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Abstract

The European School of High-Energy Physics is intended to give young physicists an introduction to the the-
oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on
quantum field theory and the Electroweak Standard Model, Higgs physics, flavour physics and CP violation,
theories ’behind’ the Standard Model, heavy ion physics, and practical statistics for High Energy Physics.
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Preface

The twenty-third event in the series of the European School of High-Energy Physics took place in Bansko,
Bulgaria, from 2 to 15 September 2015. It was organized jointly by CERN, Geneva, Switzerland, and JINR,
Dubna, Russia, with support from the Bulgarian Nuclear Regulatory Agency, St. Kliment Ohridski University
of Sofia, and the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences.
The local organization team was chaired by Prof. Roumen Tsenov who was greatly assisted by Mrs Gergana
Mitkova on many administrative matters. The other members of the local committee were: P. Iaydjuev, I. Ilchev,
L. Kostov, B. Pavlov, D. Tonev and G. Vankova-Kirilova.

A total of 92 students of 34 different nationalities attended the school, mainly from institutes in member
states of CERN and/or JINR, but also some from other regions. The participants were generally students in
experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the St. Ivan Rilski hotel in Bansko, about 160 km to the south of Sofia. According
to the tradition of the school, the students shared twin rooms mixing participants of different nationalities.

A total of 30 lectures were complemented by daily discussion sessions led by six discussion leaders. The
students displayed their own research work in the form of posters in an evening session in the first week, and
the posters stayed on display until the end of the School. The full scientific programme was arranged in the
on-site conference facilities.

The School also included an element of outreach training, complementing the main scientific programme.
This consisted of a two-part course from the Inside Edge media training company. In an after-dinner session,
students had the opportunity to act out radio interviews under realistic conditions based on a hypothetical
scenario.

The students from each discussion group subsequently carried out a collaborative project, preparing a talk
on a physics-related topic at a level appropriate for a general audience. The talks were given by student rep-
resentatives of each group in an evening session in the second week of the School. A jury, chaired by Svejina
Dimitrova, Director of the Astronomic Observatory and Planetarium in Varna, judged and gave feedback on the
presentations; other members of the jury were Andrea de Simone (lecturer at the School), Kate Ross (Schools
Administrator), and Zornica Asanska and Klimentina Savova (high-school students who are studying physics
at the Academician Kiril Popov Mathematical School in Plovdiv). We are very grateful to all of these people
for their help.

Our thanks go to the local-organization team and, in particular, to Roumen Tsenov, for all of their work and
assistance in preparing the School, on both scientific and practical matters, and for their presence throughout
the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted the School
organizers and the participants in many ways.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, appreciated listening to and discussing with the teaching staff of world renown.

We would like to express our strong appreciation to Professor Rolf Heuer, Director General of CERN,
and Professor Victor Matveev, Director of JINR, for their lectures on the scientific programmes of the two
organizations and for discussing with the School participants. It is worth noting that Professor Heuer lectured
at every European School of HEP during his seven-year mandate as Director General of CERN that ends in
December 2015.

Our sincere thanks are also due to the following high-level visitors who participated in the opening cere-
mony of the School: Ms Genoveva Jecheva, Director, National Science Fund of the Ministry of Education and
Science; Professor Latchesar Kostov, Chairman, Bulgarian Nuclear Regulatory Agency; and Professor Dimitar
Tonev, Director, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences.

In addition to the rich academic programme, the participants enjoyed numerous sports, leisure and cultural
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activities in and around Bansko. Particularly noteworthy were the half-day excursion to the village of Dobursko,
with its historic church and dancing grandmothers, and the town of Razlog, and the full-day excursion to the
impressive Rila Monastery and the town of Blagoevgrad. Sports and leisure activities in and around the hotel, as
well as the excursions, provided an excellent environment for informal interactions between staff and students.

We are very grateful to Kate Ross and Tatyana Donskova for their untiring efforts in the lengthy preparations
for and the day-to-day operation of the School. Their continuous care of the participants and their needs during
the School was highly appreciated.

The success of the School was to a large extent due to the students themselves. Their poster session was very
well prepared and highly appreciated, their group projects were a huge success, and throughout the School they
participated actively during the lectures, in the discussion sessions and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Quantum Field Theory and the Electroweak Standard Model

A.B. Arbuzov
BLTP JINR, Dubna, Russia

Abstract
Lecture notes with a brief introduction to Quantum field theory and the Stan-
dard Model are presented. The lectures were given at the 2015 European
School of High-Energy Physics. The main features, the present status, and
problems of the Standard Model are discussed.

Keywords
Lectures; ESHEP; quantum field theory; Standard Model.

1 Introduction
The lecture course consists of four main parts. In the Introduction, we will discuss what is the Standard
Model [1–3], its particle content, and the main principles of its construction. The second Section contains
brief notes on Quantum Field Theory (QFT), where we remind the main objects and rules required further
for construction of the SM. Sect. 3 describes some steps of the SM development. The Lagrangian of the
model is derived and discussed. Phenomenology and high-precision tests of the model are overviewed
in Sect. 4. The present status, problems, and prospects of the SM are summarized in Conclusions. Some
simple useful exercises and questions are given for students in each Section. These lectures give only an
overview of the subject while for details one should look in textbooks, e.g., [4–6], and modern scientific
papers.

1.1 What is the Standard Model?
Let us start with the definition of the subject of the lecture course. It is the so-called Standard Model
(SM). This name is quite widely accepted and commonly used to define a certain theoretical model in
high energy physics. This model is suited to describe properties and interactions of elementary particles.
One can say that at the present moment, the Standard Model is the most successful physical model ever.
In fact it describes with a high precision hundreds and hundreds independent observables. The model
made also a lot of predictions which have been verified later experimentally. Among other physical
models pretending to describe fundamental properties of Nature, the SM has the highest predictive power.
Moreover, the model is minimal: it is constructed using only fields, interactions and parameters which
are necessary for consistency and/or observed experimentally. The minimality and in general the success
of the model is provided to a great extent by application of symmetry principles.

In spite of the nice theoretical features and successful experimental verification of the SM, we
hardly can believe that it is the true fundamental theory of Nature. First of all, it is only one of an
infinite number of possible models within Quantum field theory. So it has well defined grounds but
its uniqueness is questionable. Second, we will see that the SM and QFT itself do not seem to be the
most adequate (mathematical) language to describe Nature. One can also remind that gravity is not (yet)
joined uniformly with other interactions.

But in any case, the SM is presently the main theoretical tool in high-energy physics. Most likely
this status will be preserved even if some new more fundamental physical model would be accepted by
the community. In this case the SM can be treated as an approximation (a low-energy limit) of a more
general theory.

Proceedings of the 2015 European School of High-Energy Physics, Bansko, Bulgaria, 2 – 15 September 2015, edited by M. Mulders
and G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 4/2017, CERN-2017-008-SP (CERN, Geneva, 2017)
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Fig. 1: Particle content of the Standard Model. Courtesy to Wikipedia: ’Standard Model of Elementary Particles’
by MissMJ — Own work by uploader, PBS NOVA, Fermilab, Office of Science, United States Department of
Energy, Particle Data Group.

1.2 Particle content of the Standard Model
Before construction of the SM, let us defined its content in the sense of fields and particles.

We would like to underline that the discovery of the Higgs boson at LHC in 2012 [7, 8] just
finalized the list of SM particles from the experimental point of view. Meanwhile the Higgs boson is one
of the key ingredients of the SM, so it was always in the list even so that its mass was unknown.

The particle content of the SM is given on Fig. 1. It consists of 12 fermions (spin = 1/2), 4 vector
gauge bosons (spin = 1), and one scalar Higgs boson (spin = 0). For each particle the chart contains
information about its mass, electric charge, and spin. One can see that the data on neutrino masses is
represented in the form of upper limits, since they have not been yet measured. Strictly speaking the
information about neutrino masses should be treated with care. According to the present knowledge, as
discussed in the course of lectures given by S. Petcov, a neutrino particle of a given lepton flavor e.g., ντ ,
is not a mass eigenstate but a superposition of (at least) three states with different masses.

Fermions are of two types: leptons and quarks. They are:
— 3 charged leptons (e, µ, τ );
— 3 neutrinos νe, νµ, ντ (or ν1, ν2, ν3, see lectures by S. Petcov);
— 6 quarks of different flavors, see lectures by S. Gori.

Each quark can have one of three colours, see lectures by A. Mitov. Each fermion has 2 degrees
of freedom e.g., can have spin up or down, or can be either left or right. Each fermion particle in the SM
has an anti-particle, f 6= f̄ . The later statement is not yet verified for neutrinos, they might be Majorana
particles.
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Traditionally fermions are called matter fields, contrary the the so-called force fields, i.e., in-
termediate vector bosons which are mediate interactions. Please keep in mind that this notion doesn’t
correspond to the common sense directly. In fact most of fermions are unstable and do not form the
’ordinary matter’ around us, while e.g., mass of nuclear matter is provided to a large extent by gluons.
Moreover, looking at various Feynman diagrams we can see that fermions can serve as intermediate
particles in interaction processes.

In the SM we have the following boson fields:
— 8 vector (spin=1) gluons;
— 4 vector (spin=1) electroweak bosons: γ, Z, W+, W−;
— 1 scalar (spin=0) Higgs boson.

Gluons and photon are massless and have 2 degrees of freedom (polarizations), Z and W bosons
are massive and have 3 degrees of freedom (polarizations). By saying massless or massive we mean the
absence or presence of the corresponding terms in the Lagrangian of the SM. This is not always related to
observables in a straightforward way: e.g., gluons are not observed as free asymptotic states, and masses
of unstable W and Z bosons are defined indirectly from kinematics of their decay products.

Gluons and Electroweak (EW) bosons are gauge bosons, their interactions with fermions are fixed
by certain symmetries of the Lagrangian. Note that electrically neutral bosons (H , γ, Z, and gluons)
coincide with their anti-particles e.g., γ ≡ γ̄.

Besides the particle content, we have to list the interactions which are described by the Standard
Model. Our final goal would be to answer the question “How many fundamental interactions are there
in Nature?” But we should understand that it is only a dream, a primary motivation of our studies.
Being scientists we might be always unsure about the true answer to this question. On the other hand,
we can certainly say, how many different interactions is there in a given model, for example the SM
one. To answer this question we have to look at the Lagrangian of the model, see e.g., book [9]. For the
SM it looks very long and cumbersome. The SM Lagrangian contains kinetic terms for all listed above
fields and dozens of terms that describe interactions between them. Before trying to count the number of
interactions we should understand the structure and symmetries of the Lagrangian.

1.3 Principles of the Standard Model
We are going to construct the SM Lagrangian. For this purpose, we have to define first the guiding
principles. That is important for optimization of the procedure. The same principles might be used
further in construction of other models.

First of all, we have to keep in mind that the SM is a model that is built within the local Quantum
field theory. From the beginning this condition strongly limits the types of terms that can appear in the
Lagrangian because of the Lorentz invariance, the Hermitian condition, the locality etc. One can make a
long list of various conditions. Here I list only the main principles which will be exploited in our way of
the SM construction:

– the generalized correspondence to various existing theories and models like Quantum Mechanics,
QED, the Fermi model etc.;

– the minimality, i.e., only observed and/or unavoidable objects (fields and interactions) are in-
volved;

– the unitarity which is a general condition for cross sections and various transformations of fields
related to the fact that any probability limited from above by unity;

– the renormalizability is necessary for derivation of finite prediction of observable quantities at the
quantum level;

– the gauge principle for introduction of interactions.

The main guiding principle is the symmetry one. The SM possesses several different symmetries:
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— the Lorentz (and Poincaré) symmetry,
— the CPT symmetry,
— three gauge symmetries SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,
— the global SU(2)L × SU(2)R symmetry in the Higgs sector (it is broken spontaneously);
— some other symmetries, like the one between three generation of fermions, the one that provides
cancellation of anomalies etc.
In this context, one can mention also the conformal symmetry which is obviously broken in the SM, but
the mechanism of its breaking and the consequences are very important for the model.

2 Brief notes on Quantum field theory
The Standard Model is a model constructed within the local relativistic Quantum field theory. It means
that the SM obeys the general QFT rules. We should keep in mind that there are many other possible
QFT models, and the SM is distinguished between them mostly because of its successful experimental
verifications but also because of a number of its features like renormalizablity, unitarity, and cancellation
of axial anomalies. I assume that all students of the ESHEP school had courses on Quantum field theory.
Here we will just remind several features of QFT which are important for further construction of the SM
Lagrangian.

As it was already mentioned, we are going to preserve the correspondence to Quantum Mechanics
(QM). Historically, QFT was developed on the base of QM, in particular using the quantum oscillator
ansatz. But by itself QFT can be considered as a more profound fundamental construction, so one should
be able to define this theory without referring to QM. In fact, QFT can be formulated starting from the
basic classification of fields as unitary irreducible representations of the Lorentz group.

Let us first of all fix the notation. We will work in the natural system of units where the speed
of light c = 1 and the reduced Planck constant ~ = 1. The Lorentz indexes will be denoted by Greek
letters, like µ = 0, 1, 2, 3; pµ is a four-momentum of a particle, p = (p1, p2, p3) is a three-momentum,
p0 = E is the particle energy.

The metric tensor of the Minkowsky space is chosen in the form

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , gµνpν = pµ, gµµ = 4. (1)

We will always assume summation over a Lorentz index if it is repeated twice: AµBµ ≡ A0B0−A1B1−
A2B2 − A3B3, where the metric tensor is used. In particular, the scalar product of two four-vectors is
defined as pq = pµqµ = p0q0 − p1q1 − p2q2 − p3q3. It is a relativistic invariant.

We will assume that there exist so-called asymptotic free final states for particle-like excitation
of quantum fields. These asymptotic states will be associated with initial or final state (elementary)
particles which fly in a free space without interactions. For such states we apply the on-mass-shell
condition p2 = pp = p2

0 − p2 = E2 − p2 = m2 where m is the mass of the particle.

Now we will postulate the properties of the fields that are required for the construction of the SM.
A neutral scalar field can be defined as

ϕ(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxa−(p) + e+ipxa+(p)

)
, (2)

where a±(p) are creation and annihilation operators. Their commutation relations read

[a−(p), a+(p′)] ≡ a−(p)a+(p′)− a+(p′)a−(p) = δ(p− p′),

[a−(p), a−(p′)] = [a+(p), a+(p′)] = 0. (3)

4
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The field is a function of four-coordinate x in the Minkowsky space. It behaves as a plane wave in the
whole space. The Lagrangian1 for the neutral scalar field can be chosen in the form

L(x) =
1

2
(∂µϕ∂µϕ−m2ϕ2). (4)

Note that it depends only on the field and its first derivative. Variation of the action A ≡
∫

d4L(x) with
respect to variations of the field ϕ→ ϕ+ δϕ according to the least action principle gives

δ

∫
dxL(x) =

∫
dx

(
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)
= 0. (5)

Here we apply quite natural for QFT zero boundary conditions for the field and its derivative at infinity
and get the well-known Klein–Gordon equation of motion

(∂2
µ +m2)ϕ(x) = 0. (6)

EXERCISE: Check that the postulated above field ϕ(x) satisfies the equation.

Creation and annihilation operators act in the Fock space which consists of vacuum ground state
denoted as |0〉 and excitations over it. For the vacuum state we postulate

a−(p)|0〉 = 0, 〈0|a+(p) = 0, 〈0|0〉 = 1. (7)

Actually, a−(p)|0〉 = 0 · |0〉 but the vacuum state can be dropped since finally all observable quantities
are proportional to 〈0|0〉. The field excitations are states of the form

|f〉 =

∫
dp f(p)a+(p)|0〉, |g〉 =

∫
dpdq g(p,q)a+(p)a+(q)|0〉, . . . (8)

The most simple excitation a+(p)|0〉 ≡ |p〉 is used to describe a single on-mass-shell particle with
momentum p. Then a+(p)a+(q)|0〉 is a two-particle state and so on. Because of the presence of
modulating functions like f(p) and g(p,q), the Fock space is infinite-dimensional.

EXERCISES: 1) Find the norm 〈p|p〉; 2) check that operator N̂ =
∫

dp a+(p)a−(p) acts as a
particle number operator.

A charged scalar field is defined as

ϕ(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxa−(p) + e+ipxb+(p)

)
,

ϕ∗(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxb−(p) + e+ipxa+(p)

)
,

[a−(p), a+(p′)] = [b−(p), b+(p′)] = δ(p− p′), [a±, b±] = 0,

where operators a±(p) create and annihilate particles, while operators b±(p) are used for the same
purpose for anti-particles. The corresponding Lagrangian reads

L(φ, φ∗) = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ. (9)

Note that ϕ and ϕ∗ are related by a generalized conjugation which involves operator transformations:
(a±)∗ = a∓ and (b±)∗ = b∓. It is worth no to note also that ϕ and ϕ∗ are not “a particle and an
anti-particle”.

1Actually it is a Lagrangian density.
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A massive charged vector field (remind W bosons) is defined as

Uµ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

n=1,2,3

enµ(p)
(
e−ipxa−n (p) + e+ipxb+n (p)

)
,

U∗µ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

n=1,2,3

enµ(p)
(
e−ipxb−n (p) + e+ipxa+

n (p)
)
,

[a−n (p), a+
l (p′)] = [b−n (p), b+l (p′)] = δnlδ(p− p′), [a±, b±] = 0.

For polarization vectors enµ(p) the following conditions are applied:

enµ(p)elµ(p) = −δnl, pµe
n
µ(p) = 0. (10)

EXERCISE: Using the above orthogonality conditions, show that

∑

n=1,2,3

enµ(p)enν (p) = −
(
gµν −

pµpν
m2

)
. (11)

The Lagrangian for a massive charged vector field takes the form

L = −1

2

(
∂µU

∗
ν − ∂νU∗µ

)(
∂µUν − ∂νUµ

)
+m2U∗µUµ. (12)

The corresponding Euler-Lagrange equation reads

−∂µ(∂µUν − ∂νUµ)−m2Uµ = 0.

EXERCISE: Using the above equation, show that ∂νUν(x) = 0, i.e., derive the Lorentz condition.
Note that the Lorentz condition removes from the field one of four independent degrees of freedom
(components).

A massless neutral vector field (a photon) is defined as

Aµ(x) =
1

(2π)3/2

∫
dp√
2p0

eλµ(p)
(
e−ipxa−λ (p) + e+ipxa+

λ (p)
)
, (13)

[a−λ (p), a+
ν (p′)] = −gλνδ(p− p′) eλµ(p)eλν (p) = gµν , eλµ(p)eνµ(p) = gλν .

Formally this field has four polarizations, but only two of them correspond to physical degrees of free-
dom. The corresponding Lagrangian reads

L = −1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ. (14)

A Dirac fermion field is defined as

Ψ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

r=1,2

(
e−ipxa−r (p)ur(p) + e+ipxb+r (p)vr(p)

)
, (15)

Ψ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

r=1,2

(
e−ipxb−r (p)v̄r(p) + e+ipxa+

r (p)ūr(p)
)
,

[a−r (p), a+
s (p′)]+ = [b−r (p), b+s (p′)]+ = δrsδ(p− p′),

[a+
r (p), a+

s (p′)]+ = [a−r (p), b+s (p′)]+ = . . . = 0.

EXERCISE: Show that a+
r (p)a+

r (p) = 0, i.e., verify the Pauli principle.
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Here, ur, ur, ūr, and v̄r are four-component spinors, so Ψ(x) ≡ {Ψα(x)} is a four-vector column,
α = 1, 2, 3, 4, and Ψ(x) is a four-vector row,

ūu =
4∑

α=1

ūαuα =
4∑

α=1

uαūα = Tr(uū).

Spinors are solutions of the (Dirac) equations:

(p̂−m)ur(p) = 0, ūr(p)(p̂−m) = 0, (16)

(p̂+m)vr(p) = 0, v̄r(p)(p̂+m) = 0,

p̂ ≡ pµγµ = p0γ0 − p1γ1 − p2γ2 − p3γ3, m ≡ m1,

where 1 is the unit four-by-four matrix. For the solutions of the above equations we impose the normal-
ization conditions

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs.

The gamma matrixes (should) satisfy the commutation condition

[γµ, γν ]+ = 2gµν1 ⇒ γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1

and the condition of Hermitian conjugation

γ†µ = γ0γµγ0.

The latter leads to the rule of the Dirac conjugation:

Ψ = Ψ†γ0, ū = u†γ0, v̄ = v†γ0. (17)

EXERCISE: Show that the Dirac conjugation rule is consistent with the set of Dirac equations (16).

Note that explicit expressions for gamma matrixes are not unique, but they are not necessary for
construction of observables, QUESTION: Why is that so? The most common representations are the
so-called Dirac’s (standard) and Weyl’s (spinor) ones.

Two values of index r in Eq. (15) correspond to two independent degrees of freedom for each
spinor in other words to to independent solutions of the Dirac equations. These two degrees of freedom
can be treated as two polarization states like ’spin up’ and ’spin down’. But in the Standard Model, there
is one special choice of the basis for spinors, namely we will distinguish Left (L) and Right (R) spinors.
By definition,

ΨL ≡ PLΨ, ΨR ≡ PRΨ, PL,R ≡
1 −,+ γ5

2
, Ψ = ΨL + ΨR. (18)

Here γ5 ≡ iγ0γ1γ2γ3, this gamma-matrix has the properties

[γµ, γ5]+ = 0, γ2
5 = 1, γ†5 = γ5. (19)

As can be seen from Eq. (18), PL,R form a complete set of orthogonal projection operators,

P 2
L,R = PL,R PLPR = PRPL = 0, PL + PR = 1. (20)

The sign before γ5 in the definition of the projection operators in Eq. (18) corresponds to the standard
representation of gamma matrixes2. The Dirac conjugation (17) of left and right spinors gives

ΨL ≡ Ψ
1 + γ5

2
, ΨR ≡ Ψ

1− γ5

2
.

2In the spinor representation the sign is opposite: PL ≡ (1 + γ5)/2 and PR ≡ (1− γ5)/2.
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Remind some properties of gamma matrixes

Trγµ = Trγ5 = 0, Trγµγν = 4gµν , Trγ5γµγν = 0,

Trγµγνγαγβ = 4(gµνgαβ − gµαgνβ + gµβgνα), Trγ5γµγνγαγβ = −4iεµναβ .

The equations for u and v are chosen so that we get the conventional Dirac equations

(iγµ∂µ −m)Ψ(x) = 0, i∂µΨ(x)γµ +mΨ(x) = 0.

These equations follow also from the Lagrangian

L =
i

2

[
Ψγµ(∂µΨ)− (∂µΨ)γµΨ

]
−mΨΨ ≡ iΨγµ∂µΨ−mΨΨ.

Note that the right-hand side is a short notation for the true Lagrangian which is given in the middle.

In QFT Lagrangians (Hamiltonians) should be Hermitian: L† = L. QUESTION: What kind of
problems one can have with a non-Hermitian Hamiltonian?

Up to now we considered only free non-interacting fields. Studies of transitions between free
states is the main task of QFT3.

Let us postulate the transition amplitude (matrix element)M of a physical process:

M≡ 〈out|S|in〉, S ≡ T exp

(
i

∫
dxLI(ϕ(x))

)
. (21)

Here S is the so-called S-matrix which is the general evolution operator of quantum states. Letter T
means the time ordering operator, it will be discussed a bit later. The initial and final states are

|in〉 = a+(p1) . . . a+(ps)|0〉, |out〉 = a+(p′1) . . . a+(p′r)|0〉. (22)

The differential probability to evolve from |in〉 to |out〉 is

dw = (2π)4δ(
∑

p′i)
n1 . . . ns

2E1 . . . Es
|M|2

r∏

j=1

dp′j
(2π)32E′j

.

Here ni is the particle number density of ith particle beam.

Nontrivial transitions happen due to interactions of fields. QFT prefers dealing with local in-
teractions ⇒ LI = LI(ϕ(x)). By ’local’ we mean that all interaction terms in the Lagrangian are
constructed as products of fields (or their first derivatives) taken the same space-time coordinate.

Examples of interaction Lagrangians:

gϕ3(x), hϕ4(x), yϕ(x)Ψ(x)Ψ(x),

eΨ(x)γµΨ(x)Aµ(x), GΨ1(x)γµΨ1(x) ·Ψ2(x)γµΨ2(x).

IMPORTANT: Always keep in mind the dimension of your objects! The reference unit is the dimension
of energy (mass):

[E] = [m] = 1 ⇒ [p] = 1, [x] = −1. (23)

An action should be dimensionless
[∫

dxL(x)

]
= 0 ⇒ [L] = 4. (24)

3Collective, nonperturbative effects, bound states etc. are also of interest, but that goes beyond the scope of these lectures.
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EXERCISE: Show that [ϕ] = [Aµ] = 1 and [Ψ] = 3/2. Find the dimensions of the coupling
constants g, h, y, e, and G in the examples above.

By definition the time ordering operator acts as follows:

T A1(x1) . . . An(xn) = (−1)lAi1(xi1) . . . Ain(xin) with x0
i1 > . . . > x0

in , (25)

where l is the number of fermion field permutations.

The perturbative expansion of the S matrix exponent (21) leads to terms like

ingn

n!
〈0|a−(p′1) . . . a−(p′r)

∫
dx1 . . . dxnTϕ

3(x1) . . . ϕ3(xn)a+(p1) . . . a+(ps)|0〉.

Remind that fields ϕ also contain creation and annihilation operators. By permutation of operators
a−(p)a+(p′) = a+(p′)a−(p) + δ(p − p′) we move a− to the right and a+ to the left. At the end we
get either 0 because a−|0〉 >= 0 or some terms proportional to 〈0|0〉 = 1.

EXERCISE: Show that [a−(p), ϕ(x)] = eipx

(2π)3/2
√

2p0
and [a−r (p),Ψ(x)]+ = eipxūr(p)

(2π)3/2
√

2p0
.

By definition the causal Green function is given by

〈0|Tϕ(x)ϕ(y)|0〉 ≡ −iDc(x− y). (26)

It is a building block for construction of amplitudes. One can show (see textbooks) that

(∂2 +m2)Dc(x) = δ(x), (27)

so that Dc is the Green function of the Klein-Gordon operator,

Dc(x) =
−1

(2π)4

∫
dp e−ipx

p2 −m2 + i0
, (28)

where +i0 is an infinitesimally small quantity imaginary quantity which shifts the poles of the Green
function from the real axis. The sign of this quantity is chosen to fulfil the requirement of the time
ordering operation in Eq. (26).

For other fields we have

〈0|T Ψ(x)Ψ(y)|0〉 =
i

(2π)4

∫
dp e−ip(x−y)(p̂+m)

p2 −m2 + i0
,

〈0|T Uµ(x)U∗ν (y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y)(gµν − pµpν/m2)

p2 −m2 + i0
, (29)

〈0|T Aµ(x)Aν(y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y)gµν

p2 + i0
.

The Wick theorem states that for any combinations of fields

T A1 . . . An ≡
∑

(−1)l〈0|TAi1Ai2 |0〉 . . . 〈0|TAik−1
Aik |0〉 : Aik . . . Ain : (30)

The sum is taken over all possible ways to pair the fields.

The normal ordering operation acts as

: a−1 a
+
2 a
−
3 a
−
4 a

+
5 a
−
6 a

+
7 : = (−1)la+

2 a
+
5 a

+
7 a
−
1 a
−
3 a
−
4 a
−
6 (31)

so that all annihilation operators go to the left and all creation operators go to the right. The number of
fermion operator permutations l provides the factor (−1)l.
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Using the Wick theorem we construct the Feynman rules for simple gφ3 and hϕ4 interactions.
But for the case of gauge interactions we need something more as we will see below.

It appears that symmetries play the crucial role in QFT. There are two major types of symmetries
in the SM: global and local ones. By a global symmetry we mean invariance of a Lagrangian and
observables with respect to certain transformations of coordinates and/or fields if the transformations are
the same in each space-time point. If the transformations do depend on coordinates, the corresponding
symmetry is called local.

The 1st Noether (Nöther) theorem:
If an action is invariant with respect to transformations of a global Lie group Gr with r parameters,
then there are r linearly independent combinations of Lagrange derivatives which become complete
divergences; and vice versa.

If the field satisfies the Euler–Lagrange equations, then divJ = ∇J = 0, i.e., the Noether currents
are conserved. Integration of those divergences over a 3-dimensional volume (with certain boundary
conditions) leads to r conserved charges. Remind that conservation of the electric charge in QED is
related to the global U(1) symmetry of this model, and that Poincaré symmetries lead to conservation of
energy, momentum, and angular momentum.

Much more involved and actually important for us is the 2nd Noether theorem:
If the action is invariant with respect to the infinite-dimensional r-parametric group G∞,r with deriva-
tives up to the kth order, then there are r independent relations between Lagrange derivatives and deriva-
tives of them up to the kth order; and vice versa.

The importance of the second theorem is justified by the fact that gauge groups (and also the gen-
eral coordinate transformation in Einstein’s gravitational theory) are infinite-dimensional groups. The
2nd Noether theorem provides r conditions on the fields which are additional to the standard Euler–
Lagrange equations. There conditions should be used to exclude double counting of physically equiva-
lent field configurations.

2.1 Gauge symmetries
Let us start the discussion of local gauge symmetries with Quantum electrodynamics (QED). The free
Lagrangians for electrons and photons

L0(Ψ) = iΨγµ∂µΨ−mΨΨ, L0(A) = −1

4
FµνFµν (32)

are invariant with respect to the global U(1) transformations

Ψ(x)→ exp(ieθ)Ψ(x), Ψ(x)→ exp(−ieθ)Ψ(x), Aµ(x)→ Aµ(x). (33)

One can note that Fµν is invariant also with respect to local transformations Aµ(x) → Aµ(x) +
∂µω(x). For fermions the corresponding transformations are

Ψ(x)→ exp(ieω(x))Ψ(x), Ψ(x)→ exp(−ieω(x))Ψ(x), (34)

i.e., the global constant angle θ in Eq. (33) is substituted by a local function ω(x) which varies from one
space-time point to another.

The question is how to make the fermion Lagrangian being also invariant? The answer is to
introduce the so-called covariant derivative:

∂µ → Dµ, DµΨ ≡ (∂µ − ieAµ)Ψ, DµΨ ≡ (∂µ + ieAµ)Ψ. (35)

Then we get the QED Lagrangian:

LQED = −1

4
FµνFµν + iΨγµDµΨ−mΨΨ
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= −1

4
FµνFµν + iΨγµ∂µΨ−mΨΨ + eΨγµΨAµ,

where the last term describes interaction of electrons and positrons with photons. The most important
point here is that the structure of the interaction term is completely fixed by the gauge symmetry. Nev-
ertheless, there is one specific feature of the abelian U(1) case, namely the values of electric charges
(coupling constants) can be different e.g., for up and down quarks.

One can note that local transformations are more natural because of causality of Special relativity.

EXERCISES: 1) Check the covariance: DµΨ → eieω(x)(DµΨ); 2) construct the Lagrangian of
scalar QED (use Eqs. (9) and (14)).

Let’s look now again at the free photon Lagrangian

L0(A) = −1

4
(∂µAν − ∂νAµ)2 = −1

2
AνKµνAν ,

Kµν = gµν∂
2 − ∂µ∂ν ⇒ Kµν(p) = pµpν − gµνp2.

Operator Kµν(p) has zero modes (since pµKµν = 0), so it is not invertable. Definition of the photon
propagator within the functional integral formalism becomes impossible. The reason is the unresolved
symmetry. The solution is to introduce a gauge fixing term into the Lagrangian:

L0(A) = −1

4
FµνFµν −

1

2α
(∂µAµ)2 ⇒

〈0|T Aµ(x)Aν(y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y) gµν + (α− 1)pµpν/p

2

p2 + i0
.

It is very important that physical quantities do not depend on the value of α.

Let us briefly discuss the features of non-abelian Gauge symmetries which will be also used in the
construction of the SM. Transformations for a non-abelian case read

Ψi → exp igωataijΨj , [ta, tb] = ifabctc,

Ba
µ → Ba

µ + ∂µω
a + gfabcBb

µω
c, Fµν ≡ ∂µBa

ν − ∂νBa
µ + gfabcBb

µB
c
ν ,

where ta are the group generators, fabc are the structure constants (see details in the lectures by A. Mi-
tov).

We introduce the covariant derivative

∂µΨ→ DµΨ ≡ (∂µ − igBa
µt
a)Ψ

and get

L(Ψ, B) = iΨγµDµΨ + L(B),

L(B) = −1

4
F aµνF

a
µν −

1

2α
(∂µB

a
µ)2 = −1

4

(
∂µB

a
ν − ∂νBa

µ

)2 − 1

2α
(∂µB

a
µ)2

− g

2
fabc

(
∂µB

a
ν − ∂νBa

µ

)
Bb
µB

c
ν −

g2

4
fabcfadeBb

µB
c
νB

d
µB

e
ν .

Note that L(B) contains self-interactions and can not be treated as a ’free Lagrangian’. There is no
any mass term for the gauge field in the Lagrangian, mB ≡ 0, because such a mass term would be not
gauge-invariant. It is worth to note that the non-abelian charge g is universal, i.e., it is the same for all
fields which are transformed by the given group.

Exclusion of double-counting due to the physical equivalence of the field configurations related to
each other by non-abelian gauge transformations is nontrivial. Functional integration over those identical
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configurations (or application of the BRST method) leads to the appearance of the so-called Faddeev–
Popov ghosts:

L(Ψ, B)→ L(Ψ, B) + Lgh,
Lgh = −∂µc̄a∂µca + gfacbc̄aBc

µ∂µc
a = −∂µc̄a∂µca − gfacb∂µc̄aBc

µc
a, (36)

where c and c̄ are ghost fields, they are fermions with a boson-like kinetic term. Keep in mind that
Faddeev–Popov ghosts are fictitious particles. In the Feynman rules they (should) appear only as virtual
states in propagators but not in the initial and final states. Formally, ghosts can be found also in QED,
but they are non-interacting since fabc = 0 there and can be totally omitted.

2.2 Regularization and renormalization
Higher-order terms in the perturbative series contain loop integrals e.g.,

I2 ≡
∫

d4p

(p2 + i0)((k − p)2 + i0)
∼
∫ |p|3 d|p|

|p|4 ∼ ln∞. (37)

Introduction of a cut-off M leads to a finite, i.e., regularized value of the integral:

Icut−off
2 = iπ2

(
ln
M2

k2
+ 1

)
+O

(
k2

M2

)
= iπ2

(
ln
M2

µ2
− ln

k2

µ2
+ 1

)
+O

(
k2

M2

)
. (38)

Another possibility is the dimensional regularization where dim = 4→ dim = 4− 2ε

Idim.reg.
2 = µ2ε

∫
d4−2εp

(p2 + i0)((k − p)2 + i0)
= iπ2

(
1

ε
− ln

k2

µ2
+ 2

)
+O (ε) . (39)

Here the divergence is parameterized by the ε−1 term. The origin of UV divergences is the locality of
interactions in QFT.

Let’s consider a three-point (vertex) function in the gφ3 model, it looks like

G =

∫
dx dy dz ϕ(x)ϕ(y)ϕ(z)F (x, y, z),

F dim.reg. =
A

ε
δ(y − x)δ(z − x) + . . .

IMPORTANT: Divergent terms are local because of the delta-functions.

A QFT model is called renormalizable if all UV-divergent terms are of the type of the ones existing
in the (semi)classical Lagrangian. Otherwise the model is non-renormalizable.

EXAMPLES:
a) renormalizable models: QED, QCD, the SM [proved by ’t Hooft & Veltman], hϕ4, gϕ3;
b) non-renormalizable models: the Fermi model with L ∼ G(ΨγµΨ)2 and General Relativity.

It can be shown that models with dimensionful ([G] < 0) coupling constants are non-renormalizable.

In renormalizable models all UV divergences can be subtracted from amplitudes and shifted into
counter terms in L. Each term in L gets a renormalization constant:

L =
Z2

2
(∂ϕ)2 − Zmm

2

2
ϕ2 + Z4hϕ

4 =
1

2
(∂ϕB)2 − m2

B

2
ϕ2 + hBϕ

4,

where ϕB =
√
Z2ϕ, m2

B = m2ZMZ
−1
2 , hB = hZ4Z

−2
2 are bare field, mass, and charge,

Zi(h, ε) = 1 +
Ah

ε
+
Bh2

ε2
+
Ch2

ε
+O(h3).
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Fig. 2: Beta decay.

Remonrmalization constants are chosen in such a way that divergences in amplitudes are cancelled out
with divergences in Zi. The happens order by order.

R. Feynman said once: “I think that the renormalization theory is simply a way to sweep the diffi-
culties of the divergences of electrodynamics under the rug.” Physicists are still not fully satisfied by the
renormalization procedure, but the method have be verified in many models. Moreover, renormalizable
models including the SM appear to be the most successful ones in description of phenomenology.

Physical results should not depend on the auxiliary scale µ:

F (k, g,m)
∞−→ Freg(k,M, g,m)

M→∞−→ Fren(k, µ, g,m)
RG−→ Fphys(k,Λ,m),

where Λ is a dimensionful scale.

Charge (and mass) become running, i.e., energy-dependent:

g → g

(
g,
µ′

µ

)
, β(g) ≡ dg

d lnµ

∣∣∣∣
gB=Const

. (40)

Note that the renormalization scale µ unavoidably appears in any scheme. Scheme and scale
dependencies are reduced after including higher and higher orders of the perturbation theory.

At this point we stop the brief introduction to Quantum field theory, comprehensive details can be
found in textbooks, e.g., Refs. [4, 6].

3 Construction of the Standard Model
3.1 The Fermi model and Cabibbo–Kobayashi–Maskawa mixing matrix
To describe the β decay n→ p+ e− + νe in 1933, see Fig. 2, Enrico Fermi suggested a simple model:

Lint = GΨnγρΨp︸ ︷︷ ︸
J

(N)
ρ

·ΨνγρΨe︸ ︷︷ ︸
J

(l)†
ρ

+h.c.

with interactions in the form of a product of two vector currents. This model was inspired by QED where
similar vector currents appear.

In 1957 R. Marshak & G. Sudarshan; and R. Feynman & M. Gell-Mann modified the model:

LFermi =
GFermi√

2
JµJ

†
µ,

Jµ = Ψeγρ
1− γ5

2
Ψνe + Ψµγρ

1− γ5

2
Ψνµ + (V −A)nucleons + h.c. (41)
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Explicit V-A (Vector minus Axial–vector) form of weak interactions means the 100% violation of parity.
In fact, it appears that only left fermions participate in weak interactions, while right fermions don’t. The
modification of the model was required to describe differential distributions of beta decays. Note that the
CP symmetry in Lagrangian (41) is still preserved.

The modern form of the Fermi Lagrangian includes 3 fermion generations:

LFermi =
GFermi√

2
(eL µL τL)γρ



νe,L
νµ,L
ντ,L


 · (u′L c′L t′L)V †u γρVd



d′L
s′L
b′L


+ . . .

Quarks {q′} are the eigenstates of strong interactions, and {q} are the eigenstates of the weak ones.

Matrixes Vd and Vu describe quark mixing (see details in lectures by S. Gori):


d
s
b


 = Vd ×



d′

s′

b′


 , V †uVd ≡ VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 .

By construction, in this model (and further in the SM) the mixing matrixes are unitary: Vi†Vi = 1. In
a sense, this property just keeps the number of quarks to be conserved. VCKM contains 4 independent
parameters: 3 angles and 1 phase.

QUESTION: What is mixed by VCKM? E.g., what is mixed by the Vud element of VCKM?

The Fermi model describes β-decays and the muon decay µ → e + ν̄e + νµ with a very high
precision. Nevertheless, there are two critical problems:
1. The model is non-renormalizable, remind that the dimension of the Fermi coupling constant [GFermi] =
−2.
2. Unitarity in this model is violated: consider e.g., electron-neutrino scattering

σtotal(eνe → eνe) ∼
G2

Fermi

π
s, s = (pe + pνe)

2. (42)

This cross section obviously growth with energy. Meanwhile the unitarity condition for lth partial wave
in the scattering theory requires that σl <

4π(2l+1)
s . For l = 1 we reach the unitarity limit at s0 =

2π
√

3/GFermi ≈ 0.9 · 106 GeV2. So at energies above ∼ 103 GeV the Fermi model is completely
senseless.

3.2 (Electro)Weak interactions in SM
The modern point of view is: a renormalizable model which preserves unitarity is a Yang–Mills (non-
abelian) gauge model. So we have to try to construct an interaction Lagrangian using the principle of
gauge symmetry.

Let’s try to do that for description of weak interactions The 1st step: we introduce a massive vector
W boson

Lint = −gw(JαWα + J†αW
†
α). (43)

Then the scattering amplitude, see Fig. 3, takes the form

T = i(2π)4g2
wJα

gαβ − kαkβ/M2
W

k2 −M2
W

J†β, (44)

where k is the W boson momentum. If |k| �MW we reproduce the Fermi model with

GFermi√
2

=
g2
w

M2
W

.
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Fig. 3: Feynman diagram for electron-neutrino scattering with W boson exchange.

However such a way to introduce interactions again leads to a non-renormalizable model. The problem
appears due to the specific momentum dependence in the propagator of a massive vector particle, see
Eq. (29).

The minimal way to introduce electromagnetic and weak interactions as gauge ones is to take the
group SU(2) ⊗ U(1). The abelian group U(1) is the same as gives conservation of charge in QED.
Instead of electric charge Q we introduce now the hypercharge Y . U(1) gauge symmetry provides
interactions of fermions with a massless vector (photon-like) field Bµ. The non-abelian group SU(2) is
the same as used for description of spinors in Quantum mechanics. Instead of spin we use here the weak
isospin I . There are three massless vector Yang–Mills bosons in the adjoint representation of this group:
W a
µ , a = 1, 2, 3. Two of them can be charge and the third one should be neutral. Introduction of the

third (electro)weak boson is unavoidable, even so that we did not have experimental evidences of weak
neutral currents at the times of the SM invention.
QUESTION: Why weak interactions in the charged current (like muon and beta decays) were discovered
experimentally much earlier than the neutral current ones?

One can show that the model built for gauge SU(2) ⊗ U(1) interactions of fermions and vector
bosons is renormalizable and unitary. But this model doesn’t describe the reality since all gauge bosons
should be massless because of the symmetry condition. To resolve this problem we need a mechanism
that will provide masses for some vector bosons without an explicit breaking of the gauge symmetry.

3.3 The Brout-Englert-Higgs mechanism
Let’s consider the simple abelian U(1) symmetry for interaction of a charged scalar field ϕ with a vector
field Aµ:

L = ∂µϕ
∗∂µϕ− V (ϕ)− 1

4
F 2
µν + ie(ϕ∗∂µϕ− ∂µϕ∗ϕ)Aµ + e2AµAµϕ

∗ϕ.

If V (ϕ) ≡ V (ϕ∗ · ϕ), L is invariant with respect to local U(1) gauge transformations

ϕ→ eieω(x)ϕ, ϕ∗ → e−ieω(x)ϕ∗, Aµ → Aµ + ∂µω(x). (45)

In polar coordinates ϕ ≡ σ(x)eiθ(x) and ϕ∗ ≡ σ(x)e−iθ(x) and the Lagrangian takes the form

L = ∂µσ∂µσ + e2σ2 (Aµ +
1

e
∂µθ)

︸ ︷︷ ︸
≡Bµ

(Aµ +
1

e
∂µθ)

︸ ︷︷ ︸
≡Bµ

−V (ϕ∗ϕ)− 1

4
F 2
µν . (46)

Note that after the change of variables Aµ + 1
e∂µθ → Bµ, we have Fµν(A) = Fµν(B).
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Fig. 4: The Higgs field potential. Picture courtesy: E.P.S. Shellard, DAMTP, Cambridge. From
http://www.geocities.com/CapeCanaveral/ 2123/breaking.htm.

We see that θ(x) is completely swallowed by the field Bµ(x). So we made a change of variables.
But which set of variables is the true physical one? This question is related to the choice of variables
in which the secondary quantization should be performed. And the answer can be given by measure-
ments. In fact, according to Quantum mechanics only quantum eigenstates can be observed, so we have
a reference point.

R. Brout & F. Englert [10], and P. Higgs [11], see also a brief review in the Scientific Background
on the Nobel Prize in Physics 2013 [12], suggested to take the scalar potential in the form

V (ϕ∗ϕ) = λ(ϕ∗ϕ)2 +m2ϕ∗ϕ. (47)

For λ > 0 and m2 < 0 we get the shape of a Mexican hat, see Fig. 4. We have chosen a potential for
which V (ϕ∗ϕ) = V (σ2), while θ(x) corresponds to the rotational symmetry of the potential.

By looking at the derivative of the potential dV (σ)
dσ = 0, we find two critical points: σ = 0 is

the local maximum and σ0 =
√
−m2

2λ is the global minimum. We have to shift to the global minimum:
σ(x)→ h(x) + σ0. So we get

L = ∂µh∂µh+ e2h2BµBµ + 2e2σ0hBµBµ + e2σ2
0BµBµ − V (h)− 1

4
F 2
µν . (48)

We see that field Bµ got the mass:

m2
B = 2e2σ2

0 = −e
2m2

λ
> 0. (49)

So, we generated a mass term for the vector field without putting it into the Lagrangian by hand. That is
the core of the Brout–Englert–Higgs mechanism.

The quantity σ0 ≡ v is the vacuum expectation value (vev) of σ(x),

v ≡ 〈0|σ|0〉, v =
1

V0

∫

V0

d3x σ(x). (50)

Look now at the potential (keep in mind m2 = −2λv2)

V (h) = λ(h+ v)4 +m2(h+ v)2

= λh4 + 4λvh3 + h2 (6λv2 +m2)︸ ︷︷ ︸
2m2

h=4λv2

+h (4λv3 + 2m2v)︸ ︷︷ ︸
=0

+λv4 +m2v2.

So the scalar field h has a normal (not tachyon-like) (m2
h > 0) mass term. One can see that the initial

tachyons ϕ are not observable.

16

A.B. ARBUZOV

16



It is worth to note that even so the field content of the Lagrangian is changed, but the number of
degrees of freedom is conserved. In fact initially we had two components of the scalar field and two
components of the massless vector field, and after the change of variables we have a single scalar field
plus a massive vector field with 3 independent components: 2 + 2 = 1 + 3.

The field θ(x) is a Nambu–Goldstone boson. It is massless, mθ = 0, and corresponds to effortless
rotations around the symmetry axis of the potential. In general, the Goldstone theorem claims that
in a model with spontaneous breaking of a continuous global symmetry Gn (remind the first Noether
theorem) there exist as many massless modes, as there are group generators which do not preserve the
vacuum invariance.

The constant term λv4 +m2v2 obviously doesn’t affect equations of motion, but it contributes to
the Universe energy density (too much, actually). That makes a problem for Cosmology. Formally, one
can make a shift of the initial Lagrangian just by this term and avoid the problem.

Now let us return to the case of the Standard Model. To generate masses for 3 vector bosons we
need at least 3 goldstones. The minimal possibility is to introduce one complex scalar doublet field:

Φ ≡
(

Φ1

Φ2

)
, Φ† = (Φ∗1 Φ∗2). (51)

Then the following Lagrangian is SU(2)⊗ U(1) invariant

L = (DµΦ)†(DµΦ)−m2Φ†Φ− λ(Φ†Φ)2 − 1

4
W a
µνW

a
µν −

1

4
BµνBµν ,

Bµν ≡ ∂µBν − ∂νBµ, W a
µν ≡ ∂µW a

ν − ∂νW a
µ + gεabcW b

µW
c
ν ,

DµΦ ≡ ∂µΦ + igW a
µ

τa

2
Φ +

i

2
g′BµΦ. (52)

Again for m2 < 0 there is a non-trivial minimum of the Higgs potential and a non-zero vev of a com-
ponent: 〈0|Φ2|0〉 = η/

√
2. In accord with the Goldstone theorem, three massless bosons appear. The

global SU(2)× SU(2) symmetry of the Higgs sector is reduced to the custodial SU(2) symmetry.

3.4 Electroweak bosons
The gauge bosons of the SU(2)⊗ U(1) group can be represented as

W+
µ =

W 1
µ + iW 2

µ√
2

, W−µ =
W 1
µ − iW 2

µ√
2

, W 0
µ = W 3

µ , Bµ. (53)

W 0
µ and Bµ are both neutral and have the same quantum numbers, so they can mix. In a quantum world,

’can’ means ’do’:

W 0
µ = cos θw Zµ + sin θw Aµ,

Bµ = − sin θw Zµ + cos θw Aµ, (54)

where θw is the weak mixing angle, introduced first by S. Glashow, θw is known also the Weinberg
angle. Remind that we have to choose variables which correspond to observables. Vector bosons Zµ and
Aµ are linear combinations of the primary fields W 0

µ and Bµ.

It is interesting to note that Sheldon Glashow, Abdus Salam, and Steven Weinberg got the Nobel
Prize in 1979, before the discovery of Z and W bosons in 1983, and even longer before the discovery of
the Higgs boson. So the Standard Model has been distinguished before experimental confirmation of its
key components.

Look now at the scalar fields:

Φ ≡ 1√
2

(
Ψ2(x) + iΨ1(x)
η + σ(x) + iξ(x)

)
, Φ† = . . .
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Fields Ψ1,2 and ξ become massless Goldstone bosons. We hide them into the vector fields:

W i
µ →W i

µ +
2

gη
∂µΨi ⇒ MW =

gη

2
,

Zµ =
g√

g2 + g′2
W 0
µ −

g′√
g2 + g′2

Bµ −
2

η
√
g2 + g′2

∂µξ ⇒ MZ =
η
√
g2 + g′2

2
. (55)

The photon field appears massless by construction. Looking at the mixing we get

cos θw =
g√

g2 + g′2
=
MW

MZ
.

The non-abelian tensor

W a
µν ≡ ∂µW a

ν − ∂νW a
µ + gεabcW b

µW
c
ν

leads to triple and quartic self-interactions of the primary W a
µ bosons, since

L = −1

4
W a
µνW

a
µν + . . . (56)

Fields Bµ and W a
µ were not interacting between each other. But after the spontaneous breaking of the

global symmetry in the Higgs sector, and the consequent change of the basis {W 0
µ , Bµ} → {Zµ, Aµ},

we get interactions of charged W±µ bosons with photons. That allows to fix the relation between the
constants:

e =
gg′√
g2 + g′2

= g sin θw. (57)

The value of the W boson charge (±e) is known from β decays. The very construction of the
SM requires phenomenological input. So on the way of the SM building, not everything comes out
automatically from symmetry principles etc.

3.5 EW interactions of fermions
We have chosen the SU(2)⊗U(1) symmetry group. To account for parity violation in weak decays, we
assume different behavior of left and right fermions under SU(2)L transformations:

left doublets

(
νe
e

)

L

,

(
u
d

)

L

+ 2 generations,

right singlets eR, uR, dR, (νe,R) + 2 generations.

The fermion Lagrangian is constructed with the help of covariant derivatives:

L(Ψ) =
∑

Ψi

[
i

2

(
ΨLγαDαΨL −DαΨLγαΨL

)
+
i

2

(
ΨRγαDαΨR −DαΨRγαΨR

)]
,

DαΨL ≡ ∂αΨL +
igτ b

2
W b
αΨL − ig1BαΨL, DαΨR ≡ ∂αΨL − ig2BαΨL.

All interactions of the SM fermions with the vector bosons are here. But coupling constants g1,2 still
have to be fixed.

Fermions have weak isospins and hypercharges:

ΨL :

(
1

2
, −2g1

g′

)
, ΨR :

(
0, −2g2

g′

)
. (58)
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Looking at interactions of e with Aµ in L(Ψ) we fix its hypercharges:

eL :

(
−1

2
, −1

)
, eR :

(
0, −2

)
. (59)

The Gell-Mann—Nishijima formula works for all fermions:

Q = I3 +
Y

2
, (60)

where Q is the electric charge, I3 is the weak isospin projection, and Y is the hypercharge.

Interactions of leptons with W± and Z bosons come out in the form

LI = − g√
2
ēLγµνe,LW

−
µ + h.c.− gZµ

2 cos θw

[
ν̄e,Lγµνe,L

+ēγµ

(
−(1− 2 sin2 θw)

1− γ5

2
+ 2 sin2 θw

1 + γ5

2

)
e

]

⇒ gw =
g

2
√

2
, M2

W =
g2
√

2

8GFermi
=

e2
√

2

8GFermi sin2 θw
=

πα√
2GFermi sin2 θw

.

That gives MW = 38.5
sin θw

GeV, remind MZ = MW
cos θw

.

We can see that the Higgs boson vev is directly related to the Fermi coupling constant:

v = (
√

2GFermi)
−1/2 ≈ 246.22 GeV. (61)

So this quantity has been know with a high precision long before the discovery of the Higgs boson and
measurement of its mass.

