

miV
2
ei

∣∣∣∣∣ , (25)

wheremi comes from the helicity suppression factormi/E for the νi exchange between two beta decays
with E being the energy of the virtual νi neutrino. Current experimental data only yield an upper bound
〈m〉ee < 0.23 eV (or < 0.85 eV as a more conservative bound) at the 2σ level.

1.4 Hybrid neutrino mass terms
Similar to Eq. (14), the right-handed neutrino field NR and its charge-conjugate counterpart (NR)c can
also form a Majorana mass term. Hence it is possible to write out the following hybrid neutrino mass
terms in terms of νL, NR, (νL)c and (NR)c fields:

−L′hybrid = νLMDNR +
1

2
νLML(νL)c +

1

2
(NR)cMRNR + h.c.

=
1

2

[
νL (NR)c

](ML MD

MT
D MR

)[
(νL)c

NR

]
+ h.c. , (26)

where ML and MR are symmetric mass matrices because the corresponding mass terms are of the Ma-
jorana type, and the relationship

(NR)cMT
D (νL)c =

[
(NR)TCMT

DCνL
T
]T

= νLMDNR (27)
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has been used. The overall 6×6 mass matrix in Eq. (26) is also symmetric, and thus it can be diagonalized
by a 6× 6 unitary matrix through the transformation

(
V R
S U

)†(
ML MD

MT
D MR

)(
V R
S U

)∗
=

(
M̂ν 0

0 M̂N

)
, (28)

where we have defined M̂ν ≡ Diag{m1,m2,m3}, M̂N ≡ Diag{M1,M2,M3}, and the 3 × 3 matrices
V , R, S and U satisfy the unitarity conditions

V V † +RR† = SS† + UU † = 1 ,

V †V + S†S = R†R+ U †U = 1 ,

V S† +RU † = V †R+ S†U = 0 . (29)

After this diagonalization, Eq. (26) becomes

−L′hybrid =
1

2

[
ν ′L (N ′R)c

]
(
M̂ν 0

0 M̂N

)[
(ν ′L)c

N ′R

]
+ h.c. , (30)

where ν ′L = V †νL + S†(NR)c and N ′R = RT (νL)c + UTNR together with (ν ′L)c = Cν ′L
T

and (N ′R)c =

CN ′R
T

. Then the Majorana field

ν ′ =
[

ν ′L
(N ′R)c

]
+

[
(ν ′L)c

N ′R

]
=




ν1

ν2

ν3

N1

N2

N3




(31)

satisfies the Majorana condition (ν ′)c = ν ′ and describes the mass eigenstates of six Majorana neutrinos.
In other words,

−L′hybrid =
1

2
ν ′
(
M̂ν 0

0 M̂N

)
ν ′ =

1

2

3∑

i=1

(
miνiνi +MiNiNi

)
. (32)

Because of νL = V ν ′L +R(N ′R)c andNR = S∗(ν ′L)c+U∗N ′R, we immediately have (νL)c = V ∗(ν ′L)c+

R∗N ′R and (NR)c = Sν ′L + U(N ′R)c. Given the generic relations (ψL)cγµ∂
µ(ψL)c = ψLγµ∂

µψL and
(ψR)cγµ∂

µ(ψR)c = ψRγµ∂
µψR for an arbitrary fermion field ψ, the kinetic term of Majorana neutrinos

under consideration turns out to be

Lkinetic = iνLγµ∂
µνL + iNRγµ∂

µNR = iν ′Lγµ∂
µν ′L + iN ′Rγµ∂

µN ′R =
i

2
ν ′γµ∂

µν ′

=
i

2

3∑

k=1

(
νkγµ∂

µνk +Nkγµ∂
µNk

)
, (33)

where the unitarity conditions given in Eq. (29) have been used.

The weak charged-current interactions of active neutrinos in Eq. (5) can now be rewritten in terms
of the mass eigenstates of six Majorana neutrinos via νL = V ν ′L + R(N ′R)c. In the chosen basis where
the flavor and mass eigenstates of three charged leptons are identical, we have

Lcc =
g√
2

(e µ τ)L γ
µ


V



ν1

ν2

ν3




L

+R



N1

N2

N3




L


W−µ + h.c. . (34)
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Note that V and R are responsible for the charged-current interactions of three known neutrinos νi and
three new neutrinos Ni (for i = 1, 2, 3), respectively. Their correlation is described by V V †+RR† = 1,
and thus V is not unitary unless νi and Ni are completely decoupled (i.e., R = 0).

As a consequence of lepton number violation, the 0ν2β decay (A,Z) → (A,Z + 2) + 2e−

can now take place via the exchanges of both νi and Ni between two beta decays, whose coupling
matrix elements are Vei and Rei respectively. The relative contributions of νi and Ni to this lepton-
number-violating process depend not only onmi, Mi, Vei andRei but also on the relevant nuclear matrix
elements which cannot be reliably evaluated. For a realistic seesaw mechanism working at the TeV scale
(i.e., Mi ∼ O(1) TeV) or at a superhigh-energy scale, however, the contribution of νi to the 0ν2β decay
is in most cases dominant.

The hybrid neutrino mass terms in Eq. (26) provide us with the necessary ingredients of a dynamic
mechanism to interpret why three known neutrinos have non-zero but tiny masses. The key point is that
the mass scales of ML, MD and MR may have a strong hierarchy. First, MD ∼ 〈H〉 ≈ 174 GeV
is naturally characterized by the electroweak symmetry breaking scale. Second, ML � 〈H〉 satisfies
’t Hooft’s naturalness criterion because this Majorana mass term violates lepton number conservation.
Third, MR � 〈H〉 is naturally expected since right-handed neutrinos are SU(2)L gauge singlets and
thus their mass term is not subject to the electroweak symmetry breaking scale. The hierarchy MR �
MD �ML can therefore allow us to make reliable approximations in deriving the effective mass matrix
of three active neutrinos (νe, νµ, ντ ) from Eq. (28). The latter yields

RM̂N = MLR
∗ +MDU

∗ ,

SM̂ν = MT
DV
∗ +MRS

∗ ; (35)

and

UM̂N = MRU
∗ +MT

DR
∗ ,

V M̂ν = MLV
∗ +MDS

∗ . (36)

Given MR � MD � ML, R ∼ S ∼ O(MD/MR) naturally holds, implying that U and V are almost
unitary up to the accuracy of O(M2

D/M
2
R). Hence Eq. (36) leads to

UM̂NU
T = MR(UU †)T +MT

D (R∗UT ) ≈MR ,

V M̂νV
T = ML(V V †)T +MD(S∗V T ) ≈ML +MD(S∗V T ) . (37)

S∗V T = M−1
R SM̂νV

T −M−1
R MT

D (V V †)T ≈ −M−1
R MT

D can be derived from Eq. (35). We substitute
this expression into Eq. (37) and then obtain

Mν ≡ V M̂νV
T ≈ML −MDM

−1
R MT

D . (38)

This result, known as the type-(I+II) seesaw relation, is just the effective mass matrix of three light
neutrinos. The small mass scale of Mν is attributed to the small mass scale of ML and the large mass
scale of MR. There are two particularly interesting limits: (1) If ML is absent from Eq. (26), one will
be left with the canonical or type-I seesaw relation Mν ≈ −MDM

−1
R MT

D ; (2) If only ML is present in
Eq. (26), one will get the type-II seesaw relation Mν = ML. More detailed discussions about various
seesaw mechanisms and their phenomenological consequences will be presented in sections 6, 7 and 8.

2 Diagnosis of CP Violation
2.1 C, P and T transformations
We begin with a brief summary of the transformation properties of quantum fields under the discrete
space-time symmetries of parity (P), charge conjugation (C) and time reversal (T). The parity trans-
formation changes the space coordinates ~x into −~x. The charge conjugation flips the signs of internal
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charges of a particle, such as the electric charge and the lepton (baryon) number. The time reversal
reflects the time coordinate t into −t.

A free Dirac spinor ψ(t, ~x) or ψ(t, ~x) transforms under C, P and T as 3

ψ(t, ~x)
C−→ CψT (t, ~x) ,

ψ(t, ~x)
C−→ −ψT (t, ~x)C−1 ,

ψ(t, ~x)
P−→ Pψ(t,−~x) ,

ψ(t, ~x)
P−→ ψ(t,−~x)P† ,

ψ(t, ~x)
T−→ T ψ(−t, ~x) ,

ψ(t, ~x)
T−→ ψ(−t, ~x)T † , (39)

where C = iγ2γ0, P = γ0 and T = γ1γ3 in the Dirac-Pauli representation. These transformation
properties can simply be deduced from the requirement that the Dirac equation iγµ∂

µψ(t, ~x) = mψ(t, ~x)
be invariant under C, P or T operation. Note that all the classical numbers (or c-numbers), such as the
coupling constants and γ-matrix elements, must be complex-conjugated under T. Note also that the
charge-conjugation matrix C satisfies the conditions given in Eq. (4). It is very important to figure out
how the Dirac spinor bilinears transform under C, P and T, because both leptons and quarks are described
by spinor fields and they always appear in the bilinear forms in a Lorentz-invariant Lagrangian. Let us
consider the following scalar-, pseudoscalar-, vector-, pseudovector- and tensor-like spinor bilinears:
ψ1ψ2, iψ1γ5ψ2, ψ1γµψ2, ψ1γµγ5ψ2 and ψ1σµνψ2, where σµν ≡ i[γµ, γν ]/2 is defined. One may easily
verify that all these bilinears are Hermitian. Under C, P and T, for example,

ψ1γµψ2
C−→ −ψT1 C−1γµCψ2

T
= ψT1 γ

T
µψ2

T
= −

[
ψ2γµψ1

]T
= −ψ2γµψ1 ,

ψ1γµψ2
P−→ ψ1γ0γµγ0ψ2 = ψ1γ

µψ2 ,

ψ1γµψ2
T−→ ψ1 (γ1γ3)† γ∗µ (γ1γ3)ψ2 = ψ1γ

µψ2 ; (40)

and thus

ψ1γµψ2
CP−→ −ψ2γ

µψ1 ,

ψ1γµψ2
CPT−→ −ψ2γµψ1 , (41)

with ~x → −~x under P and t → −t under T for ψ1 and ψ2. The transformation properties of five spinor
bilinears under C, P, T, CP and CPT are summarized in Table 1, where one should keep in mind that all
the c-numbers are complex-conjugated under T and CPT.

It is well known that CPT is a good symmetry in a local quantum field theory which is Lorentz-
invariant and possesses a Hermitian Lagrangian. The latter is necessary in order to have a unitary tran-
sition operator (i.e., the S-matrix). The CPT invariance of a theory implies that CP and T must be
simultaneously conserving or broken, as already examined in the quark sector of the SM via the K0-K̄0

mixing system. After a slight modification of the SM by introducing the Dirac or Majorana mass term
for three neutrinos, one may also look at possible sources of CP or T violation in the lepton sector.

2.2 The source of CP violation
The SM of electroweak interactions is based on the SU(2)L × U(1)Y gauge symmetry and the Higgs
mechanism. The latter triggers the spontaneous symmetry breaking SU(2)L × U(1)Y → U(1)Q, such

3For simplicity, here we have omitted a phase factor associated with each transformation. Because one is always interested
in the spinor bilinears, the relevant phase factor usually plays no physical role.
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Table 1: Transformation properties of the scalar-, pseudoscalar-, vector-, pseudovector- and tensor-like spinor
bilinears under C, P and T. Here ~x→ −~x under P, CP and CPT, together with t→ −t under T and CPT, is hidden
and self-explaining for ψ1 and ψ2.

ψ1ψ2 iψ1γ5ψ2 ψ1γµψ2 ψ1γµγ5ψ2 ψ1σµνψ2

C ψ2ψ1 iψ2γ5ψ1 −ψ2γµψ1 ψ2γµγ5ψ1 −ψ2σµνψ1

P ψ1ψ2 −iψ1γ5ψ2 ψ1γ
µψ2 −ψ1γ

µγ5ψ2 ψ1σ
µνψ2

T ψ1ψ2 −iψ1γ5ψ2 ψ1γ
µψ2 ψ1γ

µγ5ψ2 −ψ1σ
µνψ2

CP ψ2ψ1 −iψ2γ5ψ1 −ψ2γ
µψ1 −ψ2γ

µγ5ψ1 −ψ2σ
µνψ1

CPT ψ2ψ1 iψ2γ5ψ1 −ψ2γµψ1 −ψ2γµγ5ψ1 ψ2σµνψ1

that three gauge bosons, three charged leptons and six quarks can all acquire masses. But this mechanism
itself does not spontaneously break CP, and thus one may examine the source of CP violation in the SM
either before or after spontaneous symmetry breaking.

The Lagrangian of the SM L = LG + LH + LF + LY is composed of four parts: the kinetic term
of the gauge fields and their self-interactions (LG), the kinetic term of the Higgs doublet and its potential
and interactions with the gauge fields (LH), the kinetic term of the fermion fields and their interactions
with the gauge fields (LF), and the Yukawa interactions of the fermion fields with the Higgs doublet
(LY):

LG = −1

4

(
W iµνW i

µν +BµνBµν
)
,

LH = (DµH)†
(
DµH

)
− µ2H†H − λ

(
H†H

)2
,

LF = QLi /DQL + `Li /D`L + URi/∂
′
UR +DRi/∂

′
DR + ERi/∂

′
ER ,

LY = −QLYuH̃UR −QLYdHDR − `LYlHER + h.c. , (42)

whose notations are self-explanatory. To accommodate massive neutrinos, the simplest way is to slightly
modify the LF and LY parts (e.g., by introducing three right-handed neutrinos into the SM and allow-
ing for the Yukawa interactions between neutrinos and the Higgs doublet). CP violation is due to the
coexistence of LF and LY.

We first show that LG is always invariant under CP. The transformation properties of gauge fields
Bµ and W i

µ under C and P are
[
Bµ, W

1
µ , W

2
µ , W

3
µ

] C−→
[
−Bµ, −W 1

µ , +W 2
µ , −W 3

µ

]
,

[
Bµ, W

1
µ , W

2
µ , W

3
µ

] P−→
[
Bµ, W 1µ, W 2µ, W 3µ

]
,

[
Bµ, W

1
µ , W

2
µ , W

3
µ

] CP−→
[
−Bµ, −W 1µ, +W 2µ, −W 3µ

]
(43)

with ~x → −~x under P and CP for relevant fields. Then the gauge field tensors Bµν and W i
µν transform

under CP as follows:
[
Bµν , W

1
µν , W

2
µν , W

3
µν

] CP−→
[
−Bµν , −W 1µν , +W 2µν , −W 3µν

]
. (44)

Hence LG is formally invariant under CP.

We proceed to show that LH is also invariant under CP. The Higgs doublet H contains two scalar
components φ+ and φ0; i.e.,

H =

(
φ+

φ0

)
, H† =

(
φ− φ0∗) . (45)
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Therefore,

H(t, ~x)
CP−→ H∗(t,−~x) =

(
φ−

φ0∗

)
. (46)

It is very trivial to prove that the H†H and (H†H)2 terms of LH are CP-invariant. To examine how the
(DµH)†(DµH) term of LH transforms under CP, we explicitly write out

DµH =
(
∂µ − igτkW k

µ − ig′Y Bµ
)
H =

(
∂µφ

+ − iX+
µ φ

0 − iY +
µ φ

+

∂µφ
0 − iX−µ φ+ + iY −µ φ

0

)
(47)

with X±µ ≡ gW±µ /
√

2 = g(W 1
µ ∓ iW 2

µ)/2, Y ± ≡ ±g′Y Bµ + gW 3
µ/2, and k = 1, 2, 3. Note that

X±µ
CP−→ −X∓µ , Y ±µ

CP−→ −Y ±µ , (48)

together with ∂µ → ∂µ, φ± → φ∓ and φ0 → φ0∗ under CP. So it is easy to check that (DµH)†(DµH)
is also CP-invariant. Therefore, LH is formally invariant under CP.

The next step is to examine the CP invariance of LF. To be more specific, we divide LF into the
quark sector and the lepton sector; i.e., LF = Lq + Ll. We only analyze the CP property of Lq in the
following, because that of Ll can be analyzed in the same way. The explicit form of Lq reads

Lq = QLi /DQL + URi/∂
′
UR +DRi/∂

′
DR =

3∑

j=1

{g
2

[
q′jγ

µPLW
1
µqj + qjγ

µPLW
1
µq
′
j

]

+
g

2

[
iq′jγ

µPLW
2
µqj − iqjγµPLW

2
µq
′
j

]

+
g

2

[
qjγ

µPLW
3
µqj − q′jγµPLW

3
µq
′
j

]

+i

[
qjγ

µPL

(
∂µ − i

g′

6
Bµ

)
qj

]

+i

[
q′jγ

µPL

(
∂µ − i

g′

6
Bµ

)
q′j

]

+i

[
qjγ

µPR

(
∂µ − i

2g′

3
Bµ

)
qj

]

+i

[
q′jγ

µPR

(
∂µ + i

g′

3
Bµ

)
q′j

]}
, (49)

where qj and q′j (for j = 1, 2, 3) run over (u, c, t) and (d, s, b), respectively. The transformation proper-
ties of gauge fields Bµ and W i

µ under C and P have been given in Eq. (43). With the help of Table 1, one
can see that the relevant spinor bilinears transform under C and P as follows:

ψ1γµ (1± γ5)ψ2
C−→ −ψ2γµ (1∓ γ5)ψ1 ,

ψ1γµ (1± γ5)ψ2
P−→ +ψ1γ

µ (1∓ γ5)ψ2 ,

ψ1γµ (1± γ5)ψ2
CP−→ −ψ2γ

µ (1± γ5)ψ1 , (50)

with ~x→ −~x under P and CP for ψ1 and ψ2. Furthermore,

ψ1γµ (1± γ5) ∂µψ2
C−→ ψ2γµ (1∓ γ5) ∂µψ1 ,

ψ1γµ (1± γ5) ∂µψ2
P−→ ψ1γ

µ (1∓ γ5) ∂µψ2 ,

ψ1γµ (1± γ5) ∂µψ2
CP−→ ψ2γ

µ (1± γ5) ∂µψ1 , (51)
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with ~x → −~x under P and CP for ψ1 and ψ2. It is straightforward to check that Lq in Eq. (49) is
formally invariant under CP. Following the same procedure and using Eqs. (49), (50) and (51), one can
easily show that Ll = `Li /D`L + ERi/∂

′
ER is also CP-invariant. Thus we conclude that LF is invariant

under CP.

The last step is to examine whether LY is CP-conserving or not. Explicitly,

−LY = QLYuH̃UR +QLYdHDR + `LYlHER + h.c.

=

3∑

j,k=1

{
(Yu)jk

[
qjPRqkφ

0∗ − q′jPRqkφ
−
]

+(Yu)∗jk
[
qkPLqjφ

0 − qkPLq
′
jφ

+
]

+(Yd)jk

[
qjPRq

′
kφ

+ + q′jPRq
′
kφ

0
]

+(Yd)∗jk
[
q′kPLqjφ

− + q′kPLq
′
jφ

0∗
]

+(Yl)jk

[
νjPRlkφ

+ + ljPRlkφ
0
]

+(Yl)
∗
jk

[
lkPLνjφ

− + lkPLljφ
0∗
]}

, (52)

where qj and q′j (for j = 1, 2, 3) run over (u, c, t) and (d, s, b), respectively; while νj and lj (for j =

1, 2, 3) run over (νe, νµ, ντ ) and (e, µ, τ), respectively. Because of φ± → φ∓, φ0 → φ0∗ and ψ1(1 ±
γ5)ψ2 → ψ2(1∓ γ5)ψ1 under CP, we immediately arrive at

−LY
CP−→

3∑

j,k=1

{
(Yu)jk

[
qkPLqjφ

0 − qkPLq
′
jφ

+
]

+(Yu)∗jk
[
qjPRqkφ

0∗ − q′jPRqkφ
−
]

+(Yd)jk

[
q′kPLqjφ

− + q′kPLq
′
jφ

0∗
]

+(Yd)∗jk
[
qjPRq

′
kφ

+ + q′jPRq
′
kφ

0
]

+(Yl)jk

[
lkPLνjφ

− + lkPLljφ
0∗
]

+(Yl)
∗
jk

[
νjPRlkφ

+ + ljPRlkφ
0
]}

, (53)

with ~x → −~x for both scalar and spinor fields under consideration. Comparing between Eqs. (52) and
(53), we see that LY will be formally invariant under CP if the conditions

(Yu)jk = (Yu)∗jk , (Yd)jk = (Yd)∗jk , (Yl)jk = (Yl)
∗
jk (54)

are satisfied. In other words, the Yukawa coupling matrices Yu, Yd and Yl must be real to guarantee the
CP invartiance of LY. Given three massless neutrinos in the SM, it is always possible to make Yl real
by redefining the phases of charged-lepton fields. But it is in general impossible to make both Yu and Yd

real for three families of quarks, and thus CP violation can only appear in the quark sector.

Given massive neutrinos beyond the SM, LY must be modified. The simplest way is to introduce
three right-handed neutrinos and incorporate the Dirac neutrino mass term in Eq. (6) into LY. In this
case one should also add the kinetic term of three right-handed neutrinos into LF. It is straightforward
to show that the conditions of CP invariance in the lepton sector turn out to be

Yν = Y ∗ν , Yl = Y ∗l , (55)
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exactly in parallel with the quark sector. If an effective Majorana mass term is introduced into LY, as
shown in Eq. (14), then the conditions of CP invariance in the lepton sector become

ML = M∗L , Yl = Y ∗l , (56)

where ML is the effective Majorana neutrino mass matrix. One may diagonalize both Yν (or ML) and
Yl to make them real and positive, but such a treatment will transfer CP violation from the Yukawa
interactions to the weak charged-current interactions. Then lepton flavor mixing and CP violation are
described by the 3× 3 unitary matrix V given in Eq. (12), analogous to the 3× 3 unitary matrix of quark
flavor mixing and CP violation. In other words, the source of CP violation is the irremovable complex
phase(s) in the flavor mixing matrix of quarks or leptons. That is why we claim that CP violation stems
from the coexistence of LF and LY within the SM and, in most cases, beyond the SM.

It is worth reiterating that the process of spontaneous gauge symmetry breaking in the SM does
not spontaneously violate CP. After the Higgs doublet H acquires its vacuum expectation value (i.e.,
φ+ → 0 and φ0 → v/

√
2 with v being real), we obtain three massive gauge bosons W±µ and Zµ as well

as one massless gauge boson Aµ. According to their relations with W i
µ and Bµ, it is easy to find out the

transformation properties of these physical fields under CP:

W±µ
CP−→ −W∓µ , Zµ

CP−→ −Zµ , Aµ
CP−→ −Aµ , (57)

with ~x → −~x under P and CP for each field. In contrast, the neutral Higgs boson h is a CP-even
particle. After spontaneous electroweak symmetry breaking, we are left with the quark mass matrices
Mu = vYu/

√
2 and Md = vYd/

√
2 or the lepton mass matrices MD = vYν/

√
2 and Ml = vYl/

√
2 .

The conditions of CP invariance given above can therefore be replaced with the corresponding mass
matrices.

3 Electromagnetic Properties
3.1 Electromagnetic form factors
Although a neutrino does not possess any electric charge, it can have electromagnetic interactions via
quantum loops. One may summarize such interactions by means of the following effective interaction
term:

LEM = ψΓµψA
µ ≡ Jµ(x)Aµ(x) , (58)

where the form of the electromagnetic current Jµ(x) is our present concern. Dirac and Majorana neutri-
nos couple to the photon in different ways, which are described by their respective electromagnetic form
factors.

For an arbitrary Dirac particle (e.g., a Dirac neutrino), let us write down the matrix element of
Jµ(x) between two one-particle states:

〈ψ(p′)|Jµ(x)|ψ(p)〉 = e−iqx〈ψ(p′)|Jµ(0)|ψ(p)〉 = e−iqxu(~p′)Γµ(p, p′)u(~p) (59)

with q = p− p′. Because Jµ(x) is a Lorentz vector, the electromagnetic vertex function Γµ(p, p′) must
be a Lorentz vector too. The electromagnetic current conservation (or U(1)Q gauge symmetry) requires
∂µJµ(x) = 0, leading to

〈ψ(p′)|∂µJµ(x)|ψ(p)〉 = (−iqµ) e−iqxu(~p′)Γµ(p, p′)u(~p) = 0 . (60)

Thus
qµu(~p′)Γµ(p, p′)u(~p) = 0 (61)
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holds as one of the model-independent constraints on the form of Γµ(p, p′). In addition, the Hermiticity
of Jµ(x) or its matrix element implies

e−iqxu(~p′)Γµ(p, p′)u(~p) = e+iqx
[
u(~p′)Γµ(p, p′)u(~p)

]†

= e+iqxu(~p)
[
γ0Γ†µ(p, p′)γ0

]
u(~p′) = e−iqxu(~p′)

[
γ0Γ†µ(p′, p)γ0

]
u(~p) , (62)

from which we immediately arrive at the second constraint on Γµ(p, p′):

Γµ(p, p′) = γ0Γ†µ(p′, p)γ0 . (63)

Because of p2 = p′2 = m2 with m being the fermion mass, we have (p + p′)2 = 4m2 − q2. Hence
Γµ(p, p′) depends only on the Lorentz-invariant quantity q2.

A careful analysis of the Lorentz structure of u(~p′)Γµ(p, p′)u(~p), with the help of the Gordon-like
identities and the constraints given above, shows that Γµ(p, p′) may in general consist of four independent
terms:

Γµ(p, p′) = fQ(q2)γµ + fM(q2)iσµνq
ν + fE(q2)σµνq

νγ5 + fA(q2)
(
q2γµ − qµ/q

)
γ5 , (64)

where fQ(q2), fM(q2), fE(q2) and fA(q2) are usually referred to as the charge, magnetic dipole, electric
dipole and anapole form factors, respectively. In the non-relativistic limit of LEM, it is easy to find
that fQ(0) = Q represents the electric charge of the particle, fM(0) ≡ µ denotes the magnetic dipole
moment of the particle (i.e., LEM(fM) = −µ~σ · ~B with ~B being the static magnetic field), fE(0) ≡ ε

stands for the electric dipole moment of the particle (i.e., LEM(fE) = −ε~σ · ~E with ~E being the static
electric field), and fA(0) corresponds to the Zeldovich anapole moment of the particle (i.e., LEM(fA) ∝
fA(0)~σ · [∇× ~B − ~̇E]). One can observe that these form factors are not only Lorentz-invariant but also
real (i.e., ImfQ = ImfM = ImfE = ImfA = 0). The latter is actually guaranteed by the Hermiticity
condition in Eq. (62).

Given the form of Γµ in Eq. (64), it is straightforward to check the CP properties of LEM in Eq.
(58). Note that the photon field transforms as Aµ → −Aµ under CP, and 4

ψγµψ
CP−→ −ψγµψ ,

ψγµγ5ψ
CP−→ −ψγµγ5ψ ,

ψσµνψ
CP−→ −ψσµνψ ,

ψσµνγ5ψ
CP−→ +ψσµνγ5ψ . (65)

Hence only the term proportional to fE in LEM is CP-violating. If CP were conserved, then this term
would vanish (i.e., fE = 0 would hold). Although there is no experimental hint at CP violation in the
lepton sector, we expect that it should exist as in the quark sector. In any case, all four form factors are
finite for a Dirac neutrino.

If neutrinos are massive Majorana particles, their electromagnetic properties will be rather differ-
ent. The reason is simply that Majorana particles are their own antiparticles and thus can be described by
using a smaller number of degrees of freedom. A free Majorana neutrino field ψ is by definition equal to
its charge-conjugate field ψc = Cψ

T
up to a global phase. Then

ψΓµψ = ψcΓµψ
c = ψTCΓµCψ

T
=
(
ψTCΓµCψ

T
)T

= −ψCTΓTµCTψ , (66)

4Taking account of C−1σµνC = −σTµν and C−1γ5C = γT5 , one may easily prove that ψσµνγ5ψ is odd under both C and P.
Thus ψσµνγ5ψ is CP-even.
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Fig. 1: One-loop Feynman diagrams contributing to the magnetic and electric dipole moments of massive Dirac
neutrinos, where α = e, µ, τ and i, j = 1, 2, 3.

from which one arrives at
Γµ = −CTΓTµCT = CΓTµC−1 . (67)

Substituting Eq. (64) into the right-hand side of Eq. (67) and taking account of CγTµ C−1 = −γµ,
C(γµγ5)TC−1 = +γµγ5, CσTµνC−1 = −σµν and C(σµνγ5)TC−1 = −σµνγ5, we obtain

Γµ(p, p′) = −fQ(q2)γµ − fM(q2)iσµνq
ν − fE(q2)σµνq

νγ5 + fA(q2)
(
q2γµ − qµ/q

)
γ5 . (68)

A comparison between Eqs. (64) and (68) yields

fQ(q2) = fM(q2) = fE(q2) = 0 . (69)

This result means that a Majorana neutrino only has the anapole form factor fA(q2).

More generally, one may write out the matrix elements of the electromagnetic current Jµ(x) be-
tween two different states (i.e., the incoming and outgoing particles are different):

〈ψj(p′)|Jµ(x)|ψi(p)〉 = e−iqxuj(~p
′)Γijµ (p, p′)ui(~p) , (70)

where q = p − p′ together with p2 = m2
i and p′2 = m2

j (for i 6= j). Here the electromagnetic vertex
matrix Γµ(p, p′) can be decomposed into the following Lorentz-invariant form in terms of four form
factors:

Γµ(p, p′) = FQ(q2)
(
q2γµ − qµ/q

)
+ FM(q2)iσµνq

ν + FE(q2)σµνq
νγ5 + FA(q2)

(
q2γµ − qµ/q

)
γ5 , (71)

where FQ, FM, FE and FA are all the 2 × 2 matrices in the space of neutrino mass eigenstates. The
diagonal case (i.e., i = j) has been discussed above, from Eq. (59) to Eq. (69). In the off-diagonal case
(i.e., i 6= j), the Hermiticity of Jµ(x) is no more a constraint on Γµ(p, p′) for Dirac neutrinos because
Eq. (62) only holds for i = j. It is now possible for Majorana neutrinos to have finite transition dipole
moments, simply because Eqs. (66)—(69) do not hold when ψi and ψj represent different flavors.

We conclude that Dirac neutrinos may have both electric and magnetic dipole moments, while
Majorana neutrinos have neither electric nor magnetic dipole moments. But massive Majorana neutrinos
can have transition dipole moments which involve two different neutrino flavors in the initial and final
states, so can massive Dirac neutrinos.

3.2 Magnetic and electric dipole moments
The magnetic and electric dipole moments of massive neutrinos, denoted as µ ≡ FM(0) and ε ≡ FE(0),
are interesting in both theories and experiments because they are closely related to the dynamics of
neutrino mass generation and to the characteristic of new physics.

Let us consider a minimal extension of the SM in which three right-handed neutrinos are intro-
duced and lepton number conservation is required. In this case massive neutrinos are Dirac particles and
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their magnetic and electric dipole moments can be evaluated by calculating the Feynman diagrams in
Fig. 1. Taking account of the smallness of both m2

α/M
2
W and m2

i /M
2
W , where mα (for α = e, µ, τ ) and

mi (for i = 1, 2, 3) stand respectively for the charged-lepton and neutrino masses, one obtains

µD
ij =

3eGFmi

32
√

2π2

(
1 +

mj

mi

)
×
∑

α

(
2− m2

α

M2
W

)
VαiV

∗
αj ,

εDij =
3eGFmi

32
√

2π2

(
1−

mj

mi

)
×
∑

α

(
2− m2

α

M2
W

)
VαiV

∗
αj , (72)

to an excellent degree of accuracy. Here Vαi and Vαj are the elements of the unitary lepton flavor mixing
matrix V . Some discussions are in order.

(1) In the diagonal case (i.e., i = j), we are left with vanishing electric dipole moments (i.e.,
εDii = 0). The magnetic dipole moments µD

ii are finite and proportional to the neutrino masses mi (for
i = 1, 2, 3):

µD
ii =

3eGFmi

8
√

2π2

(
1− 1

2

∑

α

m2
α

M2
W

|Vαi|2
)
. (73)

Hence a massless Dirac neutrino in the SM has no magnetic dipole moment. In the leading-order ap-
proximation, µD

ii are independent of the strength of lepton flavor mixing and have tiny values

µD
ii ≈

3eGFmi

8
√

2π2
≈ 3× 10−19

( mi

1 eV

)
µB , (74)

where µB = e~/(2me) is the Bohr magneton. Given mi ≤ 1 eV, the magnitude of µD
ii is far below its

present experimental upper bound (< a few × 10−11µB).

(2) In the off-diagonal case (i.e., i 6= j), the unitarity of V allows us to simplify Eq. (72) to

µD
ij = −3eGFmi

32
√

2π2

(
1 +

mj

mi

)∑

α

m2
α

M2
W

VαiV
∗
αj ,

εDij = −3eGFmi

32
√

2π2

(
1−

mj

mi

)∑

α

m2
α

M2
W

VαiV
∗
αj . (75)

We see that the magnitudes of µD
ij and εDij (for i 6= j), compared with that of µD

ii , are further suppressed
due to the smallness of m2

α/M
2
W . Similar to the expression given in Eq. (74),

µD
ij ≈ −4× 10−23

(
mi +mj

1 eV

)
×
(∑

α

m2
α

m2
τ

VαiV
∗
αj

)
µB ,

εDij ≈ −4× 10−23

(
mi −mj

1 eV

)
×
(∑

α

m2
α

m2
τ

VαiV
∗
αj

)
µB , (76)

which can illustrate how small µD
ij and εDij are.

(3) Although Majorana neutrinos do not have intrinsic (i = j) magnetic and electric dipole mo-
ments, they may have finite transition (i 6= j) dipole moments. Because of the fact that Majorana
neutrinos are their own antiparticles, their magnetic and electric dipole moments can also get contribu-
tions from two additional one-loop Feynman diagrams involving the charge-conjugate fields of νi, νj , lα,
W± and γ shown in Fig. 1 5. In this case one obtains

µM
ij = − 3eGFi

16
√

2π2

(
mi +mj

)
×
∑

α

m2
α

M2
W

Im
(
VαiV

∗
αj

)
,

5Here we confine ourselves to a simple extension of the SM with three known neutrinos to be massive Majorana particles.
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εMij = − 3eGF

16
√

2π2

(
mi −mj

)
×
∑

α

m2
α

M2
W

Re
(
VαiV

∗
αj

)
, (77)

where mi 6= mj must hold. Comparing between Eqs. (75) and (77), we observe that the magnitudes of
µM
ij and εMij are the same order as those of µD

ij and εDij in most cases, although the CP-violating phases
hidden in VαiV

∗
αj are possible to give rise to significant cancellations in some cases.

(4) The fact that µij and εij are proportional to mi or mj can be understood in the following way.
Note that both tensor- and pseudotensor-like spinor bilinears are chirality-changing operators, which link
the left-handed state to the right-handed one 6:

ψσµνψ = ψLσµνψR + h.c. ,

ψσµνγ5ψ = ψLσµνγ5ψR − h.c. . (78)

Note also that the same relations hold when ψ is replaced by its charge-conjugate field ψc for Majorana
neutrinos. Because (νi)R and (νj)R do not have any interactions with W± in Fig. 1, it seems that only
(νi)L and (νj)L are flowing along the external fermion lines. To obtain a chirality-changing contribution
from the effective (one-loop) electromagnetic vertex, one has to put a mass insertion on one of the
external legs in the Feynman diagrams. As a result, the magnetic and electric dipole moments must
involve mi and mj , the masses of νi and νj neutrinos.

(5) Is the magnetic or electric dipole moment of a neutrino always proportional to its mass? The
answer is negative if new physics beyond the SU(2)L × U(1)Y gauge theory is involved. For instance,
a new term proportional to the charged-lepton mass can contribute to the magnetic dipole moment of
a massive Dirac neutrino in the SU(2)L × SU(2)R × U(1)Y model with broken left-right symmetry.
Depending on the details of this model, such a term might cancel or exceed the term proportional to the
neutrino mass in the expression of the magnetic dipole moment.

Finite magnetic and electric dipole moments of massive neutrinos may produce a variety of new
processes beyond the SM. For example, (a) radiative neutrino decays νi → νj +γ can happen, so can the
Cherenkov radiation of neutrinos in an external electromagnetic field; (b) the elastic neutrino-electron
or neutrino-nucleon scattering can be mediated by the magnetic and electric dipole moments; (c) the
phenomenon of precession of the neutrino spin can occur in an external magnetic field; (d) the photon
(or plasmon) can decay into a neutrino-antineutrino pair in a plasma (i.e., γ∗ → νν). Of course, non-
vanishing electromagnetic dipole moments contribute to neutrino masses too.

3.3 Radiative neutrino decays
If the electromagnetic moments of a massive neutrino νi are finite, it can decay into a lighter neutrino νj
and a photon γ. The Lorentz-invariant vertex matrix of this νi → νj + γ process is in general described
by Γµ(p, p′) in Eq. (71). Because q2 = 0 and qµε

µ = 0 hold for a real photon γ, where εµ represents the
photon polarization, the form of Γµ(p, p′) can be simplified to

Γµ(p, p′) = [iFM(0) + FE(0)γ5]σµνq
ν . (79)

By definition, F ijM(0) ≡ µij and F ijE (0) ≡ εij are just the magnetic and electric transition dipole moments
between νi and νj neutrinos. Given the transition matrix element uj(~p

′)Γijµ (p, p′)ui(~p), it is straightfor-
ward to calculate the decay rate. In the rest frame of the decaying neutrino νi,

Γνi→νj+γ =

(
m2
i −m2

j

)3

8πm3
i

(∣∣µij
∣∣2 +

∣∣εij
∣∣2
)
. (80)

6That is why both magnetic and electric dipole moments must vanish for a Weyl neutrino, because it is massless and does
not possess the right-handed component.
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This result is valid for both Dirac and Majorana neutrinos.

In the SU(2)L × U(1)Y gauge theory with three massive Dirac (or Majorana) neutrinos, the ra-
diative decay νi → νj + γ is mediated by the one-loop Feynman diagrams (and their charge-conjugate
diagrams) shown in Fig. 1. The explicit expressions of µij and εij have been given in Eq. (75) for Dirac
neutrinos and in Eq. (77) for Majorana neutrinos. Hence

Γ
(D)
νi→νj+γ =

(
m2
i −m2

j

)3

8πm3
i

(∣∣µD
ij

∣∣2 +
∣∣εDij
∣∣2
)

=
9αG2

Fm
5
i

211π4

(
1−

m2
j

m2
i

)3(
1 +

m2
j

m2
i

)

×
∣∣∣∣∣
∑

α

m2
α

M2
W

VαiV
∗
αj

∣∣∣∣∣

2

, (81)

for Dirac neutrinos; or

Γ
(M)
νi→νj+γ =

(
m2
i −m2

j

)3

8πm3
i

(∣∣µM
ij

∣∣2 +
∣∣εMij
∣∣2
)

=
9αG2

Fm
5
i

210π4

(
1−

m2
j

m2
i

)3{(
1 +

mj

mi

)2

×
[∑

α

m2
α

M2
W

Im
(
VαiV

∗
αj

)
]2

+

(
1−

mj

mi

)2
[∑

α

m2
α

M2
W

Re
(
VαiV

∗
αj

)
]2


 , (82)

for Majorana neutrinos, where α = e2/(4π) denotes the electromagnetic fine-structure constant.

To compare Γνi→νj+γ with the experimental data in a simpler way, one may define an effective
magnetic dipole moment

µeff ≡
√∣∣∣µij

∣∣∣
2

+
∣∣∣εij
∣∣∣
2
. (83)

Eq. (80) can then be expressed as

Γνi→νj+γ = 5.3×
(

1−
m2
j

m2
i

)3 ( mi

1 eV

)3
×
(
µeff

µB

)2

s−1 . (84)

Although µeff is extremely small in some simple extensions of the SM, it could be sufficiently large in
some more complicated or exotic scenarios beyond the SM, such as a class of extra-dimension models.
Experimentally, radiative decays of massive neutrinos can be constrained by seeing no emission of the
photons from solar νe and reactor νe fluxes. Much stronger constraints on µeff can be obtained from
the Supernova 1987A limit on the neutrino decay and from the astrophysical limit on distortions of the
cosmic microwave background (CMB) radiation. A brief summary of these limits is

µeff

µB

<





0.9× 10−1

(
eV

mν

)2

Reactor

0.5× 10−5

(
eV

mν

)2

Sun

1.5× 10−8

(
eV

mν

)2

SN 1987A

1.0× 10−11

(
eV

mν

)9/4

CMB

where mν denotes the effective mass of the decaying neutrino (i.e., mν = mi).
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3.4 Electromagnetic νe-e scattering
In practice, the most sensitive way of probing the electromagnetic dipole moments of a massive neutrino
is to measure the cross section of elastic neutrino-electron (or antineutrino-electron) scattering, which
can be expressed as a sum of the contribution from the SM (σ0) and that from the electromagnetic dipole
moments of massive neutrinos (σµ):

dσ

dT
=

dσ0

dT
+

dσµ
dT

, (85)

where T = Ee −me denotes the kinetic energy of the recoil electron in this process. We have

dσ0

dT
=
G2

Fme

2π

[
g2

+ + g2
−

(
1− T

Eν

)2

− g+g−
meT

E2
ν

]
(86)

for neutrino-electron scattering, where g+ = 2 sin2 θw + 1 for νe, g+ = 2 sin2 θw − 1 for νµ and ντ , and
g− = 2 sin2 θw for all flavors. Note that Eq. (86) is also valid for antineutrino-electron scattering if one
simply exchanges the positions of g+ and g−. On the other hand,

dσµ
dT

=
α2π

m2
e

(
1

T
− 1

Eν

)(
µν
µB

)2

(87)

with µ2
ν ≡ |µD

ii |2 + |εDii |2 (for i = 1, 2 or 3), which holds for both neutrinos and antineutrinos. In
obtaining Eqs. (86) and (87) one has assumed the scattered neutrino to be a Dirac particle and omitted the
effects of finite neutrino masses and flavor mixing (i.e., νe = ν1, νµ = ν2 and ντ = ν3 have been taken).
Hence there is no interference between the contributions coming from the SM and electromagnetic dipole
moments — the latter leads to a helicity flip of the neutrino but the former is always helicity-conserving.
While an interference term will appear if one takes account of neutrino masses and flavor mixing, its
magnitude linearly depends on the neutrino masses and thus is strongly suppressed in comparison with
the pure weak and electromagnetic terms. So the incoherent sum of dσ0/dT and dσµ/dT in Eq. (85) is
actually an excellent approximation of dσ/dT .