QUESTION: Why neutral weak currents in the SM do not change flavour?

3.6 Self-interactions of EW bosons and Faddeev–Popov ghosts
Because of the non-abelian SU(2)L group and mixing of the neutral vector bosons, we have a rather
reach structure of EW boson self-interactions, see Fig. 5. The corresponding contributions to the SM
Lagrangian look as follows:

L3 ∼ ie
cos θw
sin θw

[
(∂µW

−
ν − ∂νW−µ )W+

µ Zν − (∂µW
+
ν − ∂νW+

µ )W−µ Zν

+W−µ W
+
ν (∂µZν − ∂νZµ)

]

L4 ∼ −
e2

2 sin2 θw

[
(W+

µ W
−
µ )2 −W+

µ W
+
µ W

−
ν W

−
ν

]
,

−e
2 cos2 θw

sin2 θw

[
W+
µ W

−
µ ZνZν −W+

µ ZµW
−
µ Zν

]

−e
2 cos2 θw

sin2 θw

[
2W+

µ W
−
µ ZνAν −W+

µ ZµW
−
µ Aν −W+

µ AµW
−
µ Zν

]

−e2

[
W+
µ W

−
µ AνAν −W+

µ AµW
−
µ Aν

]
.

As we discussed earlier, an accurate treatment of non-abelian gauge symmetries leads to introduc-
tion of Faddeev–Popov ghosts. For the SU(2) case we obtain 3 ghosts: ca(x), a = 1, 2, 3,

c1 =
X+ +X−√

2
, c2 =

X+ −X−√
2

, c3 = YZ cos θw − YA sin θw,
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Fig. 5: Vertexes of EW boson self-interactions.

Lgh = ∂µc̄i(∂µci − gεijkcjW k
µ )

︸ ︷︷ ︸
kinetic + int. with Wa

+ int. with Φ︸ ︷︷ ︸
Mgh, int. with H

.

Propagators of the ghost fields read

DYγ (k) =
i

k2 + i0
, DYZ (k) =

i

k2 − ξZM2
Z + i0

, DX(k) =
i

k2 − ξWM2
W + i0

,

where ξi are the gauge parameters. Note that masses of the ghosts Yγ , YZ , and X± coincide with the
ones of photon, Z, and W±, respectively. That is important for gauge invariance of total amplitudes.
The ghosts appear only in propagators, but not in the final or initial states.

3.7 Generation of fermion masses
We observe massive fermions, but the SU(2)L gauge symmetry forbids fermion mass terms, since

mΨΨ = m

(
Ψ

1 + γ5

2
+ Ψ

1− γ5

2

)(
1 + γ5

2
Ψ +

1− γ5

2
Ψ

)
= m(ΨLΨR + ΨRΨL) (62)

while ΨL and ΨR are transformed in different ways under SU(2)L. The SM solution is to introduce
Yukawa interactions:

LY = −yd(ūLd̄L)

(
φ+

φ0

)
dR − yu(ūLd̄L)

(
φ0∗

−φ−
)
uR

− yl(ν̄L l̄L)

(
φ+

φ0

)
lR − yν(ν̄L l̄L)

(
φ0∗

−φ−
)
νR + h.c.

This form of this Lagrangian is fixed by the condition of the SU(2)L gauge invariance. It is worth to note
that neutrino masses can be generated in the same way as the up-quark ones. Of course, that requires
introduction of additional Yukawa constants yν .

QUESTION: Why do we need ’h.c.’ in LY ?

Spontaneous breaking of the global symmetry in the Higgs sector provides in L mass terms for
fermions and Yukawa interactions of fermions with the Higgs boson:

LY = −v +H√
2

[
ydd̄d+ yuūu+ yl l̄l + yν ν̄ν

]
⇒ mf =

yf√
2
v.

By construction, the coupling of the Higgs boson to a fermion is proportional its massmf . It is interesting
to note that the top quark Yukawa coupling is very close to 1. And there is a very strong hierarchy of
fermion masses:

yt ≈ 0.99 � ye ≈ 3 · 10−6 � yν ≈?

The question mark in the last case is given not only because we do not know neutrino masses, but also
since we are not sure the they are generated by the same mechanism.
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Quarks can mix and Yukawa interactions are not necessarily diagonal neither in the basis of weak
interaction eigenstates, nor in the basis of the strong ones. In the eigenstate basis of a given interaction
for the case of three generations, the Yukawa coupling constants are 3× 3 matrixes:

LY = −
3∑

j,k=1

{
(ūjLd̄jL)

[(
φ+

φ0

)
y

(d)
jk dkR +

(
φ0∗

−φ−
)
y

(u)
jk ukR

]

+ (ν̄jL l̄jL)

[(
φ+

φ0

)
y

(l)
jk lkR +

(
φ0∗

−φ−
)
y

(ν)
jk νkR

]}
+ h.c.

where indexes j and k mark the generation number.

Charged lepton mixing is formally allowed in the SM, but not (yet) observed experimentally.
Searches for lepton flavour violating processes, like the µ → eγ decay, are being performed. The
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix for (Dirac) neutrinos can be embedded in
the SM.

3.8 Short form of the SM Lagrangian
At CERN one can buy souvenirs with the Standard Model Lagrangian represented in a very short com-
pressed form:

LSM = −1

4
FµνF

µν

+ Ψ̄ 6DΨ + h.c.

+ ΨiyijΨjΦ + h.c.

+ |DµΦ|2 − V (Φ). (63)

We can understand now the meaning of each term. First of all, we see that the Lagrangian is given in the
initial form before the spontaneous symmetry breaking. Summation over SU(3)C , SU(2)L, and U(1)Y
gauge groups is implicitly assumed in the first term. The second line represents the gauge interactions
of fermions provided by the covariant derivative(s). The third line is the Yukawa interaction of fermions
with the scalar field. And the fourth line represent the kinetic and potential term of the primary scalar
doublet field.

EXERCISE: Find two ’misprints’ in the Lagrangian (63) which break the commonly accepted
QFT notation discussed in Sect. 2.

3.9 Axial anomaly
There are axial-vector currents in the SM:

JAµ = Ψγµγ5Ψ. (64)

In the case of massless fermions, the unbroken global symmetry (via the Noether theorem) leads to
conservation of these currents: ∂µJµ = 0. For massive fermions ∂µJAµ = 2imΨγ5Ψ. But one-loop
corrections, see Fig. 6, give

∂µJ
A
µ = 2imΨγ5Ψ +

α

2π
FµνF̃µν , F̃µν ≡

1

2
εµναβFαβ. (65)

That fact is known as axial or chiral or triangular Adler–Bell–Jackiw anomaly. So at the quantum
level the classical symmetry is lost. That is a problem for the theory. In simple words, such a symmetry
breaking makes the classical and quantum levels of the theory being inconsistent to each other.
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Fig. 6: Triangular anomaly diagram.

But in the SM the axial anomalies apparently cancel out. This can be seen for all possible combi-
nation of external gauge bosons:
1) (W W W ) and (W W B) — automatically since left leptons and quarks are doublets;

2) (BW W ) — since Qe +Qu +Qd = 0;

3) (BBB) — since Qe = −1, Qν = 0, Qu = 2
3 , Qd = −1

3 ;

4) (B g g) — automatically (g = gluon);

5) (B gr gr) — the same as ’3)’ (gr = graviton).
Here B and W are the primary U(1) and SU(2)L gauge bosons. Note that anomalies cancel out in each
generation separately. It is interesting to note that condition ’2)’ means that the hydrogen atom is neutral.

It is very important that the axial anomalies cancel out in the complete SM: with the SU(3)C ⊗
SU(2)L ⊗ U(1)Y gauge symmetries. So there is a nontrivial connection between the QCD and EW
sectors of the model.

QUESTION: Where is γ5 in the (BBB) case?

3.10 Parameters and interactions in the SM
The SM has quite a lot of parameters. We do not know (yet) where do they come from and have to define
their values from observations. Let us fist count the number of independent free parameters in the SM.
It is convenient to perform this exercise by looking at the initial form of the SM Lagrangian before the
change of variables invoked by the spontaneous symmetry breaking. So, we have:

– 3 gauge charges (g1, g2, gs);
– 2 parameters in the Higgs potential;
– 9 Yukawa couplings for charged fermions;
– 4 parameters in the CKM matrix.

It makes in total 18 free parameters for the canonical Standard Model. Usually, we add also as a
free parameter the ΛQCD scale, which is required for calculations in perturbative QCD (see lectures by
A. Mitov). Moreover, we can include neutrino masses and mixing, as described above. That would give
in addition 4 (or 6 for the Majorana case) parameters in the PMNS matrix and 3 more Yukawa couplings.

QUESTION: How many independent dimensionful parameters is there in the SM?

Most likely that many of the listed parameters are not true independent ones. There should be
some hidden symmetries and relations. Those certainly go beyond the SM. In spite of a large number
of parameters the SM is distinguished between many other models by its minimality and predictive
power. For example, the supersymmetric extension of the SM formally has more than one hundred free
parameters, and for this reason it is not able to provide unambiguous predictions for concrete observables.
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Let us now count the interactions in the SM. Obviously, we should do that in accord with the QFT
rules. The key point is to exploit symmetries, first of all the gauge ones. But looking at the Lagrangian it
might be not clear what actually should be counted:
— number of different vertexes in Feynman rules?
— number of particle which mediate interactions?
— number of coupling constants?

Our choice here is to count coupling constants. In fact that will automatically help us to avoid
double coupling of the same interactions. So we have:

– 3 gauge charges (g1, g2, gs);
– 1 self-coupling λ in the Higgs potential;
– 9 Yukawa couplings for charged fermions.

If required we can add 3 Yukawa couplings for neutrinos. We see that the SM contains 5 types of
interactions: 3 gauge one, the self-interaction of scalar bosons, and the Yukawa interactions of the scalar
bosons with fermions. Note also that even we like some interactions e.g., the gauge ones, in the SM more
than others, we can not say that any of them is more fundamental than others just since they all are in the
same Lagrangian.

3.11 The naturalness problem in the SM
The most serious, actually the only one real theoretical problem of the SM is the naturalness known
also as fine-tuning or hierarchy problem. Note that all but one masses in the SM are generated due
to the spontaneous symmetry breaking in the Higgs sector. While the scalar boson mass itself has been
introduced by hands (of Peter Higgs et al.) from the beginning. The tachyon mass term breaks the scale
invariance (the conformal symmetry) explicitly.

So the running of all but one masses is suppressed by the classical symmetries. As the result,
the masses run with energy only logarithmically, but the Higgs mass runs quadratically. In the one-loop
approximation we get

M2
H = (M0

H)2 +
3Λ2

8π2v2

[
M2
H + 2M2

W +M2
Z − 4m2

t

]
.

It is unnatural to have Λ�MH . The most natural option would be Λ ∼MH e.g., everything is defined
by the EW scale. But that is not the case of the SM. . . There are two general ways to solve the problem:
— either to exploit some (super)symmetry to cancel out the huge terms;
— or to introduce some new physics at a scale not very far from the electroweak one, i.e., making Λ
being not large. One can find in the literature quite a lot of models for both options. But the experimental
data coming from modern accelerators and rare decay studies disfavors most of scenarios of new physics
with scales up to about 1 TeV and even higher. Moreover, it was shown that the measured value of
the Higgs boson mass makes the SM being self-consistent up to very high energies up to the Planck
mass scale [13]. Direct and indirect experimental searches push up and up possible energy scale of new
physical phenomena. So the naturalness problem becomes nowadays more and more prominent. And
the question, why the top quark mass, the Higgs boson mass and and vacuum expectation value v are of
the same order becomes more and more intriguing.

After the discovery of the Higgs boson and measurement of its mass, we found some remarkable
empirical relation between parameters of the SM. In particular the equality

v =
√
M2
H +M2

W +M2
Z +m2

t (66)

holds within the experimental errors: 246.22 = 246±1 GeV. Obviously, there should be some tight clear
relation between the top quark mass and the Higgs boson one (or the EW scale in general). The present
version of the SM does not explain this puzzle.
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EXERCISE: Divide both sides of Eq. (66) by v and find a relation between coupling constants.

Another interesting relation also involves the Higgs boson and the top quark:

2
m2
h

m2
t

= 1.05 ≈ 1 ≈ 2
m2
t

v2
≡ y2

t = 0.99. (67)

It might be that these relations are of a pure numerological nature, but they certainly indicate some hidden
properties of the SM.

4 Phenomenology of the Standard Model
Let us discuss input parameters of the SM. It was convenient to count their number in the primary form
of the Lagrangian. But for practical applications we use different sets, see e.g., Table 1. Different EW
schemes with different sets of practical input parameters are possible, since there are relations between
them. One should keep in mind that the result of calculations does depend on the choice because we
usually work in a limited order of the perturbation theory, while the true relations between the parameters
(and between observed quantities) involve the complete series. So simple relations appear at the lowest
order, quantum effects (radiative corrections) make them complicated.

Table 1: Input parameters of the SM.

18(19)= 1 1 1 1 1 9 4 (1)
primary: g′ g gs mΦ λ yf yjk none

practical: α MW αs GFermi MH mf VCKM ΛQCD

A comprehensive up-to-date set of the SM parameters can be found in the Review of Particle
Physics published by the Particle Data Group Collaboration [14]. Let us look at some values of input
parameters extracted from experiments:

– The fine structure constant: α−1(0) = 137.035999074(44) from (g − 2)e;
– The SM predicts MW = MZ cos θw ⇒ MW < MZ , we have now
MZ = 91.1876(21) GeV from LEP1/SLC, MW = 80.385(15) GeV from LEP2/Tevatron/LHC;

– The Fermi coupling constant: GFermi = 1.1663787(6) · 10−5 GeV−2 from muon decay,
– The top quark mass: mt = 173.21(51)(71) GeV from Tevatron/LHC;
– The Higgs boson mass: MH = 125.09(21)(11) GeV from ATLAS & CMS (March 2015).

One can see that the precision in definition of the parameters varies by several orders of magnitude. That
is related to experimental uncertainties and to the limited accuracy of theoretical calculations which are
required to extract the parameter values from the data. QUESTION: What parameter of the (canonical)
SM is known now with the least precision?

4.1 The muon decay
Let us consider a few examples of particle interaction processes and start with the muon decay µ− →
e− + ν̄e + νµ, see Fig. 7. It is the most clean weak interaction process. One can say that this process is
one of keystones of particle physics. The muon decay width reads

Γµ =
1

τµ
=
G2

Fermim
5
µ

192π3

[
f(m2

e/m
2
µ) +O(m2

µ/M
2
W ) +O(α)

]
,

f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx,

O(m2
µ/M

2
W ) ∼ 10−6, O(α) ∼ 10−3,
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Fig. 7: The Feynman diagram for muon decay in the SM.

where O(α) includes effects of radiative corrections due to loop (virtual)effects and real photon and/or
e+e− pair emission.

As mentioned above, the value of the Fermi coupling constant is extracted from the data on muon
lifetime, GFermi = 1.1663787(6) · 10−5 GeV−2. The high precision is provided by a large experimental
statistics, low systematical errors of the final state electron observation, and by accurate theoretical cal-
culations of radiative corrections. But impressive precision (∼ 1 ·10−6) in the measurement of the muon
life time doesn’t give by itself any valuable test of the SM. QUESTION: Why is that so? On the other
hand, studies of differential distributions in electron energy and angle do allow to test the V −A structure
of weak interactions and look for other possible types of interactions which can be parameterized in a
model-independent way by the so-called Michel parameters.

4.2 Electron and muon anomalous magnetic moments
The Dirac equations predict gyromagnetic ratio gf = 2 in the fermion magnetic moment ~M = gf

e
2mf

~s.
Julian Schwinger in 1948 found that one-loop QED correction the vertex function gives the so called
anomalous magnetic moment:

af ≡
gf − 2

2
≈ α

2π
= 0.001 161 . . . (68)

For the electron case, the Harvard experiment [15] obtained

aexp
e = 1 159 652 180.73 (28) · 10−12 [0.24ppb].

The SM predicts [16]

aSM
e = 1 159 652 181.643 (25)8th(23)10th(16)EW+had.(763)δα · 10−12.

The perfect agreement between the measurement and the theoretical prediction is a triumph of Quantum
electrodynamics. In particular, we note that af 6= 0 is a pure quantum loop effect which is absent as in
classical physics as well as in Quantum mechanics.

It is worth to note that the extremely high precision in the experimental measurement of the elec-
tron anomalous magnetic moment allows to use it as a reference point for definition of the fine structure
constant: aexp

e ⇒ α−1(0) = 137.035999074(44).

For the anomalous magnetic moment of muon, the E821 experiment at BNL in 2006 published
the following result of data analysis:

aexp
µ = 116 592 089 (54)(33) · 10−11 [0.5ppm].

The corresponding theoretical value and the difference are

aSM
µ = 116 591 840 (59) · 10−11 [0.5ppm] (69)

∆aµ ≡ aexp
µ − aSM

µ = 249 (87) · 10−11 [∼ 3σ].
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Fig. 8: The one-loop Feynman diagram for QED vacuum polarization.

First, one can see that both experimental and theoretical values are very accurate. Second, there is a dis-
crepancy of the order of three standard deviations. That is a rather rare case for the SM tests. Moreover,
this discrepancy remains for a long period of time in spite of intensive efforts of instrumentalists and
theoreticians.

The SM prediction consists of the QED, hadronic and weak contributions:

aµ = aµ(QED) + aµ(hadronic) + aµ(weak), (70)

aµ(QED) = 116 584 718 845 (9)(19)(7)(30) · 10−14 [5 loops],

aµ(hadronic) = aµ(had. vac.pol.) + aµ(had. l.b.l),= 6949 (37)(21) · 10−11 + 116 (40) · 10−11,

aµ(weak) = 154 (2) · 10−11 [2 loops].

Note that the QED contribution to the muon anomalous magnetic moment is essentially the same as the
one to the electron magnetic moment. The only difference is coming from the dependence on electron
and muon masses. As concerning the hadronic and weak interaction contributions, they are enhanced by
the factor m2

µ/m
2
e with respect to the electron case. The same factor typically appears for hypothetical

contributions of new interactions beyond the SM. For this reason anomalous magnetic moments of muon
and tau lepton are potentially more sensitive to new physics contributions.

One can see that the difference between the theoretical prediction and the experimental data is
almost twice the contribution of weak interactions: ∆aµ ∼ 2× aµ(weak). Here by ’weak’ we mean the
complete electroweak calculation minus the pure QED contribution. The weak interactions have been
directly tested with high precision experimentally. So it is not so simple to attribute the difference to an
effect of new physics. Nevertheless, there is a bunch of theoretical models that try to resolve the problem
by introduction of new interactions and/or new particles.

4.3 Vacuum polarization
By direct calculation in QED, one can see that virtual charged fermion anti-fermion pairs provide a
screening effect for the electric force between probe charges. Resummation of bubbles, see Fig. 8, gives

α(q2) =
α(0)

1−Π(q2)
, e.g. α−1(M2

Z) ≈ 128.944(19),

Π(q2) =
α(0)

π

(
1

3
ln

(−q2

m2
e

)
− 5

9
+ δ(q2)

)
+O(α2),

δ(q2) = δµ(q2) + δτ (q2) + δW (q2) + δhadr.(q
2). (71)

The hadronic contribution to vacuum polarization δhadr.(q
2) for |q2| below a few GeV2 is not calculable

within the perturbation theory. Now we get it from experimental data on e+e− → hadrons and τ →
ντ + hadrons with the help of dispersion relations, see e.g., review [17]. Lattice results for this quantity
are approaching.

Note that screening, i.e., an effective reduction of the observed charge with increasing of distance,
is related to the minus sign attributed to a fermion loop in the Feynman rules.

QUESTION: Estimate the value of q2
0 at which α(q2

0) =∞.
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Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1871 ± 0.0021    .08

ΓZ [GeV]ΓZ [GeV] 2.4944 ± 0.0024   -.56

σhadr [nb]σ
0

41.544 ± 0.037   1.75

ReRe 20.768 ± 0.024   1.16

AfbA
0,e

0.01701 ± 0.00095    .80

AeAe 0.1483 ± 0.0051    .21

A
τ

A
τ

0.1425 ± 0.0044  -1.07

sin
2
θeffsin

2
θ

lept
0.2321 ± 0.0010    .60

mW [GeV]mW [GeV] 80.350 ± 0.056   -.62

RbRb 0.21642 ± 0.00073    .81

RcRc 0.1674 ± 0.0038  -1.27

AfbA
0,b

0.0988 ± 0.0020  -2.20

AfbA
0,c

0.0692 ± 0.0037  -1.23

AbAb 0.911 ± 0.025   -.95

AcAc 0.630 ± 0.026  -1.46

sin
2
θeffsin

2
θ

lept
0.23099 ± 0.00026  -1.95

sin
2
θWsin

2
θW 0.2255 ± 0.0021   1.13

mW [GeV]mW [GeV] 80.448 ± 0.062   1.02

mt [GeV]mt [GeV] 174.3 ± 5.1    .22

∆αhad(mZ)∆α
(5)

0.02804 ± 0.00065   -.05

Stanford 1999

Fig. 9: Pulls of pseudo-observables at LEP [18].

This singularity is known as the Landau pole. Formally, such a behaviour of QED brakes unitarity
at large energies. But that happens at energies much higher than any practical energy scale including the
Planck mass and the mass of the visible part of the Universe. So we keep this problem in mind as a
theoretical issue which stimulates our searches for a more fundamental description of Nature.

4.4 Experimental tests of the SM at LEP
After the analysis of LEP1 and LEP2 experimental data, the LEP Electroweak Working Group (LEP-
EWWG) [18] illustrated the overall status of the Standard Model by the so-called pulls, see Fig. 9.
The pulls are defined as differences between the measurement and the SM prediction calculated for the
central values of the fitted SM input parameters [α(M2

Z) = 1/128.878, αs(M2
Z) = 0.1194, MZ =

91.1865 GeV, mt = 171.1 GeV] divided by the experimental error. Although there are several points
where deviations between the theory and experiment approach two standard deviations, the average sit-
uation should be ranked as extremely good. We note that the level of precision reached is of the order of
∼ 10−3, and that it is extremely non-trivial to control all experimental systematics at this level.

Through quantum effects the observed cross sections of electron-positron annihilation at LEP
depend on all parameters of the Standard Model including the Higgs boson mass. The so called yellow
band plot Fig. 10 shows the fit of MH performed by LEPEWWG [18] with the LEP data in March 2012.
The left yellow area has been excluded by direct searches at LEP, and the right one was also excluded by
LHC. The plot is derived from a combined fit of all the world experimental data to the SM exploiting the
best knowledge of precision theoretical calculations which is realized in computer codes ZFITTER [19]
and TOPAZ0 [20]. One can see that the data was not very sensitive to MH , but the fit unambiguously
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Fig. 10: The curve shows ∆χ2
min(M2

H) = χ2
min(M2

H) − χ2
min as a function of MH . The width of the shaded

band around the curve shows the theoretical uncertainty. The vertical bands show the 95% CL exclusion limit on
MH from the direct searches at LEP (left) and at LHC (right). The dashed curve is the result obtained using the
evaluation of ∆α(5)(M2

Z). The dotted curve corresponds to a fit including also the low-Q2 data.

prefers a relatively light Higgs boson. Now we can say that the measured value of this parameter agrees
very well with the LEP fit. That indirectly confirms again the consistency and the power of the Standard
Model.

It is interesting also to look at the behavior of the cross sections of electron-positron annihilation
into hadrons as a function of energy Fig. 11. A clear peak at the Z boson mass is seen. The excellent
agreement of the experimental data with the SM predictions is achieved only after inclusion of QCD and
electroweak radiative corrections which reach dozens of percent in the vicinity of the peak.

A peculiar result was obtained at LEP for number of (light) neutrinos, see Fig. 12. Even so that
the final state neutrinos in the process e+ + e− → Z → ν + ν̄ was not observed, the corresponding
cross section was restored with the help of the separately measured total, hadronic, and leptonic cross
sections [18].

It appears that to dependence of LEP observables on quantum loop effects involving top quark is
rather strong. So even without approaching the direct production of top quark, LEP experiments were
able to extract information about its mass. The top quark mass ’history’ (till 2006) is shown by Fig. 13.

In general, all LEP measurements of various cross-sections of electroweak SM processes were
found in a very good agreement with theoretical predictions obtained within the SM, see plot Fig. 14 from
the LEPEWWG [18] 2013 report. The dots show the measurements and curves are the SM predictions
with radiative corrections taken into account.

4.5 Measurements of SM processes at LHC
The Large Hadron Collider is not only a discovery machine. In fact the large luminosity and advanced
detectors allow to perform there high-precision tests of the Standard Model. High statistics on many SM
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Fig. 11: Measurements of the e+e− → hadrons cross section.

processes is collected. Plots Fig. 15 and Fig. 16 show the public preliminary results of the ATLAS and
CMS collaborations. One can see that we again have a good agreement for all channels. Certainly, the
tests of the SM will be continued at LHC at higher energies and luminosity. That is one of the main
tasks the LHC physical programme. The proton-antiproton collider Tevatron has proven that hadronic
colliders can do high-precision studies of the SM. In particular, CDF and D0 experiments at Tevatron
managed to exceed LEP in the precision of the W boson mass measurement.

At LHC the best precision in SM processes measurement is reached for the Drell–Yan-like pro-
cesses. A schematic diagram for such a process is shown on Fig. 17. These processes are distinguished
by production of final state leptons which can be accurately detected. We distinguish the neutral current
(NC) Drell–Yan-like processes which involve intermediate Z bosons and photons, and the charged cur-
rent (CC) ones which go through W bosons. The main contribution to the (observed) total cross section
of these processes comes from the domain where the invariant mass of the final state lepton pair is close
to the masses of Z and W bosons. So these processes are also known as single Z and W production
reactions. The CC and NC Drell–Yan-like processes at LHC are used for:

– luminosity monitoring;
– W mass and width measurements;
– extraction of parton density functions;
– detector calibration;
– background to many other processes;
– and new physics searches.

In particular, a new peak in the observed invariant-mass distribution of final leptons can indicate the
presence of a new intermediate particle.
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5 Conclusions
Let us summarize the status of the SM. We see that it is a rather elegant construction which allows making
systematic predictions for an extremely wide range of observables in particle physics. The energy range
of its applicability covers the whole domain which is explored experimentally while the limits remain
unknown. We do not understand all features of the model, the origin of its symmetries, and parameter
values. But we see that the SM has the highest predictive power among all models in particle physics
and it successfully passed verification at thousands of experiments.

There are several particularly nice features of the SM:

– it is renormalizable and unitary⇒ it gives finite predictions;
– its predictions do agree with experimental data;
– symmetry principles are extensively exploited;
– it is minimal;
– all its particles are discovered;
– the structure of interactions is fixed (but not yet tested everywhere);
– not so many free parameters, all are fixed;
– CP violation is allowed;
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Fig. 13: Indirect (LEP) and direct (Tevatron) measurements of the top quark mass.

– tree-level flavor-changing neutral currents are not present;
– there is a room to incorporate neutrino masses and mixing.

In principle in the future, the SM can be embedded into a more general theory as an effective low-energy
approximation.

For many reasons we do not believe that the SM is the final ’theory of everything’. Of course
first of all, we have to mention that the SM is not joined with General Relativity. But frankly speaking,
that is mostly the problem of GR, the SM itself is ready to be incorporated into a generalized joint
QFT construction. The naturalness problem discussed above in Sect. 3.11 indicates that either some
new physics should be very close to the EW energy scale, or we do not understand features of the
renormalization procedure in the SM. In general, we have a lot of open questions within the SM:

– the origin of symmetries;
– the origin of energy scales;
– the origin of 3 fermion generations;
– the origin of neutrino masses;
– the hierarchy of lepton masses;
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Fig. 17: Schematic Feynman diagram for the charged current Drell–Yan-like process.

– the absence of strong CP violation in the QCD sector;
– confinement in QCD, and so on. . .

There are also some phenomenological issues:

– the baryon asymmetry in the Universe;
– the dark matter;
– the dark energy;
– the proton charge radius, (g − 2)µ, and not much else. . .

The first three items above are related to Cosmology, see lectures by A. De Simone. We should note also
that most of observations in Cosmology and Astrophysics are well described within the Standard Model
(and General Relativity). But for the listed cases we need most likely something beyond the SM. The
last item in the list claims that there are some tensions in the predictions of the SM and measurements at
experiments in particle physics.

So we see that the SM is build using nice fundamental principles but with a substantial phenomeno-
logical input. The most valuable task for high-energy physicists now is to find the energy domain limit(s)
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of the SM applicability. We hope to discover soon new physical phenomena. But any kind of new physics
has to preserve the correspondence to the SM. The SM contains good mechanisms to generate masses of
vector bosons and fermions, but it doesn’t show the origin(s) of the energy scales.

So, the SM can not be the full story in particle physics, we still have a lot to explore.
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Abstract
A lecture on Higgs boson physics to highlight why it is necessary and how it
looks like. I review the Standard Model and why a small electroweak scale
is our strongest indication for an extended Higgs sector, that can be searched
for by a precise study of Higgs properties. To this goal, I discuss effective
field theories and how they capture the most relevant effects in large classes of
scenarios beyond the Standard Model.

Keywords
Standard model: High-Energy Physics; Higgs Physics.

1 Motivation
1964-1967: A quantum field theoretical (QFT) description of the electroweak (EW) interactions is de-
veloped; among a handful of models that can give mass to the W± and Z bosons, one stands out for
its predictiveness, simplicity and for seemingly getting as close as possible to a fundamental theory:
the Standard Model (SM) of particle physics [1–3]. Its most distinctive prediction is the existence of a
resonance, the Higgs boson, whose properties are uniquely fixed by parameters that are already known,
except for one, the Higgs boson mass mh.

2009-2012: the Large Hadron Collider (LHC) is built to collide protons up to 14 TeV energies, and
to search explicitly for the Higgs boson, or any alternative source for the EW masses. A discovery is
guaranteed by theoretical inconsistency of the EW massive theory above ≈ 3 TeV. And is indeed made
on July 4, 2012 [4,5]. The last parameter of the SM is now measured, mh = 125.09 [6]. With this mass,
the Higgs boson properties are just right for a rich experimental program to be carried out, as Higgs
decays in a rather equilibrated way to all SM particles. With this mass, we can compute the quantum
lifetime of our universe, and find that it is just right to last 13.7 billion years [7].

The most relevant aspect of the Higgs discovery, however, is that it constitutes the last brick of
the SM, and this brick is just right, that the theory has in principle a very large range of validity. For
this reason, the Higgs discovery interrupts an important trend in particle physics, where well-established
fundamental principles were pointing the finger towards guaranteed discoveries.

In these lecture notes I will try to give a feeling of physics before the SM, in the SM, and Beyond
the SM, to appreciate the necessity for a Higgs boson, but also its limitations. I think they provide a nice
little story to understand why we are interested in studying Higgs physics, and how we are going to do
so at the LHC and future colliders. Hundreds of relevant references will be omitted, sorry, and loads
of interesting physics will not even be mentioned, sorry - see for instance the complementary reviews
Refs. [8–11].

The notes as organized as follows. The QFT of massless and massive spin-1 states, and the neces-
sity for a Higgs mechanism is reviewed in section 2, leading to the SM in section 3. The reader familiar
with the SM and interested in the most modern aspects of Higgs physics, relevant for colliders, can skip
to section 4, were I discuss the motivations why the SM might not be the end of the story. This section
includes a discussion of Effective Field Theories (EFTs) relevant for Higgs physics, ranging from practi-
cal aspects relevant for global fits in SM precision tests, to power-counting rules to identify what are the
relevant high-energy features that we can test in low-energy experiments.
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2 bSM - before the Standard Model
To appreciate the importance of the Higgs mechanism, and of its SM realization, I must first discuss how
the SM looks like without a Higgs boson. In particular I want to discuss the difficulties of providing a
QFT description of the massless and massive spin-1 states/resonances observed in Nature: the photon γ
and W,Z bosons respectively.

2.1 Gauge Invariance – 4 Legs Good, 2 Legs Better
The observation that physics is invariant under the Poincaré symmetryP = R4nSO(1, 3) of translations,
rotations and boosts, shapes most of our understanding of nature [12]. We realize this symmetry by
building objects with well-defined transformation properties and combine them in an invariant way. An
important mismatch strikes us at the very start of this program. Physical states |p〉 = a†(~p)|0〉 at finite
momentum ~p and spin s, and their scattering amplitudes, transform accordingly to the Little group, the
subgroup of Lorentz that leaves the momentum of a particle unchanged (we can think of the momentum
as spontaneously breaking the Lorentz group SO(1, 3), the Little group is what is left). On the other
hand, the fields Φ{µ}(x) appearing in the Lagrangian in position space, and Feynman diagrams, appear
in full representations of SO(1, 3) (denoted here with generic indices {µ}). The two are however related,

Φ{µ}(x) =
∑

s

∫
d3p ε{µ}(x; ~p, s)a(~p, s) , (1)

with ε{µ}(x; ~p, s) the polarization vectors, that define how representations of Lorentz break into repre-
sentations of the Little group LG ⊂ SO(1, 3). For Λµν ∈ SO(1, 3),

Φ{µ}(x)→ D(Λ−1)Φ{µ}(Λx) a(~p, s)→
∑

s′
U js,s′(Λ

Little)a(Λ~p, s), (2)

where D(Λ) and U(ΛLittle) are representations of the full and Little Lorentz group respectively, that
typically differ from one another.

Massive vectors. In this case, the Little group is the group of rotations SO(3). Its representations are
well known and classified according to their dimension 2j + 1, where j is half-integer and refers to the
spin of the particle annihilated by a(~p, s) (and it bounds the sum in Eq. (2) into s, s′ ≤ j). The spin-1
representation, in which we are interested to describe W and Z bosons, is 3-dimensional, corresponding
in practice to the two transverse and one longitudinal polarizations of massive vectors.

The smallest full representation of SO(1, 3) that can accommodate these 3 states, is the vector
field Φ{µ} = V µ, withD(Λ) = Λµν , that can source 4 degrees of freedom. The remaining one, 4 = 3⊕1
under SO(1, 3) → SO(3), corresponds to a j = 1 state and has a polarization εµ(p) ∝ pµ in Eq. (1).
This is equivalent to the state sourced by the derivative of a scalar Φ{µ}(x) = ∂µφ(x) and it does not
interest us in the description of spin-1 states. Luckily, it is easy to eliminate it: on the physical states,
pµεµ(p) = 0 singles out the spin-1 polarizations (for the scalar pµεµ(p) ∝ pµpµ = m2 6= 0), which is
equivalent to,

〈ψphys′ |∂µV µ|ψphys〉 = 0 (3)

on physical states, that separates the Hilbert space into two disjoint parts.

The most general Lagrangian (up to dimension-4 and bilinear in V µ – so as to describe a free field)
compatible with the Lorentz transformation of V µ, can be written as

L = − 1

4g2
FµνF

µν − ξ

2
(∂µV

µ)2 − v2

2
VµV

µ, (4)
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where we have defined Fµν ≡ ∂µVν − ∂νVµ and introduced generic parameters g, v, ξ. Clearly Eq. (4)
describes four dynamical degrees of freedom, since it contains the time derivative of all 4 components of
V µ. If we call χ = ∂µV

µ, the equations of motion for V µ read

− ξ∂νχ− v2V ν = ∂µF
µν/g2 ⇒∂ν −ξ2χ− v2χ = 0 , (5)

where in the second equation we have exploited the fact that Fµν is antisymmetric1 Eq. (5) is interesting
because it shows that the fields χ is not sourced by the other components of the vector field, it is a free
field. For this reason it is consistent to have it vanish at all times, Eq. (3). In fact, the (Proca) Lagrangian

L = − 1

4g2
FµνF

µν − v2

2
VµV

µ , (6)

automatically provides this condition Eq. (3) as a consequence of the equations of motion (Eq. (5) with
ξ = 0), and can be thought as the correct Lagrangian to describe the dynamics of one massive vector
with m = vg.

Massless vectors. For massless particles the little group is ISO(2), the isometries of a 2-dimensional
plane, and its representations are 2-dimensional2 and labelled by the helicity of the state: a spin-1 state
has 2 degrees of freedom.

The problem is that in this peculiar case, it is not possible to find polarization vectors εµ(x, ~p),
such that the left-hand and the right hand side of Eq. (1) have the right transformation properties: no
4-vector field can be constructed with annihilation/creation operators of a spin-1 massless particle [12].
If one tries to force so, the resulting monster will do the following under a Lorentz transformation:

Vµ(x)→ ΛνµVν(Λx) + ∂µΩ(x,Λ), (7)

for a function Ω(x,Λ). This second piece in the transformation law for Vµ clearly differentiates it from
a Lorentz vector, but its peculiar form suggests that, if a theory can be defined modulo transformations
of the type

Vµ(x)→ Vµ(x) + ∂µα(x) (8)

for any function α(x), then Eq. (7) might be concealed with the correct Lorentz transformation for a
4-vector. This is called gauge invariance/redundancy and plays a central rôle in our understanding of
the fundamental interactions: it is an inevitable consequence of Lorentz invariance and the existence of
massless spin-1 states (in this sense, symmetries are a consequence of dynamics, rather than the opposite)
and leads to a unique Lagrangian,

L = − 1

4g2
FµνF

µν . (9)

In fact, this symmetry also accounts for the disappearance of the one degree of freedom w.r.t. the massive
case. This type of symmetry is perhaps better referred to as a redundancy, since it characterizes a situation
in which different mathematical descriptions correspond to the same physical system. In fact, there is
even so much of this redundancy (since α(x) is a complete set of functions) that an entire degree of
freedom becomes unphysical.

In summary, a massless spin-1 state has 2 degrees of freedom, and its description in terms of a
quantum field requires the introduction of gauge invariance. A massive spin-1 state has instead 3 degrees
of freedom and gauge invariance is not apparently manifest; its description in terms of a quantum 4-vector
Lorentz field requires the additional Lorentz covariant condition Eq. (3).

1This argument is not modified if Vµ couples to a conserved current gV µJµ in Eq. (4), since this cancels Eq. (5) because
∂νJ

ν = 0.
2The representations are in fact 1-dimensional, but since parity interchanges helicity h→ −h, a manifestly parity preserving

description must include multiplets with states of opposite helicity (for h = 0 this is trivially satisfied and the representation is
in fact 1-dimensional)
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2.2 The Higgs Mechanism: 4 + 1 − 2 = 3

There is an interesting way of writing the Lagrangian for a massive spin-1 field, that is surprisingly
equivalent to Eq. (6), but it involves an additional degree of freedom, in the form of a scalar U(x) =
exp iφ(x), and the Lagrangian

L = − 1

4g2
FµνF

µν +
v2

2
(DµU)2 = − 1

4g2
FµνF

µν − v2

2
(∂µφ− Vµ)2 (10)

where Dµ = ∂µ − iVµ. This is, in fact, invariant under the symmetry

U(x)→ eiα(x)U(x) φ(x)→ φ(x) + α(x) Vµ(x)→ Vµ(x)− ∂µα(x) (11)

which includes the gauge invariance Eq. (8) for vector fields, and extends it to the scalar field. The the-
ory described by Eq. (10) must therefore describe 4 − 2 + 1 = 3 degrees of freedom (gauge invariance
removing two degrees of freedom from a 4-vector, and the scalar adds one), equivalently to Eq. (6). That
it is equivalent can also be understood by exploiting the gauge invariance and perform a transformation
Eq. (11) on Eq. (10) with α = φ: this results in Eq. (6). This equivalence allows us to compare the the-
ories for massive and massless vectors on an equal footing, both of them being based on intrinsic gauge
invariance, and differing by the addition of a scalar degree of freedom, with the appropriate transforma-
tion properties. This is the essence of the Higgs mechanism and, in this form, provides a description
of individual massive vectors, associated with Abelian gauge symmetries (such as in massive Quantum
Electrodynamics – QED). In particular, the theory described by Eq. (6) or Eq. (10), and their extension
to couplings with fermions based on gauge symmetry, can be extrapolated to arbitrary high energy.

Non-Abelian symmetries. We are interested however in providing a description of Nature and of the
W±, Z bosons, whose gauge symmetry SU(2)L is in fact non-abelian. This can be described in a
generalization of Eq. (10),

L = − 1

4g2
tr [FµνF

µν ] +
(v + ah)2

2
tr [DµU

†DµU ] (12)

where now Fµν = ∂µVν − ∂νVµ − i[Vµ, Vν ] for Vµ = V i
µσ

i, σi the Pauli matrices, and

U = eiφ
iσi (13)

for three scalars φa, so that the Lagrangian is invariant under gL ∈ SU(2)L

U → gLU , Vµ → gLVµg
†
L − ig

†
L∂µgL . (14)

Notice that I’ve included an additional scalar h in Eq. (12), whose importance will become clear later,
but for the moment we can take a = 0. Contrary to the abelian case of Eq. (10), that is basically a
free theory, Eq. (12) has self-interactions, that contribute for instance to the 2 → 2 scattering between
four spin-1 states. In this process, a surprising feature appears in the particular channel involving their
longitudinal polarization. As shown in the left panel of Fig. 1, this theory predicts an uncontrolled rise
with energy in the scattering probability in this channel. In fact, for

E & Λcut =
4πv√
|1− a|

(15)

the theory doesn’t make sense anymore as a Lagrangian weakly coupled description of this scattering
process (the amplitude calculated with this theory would appear to violate unitarity).

Why does the amplitude grow? Scalar fields that appear in the Lagrangian through the exponential
representation Eq. (13) (the non-linear sigma-model), are in fact very special in Nature: their interactions

4

F. RIVA

38



Fig. 1: Taken from [13]. Cross sections (in nanobarns) σ(VLVL → VLVL) for the longitudinal polarization of
vectors in the SM, V = W±, Z. The LEFT panel shows the energy-growth in the absence of a Higgs boson, while
the RIGHT panel includes a Higgs bosons with mh = 120 GeV.

are always associated with derivatives, and this leads to the rapid energy growth observed above. In fact,
fields like these are Nambu-Goldstone bosons of spontaneously broken symmetries, and they always
correspond to the low energy manifestation of a more complicated microscopic theory. This is were
the unphysical behavior of Fig. 1 is bringing us: at high energy the theory of massive vectors does not
describe Nature.

a=0 – Pions. A familiar example where we find the necessary scalar Eq. (13), is the pion Lagrangian from
quantum chromodynamics (QCD). Here, for small mu,d, QCD is almost invariant under the symmetry
G = SU(2)L × SU(2)R, independently acting on the left- and right-handed up and down quark doublet

ΨL,R ≡
(
u
d

)

L,R

. (16)

At low energy the quarks are no longer the relevant degrees of freedom, they condense at E ∼ ΛQCD
and define a new QCD vacuum, so that, at low energy, only the symmetry SU(2)L = SU(2)R ≡
SU(2)V = H survives, while independent LR transformations are spontaneously broken. Goldstone
theorem predicts three associated Nambu Goldstone bosons (NGB) corresponding to the pions πa, which
are the relevant degrees of freedom at low energy, as opposed to the quarks being the appropriate degrees
of freedom at high-energy. These NGBs span the coset manifold G/H, which can be parametrized by
U = exp iπaσa, transforming as U → gLUgR. This is equivalent to Eq. (13), since the quark global
SU(2)L corresponds indeed to the gauged weak interactions, while U(1)Y can be identified with a
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subgroup of SU(2)R. So, QCD gives mass to the EW bosons: at E . ΛQCD Eq. (12) (with a = 0)
describes massive W,Z bosons, while at E & ΛQCD they appear massless, and the anomalous behavior
of Fig. 1 is not realized. Eq. (12) is an effective field theory (EFT) with a finite range of validity. The
problem with QCD is that v in Eq. (12) is not a free parameter, but determines also other pion interactions
and has been measured v = fπ ≈ 130 MeV, so that mW± = g f2 ≈ 40 MeV...

This is clearly not what we observe in Nature, but this example remains illustrative as it provides
an important proof of principle, that led the physics community to speculate on the existence of a new
strong interaction, called Technicolor [14, 15], with new (techni)quarks in addition to the SM ones, such
that the magic of QCD is repeated at a higher scale

v = fTC = 246 GeV (17)

thus reproducing the correct mass spectrum for the EW gauge bosons.

a=1 – Higgs. Recall that in Eq. (12) I’ve included the interaction with an additional real scalar h (with
assumed canonical kinetic term). The reason for doing so is that it is easy to see that this gives an
additional contribution to the amplitude for VLVL scattering, that at thigh-energy has the opposite sign
compared to the a = 0 one, and leads to Eq. (15). For a = 1, the high-energy behavior cancels and
Eq. (12) goes from an EFT with a small cutoff to a theory that in principle has an arbitrarily large range
of validity Λcut →∞.

The reason is the following. For a = 1 we can write

(v + h)U ≡ Σ = (H̃,H) , ⇒ (v + h)2

2
tr [DµU

†DµU ] = |DµH|2 (18)

where we have rewritten the fields using a different parametrization,

H = exp(iπaσa/φ)

(
0
φ

)
= U

(
0
φ

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (19)

and H̃ = εH† (ε the antisymmetric tensor). This map works only when |H| ≡ φ 6= 0, and is singular in
φ = 0. The important aspect is that now H transforms as a fundamental representation 2 of SU(2)L and
his own Lagrangian at dimension ≤ 4 is simply

LH = ∂µH
†∂µH − V (H) , V (H) = −m2

H |H|2 + λ|H|4 , (20)

which describes four real scalars with non-pathological self interactions, whose scattering amplitudes are
well-behaved also at high-energy. This has to be contrasted with the Lagrangian forU only, v2tr [∂µU∂

µU ]/2
that has instead a cutoff at 4πv.

In some sense, we have found a different UV completion for our effective Lagrangian Eq. (12),
that simply involves an additional scalar φ = v+ h, that however renders the amplitude physical, thanks
to its contribution to scattering processes. This is illustrated in the right panel of figure 1. Now, what
guarantees |H| 6= 0 everywhere so that the field H has a vacuum expectation value 〈0|H†H|0〉 6= 0?
This is revealed from the H potential V (H) in Eq. (20). Notice that this is independent of the NGBs,
which cancel in |H|2; this is why they are massless NGBs, because they don’t appear in the potential.
Then we see that for positive m2 > 0 and positive λ > 0 the potential has a minimum at

〈φ〉 ≡ v =

√
m2

λ
(21)

and this is the average value of the field everywhere in spacetime. Because of this value, the low-
energy Lagrangian has SU(2)L × U(1)Y symmetry realized non-linearly: we say that EW symmetry is
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SM Fields SU(3)C , SU(2)L, U(1)Y

spin-0 Higgs H ( 1, 2 , −1
2)

spin-1/2

Quarks QL = (uL dL) ( 3, 2 , 1
6)

(×3 families) u†R ( 3, 1, −2
3)

d†R ( 3, 1, 1
3)

Leptons LL = (ν eL) ( 1, 2 , −1
2)

(×3 families) e†R ( 1, 1, 1)

spin-1
Gluon g ( 8, 1 , 0)

W bosons W± W 0 ( 1, 3 , 0)
B boson B0 ( 1, 1 , 0)

Table 1: The SM field content and quantum numbers.

spontaneously broken (EWSB). Now field excitations have to be considered around this minimum, and
we see that δφ ≡ h has mass

m2
h = λv2 . (22)

So, this theory gives the 3 massive vectors and one massive scalar, a prediction summarized by Higgs
in his original article [2], as the prediction of incomplete multiplets of scalar and vector bosons, which
granted him and Englert [3] the Nobel prize in 2013.

In this introduction to the Higgs mechanism, I have tried to give a feeling for the necessity of
gauge invariance and the Higgs mechanism, and then exposed to examples of the latter. We do not know
yet with certitude how the EW symmetry breaking sector looks like, although we already know that it
is not of the form of a purely technicolor interaction. Indeed, in 2012, an incomplete multiplet – called
the Higgs boson – has been discovered at the LHC, suggesting that a field in the linear representation of
the EW group provides an appropriate description of nature, at least in the regime of energy tested at the
LHC so far.

3 The Standard Model
In a seminal article, Weinberg [1] proposed a model in which fermions and vectors interact with the Higgs
field H . He pointed out the well-behaved high-energy limit of amplitudes, saying that this model may be
renormalizable: this is now the definition of the Standard Model of particle physics. The field content
includes gauge bosons V = G,W,B associated with the SM gauge symmetry SU(3)×SU(2)L×U(1)Y ,
matter fermions ψ = Q, u, d, L, e, and of course the Higgs field. The quantum numbers are reported in
table 1, while their dynamics is described by a very simple Lagrangian which, at least at first sight,
appears to plausibly describe the behavior of elementary particles:

LSM =
∑

ψ

iψ̄6Dψ + h.c.−
∑

V

1

4
VµνV

µν + |DµH|2 − V (H) + yD,Lij Hψ̄iψj + yUijH̃ψ̄iψj , (23)

where Dµ = (∂µ + ig′Y Bµ + igW a
µσ

a + igsG
a
µλ

a). Notice that Left- and Right-handed fermion
have different quantum numbers (they are referred to as chiral), implying that a standard mass term
m(ψ̄LψR + ψ̄RψL) would not respect gauge symmetry. In this sense, the Higgs field becomes necessary
also to provide a mass to the fermions: indeed ψ̄LHψR is a gauge singlet, and induces a fermion mass
after EWSB, φ→ h+ v.

3.1 Accidental and Approximate Symmetries
The SM Lagrangian Eq. (23) consists of only relevant and marginal operators (that is, operators with
dimension D ≤ 4). This is its defining feature, that allows it to be a valid theory over many orders of

7

HIGGS PHYSICS, IN THE SM AND BEYOND

41



magnitude in distance (in principle) and also that makes it such a predictive theory. Indeed, the limited
number of interactions Eq. (23) implies many relations and structures that can be tested. An interesting
way of keeping track of these relations, and to understand to what extent these relations are solid, is to
identify the symmetries of the SM Lagrangian (some of which might be only approximate).

The SM Lagrangian Eq. (23) is invariant under a U(1)B symmetry, called Baryon symmetry or
Baryon number, that acts on quarks and anti-quarks with opposite charge, as well as three U(1)Li global
symmetries that act on the three families of leptons, called lepton numbers. These symmetries are ac-
cidental, in the sense that they follow from the fact that only interactions of dimension ≤ 4 appear in
Eq. (23), but they are exact. Indeed an operator of dimension-5, LHHL, called Weinberg operator, vi-
olates the lepton numbers (and gives mass to neutrinos), while at dimension-6, there are operators that
violate baryon number. These symmetries imply important predictions in the SM: the absence of proton
decay and vanishing neutrino masses.

Many other relations, especially in the context of Higgs physics, can instead be understood in terms
of custodial symmetry SU(2)c. This is an accidental and approximate symmetry of the Lagrangian.
Custodial symmetry is best understood by writing the Higgs field as the 2×2 matrix Σ in Eq. (18). Now,
Σ transforms as Σ→ gLΣ under gL ∈ SU(2)L, but we can conceive an extended (global) transformation
Σ → Σ → gLΣgR for gL,R ∈ SU(2)L,R. For g′ → 0 and vanishing Yukawas, the SM Lagrangian
involving the Higgs field can be written as

LΣ
SM = tr (DµΣ†DµΣ)− V (|Σ|) (24)

and respects this symmetry. The Higgs vev 〈Σ〉 = diag(v, v) breaks it spontaneously to the diagonal
subgroup SU(2)c = SU(2)L = SU(2)R. This is called custodial symmetry because it implies that the
mass of the W and Z bosons be identical. We can now keep track of the parameters that do not respect
this symmetry by attributing them spurious transformation properties [16]

g′ ∼ (1L,3R) Y U ∼ (1L,2R) . (25)

This can help to keep track of the size of certain effects in the SM. For instance, the W boson mass
matrix mab

WW
aW b reduces into 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5, and the Z/W mass difference m2

Z − m2
W± =

(m2
W )33 − (m2

W )11, can only appear in the 5 of SU(2)L = SU(2)R = SU(2)c. Using Eq. (25) we can
see that, in the SM, we can have effects m2

Z −m2
W± ∝ (g′)2. Indeed, at tree-level,3

m2
Z

m2
W

= 1 +
g′2

g2
(27)

This is particularly important for BSM physics, where custodial symmetry is no longer accidental and
the ratio Eq. (27) can be modified.

3.2 Higgs Physics in the SM
Other accidental relations that characterize the SM cannot be attributed directly to symmetries, yet they
can be considered on the same footing as defining features of the SM.