It is obvious that the two terms of dσ/dT depend on the kinetic energy of the recoil electron
in quite different ways. In particular, dσµ/dT grows rapidly with decreasing values of T . Hence a
measurement of smaller T can probe smaller µν in this kind of experiments. The magnitude of dσµ/dT
becomes larger than that of dσ0/dT if the condition

T ≤ α2π2

G2
Fm

3
e

(
µν
µB

)2

≈ 3× 1022

(
µν
µB

)2

keV (88)

is roughly satisfied, as one can easily see from Eqs. (86) and (87). No distortion of the recoil electron
energy spectrum of ναe

− or ναe
− scattering (for α = e, µ, τ ) has so far been observed in any direct

laboratory experiments, and thus only the upper bounds on µν can be derived. For instance, an analysis
of the T -spectrum in the Super-Kamiokande experiment yields µν < 1.1 × 10−10µB. More stringent
bounds on µν can hopefully be achieved in the future.

In view of current experimental data on neutrino oscillations, we know that neutrinos are actually
massive. Hence the effects of finite neutrino masses and flavor mixing should be taken into account in
calculating the cross section of elastic neutrino-electron or antineutrino-electron scattering. Here let us
illustrate how the neutrino oscillation may affect the weak and electromagnetic terms of elastic νee

−

scattering in a reactor experiment, where the antineutrinos are produced from the beta decay of fission
products and detected by their elastic scattering with electrons in a detector. The antineutrino state
created in this beta decay (via W− → e− + νe) at the reactor is a superposition of three antineutrino
mass eigenstates:

|νe(0)〉 =

3∑

j=1

Vej |νj〉 . (89)
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Such a νe beam propagates over the distance L to the detector,

|νe(L)〉 =

3∑

j=1

eiqjLVej |νj〉 , (90)

in which qj =
√
E2
ν −m2

j is the momentum of νj with Eν being the beam energy and mj being the
mass of νj . After taking account of the effect of neutrino oscillations, one obtains the differential cross
section of elastic antineutrino-electron scattering as follows:

dσ′

dT
=

dσ′0
dT

+
dσ′µ
dT

, (91)

where

dσ′0
dT

=
G2

Fme

2π

{
g2
− +

(
g− − 1

)2
(

1− T

Eν

)2

− g−
(
g− − 1

) meT

E2
ν

+2g−

∣∣∣∣∣∣

3∑

j=1

eiqjL|Vej |2
∣∣∣∣∣∣

2 [
2

(
1− T

Eν

)2

− meT

E2
ν

]
 (92)

with g− = 2 sin2 θw for νe, and

dσ′µ
dT

=
α2π

m2
e

3∑

k=1

∣∣∣∣∣∣

3∑

j=1

eiqjLVej
εjk + iµjk

µB

∣∣∣∣∣∣

2

×
(

1

T
− 1

Eν

)
(93)

with µjk and εjk being the magnetic and electric transition dipole moments between νj and νk neutrinos
as defined in Eq. (79). Because different neutrino mass eigenstates are in principle distinguishable in
the electromagnetic νee

− scattering, their contributions to the total cross section are incoherent. Eq.
(93) shows that it is in general difficult to determine or constrain the magnitudes of µjk and εjk (for
j, k = 1, 2, 3) from a single measurement.

4 Lepton Flavor Mixing and CP Violation
Regardless of the dynamical origin of tiny neutrino masses 7, we may discuss lepton flavor mixing by
taking account of the effective mass terms of charged leptons and Majorana neutrinos at low energies 8,

−L′lepton = (e µ τ)L Ml



e
µ
τ




R

+
1

2

(
νe νµ ντ

)
L
Mν



νce
νcµ
νcτ




R

+ h.c. . (94)

The phenomenon of lepton flavor mixing arises from a mismatch between the diagonalizations ofMl and
Mν in an arbitrary flavor basis: V †l MlUl = Diag{me, µµ,mτ} and V †νMνV

∗
ν = Diag{m1,m2,m3},

where Vl, Ul and Vν are the 3 × 3 unitary matrices. In the basis of mass eigenstates, it is the unitary
matrix V = V †l Vν that will appear in the weak charged-current interactions in Eq. (12). Although the
basis of Ml = Diag{me,mµ,mτ} with Vl = 1 and V = Vν is often chosen in neutrino phenomenology,
one should keep in mind that both the charged-lepton and neutrino sectors may in general contribute
to lepton flavor mixing. In other words, both Vl and Vν are not fully physical, and only their product
V = V †l Vν is a physical description of lepton flavor mixing and CP violation at low energies.

7For simplicity, here we do not consider possible non-unitarity of the 3 × 3 neutrino mixing matrix because its effects are
either absent or very small.

8As for Dirac neutrinos, the corresponding mass term is the same as that given in Eq. (7). In this case the neutrino mass ma-
trixMν is in general not symmetric and can be diagonalized by means of the transformation V †νMνUν = Diag{m1,m2,m3},
where both Vν and Uν are unitary.
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4.1 Parametrizations of V
Flavor mixing among n different lepton families can be described by an n× n unitary matrix V , whose
number of independent parameters relies on the nature of neutrinos. If neutrinos are Dirac particles,
one may make use of n(n − 1)/2 rotation angles and (n − 1)(n − 2)/2 phase angles to parametrize
V . If neutrinos are Majorana particles, however, a full parametrization of V needs n(n − 1)/2 rotation
angles and the same number of phase angles 9. The flavor mixing between charged leptons and Dirac
neutrinos is completely analogous to that of quarks, for which a number of different parametrizations
have been proposed and classified in the literature. Here we classify all possible parametrizations for the
flavor mixing between charged leptons and Majorana neutrinos with n = 3. Regardless of the freedom
of phase reassignments, we find that there are nine structurally different parametrizations for the 3 × 3
lepton flavor mixing matrix V .

The 3 × 3 lepton flavor mixing matrix V , which is often called the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, can be expressed as a product of three unitary matrices O1, O2 and O3. They
correspond to simple rotations in the complex (1,2), (2,3) and (3,1) planes:

O1 =



c1e

iα1 s1e
−iβ1 0

−s1e
iβ1 c1e

−iα1 0
0 0 eiγ1


 ,

O2 =



eiγ2 0 0
0 c2e

iα2 s2e
−iβ2

0 −s2e
iβ2 c2e

−iα2


 ,

O3 =



c3e

iα3 0 s3e
−iβ3

0 eiγ3 0
−s3e

iβ3 0 c3e
−iα3


 , (95)

where si ≡ sin θi and ci ≡ cos θi (for i = 1, 2, 3). Obviously OiO
†
i = O†iOi = 1 holds, and any two

rotation matrices do not commute with each other. We find twelve different ways to arrange the product
of O1, O2 and O3, which can cover the whole 3×3 space and provide a full description of V . Explicitly,
six of the twelve different combinations of Oi belong to the type

V = Oi(θi, αi, βi, γi)⊗Oj(θj , αj , βj , γj)⊗Oi(θ′i, α′i, β′i, γ′i) (96)

with i 6= j, where the complex rotation matrix Oi occurs twice; and the other six belong to the type

V = Oi(θi, αi, βi, γi)⊗Oj(θj , αj , βj , γj)⊗Ok(θk, αk, βk, γk) (97)

with i 6= j 6= k, in which the rotations take place in three different complex planes. The productsOiOjOi
and OiOkOi (for i 6= k) in Eq. (97) are correlated with each other, if the relevant phase parameters are
switched off. Hence only nine of the twelve parametrizations, three from Eq. (96) and six from Eq. (97),
are structurally different.

In each parametrization of V , there apparently exist nine phase parameters. Some of them or their
combinations can be absorbed by redefining the relevant phases of charged-lepton and neutrino fields.
If neutrinos are Dirac particles, V contains only a single irremovable CP-violating phase δ. If neutrinos
are Majorana particles, however, there is no freedom to rearrange the relative phases of three Majorana
neutrino fields. Hence V may in general contain three irremovable CP-violating phases in the Majorana
case (δ and two Majorana phases). Both CP- and T-violating effects in neutrino oscillations depend only
upon the Dirac-like phase δ.

9No matter whether neutrinos are Dirac or Majorana particles, the n×n unitary flavor mixing matrix has (n−1)2(n−2)2/4
Jarlskog invariants of CP violation defined as J ijαβ ≡ Im

(
VαiVβjV

∗
αjV

∗
βi

)
.
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Different parametrizations of V are mathematically equivalent, so adopting any of them does not
directly point to physical significance. But it is very likely that one particular parametrization is more
useful and transparent than the others in studying the neutrino phenomenology and (or) exploring the
underlying dynamics responsible for lepton mass generation and CP violation. Here we highlight two
particular parametrizations of the PMNS matrix V . The first one is the so-called “standard" parametriza-
tion advocated by the Particle Data Group:

V =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13





c12 s12 0
−s12 c12 0

0 0 1


P ′ , (98)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) together with the Majorana phase matrix
P ′ = Diag{eiρ, eiσ, 1}. Without loss of generality, the three mixing angles (θ12, θ13, θ23) can all be ar-
ranged to lie in the first quadrant. Arbitrary values between 0 and 2π are allowed for three CP-violating
phases (δ, ρ, σ). A remarkable merit of this parametrization is that its three mixing angles are approxi-
mately equivalent to the mixing angles of solar (θ12), atmospheric (θ23) and CHOOZ reactor (θ13) neu-
trino oscillation experiments. Another useful parametrization is the Fritzsch-Xing (FX) parametrization
proposed originally for quark mixing and later for lepton mixing:

V =



cl sl 0
−sl cl 0
0 0 1





e−iφ 0 0

0 c s
0 −s c





cν −sν 0
sν cν 0
0 0 1


P ′ , (99)

where cl,ν ≡ cos θl,ν , sl,ν ≡ sin θl,ν , c ≡ cos θ, s ≡ sin θ, and P ′ is a diagonal phase matrix containing
two nontrivial CP-violating phases. Although the form of V in Eq. (99) is apparently different from
that in Eq. (98), their corresponding flavor mixing angles (θl, θν , θ) and (θ12, θ13, θ23) have quite similar
meanings in interpreting the experimental data on neutrino oscillations. In the limit θl = θ13 = 0, one
easily arrives at θν = θ12 and θ = θ23. As a natural consequence of very small θl, three mixing angles
of the FX parametrization can also be related to those of solar (θν), atmospheric (θ) and CHOOZ reactor
(θl sin θ) neutrino oscillation experiments in the leading-order approximation. A striking merit of this
parametrization is that its six parameters have very simple renormalization-group equations when they
run from a superhigh-energy scale to the electroweak scale or vice versa.

4.2 Democratic or tri-bimaximal mixing?
Current neutrino oscillation data indicate the essential feature of lepton flavor mixing: two mixing angles
are quite large (θ12 ∼ 34◦ and θ23 ∼ 45◦) while the third one is very small (θ13 < 10◦). Such a flavor
mixing pattern is far beyond the original imagination of most people because it is rather different from
the well-known quark mixing pattern (ϑ12 ≈ 14.5◦, ϑ23 ≈ 2.6◦, ϑ13 ≈ 0.23◦ and δ = 76.5◦) described
by the same parametrization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. To understand this
difference, a number of constant lepton mixing patterns have been proposed as the starting point of model
building. Possible flavor symmetries and their spontaneous or explicit breaking mechanisms hidden
in those constant patterns might finally help us pin down the dynamics responsible for lepton mass
generation and flavor mixing. To illustrate, let us first comment on the “democratic" neutrino mixing
pattern and then pay more attention to the “tri-bimaximal" neutrino mixing pattern.

The “democratic" lepton flavor mixing pattern

U0 =




1√
2

1√
2

0

−1√
6

1√
6

√
2√
3

1√
3

−1√
3

1√
3


 (100)

was originally obtained by Fritzsch and Xing as the leading term of the 3 × 3 lepton mixing matrix
from the breaking of flavor democracy or S(3)L × S(3)R symmetry of the charged-lepton mass matrix
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in the basis where the Majorana neutrino mass matrix is diagonal and possesses the S(3) symmetry. Its
naive predictions θ12 = 45◦ and θ23 ≈ 54.7◦ are no more favored today, but they may receive proper
corrections from the symmetry-breaking perturbations so as to fit current neutrino oscillation data.

Today’s most popular constant pattern of neutrino mixing is the “tri-bimaximal" mixing matrix:

V0 =




√
2√
3

1√
3

0
−1√

6
1√
3

1√
2

1√
6

−1√
3

1√
2


 (101)

which looks like a twisted form of the democratic mixing pattern with the same entries. Its strange name
comes from the fact that this flavor mixing pattern is actually a product of the “tri-maximal" mixing
matrix and a “bi-maximal" mixing matrix:

V ′0 =




1√
3

1√
3

1√
3

1√
3

ω√
3

ω2√
3

1√
3

ω2√
3

ω√
3







1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2


 = PV0P

′ , (102)

where ω = ei2π/3 denotes the complex cube-root of unity (i.e., ω3 = 1), and P = Diag{1, ω, ω2} and
P ′ = Diag{1, 1, i} are two diagonal phase matrices. V0 or V ′0 predicts θ12 = arctan(1/

√
2) ≈ 35.3◦,

θ13 = 0◦ and θ23 = 45◦, consistent quite well with current neutrino oscillation data. Because the entries
of U0 or V0 are all formed from small integers (0, 1, 2 and 3) and their square roots, it is often suggestive
of certain discrete flavor symmetries in the language of group theories. That is why the democratic or
tri-bimaximal neutrino mixing pattern can serve as a good starting point of model building based on
a variety of flavor symmetries, such as Z2, Z3, S3, S4, A4, D4, D5, Q4, Q6, ∆(27) and Σ(81). In
particular, a lot of interest has been paid to the derivation of V0 with the help of the non-Abelian discrete
A4 symmetry.

Note that the democratic mixing matrix U0 and the tri-bimaximal mixing matrix V0 are related
with each other via the following transformation:

V0 =




1 0 0
0 cos θ0 − sin θ0

0 sin θ0 cos θ0


U0




cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1


 , (103)

where θ0 = arctan(
√

2 − 1)2 ≈ 9.7◦. This angle is actually a measure of the difference between the
mixing angles of U0 and V0 (namely, 45◦ − 35.3◦ = 54.7◦ − 45◦ = 9.7◦). In this sense, we argue that it
is worthwhile to explore possible flavor symmetries behind both V0 and U0 so as to build realistic models
for neutrino mass generation and lepton flavor mixing.

Let us remark that a specific constant mixing pattern should be regarded as the leading-order
approximation of the “true” lepton flavor mixing matrix, whose mixing angles should in general depend
on both the ratios of charged-lepton masses and those of neutrino masses. We may at least make the
following naive speculation about how to phenomenologically understand the observed pattern of lepton
flavor mixing:

– Large values of θ12 and θ23 could arise from a weak hierarchy or a near degeneracy of the neutrino
mass spectrum, because the strong hierarchy of charged-lepton masses implies that me/mµ and
mµ/mτ at the electroweak scale are unlikely to contribute to θ12 and θ23 in a dominant way.

– Special values of θ12 and θ23 might stem from an underlying flavor symmetry of the charged-lepton
mass matrix or the neutrino mass matrix. Then the contributions of lepton mass ratios to flavor
mixing angles, due to flavor symmetry breaking, are expected to serve as perturbative corrections
to U0 or V0, or another constant mixing pattern.
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Fig. 2: Unitarity triangles of the 3 × 3 PMNS matrix in the complex plane. Each triangle is named by the index
that does not manifest in its three sides.

– Vanishing or small θ13 could be a natural consequence of the explicit textures of lepton mass
matrices. It might also be related to the flavor symmetry which gives rise to sizable θ12 and θ23

(e.g., in U0 or V0).
– Small corrections to a constant flavor mixing pattern may also result from the renormalization-

group running effects of leptons and quarks, e.g., from a superhigh-energy scale to low energies or
vice versa.

There are too many possibilities of linking the observed pattern of lepton flavor mixing to a certain flavor
symmetry, and none of them is unique from the theoretical point of view. In this sense, flavor symmetries
should not be regarded as a perfect guiding principle of model building.

4.3 Leptonic unitarity triangles
In the basis where the flavor eigenstates of charged leptons are identified with their mass eigenstates,
the PMNS matrix V relates the neutrino mass eigenstates (ν1, ν2, ν3) to the neutrino flavor eigenstates
(νe, νµ, ντ ): 


νe
νµ
ντ


 =



Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3





ν1

ν2

ν3


 . (104)

The unitarity of V represents two sets of normalization and orthogonality conditions:
∑

i

(
VαiV

∗
βi

)
= δαβ ,

∑

α

(
VαiV

∗
αj

)
= δij , (105)
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where Greek and Latin subscripts run over (e, µ, τ) and (1, 2, 3), respectively. In the complex plane
the six orthogonality relations in Eq. (105) define six triangles (4e,4µ,4τ ) and (41,42,43) shown
in Fig. 2, the so-called unitarity triangles. These six triangles have eighteen different sides and nine
different inner (or outer) angles. But the unitarity of V requires that all six triangles have the same area
amounting to J /2, where J is the Jarlskog invariant of CP violation defined through

Im
(
VαiVβjV

∗
αjV

∗
βi

)
= J

∑

γ

εαβγ
∑

k

εijk . (106)

One hasJ = c12s12c
2
13s13c23s

2
23 sin δ in the standard parametrization of V as well asJ = clslcνsνcs

2 sinφ
in the FX parametrization of V . No matter whether neutrinos are Dirac or Majorana particles, the strength
of CP or T violation in neutrino oscillations depends only upon J .

To show why the areas of six unitarity triangles are identical with one another, let us take triangles
4τ and43 for example. They correspond to the orthogonality relations

Ve1V
∗
µ1 + Ve2V

∗
µ2 + Ve3V

∗
µ3 = 0 ,

Ve1V
∗
e2 + Vµ1V

∗
µ2 + Vτ1V

∗
τ2 = 0 . (107)

Multiplying these two equations by Vµ2V
∗
e2 and Vµ2V

∗
µ1 respectively, we arrive at two rescaled triangles

which share the side

Ve1Vµ2V
∗
e2V

∗
µ1 = −|Ve2Vµ2|2 − Ve3Vµ2V

∗
e2V

∗
µ3 = −|Vµ1Vµ2|2 − Vµ2Vτ1V

∗
µ1V

∗
τ2 . (108)

This result is consistent with the definition of J in Eq. (106); i.e., Im(Ve1Vµ2V
∗
e2V

∗
µ1) = J and

Im(Ve3Vµ2V
∗
e2V

∗
µ3) = Im(Vµ2Vτ1V

∗
µ1V

∗
τ2) = −J . The latter simultaneously implies that the areas

of4τ and43 are equal to J /2. One may analogously prove that all the six unitarity triangles have the
same area J /2. If CP or T were an exact symmetry, J = 0 would hold and those unitarity triangles
would collapse into lines in the complex plane. Note that the shape and area of each unitarity triangle
are irrelevant to the nature of neutrinos; i.e., they are the same for Dirac and Majorana neutrinos.

Because of V ∗e1Vµ1 + V ∗e2Vµ2 = −V ∗e3Vµ3 or equivalently |Ve1V ∗µ1 + Ve2V
∗
µ2|2 = |Ve3V ∗µ3|2, it is

easy to obtain

2Re
(
Ve1Vµ2V

∗
e2V

∗
µ1

)
= |Ve3|2|Vµ3|2 − |Ve1|2|Vµ1|2 − |Ve2|2|Vµ2|2 . (109)

Combining Ve1Vµ2V
∗
e2V

∗
µ1 = Re(Ve1Vµ2V

∗
e2V

∗
µ1) + iJ with Eq. (109) leads us to the result

J 2 = |Ve1|2|Vµ2|2|Ve2|2|Vµ1|2 −
1

4

(
|Ve3|2|Vµ3|2 − |Ve1|2|Vµ1|2 − |Ve2|2|Vµ2|2

)2

= |Ve1|2|Vµ2|2|Ve2|2|Vµ1|2 −
1

4

(
1 + |Ve1|2|Vµ2|2 + |Ve2|2|Vµ1|2

−|Ve1|2 − |Vµ2|2 − |Ve2|2 − |Vµ1|2
)2

. (110)

As a straightforward generalization of Eq. (110), J 2 can be expressed in terms of the moduli of any four
independent matrix elements of V :

J 2 = |Vαi|2|Vβj |2|Vαj |2|Vβi|2 −
1

4

(
1 + |Vαi|2|Vβj |2 + |Vαj |2|Vβi|2

−|Vαi|2 − |Vβj |2 − |Vαj |2 − |Vβi|2
)2

, (111)

in which α 6= β running over (e, µ, τ) and i 6= j running over (1, 2, 3). The implication of this result
is very obvious: the information about leptonic CP violation can in principle be extracted from the
measured moduli of the neutrino mixing matrix elements.
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As a consequence of the unitarity of V , two interesting relations can be derived from the normal-
ization conditions in Eq. (105):

|Ve2|2 − |Vµ1|2 = |Vµ3|2 − |Vτ2|2 = |Vτ1|2 − |Ve3|2 ≡ ∆L ,

|Ve2|2 − |Vµ3|2 = |Vµ1|2 − |Vτ2|2 = |Vτ3|2 − |Ve1|2 ≡ ∆R . (112)

The off-diagonal asymmetries ∆L and ∆R characterize the geometrical structure of V about its Ve1-
Vµ2-Vτ3 and Ve3-Vµ2-Vτ1 axes, respectively. For instance, ∆L = 1/6 and ∆R = −1/6 hold for the
tri-bimaximal neutrino mixing pattern V0. If ∆L = 0 (or ∆R = 0) held, V would be symmetric about
the Ve1-Vµ2-Vτ3 (or Ve3-Vµ2-Vτ1) axis. Geometrically this would correspond to the congruence between
two unitarity triangles; i.e.,

∆L = 0 : 4e
∼= 41 ,4µ

∼= 42 ,4τ
∼= 43 ;

∆R = 0 : 4e
∼= 43 ,4µ

∼= 42 ,4τ
∼= 41 . (113)

Indeed the counterpart of ∆L in the quark sector is only of O(10−5); i.e., the CKM matrix is almost
symmetric about its Vud-Vcs-Vtb axis. An exactly symmetric flavor mixing matrix might hint at an un-
derlying flavor symmetry, from which some deeper understanding of the fermion mass texture could be
achieved.

4.4 Flavor problems in particle physics
In the subatomic world the fundamental building blocks of matter have twelve flavors: six quarks and
six leptons (and their antiparticles). Table 2 is a brief list of some important discoveries in flavor physics,
which can partly give people a ball-park feeling of a century of developments in particle physics. The
SM of electromagnetic and weak interactions contain thirteen free parameters in its lepton and quark
sectors: three charged-lepton masses, six quark masses, three quark flavor mixing angles and one CP-
violating phase. If three known neutrinos are massive Majorana particles, one has to introduce nine free
parameters to describe their flavor properties: three neutrino masses, three lepton flavor mixing angles
and three CP-violating phases. Thus an effective theory of electroweak interactions at low energies
totally consists of twenty-two flavor parameters which can only be determined from experiments. Why
is the number of degrees of freedom so big in the flavor sector? What is the fundamental physics behind
these parameters? Such puzzles constitute the flavor problems in particle physics.

Current experimental data on neutrino oscillations can only tell us m1 < m2. It remains unknown
whetherm3 is larger thanm2 (normal hierarchy) or smaller thanm1 (inverted hierarchy). The possibility
m1 ≈ m2 ≈ m3 (near degeneracy) cannot be excluded at present. In contrast, three families of charged
fermions have very strong mass hierarchies:

me

mµ

∼ mu

mc

∼ mc

mt

∼ λ4 ,

mµ

mτ

∼ md

ms

∼ ms

mb

∼ λ2 , (114)

where λ ≡ sin θC ≈ 0.22 with θC being the Cabibbo angle of quark flavor mixing. In the standard
parametrization of the CKM matrix, three quark mixing angles exhibit an impressive hierarchy:

ϑ12 ∼ λ , ϑ23 ∼ λ2 , ϑ13 ∼ λ4 . (115)

These two kinds of hierarchies might intrinsically be related to each other, because the flavor mixing an-
gles actually measure a mismatch between the mass and flavor eigenstates of up- and down-type quarks.
For example, the relations ϑ12 ≈

√
md/ms , ϑ23 ≈

√
md/mb and ϑ13 ≈

√
mu/mt are compatible

with Eqs. (114) and (115). They can be derived from a specific pattern of up- and down-type quark
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Table 2: Some important discoveries in the developments of flavor physics.

Discoveries of lepton flavors, quark flavors and CP violation
1897 electron (Thomson, 1897)
1919 proton (up and down quarks) (Rutherford, 1919)
1932 neutron (up and down quarks) (Chadwick, 1932)
1933 positron (Anderson, 1933)
1936 muon (Neddermeyer and Anderson, 1937)
1947 Kaon (strange quark) (Rochester and Butler, 1947)
1956 electron antineutrino (Cowan et al., 1956)
1962 muon neutrino (Danby et al., 1962)
1964 CP violation in s-quark decays (Christenson et al., 1964)
1974 charm quark (Aubert et al., 1974; Abrams et al., 1974)
1975 tau (Perl et al., 1975)
1977 bottom quark (Herb et al., 1977)
1995 top quark (Abe et al., 1995; Abachi et al., 1995)
2000 tau neutrino (Kodama et al., 2000)
2001 CP violation in b-quark decays (Aubert et al., 2001; Abe et al., 2001)

mass matrices with five texture zeros. On the other hand, it seems quite difficult to find a simple way of
linking two large lepton flavor mixing angles θ12 ∼ π/6 and θ23 ∼ π/4 to small me/mµ and mµ/mτ .
One might ascribe the largeness of θ12 and θ23 to a very weak hierarchy of three neutrino masses and
the smallness of θ13 to the strong mass hierarchy in the charged-lepton sector. There are of course many
possibilities of model building to understand the observed lepton flavor mixing pattern, but none of them
has experimentally and theoretically been justified.

Among a number of concrete flavor puzzles that are currently facing us, the following three are
particularly intriguing.

– The pole masses of three charged leptons satisfy the equality

me +mµ +mτ(√
me +

√
mµ +

√
mτ

)2 =
2

3
(116)

to an amazingly good degree of accuracy — its error bar is only of O(10−5).
– There are two quark-lepton “complementarity" relations in flavor mixing:

θ12 + ϑ12 ≈ θ23 + ϑ23 ≈
π

4
, (117)

which are compatible with the present experimental data.
– Two unitarity triangles of the CKM matrix, defined by the orthogonality conditions VudV

∗
ub +

VcdV
∗
cb + VtdV

∗
tb = 0 and VtbV

∗
ub + VtsV

∗
us + VtdV

∗
ud = 0, are almost the right triangles. Namely,

the common inner angle of these two triangles satisfies

α ≡ arg

(
−VudV

∗
ub

VtdV
∗
tb

)
≈ π

2
, (118)

indicated by current experimental data on quark mixing and CP violation.

Such special numerical relations might just be accidental. One or two of them might also be possible to
result from a certain (underlying) flavor symmetry.
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5 Running of Neutrino Mass Parameters
5.1 One-loop RGEs
The spirit of seesaw mechanisms is to attribute the small masses of three known neutrinos to the existence
of some heavy degrees of freedom, such as the SU(2)L gauge-singlet fermions, the SU(2)L gauge-triplet
scalars or the SU(2)L gauge-triplet fermions. All of them point to the unique dimension-5 Weinberg
operator in an effective theory after the corresponding heavy particles are integrated out:

Ld=5

Λ
=

1

2
καβ`αLH̃H̃

T `cβL + h.c. , (119)

where Λ is the cutoff scale, `L denotes the left-handed lepton doublet, H̃ ≡ iσ2H
∗ with H being the

SM Higgs doublet, and κ stands for the effective neutrino coupling matrix. After spontaneous gauge
symmetry breaking, H̃ gains its vacuum expectation value 〈H̃〉 = v/

√
2 with v ≈ 246 GeV. We are then

left with the effective Majorana mass matrixMν = κv2/2 for three light neutrinos from Eq. (119). If the
dimension-5 Weinberg operator is obtained in the framework of the minimal supersymmetric standard
model (MSSM), one will be left with Mν = κ(v sinβ)2/2, where tanβ denotes the ratio of the vacuum
expectation values of two MSSM Higgs doublets.

Eq. (119) or its supersymmetric counterpart can provide a simple but generic way of generating
tiny neutrino masses. There are a number of interesting possibilities of building renormalizable gauge
models to realize the effective Weinberg mass operator, either radiatively or at the tree level. The latter
case is just associated with the well-known seesaw mechanisms to be discussed in section 6. Here we
assume that Ld=5/Λ arises from an underlying seesaw model, whose lightest heavy particle has a mass
of O(Λ). In other words, Λ characterizes the seesaw scale. Above Λ there may exist one or more energy
thresholds corresponding to the masses of heavier seesaw particles. Below Λ the energy dependence
of the effective neutrino coupling matrix κ is described by its renormalization-group equation (RGE).
The evolution of κ from Λ down to the electroweak scale is formally independent of any details of the
relevant seesaw model from which κ is derived.

At the one-loop level κ obeys the RGE

16π2 dκ

dt
= ακκ+ Cκ

[
(YlY

†
l )κ+ κ(YlY

†
l )T

]
(120)

where t ≡ ln(µ/Λ) with µ being an arbitrary renormalization scale between the electroweak scale and
the seesaw scale, and Yl is the charged-lepton Yukawa coupling matrix. The RGE of Yl and those of Yu

(up-type quarks) and Yd (down-type quarks) are given by

16π2 dYl
dt

=
[
αl + C ll (YlY

†
l )
]
Yl ,

16π2 dYu

dt
=
[
αu + Cu

u (YuY
†

u ) + Cd
u (YdY

†
d )
]
Yu ,

16π2 dYd

dt
=
[
αd + Cu

d (YuY
†

u ) + Cd
d (YdY

†
d )
]
Yd . (121)

In the framework of the SM we have

Cκ = Cd
u = Cu

d = −3

2
,

C ll = Cu
u = Cd

d = +
3

2
, (122)

and

ακ = −3g2
2 + λ+ 2Tr

[
3(YuY

†
u ) + 3(YdY

†
d ) + (YlY

†
l )
]
,
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αl = −9

4
g2

1 −
9

4
g2

2 + Tr
[
3(YuY

†
u ) + 3(YdY

†
d ) + (YlY

†
l )
]
,

αu = −17

20
g2

1 −
9

4
g2

2 − 8g2
3 + Tr

[
3(YuY

†
u ) + 3(YdY

†
d ) + (YlY

†
l )
]
,

αd = −1

4
g2

1 −
9

4
g2

2 − 8g2
3 + Tr

[
3(YuY

†
u ) + 3(YdY

†
d ) + (YlY

†
l )
]

; (123)

and in the framework of the MSSM we have

Cκ = Cd
u = Cu

d = +1 ,

C ll = Cu
u = Cd

d = +3 , (124)

and

ακ = −6

5
g2

1 − 6g2
2 + 6Tr(YuY

†
u ) ,

αl = −9

5
g2

1 − 3g2
2 + Tr

[
3(YdY

†
d ) + (YlY

†
l )
]
,

αu = −13

15
g2

1 − 3g2
2 −

16

3
g2

3 + 3Tr(YuY
†

u ) ,

αd = − 7

15
g2

1 − 3g2
2 −

16

3
g2

3 + Tr
[
3(YdY

†
d ) + (YlY

†
l )
]
. (125)

Here g1, g2 and g3 are the gauge couplings and satisfy their RGEs

16π2 dgi
dt

= big
3
i , (126)

where (b1, b2, b3) = (41/10,−19/6,−7) in the SM or (33/5, 1,−3) in the MSSM. In addition, λ is the
Higgs self-coupling parameter of the SM and obeys the RGE

16π2 dλ

dt
= 6λ2 − 3λ

(
3

5
g2

1 + 3g2
2

)
+

3

2

(
3

5
g2

1 + g2
2

)2

+ 3g4
2

+4λTr
[
3(YuY

†
u ) + 3(YdY

†
d ) + (YlY

†
l )
]

−8Tr
[
3(YuY

†
u )2 + 3(YdY

†
d )2 + (YlY

†
l )2
]
. (127)

The relation between λ and the Higgs mass Mh is given by λ = M2
h/(2v

2), where v ≈ 246 GeV is the
vacuum expectation value of the Higgs field.

The above RGEs allow us to evaluate the running behavior of κ together with those of Yl, Yu and
Yd, from the seesaw scale to the electroweak scale or vice versa. We shall examine the evolution of
neutrino masses, lepton flavor mixing angles and CP-violating phases in the following.

5.2 Running neutrino mass parameters
Without loss of any generality, we choose the flavor basis where Yl is diagonal: Yl = Dl ≡ Diag{ye, yµ, yτ}
with yα being the eigenvalues of Yl. In this case the effective Majorana neutrino coupling matrix κ can
be diagonalized by the PMNS matrix V ; i.e., V †κV ∗ = κ̂ ≡ Diag{κ1, κ2, κ3} with κi being the eigen-
values of κ. Then

dκ

dt
= V̇ κ̂V T + V ˙̂κV T + V κ̂V̇ T =

1

16π2

[
ακV κ̂V

T + Cκ
(
D2
l V κ̂V

T + V κ̂V TD2
l

)]
, (128)

with the help of Eq. (120). After a definition of the Hermitian matrix S ≡ V †D2
l V and the anti-Hermitian

matrix T ≡ V †V̇ , Eq. (128) leads to

˙̂κ =
1

16π2
[ακκ̂+ Cκ(Sκ̂+ κ̂S∗)]− T κ̂+ κ̂T ∗. (129)
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Because κ̂ is by definition diagonal and real, the left- and right-hand sides of Eq. (129) must be diagonal
and real. We can therefore arrive at

κ̇i =
1

16π2
(ακ + 2CκReSii)κi , (130)

together with ImTii = ReTii = ImSii = 0 (for i = 1, 2, 3). As the off-diagonal parts of Eq. (129) are
vanishing, we have

Tijκj − κiT ∗ij =
Cκ

16π2

(
Sijκj + κiS

∗
ij

)
(131)

with i 6= j. Therefore,

ReTij = − Cκ
16π2

κi + κj
κi − κj

ReSij ,

ImTij = − Cκ
16π2

κi − κj
κi + κj

ImSij . (132)

Due to V̇ = V T , Eq. (132) actually governs the evolution of V with energies.

We proceed to define V ≡ PUP ′, in which P ≡ Diag{eiφe , eiφµ , eiφτ }, P ′ ≡ Diag{eiρ, eiσ, 1},
and U is the CKM-like matrix containing three neutrino mixing angles and one CP-violating phase.
Although P does not have any physical meaning, its phases have their own RGEs. In contrast, P ′ serves
for the Majorana phase matrix. We find

T ′ ≡ P ′TP ′† = P ′V †V̇ P ′† = Ṗ ′P ′† + U †U̇ + U †P †ṖU , (133)

from which we can obtain six independent constraint equations:

T ′11 = iρ̇+
∑

α

[
U∗α1U̇α1 + iUα1φ̇α

]
,

T ′22 = iσ̇ +
∑

α

[
U∗α2U̇α2 + iUα2φ̇α

]
,

T ′33 =
∑

α

[
U∗α3U̇α3 + iUα3φ̇α

]
;

T ′12 =
∑

α

[
U∗α1U̇α2 + iUα2φ̇α

]
,

T ′13 =
∑

α

[
U∗α1U̇α3 + iUα3φ̇α

]
,

T ′23 =
∑

α

[
U∗α2U̇α3 + iUα3φ̇α

]
, (134)

where α runs over e, µ and τ . Note that Tii = 0 holds and Tij is given by Eq. (132). In view of
ye � yµ � yτ , we take D2

l ≈ Diag{0, 0, y2
τ} as an excellent approximation. Then Sij , Tij and T ′ij can

all be expressed in terms of y2
τ and the parameters of U and P ′. After a straightforward calculation, we

obtain the explicit expressions of Eqs. (130) and (134) as follows:

κ̇i =
κi

16π2

(
ακ + 2Cκy

2
τ |Uτi|2

)
, (135)

and
∑

α

[
U∗α1

(
iU̇α1 − Uα1φ̇α

)]
= ρ̇ ,
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∑

α

[
U∗α2

(
iU̇α2 − Uα2φ̇α

)]
= σ̇ ,

∑

α

[
U∗α3

(
iU̇α3 − Uα3φ̇α

)]
= 0 ,

∑

α

[
U∗α1

(
U̇α2 + iUα2φ̇α

)]
= −Cκy

2
τ

16π2
ei(ρ−σ)

[
ζ−1

12 Re
(
U∗τ1Uτ2e

i(σ−ρ)
)

+ iζ12Im
(
U∗τ1Uτ2e

i(σ−ρ)
)]

,

∑

α

[
U∗α1

(
U̇α3 + iUα3φ̇α

)]
= −Cκy

2
τ

16π2
eiρ
[
ζ−1

13 Re
(
U∗τ1Uτ3e

−iρ)+ iζ13Im
(
U∗τ1Uτ3e

−iρ)] ,

∑

α

[
U∗α2

(
U̇α3 + iUα3φ̇α

)]
= −Cκy

2
τ

16π2
eiσ
[
ζ−1

23 Re
(
U∗τ2Uτ3e

−iσ)+ iζ23Im
(
U∗τ2Uτ3e

−iσ)] , (136)

where ζij ≡ (κi − κj)/(κi + κj) with i 6= j. One can see that those y2
τ -associated terms only consist

of the matrix elements Uτi (for i = 1, 2, 3). If a parametrization of U assures Uτi to be as simple as
possible, the resultant RGEs of neutrino mixing angles and CP-violating phases will be very concise. We
find that the FX parametrization advocated in Eq. (99) with

U =



slsνc+ clcνe

−iφ slcνc− clsνe−iφ sls
clsνc− slcνe−iφ clcνc+ slsνe

−iφ cls
−sνs −cνs c




accords with the above observation, while the “standard" parametrization in Eq. (98) does not. That is
why the RGEs of neutrino mixing angles and CP-violating phases in the standard parametrization are
rather complicated.

Here we take the FX form of U to derive the RGEs of neutrino mass and mixing parameters.
Combining Eqs. (135), (136) and the FX form of U , we arrive at

κ̇1 =
κ1

16π2

(
ακ + 2Cκy

2
τs

2
νs

2
)
,

κ̇2 =
κ2

16π2

(
ακ + 2Cκy

2
τ c

2
νs

2
)
,

κ̇3 =
κ3

16π2

(
ακ + 2Cκy

2
τ c

2
)
, (137)

where ακ ≈ −3g2
2 + 6y2

t + λ (SM) or ακ ≈ −1.2g2
1 − 6g2

2 + 6y2
t (MSSM); and

θ̇l =
Cκy

2
τ

16π2
cνsνc

[
ζ−1

13 cρc(ρ−φ) + ζ13sρs(ρ−φ) − ζ−1
23 cσc(σ−φ) − ζ23sσs(σ−φ)

]
,

θ̇ν =
Cκy

2
τ

16π2
cνsν

[
s2
(
ζ−1

12 c
2
(σ−ρ) + ζ12s

2
(σ−ρ)

)
+ c2

(
ζ−1

13 c
2
ρ + ζ13s

2
ρ

)
− c2

(
ζ−1

23 c
2
σ + ζ23s

2
σ

)]
,

θ̇ =
Cκy

2
τ

16π2
cs
[
s2
ν

(
ζ−1

13 c
2
ρ + ζ13s

2
ρ

)
+ c2

ν

(
ζ−1

23 c
2
σ + ζ23s

2
σ

)]
; (138)

as well as

ρ̇ =
Cκy

2
τ

16π2

[
ζ̂12c

2
νs

2c(σ−ρ)s(σ−ρ) + ζ̂13

(
s2
νs

2 − c2
)
cρsρ + ζ̂23c

2
νs

2cσsσ

]
,

σ̇ =
Cκy

2
τ

16π2

[
ζ̂12s

2
νs

2c(σ−ρ)s(σ−ρ) + ζ̂13s
2
νs

2cρsρ + ζ̂23

(
c2
νs

2 − c2
)
cσsσ

]
,

φ̇ =
Cκy

2
τ

16π2

[(
c2
l − s2

l

)
c−1
l s−1

l cνsνc
(
ζ−1

13 cρs(ρ−φ) − ζ13sρc(ρ−φ) − ζ−1
23 cσs(σ−φ) + ζ23sσc(σ−φ)

)

+ ζ̂12s
2c(σ−ρ)s(σ−ρ) + ζ̂13

(
s2
ν − c2

νc
2
)
cρsρ + ζ̂23

(
c2
ν − s2

νc
2
)
cσsσ

]
, (139)
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where ζ̂ij ≡ ζ−1
ij − ζij = 4κiκj/

(
κ2
i − κ2

j

)
, ca ≡ cos a and sa ≡ sin a (for a = ρ, σ, σ − ρ, ρ − φ or

σ − φ).