3At loop-level, effects involving the top-Yukawa become manifest. Our power-counting suggests that these ∝ (Y t)4, but
the explicit computation gives, for mt � mb,

∆
m2
Z

m2
W

= −3

2

(Y t)2

16π2
cos2 θw . (26)

This is due to the fact that this contribution is related to an IR effect, regulated by m2
t in the propagator, that removes two

powers of Yt from our power-counting. In other words, Yt cannot be considered a small spurion compatibly with themt � mb

assumption: in the limit Yt → 0, the approximated expression Eq. (26) actually becomes infinite, but an exact computation
with mb,mt → 0 would show the expected behaviour.
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The classical Lagrangian Eq. (23) can be expanded as φ → h + v, and the Goldstone bosons can
be absorbed through an SU(2)L transoformation (unitary gauge).

|DµH|2 ⊃ (m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ)

(
1 + 2

h

v
+
h2

v2

)
(28)

V (H) ⊃ −1

2
m2
hh

2

(
1 + 2

h

v
+
h2

v2

)
(29)

Hψ̄iψ ⊃ mψψ̄iψ(1 +
h

v
) , (30)

where mW = gv/2, mZ = mW / cos θW (cos θW = g/
√
g2 + g′2), mh = λv/2 and mψ = yv/2 in

terms of the Lagrangian parameters. Interestingly, once the masses of the SM particles are measured,
Eqs. (28-30) fix uniquely their coupling to physical Higgs bosons, in such a way that it is proportional to
their mass. The fact that h interactions are naturally aligned with the fermion masses plays a crucial rôle
for the phenomenology of the SM, forbidding to very high accuracy Flavor Changing Neutral Currents
(FCNCs).

Fig. 2: Tree-level Higgs couplings in the SM.

The SM is a renormalizable theory. In practice this means that infinite quantum effects must be
unobservable, as they cancel against infinite Lagrangian counter-terms and relate to input (measured)
parameters of the theory. On the contrary, finite quantum effects are physical and observable: these
constitute a robust prediction of the theory and an important test of its structure. For instance, quantum

2.3 Loop induced decays into γγ, γZ and gg

Since gluons and photons are massless particles, they do not couple to the Higgs boson

directly. Nevertheless, the Hgg and Hγγ vertices, as well as the HZγ coupling, can be

generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. The Hγγ and HZγ couplings are mediated by W boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.

For fermions, only the heavy top quark and, to a lesser extent, the bottom quark contribute

substantially for Higgs boson masses MH >∼ 100 GeV.

a)

•H
W

γ(Z)

γ

• F
H

γ(Z)

γ

+

•H
Q

g

g

b)

Figure 2.14: Loop induced Higgs boson decays into a) two photons (Zγ) and b) two gluons.

For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ∼ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

In this section, we first analyze the decays widths both at leading order (LO) and then

including the next–to–leading order (NLO) QCD corrections. The discussion of the LO

electroweak corrections and the higher–order QCD corrections will be postponed to the next

section.

88

1.2.2 The electroweak radiative corrections

The electroweak radiative corrections can be cast into three main categories; Fig. 1.4:

a) The fermionic corrections to the gauge boson self–energies. They can be divided them-

selves into the light fermion f ̸= t contributions and the contribution of the heavy

top quark f = t. For the contributions of quarks, one has to include the important

corrections stemming from strong interactions.

b) The contributions of the Higgs particle to the W and Z boson self–energies both at

the one–loop level and at the two–level when e.g. the heavy top quark is involved.

c) Vertex corrections to the Z decays into fermions, in particular into bb̄ pairs, and vertex

plus box contributions to muon decay [in which the bosonic contribution is not gauge

invariant by itself and should be combined with the self–energy corrections]. There are

also direct box corrections, but their contribution at the Z–peak is negligible.

a) f

V V
•• •• g

q

••

q

b)

••

H

W/Z W/Z

•• H •• H

t

c)

•
•

•t

t̄

b

b̄

Z
W •

•

•
•

µ−

νµ

e−

ν̄e
W

Z

Figure 1.4: Generic Feynman diagrams for the main electroweak radiative corrections: a)

fermionic contributions to the two–point functions of the V = W/Z bosons, b) Higgs boson

contributions to the two–point functions and c) vertex and box corrections.

The contribution of the light fermions to the vector boson self–energies can be essentially

mapped into the running of the QED coupling constant which, as discussed in the previous

section, is defined as the difference between the vacuum polarization function of the photon

evaluated at low energies and at the scale MZ , ∆α(M2
Z) = Πγγ(0) − Πγγ(M

2
Z) = 0.0590 ±

0.00036. Therefore, the only remaining fermionic contribution to the two–point functions is

the one due to the top quark on which, besides the effects of the Higgs boson, we will mainly

concentrate by studying three important quantities, ∆ρ, ∆r and the Zbb̄ vertex.

35

Fig. 3: Some loop effects involving the Higgs in the SM.

effects imply small (finite) departures of the tree-level relations in Fig. 2, that can be ignored for the
purpose of this review. They are however important when they are associated with effects that are not
present at tree level. I will discuss the most important here, though keep in mind that experiments can
be designed to be sensitive also to other effects that I am here neglecting. First of all, the Higgs doesn’t
couple to photons, to gluons, nor to Zγ at tree-level; all these are generated by loop effects, some of
which are reported in Fig. 3. The exact expressions can be found e.g. in [11]; what matters to us is
that the resulting expressions are completely determined by the tree-level couplings Eqs. (28-30) and
are therefore a prediction of the SM. For these reason, knowledge of the SM particle masses gives us
a concrete prediction on the physics of the Higgs boson, as shown in Fig. 4 that shows the different
branching ratios for Higgs decays in the SM, for different values of mh (computed before the discovery
of the Higgs boson).

It is interesting to point out that loop effects allowed to test the physics of the Higgs boson, even
before its discovery. Indeed, the last diagram of Fig. 3 shows a loop effect that contributes a finite amount

9

HIGGS PHYSICS, IN THE SM AND BEYOND

43



to processes involving a Z or a W boson. Since H propagate in the loop, these effects are ∝ logmh.
Precise measurements of theZ-boson properties at LEP [17], allowed therefore to extract the information
of the RH side of Fig. 4, mh = 94+29

−24 GeV.
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2.3 Loop induced decays into γγ, γZ and gg

Since gluons and photons are massless particles, they do not couple to the Higgs boson

directly. Nevertheless, the Hgg and Hγγ vertices, as well as the HZγ coupling, can be

generated at the quantum level with loops involving massive [and colored or charged] particles

which couple to the Higgs boson. The Hγγ and HZγ couplings are mediated by W boson and

charged fermions loops, while the Hgg coupling is mediated only by quark loops; Fig. 2.14.
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For masses much larger than the Higgs boson mass, these virtual particles do not decouple

since their couplings to the Higgs boson grow with the masses, thus compensating the loop

mass suppression. These decays are thus extremely interesting since their strength is sensitive

to scales far beyond the Higgs boson mass and can be used as a possible probe for new charged

and/or colored particles whose masses are generated by the Higgs mechanism and which are

too heavy to be produced directly.

Unfortunately, because of the suppression by the additional electroweak or strong cou-

pling constants, these loop decays are important only for Higgs masses below ∼ 130 GeV

when the total Higgs decay width is rather small. However, these partial widths will be

very important when we will discuss the Higgs production at hadron and photon colliders,

where the cross sections will be directly proportional to, respectively, the gluonic and pho-

tonic partial decay widths. Since the entire Higgs boson mass range can be probed in these

production processes, we will also discuss the amplitudes for heavy Higgs bosons.

In this section, we first analyze the decays widths both at leading order (LO) and then

including the next–to–leading order (NLO) QCD corrections. The discussion of the LO

electroweak corrections and the higher–order QCD corrections will be postponed to the next

section.
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Z) = Πγγ(0) − Πγγ(M
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Z) = 0.0590 ±

0.00036. Therefore, the only remaining fermionic contribution to the two–point functions is

the one due to the top quark on which, besides the effects of the Higgs boson, we will mainly

concentrate by studying three important quantities, ∆ρ, ∆r and the Zbb̄ vertex.

35

Fig. 4: LEFT: Higgs branching ratios in the SM, for different values of mh [18]. RIGHT: preferred value of mh,
from a global fit to EW data; the yellow band corresponds to the direct LEP constraints mh > 114.4 GeV [19].

So, when produced, a Higgs boson decays predominantly in b-quarks, W -bosons, gluons, etc. But
how is it produced, to begin with? Amusingly, the dominant production mode at the LHC is through a
loop effect: the cross-section for gluon fusion gg → h is large σgg→h ≈ 44(19) pb at 13(8) TeV, simply
because the proton content of gluons is very large. This is followed by tree-level, but electroweak,
processes: vector boson fusion qq → V V qq → hqq has σV BF ≈ 3.7(1.6) pb, while vector-associated
production q̄q → V ∗ → V h has σV H ≈ 2.2(1.1) pb; yet these are the dominant production modes at
e+e− colliders. Finally, production in association with top quarks pp → tt̄h constitute a small fraction
of the total cross-section σtth ≈ 0.51(0.13) pb.

For what concerns the SM, the only information that was still missing before the LHC was mh.
This could be measured with extreme precision

mh = 125.09± 0.24 GeV [6] (31)

thanks to the Higgs decaying to γγ and ZZ, which have the best mass-resolution (decays to W -bosons
are instead penalized by the impossibility to detect neutrinos and hence to reconstruct the invariant mass
of the W -pair).

As we will see in the next section, from a BSM point of view, all channels are important, because
they allow us to test alternative hypotheses in which the Higgs couplings might depart from the SM ones.
In this sense (borrowing Fabiola Gianotti words), Nature has been kind to us, because the Higgs mass
happens to be such that all decay channels are more or less important. Indeed, had mh be for instance
170 GeV, we would have been dominated by the WW mode, with no hope to ever observing γγ decays.

In the BSM-motivated quest of testing the Higgs couplings, it is important to keep in mind that the
LHC is a complicated machine, in which size does not always matter. For instance, the process gg →
h → bb̄ has by far the largest cross-section, but the same is true for the QCD-dominated background,
which renders this channel practically invisible. Decays into b̄b have therefore to be tested in the VH
production mode, where the leptonic decays of the associated vector allow the event to be detected (or in
VBF, where the same rôle is played by the special kinematics of the qq pair).
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A convenient way to express the results of this exploration, is portrayed in Fig. 5. Here the Higgs
couplings to the SM particles are multiplied by an arbitrary factor µ, the signal strength, such that the SM
coincides with µ = 1; then the µi are fitted as if they were free parameters of the theory. The information
contained in these fits, will form the basis for our BSM exploration in the next section.
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Fig. 5: One of the rare ATLAS+CMS combinations from [20]. LEFT: fit to tree-level Higgs couplings, testing the
coupling/mass relation as predicted in the SM, Eqs. (28-30). RIGHT: test of the SM Higgs couplings, performed
with a global fit by rescaling each SM tree-level coupling to particle i by a factor κi (the "κ" framework) - BBSM
denotes a branching ratio into undetected particles.

4 Beyond the Standard Model
I mentioned before that the defining feature of the SM is the possibility, given its matter content, to
extrapolate it to very high-energy, thus allowing it to be (very close to) a fundamental theory.4 First of
all, this is just a possibility: nothing forbids the presence of new structure at distances close to the ones
probed today. Secondly, we have indications that such structure exists. For instance, electric charge runs
towards higher values as the energy is increased, and eventually becomes strong and non-perturbative
at MLandau ≈ 10275 GeV, signaling the existence of new dynamics. Gravity, must ultimately become
part of the SM, but it’s known to become strong at energies of order MPlank ≈ 1019GeV. Other in-

4More precisely, the SM includes only relevant and marginal operators that represent a finite theory keeping their couplings
fixed and sending the cutoff to∞.
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dications include the existence of Dark Matter, the neutrino masses, the necessity for a mechanism for
baryo(lepto)genesis, all of which are not accommodated in the SM.

All these reasons motivate searches for physics beyond the SM, in all its possible incarnations.
There is however one additional reason, that pushes us to search for BSM physics explicitly at the LHC
and in particular in Higgs physics: Naturalness. This much disputed principle has to do with the hierarchy
problem, expressed by Wilson [21] as the impossibility for the existence of light scalar particles that are
not associated with the breaking of some symmetry. This argument includes an elementary Higgs scalar,
such as the one appearing in the SM, and is a consequence of the fact that the Higgs mass term |H|2
in the Lagrangian has dimension-2 and is therefore a very relevant operator. Relevant operators are
UV-sensitive, so that the value of the Higgs mass we observe is related to quantities at high-energy; for
instance changing the value of m2

h(MPlank) - the Higgs mass parameter measured at the Planck scale -
by a factor of two within the SM, corresponds to changing m2

h(TeV) by a factor M2
Plank/TeV2 = 1032!

This Wilsonian point of view is the formal implementation of reductionist thinking, that is: low-energy
quantities such as m2

h(TeV) can be computed in terms of more fundamental quantities m2
h(MPlank); in

this sense the observed value m2
h ≡ m2

h(TeV) ≈ (100GeV)2 � 104+32GeV2 appears to be finely tuned
in the UV and this is the essence of the hierarchy problem.5

More concretely, in a fundamental theory that predicts m2
h in terms of more fundamental parame-

ters, we could integrate m2
h(E) along the renormalization group flow (denoted here with E, to highlight

the physical Wilsonian interpretation of E as the momentum of particles in the loops), to obtain its value
at small energy (see e.g. [9]):

m2
h =

∫ ∞

0
dE

dm2
h(E)

dE
=

∫ ΛUV

0

dm2
h(E)

dE
+

∫ ∞

ΛUV

dE
dm2

h(E)

dE︸ ︷︷ ︸
≡m2

h(ΛUV )

, (32)

where we have separated the contribution from below/above an arbitrarily chosen physical scale ΛUV .
The point is that we can compute the first integral in the RH side of Eq. (32) with the observation that
at low-energy the SM describes properly Higgs physics; for ΛUV = MPlank we obtain a contribution
∆m2

h = 1036GeV2 as mentioned above, that must be finely cancelled against an (uncorrelated, in the
Wilsonian point of view!) contribution from m2

h(ΛUV ).

Paradoxically, the best way to formulate the hierarchy problem, is in models that solve it, i.e.
models that do exhibit additional symmetry, such as composite Higgs models (CHM) or Supersymmetry
(SUSY), such that

m2
h(ΛUV ) = 0 . (33)

This is achieved in CHM because |H|2 is a composite operator in the theory above ΛUV and is in fact
irrelevant. In SUSY, instead, non-renormalization theorems imply that dm2

h(E)/dE = 0 and hence
Eq. (33). In both cases, however the dominant contribution to m2

h comes from the first integral in the
RH side of Eq. (32) that is typically a loop factor smaller than Λ2

UV (in strongly coupled CHM this is
possible only if the Higgs is a PNGB of a global SSB [23]). Given the Higgs couplings in the SM, this
part can be calculated and one finds that no fine-tuning corresponds to

ΛUV . 450 GeV , (34)

that is: new dynamics has to modify Higgs physics at a physical scale accessible to the LHC.

Now, we can tolerate some level of fine-tuning (this can be quantified using the definition of
Ref. [24] and increases quadratically with the new physics scale), but these arguments clearly single out
different directions for the future of particle physics:

5In the SM, this relevant operator is very sensitive to the UV, but in principle one could immagine a modification of the SM
where this sensitivity is tamed, because the dimension of the |H|2 operator is smaller. First principles exclude this possibil-
ity [22].
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– Rethink the Wilsonian approach in the grander scheme of things
– Search directly for the new states at ΛUV

– Test the properties of the Higgs boson, which are expected to depart from the SM ones, signaling
a modification of the first integral in Eq. (32)

The first approach has recently provided promising directions that take into account the cosmological
history of the universe [25] with or without the inclusion of anthropic arguments [26], and it is not clear
how wide the spectrum of possibilities is. The search of direct states in the TeV region constitutes instead
the bulk of the LHC search program; its different ramifications depend very much on how we think this
different dynamics will be, I refer to reviews on CHM or SUSY.

Instead, testing the properties of the Higgs boson is a well-defined and compact field of research.
Indeed, from an experimental point of view, there is only a limited number of observables that can be
tested in the context of Higgs physics. Interestingly, also from a theoretical point of view, independently
from the details of the UV dynamics, there is only a limited number of ways in which Higgs physics can
be modified. This is a consequence, again, of the Wilsonian point of view: integrating out new physics
at the scale ΛUV generates a set of local operators, corresponding to an Effective Field Theory (EFT).
Given that only the more relevant ones survive at low-energy and given that there is only a finite number
of operators of a given relevance, there can be only a finite number of effects that is worth studying in
Higgs physics. We discuss this in detail in what follows.

4.1 BSM Higgs Phenomenology
An important thing to keep in mind, when thinking about Higgs phenomenology, is that the structure
of the SM is rather unique: the relation between the different couplings, implied mostly by gauge-
invariance, allow the theory to be valid to high-scales. So,

Any modification of the SM couplings reduces the cut-off of the theory.

This has to be read together with the definition that

Any theory with a cutoff is an Effective Field Theory,

that can be written as an expansion in local field operators of different dimensionality

Leff = LSM +
∑

i

c
(6)
i

M2
O(6)
i +

∑

j

c
(8)
j

M4
O(8)
j + · · · , (35)

where c(D)
i are called Wilson coefficients and the leading (relevant) contribution LSM ≡ L≤4 is the one

surviving in the limit where M , which is here the mass of new physical states, is taken→∞.6

In other words, what we can learn from testing different aspects of Higgs physics, can be captured
in the language of EFTs. For instance, the ’κ’ framework [18], where all SM Higgs couplings are rescaled
(as in κZ = ghZZ/g

SM
hZZ for the hZµZµ coupling to Z-bosons), lowers the cutoff of the theory for κ 6= 1,

and eventually corresponds to an EFT, despite the fact that no scale appears explicitly in its formulation
(we had an example of this for a 6= 1 in Eq. (12)).

From a practical, experimental, point of view, there have been different proposals to parametrize
the experimental information that can be extracted from measurements of the Higgs properties, but ul-
timately, the information they carry can be matched to EFTs. Most notably, pseudo-observables - POs

6Here I’ll discuss only theories that have a well defined decoupling-limit, see however [27] for an interesting case, with a
naturally light Higgs, that cannot be captured by such an EFT. Moreover, I refer to Refs. [28, 29] (and to the appendix of [30])
for parameterizations in which EW symmetry is never linearly realized (useful for instance to capture Technicolor theories with
an accidentally light Higgs).
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- [31, 32] are designed as EFT-inspired expansions around the poles of certain scattering amplitudes
involving h; as such they are physical quantities and can be used as an important tool to extract infor-
mation about EFTs from experiment. They are particularly useful in processes involving on/off-shell
EW bosons, such as h→ V ψ̄ψ, because their measurement depends on a minimum of theoretical input:
precision QCD/EW calculations can then be used to extract from them information about the Wilson
coefficients ci, but since the precision of such computations constantly improve, measurements in terms
of POs constitute a durable legacy.

For processes involving QCD states, POs are unfortunately less effective, since the experimental
information is encoded in objects -jets - that correspond to a multiplicity of states at the fundamental
level. In this case, simplified template or fiducial cross-section measurements [33] try to package the
experimental information in a way that has reduced sensitivity to theoretical uncertainties (which are
prone to improve when future calculations will be available) and enhanced sensitivity to the effects
induced by EFTs.

Having said this, let us discuss what EFTs for Higgs physics really are, were we are interested
in theories which have the same field content as the SM (see table 1). EFTs are all about formulating
hypotheses about microscopic physics and to follow how these hypotheses can be tested with low-energy
experiments. The assumptions I’ll make in what follows are:

– There are no states beyond the SM ones at the energies relevant for these experiments, i.e. E �M .
This assumption is motivated by the so far null results of the LHC.

– There is well-defined decoupling limit M → ∞ in which the SM is recovered; in particular the
Higgs field behaves (at least approximately) like an SU(2)L SM linear doublet. This is motivated
by the left panel of Fig. 5: experimental data implies that departures from this limit must be small
and presumably associated with a small expansion parameter.

– New physics is flavor-universal. This is motivated by the difficulty of accommodating experimental
constraints in models with flavor non-universal new physics, but also from simplicity. See Ref. [34]
where this assumption is relaxed in the context of Higgs/EW physics. Similarly we assume here
that new physics conserves CP.

– We assume, to begin with, that the new physics is such as to generate all allowed operators, so
that the leading effects are necessarily given at dimension-6, all higher dimension effects being
irrelevant.

This last assumption is the least motivated: typically scenarios of new physics affect different sectors of
the SM in different ways, symmetries can forbid some operators in favor of others, and large couplings
can enhance effects that would otherwise be small. We will discuss these aspects below, but for the
moment this hypotheses provides a conservative way for exploring the new physics landscape without
much commitment.

4.1.1 Dimension-6 Effects
An important aspect of EFTs is that some (combinations of) effective couplings are redundant and do
not induce any physical effect. Consider an infinitesimal (small ε) local transformation

φ(x)→ φ(x) + εF (φ(x), ∂φ(x)) (36)

for a generic function F . Such field redefinition does not change the S-matrix, as long as the redefined
field has non-vanishing matrix elements with the states sourced by the original one, but it changes the
action by

δS[φ] = ε

∫
d4x

δS[φ]

δφ(x)
F (φ(x), ∂φ(x)) . (37)
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This implies that pieces of the action that can be written in the form of Eq. (37), can be eliminated
by such field redefinition without changing the physics: they are therefore redundant. An example can
clarify this better:

S =

∫
d4x

(∂µφ)2

2
+

cφ
M2

φ32φ
(
φ→φ−cφ φ3

M2

)

−−−−−−−−−−→ S =

∫
d4x

(∂µφ)2

2
+O

(
1

M4

)
. (38)

The irrelevant interaction cφ is proportional to the leading-order equations of motion and can be elimi-
nated, up to higher order effects in the 1/M2 expansion (which here plays the ε role). From a practical
point of view, such redundancy can be thought (together with integration by parts) as the freedom of
choosing different forms of the Lagrangian (similarly to gauge invariance), to highlight different proper-
ties of the theory under scrutiny.

So, under the above assumptions, and focussing on non-redundant sets of operators, there is only a
handful of operators that can modify Higgs physics. These are summarized in Table 2 where we exploit
the above-mentioned freedom to write them in three different bases, corresponding to SILH [35, 36],
Warsaw [37], and BSM primaries/Higgs basis [33,38,39]. Integration by parts and field redefinitions al-
low to swap the blue operators in the SILH basis with the red ones in the Warsaw basis (plus a redefinition
of other Wilson coefficients).

It is sometimes useful to classify these effects according to their transformation properties under
the SM SU(2)L × SU(2)R accidental symmetry, which derive from

SU(2)L × SU(2)R Higgs only Higgs and Derivative
(1L,1R) tr (Σ†Σ) = H†H tr (Σ†DµΣ) = Dµ(H†H)/2

(1L,3R)Y=0 tr (Σ†Σσb) = 0 tr (Σ†DµΣσb)
b=3−−→ −H†

↔
DµH/2

(3L,1R) tr (Σ†σaΣ) = 0 tr (Σ†σaDµΣ) = H†σa
↔
DµH/2

(3L,3R)Y=0 tr (Σ†σaΣσb) b=3−−→ −(H†σaH) tr (Σ†σaDµΣσb)
b=3−−→ −Dµ(H†σaH)

(39)
where the 3R is broken down to its components, since SU(2)R is not necessarily a BSM symmetry.7 For
instance, in the SILH basis, the operator OT is (1L,3R)⊗ (1L,3R) ⊃ 5R and is indeed associated with
maximal custodial symmetry breaking. Similarly, OHψR and OHψL are ∼ 3R and also break custodial.
On the other hand, using the spurious transformation properties of g′ from Eq. (25), OB is a singlet, in
the sense that it doesn’t introduce further custodial symmetry breaking than the SM. All other operators
are singlets too. This classification is important because SU(2)c in the SM implies some relations (see
section 3.1) that are well preserved at loop level (as discussed below Eq. (25)); departures from these
relations can be well measured and constitute accurate BSM probes.

Clearly each individual operator contributes to different physical processes; for instance OHQ
modifies the Z couplings to left-handed quarks, but also contributes directly to h → ZQ̄Q decays,
etc. This fact complicates a global fit, but also makes its results difficult to present and to interpret, as
marginalized constraints are often dominated by the poorest observables.8 For this reason it is useful to
identify the most relevant experiments that can test the operators of Table 2 and organize them according
to their precision, and the operators they are sensitive to.

7In Eq. (39) we have kept the third one b = 3 that is associated with vanishing hypercharge Y = 0, but keep in mind that
operators, like OudR in the caption of Table 2, can be formed also with the ± components that give H̃†σaH with hypercharge
Y = ±1

8In principle the n × n correlation matrix relating measurements of n Wilson coefficients carries all the necessary infor-
mation. In practice, however, results are often presented as marginalized over n − 1 parameters so that, when the correlation
matrix has large off-diagonal components, constraints are dominated by the least sensitive measurements and appear, therefore,
artificially weak. These are sometimes called "blind directions".
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SILH Warsaw BSM Primaries
L

H
C

H
ig

gs
10

% O6 = λ|H|6 O6 ∆L3h

OBB = g′2|H|2BµνBµν OBB ∆Lhγγ
OGG = g2

s |H|2GAµνGAµν OGG ∆LhGG
Oyψ = ye|H|2(ψ̄LHψR)ψ=u,d,e Oyψ ∆Lhψψ
OH = 1

2(∂µ|H|2)2 OH ∆LhV V
OHB = ig′(DµH)†(DνH)Bµν OWW = g2|H|2W a

µνW
µν a ∆LhZγ

L
E

PI
I% OHW = ig(DµH)†σa(DνH)W a

µν OWB = g′gH†σaHW a
µνB

µν ∆Lκγ
OW = ig

2

(
H†σa

↔
DµH

)
DνW a

µν OHL = (iH†
↔
DµH)(L̄Lγ

µLL) ∆LgZ1
OB = ig′

2

(
H†

↔
DµH

)
∂νBµν O′HL = (iH†σa

↔
DµH)(L̄Lσ

aγµLL) ∆LZeL

L
E

PI
h OT = 1

2

(
H†
↔
DµH

)2

OT ∆LZν

OHψR = (iH†
↔
DµH)(ψ̄Rγ

µψR)ψ=u,d,e OHψR ∆LZuR,dR,eR
OHQ = (iH†

↔
DµH)(Q̄Lγ

µQL) OHQ ∆LZuL
O′HQ = (iH†σa

↔
DµH)(Q̄Lσ

aγµQL) O′HQ ∆LZdL
Table 2: CP-even dimension-6 operators that affects Higgs physics. We omit dipole operators for fermions and

OudR = y†uyd(iH̃
† ↔DµH)(ūRγ

µdR) since they are suppressed by light fermion Yukawas under the MFV assump-
tion. A complete set of operators can be found in Refs. [16, 37].

Higgs Physics. In principle Higgs physics can test all effects induced by the above operators. However,
the sensitivity of present measurements of Higgs properties at the LHC is generally smaller than that of
EW tests at LEP. For this reason it is useful to identify Higgs-only operators that do not contribute to EW
precision observables and are therefore the genuine target of the LHC Higgs program, unconstrained
by other experiments. Operators of the form |H|2OSM , with OSM a SM operator, only contribute to
Higgs physics since, according to the classification Eq. (39), |H|2 is an EW singlet that does not induce
EW breaking effects. It is instructive to see why: the operator OGG for instance appears in the effective
Lagrangian (with G in non-canonical normalization) as

− 1

4g2
s

GAµνG
Aµν +

cGG
M2
|H|2GAµνGAµν = −1

4

(
1

g2
s

− 2
v2

M2

)
GAµνG

Aµν +
cGG
2M2

(2vh+ h2)GAµνG
Aµν .

The piece proportional to v2 can be reabsorbed into a redefinition of gs, which is an input parameter for
the SM and has therefore no physical meaning until measured. In our flavor-universal framework we can
think of the SM as having 8 input parameters, e.g. g′, g, gs, mW , mu,d,e and mh, implying the existence
of 8 Higgs-only operators

Higgs-only: {OBB,OWW ,OGG,OH ,Oyu,d,e ,O6} (40)

that are explicitly manifest in the Warsaw basis (upper-center box in Table 2). These can be tested at the
LHC principally through the following rates

h→ γγ, h→ Zγ, gg → h h→ ZZ,WW, gg → t̄th, h→ b̄b, h→ τ̄ τ, gg → hh
(41)

which contribute to the results from the right panel of Fig. 5, in addition with constraints from the
h → Zγ channel [40] and pp → hh processes (the latter will test the Higgs cubic interaction that is
affected uniquely by O6, experimental results in this channel are not available yet, see Ref. [41] and
references therein).
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Notice that Higgs physics has in principle many more observables than the free parameters implied
by the EFT, meaning that at this level in the 1/M expansion the EFT is in fact predictive and provides
relations that can be tested. For instance, the EFT operators Eq. (40) imply that only one operator OH
modifies both the hZµZµ and hW+

µ W
−µ couplings. Similarly, two operators OBB,OWW affect the

four hZµνZµν , hW+
µνW

−µν , hZµνAµν and hAµνAµν structures. These, and many more, are accidental
relations that will be broken by the dimension-8 Lagrangian and they can be thought as the defining
features of our assumptions on page 14. These relations can be made more explicit in the mass eigenbasis,
writing combination of the 8 operators Eq. (40) as

∆Lhγγ = κγγ

(
h

v
+

h2

2v2

)[
AµνA

µν + ZµνZ
µν + 2W+

µνW
−µν
]
,

∆LhZγ = κZγ

(
h

v
+

h2

2v2

)[
tθWAµνZ

µν +
c2θW

2c2
θW

ZµνZ
µν +W+

µνW
−µν
]
,

∆LhGG = κGG

(
h

v
+

h2

2v2

)
GAµνG

Aµν , (42)

∆Lhff = δghff

(
hf̄LfR + h.c.

)(
1 +

3h

2v
+

h2

2v2

)
,

∆L3h = δg3h h
3

(
1 +

3h

2v
+

3h2

4v2
+

h3

8v3

)
,

∆LhV V = δghV V 2mW

[
h

(
W+µW−µ +

ZµZµ
2c2
θW

)
+ ∆h

]
,

with ∆h contributing to processes with at least two physical Higgses. Here we have mede sure that,
for instance, only ∆Lhγγ contributes to the h → γγ rate and that only ∆L3h modifies the Higgs cubic.
Then, these relations imply predictions: for instance the hZµνZµν structure receives contributions that
are proportional to κZγ and κγγ that are both well constrained.

This way of writing the EFT operators has the unique purpose of making manifest the relations
between modification to different observables that persist in the dimension-6 Lagrangian. It is a way of
writing observables in terms of observables that is analogous to defining the SM through the relation be-
tween W and Z masses Eq. (27), or the relations between Higgs couplings and masses Eqs. (28-30) that
are accidental to the dimension-4 Lagrangian. In practice, these BSM Primaries [38], provide a useful
way to express the results of a global fit in terms of parameters that are as close as possible to experi-
ments, but at the same time maintain the information about the accidental relations of the dimension-6
Lagrangian. A global fit to Run-1 Higgs data reads [42] (see also [43–49])

δghV V = 1.04± 0.03, δghtt = 1.1+0.9
−3.0 δghbb = 1.06+0.30

−0.23, δghττ = 1.04± 0.22 (43)

κgg = 0.0005± 0.008, κγγ = −0.0003+0.0005
−0.0007, κZγ = 0.000+0.035

−0.019 . (44)

This can be written in terms of constraints on the above operators, implying that (cH , cyu,d,e)
v2

M2 ∼ 10−1,

cG
m2
W

M2 ∼ 10−3, while (cWW , cBB) v2

M2 ∼ 10−2 (notice that cWW cBB affect both γγ and the poorer Zγ;
it is the latter that dominates this marginalized constraint); see also Fig. 6.

LEPI Electroweak Precision Tests (EWPT). A peculiarity of the Higgs field is that it acquires an ex-
pectation value that modifies the symmetry of the vacuum and the propagation of the EW bosons. Physics
that modifies the Higgs sector can therefore also contribute to observables in EW physics, through the
operators of Table 2 with 〈H〉 → v/

√
2.

LEP-I, operating on the Z-pole, provides the most precise measurements in this context, reaching
the permille level. From an experimental point of view, we can think of these measurements of e+e− →

17

HIGGS PHYSICS, IN THE SM AND BEYOND

51



Z → fermions as testing the couplings of Z to all the 7 SM (left and right) fermions ν, eL, eR, uL, uR,
dL, dR (the Z couplings to these define a set of 7 pseudo-observables for LEP-I). Using (αem,mW ,mZ)
as EW input parameters, it is easy to get convinced that there is no additional experimental information
that can be extracted from LEP-I on flavor universal theories; in particular, information on custodial
symmetry breaking (often presented as T parameter, that measures departures from the mZ/mW mass
difference of Eq. (27)) or effects from Z − B mixing (the S parameter [50, 51]) is contained in the
Z-coupling measurements.

In the SILH basis, there turn out to be 7 operators contributing to these observables9, reported
in the bottom-left block of Table 2 - more precisely, only the combination OW + OB affects this type
physics, while the orthogonal combination OW −OB does not,

LEP-I : {OW +OB,OT ,OHQ,O′HQ,OHu,OHd,OHe} (45)

There could have been more operators (as in the Warsaw basis, where there naively appear to be 8
operators contributing), implying that one combination will necessarily remain unconstrained and it will
affect the results of global fits with marginalized coefficients (see footnote 8). In this sense, the SILH
basis appears as a favorable choice for EWPT. The result of a global fit, restricted to these operators
and to LEP-I data [17], implies that the coefficients ci of the operators of Eq. (45) are constrained at the
permille level [52–54],

ci
m2
W

M2
∼ few × 10−3 (46)

as illustrated in Fig. 6.

LEP-II vs LHC. We have seen that out of the 17 operators that involve H , Table 2, 7 are constrained by
LEP-I measurements and are well described in the SILH basis, while other 8 can be tested with Higgs
physics only, and are well described in the Warsaw basis. Two (combinations of) operators remain yet
unconstrained. To understand what effects they induce, it is useful to think of the 17 operators in Table 2
as a 17-dimensional sub-manifold in the∞-dimensional space of all possible observables and single out
the 2-dimensional plane that belongs to this 17-dimensional manifold, but does not contribute to any
observables measured at LEP-I or to the Higgs-only measurements of the Right panel of Fig. 5. The
result of this exercise is a continuation of what we began in Eq. (42), expressing the EFT in the mass
eigenstate basis and unitary gauge. We find that [38]

∆LVee = δgZeR
ĥ2

v2
ZµēRγµeR + δgZeL

ĥ2

v2

[
ZµēLγµeL −

cθW√
2

(W+µν̄LγµeL + h.c.)
]

+δgZνL
ĥ2

v2

[
Zµν̄LγµνL +

cθW√
2

(W+µν̄LγµeL + h.c.)
]
, (47)

∆LVqq = δgZuR
ĥ2

v2
ZµūRγµuR + δgZdR

ĥ2

v2
Zµd̄RγµdR

+δgZdL
ĥ2

v2

[
Zµd̄LγµdL −

cθW√
2

(W+µūLγµdL + h.c.)
]

+δgZuL
ĥ2

v2

[
ZµūLγµuL +

cθW√
2

(W+µūLγµdL + h.c.)
]

(48)

∆LgZ1 = δgZ1

[
igcθW

(
Zµ(W+νW−µν−h.c.)+ZµνW+

µ W
−
ν

)
(49)

9This is true when performing EW fits using (αem,mW ,mZ ) as EW input parameters; if instead one uses (αem, GF ,mZ )
there is an additional non-Higgs operator (L̄Lσ

aγµLL) (L̄Lσ
aγµLL) that enters the fit at dimension-6 level, but also has an

additional measurement that constrains it: the muon lifetime is used to extract GF .
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Fig. 6: 95% confidence intervals from a global fit, from Ref. [54]. The green lines denote fits with one coefficient
only, while red bars denote fits with multi coefficients, marginalized (in our notation cψR,L is cHψ).

−2gc2
θW

h

v

(
W−µ J

µ
−+h.c.+

c2θW

c3
θW

ZµJ
µ
Z+

2s2
θW

cθW
ZµJ

µ
em

)(
1 +

h

2v

)
+

e2v

2c2
θW

hZµZ
µ + ∆h2

]

∆Lκγ = δκγ

[
ie

(
1 +

h

v

)2

(Aµν − tθWZµν)W+µW−ν + 2Zν∂µ

(
h

v
+

h2

2v2

)
(tθWA

µν − t2θWZ
µν)

+

(
h

v
+

h2

2v2

)(
tθWZµνA

µν +
c2θW

2c2
θW

ZµνZ
µν +W+

µνW
−µν
)]
, (50)

complete Eq. (42) to spam the entire space of dimension-6 operators, in a way that aligns with EW and
Higgs observables. Here h corresponds to the physical Higgs and ∆h2 includes interactions with at least
two h that are irrelevant for experiments in the near future.

From Eqs. (49,50) we can read that the two remaining directions modify the trilinear gauge cou-
plings (TGCs) between ZW+W− and γW+W−, as well as the hV ψ̄ψ (V = W,Z) amplitude. The
reason that both these observables appear simultaneously modified can be traced to the fact that Higgs
and the eaten Goldstones belong to the same multiplet, so that some BSM deformations in the Higgs
sector can modify also processes with longitudinal W,Z bosons, at least at a fixed order in the 1/M ex-
pansion. TGCs can be tested in diboson processes at LEP-II or at the LHC, while deformation in hV ψ̄ψ
are tested in pp→ V H associated production at the LHC.10 The constraints from these two search modes

10In principle the same amplitude can be tested in h → V ψ̄ψ decays [55] but, as shown in Fig. 7, constraints from LEP-II
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are at present comparable, although the latter are typically extracted from the high-energy regime [56],
so that certain conditions regarding the validity of our EFT assumption limit their interpretability [57].
From LEP-II data [58] we read

δg1,Z = −0.05+0.05
−0.07, δκγ = 0.05+0.04

−0.04 . (51)

These directions Eqs. (49,50) can be translated into combinations of operators in the SILH or War-
saw basis (see Ref. [39] for a gauge-invariant formulation in terms of the above operators), where
δg1,Z , δκγ ∼ cm2

W /M
2, for c a combination of Wilson coefficients, and are included in Fig. 6.

To conclude, let me reiterate the arguments of this section. Global fits are useful to explore the
impact of experimental data on broad BSM hypotheses, that in our case we have defined with the as-
sumptions in page 14 that we hope are able to capture large classes of BSM theories. If the theoretical
parameters are not aligned with the experimental observables, the results of a global fit with n parameters,
n − 1 of which are normalized, will be dominated by the poorest experiment. For this reason we have
divided experiments with different sensitivity in correlated blocks (LEP-I, LEP-II and Higgs physics)
and identified the operators they constrain. In fact, the best way to do this is to align the theoretical
parameters to the most precise experiments, as in the BSM primaries/Higgs basis.

The outcome of this discussion is two-fold. First of all, it allowed us to identify the relations
that persist in the effective Lagrangian at the level of dimension-6 operators, relations that can be tested
or used as a check, if a deviation is found, or can be used to better constraint a given parameter. An
example of such relation is reported in Fig. 7, which shows the differential distribution of Higgs decay-
ing to a vector and a pair of fermions, such as in the golden channel. This distribution is affected by
many dimension-6 operators, but all of them are bounded by other experiments, either at LEP-I, LEP-II
or in Higgs physics; therefore this distribution cannot be arbitrarily modified, and a prediction of the
dimension-6 EFT analysis is that, if any deviations are found there, they must be within the blue band,
or violate some of our assumptions.

200 400 600 800 1000
p2

0.0002

0.0004

0.0006

0.0008

0.0010

1
Γ
dΓ
dp2

h➙Vff differential distribution

SM prediction

BSM prediction
from a global fit

(GeV )2

Fig. 7: Normalized differential distribution for Higgs decays in the golden channel. The black line corresponds to
the SM prediction, while the blue bands correspond to the (1,2-σ contours) of the BSM-deformation, as allowed
by constraints from a global fit on possible dimension-6 modifications, that includes LEP-I and LEP-II data, as
well as constraints on h→ Zγ. From the data in [52] (see also [59]).

are stronger than what can currently be measured in that channel
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Secondly, this discussion, shows the most that we can get, in terms of experimental constraints,
out of the most conservative hypotheses that all operators are democratically generated, and that they can
even cancel each other in their contribution to a given observable. Even in this limiting hypothesis we
could identify classes of operators that are already very well tested and constrained.

4.2 BSM Perspective
In realistic set-ups, based on physical microscopic hypotheses, only subsets of operators are typically
generated, thus providing concrete scenarios that can be tested more precisely, and from which something
can be learned. There is no limit in how specific and complicated a BSM model can be, but there is
instead a limit in how simple it can be. Here we want to identify the minimal set of ingredients that
can characterize a microscopic model and that can, at the same time, represent broad features of more
generic BSM scenarios. These ingredients are,

One New Mass Scale M , One New Coupling g∗, Symmetries and Selection Rules11

where we assume that the UV completion admits some perturbative expansion in its couplings. These
microscopic properties will be imprinted into the Wilson coefficients of the operators of Table 2. In lack
of a specific model in which to compute this UV→IR matching, we can still estimate them through a
procedure known as power-counting or Naive Dimensional Analysis [60].

The idea is simple. Symmetries or properties of the underlying theory determine if an operator
is generated or not. In weakly coupled theories this can simply boil down to whether or not the field
mediating an interaction is present at the scaleM (an example of this will be given below for SUSY), and
can make the difference between large (tree-level) and small (loop-level) effects [61], while in strongly
coupled theories a symmetry is typically necessary to generate a selection rule in the IR (for instance
in composite Higgs models the Higgs is a psuedo-Goldstone boson with non-linearly realized global
symmetry that generates mostly interactions with derivatives ∂H).

The dimension of the operator D determines that its coefficient will scale ∼ 1/MD−4, in order
to make the action dimensionless, as we already know. What is perhaps more exotic is the fact that,
counting powers of ~ 6= 1 in the Lagrangian can tell us how many powers of couplings an operator might
carry. Indeed, couplings, as well as fields, carry ~ dimensions [35] (see also Refs. [9, 10]). It is easy to
see that, since [S] = ~, fields have [φ] = ~1/2, while couplings have [g] = ~−1/2. Any operator in the
Lagrangian must have dimension [ciOi] = ~, and we find that for an operator with ni fields,

ci ∼ (coupling)ni−2 (52)

In what follows we clarify the importance of power-counting through two examples ins SUSY and CH
models, the most studied extensions of the Higgs sector that solve the hierarchy problem. Keep in mind
that the selection rules discussed here, apply at the matching scaleM , but the coefficients will run as they
evolve towards lower energy. These effects can be computed entirely within the EFT, see [16, 62–66],
and can have some important implications, in particular in situations where a poorly measured Wilson
coefficient mixes through renormalization group flow into a very-well measure one.

4.2.1 SUSY
SUSY provides a great example of symmetries and selection rules in action. Superymmetry is compatible
only with holomorphic interactions, thus forbidding the up-quark Yukawa ∝ H̃ = εH† in the SM
Lagrangian Eq. (23). Up-quark masses require therefore the presence of an additional Higgs doublet

11Selection rules follow from microscopic symmetries that might or might not be realized (linearly or not) in the IR. Here I
tend to refer to selection rules, as those that cannot be identified with symmetries from the low-energy point of view.
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with opposite hypercharge H2 ∈ (1,2, 1/2), which can appear in the Lagrangian without complex
conjugation. 12

Moreover, the symmetry implies that the SM fields are part of super-multiplets containing fields
of different spin. Some of these fields can potentially mediate proton decay, so that many SUSY incar-
nations invoke an accidental symmetry, R-parity, to forbid the relevant interactions responsible for this.
Under R, the SM fields that we know, together with the scalar component of H2, are even, while all
other states appearing in the SUSY multiplets are odd. This last observation is uniquely responsible for
the EFT structure of SUSY models with R-parity. Indeed, any process between SM (R-even) states, can
not be mediated at tree-level by an R-odd resonance, so that the only tree-level BSM effects are those
associated with H2, the only R-even BSM particle. We show the relevant diagram in Fig. 8, where we
identify h with the linear combination of H1, H2 that is closer to the SM one, and call H the heaviest
combination (see Ref. [68]).

SUSY:

f

f̄

〈h〉〈h〉

h
H

g2
∗

CHM:

G

H

Aµ

ψ̄

ψ

Fig. 8: LEFT: a modification of the Higgs couplings to SM fermion is the largest effect from integrating out BSM
physics in SUSY models with R-parity. RIGHT: in CHM a strong sector brakes a global symmetry G → H, while
the gauge and Yukawa couplings break the symmetries explicitly, but weakly.

So, from the EFT perspective, R-symmetry translates in the selection rule that only a very special
subset of new interactions is generated sizably at low energy: Oyu ,Oyd ,Oye . What else can we say about
this ‘New Physics’ sector? Flavor symmetry U(3)5, is broken in the SM by the Yukawa couplings; the
stringent constraints from flavor physics favor the possibility that the Yukawas be the only source of flavor
symmetry breaking also in TeV-scale BSM: a possibility that is known as Minimal Flavor Violation [69]
and is indeed realized in these SUSY models (the Hψ̄ψ couplings are aligned with the SM Yukawas).
Finally, we can identify the microscopic coupling

LSUSY
UV ⊃ g2

∗
4
h3H (53)

with the generic g∗ introduced on page 21, and mH with M .

Now that we have identified the relevant13 features of SUSY models, in the generic language of
page 21, we can estimate the low-energy EFT:

SUSY ∼





Selection rule from R-symmetry
Flavor symmetry, broken by yψ
New coupling: g2

∗
Mass scale: mH




⇒ LSUSY

eff = c̃u
g2
∗

m2
H

Oyu + c̃d
g2
∗

m2
H

Oyd + c̃e
g2
∗

m2
H

Oye

(54)
where we have used the fact that the operators Oyψ contain 5 fields so we expect their coefficient ∼
coupling3; since they brake flavor symmetries they must involve yψ (they are already weighted by one

12One of my favorite possibilities is that instead up-type quark Yukawas arise as SUSY breaking effects, while the Higgs
doublet, which has quantum numbers H2 ∈ (1,2,−1/2) be the scalar supersymmetric partner of one of the leptons L, which
has the same quantum numbers. In this case h would be the sneutrino [67], implying that we would have already discovered
SUSY!

13On the most technical meaning of the word: features that are important at low-energy.

22

F. RIVA

56



power of the Yukawas in Table 2), thus Eq. (52) reads here coupling3 ∼ yψg2
∗ . An explicit computation

reproduces Eq. (54), with
c̃u = − cotβ , c̃d = c̃e = tanβ . (55)

This example show the impressive power of EFTs: 3 parameters are enough to capture the low-
energy signatures of all SUSY models with R symmetry and minimal field content. It also shows the
importance of being able to identify the relevant microscopic features that shape the Wilson coefficients at
the matching scale, as in Eq. (54), for two reasons. Certainly, these power-counting rules provide a useful
short-cut for the BSM → SM EFT matching. Most importantly, however, they allow us to identify
which are the relevant hypotheses that we are actually testing when we use the EFT to parametrize SM
precision tests; all other features of specific BSM models being de facto irrelevant. For this reason, we
can refer to the assumptions in Eq. (54), as broad, in the sense that they are not specific to a single model.

4.2.2 Composite Higgs Models
Models of Composite Higgs solve the hierarchy problem in two steps. First of all they postulate a
compositeness scale M ∼ few × TeV � MPlanck that is naturally generated, e.g., by dimensional
transmutation, like the QCD scale. As explained before, above M , |H|2 is an irrelevant operator and
hence small. A more physical picture is simply that the Higgs H is a composite particle that exists only
in the low-energy EFT: the contribution to m2

h from loops of high virtuality is tamed when the particles
in the loop probe Higgs compositeness. This would still implymh ∼M naturally. As we will see below,
EWPT constrain M & 3 TeV, thus creating a little hierarchy problem, that is solved if the H is also an
approximate Nambu Goldstone boson of a spontaneously broken global symmetry G/H. Of course this
is natural, as it mimics the pions of QCD, which have been observed in nature.

There are many explicit realizations of these models, but the gross picture is common to all of
them. A strong sector confines at the scale M and brakes a symmetry G → H, delivering at least 4
massless NGBs at low energy, and nothing else.14 The G/H symmetry is broken explicitly by how this
sector couples to the SM: the EW gauge couplings g, g′ are associated to the gauging of only a subgroup
SU(2)L × U(1) ⊂ H (therefore breaking H explicitly), and the SM Yukawas always break G when the
SM fermions are coupled to the strong sector. A pictorial representation is given in Fig. 8.

These ingredients are enough to estimate the low-energy EFT of composite Higgs models:

CHM ∼




G/H symmetry, broken by g, g′, y
New coupling in H-sector: g∗
Resonances mass scale: M



⇒ L

CHM
eff =

M4

g2∗
L

(
g∗H
M

,
Dµ

M
,
gFµν
M2

,
λψψ

M3/2

)

(56)
where G/H-preserving Higgs interactions must be compatible with the goldstone symmetry and be func-
tions of the CCWZ building blocks [72], that at the leading order read the same for all compact cosets,15

dµ = ∂µH + · · · , εµ = H
↔
DµH + · · · (57)

More precisely, the Lagrangian for a Strongly Interacting Light Higgs reads [35],

LSILH =
c̃Hg

2
∗

M2
OH +

c̃T g
2
∗

M2
OT −

c̃6g
2
∗

M2
O6 +

(
c̃yg

2
∗

M2
Oyψ + h.c.

)
+
c̃W
M2
OW +

c̃B
M2
OB

+
c̃HW
M2
OHW +

c̃HB
M2
OHB +

c̃BB
M2
OBB +

c̃g
M2
OGG. (58)

14Non-minimal models with extended cosets predict more states in the IR, SO(6)/SO(5) for instance includes an additional
singlet in the light spectrum, that can in principle play important phenomenological rôles, such as being DM [70, 71].

15An interesting limiting case is that of ISO(4)/SO(4): here the coset manifold is flat and εµ = 0, so that the first strong
interactions involving H arise at dimension-8 [30].
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This defines the basis the SILH basis previously introduced and explains the normalization of operators
OB,OHB ∼ g′, OW ,OHW ∼ g, while OBB ∼ g′2 and OGG ∼ gs

2, appearing in Table 2. Also, O6

shares the same symmetry as the Higgs quartic λ|H|2: this is why we expect O6 ∼ λ.

Further UV hypotheses can be easily translated into selection rules for SILH Wilson coefficients.
For instance, both coset structures SU(3)/SU(2) × U(1) and SO(5)/SO(4) are minimal, in the sense
they only have 4 NGB degrees of freedom that can be identified with H . Yet they differ in that the
latter caseH = SO(4) ' SU(2)L × SU(2)R contains custodial symmetry, implying that operators that
transform non-trivially underSU(2)c must be suppressed. In the SILH basis we find,

Custodial symmetry ⇒ c̃T = 0 . (59)

In many known theories (including weakly coupled 5D theories, and their holographic strongly coupled
duals), the dominant effects come from integrating out particles of spin≤ 1 at tree-level, while other
effects only arise at loop-level. This hypothesis, called Minimal Coupling, implies a further suppression

Minimal Coupling ⇒ c̃HW , c̃HB ∼
g2
∗

16π2
c̃BB, c̃GG ∼

g2
SM

16π2
(60)

where we have taken into account that, for OBB,OGG the couplings to such particles must also break
the shift-symmetry and are therefore typically suppressed by a symmetry breaking SM coupling gSM =
g′, yt, · · · .

It is interesting to compare the power-counting of Eqs. (58,59,60) with the experimental observa-
tions from the previous section. From Fig. 6 we see that the best constraints are on cBB and cGG, that are
predicted suppressed by several powers of the weak couplings, and on cW + cB that are instead expected
O(1), implying

M & 2.5 TeV . (61)

Despite these stringent constraints, we notice that many Higgs-only operators are g∗ enhanced allowing
for seizable effects in Higgs physics.16 A careful study of the Higgs properties will tell us more about
these types of models.

We have seen the example of a weakly coupled BSM scenario, where loop-effects were sup-
pressed, so that the dynamical field content and interactions (in this case dictated by R-parity) have an
important impact on the low-energy EFT (also the minimal coupling assumption Eq. (60) relied on such
weakly coupled picture). In other words, the EFT for weakly coupled BSM models is rather model-
dependent.

On the other hand, in strongly coupled BSM scenarios, everything that is not forbidden is com-
pulsory, as it might be generated by unsuppressed loop effects involving the strong coupling. In these
scenarios, our power-counting rules that identify weak and strong couplings and symmetries, are not
only useful, but rather necessary, as the underlying theory is incalculable. In these conditions, broad
assumptions about the UV are enough to determine the resulting EFT, independently of the microscopic
details.