Some discussions on the basic features of RGEs of three neutrino masses, three flavor mixing
angles and three CP-violating phases are in order.

(a) The running behaviors of three neutrino masses mi (or equivalently κi) are essentially iden-
tical and determined by ακ, unless tanβ is large enough in the MSSM to make the y2

τ -associated term
competitive with the ακ term. In our phase convention, κ̇i or ṁi (for i = 1, 2, 3) are independent of the
CP-violating phase φ.

(b) Among three neutrino mixing angles, only the derivative of θν contains a term proportional to
ζ−1

12 . Note that ζ−1
ij = (mi +mj)

2/∆m2
ij with ∆m2

ij ≡ m2
i −m2

j holds. Current solar and atmospheric
neutrino oscillation data yield ∆m2

21 ≈ 7.7 × 10−5 eV2 and
∣∣∆m2

32

∣∣ ≈
∣∣∆m2

31

∣∣ ≈ 2.4 × 10−3 eV2.
So θν is in general more sensitive to radiative corrections than θl and θ. The evolution of θν can be
suppressed through the fine-tuning of (σ − ρ). The smallest neutrino mixing angle θl may get radiative
corrections even if its initial value is zero, and thus it can be radiatively generated from other neutrino
mixing angles and CP-violating phases.

(c) The running behavior of φ is quite different from those of ρ and σ, because it includes a peculiar
term proportional to s−1

l . This term, which dominates φ̇ when θl is sufficiently small, becomes divergent
in the limit θl → 0. Indeed, φ is not well-defined if θl is exactly vanishing. But both θl and φ can be
radiatively generated. We may require that φ̇ remain finite when θl approaches zero, implying that the
following necessary condition can be extracted from the expression of φ̇ in Eq. (139):

ζ−1
13 cρs(ρ−φ) − ζ13sρc(ρ−φ) − ζ−1

23 cσs(σ−φ) + ζ23sσc(σ−φ) = 0 . (140)

Note that the initial value of θl, if it is exactly zero or extremely small, may immediately drive φ to its
quasi-fixed point. In this case Eq. (140) can be used to understand the relationship between φ and two
Majorana phases ρ and σ at the quasi-fixed point.

(d) The running behaviors of ρ and σ are relatively mild in comparison with that of φ. A remark-
able feature of ρ̇ and σ̇ is that they will vanish, if both ρ and σ are initially vanishing. This observation
indicates that ρ and σ cannot simultaneously be generated from φ via the RGEs.

6 How to Generate Neutrino Masses?
Neutrinos are assumed or required to be massless in the SM, just because the structure of the SM itself
is too simple to accommodate massive neutrinos.

– Two fundamentals of the SM are the SU(2)L×U(1)Y gauge symmetry and the Lorentz invariance.
Both of them are mandatory to guarantee that the SM is a consistent quantum field theory.

– The particle content of the SM is rather economical. There are no right-handed neutrinos in the
SM, so a Dirac neutrino mass term is not allowed. There is only one Higgs doublet, so a gauge-
invariant Majorana mass term is forbidden.

– The SM is a renormalizable quantum field theory. Hence an effective dimension-5 operator, which
may give each neutrino a Majorana mass, is absent.

In other words, the SM accidently possesses the (B−L) symmetry which assures three known neutrinos
to be exactly massless.

But today’s experiments have convincingly indicated the existence of neutrino oscillations. This
quantum phenomenon can appear if and only if neutrinos are massive and lepton flavors are mixed, and
thus it is a kind of new physics beyond the SM. To generate non-zero but tiny neutrino masses, one
or more of the above-mentioned constraints on the SM must be abandoned or relaxed. It is intolerable
to abandon the gauge symmetry and Lorentz invariance; otherwise, one would be led astray. Given
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the framework of the SM as a consistent field theory, its particle content can be modified and (or) its
renormalizability can be abandoned to accommodate massive neutrinos. There are several ways to this
goal.

6.1 Relaxing the renormalizability
In 1979, Weinberg extended the SM by introducing some higher-dimension operators in terms of the
fields of the SM itself:

Leff = LSM +
Ld=5

Λ
+
Ld=6

Λ2
+ · · · , (141)

where Λ denotes the cut-off scale of this effective theory. Within such a framework, the lowest-dimension
operator that violates the lepton number (L) is the unique dimension-5 operator HHLL/Λ. After spon-
taneous gauge symmetry breaking, this Weinberg operator yields mi ∼ 〈H〉2/Λ for neutrino masses,
which can be sufficiently small (≤ 1 eV) if Λ is not far away from the scale of grand unified theo-
ries (Λ ∼ 1013 GeV for 〈H〉 ∼ 102 GeV). In this sense we argue that neutrino masses can serve as a
low-energy window onto new physics at superhigh energies.

6.2 A pure Dirac neutrino mass term?
Given three right-handed neutrinos, the gauge-invariant and lepton-number-conserving mass terms of
charged leptons and neutrinos are

−Llepton = `LYlHER + `LYνH̃NR + h.c. , (142)

where H̃ ≡ iσ2H
∗ is defined and `L denotes the left-handed lepton doublet. After spontaneous gauge

symmetry breaking, we arrive at the charged-lepton mass matrix Ml = Ylv/
√

2 and the Dirac neutrino
mass matrix Mν = Yνv/

√
2 with v ' 246 GeV. In this case, the smallness of three neutrino masses mi

(for i = 1, 2, 3) is attributed to the smallness of three eigenvalues of Yν (denoted as yi for i = 1, 2, 3).
Then we encounter a transparent hierarchy problem: yi/ye = mi/me ≤ 0.5 eV/0.5 MeV ∼ 10−6. Why
is yi so small? There is no explanation at all in this Dirac-mass picture.

A speculative way out is to invoke extra dimensions; namely, the smallness of Dirac neutrino
masses is ascribed to the assumption that three right-handed neutrinos have access to one or more extra
spatial dimensions. The idea is simply to confine the SM particles onto a brane and to allow NR to travel
in the bulk. For example, the wave-function of NR spreads out over the extra dimension y, giving rise to
a suppressed Yukawa interaction at y = 0 (i.e., the location of the brane):

[
`LYνH̃NR

]
y=0
∼ 1√

L

[
`LYνH̃NR

]
y=L

. (143)

The magnitude of 1/
√
L is measured by Λ/ΛPlanck, and thus it can naturally be small for an effective

theory far below the Planck scale.

6.3 Seesaw mechanisms
This approach works at the tree level and reflects the essential spirit of seesaw mechanisms — tiny masses
of three known neutrinos are attributed to the existence of heavy degrees of freedom and lepton number
violation.

– Type-I seesaw — three heavy right-handed neutrinos are added into the SM and the lepton number
is violated by their Majorana mass term:

−Llepton = `LYlHER + `LYνH̃NR +
1

2
N c

RMRNR + h.c. , (144)

where MR is the Majorana mass matrix.
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– Type-II seesaw — one heavy Higgs triplet is added into the SM and the lepton number is violated
by its interactions with both the lepton doublet and the Higgs doublet:

−Llepton = `LYlHER +
1

2
`LY∆∆iσ2`

c
L − λ∆M∆H

T iσ2∆H + h.c. , (145)

where

∆ ≡
(

∆− −
√

2 ∆0
√

2 ∆−− −∆−

)
(146)

denotes the SU(2)L Higgs triplet.
– Type-III seesaw — three heavy triplet fermions are added into the SM and the lepton number is

violated by their Majorana mass term:

−Llepton = `LYlHER + `L
√

2YΣΣcH̃ +
1

2
Tr
(
ΣMΣΣc

)
+ h.c. , (147)

where

Σ =

(
Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)
(148)

denotes the SU(2)L fermion triplet.

Of course, there are a number of variations or combinations of these three typical seesaw mechanisms in
the literature.

For each of the above seesaw pictures, one may arrive at the unique dimension-5 Weinberg opera-
tor of neutrino masses after integrating out the corresponding heavy degrees of freedom:

Ld=5

Λ
=





1

2

(
YνM

−1
R Y T

ν

)
αβ
`αLH̃H̃

T `cβL + h.c.

− λ∆

M∆

(Y∆)αβ `αLH̃H̃
T `cβL + h.c.

1

2

(
YΣM

−1
Σ Y T

Σ

)
αβ
`αLH̃H̃

T `cβL + h.c.

corresponding to type-I, type-II and type-III seesaws. After spontaneous gauge symmetry breaking, H̃
achieves its vacuum expectation value 〈H̃〉 = v/

√
2 with v ' 246 GeV. Then we are left with the

effective Majorana neutrino mass term for three known neutrinos,

−Lmass =
1

2
νLMνν

c
L + h.c. , (149)

where the Majorana mass matrix Mν is given by

Mν =





−1

2
Yν

v2

MR

Y T
ν (Type I) ,

λ∆Y∆

v2

M∆

(Type II) ,

−1

2
YΣ

v2

MΣ

Y T
Σ (Type III) .

(150)

It becomes obvious that the smallness of Mν can be attributed to the largeness of MR, M∆ or MΣ in the
seesaw mechanism.
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6.4 Radiative origin of neutrino masses
In a seminal paper published in 1972, Weinberg pointed out that “in theories with spontaneously broken
gauge symmetries, various masses or mass differences may vanish in zeroth order as a consequence of
the representation content of the fields appearing in the Lagrangian. These masses or mass differences
can then be calculated as finite higher-order effects." Such a mechanism may allow us to slightly go
beyond the SM and radiatively generate tiny neutrino masses. A typical example is the well-known Zee
model,

−Llepton = `LYlHER + `LYSS
−iσ2l

c
L + Φ̃TFS+iσ2H̃ + h.c. , (151)

where S± are charged SU(2)L singlet scalars, Φ denotes a new SU(2)L doublet scalar which has the
same quantum number as the SM Higgs doublet H , YS is an anti-symmetric matrix, and F represents
a mass. Without loss of generality, we choose the basis of Ml = Yl〈H〉 = Diag{me,mµ,mτ}. In
this model neutrinos are massless at the tree level, but their masses can radiatively be generated via the
one-loop corrections. Given MS �MH ∼MΦ ∼ F and 〈Φ〉 ∼ 〈H〉, the elements of the effective mass
matrix of three light Majorana neutrinos are

(Mν)αβ ∼
MH

16π2
·
m2
α −m2

β

M2
S

(YS)αβ , (152)

where α and β run over e, µ and τ . The smallness of Mν is therefore ascribed to the smallness of YS and
(m2

α −m2
β)/M2

S . Although the original version of the Zee model is disfavored by current experimental
data on neutrino oscillations, its extensions or variations at the one-loop or two-loop level can survive.

7 On the Scales of Seesaw Mechanisms
As we have seen, the key point of a seesaw mechanism is to ascribe the smallness of neutrino masses
to the existence of some new degrees of freedom heavier than the Fermi scale v ' 246 GeV, such as
heavy Majorana neutrinos or heavy Higgs bosons. The energy scale where a seesaw mechanism works
is crucial, because it is relevant to whether this mechanism is theoretically natural and experimentally
testable. Between Fermi and Planck scales, there might exist two other fundamental scales: one is the
scale of a grand unified theory (GUT) at which strong, weak and electromagnetic forces can be unified,
and the other is the TeV scale at which the unnatural gauge hierarchy problem of the SM can be solved
or at least softened by a kind of new physics.

7.1 How about a very low seesaw scale?
In reality, however, there is no direct evidence for a high or extremely high seesaw scale. Hence eV-,
keV-, MeV- and GeV-scale seesaws are all possible, at least in principle, and they are technically natural
in the sense that their lepton-number-violating mass terms are naturally small according to ’t Hooft’s
naturalness criterion — “At any energy scale µ, a set of parameters αi(µ) describing a system can be
small, if and only if, in the limit αi(µ)→ 0 for each of these parameters, the system exhibits an enhanced
symmetry." But there are several potential problems associated with low-scale seesaws: (a) a low-scale
seesaw does not give any obvious connection to a theoretically well-justified fundamental physical scale
(such as the Fermi scale, the TeV scale, the GUT scale or the Planck scale); (b) the neutrino Yukawa
couplings in a low-scale seesaw model turn out to be tiny, giving no actual explanation of why the
masses of three known neutrinos are so small; and (c) in general, a very low seesaw scale does not allow
the “canonical" thermal leptogenesis mechanism to work.

7.2 Seesaw-induced hierarchy problem
Many theorists argue that the conventional seesaw scenarios are natural because their scales (i.e., the
masses of heavy degrees of freedom) are close to the GUT scale. This argument is reasonable on the one
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hand, but it reflects the drawbacks of the conventional seesaw models on the other hand. In other words,
the conventional seesaw models have no direct experimental testability and involve a potential hierarchy
problem. The latter is usually spoke of when two largely different energy scales exist in a model, but
there is no symmetry to stabilize the low-scale physics suffering from large corrections coming from the
high-scale physics.

Such a seesaw-induced fine-tuning problem means that the SM Higgs mass is very sensitive to
quantum corrections from the heavy degrees of freedom in a seesaw mechanism. For example,

δM2
H =





− y2
i

8π2

(
Λ2 +M2

i ln
M2
i

Λ2

)
(I)

3

16π2

[
λ3

(
Λ2 +M2

∆ ln
M2

∆

Λ2

)
+ 4λ2

∆M
2
∆ ln

M2
∆

Λ2

]
(II)

−3y2
i

8π2

(
Λ2 +M2

i ln
M2
i

Λ2

)
(III)

in three typical seesaw scenarios, where Λ is the regulator cut-off, yi and Mi (for i = 1, 2, 3) stand
respectively for the eigenvalues of Yν (or YΣ) and MR (or MΣ), and the contributions proportional to
v2 and M2

H have been omitted. The above results show a quadratic sensitivity to the new scale which
is characteristic of the seesaw model, implying that a high degree of fine-tuning would be necessary to
accommodate the experimental data on MH if the seesaw scale is much larger than v (or the Yukawa
couplings are not extremely fine-tuned in type-I and type-III seesaws). Taking the type-I seesaw scenario
for illustration, we assume Λ ∼ Mi and require |δM2

H | ≤ 0.1 TeV2. Then the above equation leads us
to the following rough estimate:

Mi ∼
[

(2πv)2|δM2
H |

mi

]1/3

≤ 107GeV

[
0.2 eV

mi

]1/3 [ |δM2
H |

0.1 TeV2

]1/3

. (153)

This naive result indicates that a hierarchy problem will arise if the masses of heavy Majorana neutrinos
are larger than about 107 GeV in the type-I seesaw scheme. Because of mi ∼ y2

i v
2/(2Mi), the bound

Mi ≤ 107 GeV implies yi ∼
√

2miMi/v ≤ 2.6× 10−4 for mi ∼ 0.2 eV. Such a small magnitude of yi
seems to be a bit unnatural in the sense that the conventional seesaw idea attributes the smallness of mi

to the largeness of Mi other than the smallness of yi.

There are two possible ways out of this impasse: one is to appeal for the supersymmetry, and the
other is to lower the seesaw scale. We shall follow the second way to discuss the TeV seesaw mechanisms
which do not suffer from the above-mentioned hierarchy problem.

7.3 Why are the TeV seesaws interesting?
There are several reasons for people to expect some new physics at the TeV scale. This kind of new
physics should be able to stabilize the Higgs-boson mass and hence the electroweak scale; in other words,
it should be able to solve or soften the unnatural gauge hierarchy problem. It has also been argued that
the weakly-interacting particle candidates for dark matter should weigh about one TeV or less. If the
TeV scale is really a fundamental scale, may we argue that the TeV seesaws are natural? Indeed, we are
reasonably motivated to speculate that possible new physics existing at the TeV scale and responsible
for the electroweak symmetry breaking might also be responsible for the origin of neutrino masses. It is
interesting and meaningful in this sense to investigate and balance the “naturalness" and “testability" of
TeV seesaws at the energy frontier set by the LHC.

As a big bonus of the conventional (type-I) seesaw mechanism, the thermal leptogenesis mecha-
nism provides us with an elegant dynamic picture to interpret the cosmological matter-antimatter asym-
metry characterized by the observed ratio of baryon number density to photon number density, ηB ≡
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nB/nγ = (6.1 ± 0.2) × 1010. When heavy Majorana neutrino masses are down to the TeV scale, the
Yukawa couplings should be reduced by more than six orders of magnitude so as to generate tiny masses
for three known neutrinos via the type-I seesaw and satisfy the out-of-equilibrium condition, but the CP-
violating asymmetries of heavy Majorana neutrino decays can still be enhanced by the resonant effects
in order to account for ηB . This “resonant leptogenesis" scenario might work in a specific TeV seesaw
model.

Is there a TeV Noah’s Ark which can naturally and simultaneously accommodate the seesaw idea,
the leptogenesis picture and the collider signatures? We are most likely not so lucky and should not be
too ambitious at present. In the following we shall concentrate on the TeV seesaws themselves and their
possible collider signatures and low-energy consequences.

8 TeV Seesaws: Natural and Testable?
The neutrino mass terms in three typical seesaw mechanisms have been given before. Without loss of
generality, we choose the basis in which the mass eigenstates of three charged leptons are identified with
their flavor eigenstates.

8.1 Type-I seesaw
Given MD = Yνv/

√
2 , the approximate type-I seesaw formula in Eq. (150) can be rewritten as Mν =

−MDM
−1
R MT

D . Note that the 3× 3 light neutrino mixing matrix V is not exactly unitary in this seesaw
scheme, and its deviation from unitarity is of O(M2

D/M
2
R). Let us consider two interesting possibilities.

(1) MD ∼ O(102) GeV and MR ∼ O(1015) GeV to get Mν ∼ O(10−2) eV. In this conventional and
natural case, MD/MR ∼ O(10−13) holds. Hence the non-unitarity of V is only at the O(10−26) level,
too small to be observed. (2) MD ∼ O(102) GeV and MR ∼ O(103) GeV to get Mν ∼ O(10−2) eV. In
this unnatural case, a significant “structural cancellation" has to be imposed on the textures of MD and
MR. Because of MD/MR ∼ O(0.1), the non-unitarity of V can reach the percent level and may lead to
observable effects.

Now we discuss how to realize the above “structural cancellation" for the type-I seesaw mechanism
at the TeV scale. For the sake of simplicity, we take the basis of MR = Diag{M1,M2,M3} for three
heavy Majorana neutrinos (N1, N2, N3). It is well known that Mν vanishes if

MD = m



y1 y2 y3

αy1 αy2 αy3

βy1 βy2 βy3


 ,

3∑

i=1

y2
i

Mi

= 0 (154)

simultaneously hold. Tiny neutrino masses can be generated from tiny corrections to the texture of MD

in Eq. (154). For example, M ′D = MD − εXD with MD given above and ε being a small dimensionless
parameter (i.e., |ε| � 1) yields

M ′ν = −M ′DM−1
R M ′TD ' ε

(
MDM

−1
R XT

D +XDM
−1
R MT

D

)
, (155)

from which M ′ν ∼ O(10−2) eV can be obtained by adjusting the size of ε.

A lot of attention has recently been paid to a viable type-I seesaw model and its collider signatures
at the TeV scale. At least the following lessons can be learnt:

– Two necessary conditions must be satisfied in order to test a type-I seesaw model at the LHC: (a)
Mi are ofO(1) TeV or smaller; and (b) the strength of light-heavy neutrino mixing (i.e.,MD/MR)
is large enough. Otherwise, it would be impossible to produce and detect Ni at the LHC.

– The collider signatures of Ni are essentially decoupled from the mass and mixing parameters of
three light neutrinos νi. For instance, the small parameter ε in Eq. (155) has nothing to do with the
ratio MD/MR.
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– The non-unitarity of V might lead to some observable effects in neutrino oscillations and other
lepton-flavor-violating or lepton-number-violating processes, if MD/MR ≤ O(0.1) holds.

– The clean LHC signatures of heavy Majorana neutrinos are the ∆L = 2 like-sign dilepton events,
such as pp→ W ∗±W ∗± → µ±µ±jj and pp→ W ∗± → µ±Ni → µ±µ±jj (a dominant channel
due to the resonant production of Ni).

Some instructive and comprehensive analyses of possible LHC events for a single heavy Majorana neu-
trino have recently been done, but they only serve for illustration because such a simplified type-I seesaw
scenario is actually unrealistic.

8.2 Type-II seesaw
The type-II seesaw formula Mν = Y∆v∆ = λ∆Y∆v

2/M∆ has been given in Eq. (150). Note that the
last term of Eq. (145) violates both L and B − L, and thus the smallness of λ∆ is naturally allowed
according to ’t Hooft’s naturalness criterion (i.e., setting λ∆ = 0 will increase the symmetry of Llepton).
Given M∆ ∼ O(1) TeV, for example, this seesaw mechanism works to generate Mν ∼ O(10−2) eV
provided λ∆Y∆ ∼ O(10−12) holds. The neutrino mixing matrix V is exactly unitary in the type-II
seesaw mechanism, simply because the heavy degrees of freedom do not mix with the light ones.

There are totally seven physical Higgs bosons in the type-II seesaw scheme: doubly-chargedH++

andH−−, singly-chargedH+ andH−, neutralA0 (CP-odd), and neutral h0 andH0 (CP-even), where h0

is the SM-like Higgs boson. Except for M2
h0 , we get a quasi-degenerate mass spectrum for other scalars:

M2
H±± = M2

∆ ≈ M2
H0 ≈ M2

H± ≈ M2
A0 . As a consequence, the decay channels H±± → W±H± and

H±± → H±H± are kinematically forbidden. The production of H±± at the LHC is mainly through
qq̄ → γ∗, Z∗ → H++H−− and qq̄′ → W ∗ → H±±H∓ processes, which do not rely on the small
Yukawa couplings.

The typical collider signatures in this seesaw scenario are the lepton-number-violating H±± →
l±α l
±
β decays as well as H+ → l+α ν and H− → l−α ν decays. Their branching ratios

B(H±± → l±α l
±
β ) =

|(Mν)αβ|2
(

2− δαβ
)

∑

ρ,σ

|(Mν)ρσ|2
,

B(H+ → l+α ν) =

∑

β

|(Mν)αβ|2

∑

ρ,σ

|(Mν)ρσ|2
(156)

are closely related to the masses, flavor mixing angles and CP-violating phases of three light neutrinos,
because Mν = V M̂νV

T with M̂ν = Diag{m1,m2,m3} holds. Some detailed analyses of such decay
modes together with the LHC signatures of H±± and H± bosons have been done in the literature.

It is worth pointing out that the following dimension-6 operator can easily be derived from the
type-II seesaw mechanism,

Ld=6

Λ2
= −

(Y∆)αβ (Y∆)†ρσ
4M2

∆

(`αLγ
µ`σL)(`βLγµ`ρL) , (157)

which has two immediate low-energy effects: the non-standard interactions of neutrinos and the lepton-
flavor-violating interactions of charged leptons. An analysis of such effects provides us with some pre-
liminary information:

– The magnitudes of non-standard interactions of neutrinos and the widths of lepton-flavor-violating
tree-level decays of charged leptons are both dependent on neutrino masses mi and flavor-mixing
and CP-violating parameters of V .
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– For a long-baseline neutrino oscillation experiment, the neutrino beam encounters the earth matter
and the electron-type non-standard interaction contributes to the matter potential.

– At a neutrino factory, the lepton-flavor-violating processes µ− → e−νeνµ and µ+ → e+νeνµ
could cause some wrong-sign muons at a near detector.

Current experimental constraints tell us that such low-energy effects are very small, but they might be
experimentally accessible in the future precision measurements.

8.3 Type-(I+II) seesaw
The type-(I+II) seesaw mechanism can be achieved by combining the neutrino mass terms in Eqs. (144)
and (145). After spontaneous gauge symmetry breaking, we are left with the overall neutrino mass term

−Lmass =
1

2

(
νLN

c
R

)(ML MD

MT
D MR

)(
νc

L

NR

)
+ h.c. , (158)

whereMD = Yνv/
√

2 andML = Y∆v∆ with 〈H〉 ≡ v/
√

2 and 〈∆〉 ≡ v∆ corresponding to the vacuum
expectation values of the neutral components of the Higgs doublet H and the Higgs triplet ∆. The 6× 6
mass matrix in Eq. (158) is symmetric and can be diagonalized by the unitary transformation done in
Eq. (28); i.e.,

(
V R
S U

)†(
ML MD

MT
D MR

)(
V R
S U

)∗
=

(
M̂ν 0

0 M̂N

)
, (159)

where M̂ν = Diag{m1,m2,m3} and M̂N = Diag{M1,M2,M3}. Needless to say, V †V + S†S =
V V † + RR† = 1 holds as a consequence of the unitarity of this transformation. Hence V , the flavor
mixing matrix of light Majorana neutrinos, must be non-unitary if R and S are non-zero.

In the leading-order approximation, the type-(I+II) seesaw formula reads as

Mν ≈ML −MDM
−1
R MT

D . (160)

Hence type-I and type-II seesaws can be regarded as two extreme cases of the type-(I+II) seesaw. Note
that two mass terms in Eq. (160) are possibly comparable in magnitude. If both of them are small, their
contributions to Mν may have significant interference effects which make it practically impossible to
distinguish between type-II and type-(I+II) seesaws; but if both of them are large, their contributions to
Mν must be destructive. The latter case unnaturally requires a significant cancellation between two big
quantities in order to obtain a small quantity, but it is interesting in the sense that it may give rise to
possibly observable collider signatures of heavy Majorana neutrinos.

Let me briefly describe a particular type-(I+II) seesaw model and comment on its possible LHC
signatures. First, we assume that both Mi and M∆ are of O(1) TeV. Then the production of H±±

and H± bosons at the LHC is guaranteed, and their lepton-number-violating signatures will probe the
Higgs triplet sector of the type-(I+II) seesaw mechanism. On the other hand, O(MD/MR) ≤ O(0.1) is
possible as a result of O(MR) ∼ O(1) TeV and O(MD) ≤ O(v), such that appreciable signatures of
Ni can be achieved at the LHC. Second, the small mass scale of Mν implies that the relation O(ML) ∼
O(MDM

−1
R MT

D ) must hold. In other words, it is the significant but incomplete cancellation between
ML and MDM

−1
R MT

D terms that results in the non-vanishing but tiny masses for three light neutrinos.
We admit that dangerous radiative corrections to two mass terms of Mν require a delicate fine-tuning
of the cancellation at the loop level. But this scenario allows us to reconstruct ML via the excellent
approximation ML = V M̂νV

T +RM̂NR
T ≈ RM̂NR

T , such that the elements of the Yukawa coupling
matrix Y∆ read as follows:

(Y∆)αβ =
(ML)αβ
v∆

≈
3∑

i=1

RαiRβiMi

v∆

, (161)
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where the subscripts α and β run over e, µ and τ . This result implies that the leptonic decays of H±±

and H± bosons depend on both R and Mi, which actually determine the production and decays of Ni.
Thus we have established an interesting correlation between the singly- or doubly-charged Higgs bosons
and the heavy Majorana neutrinos. To observe the correlative signatures ofH±,H±± andNi at the LHC
will serve for a direct test of this type-(I+II) seesaw model.

8.4 Type-III seesaw
The lepton mass terms in the type-III seesaw scheme have already been given in Eq. (147). After
spontaneous gauge symmetry breaking, we are left with

−Lmass =
1

2

(
νL Σ0

)( 0 MD

MT
D MΣ

)(
νc

L

Σ0c

)
+ h.c. ,

−L′mass =
(
eL ΨL

)(Ml

√
2MD

0 MΣ

)(
ER

ΨR

)
+ h.c. , (162)

respectively, for neutral and charged fermions, where Ml = Ylv/
√

2 , MD = YΣv/
√

2 , and Ψ =
Σ− + Σ+c. The symmetric 6 × 6 neutrino mass matrix can be diagonalized by the following unitary
transformation:

(
V R
S U

)†(
0 MD

MT
D MΣ

)(
V R
S U

)∗
=

(
M̂ν 0

0 M̂Σ

)
, (163)

where M̂ν = Diag{m1,m2,m3} and M̂Σ = Diag{M1,M2,M3}. In the leading-order approximation,
this diagonalization yields the type-III seesaw formula Mν = −MDM

−1
Σ MT

D , which is equivalent to the
one derived from the effective dimension-5 operator in Eq. (150). Let us use one sentence to comment
on the similarities and differences between type-I and type-III seesaw mechanisms: the non-unitarity of
the 3×3 neutrino mixing matrix V has appeared in both cases, although the modified couplings between
the Z0 boson and three light neutrinos differ and the non-unitary flavor mixing is also present in the
couplings between the Z0 boson and three charged leptons in the type-III seesaw scenario.

At the LHC, the typical lepton-number-violating signatures of the type-III seesaw mechanism can
be pp → Σ+Σ0 → l+α l

+
β + Z0W−(→ 4j) and pp → Σ−Σ0 → l−α l

−
β + Z0W+(→ 4j) processes.

A detailed analysis of such collider signatures have been done in the literature. As for the low-energy
phenomenology, a consequence of this seesaw scenario is the non-unitarity of the 3 × 3 flavor mixing
matrix N (≈ V ) in both charged- and neutral-current interactions. Current experimental bounds on the
deviation of NN † from the identity matrix are at the 0.1% level, much stronger than those obtained in
the type-I seesaw scheme, just because the flavor-changing processes with charged leptons are allowed
at the tree level in the type-III seesaw mechanism.

8.5 Inverse and multiple seesaws
Given the naturalness and testability as two prerequisites, the double or inverse seesaw mechanism is
another interesting possibility of generating tiny neutrino masses at the TeV scale. The idea of this
seesaw picture is to add three heavy right-handed neutrinos NR, three SM gauge-singlet neutrinos SR

and one Higgs singlet Φ into the SM, such that the gauge-invariant lepton mass terms can be written as

−Llepton = lLYlHER + lLYνH̃NR +N c
RYSΦSR +

1

2
Sc

RµSR + h.c. , (164)

where the µ-term is naturally small according to ’t Hooft’s naturalness criterion, because it violates the
lepton number. After spontaneous gauge symmetry breaking, the overall neutrino mass term turns out to
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be

−Lmass =
1

2

(
νL N

c
R S

c
R

)



0 MD 0
MT

D 0 MS

0 MT
S µ





νc

L

NR

SR


 , (165)

where MD = Yν〈H〉 and MS = YS〈Φ〉. A diagonalization of the symmetric 9× 9 matrixM leads us to
the effective light neutrino mass matrix

Mν ≈MD

1

MT
S

µ
1

MS

MT
D (166)

in the leading-order approximation. Hence the smallness of Mν can be attributed to both the smallness
of µ itself and the doubly-suppressed MD/MS term for MD � MS . For example, µ ∼ O(1) keV
and MD/MS ∼ O(10−2) naturally give rise to a sub-eV Mν . One has Mν = 0 in the limit µ → 0,
which reflects the restoration of the slightly-broken lepton number. The heavy sector consists of three
pairs of pseudo-Dirac neutrinos whose CP-conjugated Majorana components have a tiny mass splitting
characterized by the order of µ.

Going beyond the canonical (type-I) and inverse seesaw mechanisms, one may build the so-called
“multiple" seesaw mechanisms to further lower the seesaw scales.

9 Non-unitary Neutrino Mixing
It is worth remarking that the charged-current interactions of light and heavy Majorana neutrinos are
not completely independent in either the type-I seesaw or the type-(I+II) seesaw. The standard charged-
current interactions of νi and Ni are already given in Eq. (34), where V is just the light neutrino mixing
matrix responsible for neutrino oscillations, and R describes the strength of charged-current interactions
between (e, µ, τ) and (N1, N2, N3). Since V and R belong to the same unitary transformation done in
Eq. (28) or Eq. (159), they must be correlated with each other and their correlation signifies an important
relationship between neutrino physics and collider physics.

It can be shown that V and R share nine rotation angles (θi4, θi5 and θi6 for i = 1, 2 and 3)
and nine phase angles (δi4, δi5 and δi6 for i = 1, 2 and 3). To see this point clearly, let us decompose
V into V = AV0, where V0 is the standard (unitary) parametrization of the 3 × 3 PMNS matrix in
which three CP-violating phases δij (for ij = 12, 13, 23) are associated with sij (i.e., cij ≡ cos θij and
ŝij ≡ eiδij sin θij). Because of V V † = AA† = 1 − RR†, it is obvious that V → V0 in the limit of
A→ 1 (or equivalently, R→ 0). Considering the fact that the non-unitarity of V must be a small effect
(at most at the percent level as constrained by current neutrino oscillation data and precision electroweak
data), we expect sij ≤ O(0.1) (for i = 1, 2, 3 and j = 4, 5, 6) to hold. Then we obtain

R =



ŝ∗14 ŝ∗15 ŝ∗16

ŝ∗24 ŝ∗25 ŝ∗26

ŝ∗34 ŝ∗35 ŝ∗36


 (167)

as an excellent approximations. A striking consequence of the non-unitarity of V is the loss of universal-
ity for the Jarlskog invariants of CP violation, J ijαβ ≡ Im(VαiVβjV

∗
αjV

∗
βi), where the Greek indices run

over (e, µ, τ) and the Latin indices run over (1, 2, 3). For example, the extra CP-violating phases of V
are possible to give rise to a significant asymmetry between νµ → ντ and νµ → ντ oscillations.

The probability of να → νβ oscillations in vacuum, defined as Pαβ , is given by

Pαβ =

∑

i

|Vαi|2|Vβi|2 + 2
∑

i<j

Re
(
VαiVβjV

∗
αjV

∗
βi

)
cos ∆ij −

∑

i<j

J ijαβ sin ∆ij

(
V V †

)
αα

(
V V †

)
ββ

, (168)
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where ∆ij ≡ ∆m2
ijL/(2E) with ∆m2

ij ≡ m2
i − m2

j , E being the neutrino beam energy and L being
the baseline length. If V is exactly unitary (i.e., A = 1 and V = V0), the denominator of Eq. (168)
will become unity and the conventional formula of Pαβ will be reproduced. Note that νµ → ντ and
νµ → ντ oscillations may serve as a good tool to probe possible signatures of non-unitary CP violation.
To illustrate this point, we consider a short- or medium-baseline neutrino oscillation experiment with
| sin ∆13| ∼ | sin ∆23| � | sin ∆12|, in which the terrestrial matter effects are expected to be insignificant
or negligibly small. Then the dominant CP-conserving and CP-violating terms of P (νµ → ντ ) and
P (νµ → ντ ) are

P (νµ → ντ ) ≈ sin2 2θ23 sin2 ∆23

2
− 2

(
J23
µτ + J13

µτ

)
sin ∆23 ,

P (νµ → ντ ) ≈ sin2 2θ23 sin2 ∆23

2
+ 2

(
J23
µτ + J13

µτ

)
sin ∆23 , (169)

where the good approximation ∆13 ≈ ∆23 has been used in view of the experimental fact |∆m2
13| ≈

|∆m2
23| � |∆m2

12|, and the sub-leading and CP-conserving “zero-distance" effect has been omitted. For
simplicity, I take V0 to be the exactly tri-bimaximal mixing pattern (i.e., θ12 = arctan(1/

√
2), θ13 = 0

and θ23 = π/4 as well as δ12 = δ13 = δ23 = 0) and then arrive at

2
(
J23
µτ + J13

µτ

)
≈

6∑

l=4

s2ls3l sin (δ2l − δ3l) . (170)

Given s2l ∼ s3l ∼ O(0.1) and (δ2l − δ3l) ∼ O(1) (for l = 4, 5, 6), this non-trivial CP-violating quantity
can reach the percent level. When a long-baseline neutrino oscillation experiment is concerned, however,
the terrestrial matter effects must be taken into account because they might fake the genuine CP-violating
signals. As for νµ → ντ and νµ → ντ oscillations under discussion, the dominant matter effect results
from the neutral-current interactions and modifies the CP-violating quantity of Eq. (170) in the following
way:

2
(
J23
µτ + J13

µτ

)
=⇒

6∑

l=4

s2ls3l [sin (δ2l − δ3l) +ANCL cos (δ2l − δ3l)] , (171)

where ANC = GFNn/
√

2 with Nn being the background density of neutrons, and L is the baseline
length. It is easy to find ANCL ∼ O(1) for L ∼ 4× 103 km.

10 Concluding Remarks
I have briefly described some basic properties of massive neutrinos in an essentially model-independent
way in these lectures, which are largely based on the book by Dr. Shun Zhou and myself [1] and on
a few review articles or lectures [2]— [6]. It is difficult to cite all the relevant references. I apologize
for missing other people’s works due to the tight page limit of these proceedings. For the same reason
I am unable to write in the cosmological matter-antimatter asymmetry and the leptogenesis mechanism,
although they were discussed in my lectures. Here let me just give a few remarks on the naturalness and
testability of TeV seesaw mechanisms.

Although the seesaw ideas are elegant, they have to appeal for some or many new degrees of
freedom in order to interpret the observed neutrino mass hierarchy and lepton flavor mixing. According
to Weinberg’s third law of progress in theoretical physics, “you may use any degrees of freedom you like
to describe a physical system, but if you use the wrong ones, you will be sorry." What could be better?

Anyway, we hope that the LHC might open a new window for us to understand the origin of
neutrino masses and the dynamics of lepton number violation. A TeV seesaw might work (naturalness?)
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and its heavy degrees of freedom might show up at the LHC (testability?). A bridge between collider
physics and neutrino physics is highly anticipated and, if it exists, will lead to rich phenomenology.

I am indebted to the organizers of AEPSHEP 2014 for their invitation and hospitality. This work
is supported in part by the National Natural Science Foundation of China under grant No. 11135009.
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Abstract
Heavy-ion collisions provide the only laboratory tests of relativistic quantum
field theory at finite temperature. Understanding these is a necessary step in
understanding the origins of our universe. These lectures introduce the subject
to experimental particle physicists, in the hope that they will be useful to others
as well. The phase diagram of QCD is briefly touched upon. Kinematic vari-
ables which arise in the collisions of heavy-ions beyond those in the collisions
of protons or electrons are introduced. Finally, a few of the signals studied in
heavy-ion collisions, and the kind of physics questions which they open up are
discussed.

Keywords
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1 Why study heavy-ion collisions
The universe started hot and small, and cooled as it expanded. Today vast parts of the universe are free
of particles, except for photons with energy of about 3 Kelvin or lower. This energy scale is so far below
the mass scale of any other particle that no scattering processes occur in this heat bath of photons. So we
may consider them to be free.

This was not always so. Earlier in the history of the universe the temperature T was comparable
to, or larger than, the mass scales of many particles. As a result particle production and transmutations
were common. In those circumstances would it be correct and useful to treat this fluid as an ideal gas?
Such a gas cannot give rise to freeze out, phase transitions or rapid crossovers, and transport. We see the
signatures of several such phenomena today, so we know that the ideal gas treatment would not work at
all times.

In the early universe many of the component particles of the fluid were relativistic. Since we
wish to describe particle production processes in this fluid, we are forced to use quantum field theory
at finite temperature to describe the contents of the early universe. The main theoretical tools required
to study thermal quantum field theory (TQFT) are effective field theory (which includes hydrodynamics
and transport theory) and lattice field theory. Perturbation theory plays a limited but very important role,
due to our detailed understanding of the technique. In order to test the formulation of TQFT, we need to
think of experiments which can be performed easily.

Experimental tests of TQFT in the electro-weak sector turn out to be unfeasible. Initial states made
of leptons may achieve energy densities of the order of 1/fm4. However, mean-free paths due to electro-
weak interactions are of the order 100 fm. So it is very hard to thermalize this energy density. Initial
states of hadrons, on the other hand, have mean-free paths of the order of 1 fm, so the initial energy may
be converted into thermal energy. By using heavy-ions, one can increase the initial volume significantly,
and so improve the chances of producing thermalized matter. This is why heavy-ion collisions (HICs)
are used to test TQFT.

The objects of experimental study should be as many as possible, in order to subject TQFT to as
many tests as can be conceived. The most important phenomena are transport properties: the electrical
conductivity (important for the freezeout of photons), viscosity (responsible for entropy production), the
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TT

critical point cross over

Fig. 1: At a critical point order parameters change abruptly, and specific heats and susceptibilities may have
singularities. The location of the singularity is unique. At a crossover there are no singularities. The order
parameters may have a large continuous change. It is possible that specific heats and susceptibilities peak as the
temperature changes. The locations of maximum slope of the order parameter, or the peaks of susceptibilities,
generally depend on the observable chosen.

speed of sound, the equation of state and so on. But perhaps the most interesting objects of experimental
study are the possible phase transitions and crossovers associated with the symmetries of the standard
model. Corresponding to every global symmetry there is a chemical potential. So the phase diagram of
the standard model has high dimensionality and potentially many phases. Experiments which are feasible
in colliders can reach only a small fraction of the phases.

2 Symmetries and states of QCD
Phase diagrams display the conditions under which global symmetries are broken or restored. Heavy-ion
collisions explore the phase diagram of QCD. The global symmetries of this theory are chiral SUL(Nf )
× SUR(Nf ) × UB(1), where Nf is the number of flavours of light quarks, the subscripts L and R stand
for left and right chirality, and B for baryon number.

Chiral symmetry is explicitly broken by quark masses. QCD contains a scale, ΛQCD. Quarks with
masses larger than ΛQCD are far from the chiral limit. The strange quark mass, ms, is near the scale
of ΛQCD, and it is a detailed question whether treating it as nearly chiral helps in understanding the
phenomenology of strong interactions. The up and down quark masses are much lighter than ΛQCD and
it is useful to treat them as nearly chiral.

The resulting SUL(2) × SUR(2) chiral symmetry is spontaneously broken down to SU(2) isospin
symmetry in the vacuum. Signals of this symmetry breaking are the fact that the QCD vacuum contains
a non-vanishing chiral condensate,

〈
ψψ
〉
, and that pions are massless. Departures from chirality are

important and treated in chiral perturbation theory [1]: the most important result is that pions get a mass
proportional to the square root of the quark mass.

As the temperature of the vacuum is raised, keeping the baryon number and charge densities at
zero, the condensate changes to a very small value, proportional to the quark mass. From thermodynamic
arguments, models, and lattice QCD computations it is known that the change is gradual (see Figure
1). One may try to characterize a temperature where this crossover happens, but it is a conventional
number [2]. The crossover temperature , Tc, depends upon which physical quantity is examined, but it
is perfectly well-defined after a choice is made1 We make the choice that Tc is given by the peak of the
Polyakov loop susceptibility.

1Another example of a crossover is the formation of a glass by cooling of liquid silica. The glass transition temperature
depends on what measurement one makes on the sample of the glass.
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T

B
µ

Fig. 2: The phase diagram of QCD in the T -µB plane as seen with the chiral condensate [3]. A line of first order
phase transitions (black line) ends in the QCD critical point (black dot). The fireball produced in a heavy-ion
collision lives in a track within the shaded domain. The lower edge of this domain is called the freezeout curve.
The domain is traced out by tracks of the history of the fireball as the collider energy changes. For small energies,
the domain ends at T = 0 and a chemical potential corresponding to nuclear matter. As the energy increases, the
domain moves to small µB . The logic of the beam energy scan is that this domain is likely to include the QCD
critical point.

The quark number for each of the Nf flavours is conserved. For the study of the phase diagram
we need to keep in mind the up and down quark numbers (or, equivalently, the baryon number and
the net isospin). A grand-canonical ensemble for QCD would then need two chemical potentials, µu
and µd (or µB and µI ), and the temperature T : so the phase diagram is three dimensional. As a first
approximation one treats the up and down quark masses to be equal, and examines the phase diagram in
the two dimensional slice with T and µB [3], and independently, of that in T and µI [4]. There has been
little study of the more complete (and complicated) phase diagram [5].

The phase diagram in T and µB for small µB and non-zero light quark mass (see Figure 2) was
first investigated in [3]. At small µB the states of QCD are distinguished by the value of the chiral
condensate. In the low T state it is large, but becomes small at T > Tc. At sufficiently high T the
dependence of the condensate on µB is computable, and shows a gradual variation. However, various
arguments lead to the expectation that at low T as one changes µB there is a first order phase transition
signalled by an abrupt change in the condensate. The thermodynamic Gibbs’ phase rule [6] then tells
us that the phase diagram has a line of first order transition. As we already discussed, this cannot hit
the µB = 0 axis or rise to T → ∞. So it must end somewhere. The end point is a second order phase
transition, called the QCD critical point.

The actual location of the curve of first order phase transition curve and the critical end point
can only be predicted by a non-perturbative computation, i.e., through lattice QCD simulations [7].
However, a computation at finite µB requires an extension of known techniques because of a technical
problem known as the fermion sign problem . Many such methods have been proposed, and many are
being explored [7]. It would be fair to say that developing such techniques is one of the most active areas
in lattice gauge theory today.

Till now extensive computations in QCD with varying lattice cutoffs, spatial volumes and quark
masses has been possible using only one particular method, involving the Taylor expansion of the pres-
sure in powers of µB . As a result the information available until now is fairly limited, and one would
hope that the future brings alternative computational schemes. The current best estimate of the location
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of the critical point is [8]

TE ' (0.94± 0.01)Tc and µEB ' (1.68± 0.06)TE . (1)

Methods have also been developed to compute the equation of state, the bulk compressibility, and the
speed of sound in several parts of the phase diagram [8].

Two more aspects of the phase diagram of QCD are interesting, but cannot be described here. One
is the temperature dependence of the axial anomaly. This has been keenly investigated in recent years [9].
The other is the phase diagram of QCD in a strong and constant external magnetic field. This has also
generated much work recently [10].

3 General conditions in heavy-ion collisions
I turn now to heavy-ion collisions, which is the experimental system that can test the computations we
discussed briefly in the previous section. In this section I touch upon three related questions: whether
thermal matter is produced, what its flavour content is likely to be, and how one can control the energy
content of this matter.

The object of study in heavy-ion collisions is the (hopefully) thermalized matter in the final state.
In high energy colliders matter is always formed. In sufficiently hard pp collisions, for example at the
LHC, even soft physics contains enough energy to create W/Z bosons, not to speak of hadrons. The mere
production of large amounts of hadronic matter is not of interest. What we need to know is whether this
matter re-interacts with sufficient strength to thermalize. In the language of particle physics this is about
final state effects.

In order to understand the time scales involved it is sufficient to run through a simple kinetic theory
argument. Let the two-body scattering cross section be σ. Taking the number density of particles in the
final state to be n, one can write the mean free path as

λ ∝ (nσ)−1, (2)

If the dimensionless number 1/(λ 3
√
n) = σ/n2/3 = O(1) then the mean free path is of the same order as

the mean separation between particles. In this case, final state collisions are numerous, and matter may
come into local thermal equilibrium .

When
√
S ' 20 GeV, we know that jets are rare. As a result, we can take the final state particles to

be hadrons, so that σ ' 40 mb. In this case n ≥ 5/fm3 may be sufficient for the final state to thermalize.
This number density cannot be reached in collisions of protons. However, heavy-ion collisions increases
n by some power of A, so heavy-ion collisions at this energy may thermalize. At the LHC, n is large,
so thermalization is easier. Even high multiplicity pp collisions may then thermalize. The thermalized
system arising from these collisions is the fireball which is the object of study in heavy-ion collisions.

This treatment is sufficient for building intuition, but a quantitative analysis of thermalization is
more complex. The rapid expansion of the fireball implies that simple kinetic theory does not suffice,
and the theoretical framework becomes more complex. Some relevant references are collected here [11].

The flavour content of the fireball is needed in many analyses. Again, simple arguments are
sufficient to gain a quick intuition about this. The flavour quantum numbers of the incoming hadrons are
essentially contained in hard (valence) quarks. At large

√
S, the asymptotic freedom of QCD guarantees

that our intuition about Rutherford scattering holds, and these valence quarks do not undergo large angle
scattering. As a result, the incoming quantum numbers are mostly carried forward into the fragmentation
region. In terms of the pseudo-rapidity

η =
1

2
log tan θ, (3)

(where θ is the scattering angle) the fragmentation region is the region of large |η|, and is called so
because (classically) one finds the unscattered fragments of the initial particles here.
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Although the valence partons individually contain large momenta, there are only three of them in
a baryon. Soft (sea) partons are much more numerous. As a result, quite a significant fraction of the
energy is carried by all the soft partons together. These generally scatter by large angles and so stay
in the central rapidity region (i.e., the region with |η| ' 1). If this matter approximately thermalizes,
then it makes the fireball which is the object of heavy-ion studies. The net-baryon and flavour content is
small, the energy content increases with

√
S. At high energies the central and fragmentation regions are

expected to be well separated, i.e., one expects few hadrons in the intermediate region between them.

At
√
S '1–10 GeV, baryon interactions cannot be analyzed in terms of quarks. In this regime

the fireball may contain baryon and other flavour quantum numbers. The distinction between fireball
(central) and fragmentation region may be weak.

In the collision of point-like particles in quantum theory, the observables are the number of parti-
cles (or energy-momentum) hitting the detector at any angle θ. The only control parameter is the center
of mass energy,

√
S. In collisions of extended objects, there is another control parameter: the impact

parameter, b. This measures the separation between the centers (geometrical centers, centers of energy)
of the colliding objects. However, b cannot directly be measured in an experiment.

b

f(
S

,b
)

10% most central events

50% most peripheral events

Fig. 3: The fraction of the total cross section can be used to define centrality classes. Different models of nuclear
densities will map a centrality class to different impact parameter ranges.

Instead we perform the following analysis. The total nucleus-nucleus cross section depends only
on the energy, so one has

σ(S) =

∫ ∞

0
db
dσ(S)

db
. (4)

Since cross sections are non-negative, the fractional cross section

f(S, b) =
1

σ(S)

∫ ∞

b
dB

dσ(S)

dB
,

decreases monotonically as b increases from zero to infinity (see Figure 3). As a result, an experimentally
determined histogram of f would determine b uniquely, provided one knows the functional form of
f(
√
S,B). This is not yet computable from QCD, so one has to make models.

The simplest, and oldest, model is called the Glauber model . In this, one assumes that the nucleus-
nucleus collision is described by independent nucleon-nucleon collisions. The nucleons are distributed
in each nucleus according to the density determined by low-energy electron nucleus collisions. Models
which incorporate more phenomenology have also been developed; see [12] for more information. It
has been realized in recent years that the lumpy distribution of nucleons in the initial state (see Figure 4)
cannot always be averaged over, but must be taken into account in these models.
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Fig. 4: Transverse energy profiles, 0.2 fm after the collision, in three models of initial states [13]. The coarse-
grained average of these distributions should give the nuclear density known through low-energy experiments.
These relativistic experiments capture the quantum fluctuations in the initial nuclear wave-function.

Fig. 5: One of the definitions of centrality used by the ALICE collaboration [14] uses the histogram of mea-
surements in the VZERO module. The experiment determines its correlation with the energy deposition in the
ZDC.

As one sees, the connection between the impact parameter and the percent of total cross section is
indirect and model dependent. Also, when one realizes that the positions of nucleons inside the nuclei
fluctuate from one event to another, it is clear that the notion of an impact parameter, and even the size
and shape of a nucleus, are merely averaged quantities. For experimental purposes what is necessary
is to classify events according to the degree of centrality. For this it is enough to define centrality by
any measure which changes monotonically with b; for example, by multiplicity, zero degree calorimetry,
etc.. Care is needed to relate these measures to each other through careful analysis of the data. One such
analysis is shown in Figure 5.

4 Hard probes
One thinks of the LHC as an arena of hard QCD, i.e., of processes which convert the partons contained
in protons into jets, heavy quarks, W/Z bosons, hard γ, H and so on. The typical momentum scale in
these processes is of the order Q ' 〈x〉

√
S ' 500 GeV. Final state interactions are suppressed in pp

collisions because of two reasons. Firstly, the dense hadronic debris are separated from probes by large
angles, ∆η. Secondly, the energy scale of any remaining hadronic activity in the central rapidity region
is small: 〈ET 〉 ' ΛQCD ' 0.3 GeV.

In heavy-ion collisions, the first argument can still be supported. However, the second argument
may fail if the number density of particles, n, is large enough. Let us make an estimate by assuming, as
before, that n = 5/fm3. We know that the actual value of n at the LHC is larger, so our argument will
be overly conservative. Assume that the jet cone has radius2 R = 0.2, and that it travels about ` = 10

2The radius of a jet cone is defined to be R =
√

∆η2 + ∆φ2 where we take ∆η and ∆φ to be the jet opening angles.
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fm through the fireball of soft particles. Then the net energy in the soft hadrons it can interact with is

E ' 〈ET 〉nR`3 ' 300 GeV, (5)

where we have made a conservative estimate that the average transverse energy of the particles is 〈ET 〉 '
0.3 GeV. Since this is comparable with the initial energy, final state interactions become important. An
interesting consequence which we discuss here is jet quenching.

Fig. 6: Comparison of two-particle azimuthal distributions for central d+Au collisions (circles) to those seen in
p+p (histogram) and Au+Au collisions (stars). The respective pedestals have been subtracted.

When a jet evolves through a medium, interactions and radiation would tend to deplete its en-
ergy [15]. This simple idea is called jet quenching . The basic fact of jet quenching was beautifully
demonstrated by the STAR collaboration in BNL [16] in the plot given above. At

√
S = 200 GeV jets

are not very well developed, and one must use high-pT hadrons as proxies. STAR triggered on events
where there is a high-pT hadron, and looked at the angular distribution of the next highest-pT hadron. In
p+p collisions they found a peak 180 degrees away (see Figure 6). If the trigger hadron can be assumed
to come from a jet, then the backward peak comes from an away-side jet which balances the momentum.
This was also seen in d+Au collisions, thus demonstrating that initial state parton effects in heavy nuclei
do not wash away this peak. In Au+Au collisions they found no peak in the backward direction: implying
that the away-side jet is hugely quenched3.

A measure of the quenching is provided by a comparison of the number of jets of a given momen-
tum in heavy-ion and proton collisions

RAA(b, y, pT ) =
1

TAA(b)

d3NAA

dbdydpT

(
d2Npp

dydpT

)−1

. (6)

Here TAA is an estimate of the number of proton pairs interacting in AA collisions, and is usually ex-
tracted from a model, e.g., the Glauber model. The numerator depends on collision centrality whereas the
denominator does not. Energy is tremendously more likely to flow from the jet into the low-momentum
particles in the medium (computations reveal this in phase space factors). As a result, one would gener-
ally expect RAA to be less than unity.

Since a basic input into jet-quenching is TAA, it is important to constrain this through experiment.
The production of high-pT photons or W/Z bosons provides this calibration. Since the vector bosons
have no strong interactions, the comparison of semi-inclusive single boson production cross sections in
pp and AA cross sections can directly measure TAA. One of the first attempts [17] to constrain this is
shown in Figure 7. Small isospin corrections, shadowing, and initial re-scattering effects must also be
taken into account more accurately in order to improve these constraints.

3Since the near-side jet is used as a trigger, the event sample is of those in which this is not completely quenched.
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Fig. 7: The first attempt to constrain TAA from experiment.

Fig. 8: A recent compilation of data on RAA [18].

From the observations of RAA (see Figure 8) one can extract a measure of the pT change of the
jet per unit distance travelled within the plasma:

q̂ =
1

L

∫
d2pT
(2π)2

p2
T P (pT , L).

Most attempts to extract this from data give q̂ ' 1–2 GeV2/fm, i.e., in the range of interest, q̂/T 3 '4–5.
One should be able to extract this number for QCD, but it turns out to be a vexing problem. There are
two main methods to handle problems in QCD: perturbative QCD is used to compute processes where
all momenta involved are large, and lattice QCD provides a tractable computational method when all
momenta are small. Jet quenching couples a large momentum object (the jet) to low-momentum objects
(the medium). Nevertheless there have been attempts to compute this in QCD using weak-coupling
expansions [19] or, more recently, lattice QCD [20]. There are also computations in cousins of QCD
which have N = 4 supersymmetry in the limit of large Nc [21].

RAA is just the simplest of experimental variables which can be constructed. In order to under-
stand how the medium steals energy and momentum from the jet one should also understand medium
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modification of rapidity and angular correlation, momentum imbalance between reconstructed jets, frag-
mentation functions, and jet substructure.

5 Flow
Once the fireball reaches local thermal equilibrium a much slower process begins of transport of energy,
momentum, and other conserved quantities through the fireball. This is the hydrodynamic regime [22].
Tests of hydrodynamics involve the study of quantities which are called flow coefficients [23]. In order
to understand what these are, we need to think again about the geometry and kinematics of the collisions.

In the collision of point-like particles, there is a rotational symmetry around the beam axis. As a
result, cross sections or particle production rates depend only on the scattering angle θ (or equivalently,
on η or the rapidity y) and the transverse momentum, pT . Kinematically, there is only one initial vector
in the center of mass (CM) frame of the problem, the initial momentum k of one of the particles (the
other particle has momentum −k). Final state momenta see only the angle from k, which is θ, and the
transverse projection pT .

In heavy-ion collisions, there is a second initial vector: b, which is the line between the centers
of the nuclei. The existence of such a vector, not collinear with k, means that the azimuthal symmetry
around k is broken in the initial state, and final state momentum distributions may depend on angles the
final momentum makes with both k and b as well as pT . Conventionally, these distributions are given in
terms of η, pT , and the azimuthal angle φ. The two vectors k and b lie on a plane which is called the
reaction plane. This breaking of cylindrical symmetry also occurs in proton-nucleus collisions, since the
proton can meet the nucleus with a non-vanishing impact parameter. In very high energy collisions, the
increasing proton-proton cross section implies that the swollen protons can also be treated similarly. One
may already be seeing such effects in the sample of extreme high multiplicity events in pp collisions at
the LHC.

The flow coefficients are the Fourier transforms of velocity distributions with respect to φ [24].
The n-th Fourier coefficient is denoted by the symbol vn. These are normally taken at y = 0 not only
because of the limited rapidity coverage of heavy-ion detectors, but also because one expects the fireball
to be well-separated from the fragmentation region. Nevertheless, studying the rapidity dependence of
flow coefficients is of some interest. The study of the kT dependence of the vn is of great interest.

Fig. 9: The geometry of elliptic flow.

Clearly, the reaction plane in different collisions can rotate around the beam axis, so single par-
ticle distributions will recover azimuthal symmetry when averaged over events. Although the overall
orientation of the reaction plane is forgotten on the average, the relative angles between two particles
remembers the difference from the reaction plane. So, in order to see the flow coefficients one has to
construct the angular correlations of two or more particles.

In the collision of symmetric nuclei, b and −b seem to be completely equivalent. As a result the
two sides of the reaction plane seem to be completely symmetric. This implies that only the even flow
coefficients, v2, v4, etc., are non-vanishing (elliptic flow is the name given to v2). However, when one
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studies the flow event-by-event (E/E) one has to take into account the fact that the positions of nucleons
inside the nuclei may fluctuate. Then there may be more nucleons on one side of the plane, so breaking
this orientational symmetry around the reaction plane, as a result of which odd harmonics may exist.
Currently there are studies of the directed flow v1, triangular flow v3, and even the coefficient v5. The
flow coefficients yield a combination of information on the initial state and the evolution of fireball. E/E
fluctuations of flow coefficients yield more refined information on the initial state [25]

It is claimed that the observations of v2 imply the formation of locally thermalized matter in
heavy-ion collisions. Although this argument is technical it is easy to understand this intuitively. In the
off-center collisions of nuclei the colliding region is a pellet. Particles formed in the initial collisions
have distributions which have positional anisotropy, εn, the pellet being long in one direction (see Figure
9). The generation of vn involves transforming εn into momentum anisotropy. This is impossible unless
there is hadronic re-scattering. Also, the measurements of v2 show that the momentum is larger in the
direction in which the original position distribution was squeezed. This is hydrodynamic flow, since that
is driven by pressure gradients, and the gradients in the shorter direction are larger.

Fig. 10: Predictions for elliptic flow from ideal hydrodynamics compared to data. See the text for a discussion.

The technical question here is how well does hydrodynamics explain the observed v2. Ideal hy-
drodynamics, i.e., hydrodynamics without dissipation, is a toy model which is often used to understand
general features of data. This already come within a factor two of the data, and shows the same pT de-
pendence as the observations (see Figure 10). It also fails in the “right” direction, in that it over-estimates
v2. Dissipation would clearly reduce the predictions, and bring it closer to observations [26]. One of the
first results (Dusling and Teaney in [26]) is shown in the figure. Intense work continues to be done in
understanding the implications of the data and the constraints from QCD [27].

6 Chemical composition of the final state
The most easily observed quantities have to do with the final state. The basic observables are the spectra
of identified particles. The multiplicity of each type of particle, π±, K±, etc., is called its yield. This
is the integral over the spectrum. Relative yields of hadrons is the outcome of hadron chemistry , i.e.,
inelastic re-scattering in the final state. Examples are,

p+ π− ↔ n+ π0, p+ π− ↔ Λ +K0, (7)

The rates of such predictions determine whether hadron chemistry comes to chemical equilibrium.

As the fireball evolves, eventually mean-free paths or relaxation times become comparable to the
size or expansion rate. When this happens, local thermal equilibrium can no longer be maintained, and
hydrodynamics cannot be supported. Then the components of the fireball are said to freeze out . In
principle freeze out could occur either before the fireball cools into hadrons or after. Under normal cir-
cumstances, i.e., if the thermal history of the fireball does not take it near a phase transition, then it seems
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to freeze out in the hadronic phase. This implies that the later stages of hydrodynamics require the equa-
tion of state of a hadronic fluid. Since hadrons are massive, inelastic collisions, i.e.those which change
the particle content of the fireball, require larger energies than elastic collisions. As a result, chemical
freezeout , i.e., fixing of the hadron content of the fireball, may occur earlier than kinetic freezeout , i.e.,
fixing of the phase space distribution of hadrons.

In the fireball the particles interact strongly enough that a temperature is maintained. However,
at freeze out the interactions stop abruptly. So all hadrons emitted by the fireball at freeze out can be
assumed to be an ideal gas of particles coming from a source whose temperature is set at the freeze
out. This simple approximation, which goes by the name of the hadron resonance gas model has had
remarkable phenomenological success [28]. However, recent measurements at the LHC (ALICE collab-
oration [28]) and a more careful look at RHIC results shows interesting discrepancies which imply that
this model needs to be improved.

At early times, the fireball is a reactive fluid whose description requires coupling of hydrodynam-
ics with diffusion and flavour chemistry. The reaction rates depend on local densities as well as rates
of mixing due to fluid movement, known as advection, as well as diffusion. In order to make quantita-
tive predictions, one must first understand whether advection or diffusion is more important in bringing
reactants together. This is controlled by Peclet’s number

Pe =
Lv

D
=
Lv

ξcs
= KnM, (8)

where L is a typical macroscopic distance within the fireball over which we wish to compare advection
and diffusion, v a typical flow velocity, ξ is a typical density-density correlation length and cs is the
speed of sound. The diffusion constant, D ' ξcs. We have also used the notation for the Mach number
of the flow, M = v/cs, and the Knudsen number, Kn = L/ξ. When Pe � 1 diffusion is more rapid
than advection; when Pe� 1 advection is more rapid [29].

Peclet’s number defines a new length scale in the fireball, this is the scale at which advection and
diffusion become comparable—

L ' ξ

M
. (9)

Since longitudinal flow has M ≤
√

3, then taking ξ to be approximately the Compton wavelength of a
particle, we find that for baryons, L ' 0.3 fm and for strange particles, L ' 0.5 fm. This implies that
advection may be important in chemical processes occurring in the early stages of the evolution of the
fireball, but over most of its history, the availability of reactants is governed by diffusion.

Once the reactants have been brought together we can ask whether one or the other reaction chan-
nel is available. If the reactions are slower than the time scale of transport, then we may consider the
fireball to be constantly stirred. It is then enough to examine chemical rate equations. In this approxima-
tion, a toy model which takes into account only pion and nucleon reactions is:

ṗ = −γ(pπ0 − nπ+)− γ′(pπ− − nπ0) + · · · ,
ṅ = γ(pπ0 − nπ+) + γ′(pπ− − nπ0) + · · · ,
π̇0 = −γ(pπ0 − nπ+) + γ′(pπ− − nπ0) + · · · ,
π̇+ = γ(pπ0 − nπ+) + · · · ,
π̇− = −γ′(pπ− − nπ0) + · · · .

Here the label for a particle denotes the density of that particle. The rate constants γ and γ′ can be
deduced from experimental measurements of cross sections. The equilibrium concentrations are given
by

p

n
=
π+

π0
=
π0

π−
(= ζ), (10)
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where ζ is the isospin fugacity. Since π+/π− = ζ2, if we set ζ ' 1, then µI = T log ζ ' 0. Even in
this simple limit of a very rapidly stirred fireball, a more realistic model contains all possible reactions
between many species of particles, of which many cross sections are unmeasured. As a result, a detailed
model is out of reach and one must develop simplified models which catch as much of the physics as the
state of the data justifies.
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Fig. 11: Comparison of model predictions with data in terms of the discriminant (model-data). The closer this
is to zero, the better the model. The error bars show the error on the data and set the scale of what is acceptable
mismatch between data and model. At all energies, 2CFO works better than 1CFO.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500

T
 (

M
e
V

)

(MeV)Bµ

Fig. 12: The freeze out points obtained in 2CFO (from Chatterjee et al., [30]). The strange freezeout point is
shown with circles, and the non-strange with squares. The two freeze out points at the same

√
S are joined with a

line. The large filled circle is the estimated location of the QCD critical point from lattice computations [8].

In order to set up such a model, we consider flavour changing reactions. Strangeness changing
processes seem to naturally split into subgroups. Indirect transmutations of K and π involve strange
baryons in reactions such as Ω− + K+ ↔ Ξ0 + π0. These have very high activation thresholds. Direct
transmutations can proceed through the strong interactions such as K+ + K− ↔ π+ + π−. These
are OZI violating reactions; slower than generic strong-interaction cross sections. Direct transmutations
through weak interactions are not of relevance in the context of heavy-ion collisions. As a result, there is
no physics forcingK and π to freezeout together. HoweverK and φ are resonantly coupled, so they may
freeze out together [30]. On the other hand, isospin changing processes (the model in eq. 10) require
extremely low activation temperatures, and may persist till later.

One can capture this information into a HRG model with two freezeout points: one for the strange
hadrons and φ (since this is resonantly coupled to theK± channel), another for non-strange hadrons. We
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could call this model 2CFO [30] in contrast with the usual HRG model with a single freeze out (1CFO).
A comparison of measurements and best fit model predictions is shown in Figure 11.

Interestingly, the introduction of two freeze out points allows one to do away with some unphysical
features of the freeze out model 1CFO. In most such models there is a mismatch between strange and
non-strange baryon production, which is fixed by having a fugacity factor which changes the occupancy
of strange hadrons. This factor cannot be justified within an ideal gas picture, nor does it vary smoothly or
monotonically as

√
S is changed. Such nuisance parameters no longer appear within the 2CFO scheme.

The success of the 2CFO scheme implies that as one introduces more of the hadron dynamics into
the freezeout process, the ability to describe the data improves. This justifies our belief that a proper
description of reactive transport should be able to give a good description of the final observed yields.

The freeze out temperatures and chemical potentials in 2CFO are shown in Figure 12. Also shown
there is the position of the critical point of QCD determined in lattice studies [8]. The freeze out curves
pass close to the QCD critical point, making it plausible that a study of the final state as one scans in

√
S

can reveal signals of this very interesting prediction of QCD. This is the rationale for the RHIC Beam
Energy Scan (BES) program and for planned future experiments in GSI and JINR.

Experiments also measure the yields of heavy-quarkonia. In particular, the yield of the Υ family
of mesons in AA collisions at LHC differs significantly from that in pp collisions at same

√
S. This is

usually reported in terms of an RAA for the meson. Since the quark mass is large, M � T ' ΛQCD,
one may expect that the production of quarkonia is a hard process. However the binding energy is of
the order of the temperature, B ' T , so we may expect large thermal effects as the cause of the change
between AA and pp collisions [32].
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Fig. 13: Measured (filled circles) and predicted (unfilled squares) suppression in the bottomonium family using a
simple thermal model for freeze out [36].

Thermal lattice QCD computations show that the highest mass resonances, which are the least
bound, are more easily disrupted at any given temperature [33]. This observation led to the formulation
of a key observation called stepwise suppression , i.e., as

√
S is increased RAA of the higher resonances

drop below unity, roughly in the order of the binding energy [34]. If this works, then at a sufficiently
high temperature it should be possible to use a thermal model to understand the relative yields of the Υ
family of mesons using the variables

r[Υ(n`)] =
dN

Υ(n`)
AA

dydpT

(
dN

Υ(1S)
AA

dydpT

)−1

. (11)

The thermal model involves only a single parameter: the freeze out temperature of this family of mesons.
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Fig. 14: Selecting a volume in the fireball by selecting detector cuts works best when the momentum of particles in
the volume are not totally arbitrary. Since hydrodynamics works, we know that in a small volume these momenta
are aligned with the local fluid momentum, being smeared only by an amount of order T .

The first data from the LHC [35] is fitted [36] well by

TΥ
f = 222+28

−29 MeV. (12)

It will be interesting in future to see whether other members of the bottomonium family confirm this
picture. Future data on r[Ψ(n`)] will also provide useful tests. More detailed dynamical models [37]
predict many more details of the kinematics of quarkonium suppression.

7 Fluctuations
Is the ensemble of heavy-ion collision events captured by a detector related to the ensembles required to
study the thermodynamics of strong interactions?

The least restrictive ensemble for the study of bulk matter is the microcanonical ensemble. All
that this requires is that the energy of a system be fixed. In fact, since the fireball is well-separated from
the spectators, one may expect a mapping between the collisions and microcanonical ensemble to be
good. However there are two obstructions, neither of them absolute. The first is that the microcanonical
ensemble requires the energy of each member of the ensemble to be the same. This is hard to ensure
without more control on centrality fluctuations than is possible at present. Secondly, one needs 4π-
detectors to capture the entire energy of the fireball. Most detectors in use today miss a very large
fraction of the energy.

So one must to try to map the ensemble of events recorded in the detector to either the canonical
or a grand-canonical ensemble. The difference between these is that the system being studied must
exchange either energy or material and energy (respectively) with a much larger system called a heat-
bath. Since detectors accept particles from only a part of each fireball, one may be able to map the events
on to a grand-canonical ensemble. Of course, thermal and chemical equilibrium is necessary in order to
be able to do this.

We have already discussed the evidence that there is a degree of thermal and chemical equilibration
at freeze out. So, if one observes a small part of the fireball, it may be possible to treat it in a grand-
canonical ensemble where the rest of the fireball acts as the heat-bath. In order to make sure that the
system (observed fraction of the fireball) is much smaller than the heat-bath (the unobserved fraction),
one should use as small an angular coverage as possible while keeping the observed volume much larger
than any intrinsic correlation volumes in the fireball (see Figure 14). If the acceptance in rapidity is ∆y,
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Vs is the size of the system, and Vb is the volume of the heat-bath, then

Vs
Vs + Vb

=
∆y

2 log(
√
S/Mp)

. (13)

Taking ∆y = 2, one sees that Vb/Vs is about 4.3 at the top RHIC energy of 200 GeV, and around 7.5 at√
S = 5 TeV. These may be acceptable numbers. However, at

√
S = 20 GeV the ratio drops to 2, and

by
√
S = 5 GeV, the “heat-bath” is smaller than the “system”. In order to keep the ratio Vb/Vs fixed,

one has to decrease ∆y with the beam energy.

This may give rise to another problem, which is to keep the observed volume much larger than
correlation lengths. If freezeout occurs at time τf , then the acceptance region, ∆y, corresponds approxi-
mately to a distance ∆x = τf sinh(∆y). As long as correlation lengths are linear in the inverse freezeout
temperature 1/Tf , it is interesting to examine

∆xTf = (τfTf ) sinh

(
2 log

√
S

1 + Vb/Vs

)
. (14)

If one wants Vb/Vs ' 4 at
√
S = 5, where Tf ' 145 MeV, and one takes τf ' 5 fm, then one finds

∆xTf ' 2.5. This is a reasonable number, but it implies that ∆y = 0.65 at this energy. Such a small
acceptance window may cause statistics to drop significantly. However, for

√
S ≥ 20 GeV, there is

a good possibility that all these constraints may be satisfied simultaneously. Of course, if correlation
lengths become very large at some

√
S then all these arguments fail, and the system cannot be treated as

being in equilibrium.

Conserved quantities, such as the net particle number or energy, can change by transport across
the boundary of the system. As a result, energy and net particle numbers fluctuate in grand-canonical
thermodynamics. These fluctuations can now be mapped into E/E fluctuations. They were first discussed
and suggested as probes of the phase structure of QCD in [38]. The experimental variables which allow
a direct comparison of QCD predictions with data were first discovered in [39], and the first lattice QCD
predictions were made in [40].

The existence of fluctuations means that the baryon number or energy of an ensemble is not a fixed
quantity, but has a probability distribution. Such a distribution is characterized by the cumulants, [Bn],
which are defined as the Taylor coefficients of the logarithm of the Laplace transform of the distribution,
P (B), of the baryon number—

log

[∫
dB P (B) e−sB

]
=

∞∑

n=1

[Bn]
(−s)n
n!

(15)

The cumulants are related to the Taylor coefficients of the expansion of the free energy [39] in terms of
µB simply as

[Bn] = Vsχ
(n)(Tf , µ

f
B)Tn−1

f , (16)

where χ(n)(T, µB) are generalized quark number susceptibilities (χ(1) is the baryon density) [41]. As a
result, ratios of the cumulants are independent of the factor Vs. These ratios depend on the ratios of the
dimensionless quantities χ(n)(Tf , µ

f
B)Tn−4

f , which can be computed in lattice QCD, as demonstrated
in [40]. Similar ratios were also discussed in [42].

Since Tf and µfB was already known from the analysis of yields, the experimental data could be
compared to the lattice computation [43]. This comparison is reproduced in Figure 15. The remarkably
good agreement has led to subsequent attempts to refine the comparison. These include following up
the suggestions in [40] that the comparison could yield a measurement of Tc given Tf and µfB [44] or
the determination of Tf and µfB given Tc [45]. There has also been a lot of work on various corrections

15

HEAVY ION PHYSICS

233



Fig. 15: A comparison of data on fluctuations of net proton number in the STAR experiment with the lattice QCD
computations of [40] from [43].

which may need to be applied to the experimental data before comparing with predictions [46]. There
is also sustained interest in fluid dynamical effects [29, 47]. In the meanwhile, much new experimental
data has been added from the RHIC Beam Energy Scan (BES) [48]. A BES-II is expected shortly.

The long-term goal of the study of fluctuations is to understand the evolution of fluctuations along
the freeze-out curve traced by changing the beam energy [39]. At higher energies one sees preliminary
agreement between lattice predictions and experimental observations. This agreement is expected to
break down in the vicinity of the QCD critical point because correlation lengths and relaxation times
grow [49]. At lower energies one might expect a return to roughly thermal behaviour, although extracting
this is fraught with theoretical and experimental challenges. The BES program aims to locate and study
bulk matter near the QCD critical point.
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Abstract
Cosmology and particle physics are deeply interrelated. Among the common
problems are dark energy, dark matter and baryon asymmetry of the Universe.
We discuss these problems in general terms, and concentrate on several par-
ticular hypotheses. On the dark matter side, we consider weakly interacting
massive particles and axions/axion-like particles as cold dark matter, sterile
neutrinos and gravitinos as warm dark matter. On the baryon asymmetry side,
we discuss electroweak baryogenesis as a still-viable mechanism. We briefly
describe diverse experimental and observational approaches towards checking
these hypotheses. We then turn to the earliest cosmology. We give arguments
showing that the hot stage was preceded by another epoch at which density
perturbations and possibly primordial gravity waves were generated. The best
guess here is inflation, which is consistent with everything we know of density
perturbations, but there are alternative scenarios. Future measurements of the
properties of density perturbations and possible discovery of primordial grav-
ity waves have strong potential in this regard.

Keywords
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dark energy; nucleosynthesis.

1 Introduction
Cosmology is one of the major sources of inspiration—and confusion—for particle physicists. It gives
direct evidence for the necessity to extend the Standard Model of particle physics, possibly at an en-
ergy scale that can be probed by collider experiments. Indeed, there is no doubt that most part of the
mass in the present Universe is in the form of mysterious dark matter particles which are not present
in the Standard Model. Also, the very existence of conventional matter in our Universe (i.e., matter–
antimatter asymmetry) calls for processes with baryon number violation and substantial charge parity
(CP)-violation, which have not been observed in experiments. These processes had to be rapid in the
early Universe and, furthermore, the asymmetry between matter and antimatter had to be generated in
a fairly turbulent cosmological epoch. Again, the conditions necessary for the generation of this asym-
metry are not present in the Standard Model. Solving the problems of dark matter and matter–antimatter
asymmetry are the two immediate challenges for particle physics.

Going very much back into the cosmological history, we encounter another challenging issue.
It is very well known that matter in the Universe was very hot and dense early on. It is less known
that the properties of the matter distribution in the past and present Universe, reflected in the properties
of the cosmic microwave background (CMB), galaxy distribution etc, unambiguously tell us that the
hot epoch was not the earliest. It was preceded by another, completely different epoch responsible
for the generation of inhomogeneities which in the end have become galaxies and their clusters, stars
and ourselves. Obviously, the very fact that we are confident about the existence of such an epoch
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is a fundamental result of theoretical and observational cosmology. The most plausible hypothesis on
that epoch is cosmological inflation, though the observational support of this scenario is presently not
overwhelming, and alternative possibilities have not been ruled out. For the time being it appears unlikely
that we will be able to probe the physics behind that epoch in terrestrial experiments, but there is no doubt
that this physics belongs to the broad domain of ‘particles and fields’.

After this brief introduction, the scope of these lectures must be clear. To set the stage, we briefly
consider the basic notions of cosmology. We then discuss several dark matter particle candidates and
mechanisms for dark matter generation. Needless to say, these candidates do not exhaust the long list of
the candidates proposed; our choice is based on a personal view of what candidates are more plausible.
Our next topic is the matter–antimatter asymmetry of the Universe, and we present electroweak baryoge-
nesis as a mechanism particularly interesting from the viewpoint of the LHC experiments. The last part
of these lectures deals with cosmological perturbations, inflation (and its alternatives) and the potential
of future observational data.

These lectures are meant to be self-contained, but we necessarily omit numerous details, while
trying to make clear the basic ideas and results. More complete accounts of cosmology and its particle-
physics aspects may be found in various books [1–6]. Dark matter candidates we consider in these
lectures are reviewed in Refs. [7–10]. Electroweak baryogenesis is presented in detail in reviews [11–13];
for reference, a plausible alternative scenario, leptogenesis, is discussed in reviews [14, 15]. Aspects of
inflation and its alternatives are reviewed in Refs. [16–20].

2 Expanding universe
2.1 Friedmann–Lemaître–Robertson–Walker metric
Our Universe (more precisely, its visible part) is homogeneous and isotropic. Clearly, this does not apply
to relatively small spatial scales: there are galaxies, clusters of galaxies and giant voids. But boxes of
sizes exceeding about 200 Mpc all look the same. Here the Mpc is the distance unit conventionally used
in cosmology,

1 Mpc ≈ 3× 106 light years ≈ 3× 1024 cm .

There are three types of homogeneous and isotropic three-dimensional spaces, labelled by an integer
parameter κ. These are three-sphere (closed model, κ = +1), flat (Euclidean) space (flat model, κ = 0)
and three-hyperboloid (open model, κ = −1). We will see that the parameter κ enters the dynamical
equations governing the space–time fabric of the Universe.

Another basic property of our Universe is that it expands. This is encoded in the space–time metric

ds2 = dt2 − a2(t)dx2 , (1)

where dx2 is the distance on a unit three-sphere, Euclidean space or hyperboloid. The metric (1) is
called the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, and a(t) is the scale factor. In these
lectures we use natural units, setting the speed of light and Planck and Boltzmann constants equal to 1,

c = ~ = kB = 1 .

In these units, Newton’s gravity constant is G = M−2
Pl , where MPl = 1.2 × 1019 GeV is the Planck

mass.

The meaning of Eq. (1) is as follows. One can check that a free mass put at a certain x at zero
velocity will stay at the same x forever. In other words, the coordinates x are comoving. The scale
factor a(t) increases in time, so the distance between free masses of fixed spatial coordinates x grows,
dl2 = a2(t)dx2. The space stretches out; the galaxies run away from each other.

This expansion manifests itself as a red shift. Red shift is often interpreted as the Doppler effect for
a source running away from us with velocity v: if the wavelength at emission is λe, then the wavelength
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we measure is λ0 = (1 + z)λe, where z = v/c (here we temporarily restore the speed of light). This
interpretation is useless and rather misleading in cosmology (with respect to which reference frame
does the source move?). The correct interpretation is that as the Universe expands, space stretches out
and the photon wavelength increases proportionally to the scale factor a. So, the relation between the
wavelengths is

λ0 = (1 + z)λe , where z =
a(t0)

a(te)
− 1 ,

where te is the emission time. For z � 1, this relation reduces to the Hubble law,

z = H0r , (2)

where r is the physical distance to the source and H0 ≡ H(t0) is the present value of the Hubble
parameter

H(t) =
ȧ(t)

a(t)
.

In the formulas above, we label the present values of time-dependent quantities by subscript 0; we will
always do so in these lectures.

Question. Derive the Hubble law (2) for z � 1.

The red shift of an object is directly measurable. The wavelength λe is fixed by physics of the
source, say, it is the wavelength of a photon emitted by an excited hydrogen atom. So, one identifies a
series of emission or absorption lines, thus determining λe, and measures their actual wavelengths λ0.
These spectroscopic measurements give accurate values of z even for distant sources. On the other hand,
the red shift is related to the time of emission and hence to the distance to the source. Absolute distances
to astrophysical sources have a lot more systematic uncertainty, and so do the direct measurements of
the Hubble parameter H0. According to the Planck Collaboration [21], the combination of observational
data gives

H0 = (67.8± 0.9)
km

s Mpc
≈ (14.4× 109 yr)−1 , (3)

where the unit used in the first expression reflects the interpretation of red shift in terms of the Doppler
shift. The fact that the systematic uncertainties in the determination of H0 are pretty large is illustrated
in Fig. 1.

Traditionally, the present value of the Hubble parameter is written as

H0 = h× 100
km

s Mpc
. (4)

Thus, h ≈ 0.7. We will use this value in further estimates.

2.2 Hot Universe: recombination, Big Bang nucleosynthesis and neutrinos
Our Universe is filled with CMB. The CMB as observed today consists of photons with an excellent
black-body spectrum of temperature

T0 = 2.7255± 0.0006 K . (5)

The spectrum has been precisely measured by various instruments, see Fig. 2, and does not show any
deviation from the Planck spectrum (see Ref. [23] for a detailed review).