There are many, more or less specific, assumptions that can characterize physics BSM and that can
be captured by power-counting rules like those mentioned above. For instance, New physics can couple
to the SM bosons only (this is sometimes called universal) [73] or only to the top quark [74], that plays
the most important rôle in terms of loop effects to the Higgs mass parameter, or only to the transverse
components of vector-bosons [30]. It is important to keep in mind that, when testing a specific property
of the Higgs boson, we are specifically looking towards one of these specific BSM directions.

16This is in fact a chicken-egg situation: these models were thought in the LEP era with knowledge of EW constraints.
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4.2.3 EFT Validity
Our complete discussion so far was based on the existence of a scale separation

E �M . (62)

An experiment operating at energy Eexp, can provide a constraint (or measurement) on the combination

ci
M2

<
δexp
E2
exp

(63)

on the effects of an operator Oi, with precision δexp. From this we can say that our original assumption
Eq. (62) is indeed satisfied if the experimental precision δexp = ciE

2
exp/M

2 � ci. Vice versa, we can
say that our measurement can be consistently interpreted in the EFT context, only in theories with

ci � δexp . (64)

We have seen in the above examples that the Wilson coefficients ci can vary enormously depending from
the UV structure: they can be enhanced by a strong coupling or reduced by loop factors, and even vanish.
Therefore, it is fair to say that:

There is no model-independent discussion about the EFT validity.

In this context, the power-counting arguments outlined above become particularly useful, because they
allow us to identify the broadest features that can make a Wilson coefficient large or small, so that the
question of whether the EFT provides a consistent interpretation of our measurement, can be answered
in the most generic (less model-dependent) terms.

At the LHC, some experiments (e.g 2 → 2 scattering processes) are testing a large range of
energies, and the question of whether Eq. (62) is satisfied becomes more subtle, as Eexp is in principle
unknown. This can be obviated in a number of ways. The most systematic is to perform an additional
cut
√
s < Mcut at the level of the analysis on the center-of mass energy of the system.17 This procedure

provides the necessary information on Eexp that is now bounded from above by Mcut and allows to
discuss the EFT validity [57, 77].

In these high-E processes, EFT effects have the common property that they grow with some power
of the energy, relatively to the SM. On the other hand, the precision of measurements of deviations from
the SM, decreases with energy, principally due to the rapid fall-off in number of events at high-energy
(since parton distribution functions decrease exponentially fast). In some instances this implies that the
constraint is dominated by an energy region with little sensitivity, implying that only departures from the
SM that exceed the SM itself can be tested,

δexp =
δσ

σSM
& 1 . (65)

This is often considered a limitation to test EFTs at hadronic colliders in high-energy processes, as
it implies from Eq. (64) that such experiments can not be interpreted in theories with ci . 1. This
corresponds to weakly coupled theories that fill a special place in BSM model-building, as they are
calculable and well under control. In this sense δexp . 1 can be thought as a target for experiments, that
opens the door to interpret their results in a wider and well-motivated context [77]. Yet this doesn’t mean
that high-energy low-resolution experiments that test EFT are necessarily inconsistent: they provide
useful information about strongly coupled theories, where, e.g. ci ∼ g2

∗ � 1.

17In some systems, this might not be known, but a consistent analysis can still be performed along the lines of Refs. [75,76].
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5 Conclusions
I like Higgs physics because it is at the frontier of our exploration of the universe at small distances. As
such, it can potentially hide information about structure beyond the SM. The hierarchy problem suggests
the existence of such structure, that would imply modification of the Higgs properties. These can be
studied in the formalism of EFTs and their power-counting, a dictionary that allows to recognize the
relevant ingredients in microscopic theories and read their effects at low-energy.

EFTs can be thought as a structured and well motivated context to perform SM precision tests, the
result of which gives us quantitative information on how well we know the SM, in terms of how strong
are the constraints on certain classes of theories beyond the SM.

At the same time, EFTs, accompanied with their BSM perspective, provide an important search
tool that extends the reach of the LHC beyond its direct reach. This is particularly true for strongly
coupled BSM scenarios, that might induce large effects in low-energy processes, despite the scale of
new physics being beyond kinematic reach.
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Three Lectures of Flavor and CP violation within and Beyond the
Standard Model

S. Gori
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Abstract
In these lectures I discuss 1) flavor physics within the Standard Model, 2)
effective field theories and Minimal Flavor Violation, 3) flavor physics in the-
ories beyond the Standard Model and “high energy" flavor transitions of the
top quark and of the Higgs boson. As a bi-product, I present the most updated
constraints from the measurements of Bs → µ+µ−, as well as the most recent
development in the LHC searches for top flavor changing couplings.

Keywords
Lectures; heavy flavor; CP violation; flavor changing couplings.

1 Introduction
My plan for these lectures is to introduce you to the basics of flavor physics and CP violation. These
three lectures that I gave at the 2015 European School of High-Energy Physics are not comprehensive,
but should serve to give an overview of the interesting open questions in flavor physics and of the huge
experimental program measuring flavor and CP violating transitions. Hopefully they will spark your
curiosity to learn more about flavor physics. There are many books and reviews about flavor physics for
those of you interested [1–6].

Flavor physics is the study of different generations, or “flavors", of quarks and leptons, their
spectrum and their transitions. There are six different types of quarks: up (u), down (d), strange (s),
charm (c), bottom (b) and top (t) and three different type of charged leptons: electron, muon and tau. In
these lectures, I will concentrate on the discussion of quarks and the mesons that contain them. A recent
review about lepton flavor violation can be found in [7].

The Large Hadron Collider (LHC) discovery of the Higgs boson in 2012 [8,9] and the subsequent
early measurements of its couplings to the Standard Model (SM) gauge bosons and third generation
quarks and leptons have been a remarkably successful confirmation of the SM and of its mechanism of
electroweak symmetry breaking (EWSB). The LHC has been able to demonstrate that the Higgs does
not couple universally with (some) quarks and leptons already with Run I data [10]. In fact, we know
that in the SM mt � mc � mu and mb � ms � md, and that the same hierarchies hold for the Higgs
Yukawa couplings with quarks and leptons. Our lack of understanding of why nature has exactly three
generations of quarks and leptons and why their properties (masses and mixing angles) are described
by such hierarchical values is the so called “Standard Model flavor puzzle". In the limit of unbroken
electroweak (EW) symmetry none of the basic constituent of matter would have a non-zero mass. The
SM flavor puzzle is, therefore, intimately related to the other big open question in particle physics, i.e.
which is the exact mechanism behind EWSB.

Once the SM quark and lepton masses, as well as quark mixing angles (3 plus a phase) have
been fixed, the SM is a highly predictive theory for flavor transitions. Particularly, any flavor transition
has to involve the exchange of at least a W boson and therefore flavor changing neutral transitions can
only arise (at least) at the loop-level. In the last few years, tremendous progress has been reached in
testing the mechanism of quark flavor mixing by several experiments (LHCb and B-factories (Belle and
Babar) as well as the high energy experiments ATLAS and CMS), finding good agreement with the
SM expectations. At the same time, there are a few flavor measurements that could be interpreted as
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tantalizing hints for deviations if compared to the SM predictions. Particularly, lately there have been a
a lot of attention on the anomalies in angular observables in the decay Bd → K∗µµ (involving a b → s
flavor transition), as observed by the LHCb collaboration [11–13], as well as on the observables testing
lepton flavor universality, BR(B → Kµµ)/BR(B → Kee), as observed at LHCb [14] and on the rare
decays B → Dτντ and B → D∗τντ by Belle, Babar, and LHCb [15–19].

The coming years will be exciting since several low (and high) energy flavor experiments will
collect a lot more data. In particular [6],

LHCb upgrade

LHCb, 1fb−1 ∼
Belle II data

Belle data
∼ 50,

HL− LHC

LHC, ICHEP 2016
∼ 200 (1)

in the time scale of ∼ 20 years for the LHCb upgrade and for the High-Luminosity LHC and of ∼ 10
years for Belle II.

Present and future flavor measurements will be able to probe, and eventually indirectly discover,
New Physics (NP). Observing new sources of flavor mixing is, in fact, a natural expectation for any
extension of the SM with new degrees of freedom not far from the TeV scale. While direct searches of
new particles at high energies provide information on the mass spectrum of the possible new degrees of
freedom, the indirect information from low energy flavor observables translates into unique constraints
on their couplings.

The lectures are organized as follows: In Sec. 2, I will introduce the main ingredients of flavor
physics and CP violation in the SM. I will both review the theory aspects and the experimental determi-
nation of the several SM flavor parameters. My second lecture, in Sec. 3, will discuss the role of flavor
physics in testing effective field theories beyond the SM (BSM), where new degrees of freedom are heavy
if compared to the EW scale, and they can be integrated out, to generate higher dimensional operators to
be added to the SM Lagrangian. Sec. 4 is dedicated to the discussion of the flavor properties of specific
BSM theories, i.e. models with multi-Higgs doublets and Supersymmetric models. I will also discuss
the interplay between low energy flavor measurements and high energy flavor measurements involving
top and Higgs flavor transitions, as it can be measured at ATLAS and CMS. Finally, I will conclude in
Sec. 5.

2 Flavor physics in the Standard Model
2.1 The flavor sector of the Standard Model
The Standard Model (SM) Lagrangian can be divided in three main parts: the gauge, the Higgs, and the
flavor sector. The first two parts are highly symmetric

Lgauge
SM + LHiggs

SM = i
∑

i

∑

ψ

ψ̄i /Dψi − 1

4

∑

a

GaµνG
a
µν −

1

4

∑

a

W a
µνW

a
µν +

−1

4
BµνBµν + |Dµφ|2 + (µ2|φ|2 − λ|φ|4), (2)

and fully determined by a small set of free parameters: the three gauge couplings, g3, g2, g1 correspond-
ing to the SM gauge groups SU(3)× SU(2)× U(1)Y , the Higgs (φ) mass, mh, and the Higgs vacuum
expectation value (VEV), v (or, equivalently, the Higgs mass term, µ, and the quartic coupling, λ). In
this expression G,W , and B are the SM SU(3), SU(2), and U(1)Y gauge fields, respectively, and we
have defined the quark and lepton field content, ψi, as

ψi ≡ QiL, LiL, uiR, diR, eiR, with (3)

QiL = (3, 2, 1/6), LiL = (1, 2,−1/2), uiR = (3, 1, 2/3), diR = (3, 1,−1/3), eiR = (1, 1,−1),
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where i = 1, 2, 3 is the flavor (or generation) index and the three numbers refer to the representation
under the SM gauge group.

The Lagrangian in (2) possesses a large flavor symmetry that can be decomposed as

Gflavor = SU(3)5×U(1)5 = SU(3)3
q ×SU(3)2

` ×U(1)B ×U(1)L×U(1)Y ×U(1)PQ×U(1)E , (4)

where three U(1) symmetries can be identified with baryon and lepton numbers, and hypercharge, the
latter of which is broken spontaneously by the Higgs field. The two remaining U(1) groups can be
identified with the Peccei-Quinn symmetry [20] and with a global rotation of a single SU(2) singlet (eR
in the case of Eq. (4)). The flavor sector of the SM Lagrangian breaks the SU(3)5 symmetry through the
Yukawa interactions

Lyuk = −Y ij
d Q̄

i
LφD

j
R − Y ij

u Q̄
i
Lφ̃U

j
R − Y ij

e L̄
i
Lφe

j
R + h.c., (5)

where φ is the Higgs field (φ = (1, 2, 1/2)), φ̃ is its conjugate representation φ̃ = iτ2φ
† and Yd,u,e are

the three Yukawa couplings.

The diagonalization of each Yukawa coupling requires a bi-unitary transformation. Particularly,
in the absence of right-handed (RH) neutrinos as in Eq. (3), the lepton sector Yukawa can be fully
diagonalized by the transformation UeLYeU

†
eR = diag(y1

e , y
2
e , y

3
e) =

√
2 diag(me,mµ,mτ )/v. In the

quark sector, it is not possible to simultaneously diagonalize the two Yukawa matrices Yu and Yd without
breaking the SU(2) gauge invariance. If, for example, we choose the basis in which the up Yukawa is
diagonal, then

Yu = diag(y1
u, y

2
u, y

3
u) =

√
2

v
(mu,mc,mt), Yd = V · diag(y1

d, y
2
d, y

3
d) =

√
2

v
V · (md,ms,mb), (6)

where we have defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix as V = UuLU
†
dL.

However, in the SM the SU(2) gauge symmetry is broken spontaneously by the Higgs field and
therefore, we can equivalently rotate both left-handed (LH) up and down quarks independently, diag-
onalizing simultaneously up and down quark masses. By performing these transformations, the CKM
dependence moves into the couplings of up and down quarks with the W boson. In particular, the
charged-current part of the quark covariant derivative in (2) can be rewritten in the mass eigenstate basis
as

−g
2
Q̄iLγ

µW a
µτ

aQiL
mass−basis−−−−−−−→ − g√

2
( ūL c̄L t̄L )γµW+

µ V




dL
sL
bL


 . (7)

This equation shows that the appearance of W boson flavor changing couplings. This is the only flavor
changing interaction in the SM. Exercise: prove that the neutral interactions of the photon, the Z boson,
the gluons and the Higgs boson are flavor diagonal in the quark mass eigenbasis. We can therefore
conclude that, in the SM,

(a) the only interactions mediating flavor changing transitions are the charged interactions;
(b) there are no tree-level flavor changing neutral interactions.

In spite of point (a), it must be stressed that V , the CKM matrix, originates from the Yukawa
sector: in absence of Yukawa couplings, Vij = δij and therefore we have no flavor changing transitions.

We can now count the number of free parameters of the SM Lagrangian. As opposed to the five
free parameters of the gauge and Higgs sector (g1, g2, g3, v,mh), the flavor part of the Lagrangian has a
much larger number of free parameters. Particularly, the CKM matrix is defined by 4 free parameters:
three real angles and one complex CP-violating phase. Exercise: Using the unitarity relations discussed
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in the next subsection, demonstrate that the CKM matrix is fully described by 4 free parameters. This
phase is the only source of CP violation in the SM, beyond the QCD phase, θQCD. The full set of
parameters controlling the breaking of the quark flavor symmetry is composed by six quark masses and
four parameters of CKM matrix (to be added to the three charged lepton masses, as obtained from the
Yukawa coupling Ye).

Many parameterizations of the CKM matrix have been proposed in the literature. In these lectures,
we will focus on the standard parametrization [21] and on the Wolfenstein parametrization [22]. The
CKM matrix is unitary and can be described by three rotation angles θ12, θ13, θ12 and a complex phase
δ. In all generality, we can write the standard parametrization as product of three rotations with respect
to three orthogonal axes

V =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13






c12 s12 0
−s12 c12 0

0 0 1


 =

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


 , (8)

where we have denoted sij ≡ sin θij and cij ≡ cos θij , i, j = 1, 2, 3.

From measurements, we know that s12, s13 and s23 are small numbers, therefore we can approxi-
mately write the CKM matrix in terms of an expansion in |Vus|

V =




1− λ2

2 λ Aλ3(%− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− %− iη) −Aλ2 1


+O(λ4) , (9)

with λ ∼ 0.23 the Cabibbo angle and the parameters A, ρ, η of the order 1, defined as

λ ≡ s12, Aλ
2 ≡ s23, Aλ

3(ρ− iη) ≡ s13e
−iδ. (10)

This is the Wolfenstein parametrization, that shows clearly the sizable hierarchies in between the several
elements of the CKM matrix, that, at the zeroth order in λ is given by the identity matrix.

2.2 Tests of the CKM matrix
The unitarity of the CKM matrix implies the following relations between its elements:

Phase independent :
∑

k=1,2,3

|Vik|2 = 1, Phase dependent :
∑

k=1,2,3

VkiV
∗
kj = 0, j 6= i. (11)

These relations are a distinctive feature of the SM, where the CKM matrix is the only source of
quark flavor transitions. Each of the phase dependent relations, for fixed i and j, can be visualized as
a triangle in the complex plane, where each side represents the complex number VkiV ∗kj for the three
different k = u, c, t. The fact that the three vectors add up to form a closed triangle is the manifestation
of the unitarity relation. Among the six phase dependent relations, the most stringent test is provided by
the i = 1 and j = 3 case, since, in this case, the corresponding unitarity triangle has all sides of the same
order in λ. Particularly, the unitarity relation can be written as

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ↔ (ρ̄+ iη̄) + (1− ρ̄− iη̄) + 1 = 0, (12)

where this defines the parameters ρ̄ and η̄, which are approximately given by

ρ̄ ' ρ
(

1− λ2

2

)
, η̄ ' η

(
1− λ2

2

)
. (13)
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Fig. 1: Left: The unitarity triangle. Right: List of the most sensitive observables used to determine the several
elements of the CKM matrix.

This unitarity triangle is represented on the left panel of Fig. 1. We have defined the angles of this triangle

α ≡ arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β ≡ arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ ≡ arg

(
−VudV

∗
ub

VcdV
∗
cb

)
, (14)

and also we can define one additional angle βs as

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗cb

)
. (15)

There are many measurements performed at different experiments (Babar, Belle, LHCb) that over-
constrain the values of the elements of the CKM matrix. In the right panel of Fig. 1, we report a summary
of the most stringent experimental constraints on the several CKM elements. Every element but Vtd and
Vts are determined directly by tree-level processes. In particular

– Vud is extracted through the measurement of a set of superallowed nuclear β decay;
– Vus, Vub and Vcs are measured through the rates of inclusive and exclusive charmless semi-leptonic
K, B and D decays to π`ν̄, respectively;

– Vcb is extracted through the measurement of the B → D`ν̄ decay;
– Vcs and Vtb can be extracted from the measurements of D → K`ν̄ and top decay to Wb, respec-

tively. However, the corresponding constraint is not competitive with the constraint coming from
the global fit of all the other observables.

– The one loop mass splittings in the neutral B and Bs systems are sensitive to the values of Vtd and
Vts, respectively. Additional determinations include loop-mediated rare K and B decays.

Vud is the best determined element of the CKM matrix with an error at the level of 0.02%. Vus, Vcs, and
Vcb are also well determined with the corresponding observables with errors ranging in (0.1− 2)%. The
observablesB → π`ν̄ andD → π`ν̄ determining Vub and Vcd are, instead, the least accurately measured
with an error at around ∼ 10%.

The consistency of different constraints on the CKM unitarity triangle is a powerful test of the
SM in describing flavor changing phenomena. Fig. 2 shows the huge improvement in the determination
of the unitarity triangle in the past 20 years: the left panel shows the present status and the right panel
represents the situation back in 1995. In this fit, additional constraints beyond the ones discussed above
are imposed. In particular, constraints on the CKM unitarity triangle come from the CP violation in
K → ππ, the rates of the various B → ππ, ρπ, ρρ decays (that depend on the phase α), the rates of
various B → DK decays (that depends on the phase γ), the CP asymmetry in the decay B → ψKs (that
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Fig. 2: Summary of the constraints on the CKM unitarity triangle as obtained by the CKMFitter collaboration [23]
Left: in 2015, Right: in 1995.

depends on the phase β). From the figure, it is evident that there is little room for non-SM contributions
in flavor changing transitions. The values of ρ̄ and η̄ are determined very accurately1:

ρ̄ = 0.150+0.012
−0.006, η̄ = 0.354+0.007

−0.008, (16)

together with the parameters A and λ:

A = 0.823+0.007
−0.014, λ = 0.2254+0.0004

−0.0003. (17)

One can allow for arbitrary new physics (NP) in one or more flavor changing processes entering the CKM
fit. This is particularly interesting in processes that appear in the SM at the loop-level. Then, one can
quantitatively constrain the size of new physics contributions to processes such as neutral meson mixing.
This is what we will discuss in the next section.

2.3 Meson mixing and the GIM mechanism
In the SM, in order for a flavor transition to take place, the exchange of at least a virtual W is necessary.
A Flavor-Changing-Neutral-Current (FCNC) process is a process in which the electric charge does not
change between initial and final states. As a consequence, in the SM such processes have a reduced
rate relative to a normal weak interaction process. FCNCs are, however, not only suppressed by the
loop, but also by the so called Glashow-Iliopoulos-Maiani (GIM) mechanism [26]. We will explain this
mechanism through the discussion of meson mixing.

Let us take the K (= ds̄) and K̄ (= d̄s) meson system. These two flavor eigenstates are not
mass eigenstates and, therefore, they mix. The leading order contributions to the mixing arise from box
diagrams mediated by the exchange of the W boson and the up quarks. The corresponding effective
Hamiltonian responsible of this mixing is given by

HK =
G2
F

16π2
m2
W


 ∑

i=u,c,t

F (xi, xi)λ
2
i +

∑

ij=u,c,t, i 6=j
F (xi, xj)λiλj


 (s̄γµ(1− γ5)d)2, (18)

1These numbers are taken from the CKMFitter collaboration [23]. Similar numbers are obtained by the UTFit collaboration
[24] and by latticeaverages.org [25].
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where we have defined λi = V ∗isVid. F (xi, xj) are loop functions, xq ≡ m2
q/m

2
W . In the limit of exact

flavor symmetry (md = ms = mb) the several diagrams cancel, thanks to the unitarity of the CKM
matrix (see Eqs. (11)). This is the so called GIM mechanism, that can be applied not only to the Kaon
mixing system but to all SM flavor transitions. Historically, in 1970, at the time the GIM mechanism
was proposed, only three quarks (up, down, and strange) were thought to exist. The GIM mechanism
however, required the existence of a fourth quark, the charm, to explain the large suppression of FCNC
processes.

The breaking of the flavor symmetry induces a mass difference between the quarks, so the sum of
the diagrams responsible for meson mixing will be non-zero. We can use the unitarity relations (11) to
eliminate the terms in the effective Hamiltonian that depend on λu, obtaining

HK =
G2
F

16π2
m2
W

[
S0(xt)λ

2
t + S0(xc)λ

2
c + 2S0(xc, xt)λcλt

]
(s̄γµ(1− γ5)d)2, (19)

with S0(xi) and S0(xi, xj) given by the combinations

S0(xi) ≡ F (xi, xi) + F (xu, xu)− 2F (xi, xu) (20)

S0(xi, xj) ≡ F (xi, xj) + F (xu, xu)− F (xi, xu)− F (xj , xu). (21)

The explicit expressions can be found in e.g. [1]. All terms of this effective Hamiltonian are suppressed
by, not only the loop factor, but also the small CKM elements, particularly suppressing the top loop
contribution, and the small mass ratio m2

c/m
2
W in the case of the charm loop contribution, as predicted

by the GIM mechanism.

This effective Hamiltonian leads to the oscillation of the two Kaons. The time evolution of the
Kaon anti-Kaon system, ψ = (K, K̄), reads

i
dψ(t)

dt
= Ĥψ(t), Ĥ = M̂ − i Γ̂

2
=

(
M − iΓ/2 M12 − iΓ12/2

M∗12 − iΓ∗12/2 M − iΓ/2

)
, (22)

with M and Γ the average mass and width of the two Kaons, respectively. The two eigenstates of the
system (heavy and light, or, equivalently, long and short) have a mass and width given by

MH,L = M ± Re(Q), ΓH,L = Γ∓ 2Im(Q),

Q =

√(
M12 −

i

2
Γ12

)(
M∗12 −

i

2
Γ∗12

)
, (23)

and are a linear combination of the two K and K̄ states

|KH,L〉 = p|K〉 ∓ q|K̄〉, q

p
= − 2M∗12 − iΓ∗12

2Re(Q) + 2i Im(Q)
. (24)

The difference in mass of the two Kaon states, ∆MK , can be computed from the effective Hamil-
tonian in (19) by

mK∆MK = 2mKRe(M12) = Re(〈K̄|HK |K〉), (25)

with mK the average Kaon mass. Lattice QCD is essential to compute the matrix element of the four
quark operator calculated between two quark bound states. We have [1]

〈K̄|(s̄γµ(1− γ5)d)2|K〉 =
8

3
BK(µ)F 2

Km
2
K , (26)

with FK the Kaon decay constant and BK(µ) the Kaon bag parameter, evaluated at the scale µ. Putting
these pieces together and including QCD corrections, one can find

M12 =
G2
F

12π2
F 2
KB̂KmKm

2
W

[
(λ∗c)

2η1S0(xc) + (λ∗t )
2η2S0(xt) + 2λ∗cλ

∗
t η3S0(xc, xt)

]
, (27)
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Fig. 3: Left: CP violation in mixing; Middle: CP violation in decay; Right: CP violation in interference, for
meson decays to a final state f .

where η1,2,3 are QCD correction factors given e.g. in [1] and we have defined the renormalization group
invariant parameter

B̂K = BK(µ) [αs(µ)]−2/9

[
1 +

αs(µ)

4π
J3

]
, (28)

with J3 ∼ 1.9 in the NDR-scheme [27]. In Sec. 3.1, we will discuss the bounds on New Physics theories
arising from the measurement of the several observables of the meson mixing systems.

2.4 CP violation in meson decays
All CP-violating observables in K and K̄ decays, as well as in any M − M̄ meson system, to final states
f and f̄ can be expressed in terms of phase-convention-independent combinations of Af , Āf , Af̄ , Āf̄ ,
together with q/p of Eq. (24), in the case of neutral-mesons, where we define

Af = 〈f |H|M〉, Āf = 〈f |H|M̄〉, Af̄ = 〈f̄ |H|M〉, Āf̄ = 〈f̄ |H|M̄〉. (29)

As shown in Fig. 3, we distinguish three types of CP-violating effects in meson decays [4]:

(a) CP violation in mixing, defined by |q/p| 6= 1 and arising when the two neutral mass eigenstate
admixtures cannot be chosen to be CP-eigenstates;

(b) CP violation in the decay of mesons, defined by |Āf̄/Af | 6= 1;
(c) CP violation in interference between a decay without mixing, M → f , and a decay with mixing

M → M̄ → f . This is defined by Im(qĀf/pAf ) 6= 0.

One example of CP violation in mixing (a) is the asymmetry in charged-current semi-leptonic
neutral meson decays for which the “wrong sign" decays (i.e. decays to a lepton of charge opposite to
the sign of the charge of the original b quark) are allowed only if there is a mixing between the meson
and the anti-meson. For example, for a Bd meson

adSL =
Γ(B̄d(t)→ `+νX)− Γ(B̄d(t)→ `−ν̄X)

Γ(B̄d(t)→ `+νX) + Γ(B̄d(t)→ `−ν̄X)
=

1− |q/p|4
1 + |q/p|4 . (30)

D0 performed several measurements of these asymmetries inB decays [28–30]. Combining all measure-
ments, there is a long-standing anomaly with the SM prediction in the asSL−adSL plane with a significance
at the level of ∼ 2 − 3σ [31], mainly arising from the D0 measurement of the like-sign dimuon charge
asymmetry [29] (see upper panel of Fig. 4).

In charged meson decays, where mixing effects are absent, the CP violation in decay (b) is the
only possible source of CP asymmetries. For example, in the B meson system:

af± =
Γ(B+ → f+)− Γ(B− → f−)

Γ(B+ → f+) + Γ(B− → f−)
=

1− |Āf−/Af+ |2
1 + |Āf−/Af+ |2 . (31)
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Fig. 4: Upper panel: Summary of the measurements of CLEO, BABAR, Belle, D0 and LHCb in the asSL − adSL

plane. Lower panel: (φcc̄ss ,∆Γs) plane (∆Γs is the difference in width in theBs−B̄s system), the individual 68%

confidence-level contours of ATLAS, CMS, CDF, D0 and LHCb, their combined contour (solid line and shaded
area), as well as the SM predictions (thin black rectangle) are shown (from [32]).

These asymmetries are different from zero only if at least two terms of the amplitude have different weak
phases and different strong phases 2. Non-zero CP asymmetries have been observed in a few B meson
decay modes by the LHCb collaboration: B+ → K+K−K+, B+ → K+K−π+ [33].

CP violation in interference (c) is measured through the decays of neutral mesons and anti-mesons
to a final state that is a CP eigenstate (fCP)

afCP
=

Γ(M̄(t)→ fCP)− Γ(M(t)→ fCP)

Γ(M̄(t)→ fCP) + Γ(M(t)→ fCP)
' Im(λCP) sin(∆MM t), (32)

2Strong phases do not violate CP. Their origin is the contribution from intermediate on-shell states in the decay process, that
is an absorptive part of an amplitude.
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Fig. 5: The Left: tree diagram and the Right: penguin diagram contributing to Bd → ΨKS (from [37]).

where we have defined λCP =
qĀf
pAf

and ∆MM is the difference in mass of the meson anti-meson system.
This type of CP violation has been observed in severalB meson decays, as for example inBd → J/ψKS

at Babar [34], Belle [35] and by now by the LHCb, as well [36], leading to the measurement of the
β angle of the CKM matrix aJ/ΨKs ' sin(2β) sin(∆Mdt). The Feynman diagrams contributing to
this asymmetry are given in Fig. 5, where we show the tree (left panel) and the penguin (right panel)
contributions. The current world average on the angle β is [32]

sin(2β) = 0.69± 0.02. (33)

The corresponding CP asymmetry in Bs decay is Bs → ψφ. The SM prediction is suppressed
compared to the β angle by λ2, leading to βSM

s = 0.01882+0.00036
−0.00042 [23]. The latest LHCb result using 3

fb−1 data is in good agreement with this prediction and reads βLHCb
s = 0.005± 0.0195. A summary of

all measurements of the mixing angle in the Bs − B̄s system is reported in the lower panel of Fig. 4 and
the world average is [32]

βs = −φ
cc̄s
s

2
= −0.00165± 0.00165. (34)

3 Effective field theories and flavor transitions
It is clear that the Standard Model is not a complete theory of Nature. Foremost arguments in favor of
the existence of New Physics are

– It does not include gravity, and therefore it cannot be valid at energy scales above the Planck scale;
– It cannot explain the small value of the Higgs boson mass;
– It cannot account for neutrino masses and for the existence of Dark Matter (DM).

In particular, the DM and Higgs mass motivations suggest that the SM should be replaced by a new
theory already at scales at around the TeV scale. Given that the SM is only an effective low energy
theory, non-renormalizable terms must be added to the SM Lagrangian. In the next subsection, we will
discuss the flavor constraints on the NP scale associated to the higher dimensional operators contributing
to flavor transitions.

3.1 The New Physics flavor puzzle
If we assume that the new degrees of freedom which complete the theory of Nature are heavier than the
SM particles, we can integrate them out and describe physics beyond the SM by means of an effective
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field theory (EFT) approach. The SM Lagrangian becomes the renormalizable part of this generalized
Lagrangian which includes an infinite sum of operators with dimension d ≥ 5, constructed in terms of
SM fields and suppressed by inverse powers of the NP scale Λ (� v). This approach is a generalization
of the Fermi theory of weak interactions, where the dimension six four-fermion operators describing
weak decays are the results of having integrated out the W boson. The generic effective Lagrangian
reads

Leff = LSM +

d≥5∑

n

cdn
Λd−4

O(d)
n (SM), (35)

where LSM is the sum of (2) and (5) and O(d)
n (SM) are operators of dimension d ≥ 5 containing SM

fields only and compatible with the SM gauge symmetry. Generically, we would expect the Wilson
coefficients cdn = O(1), however several of these operators contribute to flavor-changing processes and
should be very suppressed to be in agreement with low energy flavor experiments. This is often denoted
as the NP flavor puzzle.

As an example, we consider the dimension 6 operators contributing to Kaon mixing:

OVLL
1 = (s̄γµPLd)2,

OLR
1 = (s̄γµPLd)(s̄γµPRd),

OLR
2 = (s̄PLd)(s̄PRd), (36)

OSLL
1 = (s̄PLd)2,

OSLL
2 = (s̄γµνPLd)(s̄γµνPLd),

plus the corresponding ones with the exchange PL → PR (PL,R = (1 ∓ γ5)/2). The only operator that
arises in the SM is OVLL

1 (see Sec. 2.3). As an example, a NP toy model containing a TeV scale new Z ′

gauge boson with coupling g′Z ′µ(s̄γµ(1−γ5)d) would produce a contribution to the operator OVLL
1 and,

therefore, to the difference in mass of Kaon and anti-Kaon system that is equal to3

∆MK = ∆MSM
K +

8

3
mKF

2
KB̂K

(g′)2

m2
Z′
, (37)

where ∆MSM
K is the value predicted by the SM, as reported in Eqs. (25)-(28). For TeV-scale Z ′s coupled

to a bottom and a strange quark with a EW strength coupling, the second piece of this equation is ∼ 4
orders of magnitude larger than the SM contribution, and therefore, such gauge bosons are completely
ruled out by Kaon mixing measurements. This shows the tension between a generic NP at around the
TeV scale with EW-strength flavor violating couplings and low energy flavor measurements, the so called
NP flavor puzzle.

A summary of the bounds for the four neutral meson systems (K,Bd, Bs, D) is shown in Table
1. Particularly, we show in the first two entries the bounds on the NP scale, Λ, having fixed the absolute
value of the corresponding Wilson coefficient, c6

n of Eq (35), to one (the first column is for c6
n = 1,

the second one for c6
n = i); the last two columns represent, instead, the bound on real part and on the

imaginary part of the the Wilson coefficient, fixing the NP scale to 1 TeV. A few comments are in order.
The bounds are weakest (strongest) for Bs (K) mesons, as mixing is the least (most) suppressed in the
SM in that case. The bounds on the operators with a different chirality (left-right (LR) or right-left (RL))
are stronger, especially in the Kaon case, because of the larger hadronic matrix elements. Throughout
the table, bounds on the NP scale Λ exceed the TeV scale by several orders of magnitude. Therefore,
we can conclude that, if NP exists at around the TeV scale, it has to possess a highly non-generic flavor
structure, to explain cdn � 1.

3Exercise: compute this contribution.
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Operator Bounds on Λ in TeV (c6
n = 1) Bounds on c6

n (Λ = 1 TeV)
Re Im Re Im

(s̄Lγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11

(c̄Lγ
µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8

(b̄Lγ
µdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6

(b̄R dL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7

(b̄Lγ
µsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5

(b̄R sL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6

Table 1: Bounds on representative dimension-six operators that mediate meson mixing, assuming an effective
coupling c6n/Λ

2. The bounds quoted for Λ are obtained setting |c6n| = 1; those for cNP are obtained setting Λ = 1

TeV. We define qL,R ≡ PL,R q. From [38] and [39].

3.2 The Minimal Flavor Violation ansatz
TeV scale New Physics could be invariant under some flavor symmetry, and, therefore, more easily in
agreement with low energy flavor measurements. One example, of a class of such models are theories
with Minimal Flavor Violation (MFV) [40–43]. Under this assumption, flavor violating interactions are
linked to the known structure of the SM Yukawa couplings also beyond the SM. More specifically, the
MFV ansatz can be implemented within the generic effective Lagrangian in Eq. (35), as well as to UV
complete models, and it consists of two ingredients [43]: (i) a flavor symmetry and (ii) a set of symmetry-
breaking terms. The symmetry is the SM global symmetry in absence of Yukawa couplings, as shown
in Eq. (4). Since this global symmetry, and particularly the SU(3) subgroups controlling quark flavor-
changing transitions, is broken within the SM, it cannot be promoted to an exact symmetry of the NP
model. Particularly, in the SM we can formally recover the flavor invariance under Gflavor by promoting
the Yukawa couplings Yd, Yu, Ye of (5) to dimensionless auxiliary fields (spurions) transforming under
SU(3)3

q = SU(3)Q × SU(3)U × SU(3)D and under SU(3)2
` = SU(3)L × SU(3)e as

YQ ∼ (3, 1, 3̄)SU(3)3
q
, Yu ∼ (3, 3̄, 1)SU(3)3

q
, Ye ∼ (3, 3̄)SU(3)2

`
. (38)

Exercise: Check that, with these transformations, the Yukawa Lagrangian of (4) is invariant under
SU(3)3

q × SU(3)2
` .

Employing an effective field theory language, a theory satisfies the MFV ansatz, if all higher-
dimensional operators, constructed from SM and Yu,d,e fields, are invariant under the flavor group, Gflavor.
The invariance under CP of the NP operators may or may not be imposed in addition to this criterion. In
the down quark sector, the several operators will be combinations of the invariants

Q̄LYuY
†
uQL, D̄RY

†
d YuY

†
uQL, D̄RY

†
d YuY

†
uYdDR. (39)

As an example, let us take the operators in (36) and impose the MFV hypothesis. The corresponding
Wilson coefficients cannot be generic order one numbers, since the operators are not invariant under the
flavor symmetry Gflavor. The leading term for the first operator reads

(cVLL
1 )MFVOVLL

1 = Zy4
t (V

∗
tsVtd)

2(s̄γµPLd)2, (40)

where yt is the SM top Yukawa (= mt/v) and Z is a (flavor independent) coefficient, generically of
O(1). Thanks to the suppression by the small CKM elements Vts and Vtd, the bound on the NP scale

12

S. GORI

76



Λ of this operator is relatively weak Λ & 5 TeV, to be compared to the bound of 1.6 × 104 TeV, as
shown in Tab. 1. The other operators have, instead, a much smaller Wilson coefficient as they are
suppressed by either the strange Yukawa square (OSLL

1 , OSLL
2 ) or the product of down and strange

Yukawas (OLR
1 , OLR

2 ), resulting also in weak bounds on the NP scale Λ. Exercise: write the leading
term of the Wilson coefficient of each operator in (36), according to the MFV ansatz and demonstrate
that they are much smaller than (cVLL

1 )MFV.

This structure can be generalized to any higher dimensional operator mediating a flavor transition.
Thus, generically in MFV models, flavor changing operators automatically have their SM-like suppres-
sions, proportional to the same CKM elements and quark masses as in the SM and this can naturally
address the NP flavor puzzle, as the NP scale of MFV models can be O(1 TeV) without violating flavor
physics bounds.

To conclude, the MFV ansatz is remarkably successful in satisfying the constraints from low
energy flavor observables. However, it does not address the question Why do quark and lepton masses,
as well as quark mixing, have such a hierarchical pattern (SM flavor puzzle), since it simply states that
the NP flavor violation has to have the same structure of the SM flavor violation.

3.3 Effective field theories for rare B decays
Rare Bd and Bs decays based on the b → s flavor changing neutral-current transition are very sensitive
to BSM, as they are very suppressed in the SM [44]. In the last few years, measurements at the LHC,
complementing earlier B-factory results, have hugely increased the available experimental information
on these decays. In these lectures, we will focus on the golden channels: the Bs and Bd decays to two
muons as they are among the rarest B decays. (see [45] for a recent review, that discusses additional B
rare decays, as for example Bs → Kµ+µ− and Bs → K∗µ+µ−).

In the SM, these decays are dominated by the Z penguin and box diagrams involving top quark
exchanges. The resulting effective Hamiltonian depends, therefore, on the loop function Y (xt) (see
e.g. [46] for its definition), with xt ≡ m2

t /m
2
W and reads

Heff = −GF√
2

α

π sin2 θ
V ∗tbVtsY (xt)(b̄γµPLs)(µ̄γµγ5µ) + h.c., (41)

with s replaced by d in the case ofBd → µ+µ−. Evaluating the two matrix elements of the quark current
and of the muon current leads to the branching ratio

BR(Bs → µ+µ−) =
G2
F

π

( α

4π sin2 θ

)2
|V ∗tbVts|2Y 2(xt)m

2
µmBs

√
1−

4m2
µ

m2
Bs

FBsτBs , (42)

and analogously for the Bd decay. In this equation, mBs is the mass of the Bs meson, τBs its life time
(1.6 ps), and FBs the corresponding decay constant. The main theoretical uncertainties in this branching
ratio result from the uncertainties in the decay constant (∼ 4% for Bd and ∼ 3% for Bs, using the latest
lattice computations [47]), and in the CKM elements Vtd and Vts (both at the level of several % [23]).
Inserting numbers and including the O(α) and O(α2

s) corrections, the latest SM predictions read [48]

BR(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9, BR(Bd → µ+µ−)SM = (1.06± 0.09)× 10−10. (43)

As shown by Eq. (42), the tiny branching ratios of these decays in the SM are due to several factors: (i)
loop suppression, (ii) CKM suppression, and (iii) helicity suppression (by the small muon mass, mµ).
As we will discuss later in this section, extensions of the SM do not necessarily contain any of these
suppression mechanisms, and, more in particular, the helicity suppression (iii).

Experimentally, searches for Bs,d → µ+µ− have been performed by 11 experiments, spanning
more than three decades (see upper panel of Fig. 6 for a summary of all bounds and measurements). In
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the figure, markers without error bars denote upper limits on the branching fractions at 90% confidence
level, while measurements are denoted with error bars delimiting 68% confidence intervals. The first hint
for a non-zero Bs decay was reported in 2011 by the CDF collaboration [49]: BR(Bs → µ+µ−)CDF =
1.3+0.9
−0.7×10−8. This was followed by several measurements by ATLAS, CMS and LHCb and by the first

evidence for a non-zero Bd decay, as observed by the combination of CMS and LHCb Run I analyses
[50]: BR(Bd → µ+µ−)CMS+LHCb = 3.9+1.6

−1.4 × 10−10. In the lower panel of Fig. 6, we show the latest
status of the measurement of the Bs and Bd decay mode. Particularly, by now, we have a 6.2σ evidence
for Bs → µ+µ− with

BR(Bs → µ+µ−)CMS+LHCb = 2.8+0.7
−0.6 × 10−9, BR(Bs → µ+µ−)ATLAS = 0.9+1.1

−0.8 × 10−9, (44)

showing a good agreement with the SM prediction (see [51] for the ATLAS analysis).

In BSM theories, several additional operators can contribute to the Bs,d decays: O′10, obtained
from the SM operator in (41) with PL → PR and

OS = (b̄PLs)(µ̄µ),

OP = (b̄PLs)(µ̄γ5µ), (45)

and the corresponding prime operators obtained by PL → PR. Using these additional operators, one can
compute the branching ratio [52]

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
'

(
|Ss|2 + |Ps|2

)

×
(

1 + ys
Re(P 2

s )− Re(S2
s )

|Ss|2 + |Ps|2
)(

1

1 + ys

)
, (46)

where ys = (8.8 ± 1.4)% (yd ∼ 0 for the Bd system) have to be taken into account when comparing
experimental and theoretical results, and

Ss ≡
mBs

2mµ

(CSs − C ′Ss )

CSM10 s,d

√
1−

4m2
µ

m2
Bs

, (47)

Ps ≡
mBs

2mµ

(CPs − C ′Ps )

CSM10 s,d

+
(C10

s − C ′10 s)

CSM10 s

, (48)

with the several Wilson coefficients defined using the normalization

Heff = −4
GF√

2
VtbV

∗
ts

e2

16π2

∑

i

(CiOi + C ′iO′i) + h.c.. (49)

Similar expressions hold for the Bd system. It is evident that the helicity suppression of the branching
ratio can be eliminated thanks to the scalar and pseudoscalar operators and, therefore, large enhancements
can be obtained. Comparing with the latest measurement ofBs → µ+µ−, one can find the bounds on the
Wilson coefficients of the scalar and pseudoscalar operators, as shown in Fig. 7. The Wilson coefficients
of the scalar operators are strongly constrained by the measurement of the Bs rare decay with a bound
at the level of Re(CSs − C ′Ss ) < 0.071 and Im(CSs − C ′Ss ) < 0.065. Scalar NP contributions always
increase the branching ratio and, for this reason, the 1σ region does not appear in the left panel of Fig. 7
(the present measurement is smaller than the SM prediction at the 1σ level, see Eqs. (43) and (44)). The
pseudoscalar Wilson coefficients are instead more weakly constrained (see right panel of Fig. 7), and are
consistent with 0 at the 1σ level. Scalar and pseudoscalar Wilson coefficients for the Bd meson decay
are only weakly constrained, at the level of O(0.5).

As it is well known, the measurement of the ratio beween BR(Bs → µ+µ−) and BR(Bd →
µ+µ−) gives a very clean probe of new sources of flavor violation beyond the CKM matrix. Indeed, in
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Fig. 6: Upper panel: Searches for Bs,d → µ+µ− from 1985 to 2015. Markers without error bars denote up-
per limits on the branching fractions at 90% confidence level, while measurements are denoted with errors bars
delimiting 68% confidence intervals. The horizontal lines represent the SM predictions for the Bs → µ+µ− and
Bd → µ+µ− branching fractions (from [50]); Lower panel: Present status of the measurements ofBs,d → µ+µ−

at the 1, 2, 3σ contours. Shown are the corresponding contours for the combined result of the CMS and LHCb
experiments, the ATLAS measurement, and the SM prediction (from [51]).

all MFV models (see Sec. 4.1 of these lectures and e.g. [53] for some examples of MFV models), the
ratio is determined by [54]

BR(Bd → µ+µ−)

BR(Bs → µ+µ−)
=
τBd
τBs

mBd

mBs

F 2
Bd

F 2
Bs

|Vtd|2
|Vts|2

∼ 0.03, (50)

and has a relatively small theoretical uncertainty at the level of ∼ 5%. Presently, the measurement of
this ratio by CMS and LHCb is given by 0.14± 0.05. In the coming years, the LHCb, ATLAS and CMS
collaborations will be able to produce a more accurate test of this relation and, therefore, of the MFV
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Fig. 7: One (dark blue) and two (light blue) σ bounds on the Wilson coefficients of the Left: scalar operator and
Right: pseudoscalar operator, as obtained using the latest measurement ofBs → µ+µ−, assuming no new physics
in C10 − C ′10 and switching on one set of operators at a time. Note the change in the axis range in the two panels.

ansatz. More specifically, the LHCb upgrade (50 fb−1 data) will measure the SM prediction of this ratio
with an uncertainty of ∼ 35% [55].

4 Flavor at high energy: NP models and predictions
In this section we discuss the synergy between direct searches for NP particles at the LHC and indirect
searches for NP through the measurement of flavor transitions at B-factories and at the LHCb. We will
focus on specific NP frameworks: Two Higgs doublet models (2HDMs) in Sec. 4.1 and Supersymmetric
(SUSY) models in Sec. 4.2, with new particles with masses at around the EW scale, that generically can
not be integrated out to match the effective theories presented in the previous section. Historically, a few
particles have been discovered first indirectly. In 1970, the measurement of the tiny branching ratio for
the decayKL → µ+µ− lead to the prediction of the existence of the charm quark by Glashow, Iliopoulos
and Maiani, before the direct discovery of the J/Ψ charm meson in 1974 by SLAC and BNL. Another
remarkable example was the observation of CP violation in Kaon anti-Kaon oscillations that lead to the
prediction of the existence of a third generation quarks by Kobayashi and Maskawa in 1973. The direct
discovery of the bottom quark came four years later at Tevatron.

4.1 A Two Higgs doublet model with MFV
Two Higgs doublet models arise in several extensions of the SM, as for example Supersymmetric models.
In the presence of more than one Higgs field the appearance of tree-level FCNC is not automatically
forbidden by the GIM mechanism: additional conditions [56, 57] have to be imposed on the model in
order to guarantee a sufficient suppression of FCNC processes. The most general 2HDM has, in fact,
several new sources of flavor and of CP violation. Particularly, the Higgs potential is given by4

V (H1, H2) = µ2
1|H1|2 + µ2

2|H2|2 + (bH1H2 + h.c) +
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2

4See [58] for a review about 2HDMs.
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+ λ4|H1H2|2 +

[
λ5

2
(H1H2)2 + λ6|H1|2H1H2 + λ7|H2|2H1H2 + h.c

]
, (51)

whereH1H2 = HT
1 (iσ2)H2. New sources of CP violation can arise from the terms (H1H2)2, |H1|2H1H2

and |H2|2H1H2, since, in all generality, λ5,6,7 are complex coefficients. The most general Yukawa inter-
action Lagrangian can be written as

−Lgen
Y = Q̄LXd1DRH1 + Q̄LXu1URH

c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 + h.c. , (52)

to which we can add the corresponding terms for the charged leptons (with X`1, X`2 Yukawas). After
EWSB, quarks acquire mass from both H1 (〈H1〉 = v cosβ) and H2 (〈H2〉 = v sinβ). For generic Xi

we cannot diagonalize simultaneously the two mass matrices:

Mi =
v√
2

(cosβXi1 + sinβXi2), (i = u, d) (53)

and the couplings to the additional physical neutral Higgs fields,H,A, which are given in the decoupling
(or alignment [59]) limit, cos(α− β) = 0, by

Zi = cosβXi2 − sinβXi1, (i = u, d) (54)

where we have defined the angle β as tanβ = v2/v1
5. Consequently we are left with dangerous FCNC

couplings at the tree-level and with possible additional new sources of CP violation if (some of) the
Yukawas are complex. FCNCs at the tree-level can be eliminated by imposing a discrete Z2 symmetry,
leading to a Type I, II, X or Y 2HDM [61] or by assuming the proportionality relations Xi1 ∝ Xi2, as in
the aligned 2HDM [62]. This alignment condition is, however, not preserved by renormalization group
equations, and, therefore, imposing the alignment condition at some high energy scale, as the GUT scale,
will not result in an alignment model at the EW scale [63].

The MFV ansatz presented in Sec. 3.2 can be imposed to the 2HDM and this leads to interesting
phenomenology both at low [53] and high energy [64]. The four Yukawa couplings Xu1, Xu2, Xd1, Xd2

will be a combination of the two Yu, Yd SM spurions. More specifically, without loss of generality we
can define Yu, Yd to be the flavor structures appearing inXu2 andXd1, respectively. Then we can express
the two remaining Yukawa interactions as

Xd1 = Yd ,

Xd2 = ε0Yd + ε1Y
†
d YdYd + ε2Y

†
uYuYd + . . . ,

Xu1 = ε′0Yu + ε′1Y
†
uYuYu + ε′2Y

†
d YdYu + . . . ,

Xu2 = Yu , (55)

with ε(′)i generic order one (flavor independent) complex coefficients, and where we have suppressed
the higher order terms in Y †d Yd and Y †uYu6. If the expansions are truncated to the first order, one can
recover the alignment condition, Xi1 ∝ Xi2. However, differently from the alignment model, quantum
corrections cannot modify this functional form of the MFV expansion in (55), but they can only change
the values of the ε(′)i at different energy scales. Additionally, for particular choices of the parameters
ε
(′)
i in (55), one can recover the Type I, II, X and Y 2HDM. Exercise: convince your-self that, with the

assumption in (55) and the transformation properties of the Yukawas in Eq. (38), the several Yukawa
terms are invariant under the SU(3)3

q flavor symmetry.

5Strictly speaking tanβ is not a physical parameter in a generic 2HDM [60], since the two Higgs doublets, H1, H2, can be
transformed into each other. In the following, we will describe the MFV 2HDM, in which tanβ is a well defined quantity.

6See [65] for the discussion of the general MFV (GMFV), where both the top and bottom Yukawas are assumed to be of
order one and their effects are re-summed to all orders.
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The MFV 2HDM predicts Higgs-mediated FCNCs at the tree-level, arising from the terms Y †uYuYd
and Y †d YdYu in (55). However, the flavor changing Higgs couplings are highly non-generic and, as
we now discuss, generically leads to FCNCs in agreement with low energy data. Thanks to MFV, the
contribution to meson mixing has the same dependence on the quark masses and CKM elements, as in
the SM and, e.g. in the case of the difference in mass, reads

∆MNP
K ∼ 2 Re(MK

12) =
16

3
MKF

2
KP

LR
2 (K)

|a0|2
M2
H

msmdm
4
t

v6
Re[(VtsV

∗
td)

2] tan2 β , (56)

∆MNP
Bs ∼ 2 |M s

12| =
16

3
MBsF

2
BsP

LR
2 (Bs)

|(a0 + a1)(a∗0 + a∗2)|
M2
H

mbmsm
4
t

v6
|VtbV ∗ts|2 tan2 β,

where a0, a1 and a2 are functions of the expansion parameters εi (see [43] for their expression), PLR2

are hadronic matrix elements and are given e.g. in [66]. MH the mass of the heavy Higgs boson that
is close to the mass of the pseudoscalar, A, in the alignment or decoupling limit cos(α − β) = 0. An
analogous expression holds for the Bd system. Additional NP contributions can arise from the exchange
of the light Higgs boson, h, but these are generically sub-dominant, as they are not enhanced by tanβ.
These expressions show that larger NP effects arise in the Bs system, ∆MNP

Bs
� ∆MNP

Bd
� ∆MK , and

that the NP contributions have the same dependence on the quark masses and CKM elements, as in the
SM. This particular structure leads to not too strong constraints on the heavy Higgs boson masses. Even
in the case of O(1) phases in the εi parameters, one finds the condition tanβ(v/MH) < few, leading to
EW scale heavy Higgs bosons, in the case of not too large values of tanβ [53].