Once the present photon temperature is known, the number density and energy density of CMB
photons are known from the Planck distribution formulas,

nγ,0 = 410 cm−3 , ργ,0 =
π2

15
T 4

0 = 2.7× 10−10 GeV
cm3

(6)

3

COSMOLOGY

241



Fig. 1: Recent determinations of the Hubble parameter H0 [22]

Fig. 2: Measured CMB energy spectrum as compiled in Ref. [24]

(the second expression is the Stefan–Boltzmann formula).

The CMB is a remnant of an earlier cosmological epoch. The Universe was hot at early times and,
as it expands, the matter in it cools down. Since the wavelength of a photon evolves in time as a(t), its
energy and hence temperature scale as

ω(t) ∝ a−1(t) , T (t) =
a0

a(t)
T0 = (1 + z)T0 .

When the Universe was hot, the usual matter (electrons and protons with a rather small admixture of
light nuclei, mainly 4He) was in the plasma phase. At that time photons strongly interacted with elec-
trons due to the Thomson scattering and protons interacted with electrons via the Coulomb force, so all
these particles were in thermal equilibrium. As the Universe cooled down, electrons ‘recombined’ with
protons into neutral hydrogen atoms (helium recombined earlier), and the Universe became transparent
to photons: at that time, the density of hydrogen atoms was quite small, 250 cm−3. The photon last
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scattering occurred at temperature and red shift

Trec ≈ 3000 K , zrec ≈ 1090 ,

when the age of the Universe was about t ≈ 380 thousand years (for comparison, its present age is
about 13.8 billion years). Needless to say, CMB photons got red shifted since the last scattering, so their
present temperature is T0 = Trec/(1 + zrec).

The photon last scattering epoch is an important cornerstone in the cosmological history. Since
after that CMB photons travel freely through the Universe, they give us a photographic picture of the
Universe at that epoch. Importantly, the duration of the last scattering epoch was considerably shorter
than the Hubble timeH−1(trec); to a reasonable approximation, recombination occurred instantaneously.
Thus, the photographic picture is only slightly washed out due to the finite thickness of the last scattering
surface.

At even earlier times, the temperature of the Universe was even higher. We have direct evidence
that at some point the temperature in the Universe was in the MeV range. A traditional source of evidence
is the Big Bang nucleosynthesis (BBN). The story begins at a temperature of about 1 MeV, when the age
of the Universe was about 1 s. Before that time neutrons were rapidly created and destroyed in weak
processes like

e− + p←→ n + νe , (7)

while at Tn ≈ 1 MeV these processes switched off, and the comoving number density of neutrons froze
out. The neutron-to-proton ratio at that time was given by the Boltzmann factor,

ne

np
= e−

mn−mp
Tn .

Interestingly, mn − mp ∼ Tn, so the neutron–proton ratio at neutron freeze-out and later was neither
equal to 1, nor very small. Were it equal to 1, protons would combine with neutrons into 4He at a
somewhat later time, and there would remain no hydrogen in the Universe. On the other hand, for very
small nn/np, too few light nuclei would be formed, and we would not have any observable remnants of
the BBN epoch. In either case, the Universe would be quite different from what it actually is. It is worth
noting that the approximate relation mn −mp ∼ Tn is a coincidence: mn −mp is determined by light
quark masses and electromagnetic coupling, while Tn is determined by the strength of weak interactions
(which govern the rates of the processes (7)) and gravity (which governs the expansion of the Universe).
This is one of numerous coincidences we encounter in cosmology.

At temperatures somewhat below Tn, the neutrons combined with protons into light elements in
thermonuclear reactions like

p + n → 2H + γ ,
2H + p → 3He + γ ,

3He +2 H → 4He + p , (8)

etc, up to 7Li. The abundances of light elements have been measured; see Fig. 3. On the other hand,
the only parameter relevant for calculating these abundances (assuming negligible neutrino–antineutrino
asymmetry) is the baryon-to-photon ratio

ηB ≡ η =
nB

nγ
, (9)

characterizing the number density of baryons. Comparison of the BBN theory with the observational de-
termination of the composition of the cosmic medium enables one to determine ηB and check the overall
consistency of the BBN picture. It is even more reassuring that a completely independent measurement
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Fig. 3: Abundances of light elements, measured (boxes; larger boxes include systematic uncertainties) and cal-
culated as functions of baryon-to-photon ratio η [25]. The determination of η ≡ ηB from BBN (vertical range
marked BBN) is in excellent agreement with the determination from the analysis of CMB temperature fluctuations
(vertical range marked CMB).

of ηB that makes use of the CMB temperature fluctuations is in excellent agreement with BBN. Thus,
BBN gives us confidence that we understand the Universe at T ∼ 1 MeV, t ∼ 1 s. In particular, we are
convinced that the cosmological expansion was governed by general relativity.

Another class of processes of interest at temperatures in the MeV range is neutrino production,
annihilation and scattering,

να + ν̄α ←→ e+ + e−

and crossing processes. Here the subscript α labels neutrino flavours. These processes switch off at
T ∼ 2–3 MeV, depending on neutrino flavour. Since then neutrinos do not interact with the cosmic
medium other than gravitationally, but they do affect the properties of CMB and distribution of galaxies
through their gravitational interactions. These effects are not negligible, since the energy density of
relativistic neutrinos is almost the same as that of photons and, at temperature Trec ' 3000 K, the energy
density of these relativistic species is only three times smaller than the energy density of non-relativistic
particles (dark matter and baryons). Thus, observational data can be used to establish, albeit somewhat
indirectly, the existence of relic neutrinos and set limits on neutrino masses. An example is shown in
Fig. 4, where the number of neutrino flavours Neff and the sum of neutrino masses are taken as free
parameters. We see that cosmology requires relic neutrinos of at least three flavours and sets the limit on
neutrino mass mν . 0.1 eV (neutrino oscillation data tell that neutrinos with masses above 0.1 MeV are
degenerate in mass). The latest Planck analysis gives [21]

∑

i

mνi < 0.23 eV , Neff = 3.15± 0.23 .
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Fig. 4: Effective number of neutrino species and sum of neutrino masses allowed by cosmological observa-
tions [26].

2.3 Dynamics of expansion
The basic equation governing the expansion rate of the Universe is the Friedmann equation,

H2 ≡
(
ȧ

a

)2

=
8π

3M2
Pl

ρ− κ
a2

, (10)

where the dot denotes derivative with respect to time t, ρ is the total energy density in the Universe
and κ = 0,±1 is the parameter, introduced in Section 2.1, that discriminates the Euclidean 3-space
(κ = 0) and curved 3-spaces. The Friedmann equation is nothing but the (00)-component of the Einstein
equations of general relativity, R00 − 1

2g00R = 8πT00, specified to the FLRW metric. Observationally,
the spatial curvature of the Universe is very small: the last, curvature term in the right-hand side of
Eq. (10) is small compared to the energy density term [21],

1/a2

8πρ/(3M2
Pl)

< 0.005 ,

while the theoretical expectation is that the spatial curvature is completely negligible. Establishing that
the three-dimensional space is (nearly) Euclidean is one of the profound results of CMB observations.

In what follows we set κ = 0 and write the Friedmann equation as

H2 ≡
(
ȧ

a

)2

=
8π

3M2
Pl

ρ . (11)

The standard parameter used in cosmology is the critical density,

ρc =
3

8π
M2

PlH
2
0 ≈ 5× 10−6 GeV

cm3
. (12)

According to Eq. (11), it is equal to the sum of all forms of energy density in the present Universe.
There are at least three of such forms: relativistic matter, or radiation, non-relativistic matter, M and
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dark energy, Λ. For every form λ with the present energy density ρλ,0, one defines the parameter

Ωλ =
ρλ,0
ρc

.

One finds from Eq. (11) that ∑

λ

Ωλ = 1 .

The Ω are important cosmological parameters characterizing the energy balance in the present Universe.
Their numerical values are

Ωrad = 8.7× 10−5 , (13a)

ΩM = 0.31 , (13b)

ΩΛ = 0.69 . (13c)

The value of Ωrad needs qualification. At early times, when the temperature exceeds the masses of all
neutrino species, neutrinos are relativistic. The value of Ωrad in Eq. (13a) is calculated for the unrealistic
case in which all neutrinos are relativistic today, so the radiation component even at present consists of
CMB photons and three neutrino species. This prescription is convenient for studying the energy (and
entropy) content in the early Universe, since it enables one to scale the energy density (and entropy) back
in time in a simple way, see below. For future reference, let us give the value of the present entropy
density in the Universe, pretending that neutrinos are relativistic,

s0 ≈ 3000 cm−3 . (14)

Question. Calculate the numerical value of Ωγ and the entropy density of CMB photons.

Non-relativistic matter consists of baryons and dark matter. The contributions of each of these
fractions are [21]

ΩB = 0.048 ,

ΩDM = 0.26 .

Different components of the energy density evolve differently in time. The energy of a given pho-
ton or massless neutrino scales as a−1, and the number density of these species scales as a−3. Therefore,
the energy density of radiation scales as ρrad ∝ a−4 and

ρrad(t) =

(
a(t)

a0

)4

ρrad,0 = (1 + z)4 Ωradρc . (15)

The energy of non-relativistic matter is dominated by the mass of its particles, so the energy density
scales as the number density, i.e.,

ρM(t) =

(
a(t)

a0

)3

ρM,0 = (1 + z)3 ΩMρc . (16)

Finally, the energy density of dark energy does not change in time, or changes very slowly. We assume
for definiteness that ρΛ stays constant in time,

ρΛ = ΩΛρc = const . (17)

In fact, whether or not ρΛ depends on time (even slightly) is a very important question. If dark energy is
a cosmological constant (or, equivalently, vacuum energy), then it does not depend on time at all. Even
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a slight dependence of ρΛ on time would mean that we are dealing with something different from the
cosmological constant, like, e.g., a new scalar field with a very flat scalar potential. The existing limits on
the time evolution of dark energy correspond, roughly speaking, to the variation of ρΛ by not more than
20% in the last 8 billion years (from the time corresponding to z ≈ 1); usually these limits are expressed
in terms of the equation-of-state parameter relating energy density and effective pressure pΛ = wΛρΛ:

wΛ ≈ 1.0± 0.1 . (18)

The relevance of the effective pressure is seen from the covariant conservation equation for the energy–
momentum tensor,∇µTµν = 0, whose ν = 0 component reads

ρ̇ = −3
ȧ

a
(ρ+ p) .

It shows that the energy density of a component with equation of state p = wρ, w = const scales as
ρ ∝ a−3(1+w). As pointed out above, radiation (wrad = 1/3) and matter (w = 0) scale as ρrad ∝ a−4

and ρM ∝ a−3, respectively, while the cosmological constant case corresponds to wΛ = −1.

Question. Show that for a gas of relativistic particles, p = ρ/3.

According to Eqs. (15), (16) and (17), different forms of energy dominate at different cosmological
epochs. The present Universe is at the end of the transition from matter domination to Λ domination: the
dark energy will ‘soon’ completely dominate over non-relativistic matter because of the rapid decrease
of the energy density of the latter. Conversely, the matter energy density increases as we go backwards in
time, and until relatively recently (z . 0.3) it dominated over dark energy density. At even more distant
past, the radiation energy density was the highest, as it increases most rapidly backwards in time. The
red shift at radiation–matter equality, when the energy densities of radiation and matter were equal, is

1 + zeq =
a0

a(teq)
=

ΩM

Ωrad
≈ 3500

and, using the Friedmann equation, one finds the age of the Universe at equality

teq ≈ 50 000 years .

Note that recombination occurred at matter domination, but rather soon after equality. So, we have the
following sequence of the regimes of evolution:

. . . =⇒ Radiation domination =⇒ Matter domination =⇒ Λ domination .

The dots here denote some cosmological epoch preceding the hot stage of the evolution; as we mentioned
in Section 1, we are confident that such an epoch existed, but do not quite know what it was.

2.4 Radiation domination
The epoch of particular interest for our purposes is radiation domination. By inserting ρrad ∝ a−4 into
the Friedmann equation (11), we obtain

ȧ

a
=

const
a2

.

This gives the evolution law
a(t) = const ·

√
t . (19)

The constant here does not have physical significance, as one can rescale the coordinates x at some fixed
moment of time, thus changing the normalization of a.
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There are several points to note regarding the result (19). First, the expansion decelerates:

ä < 0 .

This property holds also for the matter-dominated epoch, but it does not hold for the domination of the
dark energy.

Question. Find the evolution laws, analogous to Eq. (19), for matter- and Λ-dominated Universes. Show
that the expansion decelerates, ä < 0, at matter domination and accelerates, ä > 0, at Λ domination.

Second, time t = 0 is the Big Bang singularity (assuming erroneously that the Universe starts
being radiation dominated). The expansion rate

H(t) =
1

2t

diverges as t → 0, and so do the energy density ρ(t) ∝ H2(t) and temperature T ∝ ρ1/4. Of course,
the classical general relativity and usual notions of statistical mechanics (e.g., temperature itself) are not
applicable very near the singularity, but our result suggests that in the picture we discuss (hot epoch
right after the Big Bang), the Universe starts its classical evolution in a very hot and dense state, and
its expansion rate is very high in the beginning. It is customary to consider for illustrational purposes
that the relevant quantities in the beginning of the classical expansion take the Planck values, ρ ∼ M4

Pl,
H ∼MPl etc.

Third, at a given moment of time the size of a causally connected region is finite. Consider signals
emitted right after the Big Bang and travelling with the speed of light. These signals travel along the
light cone with ds = 0 and hence a(t)dx = dt. So, the coordinate distance that a signal travels from the
Big Bang to time t is

x =

∫ t

0

dt

a(t)
≡ η . (20)

In the radiation-dominated Universe,
η = const ·

√
t .

The physical distance from the emission point to the position of the signal is

lH(t) = a(t)x = a(t)

∫ t

0

dt

a(t)
= 2t .

As expected, this physical distance is finite, and it gives the size of a causally connected region at time
t. It is called the horizon size (more precisely, the size of the particle horizon). A related property is that
an observer at time t can see only the part of the Universe whose current physical size is lH(t). Both at
radiation and matter domination one has, modulo a numerical constant of order 1,

lH(t) ∼ H−1(t) . (21)

To give an idea of numbers, the horizon size at the present epoch is

lH(t0) ≈ 15 Gpc ' 4.5× 1028 cm .

Question. Find the proportionality constant in Eq. (21) for a matter-dominated Universe. Is there a
particle horizon in a Universe without matter but with positive cosmological constant?
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It is convenient to express the Hubble parameter at radiation domination in terms of tempera-
ture. The Stefan–Boltzmann law gives for the energy density of a gas of relativistic particles in thermal
equilibrium at zero chemical potentials (chemical potentials in the Universe are indeed small)

ρrad =
π2

30
g∗T 4 , (22)

with g∗ being the effective number of degrees of freedom,

g∗ =
∑

bosons

gi +
7

8

∑

fermions

gi ,

where gi is the number of spin states and the factor 7/8 is due to Fermi statistics. Hence, the Friedmann
equation (11) gives

H =
T 2

M∗Pl

, M∗Pl =
MPl

1.66
√
g∗
. (23)

One more point has to do with entropy: the cosmological expansion is slow, so that the entropy is
conserved (modulo exotic scenarios with large entropy generation). The entropy density in thermal
equilibrium is given by

s =
2π2

45
g∗T 3 .

The conservation of entropy means that the entropy density scales exactly as a−3,

sa3 = const , (24)

while temperature scales approximately as a−1. The temperature would scale as a−1 if the number of
relativistic degrees of freedom would be independent of time. This is not the case, however. Indeed, the
value of g∗ depends on temperature: at T ∼ 10 MeV relativistic species are photons, neutrinos, electrons
and positrons, while at T ∼ 1 GeV four flavours of quarks, gluons, muons and τ -leptons are relativistic
too. The number of degrees of freedom in the Standard Model at T & 100 GeV is

g∗(100 GeV) ≈ 100 .

If there are conserved quantum numbers, such as the baryon number after baryogenesis, their
density also scales as a−3. Hence, the time-independent characteristic of, say, the baryon abundance is
the baryon-to-entropy ratio

∆B =
nB

s
.

The commonly used baryon-to-photon ratio ηB, Eq. (9), is related to ∆B by a numerical factor, but this
factor depends on time through g∗ and stays constant only after e+e− annihilation, i.e., at T . 0.5 MeV.
Numerically,

∆B = 0.14ηB,0 = 0.86× 10−10 . (25)

3 Dark energy
Before turning to our main topics, let us briefly discuss dark energy. We know very little about this
‘substance’: our knowledge is summarized in Eqs. (13c) and (18). We also know that dark energy does
not clump, unlike dark matter and baryons. It gives rise to the accelerated expansion of the Universe.
Indeed, the solution to the Friedmann equation (11) with constant ρ = ρΛ is

a(t) = eHΛt ,

11

COSMOLOGY

249



H
(z

)/
(1

+
z)

  (
km

/s
ec

/M
pc

)

0 1 2
z

90

80

70

60

50

Fig. 5: Observational data on the time derivative of the scale factor as function of red shift z [27]. The change of
the behaviour from decreasing to increasing with decreasing z means the change from decelerated to accelerated
expansion. The theoretical curve corresponds to a spatially flat Universe with h = 0.7 and ΩΛ = 0.73.

where HΛ = (8πρΛ/3M
2
Pl)

1/2 = const. This gives ä > 0, unlike at radiation or matter domination. The
observational discovery of the accelerated expansion of the Universe was the discovery of dark energy.
Recall that early on (substantial z), the Universe was matter dominated, so its expansion was decelerating.
The transition from decelerating to accelerating expansion is confirmed by combined observational data,
see Fig. 5, which shows the dependence on red shift of the quantity H(z)/(1 + z) = ȧ(t)/a0.

Question. Find the red shift z at which decelerated expansion turned into an accelerated one.

As a remark, the effective pressure of dark energy or any other component is defined as the (pos-
sibly time-dependent) parameter determining the spatial components of the energy–momentum tensor in
a locally Lorentz frame (a = 1 in the FLRW context),

Tµν = diag (ρ, p, p, p) .

In the case of the cosmological constant, the dark energy density does not depend on time at all:

Tµν = ρΛηµν ,

where ηµν is the Minkowski tensor. Hence, wΛ = −1. One can view this as the characteristic of vacuum,
whose energy–momentum tensor must be Lorentz-covariant. As we pointed out above, any deviation
from w = −1 would mean that we are dealing with something other than vacuum energy density.

The problem with dark energy is that its present value is extremely small by particle-physics
standards,

ρDE ≈ 4 GeV m−3 = (2× 10−3 eV)4 .

In fact, there are two hard problems. One is that particle-physics scales are much larger than the scale
relevant to the dark energy density, so the dark energy density is zero to an excellent approximation.
Another is that it is non-zero nevertheless, and one has to understand its energy scale. To quantify the
first problem, we recall the known scales of particle physics and gravity,

Strong interactions : ΛQCD ∼ 1 GeV ,
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Electroweak : MW ∼ 100 GeV ,
Gravitational : MPl ∼ 1019 GeV .

Off hand, physics at scale M should contribute to the vacuum energy density as ρΛ ∼ M4, and there is
absolutely no reason for vacuum to be as light as it is. The discrepancy here is huge, as one sees from
the above numbers.

To elaborate on this point, let us note that the action of gravity plus, say, the Standard Model has
the general form

S = SEH + SSM − ρΛ,0

∫ √−g d4x ,

where SEH = −(16πG)−1
∫
R
√−g d4x is the Einstein–Hilbert action of general relativity, SSM is the

action of the Standard Model and ρΛ,0 is the bare cosmological constant. In order that the vacuum energy
density be almost zero, one needs fantastic cancellations between the contributions of the Standard Model
fields into the vacuum energy density, on the one hand, and ρΛ,0 on the other. For example, we know that
quantum chromodynamics (QCD) has a complicated vacuum structure, and one would expect that the
energy density of QCD should be of the order of (1 GeV)4. At least for QCD, one needs a cancellation
of the order of 10−44. If one goes further and considers other interactions, the numbers get even worse.

What are the hints from this ‘first’ cosmological constant problem? There are several options,
though not many. One is that the Universe could have a very long prehistory: extremely long. This
option has to do with relaxation mechanisms. Suppose that the original vacuum energy density is indeed
large, say, comparable to the particle-physics scales. Then there must be a mechanism which can relax
this value down to an acceptably small number. It is easy to convince oneself that this relaxation could
not happen in the history of the Universe we know of. Instead, the Universe should have a very long
prehistory during which this relaxation process might occur. At that prehistoric time, the vacuum in the
Universe must have been exactly the same as our vacuum, so the Universe in its prehistory must have
been exactly like ours, or almost exactly like ours. Only in that case could a relaxation mechanism work.
There are concrete scenarios of this sort [28, 29]. However, at the moment it seems that these scenarios
are hardly testable, since this is prehistory.

Another possible hint is towards anthropic selection. The argument that goes back to Weinberg and
Linde [30, 31] is that if the cosmological constant were larger, say, by a factor of 100, we simply would
not exist: the stars would not have formed because of the fast expansion of the Universe. So, the vacuum
energy density may be selected anthropically. The picture is that the Universe may be much, much
larger than what we can see, and different large regions of the Universe may have different properties. In
particular, vacuum energy density may be different in different regions. Now, we are somewhere in the
place where one can live. All the rest is empty of observers, because there the parameters such as vacuum
energy density are not suitable for their existence. This is disappointing for a theorist, as this point of
view allows for arbitrary tuning of fundamental parameters. It is hard to disprove this option, on the other
hand. We do exist, and this is an experimental fact. The anthropic viewpoint may, though hopefully will
not, get more support from the LHC, if no or insufficient new physics is found there. Indeed, another
candidate for an environmental quantity is the electroweak scale, which is fine tuned in the Standard
Model in the same sense as the cosmological constant is fine tuned in gravity (in the Standard Model
context, this fine tuning goes under the name of the gauge hierarchy problem).

Turning to the ‘second’ cosmological constant problem, we note that the scale 10−3 eV may
be associated with some new light field(s), rather than with vacuum. This implies that ρΛ depends
on time, i.e., wΛ 6= −1 and wΛ may well depend on time itself. Current data are compatible with
time-independent wΛ equal to −1, but their precision is not particularly high. We conclude that future
cosmological observations may shed new light on the field content of the fundamental theory.
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4 Dark matter
Unlike dark energy, dark matter experiences the same gravitational force as baryonic matter. It consists
presumably of new stable massive particles. These make clumps of mass which constitute most of the
mass of galaxies and clusters of galaxies. There are various ways of measuring the contribution of non-
baryonic dark matter into the total energy density of the Universe (see Refs. [7–10] for details).

1. The composition of the Universe affects the angular anisotropy and polarization of CMB. Quite
accurate CMB measurements available today enable one to measure the total mass density of dark
matter.

2. There is direct evidence that dark matter exists in the largest gravitationally bound objects—
clusters of galaxies. There are various methods to determine the gravitating mass of a cluster,
and even the mass distribution in a cluster, which give consistent results. As an example, the total
gravitational field of a cluster, produced by both dark matter and baryons, acts as a gravitational
lens for extended light sources behind the cluster. The images of these sources enable one to re-
construct the mass distribution in the cluster. This is shown in Fig. 6. These determinations show
that baryons (independently measured through their X-ray emission) make less than 1/3 of total
mass in clusters. The rest is dark matter.

Fig. 6: Cluster of galaxies CL0024 + 1654 [32], acting as gravitational lens. Right-hand panel: cluster in visible
light. Round yellow spots are galaxies in the cluster. Elongated blue images are those of one and the same galaxy
beyond the cluster. Left-hand panel: reconstructed distribution of gravitating mass in the cluster; brighter regions
have larger mass density.

A particularly convincing case is the Bullet Cluster, Fig. 7. Shown are two galaxy clusters that
passed through each other. The dark matter and galaxies do not experience friction and thus do not
lose their velocities. On the contrary, baryons in hot, X-ray-emitting gas do experience friction and
hence get slowed down and lag behind dark matter and galaxies. In this way the baryons (which
are mainly in hot gas) and dark matter are separated in space.

3. Dark matter exists also in galaxies. Its distribution is measured by the observations of rotation
velocities of distant stars and gas clouds around a galaxy, Fig. 8. Because of the existence of dark
matter away from the luminous regions, i.e., in halos, the rotation velocities do not decrease with
the distance from the galactic centres; rotation curves are typically flat up to distances exceeding
the size of the bright part by a factor of 10 or so. The fact that dark matter halos are so large
is explained by the defining property of dark matter particles: they do not lose their energies by
emitting photons and, in general, interact with conventional matter very weakly.
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Fig. 7: Observation [33] of the Bullet Cluster 1E0657-558 at z = 0.296. Closed lines show the gravitational
potential produced mainly by dark matter and measured through gravitational lensing. Bright regions show X-ray
emission of hot baryon gas, which makes most of the baryonic matter in the clusters. The length of the white
interval is 200 kpc in the comoving frame.

Dark matter is characterized by the mass-to-entropy ratio,

(ρDM

s

)
0

=
ΩDMρc

s0
≈ 0.26× 5× 10−6 GeV cm−3

3000 cm−3
= 4× 10−10 GeV . (26)

This ratio is constant in time since the freeze out of dark matter density: both number density of dark
matter particles nDM (and hence their mass density ρDM = mDMnDM) and entropy density get diluted
exactly as a−3.

Dark matter is crucial for our existence, for the following reason. Density perturbations in baryon–
electron–photon plasma before recombination do not grow because of high pressure, which is mostly
due to photons; instead, perturbations are sound waves propagating in plasma with time-independent
amplitudes. Hence, in a Universe without dark matter, density perturbations in the baryonic component
would start to grow only after baryons decouple from photons, i.e., after recombination. The mechanism

Fig. 8: Rotation velocities of hydrogen gas clouds around the galaxy NGC 6503 [34]. Lines show the contributions
of the three main components that produce the gravitational potential. The main contribution at large distances is
due to dark matter, labelled ‘halo’.
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of the growth is pretty simple: an overdense region gravitationally attracts surrounding matter; this matter
falls into the overdense region, and the density contrast increases. In the expanding matter-dominated
Universe this gravitational instability results in the density contrast growing like (δρ/ρ)(t) ∝ a(t).
Hence, in a Universe without dark matter, the growth factor for baryon density perturbations would be at
most

a(t0)

a(trec)
= 1 + zrec =

Trec

T0
≈ 103 . (27)

Because of the presence of dark energy, the growth factor is even somewhat smaller. The initial amplitude
of density perturbations is very well known from the CMB anisotropy measurements, (δρ/ρ)i = 5 ×
10−5. Hence, a Universe without dark matter would still be pretty homogeneous: the density contrast
would be in the range of a few per cent. No structure would have been formed, no galaxies, no life. No
structure would be formed in future either, as the accelerated expansion due to dark energy will soon
terminate the growth of perturbations.

Since dark matter particles decoupled from plasma much earlier than baryons, perturbations in
dark matter started to grow much earlier. The corresponding growth factor is larger than (27), so that the
dark matter density contrast at galactic and subgalactic scales becomes of order one, perturbations enter
the non-linear regime and form dense dark matter clumps at z = 5–10. Baryons fall into potential wells
formed by dark matter, so dark matter and baryon perturbations develop together soon after recombina-
tion. Galaxies get formed in the regions where dark matter was overdense originally. For this picture to
hold, dark matter particles must be non-relativistic early enough, as relativistic particles fly through grav-
itational wells instead of being trapped there. This means, in particular, that neutrinos cannot constitute
a considerable part of dark matter.

4.1 Cold and warm dark matter
Currently, the most popular dark matter scenario is cold dark matter, CDM. It consists of particles which
get out of kinetic equilibrium when they are non-relativistic. For dark matter particles Y which are
initially in thermal equilibrium with cosmic plasma, this means that their scattering off other particles
switches off at T = Td � mY. Since then the dark matter particles move freely, their momenta decrease
due to red shift, and they remain non-relativistic until now. Note that the decoupling temperature Td may
be much lower than the freeze-out temperature Tf at which the dark matter particles get out of chemical
equilibrium, i.e., their number in the comoving volume freezes out (because, e.g., their creation and
annihilation processes switch off). This is the case for many models with weakly interacting massive
particles (WIMPs), a class of dark matter particles we discuss in some detail below. Note also that dark
matter particles may never be in thermal equilibrium; this is the case, e.g., for axions.

An alternative to CDM is warm dark matter, WDM, whose particles decouple, being relativistic.
Let us assume for definiteness that they are in kinetic equilibrium with cosmic plasma at temperature
Tf when their number density freezes out (thermal relic). After kinetic equilibrium breaks down at
temperature Td ≤ Tf , their spatial momenta decrease as a−1, i.e., the momenta are of order T all the time
after decoupling. Warm dark matter particles become non-relativistic at T ∼ m, where m is their mass.
Only after that do the WDM perturbations start to grow: as we mentioned above, relativistic particles
escape from gravitational potentials, so the gravitational wells get smeared out instead of getting deeper.
Before becoming non-relativistic, WDM particles travel the distance of the order of the horizon size;
the WDM perturbations therefore are suppressed at those scales. The horizon size at the time tnr when
T ∼ m is of order

lH(tnr) ' H−1(T ∼ m) =
M∗Pl

T 2
∼ M∗Pl

m2
.

Due to the expansion of the Universe, the corresponding length at present is

l0 = lH(tnr)
a0

a(tnr)
∼ lH(tnr)

T

T0
∼ MPl

mT0
, (28)
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where we neglected (rather weak) dependence on g∗. Hence, in the WDM scenario, structures of sizes
smaller than l0 are less abundant as compared to CDM. Let us point out that l0 refers to the size of the
perturbation in the linear regime; in other words, this is the size of the region from which matter collapses
into a compact object.

There is a hint towards the plausibility of warm, rather than cold, dark matter. It is the dwarf-
galaxy problem. According to numerical simulations, the CDM scenario tends to overproduce small
objects—dwarf galaxies: it predicts hundreds of satellite dwarf galaxies in the vicinity of a large galaxy
like the Milky Way, whereas only dozens of satellites have been observed so far. This argument is still
controversial, but, if correct, it does suggest that the dark matter perturbations are suppressed at dwarf-
galaxy scales. This is naturally the case in the WDM scenario. The present size of a dwarf galaxy is a
few kpc, and the density is about 106 of the average density in the Universe. Hence, the size l0 for these
objects is of order 100 kpc ' 3× 1023 cm. Requiring that perturbations of this size, but not much larger,
are suppressed, we obtain from (28) the estimate for the mass of a dark matter particle

WDM : mDM = 3–10 keV . (29)

On the other hand, this effect is absent, i.e., dark matter is cold, for

CDM : mDM � 10 keV . (30)

Let us recall that these estimates apply to particles that are initially in kinetic equilibrium with cosmic
plasma. They do not apply in the opposite case; an example is axion dark matter, which is cold despite
being of very small axion mass.

4.2 WIMP miracle
There is a simple mechanism of the dark matter generation in the early Universe. It applies to cold dark
matter. Because of its simplicity and robustness, it is considered by many as a very likely one, and the
corresponding dark matter candidates—WIMPs—as the best candidates. Let us describe this mechanism
in some detail.

Let us assume that there exists a heavy stable neutral particle Y, and that Y particles can only be
destroyed or created via their pair annihilation or creation, with annihilation products being the particles
of the Standard Model. The general scenario for the cosmological behaviour of Y particles is as follows.
At high temperatures, T � mY, the Y particles are in thermal equilibrium with the rest of the cosmic
plasma; there are lots of Y particles in the plasma, which are continuously created and annihilate. As the
temperature drops below mY, the equilibrium number density decreases. At some ‘freeze-out’ tempera-
ture Tf , the number density becomes so small that Y particles can no longer meet each other during the
Hubble time, and their annihilation terminates. After that the number density of surviving Y particles
decreases like a−3, and these relic particles contribute to the mass density in the present Universe.

Let us estimate the properties of Y particles such that they really serve as dark matter. Elementary
considerations of mean free path of a particle in gas give for the lifetime of a non-relativistic Y particle
in cosmic plasma, τann,

〈σann · v〉 · τann · nY ∼ 1 ,

where v is the relative velocity of Y particles, σann is the annihilation cross-section at velocity v, averag-
ing is over the velocity distribution of Y particles and nY is the number density. In thermal equilibrium
at T � mY, the latter is given by the Boltzmann law at zero chemical potential,

n
(eq)
Y = gY ·

(
mYT

2π

)3/2

e−
mY
T , (31)

where gY is the number of spin states of a Y particle. Let us introduce the notation

〈σann · v〉 = σ0
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(in kinetic equilibrium, the left-hand side is the thermal average). If the annihilation occurs in an s-wave,
then σ0 is a constant independent of temperature; for a p-wave it is somewhat suppressed at T � mY,
namely σ0 ∝ v2 ∝ T/mY. A quick way to come to correct estimate is to compare the lifetime with the
Hubble time, or the annihilation rate Γann ≡ τ−1

ann with the expansion rate H . At T ∼ mY, the equilib-
rium density is of order nY ∼ T 3, and Γann � H for not too small σ0. This means that annihilation
(and, by reciprocity, creation) of Y pairs is indeed rapid, and Y particles are indeed in complete thermal
equilibrium with the plasma. At very low temperature, on the other hand, the equilibrium number den-
sity n(eq)

Y is exponentially small, and the equilibrium rate is small too, Γ
(eq)
ann � H . At low temperatures

we cannot, of course, make use of the equilibrium formulas: Y particles no longer annihilate (and, by
reciprocity, are no longer created), there is no thermal equilibrium with respect to creation–annihilation
processes and the number density nY gets diluted only because of the cosmological expansion.

The freeze-out temperature Tf is determined by the relation1

τ−1
ann ≡ Γann ' H , (32)

where we use the equilibrium formulas. Making use of the relation (23) between the Hubble parameter
and the temperature at radiation domination, we obtain

σ0(Tf) · nY(Tf) ∼
T 2

f

M∗Pl

(33)

or

σ0(Tf) · gY ·
(
mYTf

2π

)3/2

e−
mY
Tf ∼ T 2

f

M∗Pl

. (34)

The latter equation gives the freeze-out temperature, which, up to log–log corrections, is

Tf ≈
mY

ln(M∗PlmYσ0)
(35)

(the possible dependence of σ0 on temperature is irrelevant in the right-hand side: we are doing the
calculation in the leading-log approximation anyway). Note that this temperature is somewhat lower
than mY if the relevant microscopic mass scale is much below MPl. This means that Y particles freeze
out when they are indeed non-relativistic and get out of kinetic equilibrium at even lower temperature,
hence the term ‘cold dark matter’. The fact that the annihilation and creation of Y particles terminate at
a relatively low temperature has to do with the rather slow expansion of the Universe, which should be
compensated for by the smallness of the number density nY.

At the freeze-out temperature, we make use of Eq. (33) and obtain

nY(Tf) =
T 2

f

M∗Plσ0(Tf)
. (36)

Note that this density is inversely proportional to the annihilation cross-section (modulo a logarithm).
The reason is that for higher annihilation cross-sections, the creation–annihilation processes are longer
in equilibrium, and fewer Y particles survive.

1In fact, we somewhat oversimplify the analysis here. The chemical equilibrium breaks down slightly earlier than what we
find from Eq. (32): the corresponding temperature is obtained by equating the equilibrium creation–annihilation rate Γann to
the rate of evolution of the equilibrium number density (31), rather than to the Hubble parameter H . For T � mY , this gives
the equation for the temperature

Γann ' ṅY

nY
' −mY

T

Ṫ

T
=
mY

T
H(T ) .

This temperature differs by the log–log correction from Tf determined from Eq. (34) and, at this temperature, one has nY �
T 2/(M∗Plσ0), cf. Eq. (36). However, below this temperature, the annihilation of Y particles continues, and it terminates at
temperature Tf determined by Eq. (32), which gives Eqs. (33) and (36). All this gives rise to log–log corrections, which we do
not calculate anyway. So, our estimate for the present dark matter mass density remains valid.
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Up to a numerical factor of order 1, the number-to-entropy ratio at freeze-out is

nY

s
' 1

g∗(Tf)M
∗
PlTfσ0(Tf)

. (37)

This ratio stays constant until the present time, so the present number density of Y particles is nY,0 =
s0 · (nY/s)freeze-out, and the mass-to-entropy ratio is

ρY,0

s0
=
mYnY,0

s0
' ln(M∗PlmYσ0)

g∗(Tf)M
∗
Plσ0(Tf)

' ln(M∗PlmYσ0)√
g∗(Tf)MPlσ0(Tf)

,

where we made use of (35). This formula is remarkable. The mass density depends mostly on one
parameter, the annihilation cross-section σ0. The dependence on the mass of a Y particle is through the
logarithm and through g∗(Tf); it is very mild. The value of the logarithm here is between 30 and 40,
depending on parameters (this means, in particular, that freeze-out occurs when the temperature drops
30 to 40 times below the mass of a Y particle). Inserting g∗(Tf) ∼ 100, as well as the numerical factor
omitted in Eq. (37), and comparing with (26), we obtain the estimate

σ0(Tf) ≡ 〈σv〉(Tf) = (1–2)× 10−36 cm2 . (38)

This is a weak-scale cross-section, which tells us that the relevant energy scale is TeV. We note in passing
that the estimate (38) is quite precise and robust.

If the annihilation occurs in an s-wave, the annihilation cross-section may be parametrized as
σ0 = α2/M2, where α is some coupling constant and M is a mass scale (which may be higher than
mY). This parametrization is suggested by the picture of Y-pair annihilation via the exchange by another
particle of mass M . With α ∼ 10−2, the estimate for the mass scale is roughly M ∼ 1 TeV. Thus, with
very mild assumptions, we find that the non-baryonic dark matter may naturally originate from the TeV-
scale physics. In fact, what we have found can be understood as an approximate equality between the
cosmological parameter, the mass-to-entropy ratio of dark matter and the particle-physics parameters,

mass-to-entropy ' 1

MPl

(
TeV
αW

)2

.

Both are of order 10−10 GeV, and it is very tempting to think that this ‘WIMP miracle’ is not a mere
coincidence. If it is not, the dark matter particles should be found at the LHC.

The most prominent candidate for WIMPs is neutralinos of the supersymmetric extensions of
the Standard Model. The situation with neutralinos is somewhat tense, however. The point is that
the pair annihilation of neutralinos often occurs in the p-wave, rather than the s-wave. This gives the
suppression factor in σ0 ≡ 〈σannv〉 proportional to v2 ∼ Tf/mY ∼ 1/30. Hence, neutralinos tend to be
overproduced in most of the parameter space of the Minimal Supersymmetric Standard Model (MSSM)
and other models. Yet neutralinos remain a good candidate, especially at high tanβ.

A direct search for dark matter WIMPs is underway in underground laboratories. The idea is that
WIMPs orbiting around the centre of our Galaxy with velocity of order 10−3 sometimes hit a nucleus
in a detector and deposit a small energy in it. These searches have become sensitive to neutralinos, as
shown in Fig. 9. Indirect searches for dark matter WIMPs include the search for neutrinos coming from
the centres of the Earth and Sun (WIMPs may concentrate and annihilate there), see, e.g., Ref. [36] and
positrons and antiprotons in cosmic rays (produced in WIMP annihilations in our Galaxy), see, e.g.,
Ref. [37]. Collider searches are sensitive to WIMPs too, see Fig. 10. We conclude that the hunt for
WIMPs has entered the promising stage.

Question. Estimate the energy deposited in the XENON detector due to elastic scattering of a dark matter
WIMP, for WIMP masses 10 GeV, 100 GeV and 1 TeV. Estimate the number of events per kilogram per
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Fig. 9: MSSM predictions for spin-independent elastic neutralino–nucleon cross-section versus neutralino mass
and experimentally excluded regions [35]. Shaded regions correspond to MSSM parameters consistent with col-
lider limits and yielding ΩDM ≈ 0.25. Regions above the open solid lines are ruled out by direct searches, closed
solid curves correspond to regions favoured by experiments indicated. Dashed lines are sensitivities of future direct
search experiments LUX and XENON 1T.

Fig. 9: MSSM predictions for spin-independent elastic neutralino-nucleon cross section versus neutralino mass and
experimentally excluded regions [20]. Shaded regions correspond to MSSM parameters consistent with collider
limits and yieldingΩDM ≈ 0.25. Regions above the open solid lines are ruled out by direct searches, closed
solid curves correspond to regions favored by experiments indicated. Dashed lines are sensitivities of future direct
search experiments LUX and XENON 1T.
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Fig. 10: Excluded regions in the parameter space(MX , σpX) [23] for spin-dependent (left) and spin-independent
(right) WIMP interactions with nucleon. Regions above the curves are ruled out at at 90 % confidence level. CMS
denotes searches for WIMPs at the Large Hadron Collider (assuming contact interactionY Y f1f2, wheref1,2 are
Standard Model fermions); IceCube and Super-K are searchesfor neutrinos from WIMP annihilation in the Sun;
others are direct searches. The shaded region in the middle of the right panel is favored by possible signal at CDMS
experiment.

assuming that the WIMP mass density around the Earth is similar to the av-
erage baryon mass density,ρDM ∼ 0.3 GeV/cm3, and thatvDM ∼ 10−3.
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Fig. 10: Excluded regions in the parameter space (MX, σpX) [38] for spin-dependent (left) and spin-independent
(right) WIMP interactions with nucleons. Regions above the curves are ruled out at 90 % confidence level. CMS
denotes searches for WIMPs at the LHC (assuming contact interaction YYf1f2, where f1,2 are Standard Model
fermions); IceCube and Super-K are searches for neutrinos from WIMP annihilation in the Sun; others are direct
searches. The shaded region in the middle of the right-hand panel is favoured by a possible signal at the CDMS
experiment.

year for the same masses and elastic cross-sections 10−5 pb, 10−9 pb and 10−8 pb, respectively (see
Fig. 9), assuming that the WIMP mass density around the Earth is similar to the average baryon mass
density, ρDM ∼ 0.3 GeV cm−3, and that vDM ∼ 10−3.
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4.3 Light long-lived particles
Many extensions of the Standard Model contain light scalar or pseudoscalar particles. In some models
these new particles are so weakly interacting that their lifetime exceeds the present age of the Universe.
Hence, they may serve as dark matter candidates. The best motivated of them is the axion, but there is
an entire zoo of axion-like particles.

Let us consider general properties of models with light scalars or pseudoscalars. These particles
should interact with the usual matter very weakly, so they must be neutral with respect to the Standard
Model gauge interactions. This implies that interactions of scalars S and pseudoscalars P with gauge
fields are of the form

LSFF =
CSFF

4Λ
· SFµνFµν , LPFF =

CPFF
8Λ

· PFµνFλρεµνλρ , (39)

where Fµν is the field strength of the SU(3)c, SU(2)W or U(1)Y gauge group. The parameter Λ has
dimension of mass and can be interpreted as the scale of new physics related to an S and/or a P particle.
This parameter has to be large; then the interactions of S and P with gauge bosons are indeed weak
at low energies. Because of that, the Lagrangians (39) contain gauge-invariant operators of the lowest
possible dimension. Dimensionless constants CSFF and CPFF are typically numbers of order 1. The
terms (39) describe interactions of (pseudo)scalars with pairs of photons, gluons as well as with Zγ, ZZ
and W+W− pairs.

Interactions with fermions can also be written on symmetry grounds. Since S and P are singlets
under SU(3)c × SU(2)W × U(1)Y, no combinations like Sf̄f or P f̄γ5f are gauge invariant, so they
cannot appear in the Lagrangian (hereafter f denotes the Standard Model fermions). Gauge-invariant
operators of the lowest dimension have the formHf̄f , whereH is the Englert–Brout–Higgs field. Hence,
the interactions with fermions are

LSHff =
YSHff

Λ
· SHf̄f , LPHff =

YPHff
Λ

· PHf̄γ5f .

It often happens that the couplings YSHff and YSPff are of the order of the Standard Model Yukawa
couplings, so upon electroweak symmetry breaking the low-energy Lagrangians have the following struc-
ture:

LSff =
CSffmf

Λ
· Sf̄f , LPff =

CPffmf

Λ
· P f̄γ5f , (40)

where we assume that the dimensionless couplings CSff and CPff are also of order 1.

Making use of Eqs. (39) and (40), we estimate the partial widths of decays of P and S into the
Standard Model particles:

ΓP (S)→AA ∼
m3
P (S)

64πΛ2
, ΓP (S)→ff ∼

m2
fmP (S)

8πΛ2
, (41)

where A denotes vector bosons. By requiring that the lifetime of the new particles exceeds the present
age of the Universe, τS(P ) = Γ−1

S(P ) > H−1
0 , we find a bound on the mass of the dark matter candidates,

mP (S) <
(
16πΛ2H0

)1/3
. (42)

Assuming that the new physics scale is below the Planck scale, Λ < MPl, we obtain an (almost) model-
independent bound,

mP (S) < 100 MeV . (43)

Hence, the kinematically allowed decays are P (S) → γγ, P (S) → νν̄ and P (S)→ e+e−. It follows
from Eq. (41) that the two-photon decay mode dominates, unless the mass of the new particle is close to
that of the electron.
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Let us now consider generation of relic (pseudo)scalars in the early Universe. There are several
generation mechanisms; one of them is fairly generic for the class of models we discuss. This is genera-
tion in decays of condensates (we will consider another mechanism later, in the model with axions). The
picture is as follows. Let some scalar field φ be in a condensate in the early Universe. The condensate
can be viewed as a collection of φ particles at rest. Equivalently, the condensate is the homogeneous
scalar field that oscillates at relatively late times, when mφ > H . Let both particles, φ and S, interact
with matter so weakly that they never get into thermal equilibrium, and let the interaction between φ and
S have the form µφS2/2, where µ is the coupling constant. Then the width of the decay φ → SS is
estimated as

Γφ→SS ∼
µ2

16πmφ
. (44)

If the widths of other decay channels do not exceed the value (44), the decay of the φ condensate occurs
at a temperature Tφ determined by

Γφ→SS ∼ H(Tφ) =
T 2
φ

M∗Pl

.

Let the energy density of the φ condensate at that time be equal to ρφ, so that the number density of
decaying φ particles is nφ ∼ ρφ/mφ. Immediately after the epoch of φ-particle decays, the number
density of S particles is of order ερφ/mφ, where ε is the fraction of the condensate that decayed into S
particles. After S particles become non-relativistic, their mass density is of order

ρS ∼ ερφ ·
mST

3

mφT
3
φ

,

where we omitted the dependence on g∗ for simplicity. In this way we estimate the mass fraction of S
particles today,

ΩS =
ρS
ρc
∼ mST

3
0

ρc
· ερφ
mφT

3
φ

∼ 0.2 ·
( mS

1 eV

)
· ερφ
mφT

3
φ

. (45)

With an appropriate choice of parameters, the correct value ΩS ' 0.2 can indeed be obtained. We note
that the last factor on the right-hand side of Eq. (45) must be small.

4.4 Axions
Let us now turn to a concrete class of models with Peccei–Quinn symmetry and axions. This symmetry
provides a solution to the strong CP-problem, and the existence of axions is an inevitable consequence
of the construction.

The strong CP-problem [39–41] emerges in the following way. One can extend the Standard
Model Lagrangian by adding the following term:

∆L =
αs

8π
· θ0 ·Ga

µνG̃
µν a , (46)

where αs is the SU(3)c gauge coupling, Ga
µν is the gluon field strength, G̃µν a = 1

2ε
µνλρGa

λρ is the
dual tensor and θ0 is an arbitrary dimensionless parameter (the factor αs/(8π) is introduced for later
convenience). The interaction term (46) is invariant under gauge symmetries of the Standard Model, but
it violates P and CP. The term (46) is a total derivative, so it does not contribute to the classical field
equations, and its contribution to the action is reduced to the surface integral. For any perturbative gauge
field configurations (small perturbations about Ga

µ = 0), this contribution is equal to zero. However,
this is not the case for configurations of instanton type. This means that CP is violated in QCD at the
non-perturbative level.
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Furthermore, quantum effects due to quarks give rise to the anomalous term in the Lagrangian,
which has the same form as Eq. (46) with proportionality coefficient determined by the phase of the
quark mass matrix M̂q. The latter enters the Lagrangian as

Lm = q̄LM̂qqR + h.c.

By chiral rotation of quark fields, one makes quark masses real (i.e., physical), but that rotation induces
a new term in the Lagrangian,

∆Lm =
αs

8π
·Arg

(
DetM̂q

)
·Ga

µνG̃
µν a . (47)

There is no reason to think that Arg
(

DetM̂q

)
= 0. Neither there is a reason to think that the ‘tree-level’

term (46) and the anomalous contribution (47) cancel each other. Indeed, the former term is there even
in the absence of quarks, while the latter comes from the Yukawa sector, as the quark masses are due to
their Yukawa interactions with the Englert–Brout–Higgs field.

Thus, the Standard Model Lagrangian should contain the term

∆Lθ =
αs

8π

(
θ0 + Arg

(
DetM̂q

))
Ga
µνG̃

µν a ≡ αs

8π
· θ ·Ga

µνG̃
µν a . (48)

This term violates CP, and off hand the parameter θ is of order 1.

The term (48) has non-trivial phenomenological consequences. One is that it generates the electric
dipole moment (EDM) of the neutron, dn, which is estimated as [42]

dn ∼ θ × 10−16 e cm . (49)

The neutron EDM has not been found experimentally, and the searches place a strong bound

dn . 3× 10−26 e cm . (50)

This leads to the bound on the parameter θ,

|θ| < 0.3× 10−9 .

The problem to explain such a small value of θ is precisely the strong CP-problem.

A solution to this problem does not exist within the Standard Model. The solution is offered by
models with axions. These models make use of the following observation. If at the classical level the
quark Lagrangian is invariant under axial symmetry U(1)A such that

qL → eiβqL , qR → e−iβqR , (51)

then the θ term would be rotated away by applying this transformation. This global symmetry is called
the Peccei–Quinn (PQ) symmetry [43], U(1)PQ. There is no PQ symmetry in the Standard Model, but
one can extend the Standard Model in such a way that the classical Lagrangian is invariant under the PQ
symmetry. Quark masses are not invariant under the PQ transformations (51), so PQ symmetry is spon-
taneously broken. At the classical level, this leads to the existence of a massless Nambu–Goldstone field
a(x), an axion. As for any Nambu–Goldstone field, its properties are determined by its transformation
law under the PQ symmetry:

a(x)→ a(x) + β · fPQ , (52)

where β is the same parameter as in Eq. (51) and fPQ is a constant of dimension of mass, the energy
scale of U(1)PQ symmetry breaking. The mass terms in the low-energy quark Lagrangian must be
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symmetric under the transformations (51) and (52), so the quark and axion fields enter the Lagrangian in
the combination

Lm = q̄Rmqe
−2i a

fPQ qL + h.c. (53)

Making use of Eq. (47), we find that at the quantum level the low-energy Lagrangian contains the term

La = Cg
αs

8π
· a

fPQ
Ga
µνG̃

µν a , (54)

where the constantCg is of order 1; it is determined by PQ charges of quarks. Clearly, PQ symmetry (51)
and (52) is explicitly broken by quantum effects of QCD, and an axion is a pseudo-Nambu–Goldstone
boson.

Hence, the θ parameter multiplying the operatorGa
µνG̃

µν a obtains a shift depending on the space–
time point and proportional to the axion field,

θ → θ̄(x) = θ + Cg
a(x)

fPQ
. (55)

Strong interactions would conserve CP provided the axion vacuum expectation value is such that 〈θ̄〉 = 0.
The QCD effects indeed do the job. They generate a non-vanishing quark condensate 〈q̄q〉 ∼ Λ3

QCD at
the QCD energy scale ΛQCD ∼ 200 MeV. This condensate breaks chiral symmetry and in turn generates
the axion effective potential

Va ∼ −
1

2
θ̄2 mumd

mu +md
〈q̄q〉+O(θ̄4) ' 1

8
θ̄2 ·m2

πf
2
π +O(θ̄4) , (56)

where mπ = 135 MeV and fπ = 93 MeV are pion mass and decay constant. In fact, the axion potential
must be periodic in θ with period 2π, so the expression (56) is valid for small θ only. The potential has
the minimum at 〈θ̄〉 = 0, so the strong CP-problem finds an elegant solution. It follows from Eqs. (55)
and (56) that the axion has a mass

ma ≈ Cg
mπfπ
2fPQ

, (57)

i.e., it is indeed a pseudo-Nambu–Goldstone boson.

There are various ways to implement the PQ mechanism. One is to introduce two Englert–Brout–
Higgs doublets and choose the Yukawa interaction as

Y dQ̄LH1DR + Y uQ̄Liτ2H∗2UR . (58)

The two scalar fields transform under the U(1)PQ transformation (51) as follows:

H1 → e2iβH1 , H2 → e−2iβH2 .

This ensures U(1)PQ invariance of the Lagrangian (58) and hence the absence of the θ term. Both
scalars acquire vacuum expectation values v1 and v2. If no other new fields are added, we arrive at the
Weinberg–Wilczek model [44,45]. In that case, the axion field θ is the relative phase of H1 and H2, and
the PQ scale equals the electroweak scale:

fPQ = 2
√
v2

1 + v2
2 = 2vSM = 2× 246 GeV .

The axion is quite heavy,ma ∼ 15 keV, and its interaction with quarks, gluons and photons is too strong.
Because of that, the Weinberg–Wilczek axion is experimentally ruled out.

This problem is solved in the Dine–Fischler–Srednicki–Zhitnitsky (DFSZ) model [46, 47] by
adding a complex scalar field S which is a singlet under the Standard Model gauge group. Its inter-
actions involve PQ invariants

S†S , H†1H2 · S2 .
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The field S transforms under U(1)PQ as S → e2iβS. The axion field is now a linear combination of the
phases of fields H1, H2 and S and

fPQ = 2
√
v2

1 + v2
2 + v2

s , (59)

where vs is the vacuum expectation value of the field S. The latter can be large, so it is clear from
Eq. (59) that the mass of the axion is small and, most importantly, its couplings to the Standard Model
fields are weak: these couplings are inversely proportional to fPQ ∼ vs. The DFSZ axion interacts with
both quarks and leptons.

Another approach is called the Kim–Shifman–Vainshtein–Zakharov (KSVZ) mechanism [48,49].
It does not require more than one Englert–Brout–Higgs field of the Standard Model. The mechanism
makes use of additional quark fields ΨR and ΨL, which are triplets under SU(3)c and singlets under
SU(2)W ×U(1)Y. Only these quarks transform non-trivially under U(1)PQ, while the usual quarks have
zero PQ charge. One also introduces a complex scalar field S, which is a singlet under the Standard
Model gauge group. One writes the PQ-invariant Yukawa interaction of the new fields,

L = yΨSΨ̄RΨL + h.c. ,

so that S again transforms under U(1)PQ as S → e2iβS. PQ symmetry is spontaneously broken by the
vacuum expectation value 〈S〉 = vs/

√
2. The axion here is the phase of the field S; therefore,

fPQ = 2vs . (60)

The KSVZ model does not contain an explicit interaction of an axion with the usual quarks and leptons.

To summarize, an axion is a light particle whose interactions with the Standard Model fields are
very weak. The latter property relates to the fact that it is a pseudo-Nambu–Goldstone boson of a global
symmetry spontaneously broken at the high-energy scale fPQ � MW. As for any Nambu–Goldstone
field, the interactions of an axion with quarks and leptons are described by the generalized Goldberger–
Treiman formula

Laf =
1

fPQ
· ∂µa · JµPQ . (61)

Here
JµPQ =

∑

f

e
(PQ)
f · f̄γµγ5f . (62)

The contributions of fermions to the current JµPQ are proportional to their PQ charges e(PQ)
f ; these charges

are model-dependent. In accord with Eq. (53), the action (61) can be integrated by parts and we obtain
instead

Laf = − 1

fPQ
· a · ∂µJµPQ

= − a

fPQ
·
∑

f

2e
(PQ)
f mf · f̄γ5f . (63)

Besides the interaction (61), there are also interactions of axions with gluons, see Eq. (54), and photons,

Lag = Cg
αs

8π
· a

fPQ
·Ga

µνG̃
µν a , Laγ = Cγ

α

8π
· a

fPQ
· FµνF̃µν , (64)

where the dimensionless constants Cg and Cγ are also model-dependent and, generally speaking, are of
order 1. The interaction terms (63) and (64) indeed have the form (39) and (40), i.e., models with axions
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belong to the class of models with light, weakly interacting pseudoscalars. The axion mass, however, is
not a free parameter: we find from Eq. (57) that

ma ≈ mπ ·
fπ

2fPQ
≈ 0.6 eV ·

(
107 GeV
fPQ

)
. (65)

The main decay channel of the light axion is decay into two photons. The lifetime τa is found
from Eq. (41) by setting Λ = 2πfPQ/α and using Eq. (65),

τa =
1

Γa→γγ
=

64π3m2
πf

2
π

α2m5
a

' 4× 1024 s ·
(

eV
ma

)5

.

By requiring that this lifetime exceeds the age of the Universe, τa > t0 ≈ 14 billion years, we find the
bound on the mass of the axion as a dark matter candidate,

ma < 25 eV . (66)

There are astrophysical bounds on the strength of axion interactions f−1
PQ and hence on the axion mass.

Axions in theories with fPQ . 109 GeV, which are heavier than 10−2 eV, would be intensely produced
in stars and supernovae explosions. This would lead to contradictions with observations. So, we are left
with very light axions, ma . 10−2 eV.

As far as dark matter is concerned, thermal production of axions is irrelevant. There are at least
two mechanisms of axion production in the early Universe that can provide not only right axion abun-
dance but also small initial velocities of axions. The latter property makes an axion a cold dark matter
candidate, despite its very small mass. One mechanism has to do with decays of global strings [50]—
topological defects that exist in theories with spontaneously broken global U(1) symmetry (U(1)PQ in
our case; for a discussion of this mechanism, see, e.g., Ref. [51]). Another mechanism employs an axion
condensate [52–54], an homogeneous axion field that oscillates in time after the QCD epoch. This is
called the axion misalignment mechanism. Let us consider the second mechanism in some detail.

As we have seen in Eq. (56), the axion potential is proportional to the quark condensate 〈q̄q〉. This
condensate breaks chiral symmetry. The chiral symmetry is in fact restored at high temperatures Hence,
one expects that the axion potential is negligibly small at T � ΛQCD. This is indeed the case: the
effective potential for the field θ̄ = θ + a/fPQ vanishes at high temperatures, and this field can take any
value,

θ̄i ∈ [0 , 2π) ,

where we recall that the field θ̄ is a phase. There is no reason to think that the initial value θ̄i is zero. As
the temperature decreases, the axion mass m(T ) starts to get generated, so that

ma(T ) ' 0 at T � ΛQCD ,

ma(T ) ' ma at T � ΛQCD .

Hereafter ma denotes the zero-temperature axion mass. As the mass increases, at some point the field
θ̄, remaining homogeneous, starts to roll down from θ̄i towards its value θ̄ = 0 at the minimum of the
potential. The axion field practically does not evolve when ma(T ) � H(T ) and at the time when
ma(T ) ∼ H(T ) it starts to oscillate. Let us estimate the present energy density of the axion field in this
picture, without using the concrete form of the function m(T ).

The oscillations start at the time tosc when

ma(tosc) ∼ H(tosc). (67)

At this time, the energy density of the axion field is estimated as

ρa(tosc) ∼ m2
a(tosc)f

2
PQθ̄

2
i .
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The oscillating axion field is the same thing as a collection of axions at rest. Their number density at the
beginning of oscillations is estimated as

na(tosc) ∼
ρa(tosc)

ma(tosc)
∼ ma(tosc)f

2
PQθ̄

2
i ∼ H(tosc)f

2
PQθ̄

2
i .

This number density, as any number density of non-relativistic particles, then decreases as a−3.

The axion-to-entropy ratio at time tosc is

na

s
∼
H(tosc)f

2
PQ

2π2

45 g∗T
3
osc

· θ̄2
i '

f2
PQ√

g∗ToscMPl
· θ̄2

i ,

where we use the usual relation H = 1.66
√
g∗T 2/MPl. The axion-to-entropy ratio remains constant

after the beginning of oscillations, so the present mass density of axions is

ρa,0 =
na

s
mas0 '

maf
2
PQ√

g∗ToscMPl
s0 · θ̄2

i . (68)

In fact, it is a decreasing function of ma. Indeed, fPQ is inversely proportional to ma, see Eq. (57); at
the same time, the axion obtains its mass near the epoch of QCD transition, i.e., at T ∼ ΛQCD, so Tosc

depends on ma rather weakly.

To obtain a simple estimate, let us set Tosc ∼ ΛQCD ' 200 MeV and make use of Eq. (57) with
Cg ∼ 1. We find

Ωa ≡
ρa,0

ρc
'
(

10−6 eV
ma

)
θ̄2

i . (69)

The natural assumption about the initial phase is θ̄i ∼ π/2. Hence, an axion of mass 10−5–10−6 eV is a
good dark matter candidate. Note that an axion of lower mass ma < 10−6 eV may also serve as a dark
matter particle, if for some reason the initial phase θ̄i is much smaller than π/2. This is cold dark matter:
the oscillating field corresponds to axions at rest.

A more precise estimate is obtained by taking into account the fact that that the axion mass
smoothly depends on temperature:

Ωa ' 0.2 · θ̄2
i ·
(

4× 10−6 eV
ma

)1.2

.

We see that our crude estimate (69) is fairly accurate. Interestingly, the string mechanism of the axion
production leads to the same parametric dependence of Ωa on the axion mass.

Search for dark matter axions with massma ∼ 10−5–10−6 eV is difficult, but not impossible. One
way is to search for axion–photon conversion in a resonator cavity filled with a strong magnetic field.
Indeed, in the background magnetic field the axion–photon interaction (second term in Eq. (64)) leads
to the conversion a→ γ, and the axions of mass 10−5–10−6 eV are converted to photons of frequency
m/(2π) = 2–0.2 GHz (radio waves). Bounds on the dark matter axions are shown in Fig. 11.

4.5 Warm dark matter: sterile neutrinos and light gravitinos
As we discussed in Section 4.1, there are arguments, albeit not particularly strong, that favour warm,
rather than cold, dark matter. If WDM particles are thermal relics, i.e., if they were in kinetic equilibrium
at some epoch in the early Universe, then their mass should be in the range 3–10 keV. Reasonably well
motivated particles of this mass are sterile neutrinos and gravitinos.
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Fig. 11: Bounds on dark matter axions: axion–photon coupling versus axion mass [55]. Inclined straight line
labelled ‘KSVZ axion’ is the prediction of the KSVZ model, shaded region along this line is the range of predictions
of other axion models. Region below the line labelled ALP CDM is the range of predictions of other reasonably
motivated models with axion-like particles as dark matter candidates. Dashed lines show the sensitivities of future
experiments.

4.5.1 Sterile neutrinos
Sterile neutrinos are most probably required for giving masses to ordinary, ‘active’ neutrinos. The masses
of sterile neutrinos cannot be predicted theoretically. Although sterile neutrinos of WDM massmνs = 3–
10 keV are not particularly plausible from the particle-physics prospective, they are not pathological
either. In the simplest models the creation of sterile neutrino states |νs〉 in the early Universe occurs due
to their mixing with active neutrinos |να〉, α = e, µ, τ . In the approximation of mixing between two
states only, we have

|να〉 = cos θ|ν1〉+ sin θ|ν2〉 , |νs〉 = − sin θ|ν1〉+ cos θ|ν2〉 ,

where |να〉 and |νs〉 are active and sterile neutrino states, |ν1〉 and |ν2〉 are mass eigenstates of masses
m1 and m2, where we order m1 < m2, and θ is the vacuum mixing angle between sterile and active
neutrinos. This mixing should be weak, θ � 1, otherwise sterile neutrinos would decay too rapidly, see
below. The heavy state is mostly sterile neutrinos |ν2〉 ≈ |νs〉, and m2 ≡ ms is the sterile neutrino mass.

The calculation of sterile neutrino abundance is fairly complicated, and we do not reproduce it
here. If there is no sizeable lepton asymmetry in the Universe, the sterile neutrino production is most
efficient at temperature around

T∗ ∼
(
ms

5GF

)1/3

' 200 MeV ·
( ms

1 keV

)1/3
.

The resulting number density of sterile neutrinos is estimated as

nνs

nνα
∼ T 3

∗M
∗
PlG

2
F · sin2 2θ ∼ 10−2 ·

( ms

1 keV

)
·
(

sin 2θ

10−4

)2

. (70)
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The number density of relic active neutrinos today is about 110 cm−3, so we find from Eq. (70) the
estimate for the present contribution of sterile neutrinos into energy density,

Ωνs ' 0.2 ·
(

sin 2θ

10−4

)2

·
( mν

1 keV

)2
. (71)

Thus, a sterile neutrino of mass mν & 1 keV and small mixing angle θα . 10−4 would serve as a dark
matter candidate. However, this range of masses and mixing angles is ruled out. The point is that due to
its mixing with an active neutrino, a sterile neutrino can decay into an active neutrino and a photon,

νs → να + γ .

The sterile neutrino decay width is proportional to sin2 2θ. If sterile neutrinos are dark matter particles,
their decays would produce a narrow line in X-ray flux from the cosmos (orbiting velocity of dark matter
particles in our Galaxy is small, v ∼ 10−3, hence the photons produced in their two-body decays are
nearly monochromatic). Such a line has not been observed, and there exist quite strong limits. These
limits, translated into limits on sin2 2θ as a function of sterile neutrino mass, are shown in Fig. 12; they
rule out the range of masses giving the right mass density of dark matter, Eq. (71). Recall that the mass
of a sterile neutrino should exceed 3 keV (in fact, a more precise limit is ms > 5.7 keV [56]).
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Fig. 12: Limits on sterile neutrino parameters (mass M1, mixing angle θ) obtained from X-ray telescopes. Solid
line corresponds to sterile neutrino dark matter produced in non-resonant oscillations, Eq. (71). Dashed lines show
the case of resonant oscillations at non-zero lepton asymmetry; numbers in unit of 10−6 show the values of lepton
asymmetry (lepton-to-photon ratio ηL) [57].

A (rather baroque) way out [58] is to assume that there is a fairly large lepton asymmetry in
the Universe. Then the oscillations of active neutrinos into sterile neutrinos may be enhanced due to
the Mikheyev-Smirnov-Wolfenstein (MSW) effect, as at some temperature they occur in the Mikheev–
Smirnov resonance regime. In that case the right abundance of sterile neutrinos is obtained at smaller θ,
and may be consistent with X-ray bounds. This is also shown in Fig. 12.
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4.5.2 Light gravitino
A gravitino—a superpartner of a graviton—is necessarily present in supersymmetric (SUSY) theories. It
acquires mass as a result of SUSY breaking (super-Higgs mechanism). The gravitino mass is of order

m3/2 '
F

MPl
,

where
√
F is the supersymmetry breaking scale. Hence, gravitino masses are in the right WDM ballpark

for rather low supersymmetry breaking scales,
√
F ∼ 106–107 GeV. This is the case, e.g., in the gauge-

mediation scenario. With so low mass, a gravitino is the lightest supersymmetric particle (LSP), so it is
stable in many supersymmetric extensions of the Standard Model. From this viewpoint gravitinos can
indeed serve as dark matter particles. For what follows, important parameters are the widths of decays
of other superpartners into gravitinos and the Standard Model particles. These are of order

ΓS̃ '
M5

S̃

F 2
'

M5
S̃

m2
3/2M

2
Pl

, (72)

where MS̃ is the mass of the superpartner.

One mechanism of the gravitino production in the early Universe is decays of other superpartners.
A gravitino interacts with everything else so weakly that once produced, it moves freely, without interact-
ing with cosmic plasma. At production, gravitinos are relativistic and hence they are indeed warm dark
matter candidates. Let us assume that production in decays is the dominant mechanism and consider
under what circumstances the present mass density of gravitinos coincides with that of dark matter.

The rate of gravitino production in decays of superpartners of the type S̃ in the early Universe is

d(n3/2/s)

dt
=
nS̃

s
ΓS̃ ,

where n3/2 and nS̃ are number densities of gravitinos and superpartners, respectively, and s is the entropy
density. For superpartners in thermal equilibrium, one has nS̃/s = const ∼ g−1

∗ for T & MS̃, and
nS̃/s ∝ exp(−MS̃/T ) at T � MS̃. Hence, the production is most efficient at T ∼ MS̃, when the
number density of superpartners is still large, while the Universe expands most slowly. The density of
gravitinos produced in decays of the S̃ is thus given by

n3/2

s
' ΓS̃

g∗
H−1(T ∼MS̃) ' 1

g∗
·

M5
S̃

m2
3/2M

2
Pl

· M
∗
Pl

M2
S̃

.

This gives the mass-to-entropy ratio today,

m3/2n3/2

s
'
∑

S̃

M3
S̃

g
3/2
∗ MPlm3/2

, (73)

where the sum runs over all superpartner species which have ever been relativistic in thermal equilibrium.
The correct value (26) is obtained for gravitino masses in the range (29) at

MS̃ = 100–300 GeV . (74)

Thus, the scenario with a gravitino as a warm dark matter particle requires light superpartners [59], which
are to be discovered at the LHC.

A few comments are in order. First, decays of superpartners is not the only mechanism of gravitino
production: gravitinos may also be produced in scattering of superpartners [60]. To avoid overproduction
of gravitinos in the latter processes, one has to assume that the maximum temperature in the Universe

30

V. RUBAKOV

268



(e.g., reached after the post-inflationary reheating stage) is quite low, Tmax ∼ 1–10 TeV. This is not a
particularly plausible assumption, but it is consistent with everything else in cosmology and can indeed
be realized in some models of inflation. Second, existing constraints on masses of strongly interacting
superpartners (gluinos and squarks) suggest that their masses exceed (74). Hence, these particles should
not contribute to the sum in (73), otherwise WDM gravitinos would be overproduced. This is possible
if masses of squarks and gluinos are larger than Tmax, so that they were never abundant in the early
Universe. Third, a gravitino produced in decays of superpartners is not a thermal relic, as it was never in
thermal equilibrium with the rest of the cosmic plasma. Nevertheless, since gravitinos are produced at
T ∼MS̃ and at that time have energy E ∼MS̃ ∼ T , our estimate (28) does apply.

Question. Let S̃ be the next-to-lightest superpartner which decays into a gravitino of massm3/2 = 5 keV
and a Standard Model particle. Let S̃ be produced at the LHC at subrelativistic velocity. How far is
the decay vertex of S̃ displaced from the proton collision point? Give numerical estimates for MS̃ =
100 GeV and MS̃ = 1 TeV.

4.6 Discussion
If dark matter particles are indeed WIMPs, and the relevant energy scale is of order 1 TeV, then the hot
Big Bang theory will be probed experimentally up to a temperature of (a few) · (10–100) GeV and down
to an age of 10−9–10−11 s in the relatively near future (compare to 1 MeV and 1 s accessible today
through BBN). With microscopic physics to be known from collider experiments, the WIMP density
will be reliably calculated and checked against the data from observational cosmology. Thus, the WIMP
scenario offers a window to a very early stage of the evolution of the Universe.

Search for dark matter axions and signals from light sterile neutrinos makes use of completely
different methods. Yet there is a good chance for discovery if either of these particles make dark matter.

If dark matter particles are gravitinos, the prospect of probing quantitatively such an early stage of
the cosmological evolution is not so bright: it would be very hard, if at all possible, to get an experimental
handle on the gravitino mass; furthermore, the present gravitino mass density depends on an unknown
reheat temperature Tmax. On the other hand, if this scenario is realized in nature, then the whole picture
of the early Universe will be quite different from our best guess on the early cosmology. Indeed, the
gravitino scenario requires a low reheat temperature, which in turn calls for a rather exotic mechanism
of inflation.

The mechanisms discussed here are by no means the only ones capable of producing dark matter,
and the particles we discussed are by no means the only candidates for dark matter particles. Other
dark matter candidates include axinos, Q-balls, very heavy relics produced towards the end of inflation
(wimpzillas) etc. Hence, even though there are grounds to hope that the dark matter problem will be
solved soon, there is no guarantee at all.

5 Baryon asymmetry of the Universe
As we discussed in Section 2.4, the baryon asymmetry of the Universe is characterized by the baryon-
to-entropy ratio, which at high temperatures is defined as follows:

∆B =
nB − nB̄

s
,

where nB̄ is the number density of antibaryons and s is the entropy density. If the baryon number is
conserved and the Universe expands adiabatically (which is the case at least after the electroweak epoch,
T . 100 GeV), ∆B is time-independent and equal to its present value ∆B ≈ 0.8× 10−10, see Eq. (25).
At early times, at temperatures well above 100 MeV, cosmic plasma contained many quark–antiquark
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pairs, whose number density was of the order of the entropy density,

nq + nq̄ ∼ s ,

while the baryon number density was related to densities of quarks and antiquarks as follows (baryon
number of a quark equals 1/3):

nB =
1

3
(nq − nq̄) .

Hence, in terms of quantities characterizing the very early epoch, the baryon asymmetry may be ex-
pressed as

∆B ∼
nq − nq̄

nq + nq̄
.

We see that there was one extra quark per about 10 billion quark–antiquark pairs. It is this tiny excess
that is responsible for the entire baryonic matter in the present Universe: as the Universe expanded and
cooled down, antiquarks annihilated with quarks, and only the excessive quarks remained and formed
baryons.

There is no logical contradiction to suppose that the tiny excess of quarks over antiquarks was
built in as an initial condition. This is not at all satisfactory for a physicist, however. Furthermore, the
inflationary scenario does not provide such an initial condition for the hot Big Bang epoch; rather, infla-
tionary theory predicts that the Universe was baryon-symmetric just after inflation. Hence, one would
like to explain the baryon asymmetry dynamically [61, 62], i.e., find the mechanism of its generation in
the early Universe.

5.1 Sakharov conditions
The baryon asymmetry may be generated from an initially baryon-symmetric state only if three necessary
conditions, dubbed Sakharov conditions, are satisfied. These are:

1. baryon number non-conservation;
2. C- and CP-violation;
3. deviation from thermal equilibrium.

All three conditions are easily understood. (1) If baryon number were conserved, and initial net
baryon number in the Universe was zero, the Universe today would still be symmetric. (2) If C or CP
were conserved, then the rate of reactions with particles would be the same as the rate of reactions with
antiparticles, and no asymmetry would be generated. (3) Thermal equilibrium means that the system is
stationary (no time dependence at all). Hence, if the initial baryon number is zero, it is zero forever,
unless there are deviations from thermal equilibrium. Furthermore, if there are processes that violate
baryon number, and the system approaches thermal equilibrium, then the baryon number tends to be
washed out rather than generated.

At the epoch of the baryon-asymmetry generation, all three Sakharov conditions have to be met
simultaneously. There is a qualification, however. These conditions would be literally correct if there
were no other relevant quantum numbers that characterize the cosmic medium. In reality, however,
lepton numbers also play a role. As we will see shortly, baryon and lepton numbers are rapidly violated
by anomalous electroweak processes at temperatures above, roughly, 100 GeV. What is conserved in the
Standard Model is the combination B−L, where L is the total lepton number. So, there are two options.
One is to generate the baryon asymmetry at or below the electroweak epoch, T . 100 GeV, and make
sure that the electroweak processes do not wash out the baryon asymmetry after its generation. This leads
to the idea of electroweak baryogenesis (another possibility is Affleck–Dine baryogenesis [63]). Another
is to generate B − L asymmetry before the electroweak epoch, i.e., at T � 100 GeV: if the Universe
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is B − L asymmetric above 100 GeV, the electroweak physics reprocesses B − L partially into baryon
number and partially into lepton number, so that in thermal equilibrium with conserved B − L one has

B = C · (B − L) , L = (C − 1) · (B − L) ,

where C is a constant of order 1 (C = 28/79 in the Standard Model at T & 100 GeV). In the second
scenario, the first Sakharov condition applies to B − L rather than baryon number itself.

Let us point out two most common mechanisms of baryon number non-conservation. One emerges
in grand unified theories and is due to the exchange of supermassive particles. It is similar, say, to the
mechanism of charm non-conservation in weak interactions, which occurs via the exchange of heavy
W bosons. The scale of these new, baryon number violating interactions is the grand unification scale,
presumably of order MGUT ' 1016 GeV. It is rather unlikely, however, that the baryon asymmetry was
generated due to this mechanism: the relevant temperature would be of order MGUT, while such a high
reheat temperature after inflation is difficult to obtain.

Another mechanism is non-perturbative [39] and is related to the triangle anomaly in the baryonic
current (a keyword here is ‘sphaleron’ [64,65]). It exists already in the Standard Model and, possibly with
mild modifications, operates in all its extensions. The two main features of this mechanism, as applied to
the early Universe, is that it is effective over a wide range of temperatures, 100 GeV < T < 1011 GeV,
and, as we pointed out above, that it conserves B − L.

5.2 Electroweak baryon number non-conservation
Let us pause here to discuss the physics behind electroweak baryon and lepton number non-conservation
in a little more detail, though still at a qualitative level. A detailed analysis can be found in the book [66]
and in references therein.

Let us consider the baryonic current,

Bµ =
1

3
·
∑

i

q̄iγ
µqi ,

where the sum runs over quark flavours. Naively, it is conserved, but at the quantum level its divergence
is non-zero because of the triangle anomaly (a similar effect goes under the name of the axial anomaly
in the context of quantum electrodynamics (QED) and QCD),

∂µB
µ =

1

3
· 3colours · 3generations ·

g2

32π2
εµνλρF a

µνF
a
λρ ,

where F a
µν and g are the field strength of the SU(2)W gauge field and the SU(2)W gauge coupling,

respectively. Likewise, each leptonic current (α = e, µ, τ ) is anomalous in the Standard Model (we
disregard here neutrino masses and mixings, which violate lepton numbers too),

∂µLµα =
g2

32π2
· εµνλρF a

µνF
a
λρ . (75)

A non-trivial fact is that there exist large field fluctuations, F a
µν(x, t) ∝ g−1, such that

Q ≡
∫

d3xdt
g2

32π2
· εµνλρF a

µνF
a
λρ 6= 0 . (76)

Furthermore, for any physically relevant fluctuation the value of Q is an integer (‘physically relevant’
means that the gauge field strength vanishes at infinity in space–time). In four space–time dimensions
such fluctuations exist only in non-Abelian gauge theories.
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Suppose now that a fluctuation with non-vanishing Q has occurred. Then the baryon numbers at
the end and beginning of the process are different,

Bfin −Bin =

∫
d3xdt ∂µB

µ = 3Q . (77)

Likewise,
Lα, fin− Lα, in = Q . (78)

This explains the selection rule mentioned above: B is violated, B − L is not.

At zero temperature, the field fluctuations that induce baryon and lepton number violation are
vacuum fluctuations, called instantons [67]. Since these are large field fluctuations, their probability is
exponentially suppressed. The suppression factor in the Standard Model is

e−
16π2

g2 ∼ 10−165 .

Therefore, the rate of baryon number violating processes at zero temperature is suppressed by this factor,
making these processes totally negligible. On the other hand, at high temperatures there are large thermal
fluctuations (‘sphalerons’) whose rate is not necessarily small. And, indeed, B-violation in the early
Universe is rapid as compared to the cosmological expansion at sufficiently high temperatures, provided
that (see Ref. [11] for details)

〈φ〉T < T , (79)

where 〈φ〉T is the Englert–Brout–Higgs expectation value at temperature T .

One may wonder how baryon number is not conserved in the absence of explicit baryon number
violating terms in the Lagrangian of the Standard Model. To understand what is going on, let us consider
a massless left-handed fermion field in the background of the SU(2) gauge field A(x, t), which depends
on space–time coordinates in a non-trivial way. As a technicality, we set the temporal component of
the gauge field equal to zero, A0 = 0, by the choice of gauge. One way to understand the behaviour
of the fermion field in the gauge field background is to study the system of eigenvalues of the Dirac
Hamiltonian {ω(t)}. The Hamiltonian is defined in the standard way

HDirac(t) = iαi (∂i − igAi(x, t))
1− γ5

2
,

where αi = γ0γi, so that the Dirac equation has the Schrödinger form,

i
∂ψ

∂t
= HDiracψ .

So, let us discuss the eigenvalues ωn(t) of the operator HDirac(t), treating t as a parameter. These
eigenvalues are found from

HDirac(t)ψn = ωn(t)ψn .

At A = 0, the system of levels is shown schematically in Fig. 13. Importantly, there are both positive-
and negative-energy levels. According to Dirac, the lowest-energy state (Dirac vacuum) has all negative-
energy levels occupied, and all positive-energy levels empty. Occupied positive-energy levels (three of
them in Fig. 13) correspond to real fermions, while empty negative-energy levels describe antifermions
(one in Fig. 13). Fermion–antifermion annihilation in this picture is a jump of a fermion from a positive-
energy level to an unoccupied negative-energy level. As a side remark, this original Dirac picture is, in
fact, equivalent to the more conventional (by now) procedure of the quantization of the fermion field,
which does not make use of the notion of negative-energy levels. The discussion that follows can be
translated into the conventional language; however, the original Dirac picture turns out to be a lot more
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ω

Fig. 13: Fermion energy levels at zero background gauge field

transparent in our context. This is a nice example of the complementarity of various approaches in
quantum field theory.

Let us proceed with the discussion of the fermion energy levels in gauge field backgrounds. In
weak background fields, the energy levels depend on time (‘move’), but nothing dramatic happens. For
adiabatically varying background fields, the fermions merely sit on their levels, while fast-changing
fields generically give rise to jumps from, say, negative- to positive-energy levels, that is, creation of
fermion–antifermion pairs. Needless to say, fermion number (Nf −Nf̄) is conserved.

The situation is entirely different for the background fields with non-zero Q. The levels of left-
handed fermions move as shown in the left-hand panel of Fig. 14. Some levels necessarily cross zero, and

ω

t

ω

t

Fig. 14: Motion of fermion levels in background gauge fields with non-vanishing Q (shown is the case Q = 2).
Left-hand panel: left-handed fermions. Right-hand panel: right-handed fermions.

the net number of levels crossing zero from below equals Q. This means that the number of left-handed
fermions is not conserved: for an adiabatically varying gauge field A(x, t), the motion of levels shown
in the left-hand panel of Fig. 14 corresponds to the case in which the initial state of the fermionic system
is vacuum (no real fermions or antifermions) whereas the final state contains Q real fermions (two in
the particular case shown). If the evolution of the gauge field is not adiabatic, the result for the fermion
number non-conservation is the same: there may be jumps from negative-energy levels to positive-energy
levels or vice versa. These correspond to creation or annihilation of fermion–antifermion pairs, but the
net change of the fermion number (number of fermions minus number of antifermions) remains equal
to Q. Importantly, the initial and final field configurations of the gauge field may be trivial, A = 0 (up
to gauge transformation), so that fermion number non-conservation may occur due to a fluctuation that
begins and ends in the gauge field vacuum. These are precisely instanton-like vacuum fluctuations. At
finite temperatures, processes of this type occur due to thermal fluctuations, i.e., sphalerons.
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If the same gauge field interacts also with right-handed fermions, the motion of the levels of the
latter is opposite to that of left-handed fermions. This is shown in the right-hand panel of Fig. 14.
The change in the number of right-handed fermions is equal to −Q. So, if the gauge interaction is
vector-like, the total fermion number (Nleft + Nright) is conserved, while chirality (Nleft − Nright) is
violated even for massless fermions. This explains why there is no baryon number violation in QCD.
The above discussion implies, instead, that there is non-perturbative violation of chirality in QCD in
the limit of massless quarks. The latter phenomenon has non-trivial consequences, which are indeed
confirmed by phenomenology. In this sense anomalous non-conservation of fermion quantum numbers
is an experimentally established fact.