Similarly, Higgs exchange tree-level diagrams contribute to the rare Bs,d → µ+µ− decays. If we
assume the decoupling (or alignment limit), cos(α− β) = 0, and mH = mA, then the pseudoscalar and
scalar contributions are the same and the branching ratios of the Bs,d rare decays read [53]

BR(Bs,d → µ+µ−)

BR(Bs,d → µ+µ−)SM
' |1 +Rs,d|2 + |Rs,d|2, (57)

with

Rs,d = (a∗0 + a∗1)
2π2m2

t

Y (xt)m2
W

m2
Bs,d

tan2 β

(1 +ms,d/mb)M
2
H

, (58)

where we have neglected the (small) contribution of the lightest Higgs, h, that is not tan2 β enhanced.
It is straightforward to demonstrate that the branching ratios predicted by this MFV 2HDM obey to
the relation in (50), modulo corrections proportional to the ratios of masses ms,d/mb. These corrections
are, however, well below the parametric uncertainties on the SM predictions for the two branching ratios.
Using Eqs. (57) and (58), one can place constraints from the measurements ofBs → µ+µ− in the famous
mA−tanβ plane. As shown in e.g. [67], these constraints are complementary to the constraints that arise
from the LHC direct searches of heavy new scalar/pseudoscalars (e.g. searches for pp→ H,A→ τ+τ−

[68, 69]).

4.2 Flavor breaking in the SUSY models
In spite of the (so far) LHC null-results in searching for TeV-scale SUSY, Supersymmetry remains one
of the best motivated theories beyond the SM. The particle content of the Minimal Supersymmetric
Standard Model (MSSM) consists of the SM gauge and fermion fields plus a scalar partner for each
quark and lepton (squarks and sleptons) and a spin-1/2 partner for each gauge field (gauginos). The
Higgs sector has two Higgs doublets with the corresponding spin-1/2 partners (Higgsinos). Similarly to
the SM (see Sec. 2.1), the MSSM Supersymmetry preserving Lagrangian is completely determined by
symmetry principles and it has a relatively small set of free parameters. However, to make the MSSM
phenomenologically viable, one also has to introduce soft SUSY breaking terms. The most general soft
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SUSY breaking Lagrangian that is gauge invariant and respects R-parity reads

Lsoft =
1

2
M1λBλB +

1

2
M2λWλW +

1

2
M3λgλg −m2

Hd
|Hd|2 −m2

Hu |Hu|2

− m̃2
QQ̃
∗
LQ̃L − m̃2

Dd̃
∗
Rd̃R − m̃2

U ũ
∗
RũR − m̃2

L
˜̀∗
L

˜̀
L − m̃2

E ẽ
∗
RẽR (59)

+ BµHuHd + Â` ˜̀Hdẽ
∗
R + ÂD q̃Hdd̃

∗
R − ÂU q̃Huũ

∗
R,

withM1,M2,M3 Majorana masses for the gauginos andmHd ,mHu soft masses for the two Higgs boson
doublets. In all generality, the squark and slepton soft masses (m̃Q, m̃D, m̃U ,
m̃L, m̃E) as well as the trilinear couplings (Â`, ÂD, ÂU ) are 3×3 matrices in flavor space and introduce
an additional very large number of free parameters (33 new angles and 47 new phases, of which 2 can
be rotated away by field redefinitions). These soft terms lead to gluino, Higgsino and gaugino flavor
changing couplings. It has been shown that low energy flavor measurements lead to bounds on the
squark masses up to 103 TeV in the case of a completely generic flavor structure (see e.g [70]). In other
words, in the case of TeV-scale SUSY, the rich flavor structure of the MSSM generically leads to large
contributions to FCNC processes in conflict with available experimental data: the so-called SUSY flavor
problem. Several models that address this problem have been proposed in the literature: models with
mechanisms of SUSY breaking with flavor universality, such as in gauge mediation models [71], models
with heavy squarks and sleptons, such as in (mini) split-SUSY [72–77], or models with alignment of
quark with squark mass matrices [78].

MFV represents an interesting alternative. The MFV hypothesis can easily be implemented in
the MSSM framework. The squark mass terms and the trilinear quark-squark-Higgs couplings can be
expressed as follows

m̃2
Q = m̃2

(
a11l + b1YuY

†
u + b2YdY

†
d + b3YdY

†
d YuY

†
u + . . .

)
,

m̃2
U = m̃2

(
a21l + b5Y

†
uYu + . . .

)
,

m̃2
D = m̃2

(
a31l + b6Y

†
d Yd + . . .

)
, (60)

ÂU = Ã
(
a31l + b6YdY

†
d + . . .

)
Yu ,

ÂD = Ã
(
a51l + b8YuY

†
u + . . .

)
Yd ,

with the parameters m̃ and Ã that set the the overall scale of the soft-breaking terms and the dimen-
sionless coefficients ai and bi generic O(1) free complex parameters of the model. The several soft
masses and trilinear terms are described by a matrix proportional to the identity plus (small) corrections,
suppressed by small Yukawa couplings and CKM elements.

The NP effects in low energy flavor observables can, therefore, be computed using the so-called
mass insertion approximation [79]. More specifically, every observable can be expressed by an expansion
in δ = ∆/m̃2, with ∆ the off-diagonal terms in the sfermion mass matrices (proportional to the small
Yukawas in the case of MFV). Using this method, one can demonstrate that, with the flavor structure in
(60) and the corresponding one in the down sector, squark masses m̃ at around the TeV scale are still
consistent with flavor constraints [80]. We can then conclude that, if MFV holds, the present bounds on
FCNCs do not exclude squarks in the LHC reach. LHC squark direct searches and low energy flavor
observables are, therefore, two complementary probes of MFV SUSY models.

4.3 Top and Higgs flavor violating signatures
So far in these lectures, we have discussed low energy flavor observables that have been/will be measured
by B-factories and by the LHCb. High energy flavor measurements by the ATLAS and CMS collabo-
rations provide a complementary tool to test the underlying flavor structure of Nature. Particularly, in
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Decay mode SM prediction LHC bound Comments and References

BR(t→ ch) 3× 10−15 4.6× 10−3 h→ lept. [81], h→ bb̄ [82, 83], h→ γγ [84]

BR(t→ uh) 2× 10−17 4.2× 10−3 h→ bb̄ [82, 83], h→ γγ [84]

BR(t→ cg) 5× 10−12 2× 10−4 Single top production [85]

BR(t→ ug) 4× 10−14 4× 10−5 Single top production [85]

BR(t→ uZ) 8× 10−17 1.7× 10−4 Z → `` [86, 87], tZ production [88]

BR(t→ cZ) 10−14 2× 10−4 Z → `` [86, 87], tZ production [88]

BR(t→ uγ) 4× 10−16 1.3× 10−4 Single top production [89]

BR(t→ cγ) 5× 10−14 1.7× 10−3 Single top production [89]

Table 2: SM prediction for the several flavor changing top decay branching fractions (from [90]). Also shown the
present LHC bounds, as well as a few details about the searches and the corresponding reference.

the last few years, a tremendous progress has been achieved in the measurement of Higgs and top flavor
violating couplings. This is the topic of the last section of these lectures.

The top quark is the only quark whose Yukawa coupling to the Higgs boson is order of unity and
the only one with a mass larger than the mass of the weak gauge bosons. Thanks to its heavy mass, the
top mainly decays to a W boson and a bottom quark, with an extremely small life time of approximately
5 × 10−25 s. This is shorter than the hadronization time, making it impossible for the top quark to
form bound states. For these reasons the top quark plays a special role in the Standard Model and in
many BSM extensions thereof. An accurate knowledge of its properties can bring key information on
fundamental interactions at the electroweak scale and beyond. So far, the flavor conserving properties of
the top are known with a very good accuracy. Less is know about the flavor changing top couplings.

The flavor changing decays of the top quark are suppressed by the GIM mechanism, similarly to
what happens to the other quarks. The decay of a top quark to a Z boson or a photon and an up or charm
quark occurs only through higher-order diagrams. These processes should be compared to the tree-level
decay to a W boson and a bottom quark, resulting in tiny top flavor changing branching ratios in the
framework of the SM. In the second column of Tab. 2, we present the SM predictions for the flavor
changing branching ratios of the top. All branching ratios are below the 10−13 level! A discovery of a
flavor violating top decay in the foreseeable future would, therefore, unequivocally, imply the existence
of New Physics.

Several searches for top flavor changing couplings have been performed at the LHC, and, so far,
there is no evidence for non zero couplings. In the third column of Tab. 2 we show the state of the art of
the most stringent constraints on the several branching ratios. All searches have been performed using
the full 8 TeV luminosity. Some searches look directly for top flavor changing decays; some other for
single top production, eventually in association with a Z or a photon. Projections of these constraints
for the HL-LHC show that we could reach the sensitivity to flavor changing branching ratios at the level
of BR(t → gc) . 4 × 10−6 and BR(t → hq) . 2 × 10−4 [91]. These values are still quite larger
than the corresponding SM predictions, but will be crucial for testing the prediction of Randall-Sundrum
models [92] and of 2HDMs with a generic flavor structure, that can predict branching ratios as large as
BR(t → gc)2HDM ∼ 10−5 and BR(t → hq)2HDM ∼ 2 × 10−3, BR(t → hq)RS ∼ 10−4, in agreement
with the present low energy flavor constraints [93, 94].

As we have discussed in Sec. 2.1, the Higgs is intrinsically connected to the flavor puzzle, as
without Yukawa interactions the SM flavor symmetry, Gflavor, would be un-broken. For this reason, it
is of paramount importance to test the couplings of the Higgs with quarks and leptons at the LHC. By
now, we know that the masses of the third generation quarks and leptons are largely due to the 125 GeV

20

S. GORI

84



Higgs, as indicated by the measured values of Higgs couplings to the third generation fermions. Little
is known about the origin of the masses of the first and second generation fermions and about flavor
changing Higgs couplings.

In the SM, in spite of the very small Higgs width, flavor violating Higgs decays have a negligible
branching ratio. Generically, flavor violating Yukawa couplings are well constrained by the low energy
FCNC measurements [95, 96]. A notable exception are the flavor violating couplings involving a tau
lepton. Models with extra sources of EWSB, can predict a sizable (% level) Higgs flavor violating decays
to a tau and a lepton, while being in agreement with low energy flavor observables, as τ → µγ [97].

A few searches for Higgs flavor violating decays h → τµ, h → τe have been performed by the
LHC [98–102], so far not showing a convincing evidence for non-zero branching ratios (see, however,
the initial small anomaly shown by the CMS collaboration in [98]). It will be very interesting to monitor
these searches in the coming years of the LHC, as they could give a complementary probe of models
with sizable flavor changing Higgs couplings to leptons.

5 Summary
An essential feature of flavor physics is its capability to probe very high scales, beyond the kinematical
reach of high energy colliders. At the same time, flavor physics can teach us about properties of TeV-scale
new physics (i.e. how new particles couple to the SM degrees of freedom), offering complementarity with
searches of NP at colliders.

In these lectures, I discussed the flavor structure of the SM, particularly focusing on the symmetry
principles of the SM Lagrangian and on how the flavor symmetry is broken. Flavor changing neutral
processes in the SM are highly suppressed, both because they arise at least at the loop-level and because
of the GIM mechanism that introduces the dependence of these processes on the small CKM off-diagonal
elements and on the small quark masses.

Due to the SM suppression of FCNC processes, flavor transitions offer a unique opportunity to
test the New Physics flavor structure. Generically NP models predict too large contributions to flavor
transitions (the “New Physics flavor problem") leading us to conclude that, if TeV-scale New Physics
exists, it must have a highly non generic flavor structure, as for example it can obey to the Minimal
Flavor Violation principle.

Several experiments are running and will be running in the coming years (LHCb, Belle II, NA62,
KOTO and many lepton flavor experiments) and many more observables will be measured precisely.
Some of the golden channels for the coming years are

– More precise measurement of the clean rare decays Bs → µ+µ− and Bd → µ+µ− at LHCb,
ATLAS and CMS. The ratio of branching ratios will give us more insights on the validity of the
MFV ansatz.

– Additional tests of the lepton universality relations in B decays at LHCb and Belle II: BR(B →
Jee)/BR(B → Jµµ) with J = K,K∗, Xs,Kπ, ... . These are particularly clean tests of the
SM, as the theory predictions are known to a very good precision and are not affected by hadronic
uncertainties.

– Better measurements of B → Dτν and B → D∗τν, to confirm or disprove the present anomaly
in these decays, as observed at Belle, Babar and LHCb [15, 16, 18, 19].

– Brand new measurements of B → K(∗)νν and K → πνν at Belle II and KOTO, respectively.
– Additional searches of top and Higgs flavor violating couplings at the LHC.

These channels (and several others) will be able either to set interesting constraints on NP, or to shed
light into the existence of new degrees of freedom beyond the SM.
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Abstract
These lectures provide a concise introduction to the so-called “Beyond the
Standard Model” physics, with particular emphasis on the problem of the mi-
croscopic origin of the Higgs mass term and of the Electro-Weak symmetry
breaking scale in connection with Naturalness. The standard scenarios of Su-
persymmetry and Composite Higgs are shortly reviewed. An attempt is made
to summarise the implications of the LHC run-1 results on what we expect to
lie beyond (or behind) the Standard Model.
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1 BSM: What For?
Physics is the continuous effort towards a deeper understanding of the laws of Nature. The Standard
Model (SM) theory summarises the state-of-the-art of this understanding, providing the correct descrip-
tion of all known fundamental particles and interactions (including Gravity) at the energy scales we have
been capable to explore experimentally so far. “Beyond the SM” (BSM) physics aims to the next step
of this understanding, namely to unveil the microscopic origin of the SM itself, of its field content, La-
grangian and parameters. From this viewpoint, the acronym “BSM” should better be read as “Behind”
rather than “Beyond” the SM, from which the unconventional title (see however [1]) I gave to these lec-
tures. The main focus is indeed not on new physics (beyond what predicted by the SM) per se, but on the
solution of some of the mysteries associated with the microscopic theory that lie behind the SM itself. In
this respect, a lack of discovery, namely a non-trivial confirmation of the SM that closes the door to BSM
physics potentially associated with one of these mysteries, might be as informative as the observation of
new physics.

The one described above is only one of the possible approaches to forefront research in fundamen-
tal physics. A valid alternative is to start from observations rather than from theory, in particular from
those observations that cannot be accounted for by the SM, signalling the existence of new physics. What
I have in mind are of course neutrino masses and oscillations and evidences of Dark Matter, Inflation and
Baryogenesis. Dedicated lectures were given at this School on these topics [2] [3]. Even within the con-
text of high-energy physics research, where no BSM discovery crossed our horizon yet 1, new physics
searches driven by data rather than by theory are highly desirable and complementary to the study of
specific signal topologies dictated by theoretical BSM scenarios. Also, we should not discard the possi-
bility of performing theory-unbiased new physics searches in final states that appear promising because
of their simplicity, of their low SM background and/or of their experimental purity. Notice however that
a fully “unbiased” approach to new physics searches is virtually impossible. A certain degree of theory
bias is unavoidably needed in order to limit the infinite variety of possible channels (or of experiments)
one could search in. Even the very fact that TeV-scale reactions at the LHC are promising places to
look at is in itself a theory bias, though dictated by extremely general and robust BSM considerations.
Theory-unbiased or theory-driven new physics searches thus just correspond to a different gradation of
BSM bias we decide to apply.

1Still, the ongoing LHC program makes the direct exploration of the energy frontier the most promising tool of investigation
we currently have to our disposal. Also, one should not forget the strong impact of Flavour physics [4], because of its capability
of indirectly exploring very high-energy scales, on BSM physics.
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1.1 No-Lose Theorems
Sometimes, the quest for the microscopic origin of known particles and interactions has extremely pow-
erful implications, leading to absolute guarantees of new physics discoveries. A mathematical argument
based on currently established laws of Nature, which ensures future discoveries provided the experi-
mental conditions become favourable enough (i.e., high enough energy in the examples that follow), is
what we call a “No-Lose Theorem”. Though exceptional in the long history of science, several No-Lose
Theorem could be formulated (and exploited, resulting in a number of discoveries) in the context of fun-
damental interaction physics over the last several decades. So many No-Lose Theorem existed, and for
so long, that we got used to them, somehow forgetting their importance and their absolutely exceptional
nature. They deserve a review now, after the discovery of the Higgs which prevents the formulation of
new No-Lose Theorems marking the end of the age of guaranteed discoveries.

The simplest No-Lose Theorem is the one that guarantees the existence of new physics beyond
(and behind) the Fermi Theory of Weak interactions. To appreciate the value of this theorem we must go
back to the times when the Fermi Theory was the only experimentally established, potentially “funda-
mental”, description of Weak interactions. At that times, our knowledge of the Weak force was entirely
encapsulated in a four-fermions operator of energy dimension d = 6, the Fermi interaction, with its
d = −2 coefficient, the Fermi constant GF .2 The question of whether the Fermi theory can be truly
fundamental or not, and correspondingly whether or not GF can be a fundamental constant of Nature,
has a very sharp negative answer, schematically summarised below

f

f

f

f
⇠ GF E2 ' E2/v2< 16⇡2 mW < 4⇡v
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The point is that the four-fermions scattering amplitude grows with the square of the center-of-mass
energy “E” of the reaction, a fact that trivially follows from dimensional analysis (since the amplitude
is dimensionless and proportional to the d = −2 coupling constant GF ) and is intrinsically linked with
the non-renormalizable nature of the Fermi Theory. But the Weak scattering amplitude becoming too
large, overcoming the critical value of 16π2, means that the Weak force gets too strong to be treated as a
small perturbation of the free-fields dynamics and the perturbative treatment of the theory breaks down.
Of course there is nothing conceptually wrong in the Weak force entering a non-perturbative regime, the
problem is that this regime cannot be described by the Fermi Theory, which is intrinsically defined in
perturbation theory. Namely, the Fermi Theory does not give trustable predictions and becomes internally
inconsistent as soon as the non-perturbative regime is approached. Therefore a new theory, i.e. new
physics, is absolutely needed. Either in order to modify the energy behaviour of the amplitude before it
reaches the non-perturbative threshold, keeping the Weak force perturbative, or to describe the new non-
perturbative regime. In all cases this new, more fundamental, theory will account for the microscopic
origin of the Fermi interaction and of its coupling strength GF as a low-energy effective description of
the Weak force. According to the theorem, the microscopic theory must show up at an energy scale
below 4π/

√
GF � 4πv, having expressed GF = 1/

√
2v2 in terms of the ElectroWeak Symmetry

Breaking (EWSB) scale v � 246 GeV. We now know that the new physics beyond the Fermi Theory is
the Intermediate Vector Boson (IVB) theory, which was confirmed by discovering the W boson at the
scale mW � 80 GeV, far below 4πv compatibly with the theorem.

As everyone knows, well before the discovery of the W discovery we already had strong indirect
indications on the validity of the IVB theory and a rather precise estimate of the W boson mass. These
indications came from fortunate theoretical speculations and from the measurement of the Weak angle
through neutrino scattering processes, and are completely unrelated with the No-Lose Theorem outlined
above. Indeed, the theorem makes no assumption on, and gives no indication about, the details of the

2Of course the Cabibbo angle was also needed in order to describe hadronic Weak processes.
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microscopic physics that lies behind the Fermi Theory. Namely, the theorem guarantees that something
would have been discovered in fermion-fermion scattering, possibly not the W and possibly not at a scale
as low as mW , even if all the theoretical speculations about the IVB theory had turned out to be radically
wrong. This means in particular that if the UA1 and UA2 experiments at the CERN SPS collider had not
discovered the W , we would have for sure continued searching for it, or for whatever new physics lies
behind the Fermi theory, by the construction of higher energy machines.

A situation like the one described above was indeed encountered in the search for the top quark,
which according to a widespread belief was expected to be much lighter than mt � 173 GeV, where it
was eventually observed. Consequently, the top discovery was expected at several lower-energy colliders,
constructed before the Tevatron, which instead produced a number of negative results. However we never
got discouraged and we never even considered the possibility of giving up searching for the top quark,
or for some other new physics related with the bottom quark, because of a second No-Loose Theorem:

f

f

f

f
⇠ GF E2 ' E2/v2< 16⇡2 mW < 4⇡v

t

b

b

WL

WL

/Z
t+ ⇠ g2

W E2/m2
W < 16⇡2 mt < 4⇡vt

WL

WL

WL

WL

+ . . . ⇠ g2
W E2/m2

W < 16⇡2 mH < 4⇡v

The theorem relies on the validity of the IVB theory and on the existence of the bottom quark with
its neutral current interactions, which we consider here as experimentally established facts at the times
when the top was not yet found. The observation is that the amplitude for longitudinally polarised W
bosons production from a b b pair grows quadratically with the energy if the top quark is absent or if it
is too heavy to be relevant. It is indeed the t-channel contribution from the top exchange that makes the
amplitude constant at high energies in the complete SM. Perturbativity thus requires new physics at a
scale below 4πmW /gW � 4πv, having used the relation mW = gW v/2. When interpreted in the SM,
the upper bound on the new physics scale translates in the familiar perturbativity bound on the top mass,
however the Theorem does not rely on the SM and on the existence of the top quark. It states that the top,
or something else, must exist beyond the bottom quark in order to moderate the growth with the energy
of the scattering amplitude. More physically, the Theorem says that the microscopic origin of the bottom
quark (e.g., the fact that its left-handed component lives in a doublet together with the top) must reveal
itself below 4πv.

Another particle whose discovery was significantly “delayed” with respect to the expectations is
the Higgs boson, which also comes with its own No-Loose Theorem:
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The growth with the energy of the longitudinally polarised W bosons scattering amplitude in the IVB
theory requires the presence of new particles and/or interactions, once again below the critical threshold
of 4πv ∼ 3 TeV. Given that the TeV scale is within the reach of the LHC collider, the Theorem above
offered absolute guarantee of new physics discoveries at the LHC and was heavily used to motivate its
construction. Now the Higgs has been found, with couplings compatible with the SM expectations, we
know that it is indeed the Higgs particle the agent responsible for cancelling (at least partially, given the
limited accuracy of the Higgs couplings measurements) the quadratic term in the scattering amplitude.
This leaves us, as I will better explain below, with no No-Loose Theorem and thus with no guaranteed
discovery to organise our future efforts in the investigation of fundamental interactions.

Each of the No-Lose theorems discussed above emerges because of the anomalous power-like
growth with the energy of some scattering amplitude, a behaviour which unmistakably signals that a
non-renormalizable interaction operator of energy dimension d > 4 is present in the theory. This being
the case is completely obvious for the Fermi theory, a bit less so in the two other examples. In the latter

3

BEHIND THE STANDARD MODEL

93



102 104 106 108 1010 1012 1014 1016 1018 1020

0.0

0.2

0.4

0.6

0.8

1.0

RGE scale m in GeV

SM
co
up
lin
gs

g1

g2

g3yt

l
yb
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p
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defined in the MS scheme. The thickness indicates the ±1σ uncertainty. Right: RG evolution of
λ varying Mt, Mh and ↵s by ±3σ.

the Yukawa sector and can be considered the first complete NNLO evaluation of λ(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of λ around the weak scale, caused by the 32y4
t g

2
s + 30y6

t terms in its beta

function. As a result of this improved determination of λ(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3

Fig. 1: The RG running of the most relevant couplings of the SM, namely the three gauge couplings g1,2,3, the top
and bottom Yukawa’s yt,b and the Higgs quartic coupling λ. See Ref. [6] and references therein for more details.

cases it requires, to be understood, somewhat technical considerations related with the Goldstone boson
Equivalence Theorem [5] which go beyond the purpose of the present lectures. It suffices here to say that
one given d = 6 non-renormalizable operator, responsible for the E2 growth of the scattering amplitude,
can be identified for each of the 3 No-Lose theorems above. When each theorem was “exploited” by
discovering the associated new physics we “got rid” of the corresponding operator by replacing it with a
more fundamental theory that explains its origin as a low-energy effective description. Having exploited
all the theorems, we got rid of all the non-renormalizable operators and we are left, for the first time,
with an experimentally verified renormalizable theory of electroweak and strong interactions. No new
No-Lose theorems can be thus formulated in this theory, at least not as simple and powerful ones as the
ones listed above.

However the SM is not only a theory of electroweak and strong interactions. It can be (and it must
be, to account for observations) extended to incorporate Gravity and the only sensible way to do so is by
introducing and quantising the Einstein-Hilbert action. This produces a number of non-renormalizable
interaction operators involving gravitons, giving rise to another well-known No-Lose theorem
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where MP � 1019 GeV is the Planck scale. What the theorem says is that the SM is for sure not the
“final theory” of Nature, because it does not provide a complete description of Gravity at the quantum
level. It does incorporate a description of quantum gravity that is valid and predictive at low energy but
breaks down at a finite scale ΛSM, which we call the “SM cutoff”. BSM particles and interactions are
present at that scale, which however can be as high as 1019 GeV. Given our technical inability to test
such an enormous scale, it is unlikely that we might ever exploit this last No-Lose Theorem as a guide
towards a concrete new physics discovery.

The second aspect to be discussed is that even in a renormalizable theory the scattering amplitudes
can actually grow with the energy. Not with a power-law, but logarithmically, through the Renormalisa-
tion Group (RG) running of the dimensionless coupling constants of the theory. The RG evolution can
make some of the couplings grow with the energy until they violate the perturbativity bound, producing
a new No-Lose Theorem. Obviously this No-Lose Theorem would most likely be not as powerful as
those obtainable in non-renormalizable theories because the RG evolution is logarithmically slow and
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for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
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Fig. 2: Stability, instability, metastability and non-perturbativity regions for the SM in the plane of the Higgs and
top masses. A zoom on the experimentally viable region is displayed in the right plot, with the 1, 2 and 3σ regions
allowed by mH and mt uncertainties. From Ref. [6].

thus the perturbativity violation scale is exponentially high, but still it is interesting to ask if one such a
theorem exists for the SM and at which scale it points to. The answer is that perturbativity violation does
not occur in the SM below the Planck mass scale, at which new physics is anyhow needed to account for
gravity, as shown in fig. 1. The only coupling that grows significantly with the energy is the one associ-
ated with the U(1)Y gauge group, g1, which however is still well below the perturbativity bound at the
Planck scale. Notice that the result crucially depends on the initial conditions of the running, namely on
the values of the SM parameters measured at the 100 GeV scale. The result would have been different,
and an additional No-Lose Theorem would have been produced, if that values were radically different
than what we actually observed.

The vacuum stability problem [7] is yet another potential source of high-energy inconsistencies
(and thus of No-Lose Theorems) in renormalizable theories that display, like the SM, a non-trivial struc-
ture of the vacuum state. The problem is again due to RG evolution effects, which modify the form
of the Higgs potential at very high values of the Higgs field and potentially make it develop a second
minimum. If the energy of this second minimum is lower than the first one, transitions can occur via
quantum tunnelling from the ordinary EWSB vacuum where v � 246 GeV to an inhospitable minimum
characterised by a very large vacuum expectation value (VEV) of the Higgs field. Whether this actually
happens or not depends, once again, on the measured value of the SM parameters and in particular on
the Higgs boson and top quark masses as displayed in fig. 2. We see that our vacuum is not stable and
thus it is fated to decay provided we wait long enough. However it falls in the “meta-stability” region
of the diagram, which is where the vacuum lifetime is longer than the age of the Universe. Therefore
the decay of our vacuum might not have had enough time to occur. Some people find disturbing that
we live in a meta-stable vacuum. Some others [6] find intriguing the fact that we live close (see the
right panel of fig. 2) to the boundary between the stability and meta-stability regions and suggest that we
should measure mt better in order to be sure of how close we actually are. Anyhow what is sure (and
what matters for our discussion) is that the analysis of the vacuum stability does not reveal any concrete
inconsistency of the SM at high energy. Consequently, no new No-Lose Theorem is found.

1.2 The “SM-only” Option
Two extremely important (and in some sense contradictory) facts emerge from the previous considera-
tions. On one hand, we know that BSM physics exists at a finite energy scale ΛSM. This makes that the
SM is necessarily an approximate low-energy description of a more fundamental theory, i.e. an Effective
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Fig. 3: Pictorial view of the SM as an effective field theory, with its Lagrangian generated at the scale ΛSM.

Field Theory (EFT) with a finite cutoff ΛSM. On the other hand, the only upper bound on the cutoff scale
is provided by the Planck mass, which is to a very good approximation equal to infinity compared with
the much lower scales we are able to explore experimentally today and in any foreseeable future. We are
thus led to consider the “SM-only” option for high-energy physics. Namely the possibility that the SM
cutoff ΛSM (i.e., the scale of new physics) is extremely high, much above the TeV as depicted in fig. 3.
Values as high as ΛSM ∼ MP and ΛSM ∼ 1015 GeV ≡ MGUT can be considered.

The SM-only option is not just a logical possibility. On the contrary, it is a predictive and phe-
nomenologically successful scenario for high-energy physics. To appreciate its value, we look again
at fig. 3, starting from the high energy (UV) region and we ask ourselves how the SM theory emerges
in the IR. As pictorially represented in the figure, we have no idea of how the theory in the UV looks
like. It might be a string theory, a GUT model (for a review, see for instance Refs. [8, 9]), or something
completely different we have not yet thought about. All what we know about the UV theory is that, by
assumption, its particle content reduces to the one of the SM at ΛSM, all BSM particles being at or above
that scale.3 Below ΛSM the UV theory thus necessarily reduces, after integrating out the heavy states, to a
low-energy EFT which only describes the light SM degrees of freedom. A technically consistent descrip-
tion of the force carriers (gluon and EW bosons) requires invariance under the SU(3)c×SU(2)L×U(1)Y

gauge group, but apart from being gauge (and Lorentz) invariant there is not much we can tell a priori
on how the SM effective Lagrangian will look like. It will consist of an infinite series of local gauge-
and Lorentz-invariant operators with arbitrary energy dimension “d”, constructed with the SM Matter,
Gauge and Higgs fields as in fig. 3. The coefficient of the operators must be proportional to 1/Λd−4

SM by
dimensional analysis, given that [L] = E4 and ΛSM is the only relevant scale. This simple observation
lies at the heart of the phenomenological virtues of the SM-only scenario but also, as we will see, of its
main limitation.

We now classify the SM effective operators by their energy dimension and discuss their implica-
tions, starting from those with d = 4. They describe almost all what we have seen in Nature, namely
EW and strong interactions, quarks and charged leptons masses. They define a renormalizable theory
and thus, together with the d = 2 operator we will introduce later, they are present in the textbook SM
Lagrangian formulated in the old times when renormalizability was taken as a fundamental principle.

Several books have been written (see for instance Refs. [10–12]) on the extraordinary phenomeno-
logical success of the renormalizable SM Lagrangian in describing the enormous set of experimental
data [13] collected in the past decades. In a nutshell, as emphasized in Ref. [14], most of this success
is due to symmetries, namely to “accidental” symmetries. We call “accidental” a symmetry that arises
by accident at a given order in the operator classification, without being imposed as a principle in the

3The presence of light feebly coupled BSM particles would not affect the considerations that follow.
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construction of the theory. The renormalizable (d ≤ 4) SM Lagrangian enjoys exact (or perturbatively
exact) accidental symmetries, namely baryon and lepton family number, and approximate ones such as
the flavour group and custodial symmetry. For brevity, we focus here on the former symmetries, which
have the most striking implications. Baryon number makes the proton absolutely stable, in accordance
with the experimental limit Γp/mp . 10−64 on the proton width over mass ratio. It is hard to imagine
how we could have accounted for the proton being such a narrow resonance in the absence of a sym-
metry. Similarly lepton family number forbids exotic lepton decays such as µ → eγ, whose branching
ratio is experimentally bounded at the 10−12 level. From neutrino oscillations we know that the lepton
family number is actually violated, in a way that however nicely fits in the SM picture as we will see
below. Clearly this is connected with the neutrino masses, which exactly vanish at d = 4 because of the
absence, in what we call here “the SM”, of right-handed neutrino fields.

We now turn to non-renormalizable operators with d > 4. Their coefficient is proportional to
1/ΛnSM, with n = d − 4 > 0, thus their contribution to low-energy observables is suppressed by
(E/ΛSM)n with respect to renormalizable terms. Given that current observations are at and below the
EW scale, E . mEW ' 100 GeV, their effect is extremely suppressed in the SM-only scenario where
ΛSM � TeV. This could be the reason why Nature is so well described by a renormalizable theory,
without renormalizability being a principle.

Non-renormalizable operators violate the d = 4 accidental symmetries. Lepton number stops
being accidental already at d = 5 because of the Weinberg operator [15]

c

ΛSM
(`LH

c)(`cLH
c) , (1)

where `L denotes the lepton doublet, `cL its charge conjugate, while H is the Higgs doublet and Hc =
iσ2H∗. The SU(2)L indices are contracted within the parentheses and the spinor index between the
two terms. A generic lepton flavour structure of the coefficient, leading to the breaking of lepton family
number, is understood. Surprisingly enough, the Weinberg operator is the unique d = 5 term in the
SM Lagrangian. When the Higgs is set to its VEV, the Weinberg operator reduces to a Majorana mass
term for the neutrinos, mν ∼ c v2/ΛSM. For ΛSM ' 1014 GeV and order one coefficient “c” it generates
neutrino masses of the correct magnitude (mν ∼ 0.1 eV) and neutrino mixings that can perfectly account
for all observed neutrino oscillation phenomena. Baryon number is instead still accidental at d = 5 and
its violation is postponed to d = 6. We thus perfectly understand, qualitatively, why lepton family
violation effects are “larger”, thus easier to discover, while baryon number violation like proton decay is
still unobserved. At a more quantitative level we should actually remark that the bounds on proton decay
from the d = 6 operators, with order one numerical coefficients, set a limit ΛSM & 1015 GeV that is in
slight tension with what required by neutrino masses. However few orders of magnitude are not a concern
here, given that there is no reason why the operator coefficient should be of order one. A suppression
of the proton decay operators is actually even expected because they involve the first family quarks and
leptons, whose couplings are reduced already at the renormalizable level. Namely, it is plausible that the
same mechanism that makes the first-family Yukawa couplings small also reduces proton decay, while
less suppression is expected in the third family entries of the Weinberg operator coefficient that might
drive the generation of the heaviest neutrino mass.

The considerations above make the SM-only option a plausible picture, which becomes partic-
ularly appealing if we set ΛSM ∼ MGUT. This choice happens to coincide with the gauge coupling
unification scale, but this doesn’t mean that the new physics at the cutoff is necessarily a Grand Unified
Theory. On the contrary, the physics at the cutoff can be very generic in this picture, the compatibility
with low-energy observations being ensured by the large value of the ΛSM scale and not by the details of
the UV theory. New physics is virtually impossible to discover directly in this scenario, but this doesn’t
make it completely untestable. Purely Majorana neutrino masses would be a strong indication of its
validity while observing a large Dirac component would make it less appealing.

Having discussed the virtues of the SM-only scenario, we turn now to its limitations. One of those,
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which was already mentioned, is the hierarchy among the Yukawa couplings of the various quark and
lepton flavours, which span few orders of magnitude. This tells us that the new physics at ΛSM cannot
actually be completely generic, given that it must be capable of generating such a hierarchy in its predic-
tion for the Yukawa’s. This limits the set of theories allowed at the cutoff but is definitely not a strong
constraint. Whatever mechanism we might imagine to generate flavour hierarchies at ΛSM ∼ MGUT, it
will typically not be in contrast with observations given that the bounds on generic flavour-violating op-
erators are “just” at the 108 GeV scale. Incorporating dark matter also requires some modification of the
SM-only picture, but there are several ways in which this could be done without changing the situation
dramatically. Perhaps the most appealing solution from this viewpoint is “minimal dark matter” [16], a
theory in which all the symmetries that are needed for phenomenological consistence are accidental. This
includes not only the SM accidental symmetries, but also the additional Z2 symmetry needed to keep the
dark matter particle cosmologically stable. Similar considerations hold for the strong CP problem, for
inflation and all other cosmological shortcomings of the SM. The latter could be addressed by light and
extremely weakly-coupled new particles or by very heavy ones above the cutoff. In conclusion, none
of the above-mentioned issues is powerful enough to put the basic idea of very heavy new physics scale
in troubles. The only one that is capable to do so is the Naturalness (or Hierarchy) problem discussed
below.4

We have not yet encountered the Naturalness problem in our discussion merely because we vol-
untarily ignored, in our classification, the operators with d < 4. The only such operator in the SM is the
Higgs mass term, with d = 2.5 When studying the d > 4 operators we concluded that their coefficient is
suppressed by 1/Λd−4

SM . Now we have d = 2 and we are obliged to conclude that the operator is enhanced
by Λ2

SM, i.e. that the Higgs mass term reads

cΛ2
SMH

†H , (2)

with “c” a numerical coefficient. In the SM the Higgs mass term sets the scale of EWSB and it directly
controls the Higgs boson mass. Today we know that mH = 125 GeV and thus the mass term is µ2 =
m2
H/2 = (89 GeV)2. But if ΛSM ∼MGUT, what is the reason for this enormous hierarchy? Namely

why
µ2

Λ2
SM
∼ 10−28 ≪ 1 ?

This is the essence of the Naturalness problem.

Further considerations on the Naturalness problem and implications are postponed to the next
section. However, we can already appreciate here how radically it changes our expectations on high
energy physics. The SM-only picture gets sharply contradicted by the Naturalness argument since the
problem is based on the same logic (i.e., dimensional analysis) by which its phenomenological virtues
(i.e., the suppression of d > 4 operators) were established. The new picture is that ΛSM is low, in the
100 GeV to few TeV range, such that a light enough Higgs is obtained “Naturally”, i.e. in accordance
with the estimate in eq. (2). The new physics at the cutoff must now be highly non-generic, given that
it cannot rely any longer on a large scale suppression of the BSM effects. To start with, baryon and
lepton family number violating operators must come with a highly suppressed coefficient, which in turn
requires baryon and lepton number being imposed as symmetries rather than emerging by accident. In
concrete, the BSM sector must now respect these symmetries. This can occur either because it inherits
them from an even more fundamental theory or because they are accidental in the BSM theory itself.
Similarly, if ΛSM ∼ TeV flavour violation cannot be generic. Some special structure must be advocated
on the BSM theory, Minimal flavour Violation (MFV) [22, 23] being one popular and plausible option.
The limits from EW Precision Tests (EWPT) come next; they also need to be carefully addressed for

4See Refs. [17] and [18] for recents essays on the Naturalness problem. The problem was first formulated in Refs. [19]
and [20, 21], however according to the latter references it was K.Wilson who first raised the issue.

5There is also the cosmological constant term, of d = 0. It poses another Naturalness problem that I will mention later.
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TeV scale new physics. On one hand this makes Natural new physics at the TeV scale very constrained.
On the other hand it gives us plenty of indications on how it should, or it should not, look like.

1.3 The Naturalness Argument
The reader might be unsatisfied with the formulation of the Naturalness problem we gave so far. All
what eq. (2) tells us is that the numerical coefficient “c” that controls the actual value of the mass term
beyond dimensional analysis should be extremely small, namely c ∼ 10−28 for GUT scale new physics.
Rather than pushing ΛSM down to the TeV scale, where all the above-mentioned constraints apply, one
could consider keeping ΛSM high and try to invent some mechanism to explain why c is small. After all,
we saw that there are other coefficients that require a suppression in the SM Lagrangian, namely the light
flavours Yukawa couplings. One might argue that it is hard to find a sensible theory where c is small,
while this is much simpler for the Yukawa’s. Or that 28 orders of magnitude are by far much more than
the reduction needed in the Yukawa sector. But this would not be fully convincing and would not make
full justice to the importance of the Naturalness problem.

In order to better understand Naturalness we go back to the essential message of the previous
section. The SM is a low-energy effective field theory and thus the coefficients of its operators, which we
regard today as fundamental input parameters, should actually be derived phenomenological parameters,
to be computed one day in a more fundamental BSM theory. Things should work just like for the Fermi
theory of weak interactions, where the Fermi constant GF is a fundamental input parameter that sets
the strength of the weak force. We know however that the true microscopic description of the weak
interactions is the IVB theory. The reason why we are sure about this is that it allows us to predict GF in
terms of its microscopic parameters gW andmW , in a way that agrees with the low-energy determination.
What we have in mind here is merely the standard textbook formula

GF =
g2
W

4
√

2m2
W

, (3)

that allows us to carry on, operatively, the following program. Measure the microscopic parameters gW
and mW at high energy; compute GF ; compare it with low-energy observations.6 Since this program
succeeds we can claim that the microscopic origin of weak interaction is well-understood in terms of
the IVB theory. We will now see that the Naturalness problem is an obstruction to repeating the same
program for the Higgs mass and in turn for the EWSB scale.

Imagine knowing the fundamental, “true” theory of EWSB. It will predict the Higgs mass term µ2

or, which is the same, the physical Higgs mass m2
H = 2µ2, in terms of its own input parameters “ptrue”,

by a formula that in full generality reads

m2
H =

∫ ∞

0
dE

dm2
H

dE
(E; ptrue) . (4)

The integral over energy stands for the contributions tom2
H from all the energy scales and it extends up to

infinity, or up to the very high cutoff of the “true” theory itself. The integrand could be localized around
some specific scale or even sharply localized by a delta-function at the mass of some specific particle,
corresponding to a tree-level contribution to m2

H . Examples of theories with tree-level contributions are
GUT [8, 9] and Supersymmetric (SUSY) models, where mH emerges from the mass terms of extended
scalar sectors. The formula straightforwardly takes into account radiative contributions, which are the
only ones present in the composite Higgs scenario (see sect. 2). Also in SUSY, as discussed in sect. 3,
radiative terms have a significant impact given that the bounds on the scalar (SUSY and soft) masses that
contribute at the tree-level are much milder than those on the coloured stops and gluinos that contribute

6Actually GF is taken as an input parameter in actual calculations because it is better measured than gW and mW , but this
doesn’t affect the conceptual point we are making.
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Fig. 4: Some representative top, gauge and Higgs boson loop diagrams that contribute to the Higgs mass.

radiatively. In the language of old-fashioned perturbation theory [24], “E” should be regarded as the
energy of the virtual particles that run into the diagrams through which m2

H is computed.

Consider now splitting the integral in two regions defined by an intermediate scale that we take
just a bit below the SM cutoff. We have

m2
H =

∫ .ΛSM

0
dE

dm2
H

dE
(E; ptrue) +

∫ ∞

.ΛSM

dE
dm2

H

dE
(E; ptrue)

= δSMm
2
H + δBSMm

2
H , (5)

where δBSMm
2
H is a completely unknown contribution, resulting from energies at and above ΛSM, while

δSMm
2
H comes from virtual quanta below the cutoff, whose dynamics is by assumption well described

by the SM. While there is nothing we can tell about δBSMm
2
H before we know what the BSM theory is,

we can easily estimate δSMm
2
H by the diagrams in Figure 4, obtaining

δSMm
2
H =

3y2
t

4π2
Λ2

SM −
3g2
W

8π2

(
1

4
+

1

8 cos2 θW

)
Λ2

SM −
3λ

8π2
Λ2

SM , (6)

from, respectively, the top quark, EW bosons and Higgs loops. The idea is that we know that the BSM
theory must reduce to the SM for E < ΛSM. Therefore no matter what the physics at ΛSM is, its
prediction for m2

H must contain the diagrams in fig 4 and thus the terms in eq. (6). These terms are
obtained by computing dm2

H/dE from the SM diagrams and integrating it up to ΛSM, which effectively
acts as a hard momentum cutoff. The most relevant contributions come from the quadratic divergences of
the diagrams, thus eq. (6) can be poorly viewed as the “calculation” of quadratic divergences. Obviously
quadratic divergences are unphysical in quantum field theory. They are canceled by renormalization and
they are even absent in certain regularizations schemes such as dimensional regularization. However the
calculation makes sense, in the spirit above, as an estimate of the low-energy contributions to m2

H .

The true nature of the Naturalness problem starts now to show up. The full finite formula for m2
H

obtained in the “true” theory receives two contributions that are completely unrelated since they emerge
from separate energy scales. At least one of those, δSMm

2
H , is for sure very large if ΛSM is large. The

other one is thus obliged to be large as well, almost equal and with opposite sign in order to reproduce the
light Higgs mass we observe. A cancellation is taking place between the two terms, which we quantify
by a fine-tuning ∆ of at least

∆ ≥ δSMm
2
H

m2
H

=
3 y2

t

4π2

(
ΛSM

mH

)2

'
(

ΛSM

450 GeV

)2

. (7)

Only the top loop term in eq. (6) has been retained for the estimate since the top dominates because of
its large Yukawa coupling and because of color multiplicity. Notice that the one above is just a lower
bound on the total amount of cancellation ∆ needed to adjust mH in the true theory. The high energy
contribution δBSMm

2
H , on which we have no control, might itself be the result of a cancellation, needed

to arrange for δBSMm
2
H ' −δSMm

2
H . Examples of this situation exist both in SUSY and in composite

Higgs.
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The problem is now clear. Even if we were able to write down a theory that formally predicts the
Higgs mass, and even if this theory turned out to be correct we will never be able to really predict mH if
ΛSM is much above the TeV scale, because of the cancellation. For ΛSM = MGUT, for instance, we have
∆ & 1024. This means that in the “true” theory formula for mH a 24 digits cancellation is taking place
between two a priori unrelated terms. Each of these terms must thus be known with at least 24 digits
accuracy even if we content ourselves with an order one estimate of mH . We will never achieve such an
accuracy, neither in the experimental determination of the ptrue “true” theory parametersmH depends on,
nor in the theoretical calculation of the Higgs mass formula. Therefore, we will never be able to repeat for
mH the program we carried on for GF and we will never be able to claim we understand its microscopic
origin and in turn the microscopic origin of the EWSB scale. A BSM theory with ΛSM = MGUT has,
in practice, the same predictive power on mH as the SM itself, where eq. (4) is replaced by the much
simpler formula

m2
H = m2

H . (8)

Namely if such an high-scale BSM theory was realized in Nature mH will remain forever an input
parameter like in the SM. The microscopic origin ofmH , if any, must necessarily come from new physics
at the TeV scale, for which the fine-tuning ∆ in eq. (7) can be reasonably small.

The Higgs mass term is the only parameter of the SM for which such an argument can be made.
Consider for instance writing down the analog of eq. (4) for the Yukawa couplings and splitting the
integral as in eq. (5). The SM contribution to the Yukawa’s is small even for ΛSM = MGUT, because
of two reasons. First, the Yukawa’s are dimensionless and thus, given that there are no couplings in
the SM with negative energy dimension, they do not receive quadratically divergent contributions. The
quadratic divergence is replaced by a logarithmic one, with a much milder dependence on ΛSM. Second,
the Yukawa’s break the flavour group of the SM. Therefore there exist selection rules (namely those of
MFV) that make radiative corrections proportional to the Yukawa matrix itself. The Yukawa’s, and the
hierarchies among them, are thus “radiatively stable” in the SM (see sect. 3.2 for more details). This
marks the essential difference with the Higgs mass term and implies that their microscopic origin and
the prediction of their values could come at any scale, even at a very high one. The same holds for all
the SM parameters apart from mH .

The formulation in terms of fine-tuning (7) turns the Naturalness problem from a vague aesthetic
issue to a concrete semiquantitative question. Depending on the actual value of ∆ the Higgs mass can be
operatively harder or easier to predict, making the problem more or less severe. If for instance ∆ ∼ 10,
we will not have much troubles in overcoming a one digit cancellation once we will know and we will
have experimental access to the “true” theory. After some work, sufficiently accurate predictions and
measurements will become available and the program of predicting mH will succeed. The occurrence of
a one digit cancellation will at most be reported as a curiosity in next generation particle physics books
and we will eventually forget about it. A larger tuning ∆ = 1000 will instead be impossible to overcome.
The experimental exploration of the high energy frontier will tell us, through eq. (7), what to expect about
∆. Either by discovering new physics that addresses the Naturalness problem or by pushing ΛSM higher
and higher until no hope is left to understand the origin of the EWSB scale in the sense specified above.
One way or another, a fundamental result will be obtained.

1.4 What if Un-Natural?
I argued above that searching for Naturalness at the LHC is relevant regardless of the actual outcome of
the experiment. Such a bold statement needs to be more extensively defended. The case of a discovery
is so easy that it would not even be worth discussing. If new particles are found at the TeV scale,
with properties that resemble what predicted by a Natural BSM theory such as the ones described in the
following sections, Naturalness would have guided us towards the discovery of new physics. Moreover, it
will provide the theoretical framework for the interpretation of the discoveries, by which the new particles
will eventually find their place in a concrete BSM model. If instead nothing related with Naturalness will
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be found, strong limits will be set on ∆ and we will be pushed towards the idea that the m2
H parameter

does not have a canonical “microscopic” origin as previously explained. This would still qualify as a
discovery: the discovery of “Un-Naturalness”.7 The profound implications of this potential discovery
are discussed below.

If Un-Naturalness will be discovered, other options will have to be considered to explain the
origin of the Higgs mass term. The two known possibilities are that m2

H has an “environmental” or a
“dynamical” origin rather than a “microscopic” one, as previously assumed. A well-known parameter
with environmental origin is the Gravity of Earth g = 9.8m/s2. It is the input parameter of Ballistics, a
theory of great historical relevance which in Galileo’s times might have been conceivably thought to be
a fundamental theory of Nature. The origin of g is obviously dictated by the environment in which the
theory is formulated, namely by the fact that Ballistics applies to processes that occur close to the surface
of Earth. Its value depends on the Earth’s mass and radius and it cannot be inferred just based on the
knowledge of the “truly fundamental” theory of Gravity (Newton’s law) and of its parameters (Newton’s
constant). This is not the case for those parameters, such as GF , with a purely microscopic origin. The
dependence on the environment can help explaining the size of an environmental parameter by the so-
called “Anthropic” argument. In fact, the value of g = 9.8m/s2 is rather peculiar. It is much larger than
the one we would observe in interstellar space and much smaller than the one on the surface of a neutron
star, very much like mH is much smaller than MP or MGUT. However we do perfectly understand the
magnitude of g, for the very simple reason that no ancient physicist might have lived in empty space or
on a neutron star. The magnitude of g must be compatible with what is needed for the development of
intelligent life, otherwise no physicist would have existed and nobody would have measured it.

The Weinberg prediction of the cosmological constant [25] proceeds along similar lines. The cos-
mological constant operator suffers of exactly the same Naturalness problem as the Higgs mass. Provided
we claim we understand gravity well enough to estimate them, radiative corrections push the cosmolog-
ical constant to very high values, tens of orders of magnitude above what we knew it had to be (and
was subsequently observed) in order for galaxies being able to form in the early universe. Weinberg
pointed out that the most plausible value for the cosmological constant should thus be close to the max-
imal allowed value for the formation of galaxies because galaxies are essential for the development of
intelligent life. The idea is that if many ground state configurations (a landscape of vacua) are possible
in the fundamental theory, typically characterised by a very large cosmological constant but with a tail
in the distribution that extends up to zero, the largest possible value compatible with galaxies formation,
and thus with the very existence of the observer, will be actually observed. A similar argument can be
made for the Higgs mass (see for instance Ref. [26]), however it is harder in the SM to identify sharply
the boundary of the anthropically allowed region of the parameter space.

I tried here to vulgarise the mechanism of anthropic vacua selection by the example of Gravity of
Earth, however the analogy is imperfect under several respects. Perhaps the most important difference is
that the landscape of vacua cannot be viewed as a set of physical regions (like the interstellar space or
the neutron star) separated in space, where mH or the cosmological constant assume different values. Or
at least, since the other vacua live in space-time regions that are causally disconnected from us, it will be
impossible to have access to them and check directly that the mechanism works.

The possibility of a “dynamical” origin of the Higgs mass term is quite new [27] and not much
studied.8 The idea, first proposed in [28] as an unsuccessful attempt to solve the cosmological constant
problem, is that mH might be set by the expectation value of a new scalar field, whose value evolves

7Deciding whether or not negative LHC results will have the last word on Naturalness is a matter of taste, to some extent,
since it is unclear how much tuning we can tolerate. It also depends on how good we will be in searching for Natural new
physics and consequently how strong and robust the limit on ∆ will actually be. It is nevertheless undoubtable that negative
LHC results will put the idea of Naturalness in serious troubles.