In electroweak theory, right-handed fermions do not interact with the SU(2)W gauge field, while
left-handed fermions do. Therefore, fermion number is not conserved (the anomalous relations (75) and
(76) suggest that this result is valid also in the presence of the Standard Model Yukawa couplings of
quarks and leptons; this is indeed the case). Since fermions of each SU(2)W doublet interact with the
SU(2)W gauge bosons in one and the same way, they are equally created in a process involving a gauge
field fluctuation with non-zero Q. This again leads to the relations (77) and (78), i.e., to the selection
rules ∆B = ∆L and ∆Le = ∆Lµ = ∆Lτ .

5.3 Electroweak baryogenesis
It is tempting to make use of the electroweak mechanism of baryon number non-conservation for ex-
plaining the baryon asymmetry of the Universe. This scenario is known as electroweak baryogenesis. It
meets two problems, however. One is that CP-violation in the Standard Model is too weak: the CKM
mechanism alone is insufficient to generate a realistic value of the baryon asymmetry. Hence, one needs
extra sources of CP-violation. Another problem has to do with departure from thermal equilibrium that is
necessary for the generation of the baryon asymmetry. At temperatures well above 100 GeV, electroweak
symmetry is restored, the expectation value of the Englert–Brout–Higgs field φ is zero, the relation (79)
is valid and the baryon number non-conservation is rapid as compared to the cosmological expansion. At
temperatures of order 100 GeV, the relation (79) may be violated, but the Universe expands very slowly:
the cosmological time-scale at these temperatures is

H−1 =
M∗Pl

T 2
∼ 10−10 s , (80)

which is very large by the electroweak physics standards. The only way in which a strong departure from
thermal equilibrium at these temperatures may occur appears to be the first-order phase transition.

The property that at temperatures well above 100 GeV the expectation value of the Englert–Brout–
Higgs field is zero, while it is non-zero in vacuo, suggests that there may be a phase transition from the
phase with 〈φ〉 = 0 to the phase with 〈φ〉 6= 0. The situation is pretty subtle here, as φ is not gauge
invariant and hence cannot serve as an order parameter, so the notion of phases with 〈φ〉 = 0 and
〈φ〉 6= 0 is vague. In fact, neither electroweak theory nor most of its extensions have a gauge-invariant
order parameter, so there is no real distinction between these ‘phases’. This situation is similar to that in a
liquid–vapour system, which does not have an order parameter and may or may not experience a vapour–
liquid phase transition as temperature decreases, depending on other, external parameters characterizing
this system, e.g., pressure. In the Standard Model the role of such an ‘external’ parameter is played by
the Englert–Brout–Higgs self-coupling λ or, in other words, the Higgs boson mass.

Continuing to use somewhat sloppy terminology, we recall that in thermal equilibrium any system
is at the global minimum of its free energy. To figure out the expectation value of φ at a given temperature,
one introduces the temperature-dependent effective potential Veff(φ;T ), which is equal to the free energy
density in the system where the average field is pinpointed to a prescribed value φ, but otherwise there is
thermal equilibrium. Then the global minimum of Veff at a given temperature is at the equilibrium value
of φ, while local minima correspond to metastable states.
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Veff(φ) Veff(φ)

φ φ

Fig. 15: Effective potential as function of φ at different temperatures. Left: first-order phase transition. Right:
second-order phase transition. Upper curves correspond to higher temperatures. Black blobs show the expectation
value of φ in thermal equilibrium. The arrow in the left-hand panel illustrates the transition from the metastable,
supercooled state to the ground state.

The interesting case for us is the first-order phase transition. In this case, the system evolves as
follows. At high temperatures, there exists one minimum of Veff at φ = 0, and the expectation value of the
Englert–Brout–Higgs field is zero. As the temperature decreases, another minimum appears at finite φ,
and then becomes lower than the minimum at φ = 0; see left-hand panel of Fig. 15. However, the minima
with φ = 0 and φ 6= 0 are separated by a barrier of Veff , the probability of the transition from the phase
φ = 0 to the phase φ 6= 0 is very small for some time and the system gets overcooled. The transition
occurs when the temperature becomes sufficiently low and the transition probability sufficiently high.
This is to be contrasted to the case, e.g., of the second-order phase transition, right-hand panel of Fig. 15.
In the latter case, the field slowly evolves, as the temperature decreases, from zero to non-zero vacuum
value, and the system remains very close to thermal equilibrium at all times.

During the first-order phase transition, the field cannot jump from φ = 0 to φ 6= 0 homogeneously
throughout the whole space: intermediate homogeneous configurations have free energies proportional
to the volume of the system (recall that Veff is free energy density), i.e., infinite. Instead, the transition
occurs just like the first-order vapour–liquid transition, through boiling. Thermal fluctuations sponta-
neously create bubbles of the new phase inside the old phase. These bubbles then grow, their walls
eventually collide and the new phase finally occupies the entire space. The Universe boils. In the cos-
mological context, this process happens when the bubble nucleation rate per Hubble time per Hubble
volume is roughly of order 1, i.e., when a few bubbles are created in Hubble volume in Hubble time. The
velocity of the bubble wall in the relativistic cosmic plasma is roughly of the order of the speed of light
(in fact, it is somewhat smaller, from 0.1 to 0.01), simply because there are no relevant dimensionless
parameters characterizing the system. Hence, the bubbles grow large before their walls collide: their size
at collision is roughly of the order of the Hubble size (in fact, one or two orders of magnitude smaller).
While the bubble is microscopic at nucleation—its size is determined by the electroweak scale and is
roughly of order (100 GeV)−1 ∼ 10−16 cm—its size at collision of walls is macroscopic, R ∼ 10−2–
10−3 cm, as follows from (80). Clearly, boiling is a highly non-equilibrium process, and one may hope
that the baryon asymmetry may be generated at that time. And, indeed, there exist mechanisms of the
generation of the baryon asymmetry, which have to do with interactions of quarks and leptons with mov-
ing bubble walls. The value of the resulting baryon asymmetry may well be of order 10−10, as required
by observations, provided that there is enough CP-violation in the theory.

A necessary condition for the electroweak generation of the baryon asymmetry is that the inequal-
ity (79) must be violated just after the phase transition. Indeed, in the opposite case the electroweak
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baryon number violating processes are fast after the transition, and the baryon asymmetry, generated
during the transition, is washed out afterwards. Hence, the phase transition must be of strong enough
first order. This is not the case in the Standard Model. To see why this is so, and to get an idea of in
which extensions of the Standard Model the phase transition may be of strong enough first order, let us
consider the effective potential in some detail. At zero temperature, the Englert–Brout–Higgs potential
has the standard form,

V (φ) = −m
2

2
|φ|2 +

λ

4
|φ|4 .

Here

|φ| ≡
(
φ†φ
)1/2

(81)

is the length of the Englert–Brout–Higgs doublet φ, m2 = λv2 and v = 246 GeV is the Englert–Brout–
Higgs expectation value in vacuo. The Higgs boson mass is related to the latter as follows:

mH =
√

2λv . (82)

Now, to the leading order of perturbation theory, the finite-temperature effects modify the effective po-
tential into

Veff(φ, T ) =
α(T )

2
|φ|2 − β

3
T |φ|3 +

λ

4
|φ|4 . (83)

Here α(T ) = −m2 + ĝ2T 2, where ĝ2 is a positive linear combination of squares of coupling constants
of all fields to the Englert–Brout–Higgs field (in the Standard Model, a linear combination of g2, g′ 2 and
y2
i , where g and g′ are SU(2)W and U(1)Y gauge couplings and yi are Yukawa couplings). The phase

transition occurs roughly when α(T ) = 0. An important parameter β is a positive linear combination
of cubes of coupling constants of all bosonic fields to the Englert–Brout–Higgs field. In the Standard
Model, β is a linear combination of g3 and g′ 3, i.e., a linear combination of M3

W/v
3 and M3

Z/v
3,

β =
1

2π

2M3
W +M3

Z

v3
. (84)

The cubic term in (83) is rather peculiar: in view of (81), it is not analytic in the original Englert–Brout–
Higgs field φ. Yet this term is crucial for the first-order phase transition: for β = 0 the phase transition
would be of the second order.

Question. Show that the phase transition is second order for β = 0.

The origin of the non-analytic cubic term can be traced back to the enhancement of the Bose–
Einstein thermal distribution at low momenta, p,m� T ,

fBose(p) =
1

e

√
p2+m2

a
T − 1

' T√
p2 +m2

a

,

where m ' ga|φ| is the mass of the boson a that is generated due to the non-vanishing Englert–Brout–
Higgs field, and ga is the coupling constant of the field a to the Englert–Brout–Higgs field. Clearly, at
p� g|φ| the distribution function is non-analytic in φ,

fBose(p) '
T

ga|φ|
.

It is this non-analyticity that gives rise to the non-analytic cubic term in the effective potential. Impor-
tantly, the Fermi–Dirac distribution,

fFermi(p) =
1

e

√
p2+m2

a
T + 1

,
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is analytic in m2
a, and hence φ†φ, so fermions do not contribute to the cubic term.

With the cubic term in the effective potential, the phase transition is indeed of the first order:
at high temperatures the coefficient α is positive and large, and there is one minimum of the effective
potential at φ = 0, while for α small but still positive there are two minima. The phase transition occurs
at α ≈ 0; at that moment

Veff(φ, T ) ≈ −βT
3
|φ|3 +

λ

4
|φ|4 .

We find from this expression that immediately after the phase transition the minimum of Veff is at

φ ' βT

λ
.

Hence, the necessary condition for successful electroweak baryogenesis, φ > T , translates into

β > λ . (85)

According to (82), λ is proportional to m2
H, whereas in the Standard Model β is proportional to (2M3

W +
M3

Z). Therefore, the relation (85) holds for small Higgs boson masses only; in the Standard Model one
makes use of (82) and (84) and finds that this happens formH < 50 GeV, while in realitymH = 125 GeV.
In fact, in the Standard Model with mH = 125 GeV, there is no phase transition at all; the electroweak
transition is a smooth crossover instead. The latter fact is not visible from the expression (83), but that
expression is the lowest-order perturbative result, while the perturbation theory is not applicable for
describing the transition in the Standard Model with large mH.

This discussion indicates a possible way to make the electroweak phase transition strong. What
one needs is the existence of new bosonic fields that have large enough couplings to the Englert–Brout–
Higgs field(s), and hence provide large contributions to β. To have an effect on the dynamics of the
transition, the new bosons must be present in the cosmic plasma at the transition temperature, T ∼
100 GeV, so their masses should not be too high, M . 300 GeV. In supersymmetric extensions of the
Standard Model, the natural candidate for a long time has been stop (superpartner of top-quark) whose
Yukawa coupling to the Englert–Brout–Higgs field is the same as that of top, that is, large. The light stop
scenario for electroweak baryogenesis would indeed work, as has been shown by the detailed analysis in
Refs. [68–70].

There are other possibilities to make the electroweak transition strongly first order. Generically,
they require an extension of the scalar sector of the Standard Model and predict new fairly light scalars
which interact with the Standard Model Englert–Brout–Higgs field and may or may not participate in
gauge interactions.

Yet another issue is CP-violation, which has to be strong enough for successful electroweak baryo-
genesis. As the asymmetry is generated in the interactions of quarks and leptons with the bubble walls,
CP-violation must occur at the walls. Recall now that the walls are made of the scalar field(s). This
points towards the necessity of CP-violation in the scalar sector, which may only be the case in a theory
containing scalar fields other than the Standard Model Englert–Brout–Higgs field.

To summarize, electroweak baryogenesis requires a considerable extension of the Standard Model,
with masses of new particles in the range 100–300 GeV. Hence, this mechanism will most likely be ruled
out or confirmed by the LHC. We emphasize, however, that electroweak baryogenesis is not the only
option at all: an elegant and well-motivated competitor is leptogenesis [14, 15, 71]; there are many other
mechanisms proposed in the literature.

6 Before the hot epoch
6.1 Cosmological perturbations: preliminaries
With BBN theory and observations, and due to evidence, albeit indirect, for relic neutrinos, we are
confident of the theory of the early Universe at temperatures up to T ' 1 MeV, which correspond to an
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age of t ' 1 s. With the LHC, we hope to be able to learn the Universe up to temperature T ∼ 100 GeV
and age t ∼ 10−10 s. Are we going to have a handle on an even earlier epoch?

The key issue in this regard is cosmological perturbations. These are inhomogeneities in the en-
ergy density and associated gravitational potentials, in the first place. This type of inhomogeneities is
called scalar perturbations, as they are described by 3-scalars. There may exist perturbations of another
type, called tensors; these are primordial gravity waves. We will mostly concentrate on scalar perturba-
tions, since they are observed; tensor perturbations are important too, and we comment on them later on.
While perturbations of the present size of order 10 Mpc and smaller have large amplitudes today and are
non-linear, amplitudes of all known perturbations were small in the past, and the perturbations can be de-
scribed within the linearized theory. Indeed, CMB temperature anisotropy tells us that the perturbations
at the recombination epoch were roughly at the level

δ ≡ δρ

ρ
= 10−4–10−5 . (86)

Thus, the linearized theory works very well before recombination and somewhat later. We will be rather
sloppy when talking about scalar perturbations. In general relativity, there is arbitrariness in the choice of
reference frame, which can be viewed as a sort of gauge freedom. In a homogeneous and isotropic Uni-
verse, there is a preferred reference frame, in which quantities like energy density or distribution function
of CMB photons are manifestly homogeneous and isotropic. It is in this frame that the metric has FLRW
form (1). Once there are perturbations, no preferred reference frame exists any longer. As an example,
one can choose a reference frame such that the three-dimensional hypersurfaces of constant time are
hypersurfaces of constant total energy density ρ. In this frame one has δρ = 0, so Eq. (86) does not
make sense. Yet the Universe is inhomogeneous in this reference frame, since there are inhomogeneous
metric perturbations δgµν(x, t). We will skip these technicalities and denote the scalar perturbation by δ
without specifying its gauge-invariant meaning.

Equations for perturbations are obtained by writing for every variable (including metric) an ex-
pression like ρ(x, t) = ρ̄(t) + δρ(x, t) etc, where ρ̄(t) is the homogeneous and isotropic background,
which we discussed in Section 2.3. One inserts the perturbed variables into the Einstein equations and
covariant conservation equations ∇µTµν = 0 and linearizes this set of equations. In many cases one
also has to use the linearized Boltzmann equations that govern the distribution functions of particles out
of thermal equilibrium; these are necessary for evaluating the linearized perturbations of the energy–
momentum tensor. In any case, since the background FLRW metric (1) does not explicitly depend on x,
the linearized equations for perturbations do not contain x explicitly. Therefore, one makes use of the
spatial Fourier decomposition

δ(x, t) =

∫
eikxδ(k, t) d3k .

The advantage is that modes with different momenta k evolve independently in the linearized theory, i.e.,
each mode can be treated separately. Recall that dx is not the physical distance between neighbouring
points; the physical distance is a(t)dx. Thus, k is not the physical momentum (wavenumber); the
physical momentum is k/a(t). While for a given mode the comoving (or coordinate) momentum k
remains constant in time, the physical momentum gets red shifted as the Universe expands, see also
Section 2.1. In what follows we set the present value of the scale factor equal to 1 (in a spatially flat
Universe this can always be done by rescaling the coordinates x):

a0 ≡ a(t0) = 1 ;

then k is the present physical momentum and 2π/k is the present physical wavelength, which is also
called the comoving wavelength.

Properties of scalar perturbations are measured in various ways. Perturbations of fairly large
spatial scales (fairly low k) give rise to CMB temperature anisotropy and polarization, so we have very

40

V. RUBAKOV

278



detailed knowledge of them. Somewhat shorter wavelengths are studied by analysing distributions of
galaxies and quasars at present and in relatively near past. There are several other methods, some of
which can probe even shorter wavelengths. There is good overall consistency of the results obtained by
different methods, so we have a pretty good understanding of many aspects of the scalar perturbations.

The cosmic medium in our Universe has several components that interact only gravitationally:
baryons, photons, neutrinos and dark matter. Hence, there may be and, in fact, there are perturbations in
each of these components. As we pointed out in Section 4, electromagnetic interactions between baryons,
electrons and photons were strong before recombination, so to a reasonable approximation these species
made a single fluid, and it is appropriate to talk about perturbations in this fluid. After recombination,
baryons and photons evolved independently.

By studying the scalar perturbations, we have learned a number of very important things. To
appreciate what they are, it is instructive to consider first the baryon–electron–photon fluid before re-
combination.

6.2 Perturbations in the expanding Universe: subhorizon and superhorizon regimes.
Perturbations in the baryon–photon fluid before recombination are nothing but sound waves. It is in-
structive to compare the wavelength of a perturbation with the horizon size. To this end, recall (see
Section 2.4) that the horizon size lH(t) is the size of the largest region which is causally connected by
the time t, and that

lH(t) ∼ H−1(t) ∼ t
at radiation domination and later, see Eq. (21). The latter relation, however, holds under the assumption
that the hot epoch was the first one in cosmology, i.e., that the radiation domination started right after the
Big Bang. This assumption is in the heart of what can be called hot Big Bang theory. We will find that
this assumption in fact is not valid for our Universe; we are going to see this ad absurdum, so let us stick
to the hot Big Bang theory for the time being.

Unlike the horizon size, the physical wavelength of a perturbation grows more slowly. As an
example, at radiation domination

λ(t) =
2πa(t)

k
∝
√
t ,

while at matter domination λ(t) ∝ t2/3. For obvious reasons, the modes with λ(t) � H−1(t) and
λ(t) � H−1(t) are called subhorizon and superhorizon at time t, respectively. We are able to study
the modes which are subhorizon today; longer modes are homogeneous throughout the visible Universe
and are not observed as perturbations. However, the wavelengths which are subhorizon today were
superhorizon at some earlier epoch. In other words, the physical momentum k/a(t) was smaller than
H(t) at early times; at time t× such that

q(t×) ≡ k

a(t×)
= H(t×) ,

the mode entered the horizon, and after that evolved in the subhorizon regime k/a(t) � H(t), see
Fig. 16. It is straightforward to see that for all cosmologically interesting wavelengths, horizon crossing
occurs much later than 1 s after the Big Bang, i.e., at the time we are confident about. So, there is no
guesswork at this point.

Question. Estimate the temperature at which a perturbation of comoving size 10 kpc entered the horizon.

Another way to look at the superhorizon–subhorizon behaviour of perturbations is to introduce a
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t

q2(t) q1(t) = k1/a(t)

H(t)

t×

Fig. 16: Physical momenta q(t) = k/a(t) (solid lines, k2 < k1) and Hubble parameter (dashed line) at radiation-
and matter-dominated epochs. Here t× is the horizon entry time.

new time coordinate (cf. Eq. (20)),

η =

∫ t

0

dt′

a(t′)
. (87)

Note that this integral converges at the lower limit in the hot Big Bang theory. In terms of this time
coordinate, the FLRW metric (1) reads

ds2 = a2(η)(dη2 − dx2) .

In coordinates (η,x), the light cones ds = 0 are the same as in Minkowski space, and η is the coordinate
size of the horizon, see Fig. 17.

Every mode of perturbation has a time-independent coordinate wavelength 2π/k, and at small η
it is in superhorizon regime, 2π/k � η, and after horizon crossing at time η× = η(t×) it becomes
subhorizon.

Fig. 17: Causal structure of space–time in the hot Big Bang theory. Here tr is the conformal time at recombination.
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6.3 Hot epoch was not the first
One immediately observes that this picture falsifies the hot Big Bang theory. Indeed, we see the horizon
at recombination lH(trec) at an angle ∆θ ≈ 2◦, as schematically shown in Fig. 17. By causality, at re-
combination there should be no perturbations of larger wavelengths, as any perturbation can be generated
within the causal light cone only. In other words, CMB temperature must be isotropic when averaged
over angular scales exceeding 2◦; there should be no cold or warm spots of angular size larger than 2◦.
Now, CMB provides us with the photographic picture shown in Fig. 18. It is seen by the naked eye that

Fig. 18: CMB sky as seen by Planck

there are cold and warm regions whose angular size much exceeds 2◦; in fact, there are perturbations
of all angular sizes up to those comparable to the entire sky. We come to an important conclusion: the
scalar perturbations were built in at the very beginning of the hot epoch. The hot epoch was not the first,
it was preceded by some other epoch, and the cosmological perturbations were generated then.

Question. Assuming (erroneously) that there is no dark energy, and that recombination occurred deep in
the matter-dominated epoch, estimate the angular scale of the horizon at recombination.

Another manifestation of the fact that the scalar perturbations were there already at the beginning
of the hot epoch is the existence of peaks in the angular spectrum of CMB temperature. In general,
perturbations in the baryon–photon medium before recombination are acoustic waves,

δ(k, t) = δ(k)eikx cos

[∫ t

0
vs

k

a(t′)
dt′ + ψk

]
, (88)

where vs is sound speed, δ(k) is time-independent amplitude and ψk is time-independent phase. This
expression is valid, however, in the subhorizon regime only, i.e., at late times. The two solutions in
superhorizon regime at radiation domination are

δ(t) = const , (89a)

δ(t) =
const
t3/2

. (89b)

Were the perturbations generated in a causal way at radiation domination, they would be always subhori-
zon. In that case the solutions (89) would be irrelevant, and there would be no reason for a particular
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choice of phase ψk in Eq. (88). One would rather expect that ψk is a random function of k. This is
indeed the case for specific mechanisms of the generation of density perturbations at the hot epoch [72].

On the other hand, if the perturbations existed at the very beginning of the hot epoch, they were
superhorizon at sufficiently early times, and were described by the solutions (89). The consistency of
the whole cosmology requires that the amplitude of perturbations was small at the beginning of the
hot stage. The solution (89b) rapidly decays away, and towards the horizon entry the perturbation is
in constant mode (89a). So, the initial condition for the further evolution is unique modulo amplitude
δ(k), and hence the phase ψ(k) is uniquely determined. For modes that enter the horizon at radiation
domination this phase is equal to zero and, after entering the horizon, the modes oscillate as follows:

δ(k, t) = δ(k)eikx cos

[∫ t

0
vs

k

a(t′)
dt′
]
.

At recombination, the perturbation is

δ(k, tr) = δ(k)eikx cos(krs) , (90)

where

rs =

∫ trec

0
vs

dt′

a(t′)

is the comoving size of the sound horizon at recombination, while its physical size equals a(trec)rs.
So, we see that the density perturbation of the baryon–photon plasma at recombination oscillates as a
function of wavenumber k. The period of this oscillation is determined by rs, which is a straightforwardly
calculable quantity.

So, if the perturbations existed already at the beginning of the hot stage, they show the oscillatory
behaviour in momentum at the recombination epoch. This translates into an oscillatory pattern of the
CMB temperature angular spectrum. Omitting details, the fluctuation of the CMB temperature is partially
due to the density perturbation in the baryon–photon medium at recombination. Namely, the temperature
fluctuation of photons coming from the direction n in the sky is, roughly speaking,

δT (n) ∝ δγ(xn, ηrec) + δTsmooth(n) ,

where Tsmooth(n) corresponds to the non-oscillatory part of the CMB angular spectrum and

xn = −n(η0 − ηrec) .

Here (η0−ηrec) is the coordinate distance to the sphere of photon last scattering, and xn is the coordinate
of the place where the photons coming from the direction n scatter the last time. The quantity Tsmooth(n)
originates from the gravitational potential generated by the dark matter perturbation; dark matter has
zero pressure at all times, so there are no sound waves in this component, and there are no oscillations at
recombination as a function of momentum.

One expands the temperature variation on the celestial sphere in spherical harmonics:

δT (n) =
∑

lm

almYlm(θ, φ).

The multipole number l characterizes the temperature fluctuations at the angular scale ∆θ = π/l. The
sound waves of momentum k are seen roughly at an angle ∆θ = ∆x/(η0 − ηrec), where ∆x = π/k is
the coordinate half-wavelength. Hence, there is the correspondence

l←→ k(η0 − ηrec) .
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Fig. 19: The angular spectrum of the CMB temperature anisotropy [73]. The quantity on the vertical axis is Dl

defined in (92). Note the unconventional scale on the horizontal axis, aimed at showing both small-l region (large
angular scales) and large-l region.

Oscillations in momenta in Eq. (90) thus translate into oscillations in l, and these are indeed observed,
see Fig. 19.

To understand what is shown in Fig. 19, we note that all observations today support the hypothesis
that alm are independent Gaussian random variables. For a hypothetical ensemble of Universes like
ours, the average values of products of the coefficients alm would obey

〈alma∗l′m′〉 = Clδll′δmm′ . (91)

This gives the expression for the temperature fluctuation:

〈[δT (n)]2〉 =
∑

l

2l + 1

4π
Cl ≈

∫
dl

l
Dl ,

where

Dl =
l(l + 1)

2π
Cl . (92)

Of course, one cannot measure the ensemble average (91). The definition of Cl used in experiments is

Cl =
1

2l + 1

l∑

m=−l
|alm|2 ,

where alm are measured quantities. Since we have only one Universe, this is generically different from
the ensemble average (91): for given l, there are only 2l + 1 measurements, and the intrinsic statistical
uncertainty—cosmic variance—is of order (2l + 1)−1/2. It is this uncertainty, rather than experimental
error, that is shown in Fig. 19.

We conclude that the facts that the CMB angular spectrum has oscillatory behaviour and that there
are sizeable temperature fluctuations at l < 50 (angular scale greater than the angular size of 2◦ of the
horizon at recombination) unambiguously tell us that the density perturbations were indeed superhorizon
at the hot cosmological stage. The hot epoch has to be preceded by some other epoch—the epoch of the
generation of perturbations.
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6.4 Primordial scalar perturbations
There are several things which we already know about the primordial density perturbations. By ‘pri-
mordial’ we mean the perturbations deep in the superhorizon regime at the radiation-domination epoch.
As we already know, perturbations are time-independent in this regime, see Eq. (89a). They set the ini-
tial conditions for further evolution, and this evolution is well understood, at least in the linear regime.
Hence, using observational data, one is able to measure the properties of primordial perturbations. Of
course, since the properties we know of are established by observations, they are valid within certain error
bars. Conversely, deviations from the results listed below, if observed, would be extremely interesting.

First, density perturbations are adiabatic. This means that there are perturbations in the energy
density, but not in composition. More precisely, the baryon-to-entropy ratio and dark matter-to-entropy
ratio are constant in space,

δ
(nB

s

)
= const , δ

(nDM

s

)
= const . (93)

This is consistent with the generation of the baryon asymmetry and dark matter at the hot cosmological
epoch: in that case, all particles were at thermal equilibrium early at the hot epoch, the temperature
completely characterized the whole cosmic medium at that time and as long as physics behind the baryon
asymmetry and dark matter generation is the same everywhere in the Universe, the baryon and dark
matter abundances (relative to the entropy density) are necessarily the same everywhere. In principle,
there may exist entropy (another term is isocurvature) perturbations, such that at the early hot epoch
energy density (dominated by relativistic matter) was homogeneous, while the composition was not.
This would give initial conditions for the evolution of density perturbations, which would be entirely
different from those characteristic of the adiabatic perturbations. As a result, the angular spectrum of
the CMB temperature anisotropy would be entirely different. No admixture of the entropy perturbations
has been detected so far, but it is worth emphasizing that even a small admixture will show that many
popular mechanisms for generating dark matter and/or baryon asymmetry have nothing to do with reality.
One will have to think, instead, that the baryon asymmetry and/or dark matter were generated before
the beginning of the hot stage. A notable example is the axion misalignment mechanism discussed
in Section 4.4: in a latent sense, the axion dark matter exists from the very beginning in that case, and
perturbations in the axion field δθ0(x) (which may be generated together with the adiabatic perturbations)
would show up as entropy perturbations in dark matter.

Second, the primordial density perturbations are Gaussian random fields. Gaussianity means that
the three-point and all odd correlation functions vanish, while the four-point function and all higher order
even correlation functions are expressed through the two-point function via Wick’s theorem:

〈δ(k1)δ(k2)δ(k3)〉 = 0,

〈δ(k1)δ(k2)δ(k3)δ(k4)〉 = 〈δ(k1)δ(k2)〉 · 〈δ(k3)δ(k4)〉
+ permutations of momenta .

We note that this property is characteristic of vacuum fluctuations of non-interacting (linear) quantum
fields. Hence, it is quite likely that the density perturbations originate from the enhanced vacuum fluctu-
ations of non-interacting or weakly interacting quantum field(s). The free quantum field has the general
form

φ(x, t) =

∫
d3ke−ikx

(
f

(+)
k (t)a†k + eikxf

(−)
k (t)ak

)
,

where a†k and ak are creation and annihilation operators. For the field in Minkowski space–time, one has
f

(±)
k (t) = e±iωkt, while enhancement, e.g., due to the evolution in time-dependent background, means

that f (±)
k are large. But, in any case, Wick’s theorem is valid, provided that the state of the system is

vacuum, ak|0〉 = 0.
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We note in passing that non-Gaussianity is an important topic of current research. It would show
up as a deviation from Wick’s theorem. As an example, the three-point function (bispectrum) may be
non-vanishing,

〈δ(k1)δ(k2)δ(k3)〉 = δ(k1 + k2 + k3) G(k2
i ; k1k2; k1k3) 6= 0 .

The functional dependence of G(k2
i ; k1k2; k1k3) on its arguments is different in different models

of generation of primordial perturbations, so this shape is a potential discriminator. In some models the
bispectrum vanishes, e.g., due to symmetries. In that case the trispectrum (connected four-point function)
may be measurable instead. It is worth emphasizing that non-Gaussianity has not been detected yet.

Another important property is that the primordial power spectrum of density perturbations is
nearly, but not exactly, flat. For a homogeneous and anisotropic Gaussian random field, the power
spectrum completely determines its only characteristic, the two-point function. A convenient definition
is

〈δ(k)δ(k′)〉 =
1

4πk3
P(k)δ(k + k′) . (94)

The power spectrum P(k) defined in this way determines the fluctuation in a logarithmic interval of
momenta,

〈δ2(x)〉 =

∫ ∞

0

dk

k
P(k) .

By definition, the flat spectrum is such that P is independent of k. In this case all spatial scales are alike;
no scale is enhanced with respect to another. It is worth noting that the flat spectrum was conjectured
by Harrison [74], Zeldovich [75] and Peebles and Yu [76] at the beginning of the 1970s, long before
realistic mechanisms of the generation of density perturbations have been proposed.

In view of the approximate flatness, a natural parametrization is

P(k) = As

(
k

k∗

)ns−1

, (95)

where As is the amplitude, ns− 1 is the tilt and k∗ is a fiducial momentum, chosen at one’s convenience.
The flat spectrum in this parametrization has ns = 1. This is inconsistent with the cosmological data,
which give [21]

ns = 0.968± 0.06 .

This quantifies what we mean by a nearly, but not exactly flat, power spectrum.

6.5 Inflation or not?
The pre-hot epoch must be long in terms of the time variable η introduced in Eq. (87). What we would
like to have is that a large part of the Universe (e.g., the entire visible part) be causally connected towards
the end of that epoch, see Fig. 20. A long duration in η does not necessarily mean a long duration in
physical time t; in fact, the physical duration of the pre-hot epoch may be tiny.

An excellent hypothesis on the pre-hot stage is inflation, the epoch of nearly exponential expan-
sion [77–82],

a(t) = e
∫
Hdt , H ≈ const .

Inflation makes the whole visible Universe, and likely a much greater region of space, causally connected
at very early times. The horizon size at inflation is at least

lH(t) = a(t)

∫ t

ti

dt′

a(t′)
= H−1eH(t−ti) ,
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Fig. 20: Causal structure of space–time in the real Universe

where ti is the time inflation begins, and we set H = const for illustrational purposes. This size is huge
for t− ti � H−1, as desired.

Question. Assuming that at inflation H � MPl, show that if the duration of inflation ∆t is larger than
100H−1, the whole visible Universe is causally connected by the end of inflation. What is 100H−1 in
seconds for H = 1015 GeV? Using the time variable η, show that the causal structure of space–time in
inflationary theory with ∆t > 100H−1 is the one shown in Fig. 20.

From the viewpoint of perturbations, the physical momentum q(t) = k/a(t) decreases (gets red
shifted) at inflation, while the Hubble parameter stays almost constant. So, every mode is first subhorizon
(q(t) � H(t)) and later superhorizon (q(t) � H(t)). This situation is opposite to what happens at
radiation and matter domination, see Fig. 21; this is precisely the prerequisite for generating the density
perturbations. In fact, inflation does generate primordial density perturbations [83–87] whose properties
are consistent with everything we know about them. Indeed, at the inflationary epoch, fluctuations of all

inflation RD, MD epochs

H(t)

q(t)= a(t)
k

tte

inside
horizon

inside
horizon

outside
horizon

Fig. 21: Physical momentum and Hubble parameter at inflation and later: te is the time of the inflation end

48

V. RUBAKOV

286



light fields get enhanced greatly due to the fast expansion of the Universe. This is true, in particular, for
the field that dominates the energy density at inflation, called an inflaton. Enhanced vacuum fluctuations
of the inflaton are nothing but perturbations in the energy density at the inflationary epoch, which are
reprocessed into perturbations in the hot medium after the end of inflation. The inflaton field is very
weakly coupled, so the non-Gaussianity in the primordial scalar perturbations is very small [88]. In fact,
it is so small that its detection is problematic even in the distant future.

The approximate flatness of the primordial power spectrum in inflationary theory is explained by
the symmetry of the de Sitter space–time, which is the space–time of constant Hubble rate,

ds2 = dt2 − e2Htdx2 , H = const .

This metric is invariant under spatial dilatations supplemented by time translations,

x→ λx , t→ t− 1

2H
log λ .

Therefore, all spatial scales are alike, which is also a defining property of the flat power spectrum. At
inflation, H is almost constant in time and the de Sitter symmetry is an approximate symmetry. For this
reason, inflation automatically generates a nearly flat power spectrum.

The distinguishing property of inflation is the generation of tensor modes (primordial gravity
waves) of sizeable amplitude and nearly flat power spectrum. The gravity waves are thus a smoking gun
for inflation. The reason for their generation at inflation is that the exponential expansion of the Universe
enhances vacuum fluctuations of all fields, including the gravitational field itself. Particularly interesting
are gravity waves whose present wavelengths are huge, 100 Mpc and larger. Many inflationary models
predict their amplitudes to be very large, of order 10−6 or so. Shorter gravity waves are generated too,
but their amplitudes decay after horizon entry at radiation domination, and today they have much smaller
amplitudes making them inaccessible to gravity wave detectors like LIGO or VIRGO, pulsar timing
arrays etc. A conventional characteristic of the amplitude of primordial gravity waves is the tensor-to-
scalar ratio

r =
PT

P ,

where P is the scalar power spectrum defined in Eq. (94) and PT is the tensor power spectrum defined
in a similar way, but for transverse traceless metric perturbations hij . The result of the search for effects
of the tensor modes on CMB temperature anisotropy is shown in Fig. 22. This search has already ruled
out some of the popular inflationary models.

All the above referred to the simplest, single-field inflationary models. In models with more
than one relevant field, the situation may be different. In particular, sizeable non-Gaussianity may be
generated, while the amplitude of tensor perturbations may be very low. So, it would be rather difficult
to rule out the inflationary scenario as a whole.

Inflation is not the only hypothesis proposed so far. One option is the bouncing Universe scenario,
which assumes that the cosmological evolution begins from contraction, then the contracting stage termi-
nates at some moment of time (bounce) and is followed by expansion. A version is the cycling Universe
scenario with many cycles of contraction–bounce–expansion. See reviews by Lehners and Branden-
berger in Ref. [16–20]. Another scenario is that the Universe starts out from a nearly flat and static state
with nearly vanishing energy density. Then the energy density increases and, according to the Friedmann
equation, the expansion speeds up. This goes under the name of the Genesis scenario [90]. Theoretical
realizations of these scenarios are more difficult than inflation, but they are not impossible, as became
clear recently.

The generation of the density perturbations is less automatic in scenarios alternative to inflation.
Similarly to inflationary theory, the flatness of the scalar power spectrum is likely to be due to some
symmetry. One candidate symmetry is conformal invariance [91–94]. The point is that the conformal
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Fig. 22: Allowed regions (at 68% and 95% confidence levels) in the plane (ns, r), where ns is the scalar spectral
index and r is the tensor-to-scalar ratio [89]. The right lower corner (the point (1.0, 0.0)) is the Harrison–Zeldovich
point (flat scalar spectrum, no tensor modes). Intervals show predictions of popular inflationary models.

group includes dilatations, xµ → λxµ. This property indicates that the theory possesses no scale and has
a good chance for producing the flat spectrum. A model building along this direction has begun rather
recently [92–94].

6.6 Hunt continues
Until now, only very basic facts about the primordial cosmological perturbations have been observa-
tionally established. Even though very suggestive, these facts by themselves are not sufficient to un-
ambiguously figure out what was the Universe at the pre-hot epoch of its evolution. New properties of
cosmological perturbations will hopefully be discovered in the future and shed more light on this pre-hot
epoch. Let us discuss some of the potential observables.

6.6.1 Tensor perturbations = relic gravity waves
As we discussed, primordial tensor perturbations are predicted by many inflationary models. On the
other hand, there seems to be no way of generating a nearly flat tensor power spectrum in alternatives to
inflation. In fact, most, if not all, alternative scenarios predict unobservably small tensor amplitudes. This
is why we said that tensor perturbations are a smoking gun for inflation. Until recently, the most sensitive
probe of the tensor perturbations has been the CMB temperature anisotropy [95–98]. However, the most
promising tool is the CMB polarization. The point is that a certain class of polarization patterns (called
B-mode) is generated by tensor perturbations, while scalar perturbations are unable to create it [99,100].
Hence, dedicated experiments aiming at measuring the CMB polarization may well discover the tensor
perturbations, i.e., relic gravity waves. Needless to say, this would be a profound discovery. To avoid
confusion, let us note that the CMB polarization has been already observed, but it belongs to another
class of patterns (so-called E-mode) and is consistent with the existence of the scalar perturbations only.
The original claim of the BICEP-2 experiment [101] to detect the B-mode generated by primordial tensor
perturbations was turned down [102]: the B-mode is there, but it is due to dust in our Galaxy.
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6.6.2 Non-Gaussianity.
As we pointed out already, non-Gaussianity of density perturbations is very small in the simplest in-
flationary models. Hence, its discovery will signal that either inflation and inflationary generation of
density perturbations occurred in a rather complicated way, or an alternative scenario was realized. Once
the non-Gaussianity is discovered, and its shape is revealed even with modest accuracy, many concrete
models will be ruled out, while at most a few will get strong support.

6.6.3 Statistical anisotropy.
In principle, the power spectrum of density perturbations may depend on the direction of momentum,
e.g.,

P(k) = P0(k)

(
1 + wij(k)

kikj
k2

+ · · ·
)
,

where wij is a fundamental tensor in our part of the Universe (odd powers of ki would contradict com-
mutativity of the Gaussian random field δ(k), see Eq. (94)). Such a dependence would definitely imply
that the Universe was anisotropic at the pre-hot stage, when the primordial perturbations were gener-
ated. This statistical anisotropy is rather hard to obtain in inflationary models, though it is possible in
inflation with strong vector fields [103–105]. On the other hand, statistical anisotropy is natural in some
other scenarios, including conformal models [106, 107]. The statistical anisotropy would show up in
correlators [108, 109]

〈almal′m′〉 with l′ 6= l and/or m′ 6= m.

At the moment, the constraints [110, 111] on statistical anisotropy obtained by analysing the CMB data
are getting into the region which is interesting from the viewpoint of some (though not many) models of
the pre-hot epoch.

6.6.4 Admixture of entropy perturbations.
As we explained above, even a small admixture of entropy perturbations would force us to abandon the
most popular scenarios of the generation of baryon asymmetry and/or dark matter, which assumed that
it happened at the hot epoch. Once the dark matter entropy mode is discovered, the WIMP dark matter
would no longer be well motivated, while other, very weakly interacting dark matter candidates, like
axions or superheavy relics, would be preferred. This would redirect the experimental search for dark
matter.