8The word “dynamical” is used here in its proper sense, related with evolution in the course of time. It has nothing to
do with the generation of energy scales (e.g„ the QCD confinement scale) induced by an underlying strongly-coupled theory,
which is also said to be a “dynamical” generation mechanism.
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Fig. 5: Pictorial representation of the Composite Higgs solution to the Naturalness problem.

during cosmological Inflation. This field is called “relaxion” in [27] because it is similar to the QCD
axion needed to address the strong-CP problem and because it sets the value of mH by a dynamical
relaxation mechanism. At the beginning of Inflation, the relaxion VEV is such that the Higgs mass
term is large and positive, but it evolves in the course of time making the Higgs mass term decrease
and eventually cross zero so that EWSB can take place. The structure of the theory is such that once
a non-vanishing Higgs VEV is generated, a barrier develops in the relaxion potential and makes it stop
evolving. The Higgs mass term gets thus frozen to the value which is just sufficient for an high enough
barrier to form. If the theory is special enough (but not necessarily complicate), this value can be small
and the Hierarchy problem can be solved.

You might find these speculations extremely interesting. Or you might believe that they have
no chance to be true. Anyhow, their vey existence demonstrates how radically the discovery of Un-
Naturalness would change our perspective on the physics of fundamental interactions. They show the
capital importance of searching for Naturalness or Un-Naturalness at the LHC and, perhaps, at future
colliders.

2 Composite Higgs
One aspect of the Naturalness problem which has not yet emerged is the fact that addressing it requires
BSM physics of rather specific nature at ΛSM � TeV. Namely, it is true that any BSM scenario that
Naturally explains the origin of mH is obliged to show up at the TeV by eq. (7), but this does not
mean that the presence of generic new particles at the TeV scale would solve the Naturalness problem.
Conversely, it is not true that any BSM particle we might happen not to discover at the TeV scale would
signal that the theory is fine-tuned as a naive application of eq. (7) would suggest. Natural BSM physics
would show up through new particles (and/or, indirect effects on SM processes) of specific nature and it
is only the non-discovery of these particles the one that matters for the tuning ∆. Addressing this point
requires studying concrete BSM solutions to the Naturalness problem.

Among the various scenarios which have been proposed to address the Naturalness problem I
decided to focus on two of them: Supersymmetry and Composite Higgs. The reason for this choice is
that they are representative of the only two known mechanisms which truly address the problem of the
microscopic origin of mH by a well-defined high-energy picture. Alternative Natural models are often
reformulations or deformations of these basic scenarios, or a combination of the two.9 You are referred
to Ref. [29] for a comprehensive overview.

13

BEHIND THE STANDARD MODEL

103



2.1 The Basic Idea
The composite Higgs scenario offers a simple solution to the problem of Naturalness. Suppose that
the Higgs, rather than being a point-like particle as in the SM, is instead an extended object with a
finite geometric size lH . We will make it so by assuming that it is the bound state of a new strong
force characterised by a confinement scale m∗ = 1/lH of TeV order. In this new theory the dm2

H/dE
integrand in the Higgs mass formula (4), which stands for the contribution of virtual quanta with a given
energy, behaves as shown in fig. 5. Low energy quanta have too a large wavelength to resolve the Higgs
size lH . Therefore the Higgs behaves like an elementary particle and the integrand grows linearly with
E like in the SM, resulting in a quadratic sensitivity to the upper integration limit. However this growth
gets canceled by the finite size effects that start becoming visible when E approaches and eventually
overcomes m∗. Exactly like the proton when hit by a virtual photon of wavelength below the proton
radius, the composite Higgs is transparent to high-energy quanta and the integrand decreases. The linear
SM behaviour is thus replaced by a peak at E ∼ m∗ followed by a steep fall. The Higgs mass generation
phenomenon gets localised atm∗ = 1/lH andmH is insensitive to much higher energies. This latter fact
is also obvious from the fact that no Higgs particle is present much above m∗. Therefore there exist no
Higgs field and no d = 2 Higgs mass term to worry about.

Implementing this idea in practice requires a theory with the structure in fig. 6. The three basic
elements are a “Composite Sector” (CS), an “Elementary Sector” (ES) and a set of interactions “Lint”
connecting the two. The Composite Sector contains the new particles and interactions that form the
Higgs as a bound state and it should be viewed as analogous to the QCD theory of quarks and gluons.
The CS plays the main role for the composite Higgs solution to the Naturalness problem as it gives
physical origin to the Higgs compositeness scale m∗. In the analogy with QCD, m∗ corresponds to the
QCD confinement scale ΛQCD and it is generated, again like in QCD, by the mechanism of dimensional
transmutation. Thanks to this mechanism it is insensitive to other much larger scales which are present in
the problem. For instance the microscopic origin of the CS itself might well be placed at ΛUV ∼MGUT,
but still m∗ could be Naturally of TeV order, very much like ΛQCD ∼ 300 MeV� mEW is perfectly
Natural within the SM.

The Elementary Sector contains all the particles we know, by phenomenology, cannot be com-
posite at the TeV scale.10 Those are basically all the SM gauge and fermion fields with the possible
exception of the right-handed component of the top quark. The most relevant operators in the ES La-
grangian, namely those that are not suppressed by 1/ΛnUV, are thus just the ordinary d = 4 SM gauge
and fermion kinetic terms and gauge interactions. Since there is no Higgs, no dangerous d = 2 operator
is present in the ES and thus the theory is perfectly Natural. Obviously the lack of a Higgs also forbids
Yukawa couplings and a different mechanism will have to be in place to generate fermion masses and
mixings.

The Elementary-Composite interactions Lint consist of two classes of terms: those involving the
elementary gauge fields and those involving the elementary fermionic field. The latter are responsible for
fermion masses and will be discussed later. The former are instead sharply dictated by gauge invariance
and read

Lgauge
int =

∑

i=1,2,3

giA
µ
i J

i
µ , (9)

where i runs over the three SU(3)c×SU(2)L×U(1)Y irreducible factors of the SM gauge group and gi
denotes the corresponding gauge coupling. In the equation, J iµ represents the global current operators of

9For instance, certain Randall-Sundrum models are reformulations of the Composite Higgs scenario with or without the
Higgs being a pseudo-Nambu–Goldstone Boson (pNGB). Little Higgs (see [30, 31] for a review) is a pNGB Higgs endowed
with a special mechanism which could make it more Natural. Twin Higgs [32] is an additional protection for mH which
postpones the emergence of coloured particles in the spectrum. It can be applied both to the Composite Higgs and to the SUSY
scenario.

10Those particles might be “partially composite”, a concept that we will introduce below.
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fL, fR, (tR?)

⇤UV Lint

m⇤
exact G
G ! H
H 2 G/H

G

Fig. 6: The basic structure of the composite Higgs scenario.

the Composite Sector, namely the Noether currents associate with each of the three irreducible factors
of the SM group. Notice that for this to make sense the CS must be invariant under the SM symmetries,
therefore the complete global symmetry group of the CS, denoted by “G” in fig. 6, must at least contain
the SM one as a subgroup. Good reasons to make G larger will be discussed shortly. Pushing forward
the analogy with low-energy QCD and hadron physics, the ES sector is analogous to the photon plus
light leptons system, whose coupling to the CS proceed through the electromagnetic gauge interaction
precisely as in eq. (9).

The generic framework described until now has an important pitfall, which is overcame in what
we nowadays properly call the “Composite Higgs” scenario 11 by the fact that the Higgs is a pseudo
Nambu–Goldstone Boson (pNGB). The pitfall is that if the Higgs is a generic bound state of the CS
dynamics one generically expects its mass to be of the order of the CS confinement scale m∗, namely
mH ∼ m∗. In a sense, the point is that the mechanism of fig. 5 does indeed solve the Naturalness
problem by making the shape of dm2

H/dE localised at m∗ but tells us nothing about the normalisation
of the dm2

H/dE function. In the absence of a special mechanism one can estimate dm2
H/dE ∼ m∗ at

E ∼ m∗ and the result of the integral is m2
H ∼ m2

∗. One can reach the same conclusion heuristically
by exploiting the analogy with QCD and browsing one of the many PDG [13] summary tables devoted
to the properties of hadrons. By picking one generic (random) hadron in the list one would find that its
mass is around the QCD confinement scale ΛQCD and that it is surrounded by many other hadrons (a
bit heavier or lighter) with similar properties. The Higgs particle is instead alone in the spectrum, or at
least we are pretty sure that we would have seen (directly and/or indirectly) at least some of the other
particles that would come with it if m∗ was around mH ∼ 100 GeV. Therefore m∗ must be of the TeV
or multi-TeV order and some mechanism must be in place to explain why mH � m∗. The problem is
actually even more severe than that because the Higgs, on top of being light, is a narrow weakly coupled
particle and furthermore its couplings are measured to agree with what predicted by the SM at the 10
or 20% level.12 The existence of a CS resonance obeying these non-trivial properties by accident for
no special underlying reason, appears extremely unlikely. The explanation of all these facts might be
that the Higgs is a pNGB, namely a special CS hadron associated with the spontaneous breaking of the
CS’s global symmetry group G . The Higgs is said a “pseudo” NGB (pNGB) because G is not an exact
but an approximate symmetry. This is precisely what happens in QCD, where the π mesons are light
because they are pNGB’s associated with the spontaneous breaking of the chiral group. The Higgs might
be analogous to a pion, rather than to a random hadron in the PDG list.

The theory of Nambu–Goldstone Bosons works as follows. If the CS is endowed by the global
group of symmetry G , it is generically expected that this group will be broken spontaneously to a sub-
group H ⊂ G by CS confinement. If this happens, the Goldstone Theorem guarantees that a set of scalar
particles, exactly massless as long as G is an exact symmetry, are present in the spectrum. The theorem
says that one such massless NGB particle arises for each of the symmetry generators that are broken in
the G → H pattern, namely one for each generator in G which is not part of the unbroken H . The broken

11See [33–35] for earlier references and [36, 37] for more recent ones.
12We nowadays know this directly from the LHC Higgs couplings determinations. Indirect evidences of SM-like couplings

for the Higgs boson could however already be extracted from precision LEP data.
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Composite Sector Elementary Sector

Wµ, Bµ, Gµ

 L,  R

�,  

⇧

Lint

Fig. 7: The composite Higgs setup. The elementary SM gauge fields are the three W ’s, the hypercharge boson B
and the eight QCD gluons. The elementary fermionic quark and lepton fields are collectively denoted as ψL and
ψR. The Higgs is labeled as “Π” (see the main text) and σ, Ψ represent Composite Sector resonances.

generators and the corresponding NGB’s are collected in what is called the “G/H coset”. If the Higgs
emerges as one of those particle, which we can achieve by a judicious choices of the coset as discussed
in the next section, it will be Naturally light given that its mass cannot be generated from the CS alone,
which is exactly invariant under G . A non-vanishing Higgs mass requires the interplay with the ES that
breaks the G symmetry and communicates the breaking to the CS trough Lint as in fig. 6. Given that the
Elementary/Composite interactions are weak and perturbative, such as the gauge couplings in eq. (9), a
considerable gap between mH and m∗ is Naturally expected.

It is important to remark that the pNGB nature of the Higgs can also explain why its couplings
are close to the SM expectations. This comes from a general mechanism called “vacuum misalignment”
discovered in Refs. [33–35]. I will illustrate how it works in the next section through an example. The
picture according to which the Higgs might be the lightest state of the CS, and thus the first one in being
discovered, because it is a pNGB, turns out to be rather plausible.

2.2 The Minimal Composite Higgs Couplings
A rigorous and complete description of the Composite Higgs (CH) scenario goes beyond the purpose of
these lectures, the interested reader is referred to the extensive reviews in [38, 39]. However most of the
relevant features of CH can be illustrated by performing a specific calculation in a specific CH model,
namely by computing the couplings of the Higgs to SM particles in the so-called Minimal CH Model
(MCHM). Studying Higgs couplings and their possible departures from the SM expectations is one of
the ways in which CH models have been and are being searched for at the LHC. Therefore the relevance
of the calculation goes beyond its pedagogical value.

The MCHM [36] is based on the choice G = SO(5) and H = SO(4), which delivers NGB’s in
the so-called “minimal coset” SO(5)/SO(4). According to the Goldstone theorem, the number of real
NGB scalar fields in this theory is 4 = 10 − 6, equal to the number of generators in SO(5) minus those
in SO(4). Four real scalars are just sufficient to account for the two complex components of one Higgs
doublet. Therefore the SO(5)/SO(4) coset delivers a single doublet, rather than an extended Higgs sector
as it would be the case if larger G and H groups are considered. This is why it is called the minimal
coset. The Goldstones, i.e. the Higgs, are the lightest particles of the CS, as shown in fig. 7. Therefore
they can be studied independently of the other hadrons of the CS (called “resonances”) at all energies
below the resonance mass scalem∗ ∼ TeV. On-shell Higgs couplings are low-energy observables in this
context, thus they can be computed independently of the detailed knowledge of the resonance dynamics.

A simple model for Goldstone bosons is defined as follows. Be ~Φ a five-components vector of real
fields, on which the SO(5) group acts as rotations in five dimensions, and impose on it the condition

~ΦT · ~Φ = f2 . (10)

The constant parameter f is called the “Higgs decay constant” because it plays in CH the same role of
the pion decay constant fπ in the low-energy theory of QCD pions. It has the dimensionality of energy
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and it represents the scale of G → H spontaneous breaking. The 4 Goldstone bosons Πi, i = 1, . . . , 4
are introduced as the fields that parameterise the solutions to the constraint (10), namely

~Φ = f

[
sin Π

f

~Π
Π

cos Π
f

]
, (11)

where Π =
√
~ΠT · ~Π. Geometrically (see fig. 8), ~Φ lives on a sphere in the five-dimensional space and

~Π are the four angular variables which are needed to parametrise the sphere. Notice that the constraint
(10) is invariant under SO(5) rotations of ~Φ, therefore the theory of Goldstone Bosons we will construct
out of it will respect the SO(5) symmetry. A controlled and perturbative breaking of the symmetry will
emerge from the coupling with SM gauge fields and fermions.

The four Π’s are the Higgs, but this is not yet apparent because the Higgs field is typically rep-
resented as a two-components complex doublet H = (hu, hd)

T rather than a real quadruplet. The
conversion between the two notations is provided by

~Π =




Π1

Π2

Π3

Π4


 =

1√
2




−i (hu − h†u)

hu + h†u
i (hd − h†d)
hd + h†d


 . (12)

The deep meaning of this equation is that the unbroken group SO(4) is actually equivalent to the product
of two groups, SU(2)L×SU(2)R, where SU(2)L is the habitual SM one and SU(2)R is a generalisa-
tion of the SM Hypercharge U(1)Y .13 Namely, SU(2)R contains the Hypercharge, which is identified
with its third generator, Y = T 3

R. The Higgs quadruplet ~Π is a 4 of SO(4), or equivalently a (2,2)
of SU(2)L×SU(2)R. The (2,2) transforms as a 21/2 Higgs doublet under the SM SU(2)L×U(1)Y
subgroup. The conversion formula in eq. (12) does depend on the convention chosen for the SO(4)
generators. I thus report them for completeness

TαL/R =

[
tαL/R 0

0 0

]
, (tαL/R)ij = − i

2

[
εαβγδ

β
i δ

γ
j ±

(
δαi δ

4
j − δαj δ4

i

)]
. (13)

In the equation, capital TαL/R (α = 1, 2, 3) denote the 5 × 5 generators of SO(4) seen as a subgroup of
SO(5), small tαL/R are the habitual generators written as 4× 4 matrices.

The Lagrangian for ~Φ, out of which the one of the Goldstones will be straightforwardly extracted,
simply reads

L =
1

2
Dµ

~ΦT ·Dµ~Φ , where Dµ
~Φ =

(
∂µ − i gWα

µ T
α
L − i g′BµT 3

R

)
~Φ . (14)

Notice that the couplings with the SM gauge fields Wα and B come from the covariant derivative and
they are completely determined by the requirement of gauge invariance. This is exactly what happens
when we construct the SM through the habitual gauging procedure and follows from the fact that we
decided, in eq. (9), to introduce the SM W and B as gauge fields. As a result of this fact, a very sharp
prediction will be obtained for the Higgs couplings to the SM vector bosons. To compute the couplings
of the physical Higgs we go to the unitary gauge

H =

[
0

V+h(x)√
2

]
, (15)

13This group is also called the “custodial” SO(4)c. It plays a major role in BSM physics as it suppresses certain BSM effects
constrained by LEP and often helps the compatibility of BSM models with data.
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~F 〈θ〉

v
H

Fig. 8: A geometrical illustration of EWSB through vacuum misalignment, in the case of the spatial rotations group
G = SO(3) with H = SO(2). The SO(2) breaking from vacuum misalignment is proportional to the projection of
~F on the SO(2) plane, v = f sin〈θ〉.

and eq. (14) becomes

L =
1

2
(∂µh)2 +

g2

4
f2 sin2 V + h

f

(
|W |2 +

1

2c2
w

Z2

)
, (16)

where W and Z denote the ordinary SM mass and charge eigenstate fields, cw is the cosine of the weak
mixing angle defined as usual by tan θw = g′/g. The parameter V denotes the VEV of the Higgs field,
induced by a yet unspecified potential.

We can learn a lot on CH by looking at eq. (16). First of all, we can read the mass of the SM vector
bosons

mW = cwmZ =
1

2
gf sin

V

f
≡ 1

2
g v , (17)

and, by comparing with the corresponding SM formulas, extract the definition of the physical EWSB
scale v ' 246 GeV. We see that v, unlike in the SM, is not directly provided by the composite Higgs
VEV, but rather it is given by

v = f sin
V

f
. (18)

The geometrical reason for this equation is illustrated in fig. 8. According to eq. (11), the vacuum
configuration assumed by ~Φ when the Higgs takes a VEV, call it 〈~Φ〉, is a vector of norm f that forms
an angle 〈θ〉 = 〈Π〉/f = V/f with the reference vector ~F = (0, 0, 0, 0, f)T . The reference vector is
the vacuum configuration ~Φ would assume if the Higgs had vanishing VEV and the angle 〈θ〉 measures
how far the true VEV is from the reference vector. If 〈~Φ〉 = ~F , the vacuum would be invariant under
SO(4), and thus in particular under the SM group which is part of SO(4). The amount of breaking of the
EW symmetry is thus measured by the transverse component of 〈~Φ〉 with respect to ~F because it is only
this component the one that makes the vacuum configuration non-invariant under the SM group. From
this observation, eq. (18) follows. An important property of eq. (17) that I should not forget to outline
is that the W and Z boson masses are related by the familiar SM tree-level condition mW = cwmZ ,
which is accurately established experimentally. This property is due to the unbroken SO(4) group and it
furnishes one example of the ability of this “custodial” symmetry to suppress BSM effects as mentioned
in footnote 13.

Next, we can Taylor-expand eq. (16) in powers of the physical Higgs field h(x) and notice that it
provides an infinite set of local interactions involving two gauge and an arbitrary number of Higgs fields.
The first few terms in the expansion are

g2v2

4

(
|W |2 +

1

2c2
w

Z2

)[
2
√

1− ξ h
v

+ (1− 2ξ)
h2

v2
− 4

3
ξ
√

1− ξ h
3

v3
+ . . .

]
, (19)
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where we traded the parameters V and f for the physical EWSB scale v and for the parameter

ξ =
v2

f2
= sin2 V

f
≤ 1 . (20)

ξ measures how smaller the scale of EWSB scale is with respect to the scale of SO(5)→ SO(4) breaking
or, equivalently, the magnitude of the misalignment angle 〈θ〉. The capital importance of the ξ parameter
in CH models will become apparent by the discussion that follows. Eq. (19) contains single- and double-
Higgs vertices similar to those which arise in the SM, but with modified couplings

kV ≡
gCH
hV V

gSM
hV V

=
√

1− ξ , gCH
hhV V

gSM
hhV V

= 1− 2ξ . (21)

Also, it contains higher-dimensional vertices with more Higgs field insertions which are absent for the
SM Higgs. By measuring Higgs couplings and/or (if possible) by searching for these higher-dimensional
vertices we can thus test experimentally the possible composite nature of the Higgs boson.

One peculiarity of eq. (21) that you might have noticed already is that both formulas approach 1
in the limit ξ → 0, meaning that both the hV V and the hhV V couplings reduce to the values predicted
by the SM in this limit. Moreover the coupling strength of the higher-dimensional vertices in eq. (19)
are proportional to ξ so that they disappear for ξ → 0 and the same happens to all other interactions
of even higher order in the Taylor series. In summary, the complete Lagrangian for the Higgs and the
EW boson collapses to the one of the SM for ξ → 0 so that the Composite Higgs becomes effectively
indistinguishable from the elementary SM Higgs in this limit. The reason for this is that the ξ → 0 limit
is taken at fixed v by sending f → ∞, and f is related with the typical energy scale of the Composite
Sector. For f � v the CS decouples from the EWSB scale while the Higgs stays light because it is a
NGB. The only way in which the theory can account for this large scale separation is by turning itself,
spontaneously, into the SM. Of course ξ is not zero, but provided it is sufficiently small this phenomenon
explains why the measured couplings of the Higgs boson are close to the SM predictions, which is a priori
not trivial at all as discussed in section 2.1. The very existence of the parameter ξ and the possibility of
adjusting it in order to mimic the SM predictions with arbitrary accuracy marks the essential difference
between the modern CH construction and the old idea of Technicolor [21, 40, 41] (see Ref. [42] for a
review). Not only in Technicolor, unlike in CH, there is no structural reason to expect the presence of
a light Higgs boson. There is not even a reason why this scalar, if accidentally present in the spectrum,
should have couplings which are similar to the SM ones. Notice however that taking ξ very small, as
we will be obliged to do if the agreement with the SM will survive more precise measurement, does not
come for free in CH models. I will come back to this point in the next section.

Let us now turn to the calculation of the Higgs couplings to fermions. In order to proceed we first
need to specify the structure of the fermionic part of the interaction that connects the elementary and the
composite sector as in fig. 7. This is taken to be similar to the gauge part in eq. (9), namely

Lfermion
int ∼ λψO , (22)

where ψ is one of the SM fermion fields in the elementary sector, O is a composite sector local operator
and λ is a free parameter that sets the strength of the interaction. One such operator is present for each
of the SM chiral fermions, each with its own coupling strength λ. Below we will mostly focus on the
top quark sector, in which case the relevant SM fields are the ψ = qL doublet and the ψ = tR singlet.
The similarity with eq. (9) consists in the fact that ψ is an elementary sector field just like Aµ, which is
coupled linearly to an operator O made of composite sector constituents very much like Aµ couples to
the composite sector current operator Jµ. Linear fermion couplings of the type (22) were first introduced
in Ref. [43] and are said to have the “Partial Compositeness” structure for a reason that I will explain in
the next section.
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Top Bottom

5⊕ 5 kt =
1− 2 ξ√

1− ξ c2 = −2ξ kb =
1− 2 ξ√

1− ξ

4⊕ 4 kt =
√

1− ξ c2 = −ξ
2

kb =
√

1− ξ

14⊕ 1 kt =
1− 2 ξ√

1− ξ c2 = −2ξ kb =
1− 2 ξ√

1− ξ
Table 1: Kappa factor and anomalous c2 coupling predictions in the top and bottom quark sector for different
choices of the fermionic operators representations under the SO(5) group.

An important difference between gauge (9) and fermion (22) interactions is that in the former case
we do know perfectly what the CS operator J is, while in the latter one we have to deal with an operator
O of yet unspecified properties. What we know is that O must be a spin 1/2 fermionic operator in order
for equation (22) to comply with Lorentz invariance and that it must be a triplet of QCD colour to respect
the SU(3)c symmetry. This latter property will have important phenomenological implications in that it
obliges the CS to carry QCD colour and thus to produce coloured resonances which are easy to produce
at the LHC. We also know that O must be in some multiplet of the CS global group G but we don’t
know in which one. The only constraint is that the representation in which O lives must contain the SM
SU(2)L×U(1)Y group representation of the corresponding ψ fermion, in order for eq. (22) not to break
the EW group. Few options (focussing on reasonably small multiplets) exist to solve this constraint and
for each option the calculation of Higgs couplings might produce a different result. Unlike those with
gauge bosons, Higgs couplings to fermions are thus not uniquely predicted in terms of ξ.

One simple option is to make O be in the 5, in which case eq. (22) becomes

Lfermion
int = λL

(
QL
)I OI + λR

(
TR
)I OI . (23)

The index I runs from 1 to 5 and it transforms in the 5 of G = SO(5). The capital Q and T fields are
two quintuplets that contain the elementary qL = (tL, bL) and tR fermions. Explicitly, they are

~QL =
1√
2

(−i bL, −bL, −i tL, tL, 0)T , ~TR = (0, 0, 0, 0, tR)T . (24)

Their form is chosen in such a way that (tL, bL) and tR appear precisely in those components of the
QL and TR quintuplets that display the transformation properties of a 21/6 and of a 12/3 of the SM
SU(2)L×U(1)Y subgroup. In short, the form of the embeddings is fixed by the requirement that eq. (23)
must respect the SM gauge symmetry.14

Once the representation is chosen, Higgs couplings are determined by symmetries. There is indeed
a unique G-invariant operator we can form with ~Φ (i.e., the Higgs), the embeddings and no derivatives.
Furthermore the coefficient of this operator is fixed by the fact that the correct top mass must be repro-
duced when the Higgs is set to its VEV. The operator is

LtYukawa = −
√

2mt√
ξ(1− ξ)

ΦIQ
I
LTR = −mt

2

1√
ξ(1− ξ)

sin
2(V + h)

f
tt

= −mttt− kt
mt

v
h tt− c2

mt

v2
h2tt+ . . . . (25)

14I’m being quite sloppy here. In order to make the thing work one needs to enlarge the global group of the CS promoting it
to G = SO(5)× U(1)X and to change the definition of the SM Hypercharge into Y = T 3

R +X , with X the charge under the
newly introduced U(1)X group. It is only by giving an X charge of 2/3 to O and to QL and TR that one finds a 21/6 and of a
12/3 in the decomposition and eq. (23) truly complies with gauge invariance.
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It produces the top quark mass plus, after Taylor-expanding, a set of interactions of the physical Higgs
with tt. The first interaction is an h-tt vertex like the one we have in the SM. The second one is an
exotic hh-tt coupling which is absent in the SM and could be tested in the double-Higgs production
process [44, 45]. The modified single-Higgs coupling and the double-Higgs vertex read

k5t ≡
g

comp
htt

gSM
htt

=
1− 2 ξ√

1− ξ , c52 = −2ξ , (26)

where the 5 superscript reminds us that the prediction depends on the choice of the representation (the
5) for the fermionic operator O.

One proceeds in exactly the same way to generate the mass and the Yukawa coupling for the
bottom quark, obtaining the bottom coupling modification kb and an anomalous hh-bb vertex, which
however is weighted by the bottom mass and thus it is too small to be phenomenologically relevant. Also
for the bottom, the 5 could be a valid representation for the corresponding O operator. Other choices
like the 4 could be considered both for the bottom and for the top, with the results reported in table 1.
In the table, the notation “5⊕ 5” means that the fermionic operators that couples to the left-handed
doublet qL and the one that couples to the right-handed singlet (tR or bR) are in the same representation,
i.e. the 5, while their are both in the 4 in the “4⊕ 4” case. However the two representations might
be different, in spite of the fact that a single name was given for shortness to the two O operators in
eq. (23). A reasonable option is to take the doublet mixed with a 14 and the singlet mixed with a singlet
operator. This is denoted as the “14⊕ 1” case in the table. Up to caveats which is not worth discussing
here, table 1 exhausts what are considered to be the “most reasonable” options for the fermionic operator
representations and the corresponding predictions of Higgs couplings. Other patterns which could be
worth studying are in Appendix B of Ref. [46].

2.3 Composite Higgs Signatures
Now that the basic structure of the CH scenario has been introduced, I can start illustrating its phe-
nomenology. Additional structural aspects that were left out from the previous discussion will be intro-
duced when needed. The signatures of CH that have been searched for at the 8 TeV LHC run (run-1) and
we will keep studying at run-2 and possibly at future colliders are Higgs couplings modifications, vector
resonances and top partners.

Higgs Couplings Modifications
The current status of our field is that we are not sure of which kind of new physics we are looking
for. This is much different from what it used to be the case when the Higgs still had to be discovered.
In searching for the Higgs one could rely on one single full-fledged model (the SM) with only one at
that time unknown parameter (the Higgs mass). Searching for the Higgs boson was basically equivalent
to searching for the SM theory, which was capable to provide detailed and specific predictions for the
expected signal to be searched for in the data. We are not anymore in this situation. Even if we focus
on one given BSM hypothesis (CH, in the present case, but the same applies to SUSY, WIMP DM
or whatever else), this hypothesis is not at all equivalent to a single specific model. This is why in
BSM searches so much importance is given to model-independence. Namely to the fact that we should
not organise our efforts around specific signatures of specific benchmark models, but rather on generic
model-independent features of the scenario we aim to investigate, ideally on those features that are
unmistakably present in all the models that provide specific realisations of the generic scenario.

Model-independence is the first reason to be interested in coupling modifications in CH, given that
we saw in the previous section how Higgs couplings can be universally predicted as a function of ξ. This
prediction is independent of the detailed dynamics of the Composite Sector resonances, for which many
different explicit models (with plenty of free parameters) can be written down (see e.g. [36, 47]). The
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Fig. 9: Fit of the Higgs coupling strength to the gauge bosons (kV ) and fermions (kF ) obtained by the ATLAS
(red contours) and CMS collaborations (blue contours) from the combination of the 7 and 8 TeV LHC data. Solid
black lines show the CH predictions, depending on the fermionic operators representation, at different values of ξ.

Higgs couplings predictions in all these models are always (up to small corrections) those in eq. (21) and
in table 1. Higgs couplings have been measured at the LHC run-1 both by ATLAS [48] and CMS [49],
with the result reported in fig. 9 in the kV -kF plane. kF is a common rescaling factor for the SM
coupling to fermions, therefore the plot assumes kt = kb = kF . The CH predictions are also reported on
the plot for different values of ξ. The curve labeled “MCHM4” follows the trajectory in the second line
of table 1, while the “MCHM5” one represents the first and the third lines. The resulting limit quoted
by ATLAS in Ref. [50] is ξ < 0.12 in the MCHM4 and ξ < 0.10 in the MCHM5 at 95% CL. ATLAS
limit is stronger than the CMS one because the ATLAS central value is slightly away from the SM in the
opposite direction than the one predicted by CH. The resulting limit is thus stronger than the expected
one. Because of this stringent bound, it is unlikely that much progress will be made with the next runs of
the LHC, given that the expected limit with the full luminosity of 300 fb−1 is of around ξ < 0.1 [51–53],
very close to the present one. Of course if the central value will not sit on the SM the limit could improve,
but we can definitely exclude the occurrence of the discovery of a non-vanishing ξ.

We saw that ATLAS and CMS are doing a rather good job in studying Higgs couplings modifica-
tions due to compositeness. The study is however not fully complete, and it could be generalised in three
directions. First, one can easily construct models where κt �= kb. It is sufficient for instance to place the
fermionic operators associated with the top quark in the 5 representation while assigning those for the
bottom to a 4. In this case kt will follow the prediction in the first line of table 1, while kb will follow
the second line. Studying this case is straightforward even if it requires going beyond the kV -kF plane.
No much improvement is however expected in the compatibility of the model since kV is still the one
in eq. (21) and the ATLAS preference for kV > 1, independently of the fermion couplings, is already
sufficient to produce a limit on ξ not much above 0.1. A second direction of improvement is to study not
only the modification of the Higgs vertices that exist already in the SM, but also anomalous couplings
such as hh-tt in eq. (25). The latter might be visible in double-Higgs production when enough luminos-
ity will be collected. However existing studies (see e.g. [54]) suggest that even with the high-luminosity
stage of the LHC (HL-LHC) it might be hard to reach a competitive accuracy. A third direction of im-
provement would be to generalise the analysis to non-minimal cosets, namely to go beyond the minimal
SO(5)/SO(4) example we discussed here. The problem is that non-minimal cosets produce an extended
Higgs sector and thus the modification of the Higgs couplings emerge from the pile-up of two effects.
One has the modifications due to compositeness, which are analogous to those in eq. (21) and table 1,
plus further modifications due to the mixing of the Higgs boson with extra light scalar states. The former
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effect is easy to compute, while the latter one is hard to parametrise with a sufficient degree of generality
as it depends on the properties of the extra scalars that mix with the Higgs. Furthermore, all this should
be studied in correlation with the direct searches for extra scalars. A detailed phenomenological analysis
of extended cosets is missing in the literature, in spite of the fact that extended cosets are not at all im-
plausible from the view-point of model-building. The original CH model [33], for instance, was based
on an SU(5)/SO(5) coset, which delivers one complex and one real scalar triplet, plus one singlet, on
top of the ordinary Higgs doublet.

The second reason to be interested in Higgs couplings modification is the (almost) direct con-
nection between the parameter ξ, which couplings measurements are capable to probe, and the level of
fine-tuning ∆ of the theory. We discussed in the previous section that for ξ → 0 CH models reduce to the
SM, which is an eminently Un-Natural theory. It is thus expected that taking ξ small might be dangerous
in terms of fine-tuning. In order to illustrate how this works, let us write down the structure of the Higgs
potential, as it emerges in a certain class of models and under certain approximations.15 It reads

V [H] ' −αf2 sin2 H

f
+ βf2 sin4 H

f
, (27)

where the coefficients α and β can be computed within explicit models (see ...) and depend on some of
their free parameters. By adjusting the free parameters one can set α and β in such a way that the VEV
V of the Higgs field (i.e., the minimum of the potential) produces our favorite value of ξ through eq. (20)
and also to reproduce the observed Higgs boson mass. These two constraints read, respectively

α = 2 ξ β ,

m2
H = 8 ξ(1− ξ)β . (28)

Both conditions might cost fine-tuning, let us however momentarily focus only on the first one. It tells
us that the “expected” value of ξ is proportional to (α)expected/(β)expected, where by “expected” I mean
the size of the α and β coefficients that are generically encountered in the parameter space of the model.
In all existing CH models, the expected magnitudes of α and β either are comparable, or α is larger
than β, making that having ξ � 1 is never an expected structural feature of the model. In this situation,
enforcing ξ � 1 requires fine-tuning. Namely, a cancellation must take place in the prediction for α,
obtained by finely adjusting the parameters of the underlying model. This tuning is at least of order

∆ =
(α/β)expected

α/β
≥ 1

2ξ
. (29)

The above equation displays the anticipated connection between ξ and the level of Un-Naturalness of the
theory. The current bound ξ < 0.1 corresponds to a not fully Natural (but still acceptably so) theory with
a level of tuning ∆ > 5.

Actually, we are not sure of the connection between ξ and ∆ in a fully model-independent way. In
principle, it would be sufficient to find a model where α is structurally smaller than β in order to avoid
the tuning in the Higgs VEV and to have ξ Naturally small. The problem, as mentioned above, is that no
such model currently exists, but this does not mean that one could not be invented in the future. Engineer
a Naturally small ξ is the purpose of the Little Higgs constructions [30, 31], however as of now I’m not
aware of any convincing and realistic model of this class.

Vector Resonances
Searching for modified couplings of the Higgs boson is not the only way to test Higgs compositeness
experimentally. Direct searches for new particles also play an important role, which will become the

15The one that follows is an approximate formula for the Higgs potential in models where the fermionic operators in the top
quark sector are in the 5⊕ 5 or in the 14⊕ 1 configurations. The connection between the Higgs potential and the top quark
sector will be explained later. Further details can be found in Chapter 3 of Ref. [39].
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leading role at the LHC run-2 thanks to the improved collider energy. The new particles to be searched
for are the resonances that emerge, together with the Higgs, from the Composite Sector of the theory
(see fig. 7). Resonances at a scale m∗ ∼ TeV are unmistakably present in CH, they are the “hadrons” of
the new strong force we are obliged to postulate if we want the Higgs to be a composite object. If we
are lucky and the CH scenario is realised in Nature, plenty of such resonances exist and a sort of new
“Subatomic Zoo” is waiting to be discovered at the TeV scale.

Predicting the quantum numbers and the properties of the CS resonances is not completely
straightforward. However a valid rule of thumb is that resonances are associated with the operators
of the CS. Namely, for each resonance it should be possible to identify at least one CS operator that is
capable to excite it from the vacuum. The first set of operators we encountered are the global currents
“J” in eq. (9), associated to a set of resonances “ρ" through the equation

〈ρ|J |0〉 6= 0 . (30)

The currents are bosonic operators that transform as vectors of the Lorentz group, therefore we expect ρ
to be a spin-1 vector particle in order for eq. (30) to comply with Lorentz symmetry.16 The analogous
hadrons in QCD are the ρ mesons, the ω and the a1, each associated with one of the global currents of
the chiral group. Eq. (30) also tells us the quantum numbers of ρ under the SM group. If for instance
G = SO(5), the global current J is in the Adjoint 10 representation of the group, which decomposes in a
30, plus a 10, plus a 11 and a 21/2 of the SM SU(2)L×U(1)Y subgroup (i.e., a (3,1)⊕ (1,3)⊕ (2,2) of
SO(4)). ρ particles in all these representations are thus expected, plus one further 10 because G = SO(5)
actually needs to be enlarged to SO(5) × U(1)X (see Footnote 14) in order to incorporate SM fermion
masses into the theory. The existence of vectors with these quantum numbers is confirmed by explicit
models. A first study of their phenomenology in the context of holographic realisations of the CH
scenario was performed in Ref.s [55–57]. Other interesting particles of this class are coloured spin-1
vectors, the so-called “KK-gluons” [58]. KK-gluons emerge because the CS (see section 2.2) needs to
carry QCD colour and thus it contains an extra SU(3)c group of symmetry on top of the “electroweak”
SO(5) × U(1)X factors. This produces extra global current operators and their corresponding particles
in the octet of the QCD group.

All particles above are worth searching for, however here I will focus, for definiteness, on vector
resonances in the 30 triplet, the so-called Heavy Vector Triplet (HVT) [59]. The reason for this choice is
that HVT’s display a quite simple phenomenology, still varied enough and promising in terms of mass-
reach. Furthermore, the 30 vectors are associated with the global currents of the SM SU(2)L subgroup
of the CS symmetry group. The existence of such subgroup is absolutely unavoidable in CH models,
independently of whether or not we stick to the minimal coset or even of whether the Higgs is a pNGB
or not. HVT’s thus unmistakably emerge in all models where a strong dynamics is involved in the
mechanism responsible for EWSB. This includes old-fashioned Technicolor, in which these particles are
also present and are known as “techni-rho” mesons.

Characterising the HVT phenomenology requires a little digression on how we do expect, in gen-
eral, Composite Sector particles to be coupled among themselves and with the gauge and fermionic fields
in the Elementary Sector. This expectation can be encapsulated (see Ref. [37] and Ch. 3 of [39]) in a
“power-counting rule”, namely a formula that tells us the expected size of the interaction vertices or,
which is the same, of the interaction operators in the Lagrangian. The rule is based on the idea that the
CS is characterised by one typical mass scale m∗ (the confinement scale) and by one typical coupling
strength parameter “g∗”. It is thus said to be a “1 Scale 1 Coupling” (1S1C) power-counting. The param-
eter g∗ represent the typical magnitude of the interaction vertices involving CS particles, among which

16ρ cannot have spin greater than 1 because a Lorentz vector operator cannot have a non-vanishing matrix element between
the vacuum and a high-spin particle. Massless scalars can instead be excited from the vacuum by a conserved current if it is
associated with a spontaneously broken generator. These scalars are nothing but the NGB’s of the theory we already discussed
extensively.
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the Higgs. It can thus be expressed in terms of the Higgs decay constant f and defined as

g∗ =
m∗
f
. (31)

The coupling g∗ can easily be very large, close to the absolute maximal value g∗ ∼ 4π a coupling
strength parameter can assume. It is for instance very large in real-world QCD, where it can be identified
with the ρ meson coupling gρ ' 6. It can however be smaller if the underlying strongly-interacting
theory is characterised by a large number of colours Nc. For instance, g∗ ∼ 4π/

√
Nc → 0 in the large-

Nc limit of QCD. We are thus entitled to consider values of g∗ anywhere from 0 to 4π, however basic
phenomenological consistency of the CH scenario requires it to be above around yt ' 1. Therefore in
what follows we will take g∗ ∈ [1, 4π].

On top of g∗, the other couplings that are present in the theory are the SM gauge couplings “g” in
eq. (9) and the fermionic interactions “λ” in eq. (23). They control the strength of those interactions of
the Elementary Sector fields (gauge and fermions, respectively) that are generated by the CS dynamics,
such as for instance their couplings with the Higgs and with the CS resonances. The complete power-
counting formula, which takes care both of CS particles self-couplings and of Elementary/Composite
interactions, reads

L =
m4
∗

g2∗
L̂
[
∂

m∗
,
g∗H
m∗

,
g∗σ
m∗

,
g∗Ψ

m
3/2
∗

,
g ·Aµ
m∗

,
λ · ψ
m

3/2
∗

]
, (32)

where L̂ is a dimensionless polynomial function with order one coefficients. In the equation, σ represents
a bosonic CS resonance, such as a spin-1 particle like the ρ’s we aim to study, while Ψ denotes a fermionic
resonance such as the Top Partners we will discuss in the next section. The different power of m∗ in
the denominator simply follows from the different energy dimensionality (1 and 3/2) of bosonic and
and fermionic fields. The fields Aµ and ψ collectively denote the ES sector gauge and fermions, each
entering in the power-counting formula with its own “g” and “λ” coupling. For instance Aµ = Wα

µ

couples through the weak coupling g while the QCD gluons, Aµ = Gaµ, couples through the strong
coupling gS . Similarly the third family qL doublet couples through the λL parameter in eq. (23) and tR
couples with strength λR. Notice that light generation quarks and leptons couple with their own strengths,
which are typically much smaller than λL and λR because their role in the theory is to generate the light
fermions Yukawa’s rather than the large top Yukawa coupling. An estimate of light generation couplings
is postponed to the next section, since they will turn out to be very small we are entitled to neglect them
in what follows.

Let us now turn to HVT phenomenology. Since g∗ is the largest coupling in the theory, the
strongest vertices of ρ are those that only involve CS particles and no ES degrees of freedom. Among
those we have a coupling with the Higgs field

g∗cHρaµiH
†τa
↔
D
µ

H , (33)

where ρa=1,2,3
µ denotes the components of the triplet, τa = σa/2 are the SU(2)L generators and the

double arrow denotes the covariant derivative acting on the right minus the one acting on the left. The
coefficient of the operator has been estimated with eq. (32) up to an unknown order one parameter cH .
The one in eq. (33) is the unique gauge-invariant operator involving the ρ and two Higgs fields that cannot
be eliminated by the equations of motions. It produces couplings of ρwith all the four real components of
the Higgs doublet which correspond to the physical Higgs boson plus the three longitudinal polarisation
components of the SM W± and Z massive vector bosons.17 The operator thus mediates the decay of ρ

17The correspondence between longitudinally polarised vector bosons and the so-called “unphysical” components of the
Higgs field (i.e., the charged hu and the imaginary part of the neutral hd component of the doublet) is ensured by the Equivalence
Theorem [5]. It holds at energies much above the vector boson masses, which is an excellent approximation for our purposes. In
practice the theorem says that the Feynman amplitudes with longitudinal vector bosons on the external legs can be equivalently
be computed as the amplitude for the corresponding scalar fields.
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to different combinations of vector bosons and Higgs final states, with decay widths

Γρ0→W+W− ' Γρ0→Zh ' Γρ±→W±Z ' Γρ±→W±h '
g2
∗c

2
Hmρ

192π
. (34)

With obvious notation, ρ0 and ρ± respectively denote the electrically neutral and charged ρ’s, obtained
as linear combinations of the ρa triplet components. Neutral and charged resonances are approximately
degenerate in mass because of the SU(2)L symmetry. Their common mass is denoted as mρ.

The second term to be considered is the one responsible for the interaction of ρ with light quarks
and leptons. Notice that such an interaction cannot occur directly with an operator involving light el-
ementary fermionic fields because we argued above that the insertion of such fields in the Lagrangian
(32) costs very small λ’s that make the resulting vertices negligible. However what we can do is to write,
compatibly with gauge invariance, an operator that mixes ρ with the elementary W boson field. Since
the W couples to quarks and leptons just like in the SM, this ρ-W mixing eventually generates the in-
teraction we are looking for. In accordance with the power-counting (32), the mixing and the resulting
interaction reads

g

g∗
cFW

a
µνD

µρνa , =⇒ g2

g∗
cFρ

µ
aJ

a
µ , (35)

with cF an unknown order one parameter. In the equation, Jaµ = fLγµτ
afL denotes the ordinary SU(2)L

current, namely the one to which W a
µ couples in the SM. Since the interaction emerges from the mixing

with the W , this is precisely the structure we should have expected for the ρ coupling. The scaling of the
coefficient is also easily understood. The power-counting formula predicts a g/g∗ for the ρ mixing with
W , while theW coupling with fermions gives an extra power of g. The result is the rather peculiar g2/g∗
factor, which makes that the ρ coupling with fermions decreases when g∗ increases and the CS becomes
more and more strongly coupled. The opposite behaviour is observed for the coupling to bosons in
eq. (33). The translation between the mixing and the interaction operator reported in eq. (35) is obtained
by performing by a field redefinition, namely by shifting the W field by an amount proportional to ρ in
such a way that the mixing cancels and the interaction is generated. However this technicality should not
obscure the fact that the coupling physically emerges from the mixing with the W .

The mixing in eq. (35) is responsible for ρ decays to quarks and to leptons. Leptonic decays are
particularly important because searches in l+l− and lν final states (with l = e, µ) are extremely sensitive
to the presence of resonances. These decays are controlled by one parameter only, cF , therefore the
processes ρ± → l±ν and ρ0 → l+l− (and the decays to quarks as well) are universally related very
much like we saw for the bosonic channels in eq. (34). The widths are

Γρ±→l±ν ' 2 Γρ0→l+l− '
(
g2cF
g∗

)2
mρ

48π
. (36)

Notice the presence of g2
∗ in the denominator. Together with the g2

∗ factor in the numerator of the bosonic
decay widths (34), it makes the relative branching fraction between leptons and bosons scales like 1/g4

∗ ,
which is a strong suppression in the large g∗ limit. In this limit, leptonic final states are suppressed
and the ρ is better seen in diboson channels in spite of the fact that the reach in terms of cross-section
is much better for the leptonic than for the diboson searches. Eq. (35) is also responsible for ρ Drell-
Yan production from a quark anti-quark pair.18 The relative magnitude of the ρ± and ρ0 couplings to
quarks are fixed and thus the ρ± and ρ0 relative production rate is entirely determined by the parton
luminosities. For mρ ∼ TeV, σ(ρ±) ' 2σ(ρ0) at the LHC. The absolute normalisation of the cross
section is of course also easily computed, depending on the parameter cF . Together with the partial
widths (34) and (36) (plus the analogous formula for the decay to quarks), and assuming that no other

18The ρ can also be produced in vector boson fusion (VBF) through the cH operator (33), however the VBF rate is too small
to be relevant, at least at the current stage of the LHC.
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decay channel is present, cross sections times branching ratios can be computed for all the channels
of interest in terms of two free parameters only, cH and cF . 19 Or better, if not willing to assume a
fixed g∗, in terms of the parameter combinations cHg∗ and cF g2/g∗, which are those that appear in the
vertices. This provides a synthetic approximate description of the HVT phenomenology which allows
for a comprehensive experimental investigation of the HVT signal [59]. Notice that the production rate
scales like 1/g2

∗ , again due to the 1/g∗ suppression of the vertex (35), and the HVT’s become more and
more elusive in the strong coupling regime.

The left panel of figure 10 gives an idea of current limits on HVT from the negative searches
performed at the LHC run-1. The figure assumes cH = cF = 1, which leaves g∗ as the only free
parameter. The bound is thus simply reported as an excluded region in the mass versus coupling plane.
The yellow region is excluded by resonance searches in leptonic final states (specifically, lν) while two
diboson searches are reported in blue (see [59] for details). The behaviour is the expected one. Namely,
the mass reach deteriorates at large g∗ because of the suppression of the production rate and the one
in the leptonic channel deteriorates much faster than the diboson ones because of the suppression of
the leptonic branching ratio. Diboson searches thus become competitive and overcome the leptonic
sensitivity for g∗ & 3. This behaviour is peculiar of HVT’s with a composite origin, as apparent from the
right panel of the figure where the bounds are shown for an “elementary” HVT such as those encountered
inW ′ models. Elementary HVT’s are massive vector bosons emerging from an underlying gauge theory,
therefore all their couplings emerge as gauge interactions and thus there is no way in which the coupling
to vector bosons can scale differently with g∗ than the one to fermions. The branching ratios to leptons
and bosons thus remain comparable even at large g∗ and the diboson channels never win in terms of
mass-reach. Overall, we see that current limits are rather poor in the composite case. Resonance as
low as 2 or 3 TeV, perfectly compatible with Naturalness and with EWPT limits (reported in black in
the figure), are still allowed for a reasonable g∗ of order 3. A priori g∗ could be even larger than that,
making composite HVT’s virtually invisible, however a moderate value is suggested by other kind of
considerations. The left panel of figure 11 shows how much the next runs of the LHC could improve the
limits, both in the high mass and in the high coupling directions. The plot is based on an approximate
extrapolation of current bounds to the 14 TeV LHC [63] and assumes a total luminosity of 300 fb−1. The
HL-LHC reach, with 3 ab−1, is also reported, and the exercise is repeated in the right panel of the figure
for an hypothetical future 100 TeV collider. The dashed straight lines in the plot represent indirect limits
from the Higgs coupling measurements described in the previous section. The logic is that the resonance
mass mρ is expectedly comparable with the CS confinement scale m∗. If we take them exactly equal we
can use eq. (31) to compute f , and in turn ξ (20), on the (mρ, g∗) plane. Lines are shown for ξ = 0.1,
ξ = 0.08, ξ = 0.01 and ξ = 0.004, corresponding to the reach of the LHC, of the HL-LHC, of ILC
and TLEP/CLIC future colliders (see references in [63]). This shows the complementarity of direct and
indirect searches of the Composite Higgs scenario.

Top Partners
Top partners are the Composite Sector resonances associated with the fermionic operator O introduced
in eq. (22) to couple the third family qL = (tL, bL) doublet and the singlet tR with the CS. Similarly to
what we saw for vectors in eq. (30), top partners quantum numbers can be extracted from the relation

〈Ψ|O|0〉 6= 0 . (37)

Since O is a Lorentz Dirac spinor, Ψ must be a spin 1/2 particle in order to be excited by O from
the vacuum. Also, O is in the triplet of the QCD colour group and thus Ψ must also be coloured as I

19This is not necessarily accurate for the channels involving third family quarks. The large λ coupling of the third family
produced extra contribution to the vertex that can easily overcome the one from the mixing in eq. (35). This enhances ρ0 → tt
and ρ± → tbmaking them promising search channels [60]. Composite HVT’s might also dominantly decay to other composite
sector particles like the fermionic top partners [61], if kinematically allowed. These decays can also be searched for.
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.

region, and bounds from EWPT constrain model B more than model A. The last two features

are due to the larger value of cH predicted by model B, corresponding to a region which is

very difficult to access with direct searches.

A second interesting way to present the experimental limits is to focus on explicit models

and draw exclusion curves in the plane of their input parameters. In both models A and B we

have two parameters, the coupling and the mass of the new vector. The limits in the (MV , gV )

plane are reported in Figure 3.3. We find similar exclusions in the two models at low gV , where

the limit is dominated by leptonic final state searches, but the situation changes radically for

large coupling. In particular the limit in model B is rather weak and barely competitive with

EWPT already for intermediate couplings gV ⇠ 3 and it disappears when the coupling is large.

Finally we want to check that, as expected from the discussion of Section 2.1, the param-

eters cV V W , cV V V and cV V HH a↵ect the exclusion only marginally. We thus plot the same

constraints shown in Figure 3.2, in the (cH , cV V W ), (cH , cV V V ) and (cH , cV V HH) planes in

Figure 3.4 for the benchmark models A and B at gV = 3. The plots represent a horizontal slice

at cF = 4 in the second plot of Figure 3.2 using the same coloring as previously. We find cV V W

and cV V V indeed to be sub-leading with no variation in their direction. A slight tilt can be

observed in the direction of cV V HH , on the other hand. This is due to the enhanced sensitivity

on cV V HH induced by the term (1− 4cV V HH⇣2)2 in the width in Eq. (2.31) for relatively large

⇣. The correction induced by this term can be of the order of 20% for cH ⇠ −0.5 (⇣ ⇡ 0.4).

One could expect the same enhancement in the central plot, due to the term (1 + cHcV V V ⇣2)2

in the width in Eq. (2.31). However, the absence of the factor of four only gives an e↵ect of

the order of the percent for cH ⇠ −0.5, not clearly observable in the central plot.

3.3 Limit setting for finite widths

The final goal of a resonance search is to set experimental limits, for either exclusion or dis-

covery, on the resonance production cross-section times the BR into the relevant final states
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from EWPT. See [59] for details.
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anticipated in section 2.2. Finally, top partners are CS resonances and as such their mass must be large,
of order m∗ ∼ TeV, barring special suppression mechanisms which we have no reason to expect a priori.
The large top partners mass comes directly from the CS and it is unrelated with the occurrence of EWSB.
Unlike quarks and leptons, top partners masses would be present in the theory even if the EW gauge
symmetry was unbroken, meaning that top partners must be endowed with a perfectly gauge-invariant
Dirac mass term. This requires top partners to be “vector-like” fermions, i.e. to come as complete Dirac
fields with their left- and the right-handed components transforming in the same way under the gauge
group. Coloured particles of this sort are said to be Vector-Like Quarks (VLQ’s). Top partners are VLQ’s
of specific type and with specific properties.20

Top partners gauge quantum numbers can also be extracted from eq. (37). The result depends on
the representation of O under the CS global group SO(5), which is a priori ambiguous as I explained
in section 2.2. However any valid representation of SO(5), or actually any valid representation of any
CS group G we might decide to deal with, going beyond the minimal choice G = SO(5), must contain

20VLQ’s are somehow similar to a fourth family of quarks, but they are also radically different in that their vector-like mass
allows them to be at the TeV scale without need of huge Yukawa couplings. Unlike a fourth family, VLQ’s are not excluded
by the measurement of the Higgs production rate from gluons. See [64] for an analysis of the (moderate) impact of CH top
partners on Higgs physics.
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.
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Figure 3.3: Current experimental constraints in the (MV , gV ) plane in models A and B. The notation
is the same as in Figure 3.2.
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Fig. 12: Typical top partners mass spectrum and decay branching ratios.

at least one SM doublet with 1/6 Hypercharge and one singlet with Hypecharge 2/3. The reason is of
course that eq. (22) must comply with gauge invariance and thus some of the components of O must
have the same gauge quantum numbers as those of the SM qL and tR fields. Top partners are thus at least
one (T, B) doublet and one T̃ singlet, plus extra states that possibly emerge from the decomposition
of O. Among those, one extra doublet with exotic Hypercharge of 7/6 is often present, producing one
additional top partners doublet (X2/3, X5/3) with electric charge 2/3 and 5/3, respectively. It is possible
to show that all choices of the O representation for which the extra doublet is absent, such as the 4 we
mentioned in section 2.2, are typically in serious phenomenological troubles because of unacceptably
large modifications of the Zbb coupling [65, 66]. We thus have good reasons to expect the presence of
the extra top partners doublet and thus good reasons to search for it.

Similarly to what we saw above for vector resonances, top partners phenomenology can be charac-
terised by employing symmetry, which constrain the structure of their interactions, and power-counting
(32), which sets the expected strengths of the different couplings. The characterisation is slightly more
complicate than the one for vectors, mainly because the whole symmetry structure of the theory must
be taken into account and not just the SM gauge group. This includes the SO(4) unbroken group of the
CS and even the full non-linearly realised SO(5) which takes care of the pNGB nature of the Higgs.
The analysis produces relatively sharp predictions [67, 68] of the top partners mass spectrum, decay and
production processes. As shown in figure 12, particles within the two doublets are essentially degenerate,
but also the two doublets are quite close in mass, with a splitting between them of around 100 GeV. The
exotic Hypercharge doublet is always the lightest of the two. This spectrum is due to the fact that the two
doublets emerge as a single SO(4) quadruplet and by the peculiar way in which the SO(4) symmetry is
broken by the pNGB Higgs VEV. The T̃ singlet can have any mass, significantly below or above (or close
to) the two doublets. The top partners decay branching ratios are approximately universal, as shown in
the right panel of the figure. This feature is not peculiar of top partners, it holds for any VLQ with a
mass much above the EW scale and follows from considerations related with the Equivalence Theorem
similar to those that led us to eq. (34) for vector resonances.

Top partners are colour triplets, thus they are produced in pair by QCD interactions at a fixed and
predictable rate as a function of their mass. Since the branching ratios are also known, negative searches
for top partners pair production allow to set sharp mass limits, of around 800 or 900 GeV at the LHC
run-1. The run-2 reach in terms of exclusions is around 1.2 or 1.5 TeV, and it is unlikely it will ever
overcome 1.7 TeV even when the full luminosity of the HL-LHC will be available in many years from
now (see [69, 70] and references therein). The reach could however be extended up to around 2 TeV
by exploiting another sizeable production mechanism top partners are found to possess, namely single
production (see figure 13) in association with a top or with a bottom plus a forward jet from the splitting
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Fig. 13: Top partners production cross-section for typical values of the single-production coupling at the 14 TeV
LHC. Pair production is shown as a continuous red line.

of an EW boson out of a quark line. Single production emerges from a vertex with schematic form

Lsingle ∼ λL/RΨHqL/R , (38)

with q = t or q = b. The vertex couples top partners with third family quarks and the Higgs, and its
power-counting estimate (32) is rather sizeable because it is controlled by third family λL/R couplings.
The Equivalence Theorem relates as usual the Higgs field components to longitudinally polarised EW
bosons (see Footnote 17), therefore the operator produces single-production vertices like the one in
figure 13. These vertices are of course also responsible for Top Partners decays. Single production cross-
section, as the figure shows, is favoured at high mass by the steeply falling parton luminosities and readily
starts to dominate over pair production. The mass-limit one can set for single production is not as sharp
as the one from pair production because the reach crucially depends on the magnitude of the interaction
vertex (38), which is not fully predicted. The above-mentioned expected reach (∼ 2 TeV [69, 70]) is
based on a conservative estimate of the single production coupling strength.

Top partners are arguably the most important CH signatures to be searched for in the forthcoming
LHC runs, in spite of the fact that the mass-reach is not great if compared with the one on vectors that
can easily overcome 3 TeV by exploiting the complementarity between direct and indirect searches as in
figure 11. The point is that a 3 or even 5 TeV bound on vectors would not be as problematic for the CH
scenario as a 2 TeV bound on top partners. Conversely, we don’t have a strong theoretical preference for
vectors below 3 or 5 TeV, or at least not such a strong one as we have for top partners below 2 TeV. Of
course all resonance masses are set by the same scale, m∗, therefore we expect them to be comparable
but a factor of two hierarchy between vectors and top partners is perfectly conceivable. What makes top
partners special is that it is their mass the one that actually enters in the fine-tuning formula in eq. (7),
not the mass of vectors or of other CS resonances. Namely, the statement which I will now justify is that
the generic estimate of fine-tuning in eq. (7) specialises, in the case of the CH scenario, to ΛSM = MΨ.
Top partners at 2 TeV would thus cost a tuning well above ten.

The connection between top partners and fine-tuning is due to the fact that top quark loops (see
section 4 and in particular figure 1.3) are the dominant term in the low-energy contribution to the Higgs
mass which is at the origin of the fine-tuning problem, and top partners are strongly coupled with the
top quark. An example of such coupling is the single production operator in eq. (38). Another relevant
interaction is the top/top partners mixing of the form 21

Lmix ∼
λL
g∗
m∗ T tL +

λR
g∗
m∗ T̃ tR , (39)

and analogously for the bL mixing with the B. In explicit model it is only the mixing term above which
is actually generated (in the appropriate field basis) and all the other quarks interactions such as those in

21Order one coefficients, which of course are be predicted by the power-counting formula (32), are understood in both terms.
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Fig. 14: Left panel: one representative diagram contributing to the Higgs mass. The Higgs-top partners vertex is
a purely CS interaction and thus it has been estimated as g∗. The insertion of the mixing weights as in eq. (39).
Right panel: the generation of the top Yukawa coupling through mixing.

eq. (38) emerge after diagonalization. The mixing can be used to construct loop diagrams like the one
in the left panel of figure 14, involving the exchange of a virtual top and a top partner. These diagrams
generate a mass for the Higgs, of order

m2
H ∼ aL

λ2
L

16π2
M2

Ψ + aR
λ2
R

16π2
M2

Ψ , (40)

where the two terms stand respectively for the exchange of a virtual tL and tR. The order one numerical
coefficients aL and aR are calculable in explicit CH models (see e.g. [67]) and, depending on the model’s
microscopic parameters, can assume any sign. The estimate of mH has been performed by counting the
powers of λ and g∗, reported in figure 14, multiplying by the loop factor 1/16π2 and by two powers
of the top partners mass MΨ because of dimensionality. This is quite right in spite of the fact that the
diagram is still logarithmically divergent because the log only produces order one numerical coefficients
which is not worth retaining in our rough estimate.22

Eq. (40) requires some clarification. As I explained at length in the previous sections, the fact that
the Higgs is a NGB prevents the generation of its mass as long as the Goldstone symmetry, i.e. the group
G, is an exact symmetry of the theory. Since the CS is exactly invariant under G, no contribution to mH

can come from the CS alone. In our language this contribution would be a tree-level Higgs mass-term,
and the fact that it is absent is the reason why to estimate mH we had to go at the loop level as in fig-
ure 1.3. The diagrams in the figure have the chance to produce a mass because they do feel G breaking
through the insertion of the top/top partner mixing. Remember that are indeed the Composite/Elementary
Sector interactions the ones responsible for G breaking (see figure 6) in our construction, and the mixing
is one of those interaction. Moreover the mixing is the largest of those interaction because it is associ-
ated with the generation of the largest coupling of the Higgs boson, namely the top quark Yukawa yt.
Other Elementary/Composite interaction such as the gauge couplings also contribute to mH , producing
however only small corrections to eq. (40). This is the reason why it is the top partners mass scale MΨ,
and not for instance the mass of spin one resonances, the one that controls the size of the Higgs mass.

Mixed top/top partners loops generate not only a mass-term, but a full potential for the Higgs field.
The potential has the form of eq. (27), with an α parameter

α ∼ aLλ2
L

NcM
2
Ψ

16π2
+ aRλ

2
R

NcM
2
Ψ

16π2
. (41)

This estimate is slightly more accurate than the one in eq. (40), in particular it takes into account the
number of colours Nc = 3, but it scales in the same way with the parameters. The physical mass of the

22This would not be the case if a parametrically large separation was present between MΨ and the confinement scale m∗ at
which the loop is naturally cut off. We assume a factor of a few separation at most, which does not qualifies as parametrically
large and thus the estimate is correct.
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Higgs boson, obtained by combining the two lines of eq. (28), thus reads

m2
H = 4(1− ξ)α ∼ aLλ2

L

NcM
2
Ψ

4π2
+ aRλ

2
R

NcM
2
Ψ

4π2
. (42)

If MΨ is large, obtaining the correct Higgs mass mH = 125 GeV requires a cancellation between the
two terms, obtained by choosing the fundamental parameters of the models such that aL is almost equal
and opposite to aR. This means a fine-tuning

∆ =
3λ2

4π2

(
MΨ

mH

)2

' λ2

(
MΨ

450 GeV

)2

, (43)

having assumed λL ' λR ≡ λ, which is the configuration that minimises the required amount of tuning.
The equation clearly illustrates that light top partners are needed for a Natural (low-tuning) CH model.

Our estimate closely resembles the general formula (7) with ΛSM = MΨ, apart from the prefactor
λ2 that is replaced by y2

t in eq. (7). In order to see that the two formulas match we should relate λ with
the top Yukawa coupling, by proceeding as follows. The top/top partners mass-mixing (39) makes that
the two chirality components of the physical top quark, which is massless before EWSB is taken into
account, are a quantum mechanical superimposition of Elementary and Composite degrees of freedom

|tphys.
L 〉 = cosφL|tElem.

L 〉+ sinφL|TComp.
L 〉 ,

|tphys.
R 〉 = cosφR|tElem.

R 〉+ sinφR|T̃Comp.
R 〉 , (44)

with sinφL ' λL/g∗ and sinφR ' λR/g∗. A similar formula holds for the bL. This comes from
diagonalising the mass-matrix of the top/top partners system, which consists of the mass-mixing (39)
plus the vector-like mass-term MΨ for the partners. For the estimate we took m∗ = MΨ in eq. (39),
consistently with what implicitly done in the estimate of the mH . Eq. (44) shows, in the first place, why
we call “Partial Compositeness” [43] the mechanism (22) we are using to couple ES fermions with the
CS: it is because it produces physical particles that are partially made of Composite degrees of freedom.
Second, the formula allows us to estimate the top Yukawa generated by mixing as in the right panel of
figure 14, obtaining

yt = sinφL sinφR g∗ ,
λL=λR=λ⇒ λ =

√
ytg∗ . (45)

But we said that g∗ has to be large, at least above yt ' 1, therefore the above equation tells us λ > yt
and eq. (43) can be turned into a lower bound

∆ >
3 y2

t

4π2

(
MΨ

mH

)2

'
(

MΨ

450 GeV

)2

, (46)

identical to eq. (7).

Notice that the estimate of the Yukawa couplings can be carried on for the light quarks (including
the bottom) and leptons in exactly the same way as for the top, producing expressions for the cor-
responding λ parameters which are identical to eq. (45) aside from the fact that the light quarks and
leptons Yukawas, rather than yt, are involved. Light generation λ’s are thus very suppressed and this
is why we could systematically ignore them. Correspondingly, light fermions compositeness fraction
sinφ ∼ λ/g∗ are very small. Light fermions are thus almost entirely elementary particles, with a tiny
composite component which is however essential to generate their Yukawa’s and masses.23

23There are however exceptions to this rule. On one hand, it is possible to make largely composite one of the light quarks
chirality components recovering the small Yukawa by giving very very small compositeness to the other one. This helps in
evading flavour constraints [71, 72] and produces interesting LHC signatures related with the fermionic partners of the light
quarks [73, 74]. On the other hand, it is possible to avoid partial compositeness altogether for the light fermions [75, 76] and
obtain their mass by bilinear interactions.
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In summary, the importance of top partners stems from their connection with tuning in eq. (46).
Not finding them at the LHC below 2 TeV would cost more tuning than what negative searches of Higgs
couplings modifications (whose reach is ξ < 0.1) would imply through eq. (29).24 Vector resonances are
mildly connected with tuning, therefore even a multi-TeV bound on their mass would not be competitive
in terms of fine-tuning reach. Top partners searches are so important because their capable to put the very
idea of Naturalness in serious troubles, at least in the Composite Higgs framework. We will see in the
next chapter that a similar role is played in Supersymmetry by the stops. It is also important to keep in
mind that top partners might very well be discovered at the LHC run-2. Current bounds are below 1 TeV
and thus their impact on tuning is modest, well below ten and comparable with the one from coupling
measurements. The interesting mass region is the one from 1 to 2 TeV in which we are about to enter.

3 Supersymmetry
Supersymmetry (SUSY) is probably the most intensively studied theoretical subject of the last 30 or 40
years. Its applications range from string theory and supergravity down to collider phenomenology, with
digressions on AdS/CFT correspondence and holography, dualities and scattering amplitude properties.
I mention this to outline that the scope of SUSY is much broader than phenomenology and to explain
why theorists care about SUSY a priori, independently of its applicability to the real world on a short
timescale. Plenty of excellent reviews [77–81], lecture notes25 and books [82, 83] have been written
about SUSY, just to mention some of those that are relevant in the (relatively narrow, as I mentioned)
context of SUSY phenomenology. With all this literature available, it makes no sense trying to condense
a self-contained introduction to SUSY in these few pages. I will thus keep introductory material to the
minimum, focusing only on few basic concepts and results that are absolutely needed for the discus-
sion. Next, in sections 3.2 and 3.3, I will describe SUSY phenomenology building around two specific
questions which I find particularly important to address in this particular moment.

3.1 Basics of SUSY
Symmetries are so much important in particle physics that Coleman and Mandula in ‘67 found interesting
to ask themselves what is the largest symmetry content a relativistic theory of interacting particles can
posses [84]. Their answer was that the largest global symmetry group is Poincaré, generated by the 6
Mµν Lorentz generators plus the 4 Pµ’s associated with space-time translations, times a generic Lie
group of symmetries generated by a set of charges ~QB. Here “times” means direct product, namely their
result was that all the internal symmetry generators have to commute with those of the Poincaré group

[
Pµ, ~QB

]
= 0 ,

[
Mµν , ~QB

]
= 0 . (47)

Remember that commutators are the way in which the symmetry generators act on the other operators.
The first equation thus means that the ~QB’s are invariant under translations and the second one means
that the ~QB’s are Lorentz scalars, namely that they stay the same in any reference frame. With a modern
terminology we would say that what Coleman and Mandula had in mind were “bosonic” generators, this
is why I labeled them with the subscript “B”. Concretely what they had in mind are generators that obey
ordinary commutation relations among them, of the form [QiB, Q

j
B] = if ijkQkB.

However Gol’fand and Likhtman proved that Coleman and Mandula were wrong, and in so doing
they discovered SUSY [85]. They pointed out that a set of 2 symmetry generators Qα (α = 1, 2) exist
which do not obey eq. (47), but instead

[Pµ, Qα] = 0 , [Mµν , Qα] = −(σµν) β
α Qβ . (48)

24Eq. (46) does not supersede eq. (29). The two equations estimate tuning from different sources, namely the one from
the Higgs VEV and from the Higgs mass, respectively. Therefore the maximum of the two expressions should be taken for a
complete estimate of ∆.

25At least 22 of them, counting only those produced by the CERN ESHEP school founded in 1993.
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TheQ’s are still invariant under translations, and in particular under time translations (which is of course
obvious if they are conserved), but they are not anymore invariant under Lorentz transformations. Under
Lorentz, i.e. under commutation with Mµν , the Q’s transform with the matrix σµν which is a 2 × 2
representation of the Lorentz group called the (left-handed) Weyl representation. Therefore we will say
that the SUSY generators (or charges) Qα form a two-components Weyl spinor under the Lorentz group.

The reader unfamiliar with the formalism of Weyl spinors is referred to standard textbooks or to
Ref. [78] (section 4.1 and Appendix A and B) for a concise introduction. The essential point is that Weyl
spinor fields are the “building” blocks of the habitual Dirac fermions we normally employ to describe
spin-1/2 particles. Namely, one four-components Dirac spinor Ψ can be decomposed as

Ψ =




(ψ1)α

(ψ2)α̇




f f
+

(m = 0)

f f
+

(m = 0)

f f
+

(m = 0)

f f
+

(m = 0)

(49)

in terms of two two-components spinors (ψ1)α and (ψ2)α called “left-handed” Weyl spinors.26 As
anticipated, the Lorentz generators acting on these objects are the σµν matrices. Namely, under an
infinitesimal Lorentz transformation

(δψ1,2)α = − i
2
ωµν(σµν) β

α , σµν =
i

4
(σµσν − σνσµ) , (50)

where σµ = (1, ~σ) and σµ = (1,−~σ), with ~σ the Pauli matrices. Notice that unlike ψ1, ψ2 does not
enter the decomposition formula directly, but rather through the object (ψ2)α̇ which is related to ψ2 by
complex conjugation. Namely

(ψ2)α̇ = εα̇β̇[(ψ2)β]∗ , (51)

where ε is the antisymmetric Levi-Civita tensor in two dimensions and the sum over β = 1, 2 is under-
stood. We sometimes call (ψ2)α̇ a “right-handed” Weyl spinor, however the previous formula shows that
there is no actual distinction between left- and right-handed spinors because one can be turned into the
other by complex conjugation. What is normally done in the SUSY literature is to use only left-handed
spinors to describe fermions, an habit which can be confusing for beginners. For instance, because of
this convention the SM right-handed top quark is represented by a left-handed spinor with electric charge
equal to−2/3 rather than +2/3 because the correspondence between left and right spinors involves com-
plex conjugation.

If the Dirac spinor Ψ is massless, the two Weyl components are endowed with a very simple
physical interpretation, pictorially reported in eq. (49). ψ1 corresponds to a massless fermion f with
helicity h = −1/2 plus its anti-particle f with h = +1/2, while ψ2 is an h = +1/2 fermion plus an
h = −1/2 anti-fermion. If instead the Dirac spinor is massive, namely if it is endowed with a Dirac mass
term, there is no direct correspondence between Weyl spinors and physical particles because the Dirac
mass mixes the two Weyl components and produces physical particles which are combinations of the two
components. Still, a Weyl spinor can be in direct correspondence with a massive fermion, but only if it is
a completely neutral particle, not endowed with any conserved charge or quantum number. In this case
there is no way to distinguish particle from anti-particle, namely f = f , and the two helicity states of
each Weyl can be interpreted as the two helicity (or spin) eigenstates of a single massive fermion. A mass
term given to a single Weyl spinor, which unlike the Dirac mass does not mix the two Weyl components,
is called a “Majorana” mass. One Weyl 2-component spinor can be equivalently representations as
a 4-component spinor called a “Majorana spinor”. There is no physical distinction between the two
representations, thus a Weyl fermion with Majorana mass is often called a Majorana fermion.

26This assumes that the Weyl basis is chosen for the γ matrices, otherwise the decomposition is more complicate.
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After this interlude on Weyl spinors, we return to our historical introduction to SUSY. Gol’fand and
Likhtman could find a counterexample to the Coleman–Mandula theorem because Coleman and Man-
dula made too restrictive assumptions in their proof. Namely they assumed bosonic internal symmetry
generators, characterised by ordinary commutation relations as previously mentioned. The Gol’fand–
Likhtman SUSY charges are instead fermionic generators, characterised by anti-commutation relations

{Qα, Qβ} = 0 , {Qα, Qβ̇} = 2(σµ)αβ̇Pµ, (52)

where Q is the conjugate of the SUSY charge 27

Qα̇ = [Qα]∗ . (53)

SUSY charges are thus very different from the ordinary generators of internal symmetries like baryon and
lepton number, isospin, etc. Unlike the latter, they do not form an algebra, specified by commutation rela-
tions, but rather what is called a “super-algebra”, specified by relations that involve the anti-commutators.
Moreover, and perhaps more importantly, SUSY generators do not commute with Mµν (48) unlike the
ordinary bosonic charges (47). The story ends with Haag, Lopuszański and Sohnius, who had the final
word on the maximal symmetry content of a relativistic theory (with massive particles) [86]. They found
that it consists of the Poincaré generators, plus bosonic bosonic charges, plus a set of replicas, Qiα with
i = 1, . . . , N , of Gol’fand–Likhtman’s SUSY generators. Actually they also found other symmetries
related with SUSY, called “R-charges”. Extended SUSY, namely N 6= 1, does not play an important
role in phenomenology, therefore in what follows we will stick to the minimal case N = 1. A similar
consideration holds for the continuos R-symmetry group, aside from a discrete subgroup of it called
“R-parity” which is instead very relevant and will be discussed in the next section.

SUSY-invariant theories display a number of remarkable properties, some of which can be sum-
marised by the famous rule

Bosons =
SUSY

Fermions . (54)

The rule has several meanings, the simplest one being that SUSY requires bosonic and fermionic particles
with the same mass. In order to see why it is so, consider the state |h, p〉 describing a single particle with
helicity h and four-momentum p. For definiteness, we will take the particle moving along the z-axis so
that the helicity operator coincides with the third component of the angular momentum, i.e. the 1 − 2
component of the Lorentz generator, S3 = M12. Let us now act on the state with one of the SUSY
charges, Qα. This produces a new single-particle state, Qα|h, p〉, with the following properties

Pµ|h, p〉 = pµ|h, p〉 ⇒ Pµ (Qα|h, p〉) = (QαP
µ + [Pµ, Qα]) |h, p〉 = pµ (Qα|h, p〉) , (55)

M12|h, p〉 = h |h, p〉 ⇒ M12 (Qα|h, p〉) =
(
QαM

12 + [M12, Qα]
)
|h, p〉 = (h∓ 1/2) (Qα|h, p〉) ,

where the−1/2 is for α = 1 and the +1/2 for α = 2. The first equation tells us that the new particle has
the same four-momentum as the original one, and thus in particular the same mass. It follows from the
first relation in eq. (48), which states that the SUSY charges commute with the Pµ operator. This first
result is of course not at all surprising. Any symmetry generator commutes with Pµ and connects among
each other particles with the same mass. The second relation in eq. (55) is instead peculiar of SUSY.
Ordinary generators commute with M12 and as such they connect particles with the same spin and the
same helicity. The commutator of SUSY charges with M12 is instead [M12, Qα] = −1/2(σ3) βαQβ , as
dictated by eq. (48), so that SUSY connects particles with helicity h to particles with helicity h∓ 1/2 as
in eq. (55). Given that it shifts the helicity by a semi-integer amount, SUSY relates bosons with fermions
and thus it requires the existence of mass-degenerate multiplets containing at the same time bosonic and
fermionic particles.

27Weyl spinor indices can be raised or lowered by acting with εαβ = εα̇β̇ = −εαβ = −εα̇β̇ . With this convention the
definition of Qα̇ reported below matches with eq. (51).
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Fig. 15: The N = 1 SUSY multiplets that are relevant for phenomenology.

By proceeding along these lines, i.e. by repeatedly acting with Q and Q, one can classify the
irreducible representations of N = 1 SUSY. The relevant ones are those that contain particles of spin
two at most, i.e. the chiral, vector and gravity multiplets, schematically represented in fig. 15. When
constructing supersymmetric extensions of the SM, chiral multiplets are used to describe the SM chiral
fermions (quarks and leptons), plus the corresponding SUSY particles (squarks and sleptons). The latter
are complex scalars with the same quantum numbers of the corresponding SM fermions under the SM
gauge group. A chiral multiplet (actually, two of them, as we will see) also describes the SM Higgs field,
plus the “higgsinos” superpartners, which are 2-components fermions. Vector multiplets describe the
SM gauge field (photon, gluons, W and Z) with their partners, which are again 2-components fermions
called photino, gluinos, wino and zino. Clearly the vector multiplets describe the W and Z bosons,
plus their super-partners, before the breaking of the EW symmetry, when they are massless. The gauge
fields becoming massive require extra components taken from the Higgs multiplet, like in the SM. The
graviton is part of the gravity multiplet, together with a particle of spin 3/2, the gravitino. A proper
description of the gravity multiplet and thus of the gravitino requires a supersymmetric theory of gravity,
i.e. a Supergravity model. This goes far beyond the purpose of the present lectures, we will thus not
consider the gravity multiplet anymore in what follows.

Notice that each of the multiplets in fig. 15 contains the exact same number (2) of bosonic and
of fermionic degrees of freedom.28 If we combine them to form a SUSY theory we will thus obtain a
model with the same number of bosonic and of fermionic degrees of freedom, in accordance with the
general rule “bosons = fermions” in eq. (54). Notice that if SUSY is spontaneously broken, bosons and
fermions will not anymore form mass-degenerate multiplets according to fig. 15, but still the total number
of bosonic and of fermionic degrees of freedom in the theory will remain the same. It is interesting
to remark that the validity of the “bosons = fermions” rule crucially relies on the fact that the trivial
representation, i.e. the singlet, does not exist in SUSY, unlike any other ordinary symmetry group. If it
existed, it would be possible to add “SUSY-singlet” states (bosonic or fermionic) to the theory, violating
in this way the equality of the number of bosonic and fermionic degrees of freedom. No SUSY-singlet
particle exists because a singlet would be a state that is invariant under SUSY, which means that is must
be annihilated both by Q and by Q. But since {Q,Q} ∝ Pµ, this hypothetical SUSY singlet would be
also annihilated by Pµ and thus it would have vanishing four-momentum and could not be interpreted as
a particle. The only state with such properties, i.e. the only SUSY-singlet state, is a (SUSY-invariant)
vacuum configuration.

Let us now turn to the problem of writing down SUSY-invariant theories. If SUSY was an ordinary
(bosonic) global symmetry, this would be a trivial step to take, once the single-particle state multiplets
are known. One would just introduce one field for each particle and construct a multiplet of fields that
transform under the symmetry in the exact same way as the corresponding particle multiplets. Symmetric
Lagrangians will eventually be obtained by constructing invariant combinations of the field multiplets.
The situation is more complicate in SUSY. Constructing invariant Lagrangians requires the concept of

28By “degree of freedom” we mean single-particles states of given helicity and quantum numbers.
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“auxiliary fields” and the one of “super-fields”. The issue comes from the “bosons = fermions” rule in
eq. (54), which happens to hold not only for the states, but also for the fields. Namely, any set of fields
that form a representation of SUSY must contain the same number of bosonic and of fermionic fields
components. Consider for instance the chiral multiplet of particles. We describe its scalar degrees of
freedom by one complex scalar field φ(x), which has 2 real bosonic components, while to describe the
2-components fermion we must use a Weyl spinor ψα(x), which amounts to 4 real (2 complex) fermionic
components. Purely in terms of fields, i.e. before we impose the Equations Of Motion (EOM) that reduce
the number of fermionic degrees of freedom to 2, there is a mismatch between the number of bosonic
and fermionic components. This mismatch means that a SUSY multiplet cannot just contain the {ψ, φ}
fields. One additional complex scalar field, the auxiliary field F (x), is needed to match bosonic and
fermionic components. The chiral multiplet is thus made of the set of fields {ψ, φ, F}. The exact way
in which the SUSY symmetry acts on this multiplet is not worth reporting here. What matters is that a
consistent SUSY transformation exists and thus the problem of writing down a SUSY-invariant theory
boils down, from this point on, to the one of combining these fields in order to form a SUSY-invariant
Lagrangian. The super-field formalism turns out to be extremely effective for this purpose.

Before discussing super-fields, it is important to clarify the role of the auxiliary fields in the con-
struction of SUSY theories. They are introduced in order to comply with the “bosons = fermions” rule
applied to the fields, but of course their presence cannot invalidate the rule at the particle level. Namely,
auxiliary fields cannot produce extra propagating degrees of freedom, and for this being the case their La-
grangian must not contain a kinetic term. The simplest SUSY-invariant Lagrangian for a chiral multiplet
indeed reads

L = iψσµ∂µψ −
m

2
(ψψ + ψψ) + ∂µφ

†∂µφ−m(φF + φ†F †) + F †F , (56)

and it is such that the dependency on the auxiliary field F is purely polynomial. Consequently, the EOM
for F is polynomial and can be solved exactly, leading to

F = mφ† . (57)

A field whose EOM can be uniquely solved in terms of the other fields in the theory produces no physical
particles, and furthermore it can be eliminated (or, “integrated out”) from the theory by plugging the
solution into the Lagrangian. Auxiliary fields thus will not enter in the final expressions for our SUSY-
invariant Lagrangian, in spite of the fact that their presence was needed in order to construct it (in the
super-field formalism, at least). In the case of eq. (56) we obtain

L = iψσµ∂µψ −
m

2
(ψψ + ψψ) + ∂µφ

†∂µφ−m2φ†φ , (58)

which is simply the Lagrangian of a free complex scalar, with mass m, plus a Majorana fermion (i.e., a
neutral Weyl spinor endowed with a Majorana mass-term) with the same mass.

All fields (including the auxiliary ones) in a SUSY multiplet can be collected in a single ob-
ject, called a super-field. Super-fields can be thought as fields in an extended coordinate space (the
super-space), which contains four additional “fermionic” coordinates θα and θα̇ on top of the ordinary
“bosonic” space-time coordinates xµ. The idea is to treat SUSY charges in analogy with the Pµ momen-
tum operator, which acts on ordinary fields F(x) as a shift x→ x+ δx of the coordinates. A super-field
is a function F(x, θ, θ) and the SUSY charges Q and Q act on it (almost) as translations θ → θ+ δθ and
θ → θ + δθ. A SUSY invariant Lagrangian 29 is thus constructed as a functional of the super-field that
is translational-invariant in the super-space. The θ and θ coordinates are however very different from
the ordinary space-time ones. Rather than real numbers, they are “Grassmann variables”, namely the
product of two of them anti-commutes rather than commuting. This has several bizarre implications,

29More precisely, an invariant Action since SUSY Lagrangian are often only invariant up to total derivatives
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Fig. 16: The chiral and vector superfields, together with the physical degrees of freedom they produce after the
EOM are applied to get rid of the auxiliary fields F and D. The variable y that appears in the chiral super-field is
defined as yµ = xµ − iθσµθ.

among which the fact that the square of one of the θ or θ components just vanishes. The most general
super-field thus is not an arbitrary function of θ and θ, but just a fourth order (corresponding to the total
number of independent components) polynomial in θ and θ, whose coefficients are ordinary fields in the
x space. Namely

F(x, θ, θ) = a(x) + b(x)θ+ c(x)θ+ d(x)θθ+ e(x)θθ+ fµ(x)θσµθ+ g(x)θθθ+h(x)θθθ+ i(x)θθθθ.
(59)

The super-field is taken to be a bosonic object, therefore the fields in the decomposition that accompany
even powers of θ and θ (i.e., a, d, e, fµ and i) are bosonic while the ones that come with odd powers (b,
c, g and h) are fermionic Weyl fields.

The generic super-field in eq. (59) (or, which is the same, the fields a, . . . , i it is made of) is a
representation of the SUSY algebra, but it is a reducible one. Irreducible representations, corresponding
the the chiral and to the vector multiplets, are restricted versions of the general super-field reported in
fig. 16. We already discussed the auxiliary field F appearing in the chiral field multiplet, we now see that
it corresponds to the θθ component of the chiral super-field. This component is thus sometimes dubbed
the “F -component”. A real auxiliary field D is present in the vector multiplet, together with the gauge
field Aµ and the Weyl gaugino fields λα. The auxiliary D is needed because the Aµ field is taken to be
in the Feynman gauge, i.e. it is subject to the condition ∂µAµ = 0 that reduces to three its independent
components. One extra real field is thus required in order to match the 4 real components of the gaugino
field. The D field is the θθθθ component of the vector super-field, which is thus called “D-component”.

The rules to construct SUSY-invariant Lagrangians out of super-fields are rather simple. The first
one is that (generic) super-fields, like ordinary fields, can be summed, multiplied and conjugated to
produce other super-fields. Super-fields can also be derived with respect to the ordinary xµ coordinates
and also with respect to the SUSY coordinates θ and θ, by defining certain differential operators called
“SUSY covariant derivatives”. I will not define SUSY covariant derivatives here, the reader is referred to
the literature. Chiral super-fields can also be summed and multiplied producing other chiral super-fields,
but they cannot be conjugated. The conjugate of a chiral super-field is still a super-field, but not a chiral
one (it is called “anti-chiral”). The product of a chiral super-field with its conjugate is instead neither
chiral nor anti-chiral. An important composite chiral super-field, which we will readily use to construct
our SUSY Lagrangian, is the super-potential

W (Φ) = aΦ +
1

2
mΦ2 +

1

3
λΦ3 . (60)

It is a cubic polynomial in the chiral super-field Φ, with an obvious generalisation to the case in which
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several super-fields Φi are present. The super-potential is the SUSY generalisation of the ordinary scalar
potential. However unlike the latter it cannot contain the conjugate of the chiral field, Φ†, otherwise it
would not be a chiral super-field as previously explained. A super-potential can actually contain higher
power of Φ. I stopped at the third order because higher term would produce non-renormalizable interac-
tions in the Lagrangian.

The last set of rules tells us how to extract invariant Lagrangians out of functionals (sums, products
and derivatives) of super-fields. All SUSY invariants happen to be either the D component (i.e., θθθθ)
of a generic super-field or the F component (i.e., θθ) of a chiral super-field. The most general SUSY-
invariant Lagrangian for a chiral super-field (with obvious generalisation to several super-fields) is thus

[
Φ†Φ

]
F

= iψσµ∂µψ + ∂µφ
†∂µφ+ F †F ,

[W (Φ)]D + h.c. =
∂W

∂Φ

∣∣∣∣
φ

F − 1

2

∂2W

∂Φ∂Φ

∣∣∣∣
φ

ψψ + h.c. . (61)

We see that the simple SUSY-invariant Lagrangian in eq. (56) is recovered for a = λ = 0 in the super-
potential. Also notice that even in the more general Lagrangian in eq. (61) the auxiliary field F does not
possess a kinetic term and it can be integrated out by solving its EOM, which is just F † = −∂W/∂Φ.
This results in a potential for the scalar component φ of the chiral super-field

VF (φ) =

∣∣∣∣∣
∂W

∂Φ

∣∣∣∣
φ

∣∣∣∣∣

2

=
∣∣a+mφ+ λφ2

∣∣2 , (62)

which is called “F -term potential”.

Similarly, one can write down the Lagrangian for the vector super-field and the interactions be-
tween the vector super-field and the chiral one. The vector super-field is the SUSY generalisation of the
Aµ gauge field, therefore its interactions are dictated by gauge-invariance (plus SUSY), very much like
the interaction of an ordinary gauge field. For a single vector super-field, corresponding to a U(1) gauge
symmetry (the generalisation to non-abelian groups like the ones of the SM is rather straightforward) and
a single chiral super-field with charge q under the group, the Lagrangian consists of the two following
terms

1

4
[WαWα]F + h.c. = −1

4
AµνA

µν + iλσµ∂µλ+
1

2
D2 , (63)

[
Φ†e2qgV Φ

]
D

= Dµφ
†Dµφ+ iψσµDµψ + F †F − i

√
2qgφψλ+ i

√
2qgφ†ψλ− gqφ†φD .

The first one is simply the kinetic term for the gauge and for the gaugino fields, plus a quadratic (non-
derivative, as it should) term for the auxiliaryD.30 The second contains the kinetic terms of the scalar and
Weyl fields in the chiral multiplet, with “Dµ” denoting the ordinary covariant derivative with with charge
q and gauge coupling g, which produces the habitual gauge interactions. Interestingly enough, Yukawa
couplings are also present involving φ, ψ and the gaugino λ. These are supersymmetric generalisations
of the Aµ gauge interactions with ψ and with φ and they emerge with a coupling strength,

√
2gq, which

is completely fixed by gauge invariance. Also notice that the auxiliary field can, as usual, easily be
integrated out producing another contribution to the scalar potential called “D-term potential”. It reads

VD(φ) =
1

2
q2g2|φ|2 . (64)

Once again, like the Yukawa’s previously mentioned, its coefficient is completely specified in terms of
the representation of the gauge group in which the field lives (i.e., the charge q in our example) and by
the gauge coupling g of the theory.

30The chiral super-fieldsWα are a SUSY generalisation of the field-strength in ordinary gauge theories. Their definition is
not worth reporting here.
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3.2 Why SUSY is Great: a Tale from the 80’s
The possibility of SUSY being the right tool to construct realistic extensions of the SM below or at the
TeV scale (and not “just” a tool to build string theories of quantum gravity and to study deep theoretical
aspects of Quantum Field Theory) is supported by a number of surprising phenomenological properties
SUSY theories happen to possess (see [79, 80] for a complete discussion). These properties were dis-
covered in the early 80’s and produced enormous excitement in the theory community. The virtues of
SUSY, which I will describe in the present section, of course are still there today. However they are now
accompanied by a set of issues, related with negative searches of super-particles at different experimental
facilities and with the determination of the Higgs boson mass, as I will explain in sect. 3.3. None of these
experimental issues were of course known in the 80’s, and thus the great excitement about SUSY was
fully justified. The situation is different now. SUSY might still be waiting to be discovered at the TeV
scale, but apparently not in the simple “vanilla” form theorists imagined in the 80’s.

The main reason why SUSY should be relevant for TeV scale physics is that SUSY models can
solve the Naturalness Problem, as first pointed out by several authors in ’81, among which S. Dimopou-
los, H. Georgi and E. Witten. In order to see how this works, let us recall the Naturalness Argument, as
formulated in sect. 1.3, for the Higgs mass parameter m2

H . The problem has to do with a contribution
that comes (in whatever new physics model is ultimately responsible for the microscopic origin of the
Higgs mass) from low-energies, below the SM cutoff ΛSM, i.e. at energies where physics is known and
is provided by the SM. We focus on the largest contribution, the one from the top quark loop in eq. (6)

δSMm
2
H =

3y2
t

4π2
Λ2

SM . (65)

It can be interpreted, poorly speaking, as a divergent contribution to the Higgs mass. The Naturalness
Problem is that this term becomes much larger than the actual value ofm2

H , obliging us to a cancellation,
if ΛSM is much above the TeV, as eq. (7) shows.

The problem emerges because the Higgs mass has two properties, which have to be simultane-
ously verified for the Naturalness Problem to arise. These are the fact that the Higgs mass term is a
parameter with positive energy dimension and the fact that it is not protected by any symmetry, namely
no new symmetry emerges in the SM Lagrangian if m2

H is taken to vanish. Parameters that violate both
conditions are instead, for instance, the SM Yukawa couplings. Take for simplicity one single fermion,
with its Yukawa coupling yf to the Higgs field, and repeat for yf the considerations that led us to the
Naturalness Problem in sect. 1.3. We can still split the integral expression for it as in eq. (5), but now if
we compute the E < ΛSM contribution we find

δSMyf ∼
yfg

2

16π2
log(ΛSM/MEW) . (66)

In the expression, MEW denotes the EW scale and g is one SM coupling which, depending on the dia-
gram, could be either yf itself or one of the gauge couplings. The result contains no power-like diver-
gence, for the very simple reasons is that all the SM couplings are dimensionless. It is thus impossible
to have a polynomial divergence on a dimensionless quantity, only logarithmic divergencies are allowed.
Clearly a logarithm is much less dangerous. Even for ΛSM = MP , the log is around 40 and hardly
compensates the g2/16π2 loop factor. The contribution to yf is thus of order yf or smaller and no can-
cellation is required. The fact that δSMyf contains at least one power of yf is instead less trivial and
has to do with the fact that a symmetry (chiral symmetry, i.e. two independent phase transformations
acting on the two chirality components) is recovered at yf = 0. Then if yf was really vanishing, loop
corrections could not generate it. A diagram contributing to it must thus contain at least one insertion of
the yf vertex. As mentioned in sect. 1.3, this symmetry argument can be extended in order to deal with
all the three SM families, ensuring that the correction of each Yukawa coupling is proportional to itself.
This avoids, for instance, relatively large contribution to the Yukawa coupling of the up induced by the
much larger coupling of the top quark.
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Fig. 17: The ordinary Yukawa coupling (left) with its SUSY counterpart (right).

A less simple case is the one of a massive fermion. Of course we don’t have one in the SM since
no fermion masses (but only Yukawa’s) are present in the SM above the EW scale. Consider however a
toy model in which a massive fermion is included in the theory, coupled through a set of dimensionless
couplings “g” to the SM fields. Its mass mF has of course positive energy dimension like mH , but still
the low-energy contribution to it is only logarithmically divergent 31

δIRmF ∼
g2

16π2
mF log(Λ/MIR) . (67)

Unlike the Yukawa’s, mF has positive dimension but, exactly like the Yukawa’s, it is protected by the
chiral symmetry which is recovered in the theory if mF = 0. Thus loop corrections are proportional to
mF itself and are not large. As such, mF does not suffer of a Naturalness Problem.

We just discovered that a fermion, unlike a scalar boson, can be “Naturally” light, even if the cutoff
Λ of the theory it is part of is extremely large. It is thus now clear why SUSY, which obliges the mass
of the scalar Higgs boson to be equal to the one of its fermionic higgsino partner, can help us with the
Naturalness Problem. If the former is “Naturally” light, the latter must be “Natural” as well in a SUSY
model. In order to illustrate how this works, let us only consider the Higgs boson, the top quark and the
Yukawa interaction between them, which is responsible for the largest contribution to m2

H in eq. (65).
I will even ignore the bottom quark, as well as the other components of the Higgs doublet, and I will
just focus on the neutral Higgs field component h coupled to tL and tR through the Yukawa coupling. In
order to construct a supersymmetric version of this theory, three chiral super-fields need to be introduced:
Φh, ΦtL and ΦtR . After integrating out the auxiliary fields, they lead respectively to the fields {h, h̃},
{tL, t̃L} and {tcR, t̃

†
R}, where h̃ is the higgsino, t̃L is the left-handed stop and t̃R is the right-handed stop.

Notice that what appears in ΦtR is the conjugate of the right-handed top, tcR, which is a left-handed field
and as such can appear in the chiral super-field. Correspondingly, the right-handed stop is defined with a
conjugate such that it has the same quantum numbers of the (not conjugate) SM tR. Introducing the SM
Yukawa in the theory requires us to put a trilinear term in the super-potential

W =
yt√

2
ΦhΦtLΦtR −→





SM Yukawa (from eq. (61)): − yt√
2
httR ,

F -term potential (from eq. (62)):− y2
t

2
h2[|t̃L|2 + |t̃R|2] .

(68)

Therefore in SUSY the Yukawa coupling, diagrammatically represented on the left panel of fig. 17, is
necessarily associated with a quartic h2t̃2L,R vertex with the stops, reported on the right. Both couplings
must be included in the calculation of δIRm

2
H , and the stop loop cancel exactly the one of the top
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The result is that the Naturalness Problem is solved, as expected, in a supersymmetric theory.
31From now on, since the low-energy (IR) theory we are considering to compute the low energy contribution is not anymore

the SM, I will substitute “δSM” with “δIR” and “ΛSM” with Λ, representing the cutoff scale of the IR theory.
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Fig. 18: The SUSY picture of high-energy physics.

Obviously in oder to exploit the solution to the Naturalness Problem offered by supersymmetry
we cannot just replace the SM with its SUSY version. This would be in sharp contrast with observations
given that the particles we know about, their spectrum and interactions, do not respect SUSY. What
one has to do is to first extend the SM to its (possibly minimal, but not necessarily so) SUSY version,
and then include extra terms in the Lagrangian that break supersymmetry and reconcile the model with
observations. Very importantly, it turns out that it is possible to do this without spoiling the SUSY
solution to the Naturalness Problem, by introducing a special set of SUSY-breaking terms called “soft
terms”. Equally importantly, explicit microscopic models exist where SUSY is exact at very high scale,
gets spontaneously broken and produces only soft breaking terms at low energy. Soft SUSY-breaking
terms, namely terms that break SUSY but preserve Naturalness, include (see e.g. [79,80]) mass, bilinear
and trilinear terms for the scalar fields and gaugino mass terms. Including them in the Lagrangian
happens to be sufficient to make all the SUSY partners of the SM particles heavy, explaining why we
have not yet seen them. SUSY models addressing the Naturalness Problem can thus be made fully
realistic, as a result of a fortunate series of “coincidences” related with a bunch of non-trivial properties
of SUSY.

The SUSY picture of high-energy physics is thus the one of fig. 18. Starting from above, the theory
is exactly supersymmetric at very high energies, until the scale M/S where SUSY is broken producing a
set of soft terms. The typical mass-scale Msoft of the soft terms generated by the breaking, among which
we have the mass of the supersymmetric particles, needs however not to be of the order of M/S. It can
be of that size in specific SUSY breaking scenarios, but it can also easily be much smaller than that,
Msoft � M/S, as in the framework of “gravity-mediated” SUSY breaking (which used to be very popular
in the 80’s). Below M/S, the theory reduces to a supersymmetric extensions of the SM containing both
the SM particles and the SUSY partners as propagating degrees of freedom, the latter ones with a mass
of order Msoft, larger than the EW scale. Below Msoft, SUSY partners decouple from the theory and
one is left with the SM. Seen from below, Msoft is the scale at which BSM particles appear and thus it
provides the SM cutoff ΛSM.

In view of the identification Msoft ∼ ΛSM, it is clear that the SUSY partners cannot be arbitrarily
heavy if we really want to solve the Naturalness Problem, because of eq. (65). This is readily checked
by giving a mass Mt̃ � Msoft to the stops and repeating the calculation of δIRm2

H . It is rather obvious
by dimensional analysis that we are going to obtain

δIRm2
H =

3y2
t

8π2
Mt̃ log(M/S/Mt̃) . (69)

Up to the log, which can just worsen the situation, we get the same expression as in eq. (65) with ΛSM

replaced by Mt̃ � Msoft. Consequently we get a large fine-tuning ∆, as in eq. (7), if SUSY particles are
not at the TeV scale or below.
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Fig. 5: Evolution of the three SM gauge couplings ↵i = g2
i /(4⇡) as a function of µ = Q in the SM [8]

The SU(5) model gives us three interesting predictions:

1. Hypercharge quantization.
2. Gauge coupling unification.
3. Proton decay.

We already mentioned the first one. Let us comment on the second one. If the SU(5) symmetry is exact
we have that all SM gauge couplings must be equal:

gs = g =

r
5

3
g0 ⌘ g5 , (15)

where the factor
q

5
3 arises from the proper normalization of g0. Nevertheless, if the SU(5) symmetry is

broken at some scale MGUT we only expect Eq. (15) to be fulfilled at energies above MGUT. Indeed, in
a quantum field theory the gauge couplings ‘runs’ with the energy according to the RGE. At the one-loop
level we have

dgi

d ln Q
= � bi

8⇡2
, (16)

where g3 = gs, g2 = g, g1 =
q

5
3g0 and bi are coefficients that depend on the spectrum of the theory.

Above MGUT the spectrum of particles corresponds to that of a SU(5) theory and we have b1 = b2 = b3,
but below MGUT the X, Y states and the colour partner of the Higgs are not present. The bi are only
sensitive to the SM spectrum; we have bi = (41/10,�19/6,�7). In Fig. 5 we plot the evolution of the
three SM gauge couplings ↵i = g2

i /(4⇡) as a function of Q. We see that the gauge couplings tend to
unify at energies around 1014 GeV, although Eq. (15) is not precisely satisfied. One could argue that
this is a small discrepancy, originating from high-energy corrections to the gauge couplings. Even so,
this implies MGUT ⇠ 1014 GeV and, as we will see later, a conflict with proton decay experiments. A
better situation occurs in the supersymmetric SM that we will introduce later motivated by the hierarchy
problem. In this model we have bi = (66/10, 1,�3) and a different evolution of the gauge couplings as
compared with the SM, as shown in Fig. 6. Now the three SM gauge couplings neatly unify at energies

9

Fig. 6: Evolution of the three SM gauge couplings ↵i = g2
i /(4⇡) as a function of µ = Q in the Supersymmetric

SM [8]

⇠ 1016 GeV, the scale to be associated with MGUT.

Let us finally comment on proton decay. In the SU(5) model the baryon symmetry is not pre-
served. This is obvious since we have put quarks and leptons in the same representation — see Fig. 4.
Therefore we expect to have contributions to proton decay. We can explicitly see that this decay is
mediated by the X and Y bosons that generate the operator of Eq. (8) with ⇤ ⇠MGUT. We obtain

⌧(p! ⇡0e+) ⇠ 1034 years

✓
3⇥ 1015 GeV

MGUT

◆4

. (17)

The Super-Kamiokande detector 1000 metre underground in the Kamioka mine of Hida city (Gifu) Japan,
has the ‘titanic’ task of searching for proton decay. This is a stainless-steel tank 39 m in diameter and 42
m tall. It is filled with 50 000 tons of ultra pure water and about 13,000 photomultipliers are placed on
the tank wall. It looks for pions and positrons arising from the proton decay of the water. Neutral pions
decay to photons that can be detected by the photomultipliers, while positrons travelling through the
water emit Cherenkov light that can also be detected by the photomultipliers. At present they put a bound
of ⌧(p ! ⇡0e+) > 1034 years corresponding, according to Eq. (17), to the bound MGUT > 3 ⇥ 1015

GeV. This rules out SU(5) models with MGUT ⇠ 1014 GeV, and is at the verge of testing models, such
as supersymmetric SU(5) models6, where MGUT ⇠ 1016 GeV.

Apart from the three predictions explained above, GUT give other type of interesting predictions,
although they are more model dependent. For example in most of GUT bottom-tau unification is pre-
dicted: Mb = M⌧ at Q & MGUT. This prediction works reasonable well in the supersymmetric SM.
Nevertheless it does not work for the other families. Another prediction of GUT with G = SO(10) is the
generation of neutrino masses through the ‘see-saw’ mechanism. In SO(10) all SM fermions of a given
family can be embedded in a single representation, the 16 of SO(10). Apart from the SM fermions it also
contains a singlet ⌫R that after SO(10) breaking can get a mass and generate the operator of Eq. (7) with
⇤ ⇠ M⌫R . We already saw that this operator leads to neutrino masses of the Majorana type. This also

6In supersymmetric SU(5) models we have other proton decay channels, e.g., p! K+⌫̄⌧ , that are usually more important
than the one considered here [5].

10

SUSY

Fig. 19: The SU(3), SU(2) and U(1) inverse structure constant (α−1
i = 4π/g2

i ) renormalisation group running in
the SM (left) and in its minimal supersymmetric extension, the MSSM (right).