7 Conclusion
It is by now commonplace that the two fields studying together the most fundamental properties of matter
and the Universe—particle physics and cosmology—are tightly interrelated. The present situations in
these fields have much in common too. On the particle-physics side, the Standard Model has been
completed by the expected discovery of the Higgs boson. On the other hand, relatively recently a fairly
unexpected discovery of neutrino oscillations was made, which revolutionized our view on particles and
their interactions. There are grounds to hope for even more profound discoveries, notably by the LHC
experiments. While in the past there were definite predictions of the Standard Model, which eventually
were confirmed, there are numerous hypotheses concerning new physics, none of which is undoubtedly
plausible. On the cosmology side, the Standard Model of cosmology, ΛCDM, has been shaped, again
not without an unexpected and revolutionary discovery, in this case of the accelerated expansion of the
Universe. We hope for further profound discoveries in cosmology too. It may well be that we will
soon learn which is the dark matter particle; again, there is an entire zoo of candidates, several of which
are serious competitors. The discoveries of new properties of cosmological perturbations will hopefully
reveal the nature of the pre-hot epoch. There is a clear best guess, inflation, but it is not excluded that
future observational data will point towards something else.
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Neither in particle physics nor in cosmology are new discoveries guaranteed, however. Nature
may hide its secrets. Whether or not it does is the biggest open issue in fundamental physics.
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Abstract
This reports summarizes the three lectures on particle physics instrumentation
given during the AEPSHEP school in November 2014 at Puri-India. The lec-
tures were intended to give an overview of the interaction of particles with
matter and basic particle detection principles in the context of large detector
systems like the Large Hadron Collider.
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scattering.

1 Introduction
This report gives a very brief overview of the basis of particle detection and identification in the context
of high-energy physics (HEP). It is organized into three main parts. A very simplified description of
the interaction of particles with matter is given in Sections 2 and 3; an overview of the development of
electromagnetic (EM) and hadronic showers is given in Section 4. Sections 5 and 6 are devoted to the
principle of operation of gas- and solid-state detectors and calorimetry. Finally, Sections 7 and 8 give a
rapid overview of the HEP detectors and a few examples.

2 Basics of particle detection
Experimental particle physics is based on high precision detectors and methods. Particle detection ex-
ploits the characteristic interaction with matter of a few well-known particles. The Standard Model of
particle physics is based on 12 elementary fermion particles (six leptons, six quarks), four types of spin-1
bosons (photon, W, Z, and gluon) and the spin-0 Higgs boson. All the known particles are combinations
of the elementary fermions. Most of the known particles are unstable hadrons which decay before reach-
ing any sensitive detector. Among the few hundreds of the known particles, eight of them are the most
frequently used for detection: electron, muon, photon, charged pion, charged kaon, neutral kaon, proton
and neutron.

The interaction of these particles with matter constitutes the key to detection and identification.
Figure 1 schematically illustrates the results of particle interactions in a typical HEP detector. The
difference in mass, charge, and type of interaction constitute the means to their identification. The
electron leaves a track in the tracking detector and creates an EM shower in the calorimeter. The photon
may either traverse the tracking detector and only interact in the calorimeter, initiating an EM shower or
it may convert to a pair e+e− in the tracking detector matter. The muon, which has a mass 200 times
larger than the electron, traverses the entire detector, leaving a track in the central and the muon tracking
systems. Charged hadrons such as π± and K± protons leave a track in the tracking detector and deposit
their energy in the calorimeters. The neutron and the neutral kaon K0 do not leave a track and produce
a hadron shower in the calorimeter. A neutrino traverses the entire detector without interacting but its
presence can be detected via energy balance.

The role of a particle detector is to detect the passage of a particle, localize its position, measure
its momentum or energy, identify its nature, and measure its arrival time. Detection happens through
particle energy loss in the traversed material. The detector converts this energy loss to a detectable signal
which is collected and interpreted.
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Fig. 1: Schematic representation of the passage of one electron, photon (unconverted and converted), µ±, charged
hadron, and neutral hadron in a typical HEP detector built from a tracking detector, a calorimeter, and a muon
detector.

3 Interaction of particles with matter
The EM interaction of charged particles with matter constitutes the essence of particle detection. Four
main components of EM interaction can be identified: interaction with atomic electrons, interaction
with the atomic nucleus, and two long-range collective effects, Cherenkov and transition radiations.
Interactions with atomic electrons leads to ionization and excitation, and interactions with the nucleus
lead to Compton scattering, bremsstrahlung, and pair production (for photons). Hadrons are sensitive to
the nuclear force and therefore also obey the nuclear interaction.

This section highlights a few prominent characteristics of particle interaction with matter. For a
complete treatment and a list of references, see Ref. [1].

3.1 Ionization and excitation
A heavy (m � me) charged particle with 0.01 < βγ < 1000, passing through an atom will interact
via the Coulomb force with the atomic electrons and the nucleus. Because of the large mass difference
(2mp/me) between the atomic electrons and the nucleus, the energy transfer to the atomic electrons
dominates (typically by a factor of 4000). The distribution of average energy transfer per unit distance
(also called stopping power) of positively charged muons impinging on copper is presented in Fig. 2 [1].

3.1.1 Energy loss for heavy particles
The average energy transfer, for incoming heavy particles (m � me) with 0.01 < βγ < 100, is well
described by the Bethe formula which is reproduced in Eq. (1) [1] (terms for this are defined in Table 1)

−dE
dx

= Kz2
Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

] [
MeV g−1 cm2

]
. (1)

The energy loss in a given material is first-order independent of the mass of the incoming particle:
Eq. (1) and the curve of Fig. 2 can therefore be considered universal. The energy loss is proportional
to the square of the incoming particle charge: for instance, a helium nucleus deposits four times more
energy than a proton. From knowing the energy loss and ionization energy of a material, it is possible
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Fig. 2: Stopping power −〈 dE
dx 〉 for positively charged muons in copper as a function of βγ over nine orders of

magnitude in momentum.

Table 1: Bethe–Bloche formula terms

dE
dx Average energy loss in unit of MeV g−1 cm2

K = 4πNAr
2
emec

2 = 0.307 MeV g−1 cm2

Wmax = 2m ec
2β2γ2/(1 + 2γme/M + (me/M)2) Maximum energy transfer in a single collision

z Charge of the incident particle
M Mass of the incident particle
Z Charge number of the medium
A Atomic mass of the medium
I Mean excitation energy of the medium
δ Density correction

(transverse extension of the electric field)
NA = 6.022× 1023 Avogadro’s number
re = e2/4πε0mec

2 = 2.8 fm Classical electron radius
me = 511 keV Electron mass
β = v/c Velocity
γ = (1− β2)−1/2 Lorenz factor

to compute the number of electron–ion pairs created along the path of the traversing particle. For a
muon at minimum ionization energy traversing 1 cm of copper, the number of electron–ion pairs is
' 13× 106/7.7 ' 2× 106 with the copper ionization energy being 7.7 eV.

The energy loss by incoming particles leads to two effects, depending on the distance to the atomic
electrons. If the distance is large, the transferred energy will not be large enough for the electron to be
extracted from the atom, and the atomic electron will go into an excited state and emit photons. If the
distance is smaller, the transferred energy can be above the binding energy, the electron will be freed, and
the atom ionized. The photons resulting from the de-excitation of the atoms and the ionization electrons
and ions are used to generate signals that can be readout by the detector.

The understanding of energy loss of heavy particles (with m� me) can be analysed in four main
regimes.
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Fig. 3: (a) Schematic representation of the probability of energy transfer. (b) Energy loss probability described by
Landau functions for incoming 500 MeV charged pions in various thickness of silicon.

1. The minimum ionization at βγ ' 3–4 is typical and more or less universal for materials: −dE
dx '

1–2 MeV g−1 cm2. As an example, for copper which has a density of 8.94 g cm−3, a particle at
minimum ionization deposits '13 MeV cm−1.

2. For βγ < 3–4, the energy loss decreases as the momentum increases, with a dependency of 'β−2
as slower particles feel the electric force of atomic electrons for a longer time.

3. For βγ> 4, when the particle velocity approaches the speed of light, the decrease in energy loss
should reach a minimum. However, the relativistic effect induces the increase of the transverse
electric field, with a dependency in ln γ, and the interaction cross-section increases. This effect is
called the relativistic rise.

4. Some further corrections to the simplified Bethe formula are necessary to account for effects from
density at high γ values and for effects at very low values (βγ < 0.1 – 1) where the particle velocity
is close to the orbital velocity of electrons.

As the energy loss is a function of the velocity, measuring the incoming particle momentum inside
a magnetic field makes it possible to identify the particle by relating the momentum and the energy
deposition, typically in the low momentum region where the deposited energy is large.

The Bethe formula describes the mean energy deposited by a high-mass particle in a medium. The
energy deposition is a statistical process which can be described by the succession of energy loss in a
material of thickness ∆x, with total energy deposition ∆E =

∑N
n=1 δEn following the probability den-

sity function presented in Fig. 3(a). Energy loss is well described by a Landau distribution as illustrated
in Fig. 3(b).

3.1.2 Energy loss for electrons and positrons
The Bethe formula given in Eq. (1) is valid for heavy particles and needs to be modified to describe the
energy loss of incoming electrons and positrons because the mass of the incoming particle and its target
are the same. The formula for electrons is presented as

−dE
dx

=
1

2
K
Z

A

1

β2

[
ln
mec

2β2γ2
(
mec

2(γ − 1)/2
)

2I2
+ F (γ)

]
[

MeV g−1 cm2
]
. (2)

For positrons, this formula is different again because of the difference between electrons and positrons
and to account for the annihilation cross-section at low energies.
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3.2 Multiple scattering, bremsstrahlung and pair production
3.2.1 Multiple scattering
The Coulomb interaction of an incoming particle with the atomic nuclei of the detector material results
in the deflection of the particle, which is called multiple scattering. The statistical sum of many such
small scattering angles results in a Gaussian angular distribution with a width, θ0 given by

θ0 =
13.6 MeV
βcp

z
√
x/X0 [1 + 0.038 ln (x/X0)] , (3)

where x is the distance traversed and X0 is the radiation length which is introduced in Sec-
tion 3.2.2, see Eq. (6).

Multiple scattering is an intrinsic limiting factor for tracking detectors as it induces an irreducible
contribution to the resolution. For example, the standard deviation for the multiple scattering of a 1 GeV
incoming pion, traversing 300 µm of silicon (X0 = 9.4 cm), is θ0 = 0.8 mrad, corresponding to a
distance of 80 µm after 10 cm which is significantly larger than the typical resolution of a silicon strip
detector.

As shown in Eq. (3), θ0 is inversely proportional to the particle velocity and momentum, and loss of
momentum resolution from multiple scattering is greater for low-energy particles. The standard deviation
is also proportional to the square root of the material thickness in units of radiation length. Reducing the
material thickness will lead to a reduction of the contribution the multiple scattering. Tracking devices
therefore favour thin material with a small radiation length, i.e. with a low atomic number (see Eq. (6)),
such as beryllium, used for beam pipes, carbon fibre and aluminum, used for support structures, and thin
silicon or gas detectors.

3.2.2 Interactions of high-energy electrons with matter
The interaction of intermediate-energy electrons with matter is described in this section. For incoming
electrons and positrons at higher energies, the EM interaction with the nucleus is dominant. The de-
flection of the charged particle by the nuclei results in acceleration and emission of EM radiation. This
effect, called bremsstrahlung, plays a key role in calorimetry measurements. The bremsstrahlung process
is represented in Fig. 4

Fig. 4: The incoming electron (E, ~pe) interacts with the nucleus (A, Z) of the traversed matter; the emitted photon
carries a momentum ~k and the outgoing electron (E′, ~pe

′).

The spectrum of photons with energy k, radiated by an electron traversing a thin slab of material
has the following characteristic bremsstrahlung spectrum (dominantly in 1

k ) expressed as a function of
y = k/E [9]:

dσ
dk

= 4αZ(Z + 1)r2e ln
(

183Z−1/3
)(4

3
− 3

4
y + y2

)
× 1

k
, (4)
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where r2e is the classical radius of the electron.

The term Z(Z + 1) of Eq. (4) reflects that the bremsstrahlung results from coupling of the initial
electron to the EM field of the nucleus, augmented by a direct contribution of the atomic electrons (Z2

replaced by Z(Z + 1)). The logarithmic term ln (183Z−1/3) shows that the atomic electrons screen the
nucleus field.

For a given energy E, the average energy lost by bremsstrahlung, dE, in a thin slab of material of
thickness, dx, is obtained by integrating over y.

dE
dx

= 4αNAz
2Z2

(
1

4πε0

e2

mc2

)
E ln

(
183Z−1/3

)
∝ E

m2
. (5)

As shown in Eq. (5), the energy loss is proportional to 1
m2 and is therefore mostly relevant for

electrons. For a given energy, as mµ ≈ 200×me, the energy loss for a muon is ≈ 40 000 times smaller
than for an electron. In other words, the average energy loss by bremsstrahlung dominates ionization for
muons with energy above 400 GeV.

Following Eq. (5) the radiation length X0 can be defined as the distance after which the incident
electron has radiated (1− 1

e ) = 63% of its incident energy and one can then write

E(x) = E0e
−x/X0 where x is the depth in the block of matter and

dE
dx

=
E

X0
where X0 = 4αNAZ

2r2e ln 183Z−1/3 . (6)

The critical energy Ec (or ε0), at which the average energy loss by ionization equals the average
energy loss by ionization, constitutes a useful quantity to describe the development of EM showers.
Approximation of Ec, for gas and liquid or solid, is given as

Egas
c =

710 MeV
Z + 0.92

and Esol/liq
c =

610 MeV
Z + 1.24

. (7)

Figure 5 [1] shows the fractional energy loss per radiation length as a function of electron or
positron energy. Contributions from low-energy processes such as Moller and Bhabha scattering and
e+e− annihilation are shown.

3.2.3 Interactions of photons with matter
For high-energy photons for which E > 2mec

2, pair creation is the dominant process as represented
in Fig. 6. Similarly to the bremsstrahlung process for electrons, the pair creation results from the EM
interaction between the incoming photon and the field of the atom nucleus. The pair creation cross-
section is given as

dσ
dx

=
A

X0NA
×
(

1− 4

3
x(1− x)

)
, (8)

where x = E
k is the fraction of the energy of the incoming photon carried by the produced electron. The

total pair production cross-section is given as

σpair =
7

9

A

X0NA
=

7

9
4αZ(Z + 1)r2e ln (183Z−1/3) . (9)

The dominant part Z2 is due to the interaction with the nucleus; atomic electrons contribute propor-
tionally to Z. The electron and positron are collinear as the energy of recoil of the nucleus is small
('mec

2).

In addition to pair creation, photons interact in several ways.
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Fig. 5: Fractional energy loss per radiation length as a function of electron or positron energy in lead

Fig. 6: The incoming photon (~k) interacts with the EM field of the nucleus (A, Z): an electron (E, ~pe), positron
(E′, ~pe

′) pair is created.

– Photo electric effect: for low-energy photons, the atomic electrons are not free; therefore, the
cross-section presents discontinuities whenever the photon energy crosses the electron binding
energy. This process is strongly Z dependent ( Z5

E3.5 ) and is dominant at very low energies.
– Compton scattering: scattering of the incoming on one atomic electron. The cross-section varies

like Z lnE
E .

Photo-electrons and scattered electrons are emitted isotropically whereas electrons produced by
pair creation are emitted in the direction of the incoming photon. Figure 7 from Ref. [1] presents the
total cross-section of photons impinging on carbon (left) and on lead (right).

High-energy electrons, positrons, and photons (E > 100 MeV) impinging on a block of material
interact dominantly with the atom nucleus via bremsstrahlung and pair-creation processes. These two
processes dominate the development of EM showers.
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Fig. 7: Total cross-section of photons impinging on carbon (left) and on lead (right)

3.3 Cherenkov radiation
Charged particles passing through material at velocities larger than the speed of light in the material
produce an EM shock-wave that materializes as EM radiation in the visible and ultraviolet range, the
so-called Cherenkov radiation. With n being the refractive index of the material, the speed of light in
the material is c/n. The fact that a particle does or does not emit Cherenkov radiation can then be used
to apply a threshold to its velocity. The radiation is emitted at a characteristic angle with respect to the
particle direction Θc = c

nv . Measuring the angle of the emitted light allows measurement of the particle
velocity.

3.4 Transition radiation
Transition radiation is emitted when a charged particle crosses the boundary between two materials
of different permittivities. The probability of emission is proportional to the Lorentz factor γ of the
particle. It is only appreciable for ultra relativistic particles so it is mainly use to distinguish electrons
from hadrons. As an example, a particle with γ = 1000 has a probability of about 1% to emit one photon
at the transition between two materials but, by including many transition layers in the form of sheets,
foam, or fibres, one can multiply the effect. The energy of the emitted photons is in the keV range.

4 EM and hadronic showers
4.1 Electromagnetic showers
One important consequence of the bremsstrahlung and pair-creation processes is the development of EM
showers. EM calorimeters are therefore designed so that the shower development is contained and the
deposited energy is collected.

For electrons, positrons, or photons of high energy (typically E > 100 MeV), showers result
from cascading effects. Electrons undergo the bremsstrahlung process and emit photons and photons
create a pair of electrons and positrons. This cascade continues until the emitted electrons are below the
critical energy (Ec or ε0). The number of ionization electrons or photons emitted by excited atoms is
proportional to the energy of the incoming particle.
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Figure 8(a) shows the number of electrons, as a function of the depth in units ofX0, in EM showers
induced by electrons and photons of various energies (from Ref. [2]). Figure 8(b) shows the longitudinal
energy loss profile for electrons and photons, comparing measurements and simulation (from Ref. [1]).

Fig. 8: (a) Number of electrons in electron and photon induced showers, for four energies, as a function of the
depth in units of radiation length [9]. (b) Shower profile for 60 GeV incoming electrons in iron as a function of the
depth t in unit of X0 [1].

A description of the shower development has been proposed by Rossi [4] by computing the number
of electrons plus positrons at a given energy and depth and similarly the number of photons. Accounting
for the processes of bremsstrahlung, Compton scattering, ionization, and pair production, the authors
have proposed a model which describes the shower development. The total track length (TTL) multiplied
by the critical energy (Ec or ε0) describes the energy transferred to the calorimeter medium by dE

dx , which
constitutes the source of the calorimeter signal.

In such a model, the number of segment tracks increases as the depth, t, in units of radiation length
as

N(t) = 2t (10)

and the average energy of each particle decreases as

E(t) = E0/2
t , (11)

until E(t) reaches the critical energy. For E(t) < Ec, ionization and excitation become dominant. In
this model, the number of tracks is maximum at

tmax = ln
E0

Ec
/ ln 2 , (12)

which has important implications in the context of detector design: that the shower depth varies as the
logarithm of the particle energy. The shape and the energy dependence of the shower profile are presented
in Fig. 9.

The TTL is therefore E0 ×X0/Ec.

The higher the incident energy, the higher the TTL, and the better the relative resolution is. The
shower development for electrons and photons differs by the shift of the start of the shower development
of typically one radiation length.
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Fig. 9: Energy deposit of electrons with energies between 1 GeV and 1 TeV as a function of the depth in a block
of copper.

4.2 Hadronic showers
Hadrons interact in matter dominantly via the nuclear interaction. By analogy with EM showers, the
energy degradation of high-energy hadrons proceeds through an increasing number of (mostly) strong
interactions with the calorimeter material. However, the complexity of the hadronic and nuclear pro-
cesses produces a multitude of effects. The hadronic interaction produces two classes of secondary
processes. First, energetic secondary hadrons are produced with momenta that are typically a fraction of
the primary hadron momentum, i.e. at the GeV scale. Second, in hadronic collisions with the material
nuclei, a significant part of the primary energy is diverted to nuclear processes such as excitation, nu-
cleon evaporation, spallation, etc., resulting in particles with characteristic nuclear energies at the MeV
scale. As an example, the energy deposition of a 5 GeV proton impinging on a block of lead and the
scintillator can be decomposed as 40% ionization, 15% EM shower, 10% as carried by neutrons, 15% as
photons from nuclear de-excitation, and 29% not detectable in the form of neutrinos or binding energy.
This leads to less precision in energy resolution with respect to EM showers.

For high-energy incoming hadrons, the hadronic cross-section is fairly independent of energy and
of the hadron type. The material dependence of the total hadronic inelastic cross-section on a material of
mass A is given, in a simple form, by

σinelastic(p,A) ' σ0 ×A0.7 with σ0 = 35 mb , (13)

where σ0 is the inelastic cross-section of the proton–proton interaction.

One defines the interaction length by

λint =
A

NAσinelastic(p,A)
' 35A1/3 g cm2 . (14)

5 Energy loss transfer to detectable signals and signal collection
As presented in the preceding section, charged particles traversing matter create excited atoms, electron–
ion pairs (in a gas or a liquid) or electron–hole pairs (in solid). This section summarizes existing tech-
niques to exploit the photons emitted by excited atoms or the ionization.
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5.1 Excitation
The photons emitted by the excited atoms can be detected with photon detectors such as photomultipliers
or semi-conductor photon detectors. The emitted photons are typically in the range from ultraviolet
to visible light. They are observed in noble gases (and even liquid), inorganic crystals, and organic
scintillators. The principle is to convert the dE

dx into visible light and detect the light with a photo-sensor.
The typical light yield of scintillators is a few per cent of the energy loss. For instance, among the
dE
dx = 1.5 MeV deposited in 1 cm of plastic scintillator of density ρ = 1 g cm−3, 15 keV are available in
the form of emitted photons and correspond to 15 000 photons.

The main features of photo-sensors are the sensitivity to energy, the fast time response, and the
pulse shape discrimination. The requirements are high efficiency for conversion of the excitation energy
to fluorescent radiation, transparency to the radiation to allow transmission of light, emission of light
in a spectral range detectable for photo-sensors, and a short decay time to allow a fast response. The
de-excitation time is an important parameter, in particular in the context of high-luminosity experiments
such as at the Large Hadron Collider (LHC). For instance, in the PbWO4 crystals of the CMS EM
calorimeter, 80% of the light is emitted in 25 ns.

Two classes of scintillators are considered.

– Inorganic crystals: which are the substance with the largest light yield and are typically used for
precision measurements of energetic photons but are typically slow.

– Organic scintillators: typically polycyclic hydrocarbons, such as naphthalene and anthracene,
which typically have a lower light yield but a faster response than crystals. The light produced in
the scintillator propagates to the edge where it is guided in light-guides, with total reflection, to the
detector device. In addition, the use of a wavelength shifter, converting the light to a higher wave
length, allows the photon to be transported without reflecting back to the scintillator.

The classical device used to convert these photons into electrical signals is the photo-multiplier.
A photon hits a photo-cathode, a material with a very small work function, and liberates an electron
which is then accelerated in a strong electric field to a dynode, made of a material with high secondary
electron yield. The one original electron will therefore create several electrons, which are again guided
to the next dynode, and so on. Out of one single electron one ends up with a sizable signal typically
of 107–108 electrons. In recent years, the use of solid-state photo-multipliers, such as avalanche photo-
diodes, vacuum photo-diodes, and silicon photo-multipliers, has become popular as they are insensitive
to magnetic fields and less expensive.

5.2 Ionization
By applying an electric field in the detector volume, the ionization electrons and ions are moving, which
induces a signal on metallic electrodes. These signals are then readout by appropriate readout electronics.

The noise and pre-amplifier determine whether the signal can be registered. The signal-to-noise
ratio must be large: S/N � 1. The noise is characterized by the Equivalent Noise Charge (ENC)
which is the charge at the input that produces an output signal equal to the noise. The ENC of very
good amplifiers can be as low as 50 e−, a typical value being 1000 e−. In order to register a signal, the
registered charge must be q � ENC, i.e., typically q � 1000 e−. For a gas detector, q ' 80 e−/ cm
is too small to be detected. Solid-state detectors have 1000 times more density and a factor of 5–10 less
ionization energy. Therefore, the primary charge, in a solid-state detector, therefore reaches 104–105,
which is the same for a gas detector.

5.2.1 Gas detectors
Gas detectors need internal amplification in order to be sensitive to a single particle. The amplification
processes and drift in an electric field are the basis of the operation of gas chambers. Ionization detectors
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are generally operated in the proportional regime where an amplification of 104 to 106 is used. The
amplification of the signal in gas is schematically represented in Fig. 10. In the case of a cylindrical
geometry, the amplification process can be described by the electric field E(r) as a function of r, the
radial distance between the charge particle and the anode wire, and the potential V (r),

E(r) ∝ 1

r
and V (r) ∝ ln

r

a
.

The primary electrons drift towards the positive anode. Close to the very thin wire, due to the 1/r
dependence, the electric field reaches values E > 1 kV/ cm
(top-left curve of Fig. 10). In between collisions with atoms, electrons gain enough energy to ionize
further gas molecules generating an exponential increase in the number of electron–ion pairs close (a
few µm) to the wire (bottom of Fig. 10).

Fig. 10: Top-left: Schematic representation of a gas drift tube. Top-right: Electric field dependence with r.
Bottom: Simulation of an ionization avalanche onto an anode wire of diameter 25 µm.

Gas detectors are most often used as tracking detectors in order to reconstruct the charged particle
trajectory and measure its momentum from its curvature induced by the magnetic field. Criteria to obtain
an optimal momentum resolution are to have many measurement points, a large detector volume, very
good single point resolution, and as little multiple scattering as possible.

The response of a proportional chamber is shown in Fig. 11 as a function of the applied voltage.
There are several distinctive regions of the response curve: the ionization regime where the primary
charge is collected, giving a flat response; the proportional regime where the electric field is large enough
to generate multiplication, with a gain up to 106; and the Geiger–Muller regime, where strong photon
emission propagates avalanches.

12

I. WINGERTER

306



Fig. 11: Number of ions collected as a function of the applied voltage and definition of the operation regimes

The proportional mode is most often exploited with wire chambers. Wires of very small diameter,
between 10 µm and 100 µm, are placed between two metallic plates a few millimeters apart. The wires
are at a high voltage (a few kV), which results in a very high electric field close to the wire surface. The
ionization electrons move towards the thin wires, and in the strong field close to the wires, the electrons
are accelerated to energies above the gas ionization energy, which results in the production of secondary
electrons and as a consequence an electron avalanche.

The position of the primary ionization electrons can be determined by segmenting the cathodes
(metal plates) into strips, which are sensitive to the induced charge. Another way to achieve position
resolution, far smaller that the separation between the wires, is to measure the drift time of the charge
with respect to a reference clock such as an accelerator clock. For example, the precision on the track
position achieved by the ATLAS muon system is of order 80 µm for a distance between the wires of
order 15 mm.

Gas chambers have been extensively used in HEP detectors. They provide many measurement
points, large volume, very good single point resolution, and as little multiple scattering as possible. They
are perfectly suited for the large detector areas at outer radii. They are not suited to the small radius of
LHC experiments for instance, where the particle flow is large. Several dedicated techniques have been
employed such as multiwire proportional chambers, drift chambers, time projection chambers, streamer
tubes, and resistive plates chambers.

In the last 10–15 years, a large variety of new gas detectors have been developed in the context of
particle physics instrumentation, such as micro-pattern gas detector á la GEM (a gas electron multiplier)
or the Micromegas (micro-mesh gas detector).
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5.2.2 Solid-state detectors
In gaseous detectors, a charged particle liberates electrons from the atoms, which are freely bouncing
between the gas atoms. An applied electric field makes the electrons and ions move, which induces
signals on the metal readout electrodes. For individual gas atoms, the electron energy levels are discrete.

In solids (crystals), the electron energy levels are in bands. Inner-shell electrons, in the lower
energy bands, are closely bound to the individual atoms and always stay with their parent atom. However,
in a crystal there are energy bands that are still bound states of the crystal, but they belong to the entire
crystal. Electrons in these bands and in the holes in the lower band can move freely around the crystal
if an electric field is applied. The lowest of these bands is called the conduction band. If the conduction
band is filled, the crystal is a conductor. If the conduction band is empty and far away from the last filled
band, the valence band, the crystal is an insulator. If the conduction band is empty but the distance to the
valence band is small, the crystal is a semi-conductor.

In order to use a semi-conductor as a detector for charged particles, the number of charge carriers
in the conduction band due to thermal excitation must be smaller than the number of charge carriers in
the conduction band produced by the passage of a charged particle. Diamond can be used for particle
detection at room temperature whereas silicon and germanium must be cooled or the free charge carriers
must be eliminated by other tricks such as doping.

The diamond detector works like a solid-state ionization chamber. A diamond of a few hundred
micrometres thickness is placed between two metal electrodes and an electric field is applied. The very
large electron and hole mobilities of diamond result in very fast and short signals. Diamond is therefore
both a tracking and a timing detector. Small diamond detectors are installed as a beam condition monitor,
a few centimetres from the beam pipe, in the ATLAS detector.

Silicon is the most widely used semiconductor material for particle detection. A high-energy
particle produces 33 000 electron–hole pairs per cm3. However, at room temperature there are 1.45 ×
1010 electron–hole pairs per cm3. To be able to operate a silicon detector at room temperature, doping is
employed. Doping silicon with arsenic makes it an n-type conductor (more electrons than holes) whereas
doping silicon with boron makes it p-type conductor (more holes than electrons). Putting an n-type and
p-type conductor in contact creates a diode.

At a p–n junction, the charges are depleted and a zone that is free of charge carriers is established.
By applying a voltage, the depletion zone can be extended to the entire diode, which results in a highly
insulating layer. An ionizing particle produces free charge carriers in the diode, which drift in the electric
field and induce an electrical signal on the metal electrodes. As silicon is the most commonly used
material in the electronics industry, this constitutes a big advantage with respect to other materials.

Strip detectors are a very common application, where the detector is segmented into strips of a few
50–150 µm pitch and the signals are read out on the ends by wire bonding the strips to the readout elec-
tronics. The other co-ordinate can then be determined, either by another strip detector with perpendicular
orientation or by implementing perpendicular strips on the same wafer.

In the very high multiplicity region close to the collision point, a pixel detector for sizes a few tens
of micrometres by a few hundreds of micrometres can be used. The readout of a pixel module is achieved
by building the readout electronics wafer in the same geometry as the pixel layout and soldering, via
bump bonding, each of the pixels to its respective amplifier. Pixel systems of about 100 million channels
are successfully operating at LHC. The typical vertex resolution achieved is approximately 30 µm.

Current developments in the solid-state detector domain are exploration of the possibility to inte-
grate the detector element and the readout electronics, as well as the application of CMOS (complemen-
tary metal-oxide semiconductor) sensors.
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6 Calorimeters
Calorimeters measure the energy of neutral and charged particles by complete absorption.

The principle is to measure the signal, induced by electrons and positrons with energy below the
critical energy, which is proportional to the incident energy. Calorimeters vary by the technique used to
collect the signal (sensitive material) and by the technique to induce the shower development (passive
material). Two times two general types of calorimeters have been built: EM (Section 6.3) or hadronic
calorimeters (Section 6.4) on one dimension and homogeneous (Section 6.1) or sampling calorimeters
(Section 6.2) on the other dimension.

Calorimeters are a natural complement to tracking detectors as they measure the energy of both
neutral and charged particles. In calorimeters, the relative energy resolution improves with energy be-
cause it is governed by a statistical process. In contrast, relative momentum resolution degrades with
energy for tracking detectors in a magnetic field.

6.1 Homogeneous calorimeters
A homogeneous calorimeter is built only from the sensitive medium. In principle, for a similar contain-
ment and signal detection efficiency, a homogeneous calorimeter gives the best energy resolution because
sampling calorimeters are limited by sampling fluctuation.

The calorimeter energy resolution is determined by fluctuations, such as shower fluctuations,
photo-electron statistics, and shower leakage, and instrumental effects such as noise. Accounting for
these limitations, the relative energy resolution of a calorimeter can be written as

σ(E)

E
=

a√
E
⊕ b

E
⊕ c% , (15)

where a is called the statistical or sampling term, b the noise term, and c the constant term.

For an ideal (homogeneous) calorimeter without leakage, the energy resolution is limited only by
statistical fluctuations of the number N of shower particles, i.e.

σ(E)

E
∝ σ(N)

N
≈
√
N

N
=

1√
N

with N =
E

W
, (16)

with E being the energy of the incoming particle and W the mean energy required to produce a signal
quantum. For instanceW ≈3.6 eV for a silicon detector, 30 eV for gas detectors and 100 eV for a plastic
scintillator. The formulation of the relative energy resolution of Eq. (16) needs to be corrected to account
for correlations between fluctuations; the correction factor, F , is called the Fano factor [2]:

σ(E)

E
∝
√
FW

E
. (17)

Homogeneous calorimeters are based on three main primary signal collection: scintillation light
(PbWO4, BGO, BaF2), Cherenkov light (lead glass), and ionization signal (in noble gases such as argon,
krypton, and xenon).

The CMS EM calorimeter is built of ≈70 000 lead tungsten crystal. The energy resolution, for the
barrel part of the CMS EM calorimeter [6], reaches 1.1% for a non-converted photon withEγ⊥ ' 60 GeV,
and is about 1.5% for electrons withEe

⊥ ' 45 GeV from the Z0 decay with low bremsstrahlung. Because
of inter-calibration, the measured constant term varies between 0.3% and 0.5% for the barrel part of the
calorimeter and between 1% and 1.5% in the end-cap, depending on the pseudo-rapidity.

The NA48 EM calorimeter is a homogeneous liquid krypton calorimeter. The energy resolution
for photons has been measured to be

σe
E

=
(3.2± 0.2)%√

(E)
⊕ 0.09± 0.01

E
⊕ (0.42± 0.05)% ,
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and the energy linearity is better than≈ 0.1% for electrons in the energy range 5–100 GeV. The linearity
was measured using the E

p technique, where the energy, E, measured by the calorimeter is compared to
the particle momentum measured from the spectrometer.

6.2 Sampling calorimeters
A sampling calorimeter consists of plates of dense, passive material alternating with layers of sensi-
tive material. For EM showers, passive materials with low critical energy (thus high Z) are used, thus
maximizing the number of electrons and positrons in a shower to be sampled by the active layers. In
practice, lead is most frequently used. The thickness, t, of the passive layers (in units of X0) determines
the sampling frequency, i.e. the number of times a high-energy electron or photon shower is sampled.
Intuitively, the thinner the passive layer (i.e. the higher the sampling frequency), the better the resolution
should be. The thickness, u, of the active layer (in units of X0) is usually characterized by the sampling
fraction fS defined as

fS =
u× dE

dx (active)

u× dE
dx (active) + t× dE

dx (passive)
(18)

where u, t are in g cm−2 and dE
dx is in MeV g−1 cm2.

This sampling of the energy results in a loss of information and hence in additional sampling
fluctuations. An approximation [2] for these fluctuations in EM calorimeters can be derived using the
TTL (see Section 4.1) of a shower, initiated by an electron or photon of energy E.

The signal is approximated by the number Nx of e+ or e− traversing the active signal planes,
spaced by a distance (t+ u).

This number Nx of crossings is

Nx =
TTL

t+ u
=

E

Ec

1

t+ u
. (19)

Assuming statistical independence of the crossings, the fluctuations in Nx represent the sampling fluctu-
ations σ(E)samp ,

σ(E)samp

E
=
σ(Nx)

Nx
=

1√
Nx

=
a√

E[ GeV]
. (20)

As an example, Fig. 12 shows a schematic view of the barrel section of the ATLAS EM calorimeter
which is built with lead plates (e.g. 1.53 cm thick for the central part), interleaved with copper electrodes
to build a 6.4 m cylinder of 2.8 m inner diameter and 4 m outer diameter. The lead absorbers and
the electrodes are folded with an accordion shape which allows signal collection on the front and back
faces of the calorimeter. This has two main advantages: a fast signal collection and the absence of gaps
between cells, leading to a complete coverage in the azimuthal direction. Signal pads are drawn on the
electrodes to measure the particle position and sample the shower development. The cylinder is housed
in a cryostat filled with liquid argon (LAr), and the lead constitutes the passive material and LAr the
active material. The ionization electrons drift towards the electrodes through which a high voltage is
applied. A current is induced which is driven to preamplifiers located outside of the cryostat.

The energy resolution, for the barrel part of the ATLAS EM calorimeter [7], is 1.5% for non-
converted photons with Eγ⊥ ' 60 GeV, and is about 1.5% for electrons with Ee

⊥ ' 45 GeV from the Z0

decay. The measured constant term varies between 0.7% and 1% for the barrel part of the calorimeter
and between 1% and 2.5% in the end-cap, depending on the pseudo-rapidity.

6.3 EM calorimeters
EM showers develop as described in Section 4.1. The number of particles in the shower increases until
the average energy of the produced particle is below the critical energy when no more particles can
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Fig. 12: Schematic representation of the ATLAS liquid argon calorimeter

be produced. The particles in the shower will ionize the medium or undergo Compton scattering. The
lateral development of the shower is mainly governed by the electrons that do not radiate but have enough
energy to travel far away from the axis.

The typical relative energy resolution for sampling EM calorimeters at the LHC is

σ(E)

E
=

10%√
E[ GeV]

⊕ 100 MeV
E[ GeV]

⊕ 0.5–1% . (21)

6.4 Hadronic calorimeters
The development of hadronic showers is more complex than the development of EM particles (see Sec-
tion 4.2). The fraction of detectable energy from hadronic showers is smaller than for EM showers,
leading to an intrinsically worse relative energy resolution for hadrons than for electrons and photons.
In order to contain high-energy hadrons, hadronic calorimeters need to be larger than EM calorimeters.
As an example, the interaction length λint, which describes the typical size of one nuclear interaction, is
17 cm in iron when the radiation lengthX0 is 1.7 cm. In addition, as hadronic showers extend deeper and
wider than EM showers, the granularity of a hadronic calorimeter is coarser than for an EM calorimeter.
Hadron calorimeters are mainly sampling calorimeters, with iron or copper as the passive material and a
scintillator as the active material. The typical relative energy resolution of hadronic calorimeters for the
LHC is

σ(E)

E
=

50–100%√
E[ GeV]

. (22)
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7 Particle identification
Particle identification is typically the result of the combination of several observations from various
instruments. Only a few examples are given here.

By combining the energy loss along a charged track, which is a function of the velocity β, with
the momentum measurement from the curvature in the magnetic field, one can extract the particle mass,
providing the momentum is small enough. This is illustrated by Fig. 13 from Ref. [5].

Fig. 13: Bi-dimensional distribution of dE
dx and momentum for ATLAS 2010 data. The distributions of the most

probable value for the fitted probability density functions of pions (black), kaons (grey), and protons (blue), in
different track categories, are superimposed.

The ATLAS EM calorimeter segmentation allows identification of single photons from π0 decays
to two photons by its ability to separate single from double showers in the thinly segmented first layer.
The is illustrated in Fig. 14. The resulting rejection power of the calorimeter for π0 is about three for
high-energy isolated photons.

Fig. 14: Energy depositions in the successive layers of the ATLAS EM calorimeter of a candidate photon on the
left and a candidate π0 on the right.

As illustrated by Fig. 1, the association of the tracks measured in the inner tracking system with
the energy deposits in the calorimeter makes it possible to distinguish between electrons and photons.
The shape of the energy deposition in the EM and hadronic calorimeters makes it possible to distinguish

18

I. WINGERTER

312



between electrons and hadrons.

8 Detectors
Additional components are necessary to build and operate a complete detector. In the previous sections,
only a few topics have been discussed. Many more would need to be included to give a fair description of
the versatility, complexity and refinement of the design and operation of a detector. Among the missing
topics are: low noise electronics, fast digital electronics, selective and efficient trigger systems, high
data flow systems, real-time software, highly radiation tolerant components, reconstruction software,
and calibration.

Revealing and measuring rare phenomena are the main goals for LHC physics. This imposes
extremely severe constraints on the four main LHC detectors: ATLAS, CMS, LHCb, and ALICE. These
four detectors are large, complex, and have very high capability. Huge magnet systems dominate their
mechanical structures. The proton collision rate of 1 GHz produces particles and jets of TeV-scale
energy. This imposes severe demands in terms of spectrometer and calorimeter size, rate capability, and
radiation resistance. The fact that a few hundred events, out of the 109 events produced every second,
can be written to disk necessitates highly complex online event selection as a trigger.

The basic layout of LHC collider experiments is quite similar.

– Tracking detector: charged particles are bent inside a solenoidal magnetic field produced by the
magnet surrounding the tracking system. The charged particle momentum is reconstructed from
the association of hits collected in the sensitive tracking detectors along the track path.

– Vertex detector: close to the interaction point, there are several layers of pixel detectors
which allow the position of charged particle vertices to be measured to a few tens of mi-
crometres. This also allows short-lived B and D mesons to be identified.

– Spectrometer: to follow the track curvature a succession of sensitive layers (mainly silicon
strips) are positioned around the interaction region and typically up to 1 m in radius and a few
metres along the beam line. The CMS tracking detector is built from silicon sensors only,
whereas the other experiments use silicon at low radius and a gas detector further along the
track path.

– Calorimeters: the tracking detector is surrounded by the EM and hadronic calorimeters, which
measure the energy of electrons, photons, hadrons, and jets by absorbing them. The hermiticity of
the calorimeters in the transverse direction and down to very small angles close to the beam line
allows reconstruction of the total transverse energy deposited with a high-performance resolution
thereby allowing reconstruction of the transverse energy carried away by neutrinos or any non-
interacting particle. The LHC calorimeters are highly segmented in order reconstruct the position
of neutral particles, to separate electrons from hadrons, and to be less sensitive to the energy pile-up
from simultaneous proton–proton interactions.

– Muons systems: muons, which deposit very little energy in the calorimeters and are therefore not
stopped, are measured at very large radii by dedicated muons systems.

The sequence of the vertex detector, spectrometer, calorimetry, and muon detector is the classic
basic geometry that underlies most collider and fixed-target experiments. There are many other types
of detectors, from very small to very large arrays of telescopes, for example. Each detector has its own
specialism such as neutrino detection or detection of very high-energy gamma rays from astrophysical
sources. These are only a few examples from a large variety of existing detector systems. However, it is
important to remember that there are only a few basic principles of particle interaction with matter that
underlie these different detectors.
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