SUSY having to show up before the TeV was of course not at all an issue in the 80’, when this scale
was far to be directly probed experimentally. It was actually a reason for excitement having all these new
particles close enough to be discovered in the future. More reasons for excitement came from two more
arguments, seemingly unrelated with SUSY: coupling unification and Dark Matter. Coupling unification
(see [8, 9] for a review) is the idea that the three SM gauge forces might have a common origin at very
high scales, where they are all described by a single simple unified gauge group (e.g., SU(5) or SO(10)),
characterised by a single gauge coupling. This is supported, in the first place, by the fact that the SM
matter fermion content fills, for no obvious reason, complete multiplets of the unified group (see [29] for
a concise discussion). These multiplets contain at the same time quarks and leptons. GUT models are
also supported by the fact that the running of the three SM gauge couplings makes them approach each
other at high scale. As shown in fig. 19, this more or less happens (but not very accurately) in the SM
at a scale MGUT ∼ 1014 GeV. At this scale, the full unified theory should show up. In particular, new
massive gauge bosons should appear, with interactions connecting leptons and quarks that sit in the same
GUT multiplets as previously mentioned. These interactions make the proton decay at an unacceptably
large rate if MGUT ∼ 1014 GeV. The situation is much better in supersymmetric extensions of the SM,
as shown in the right panel of fig. 19. First, the couplings unify more accurately, simply due to the effect
of the super-partners on the running, which happen to go in the right direction for no obvious reason.
Second, unification is postponed to MGUT ∼ 1016 GeV and proton decay experiments are not sensitive
to such a high suppression scale. All this of course happens only provided Msoft is small enough for the
super-partners starting to contribute to the running early enough, Msoft ∼ 100 GeV is assumed in the
plot. Clearly the running is logarithmically slow, so thatMsoft = 10 TeV or even more would not change
the situation radically. However it is clear that also coupling unification, as well as the Naturalness
Argument, point towards low-energy supersymmetry. The positive interplay between low-energy SUSY
and unification is a very strong argument in favour of SUSY and of unification as well.

The interplay between SUSY and DM is equally impressive. It originates from a serious phe-
nomenological problem of SUSY and of its solution, which consists in imposing a discrete symmetry
called “R-parity”. I stressed in sect. 1.2 the phenomenological importance of Baryon and Lepton number
as accidental symmetry in the SM and how much non-trivial it is that these symmetries emerge at d = 4
without being imposed in the construction of the theory. I also argued that BSM scenarios will in general
not possess accidental Baryon and Lepton number and that those symmetries will have to be imposed in
some way. This is the case also in SUSY. Indeed, when trying to construct the minimal supersymmetric
extension of the SM (the Minimal Supersymmetric Standard Model, MSSM), one immediately encoun-
ters terms in the super-potential, allowed by the gauge symmetries, that violate both the Baryon and the
Lepton number. For instance, Baryon number is violated by (see e.g. [80] for more details)

∆W∆B=1 = λ′′εαβγΦα
uR

Φβ
dR

Φγ
dR
, (70)
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where α, β, γ are QCD color indices while the flavour indices are understood. Adding those terms in
the super-potential produces SUSY-invariant d = 4 interactions that violate Baryon and Lepton number,
in sharp contrast with observations. However all these dangerous terms, and all the soft SUSY-breaking
ones which also violate Baryon and Lepton number, are avoided by imposing only one discrete symmetry,
R-parity. R-parity consists in the sign-flip θ → −θ and θ → −θ of the super-space coordinates, times
an additional overall minus sign for all the matter fermions (quarks and leptons) super-fields. A quick
look at fig. 16 immediately reveals that with this assignment all the SM fields (quarks, leptons, gauge
and Higgs) are even and all the super-partners (or s-particles) are odd. The super-potential in eq. (70)
is obviously odd under R-parity and it is thus forbidden, together with all the other Baryon and Lepton
number-violating terms, if R-parity is imposed as a symmetry of the MSSM.

Since they are odd under R-parity, s-particles cannot decay to SM particles only, at least one s-
particle must be present in the final state. In particular this means that the lightest of the s-particles (the
LSP) cannot decay at all and it is absolutely stable. If it happens to be electrically and QCD neutral, it
is potentially a viable DM canditate. Moreover, the LSP mass will be of the order of Msoft, which we
argued above to be likely of the 100 GeV to TeV order. Furthermore, the LSP will typically couple to SM
through EW gauge interactions. A particle with these properties is called a Weakly-Interacting Massive
Particle (WIMP) and it can perfectly account for the observed DM component of the Universe through
the mechanism of thermal freeze-out (see [3] for a review). This is the so-called “WIMP miracle”, which
automatically emerges as a byproduct of SUSY model-building.

3.3 SUSY after LEP, Tevatron and LHC run-1
Naturalness, coupling unification and Dark Matter are extremely strong arguments in favour of low-
scale SUSY, and all the enthusiasm they triggered towards SUSY is perfectly justified. However this
enthusiasm cooled considerably after 30 years of negative experimental s-particle searches. LEP was the
collider at which SUSY had its first chance to be discovered, in spite of the fact that LEP energy was far
below 450 GeV (see eq. (7)), which is what we nowadays consider to be threshold for “Natural” BSM
physics. This is because in the fine-tuning estimate we should not forget the logarithmic term we found
in eq. (69), and we should remember that a high SUSY-breaking scale was expected in the 80’s. With this
expectation, taking for definiteness M/S = 1015 GeV, the log is around 30 and the Naturalness threshold
moves down to 450/

√
30 = 82 GeV. Even taking into account that s-particles must be produced in pairs

because of R-parity, the LEP collider (in the LEP-II stage) could have had enough energy to produce
them. Of course M/S needs not to be that high, viable SUSY-breaking scenarios exist where M/S is not
far from the TeV scale and the log is small. Still, negative LEP search were the first evidence against the
“vanilla” SUSY picture described in the previous section.

The search for s-particles continued at Tevatron and at the LHC run-1, with negative results.32

Current limits on certain SUSY particles (light squarks and gluinos) are as high as 1.7 TeV signalling,
if taken at face value, that SUSY is a quite “Un-Natural” theory. One should however be more careful,
because the s-particles needs not to be all degenerate and a bound on few of them cannot be directly
translated into a bound on Msoft. Furthermore, not all the s-particles are equally important as far as fine-
tuning is concerned because the way in which they contribute to the Higgs mass is very different. For
instance, the stops are those that give the largest radiative contribution, in eq. (69), because their coupling
to the Higgs is the largest one. The 450 GeV threshold only applies to the stops, and the limit on their
mass is only 700 GeV or less, still compatible with Naturalness.33 The strong limit on the light squarks
is instead irrelevant for Naturalness, given that the squark contribution to m2

H is extremely suppressed
by the small Yukawa couplings. The partners of the EW gauge bosons (EWinos) give the second largest
radiative contribution (see eq. (6)), which is proportional to the Weak coupling square rather than to yt.

32And at the LHC run-2, however here I stick to the run-1 results, the only ones that were available when I gave the lectures.
33Tree-level contributions to m2

H emerge from higgsinos, and thus the Naturalness threshold on these particles is extremely
low. However there no tension with the experimental bounds, which are too weak.
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The Naturalness threshold for the EWinos is thus around the TeV, much above the limits. The gluinos
are also relevant for Naturalness. In spite of the fact that their contribution to m2

H arises at two loops, the
strong QCD coupling and certain color multiplicity factors produce a Naturalness threshold for gluinos
around the TeV, which is comparable with the run-1 limit. The overall picture that emerges from this
kind of considerations (the so-called “Natural SUSY” approach) is that the LHC run-1 started probing
the “Natural” parameter space of SUSY, but no conclusive statement can be made. For an extensive
presentation of this viewpoint and a quantitative discussion of run-1 searches the reader is referred to the
lecture notes in Ref. [87].

The very last topic of these lectures is the structure of the Higgs potential in supersymmetry. This
topic is relevant by itself, as it constitutes the starting point for SUSY Higgs phenomenology, extensively
discussed in [88]. However it is also relevant in order to assess the current status of SUSY because it
will allow us to understand and to qualify the often-heard statement that the LEP bound on the Higgs
mass (and its measurement at the LHC) is problematic for SUSY. The first important point is that any
SUSY extension of the SM requires us to introduce at least two Higgs chiral super-fields: Φu and Φd.
This follows from the fact in order to generate the Yukawa couplings in the up and in the down sector
two Higgs doublets are needed, with respectively Hypercharge equal to 1/2 and−1/2. Only one doublet
is introduced in the SM because the other one can be obtained by complex conjugation, but this is
impossible in SUSY since the conjugate of a chiral super-field cannot appear in the super-potential. Two
chiral super-fields are thus needed,34 with super-potential terms

Wu = yuΦqLΦuΦuR , Wd = ydΦqLΦdΦdR . (71)

Therefore two scalar Higgs doublets Hu and Hd are present in SUSY, coupled to up- and down-type
quarks respectively. After EWSB, three of these 8 real degrees of freedom are eaten by the EW bosons
becoming massive, one provides the neutral SM Higgs boson and the remain four are extra scalars which
are absent in the SM. The extra scalars in SUSY are one heavy neutral CP-even state H0, one charged
H± and a neutral CP-odd A. Searching for these particles directly, or indirectly by studying their effects
(through mixing) on the couplings of the SM-like Higgs, is one way to test supersymmetry.

The scalar potential for the Hu and Hd doublets consists of three terms 35

V (Hu, Hd) = µ2(|Hu|2 + |Hd|2)

+
g2 + g′2

8
(|Hu|2 − |Hd|2)2 +

g2

2
|H†u|Hd|2

+m2
u|Hu|2 +m2

d|Hd|2 +B(HuHd +H∗uH
∗
d) . (72)

The one on the first line is an F -term, originating from the µ-term µΦuΦd in the super-potential. The one
on the second line is a D-term, dictated by the gauge quantum numbers of the Higgs doublets. Notice
that it is the only one that contains quartic couplings, which are thus completely fixed in terms of the SM
gauge couplings g and g′. The soft SUSY-breaking terms are displayed in the last line. The potential in
eq. (72) allows, with the appropriate choice of its parameters, EWSB to occur. Also, it allows (or better,
generically requires) both doublets to get a VEV

〈|Hu|2〉 =
v2

u

2
, 〈|Hd|2〉 =

v2
d

2
. (73)

The sum of the square of the two VEVs is fixed to v2
u + v2

d = v2, where v ' 246 GeV, but the ratio
between them is a free parameter, which is typically traded for the tangent of the “β” angle

tanβ ≡ vu

vd
. (74)

34The cancellation of gauge anomalies also requires two Higgs super-fields.
35The contraction with the εij tensor is understood in last term of the equation that follows.

45

BEHIND THE STANDARD MODEL

135



Notice that both Higgses taking VEV is necessary in order to generate quark masses since, as we dis-
cussed, the up- and down-type Yukawa couplings are only present for Hu and for Hd, respectively.

With the knowledge of the 80’s, the potential in eq. (72) is quite successful. It produces realistic
EWSB and fermion masses, and an extended Higgs sector which was perfectly plausible at that times, in
which almost no experimental information was available on Higgs physics. After LEP could not discover
the Higgs boson and set a lower bound mH > 115 GeV, the potential (72) started being in tension with
observations. Indeed, it is possible to show that the structure of the potential is such that the Higgs mass
is unavoidably smaller than the one of the Z boson. More precisely, it turns out that for any choice of the
free parameters one has

mH ≤ | cos 2β|mZ ≤ mZ . (75)

The relation follows from the fact that the quartic terms in the potential are not free parameters, but
instead they are uniquely dictated, through supersymmetry, by the gauge coupling. In order to see how
this works, consider a simplified limit, the so-called “decoupling limit”, in which the soft mass of the
Hd, m2

d, is taken to be large. In the limit, Hd decouples and it can be just ignored (i.e., set to zero) in
eq. (72), obtaining a SM-like potential

V = µ2
SM|Hu|2 + λSM|Hu|4 , (76)

with µ2
SM = µ2 +m2

u and λSM = (g2 + g′2)/8. The habitual SM formula mH =
√

2λv thus tells us that
mH = mZ in the decoupling limit. This matches eq. (75) because in the decoupling limit one finds that
tanβ →∞, i.e. β → π/2.

Since the mass relation in eq. (75) is violated experimentally, we might wander if it excludes
SUSY as a realistic theory of Nature. Of course it does not, because of two reasons, but it has important
implications. The first point is that eq. (75) is only valid at the tree-level order, radiative corrections
violate it. For instance top and stop loops contribute to the quartic by an amount

δλ ∼ 3y2
t

8π2
log

Mt̃

mt
, (77)

so that by making stops heavy one can get a large enough quartic and a large enough Higgs mass.
Working in the decoupling limit for simplicity (and because it is the most favourable one), the shift we
need on λ is

δλ =
m2
H −m2

Z

2v2
' 0.06 , ⇒ Mt̃ ' 1.3 TeV . (78)

That heavy stops cost quite a lot of fine-tuning, definitely above ten. More refined estimates [89], taking
into account the need of a separation between M/S and the weak scale (i.e., of some log enhancement in
the tuning), reveal that the tuning needed to accomodate the 125 GeV Higgs mass is at least 100 .

The second reason why eq. (75) cannot disprove supersymmetry is that it only holds in the MSSM,
thus it is not a robust property of SUSY models. It can be violated in SUSY scenarios like λSUSY [90]
(A.K.A. NMSSM), in which an extra singlet chiral super-field ΦS is added to the theory with a λΦSΦuΦd

term in the super-potential. This contributes to the quartic Higgs coupling and leads to a heavy enough
Higgs boson if λ is sufficiently large. The main drawback of this construction is that λ needs to be
relatively big, therefore its RG-running is very fast and reaches a Landau pole not much above the 10 TeV
scale. The alternative to a fine-tuned scenario seems thus to be a model which cannot be extended far
above the TeV scale. This clearly seems very different from the basic SUSY picture we had in mind
in fig. 18. However there might be caveats, new model-building ways out, or space for a “partially Un-
Natural”, but still true, SUSY model at the TeV scale. Let us wait and see, the LHC run-2 will tell us
more about SUSY.
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4 Conclusions and Outlook
My purpose, when giving these lectures, was to outline that BSM physics is not (only) a collection of
models, but rather a set of structural questions on fundamental physics and of possible answers to be
checked against data. The microscopic origin of the Higgs mass, in connection with Naturalness (or
Un-Naturalness), is only one of such questions. However it is the one about which decisive experimental
progress will be made at the LHC, this is why I built the lectures around it. Several other relevant
questions and ideas were encountered during the lectures, among which GUT, DM, neutrino masses and
vacuum stability, each of which deserves a separate course. Some of these courses were given at this
School [2, 3]. For what is missing, the lectures in Ref. [29] are a valid starting point. The course aimed
at providing a pedagogical introduction to BSM physics, for this reason basic material was presented
and many recent developments were left out from the discussion. This should not obscure the fact that
“Natural” BSM model-building is an active research area. Approaches related with the “Twin Higgs”
mechanism [32] are worth mentioning in this context.

Concerning the future of BSM physics, there is not much I can add to what discussed in sect. 1.
There is not guarantee that the ongoing LHC program will produce a new physics discovery, but it is
sure that it will improve our comprehension of fundamental interactions. This is more than enough
to work on LHC physics to the best of our abilities. On a longer timescale, the future is impossible
to predict. We will definitely keep asking structural questions on fundamental physics, however it is
unclear if high-energy collider experiments will continue being the optimal investigation tools to search
for answers. My viewpoint is well summarised by a famous sentence

“Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.”

– Albert Einstein
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A very brief Introduction to Heavy Ion Physics
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Abstract
Relativistic heavy ion collisions provide a possibility to investigate a funda-
mental quantum field theory (QCD) in a regime away from the conventional
vacuum, namely at non-zero temperature and density. I will discuss why this is
important, give a brief overview over what is known already and also mention
currently still open questions.

Keywords
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1 Motivation and introduction
Why should one be interested in heavy ion collisions? There are several reasons. An experimentalist
may argue: Heavy ion collisions at high energy provide a possibility to experimentally address questions
like: What happens with Quantum Chromodynamics (QCD) at large density or temperature? Is there,
for example, a phase transition at the Hagedorn temperature?

From a more theoretical point of view one may say: Quantum field theory is so important for the
description of the phenomena in our world that it should be studied and understood not only in the regime
of a few particles or excitations around the conventional vacuum but also at non-vanishing temperature
and density. This is also important for many questions in cosmology and in condensed matter theory.
Heavy ion collisions allow to study one of the fundamental building blocks of the standard model (namely
QCD) at non-zero temperature and density. This is particularly interesting due to the asymptotic freedom
property of QCD. For very large momenta or at very small distances, the theory is theoretically very well
understood. Once the Lagrangian of QCD is fixed in terms of the fundamental parameters (the strong
coupling constant αs and the quark masses) everything else is in principle determined, as well, including
the thermal equilibrium properties and even the non-equilibrium dynamics. It is a formidable challenge
to understand this in detail and to solve the corresponding equations in practice.

From a cosmologists perspective one may argue that the quark gluon plasma is interesting because
it has filled the universe from about 10−12 to 10−6 seconds after the big bang. Heavy ion collisions allow
to learn something about this state of matter from laboratory experiments.

Finally, heavy ion physics is a very active field of research. A large experimental program is
ongoing at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland, with experimental research
being performed by the collaborations ALICE, ATLAS, CMS and LHCb. Another large program is
ongoing at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in
Brookhaven, USA, with experimental collaborations Phenix and STAR. Future experiments are planned
at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, and at the Nuclotron-
based Ion Collider Facility (NICA) at JINR, Dubna, Russia.

We end this introductory section with a brief overview on the different regimes following a heavy
ion collision event. The initial state directly after the collision is determined in principle by the wave
function of the colliding nuclei. However, the latter is unfortunately not understood from first prin-
ciples yet. (The problem is of considerable complexity already for protons.) Directly after the col-
lision there must be a regime of strong dynamics driving an approximate thermalization (or at least

*Previous affiliation: CERN, Geneva, Switzerland

Proceedings of the 2015 European School of High-Energy Physics, Bansko, Bulgaria, 2 – 15 September 2015, edited by M. Mulders
and G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 4/2017, CERN-2017-008-SP (CERN, Geneva, 2017)

2519-8041– c© CERN, 2017. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2017-004.141

141

https://doi.org/10.23730/CYRSP-2017-004.141


pre-thermalization sometimes also called “hydrodynamization” such that the energy-momentum tensor
approaches the form of relativistic fluid dynamics). The concrete dynamics is not yet known in all details
but it is very plausible that strong color fields play an important role as well as possibly different plasma
instabilities.

Afterwards there is a phase with (approximate) local thermal and chemical equilibrium that can be
described by relativistic fluid dynamics. The strong microscopic dynamics that leads to short equilibra-
tion times is now responsible for rather small dissipative transport coefficients (such as shear viscosity
and corresponding relaxation times, see discussions below). The main characteristic of the fluid dynamic
phase is a rapid expansion both in longitudinal and transverse direction and an associated dilution and
cool down of the fluid.

Together with the dilution comes a change in the relevant microscopic degrees of freedom. While
these are gluons and quarks at high temperatures, mesons and baryons dominate the low temperature
and density phase. As long as the densities are still rather large, there are many inelastic (and elas-
tic) collisions such that chemical and kinetic equilibrium are maintained. When the density drops, the
rate of inelastic collisions decreases and at some point becomes too small to maintain chemical equilib-
rium. This process is called chemical freeze-out. After this point the total particle yields do not change
substantially any more (except by some resonance decays that are ongoing). One can still use an (ap-
proximate) fluid dynamic description in the phase that follows, but now with a chemical potential for
each (separately) conserved particle number.

Finally, when the densities drop even further, also elastic collisions become more and more rare
such that also kinetic equilibrium is no longer maintained. After this point also the momenta of particles
do not change substantially any more (again with the exception of resonance decays) and they are “free
streaming” towards the detector. This process is described as kinetic freeze-out. More details about both
chemical and kinetic freeze-out will be discussed below.

There are some very good reviews and monographs on heavy ion physics which are much more
detailed than I can possibly be in these introductory lectures, for example refs. [1–6]. A very helpful
source of information are also the collected proceedings of the “Quark Matter” conferences.

For these lecture notes I will mainly employ relativistic natural units with c = ~ = kB = 1.

2 Basic quantum chromodynamics
We now continue with a very basic reminder about the microscopic properties of QCD as a quantum field
theory. The Lagrangian is

L = −1

2
tr FµνF

µν −
∑

f

ψ̄f
(
iγµDµ −mf

)
ψf (1)

with matrix valued field strength tensor Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν ] and covariant derivative
Dµ = ∂µ − igAµ. In the high energy regime, where perturbation theory is valid, the particle content of
the theory areN2

c −1 = 8 real massless vector bosons, the gluons, andNc×Nf massive Dirac fermions,
the quarks. From the quark masses (Up 2.3 MeV, Down 4.8 MeV, Strange 95 MeV, Charm 1275 MeV,
Bottom 4180 MeV and Top 173 GeV) one can see that for typical temperatures in the regime of a few
100 MeV mainly the Up, Down and Strange quarks play a role as thermalized particles while Charm and
Bottom can be considered as heavy. Top quarks can be counted as very heavy.

An important feature of QCD is asymptotic freedom. The coupling constant αs = g2/(4π) has
a renormalization group running such that the effective interaction strength is small for processes with
large momentum transfer or at high energy scales. On the other side, the effective interaction strength
becomes large for soft processes or at small energy scales. An illustration of this is given by Fig. 1.

From this one concludes generically that at high-temperatures QCD should have the properties of
a weakly coupled field theory while it becomes effectively strongly coupled at small temperatures. This
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9. Quantum chromodynamics 39

reasonably stable world average value of αs(M
2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [379],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

February 10, 2016 16:30

Fig. 1: Summary of measurements of αs as a function of the energy scale Q as compiled by the Particle Data
Group in 2015. Figure taken from ref. [7].

is so for a description in terms of the elementary degrees of freedom (quarks and gluons). In terms of
the composite degrees of freedom that dominate at low temperatures (mesons and baryons) the situation
is different and in particular the low temperature regime permits a description which resembles in many
aspects a weakly coupled theory.

This brings us to the next important property of QCD: confinement. For low temperatures, quarks
and gluons are confined to hadrons. In contrast, the large temperature behavior is dominated by decon-
fined quarks and gluons. Lattice QCD calculations have shown that the intermediate regime does not
show a sharp (first or second order) phase transition but rather a continuous crossover.

3 Particle production in heavy ion collisions
When heavy ions are colliding at large center of mass energy, many particles are being produced. Con-
sider for example the first heavy ion run at the LHC. The total collision energy for the Pb-Pb system
is
√
s = 2 × 574 TeV. The fully ionized nuclei 208Pb consist of 82+126=208 nucleons. This implies a

collision energy per nucleon of
√
sNN = 574

208 TeV = 2.76 TeV.

Lower energy experiments performed at the Alternating Gradient Synchrotron (AGS) operating at
BNL since the mid 1980’s reached typical values

√
sNN ≈ 2 – 5 GeV. For the fixed target experiments at

the Super Proton Synchrotron (SPS) at CERN since 1994 the energies are in the range
√
sNN < 17 GeV.

Finally the Relativistic Heavy Ion Collider (RHIC) in operation at BNL since 2000 reaches energies√
sNN ≤ 200 GeV.

The number of charged particles found in the detector varies with the longitudinal angle with
respect to the beam axis. Usually this angle is parametrized by the pseudo-rapidity η = −ln(tan(θ/2)).
Depending on the coverage of the detector one can access dNch/dη in the range of a few units around
mid-rapidity η = 0. Integration of this function (or an interpolation thereof) gives total number of
charged particles Nch. A typical number is Nch = 5060 ± 250 at upper RHIC energies. One should
keep in mind that not all particles are charged and one can estimate the total number of hadrons as
1.6 × 5060 ≈ 8000 hadrons in total. The number of produced particles grows with the collision energy
and at the LHC one can estimate Nch = 25000 corresponding to about 40000 hadrons in total.

Using modern detector technology one can also identify the produced particles and determine the
yields or multiplicities for each species separately. Some results are shown in Fig. 2 together with fits
based on the so-called statistical or thermal model. The thermal model describes the particle yields in
terms of a non-interacting hadron resonance gas in thermal and chemical equilibrium. Essentially all
hadrons and resonances listed by the particle data group are included. Fit parameters are the tempera-
ture T , volume V and chemical potentials for the conserved baryon number µb and similar for isospin,
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Fig. 2: Comparison of hadron yields as measured at RHIC (left panel) and by ALICE at the LHC (right panel) and
fits using the thermal hadronization model. The first figure is taken from ref. [8], the second from ref. [9].

strangeness and charm.

The thermal model works so surprisingly well that a number of questions arise. First of all, why
does it actually work so well? Why should all the particle yields be determined by one and the same tem-
perature? One should keep in mind that hadronization is governed by non-perturbative QCD processes
that are not completely understood yet. One interpretation is in terms of a sudden chemical freeze-out.
The picture is based on a close-to-equilibrium expansion and cool-down of the fluid. Number changing
processes are fast when the densities are high and keep up the chemical equilibrium. At lower tempera-
tures these processes become too slow to keep up with the expansion and particle numbers get frozen in.
The freeze-out process itself is not describable in a close-to-equilibrium picture but if it happens quickly
enough, it is nevertheless possible that the particle yields are frozen in to their thermal values on the
“surface of last inelastic scattering”. In order to explain the fact that a single temperature accounts for
all particle yields, rates of inelastic collisions have to drop rather quickly. It has been argued that this is
the case very close to the chiral crossover [10] and indeed, the chemical freeze-out temperatures as de-
termined from the thermal model fits and the crossover temperatures as calculated by lattice QCD seem
to be in reasonable agreement for the high energy experiments where the net baryon chemical potential
is small. On the other side, this picture seems to be too simple for the experiments at lower energies
corresponding to higher baryon number chemical potentials at freeze-out [11]. In Fig. 3 an overview
over the chemical freeze-out points in the plane of temperature and baryon chemical potential is given
for experiments at various energies together with lattice QCD results about the chiral crossover line.

4 Thermodynamics and fluid dynamics
We now turn to the thermodynamic and fluid dynamic description of the QCD matter that is produced
by relativistic heavy ion collisions. As a warm-up let us recapitulate the Stefan-Boltzmann law for the
pressure of a gas of NB species of real, massless bosonic degrees of freedom and NF real, massless
fermionic degrees of freedom

p(T ) =
π2

90

(
NB +

7

8
NF

)
T 4. (2)

For QCD at high temperatures one hasN2
c −1 gluons in two helicity states whereNc = 3 is the number of

colors, i. e.NB = 2×(N2
c −1) = 16. In addition, in the temperature regime of relevance, there areNf =

4
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Figure 3.1 Results from a lattice calculation of QCD thermodynamics with phys-
ical quark masses (N f = 3, with appropriate light and strange masses). Upper
panel: temperature dependence of the pressure in units of T 4. Lower panel: the
trace anomaly (ε − 3P) in units of T 4. Data are for lattices with the same tem-
poral extent, meaning the same temperature, but with varying numbers of points
in the Euclidean time direction Nτ . The continuum limit corresponds to taking
Nτ → ∞. Figures taken from Ref. [179].

practical challenges of doing lattice-regularized calculations with light quarks that
we have mentioned above.

The current understanding of QCD thermodynamics at the physical point [179]
is summarized in Fig. 3.1. In the upper panel, the pressure of QCD matter (in ther-
mal equilibrium, with zero baryon chemical potential) is plotted as a function of its
temperature. In order to provide a physically meaningful reference, it is customary
to compare this quantity to the Stefan–Boltzmann result

Downloaded from Cambridge Books Online by IP 137.138.93.140 on Tue Sep 01 10:33:58 BST 2015.
http://dx.doi.org/10.1017/CBO9781139136747.003

Cambridge Books Online © Cambridge University Press, 2015

Fig. 4: The “thermodynamic equation of state” or pressure p(T ) (divided by T 4) as a function of temperature T
as calculated from Lattice QCD. Figure taken from ref. [14].

3 quark flavors that are effectively massless with Nc = 3 colors and 2 helicity states. Moreover, quarks
are complex fermions corresponding to 2 real degrees of freedom. That gives NF = 4×Nc×Nf = 30.

Corrections to the pressure in eq. (2) arise from the non-vanishing quark masses as well as from
interactions. For small temperatures there are fewer effective degrees of freedom. For example, for
Mπ < T < Mρ one has approximately NB = 3 massless pions and no massless fermions, NF = 0.
More general, at low temperature, p(T ) can be calculated approximately from a hadron resonance gas.
For the transition region between large and small temperatures one needs a non-perturbative calculation
of p(T ) as it is given by lattice QCD. Fig. 4 shows the result of a lattice QCD simulation at vanishing
chemical potentials, which is the regime most relevant for heavy ion collisions at high energies. By
the formula of thermodynamics, other quantities such as energy density ε(T ), entropy density s(T ) and
so on can be calculated from the pressure p(T ) in terms of the appropriate derivatives and Legendre
transforms.

Let us now come to fluid dynamics. Quite generally, if one considers large enough time and length
scales and if the interaction effects that drive local thermalization are strong enough, quantum fields form
a fluid. A fluid dynamic description is always an approximation which does not describe all particles or
degrees of freedom individually, but it is an approximate description that works rather well for many
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aspects of heavy ion physics. Fluid dynamics is a rather general framework that allows to describe many
different physical phenomena within a common setup and with similar equations. This ranges from
conventional liquids such as water to superfluid helium, strongly interacting cold atomic gases, the quark
gluon plasma or the cosmological fluid.

However, fluid dynamics it is not a closed theory. It needs input from calculations at a more
microscopic level (or corresponding measurements) in terms of some macroscopic material properties.
These are first of all the thermodynamic equation of state, i. e. information such as the function p(T )
from which one can derive also other thermodynamic quantities. In addition one needs information
about transport properties such as the shear viscosity η(T ), the bulk viscosity ζ(T ), heat conductivity
κ(T ) and at least if one is interested in finer details, one also needs corresponding relaxation times
τshear(T ), τbulk(T ) and other related quantities.

As a theoretical framework, fluid dynamics is organized as an expansion in derivatives. The lowest
order is ideal fluid dynamics which we discuss first. The starting point is the energy-momentum tensor
of a fluid in global thermal equilibrium,

Tµν = εuµuν + p (gµν + uµuν) (3)

with (inverse) metric gµν and fluid velocity uµ. In Minkowski space and in cartesian coordinates, the
metric is a diagonal matrix with entries -1,+1,+1,+1 in our conventions. The fluid velocity is uµ =
(1, 0, 0, 0) in the reference frame where the fluid is at rest but deviates from this in other frames. It is
normalized by gµνu

µuν = −1. The pressure p is related to the energy density ε by a thermodynamic
equation of state, p = p(ε).

Now let us go from global thermal equilibrium to local equilibrium. The ideal fluid approximation
assumes that Tµν is of the form in (3) but now with space and time dependent energy density ε = ε(x) and
fluid velocity uµ = uµ(x). From the conservation law ∇µTµν = 0 one can obtain evolution equations
for ε(x) and uµ(x) in ideal fluid dynamics,

uµ∂µε+ (ε+ p)∇µuµ = 0,

(ε+ p)uµ∇µuν + (gνµ + uνuµ) ∂µp = 0.
(4)

In these equations, no dissipative effects and in particular no viscosities have been taken into account.
This is remedied at the next level of the derivative expansion.

One can decompose a general symmetric energy-momentum tensor as

Tµν = εuµuν + (p+ πbulk)∆µν + πµν (5)

where the shear stress πµν is symmetric, transverse to the fluid velocity, uµπ
µν = 0, and traceless,

πµµ = 0. The bulk viscous pressure πbulk and shear stress πµν parametrize deviations from ideal fluid
dynamics. To first order in derivatives of the fluid velocity one has

πbulk =− ζ∇µuµ + . . . ,

πµν =− 2η
(

1
2∆µα∆νβ + 1

2∆µβ∆να − 1
3∆µν∆αβ

)
∇αuβ + . . . ,

(6)

with bulk viscosity ζ = ζ(ε) and shear viscosity η = η(ε). At second order also the relaxation times
τshear(ε) and τbulk(ε) enter, as well as other terms.

Let us now discuss in a little more detail the equations of relativistic viscous fluid dynamics. The
evolution equation for energy density becomes for the viscous theory

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0. (7)

The non-relativistic limit ~v2 � c2 gives for the first order approximation

∂tε+ ~v · ~∇ε+ (ε+ p)~∇ · ~v = ζ
(
~∇ · ~v

)2
+ 2 η σijσij , (8)
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with σij = 1
2∂ivj + 1

2∂jvi − 1
3δij(

~∇ · ~v). The left hand side of this equation describes the change in the
fluid’s internal energy ε by thermodynamic work due to expansion or contraction of the fluid. The right
hand side describes the dissipation of the fluid’s macroscopic kinetic energy to thermal energy. Using the
thermodynamic relations ε+ p = sT and dε = Tds where s is the entropy density, leads to an equation
for entropy production

∂ts+ ~∇ · (s~v ) =
ζ

T

(
~∇ · ~v

)2
+

2η

T
σijσij . (9)

A local form of the second law of thermodynamics says that the entropy can never decrease. Accordingly,
the right hand side of eq. (9) must be positive semi-definite. This implies in particular ζ ≥ 0 and η ≥ 0.

The evolution equation for the fluid velocity becomes for the viscous theory

(ε+ p+ πbulk)uµ∇µuν + ∆νµ ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0. (10)

The non-relativistic limit of this equation gives for the first order approximation the non-relativistic
Navier-Stokes equation (ρ is the mass density which is well defined for a non-relativistic fluid)

ρ
[
∂tvj + ~v · ~∇vj

]
+ ∂jp = ∂j

(
ζ ~∇ · ~v

)
+ ∂m

(
2 η σjm

)
. (11)

In this equation, the second term on the left hand side describes acceleration by pressure gradients. The
terms on right hand side describe damping by viscosity. More general than the first order approximation,
the equations for ε and uµ which follow from the conservation law ∇µTµν = 0, get closed by relations
for πbulk and πµν , the so called constitutive relations.

Let us now discuss the transport properties that enter fluid dynamics. For a fluid without any
conserved charges besides energy and momentum, such as the quark gluon plasma at negligible net
baryon number density, the most relevant transport properties are shear and bulk viscosity. The physical
mechanism underlying viscosity is the microscopic transport of momentum. Typically, the momentum is
transported out of a local fluid cell by diffusive processes which involve particles, radiation or more gen-
eral quasi-particles. The strength of shear viscosity can be quantified in terms of the ratio η/s. In order
for this ration to become large, momentum must be transported efficiently over distances s−1/3 by well
defined quasiparticles. On the other side, theories with small η/s have no well defined quasiparticles.

In general, transport properties like shear viscosity, bulk viscosity, heat conductivity, relaxation
times, etc. are difficult to determine from quantum field theory. Lattice QCD calculations in Euclidean
space cannot determine them directly and the analytic continuation from Euclidean to Minkowski space
is numerically very difficult. Concrete expressions can be obtained for very weakly interacting theories
from perturbation theory (or from a mapping to kinetic theory) or for strongly interacting theories with
gravity dual via the AdS/CFT correspondence. For theories that are neither very weakly nor very strongly
interacting, the determination of transport properties is essentially an open problem.

An example, where the viscosities are known, is a dilute simple non-relativistic gas with elastic
two-to-two collisions. Here one can obtain from kinetic theory

η = τf nT, (12)

with particle density n, temperature T , and mean free time

τf =
1

σtot v̄ n
. (13)

In the last equation, σtot is the total elastic cross section and v̄ the mean square velocity of the particles
with respect to the fluid velocity. Using T = 1

3mv̄
2 gives

η =
mv̄

3σtot
. (14)
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Interestingly, the shear viscosity becomes large for small cross-section! The bulk viscosity vanishes for
the simple non-relativistic gas, ζ = 0.

For QCD, the transport properties can be determined at very high temperature where QCD be-
comes weakly coupled, g � 1. The shear viscosity at leading logarithmic accuracy is [15]

η(T ) = k(Nf )
T 3

g4 ln(1/g)
. (15)

The bulk viscosity is related to this via the velocity of sound cs [16]

ζ(T ) ≈ 15η(T )
(

1
3 − c

2
s(T )

)2
. (16)

For very high temperature c2
s → 1/3 and ζ → 0.

One can also determine the transport properties for a class of strongly interacting field theories
which have a gravitational dual in the sense of the AdS/CFT correspondence. It was found that for
conformal theories with gravitational dual one has η(T ) = s(T )/(4π) [17]. This was later conjectured
to be a universal lower bound for any fluid [18],

η

s
≥ ~

4πkB
. (17)

(We have restored units ~ and kB to make the quantum nature of this conjectured bound apparent.)
Meanwhile, theoretical counterexamples have been found but experimentally, no system seems to violate
the bound so far.

For some theories with deviations from conformal symmetry it was found that the bulk viscosity is
related to the shear viscosity by ζ(T ) = 2η(T )

(
1
3 − c

2
s(T )

)
[19] but this does not seem to be a universal

relation.

Ultimately, one would like to gain a theoretical understanding of the shear and bulk viscosity (and
related relaxation times) of QCD for the whole range of temperatures. It is possible to write down formal
expressions (so called Kubo relations) which express the transport coefficients in terms of correlation
functions that can in principle be determined in terms of functional integral expressions. However,
it is in practice rather difficult to solve the corresponding equations. Nevertheless, some theoretical
attempts in this direction are currently ongoing, using for example the analytic continuation of lattice
QCD results [20, 21] or functional renormalization group calculations [22, 23].

5 Fluid dynamics of the fireball for more and more realistic initial conditions
In this section we will discuss the actual solution of relativistic viscous fluid dynamics for the fireball
created by two colliding heavy ions. It is obvious that these solutions depend on the initial conditions as
they are specified at some early time where the fluid dynamic description is initialized. It would be great
to know these initial conditions in detail, for example from first principle calculations in QCD. This is
however a very difficult problem by itself. So for the time being, the detailed initial conditions are not
known but some of their properties are.

Generically, solutions of partial differential equations as the ones of fluid dynamics are easier
to find when the initial conditions are more symmetric. We will therefore start our discussion with
particularly symmetric and therefore simple situations although they are not fully realistic. We will then
increase the complexity step by step and thereby become more and more realistic.

We start by considering the fluid velocity in the longitudinal direction z, i. e. in the direction
parallel to the beam axis. What should be the fluid velocity in that direction as a function of time
and space coordinates? It was first argued by Bjorken that a good guess should be vz = z/t where
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the longitudinal position z and the time t are defined such that the actual collision took place at the
coordinate origin, i. e. at z = t = 0. Note that due to the high energy, the ions are strongly Lorentz
contracted in the longitudinal direction such that to good approximation one can speak of a collision at a
single instance in time and longitudinal space direction, indeed. In a coordinate system consisting of the
longitudinal proper time τ =

√
t2 − z2, the transverse coordinates x, y, and rapidity η = arctanh(z/t),

the fluid velocity is of the form uµ = (uτ , ux, uy, 0), i. e. the fluid velocity in the rapidity direction
vanishes. If scalar functions like energy density depend on t and z only in terms of the proper time,
ε = ε(τ, x, y) an invariance under boosts in the longitudinal direction η → η + ∆η arises (so called
Bjorken boost invariance). The remaining initial value problem to be solved is then effectively only 2+1
dimensional. This is a substantial simplification. Bjorken boost symmetry is an idealization but it is
reasonably accurate close to mid-rapidity η ≈ 0.

Based on the above considerations one can construct a toy model that can almost be solved ana-
lytically. Consider initial conditions at τ = τ0 of the form ε = ε(τ0), uµ = (1, 0, 0, 0). This describes
an initial energy density that is extended over the whole transverse plane. Although this is of course
not realistic for the whole fireball it constitutes a simplified model for inner region at early times after a
central collision. In addition to Bjorken boost invariance η → η+∆η, the initial conditions are now also
symmetric with respect to translations and rotations in the transverse plane. Together, these symmetries
imply that uµ = (1, 0, 0, 0) for all times τ and that ε = ε(τ) is independent of x, y and η. It remains to
solve a single, 0+1 dimensional differential equation to determine ε(τ). In the first order formalism of
viscous relativistic fluid dynamics, this equation reads

∂τ ε+ (ε+ p)
1

τ
−
(

4
3η + ζ

) 1

τ2 = 0. (18)

The solution depends on the thermodynamic equation of state p(ε) and the viscosities η(ε) and ζ(ε).

For example, assuming p ∼ ε ∼ T 4 leads to

∂τT +
T

3τ

(
1− 4η/3 + ζ

sTτ

)
= 0. (19)

The solution for η/s = const and ζ = 0 is

T (τ) = T (τ0)
(τ0

τ

)1/3
[
1 +

2

3τ0T (τ0)

η

s

(
1−

(τ0

τ

)2/3
)]

. (20)

For an ideal fluid where η/s = 0, or more general at late times, the temperature simply decays like
T ∼ τ−1/3. This is due to the dilution of the fluid by the longitudinal expansion. For η/s > 0 and at
early times there is in addition a small heating effect due to shear viscosity. Fig. 5 illustrates the solution
in eq. (20) for different values of η/s.

Let us now increase the level of complexity by one step and study an initial energy density with
somewhat more realistic dependence on the transverse coordinates. For an azimuthally symmetric, cen-

tral collision event, the energy density is of the form ε = ε(τ, r) where r =

√
x2 + y2. Connected with

the initial energy distribution is a pressure gradient in radial direction which leads after a short time to
a positive fluid velocity in radial direction, ur > 0, the so-called radial flow. To determine ε(τ, r) or
T (τ, r) and the fluid velocity ur(τ, r) one needs so solve a system of 1+1 dimensional, coupled differen-
tial equations, which is still rather easy to do numerically. A solution for T (τ, r) obtained for a realistic
initial temperature profile, as well as equation of state and viscosities, is shown in Fig. 6. The effects of
the longitudinal as well as radial expansion are clearly visible.

Before we continue our endeavor of solving viscous relativistic fluid dynamics for more and more
realistic initial conditions, let us pause for a moment and consider the process of kinetic freeze-out.
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Fig. 5: Bjorken flow solution for temperature T as a function of proper time τ for different values of the ratio of
shear viscosity to entropy density η/s. Figure taken from ref. [24].
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Fig. 6: Temperature profile T (τ, r) as a function of radius r for different times τ . The equation of state, shear
viscosity and initial values are chosen as described in ref. [25].

Although we can in principle follow the dynamics of the expansion and the associated dilution and cool-
down of the fluid as described by fluid dynamics down to very small temperatures, there is in reality
a point where the fluid dynamic description breaks down. Indeed, after the transition from quarks and
gluons to hadronic degrees of freedom and when the temperature and densities drop further, collisions
become less and less frequent. At some point, hadrons stop interacting and occupation numbers in
momentum space do not change any more. This is the process of kinetic freeze-out.

Just before the freeze-out one might assume local close-to-equilibrium occupation numbers of
hadrons in each fluid element

dNi

d3pd3x
= fi(p

µ; T (x), uµ(x), πµν(x), πbulk(x)). (21)

The occupation numbers for each particle species as a function of the thermodynamic variables, the fluid
velocity and the dissipative shear stress and bulk viscous pressure can in principle be determined from
microscopic calculations. For example, neglecting the effect of πµν and πbulk and assuming an ideal gas
with Boltzmann statistics gives

fi = ci e
uµ(x)p

µ

T (x) → ci e
− E�p−�v(x)·�p

T (x) (�v2 � c2). (22)

In the last expression we have taken the non-relativistic limit for illustration. The factor ci accounts for
the degeneracy due to spin. Summing up the contribution of all fluid cells in terms of an integral over the
three-dimensional freeze-out hyper-surface (or hyper-surface of last scattering) Σf yields particle spectra
in momentum space as they can actually be measured in the particle detector [26],

E
dNi

d3p
= − 1

(2π)3
pµ

∫

Σf

dΣµ fi. (23)
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The freeze-out surface is in principle determined by the dynamics of expansion and the scattering pro-
cesses. In practice it is often assumed for simplicity that is corresponds to a surface of constant temper-
ature Tfo in the region around 100 MeV.

The particle spectraE dNi
d

3
p

are usually written in terms of the momentum rapidity y = arctanh(pz/E),

the transverse momentum pT and the momentum azimuthal angle φ as dNi/(dydφ pTdpT ). They inherit
some symmetry properties from the fluid dynamic fields. For example, when the fluid dynamic fields
are independent of position-space rapidity η, the spectrum is independent of momentum space rapid-
ity y. Similarly, the spectrum originating from an azimuthally symmetric solution of fluid dynamics is
independent of the momentum-space azimuthal angle φ.

In order to reliably calculate the particle spectrum dNi/(dydφ pTdpT ) one has to solve the rel-
ativistic fluid dynamic equations. There is, however, also a shortcut that is often used to study some
aspects of the resulting particle spectrum, the so-called blast-wave models. For these, the particle spectra
are not determined from realistic solutions of fluid dynamics but rather for a simplified ansatz and a sim-
ple parametrization of the kinetic freeze-out surface. For example, one might assume for simplicity that
freeze-out takes place at constant time τf and in a transverse area with radius r < rmax. If one also as-
sumes constant temperature T and radial flow velocity vr, as well as the Boltzmann occupation numbers
as in equation (22), one can solve the integrals in eq. (23) and one obtains the analytic expression

dNi

dyd2pT
=

ci

4π2 τfr
2
max

√
p2
T +m2

i K1




√
p2
T +m2

i

T

√
1− v2

r


 I0


 pT vr

T

√
1− v2

r


 , (24)

where K1(·) and I0(·) are Bessel functions. Many variants of such simple blast-wave models have been
studied. They capture some qualitative features of full fluid dynamics solutions. Generically, particle
spectra following from integrals over thermal occupation numbers are close to exponential shape. The
radial flow velocity, so-called radial flow, leads to a “blue shift” of the particle spectrum. Another generic
observation is that particle spectra become steeper for smaller particle mass mi.

An experimental result for the spectrum of charged particle as a function of pT is shown in Fig.
7. For the 0-5% most central collisions and small pT , the spectrum has an almost exponential form
indeed, with the slope determined by freeze-out temperature and radial flow velocity. In contrast, for
peripheral collisions, the spectrum measured in heavy ion collisions is of a form similar to the proton-
proton reference.

Let us now come to non-central collisions. The overlap region of two nuclei, illustrated in Fig.
8, is approximately “almond shaped”. Correspondingly, the initial energy density at the point where a
fluid dynamic description becomes valid, has this shape, as well. The pressure gradients are larger in the
reaction plane which leads after some time of fluid dynamic evolution to a larger fluid velocity in this
direction. The freeze-out formula in eq. (23) implies then that more particles fly in this direction after
freeze-out than in the transverse direction orthogonal to this. This asymmetry is quantified in terms of
the elliptic flow coefficient v2.

Quite general, an azimuthal particle distribution can be expanded like

dN

dφ
=
N

2π

[
1 + 2

∑

m

vm cos (m (φ− ψm))

]
(25)

where the coefficients vm are called harmonic flow coefficients and the ψm are corresponding angles
(obviously the ψm are defined modulo 2π/m). If the particle asymmetry originates solely from the
orientation of the reaction plane, the angles should all be the same, ψm = ψR (up to terms π/m which
determine the sign of vm). Moreover, the symmetry with respect to φ → φ + π of the configuration in
Fig. 8 would imply v1 = v3 = v5 = . . . = 0.
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2.1 General characteristics of heavy ion collisions 9
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Figure 2.3 Charged particle spectrum as function of pT in Pb+Pb collisions at
LHC energy for nearly head-on (the 5% of collisions with the lowest impact
parameter) and grazing collisions, compared to the corresponding spectrum in
p+p collisions with an appropriately scaled normalization. Figure taken from
Ref. [7].

have momenta in the soft sector; hard particles are rare in comparison. The separa-
tion between the hard and the soft sectors, which is by no means sharp, lies in the
range of a few (say 3–6) GeV.

There are several lines of evidence that indicate that the soft particles in a heavy
ion collision, which are the bulk of all the hadrons in the final state, have rescattered
many times and come into local thermal equilibrium. The most direct approach
comes via the analysis of the exponentially falling spectra of identified hadrons.
Fitting a slope to these exponential spectra and then extracting an “effective tem-
perature” for each species of hadron yields different “effective temperatures” for
each species. This species dependence arises because the matter produced in a
heavy ion collision expands radially in the directions transverse to the beam axis;
perhaps explodes radially is a better phrase. This means that we should expect
the pT spectra to be a thermal distribution boosted by some radial velocity. If
all hadrons are boosted by the same velocity, the heavier the hadron the more its

Downloaded from Cambridge Books Online by IP 137.138.93.140 on Mon Jul 13 14:09:28 BST 2015.
http://dx.doi.org/10.1017/CBO9781139136747.002

Fig. 7: Charged particle spectrum as a function of the transverse momentum in central (0 - 5%) and peripheral (70
- 80%) heavy ion collisions as measured by the ALICE collaboration. Figure taken from ref. [27].

Fig. 8: Illustration of a non-central heavy ion collision. The dashed lines mark the density of the two colliding
nuclei in the transverse plane, the red line marks the overlap region. The arrows illustrate the elliptic flow which
results from the initial pressure gradients. Figure taken from ref. [2].

At this point, some remarks on experimental techniques are in order. The impact parameter of a
heavy ion collisions is of course random. It can neither be adjusted nor be measured precisely. There is,
however, a statistical method to say something about impact parameters. The underlying principle is that
very central collisions produce more charged particles, in contrast to more peripheral collisions. One can
order the full set of events recorded during some measurement campaign according to the multiplicity and
divide them into classes - so called centrality classes. An histogram-type diagram with the corresponding
centrality classes is shown in Fig. 9. Using further elements of modeling - for example based on the so-
called Glauber model - one can associate impact parameters, or ranges of impact parameters, to these
centrality classes with the highest multiplicity class corresponding to the smallest impact parameters.
The harmonic flow coefficients vm can also be measured as a function of transverse momentum pT . An
example for elliptic flow is shown in Fig. 10 for different centrality classes in a comparison between
early results from the LHC and similar measurements at RHIC.

A very interesting observables is also a two-particle correlation function defined by a ratio of the
expectation value of particle distributions at two angles φ1 and φ2 by two separate expectation values of
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Fig. 9: Centrality classes as determined via the multiplicity in the Time Projection Chamber (TPC) by the ALICE
collaboration. Figure taken from ref. [28].

2.2 Flow 21

pT (GeV/c)

0 1 2 3 4 5

v 2
{4

-p
ar

tic
le

 c
um

ul
an

t m
et

ho
d}

0.05

0.1

0.15

0.2

0.25

10 – 20%

20 – 30%

30 – 40%

10 – 20%(STAR)

20 – 30%(STAR)

30 – 40%(STAR)

Figure 2.8 Transverse momentum dependence of the elliptic flow v2(pT ) for
different centrality bins. Measurements made by the ALICE Collaboration at
the LHC (colored points) are compared with parametrized data from the STAR
Collaboration at RHIC (gray shaded bands). We see v2 increasing as one goes
from nearly head-on collisions to semi-peripheral collisions. Figure taken from
Ref. [5].

simulations of the type we shall discuss below. We shall therefore only discuss the
dynamical understanding of how the ϵn are related to the vn for the moments with
n ≥ 2. We shall first consider an event-averaged almond-shaped nuclear overlap
zone (left-hand side of Fig. 2.7), before we turn to a discussion of the novel oppor-
tunities arising from a study of event-by-event fluctuations (like those illustrated
on the right-hand side of Fig. 2.7).

A Discussion for event-averaged spatial asymmetries

In Fig. 2.8, we show data for the transverse momentum dependence of the elliptic
flow v2(pT ) measured for different centrality classes in Au+Au collisions at RHIC
and in Pb+Pb collisions at the LHC. It is striking that the v2(pT ) measured at√

s = 2.76 TeV by ALICE in three different impact parameter bins agrees within
error bars at all values of pT with that measured at

√
s = 200 GeV by the STAR

collaboration at RHIC out to beyond 4 GeV in pT . On a qualitative level, this
indicates that the quark-gluon plasma produced at the LHC is comparably strongly
coupled, with comparably small η/s, to that produced and studied at RHIC.

Heavy ion collisions at both RHIC and the LHC feature large azimuthal asym-
metries. To appreciate the size of the measured elliptic flow signal, we read from
(2.6) that the ratio of d N/d3p in whatever azimuthal direction it is largest to
d N/d3p ninety degrees in azimuth away is (1 + 2v2)/(1 − 2v2), which is a factor

Downloaded from Cambridge Books Online by IP 137.138.93.140 on Mon Jul 13 14:09:28 BST 2015.
http://dx.doi.org/10.1017/CBO9781139136747.002
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Fig. 10: Elliptic flow v2 as a function of transverse momentum for different centrality classes as measured by the
ALICE collaboration at the LHC (symbols) and by the STAR collaboration at RHIC (shaded regions). Figure taken
from ref. [28].

this type,

C(φ1, φ2) =
〈 dNdφ1

dN
dφ2
〉events

〈 dNdφ1
〉events〈 dNdφ2

〉events
= 1 + 2

∑

m

v2
m cos(m (φ1 − φ2)). (26)

A priori, this depends on the two angles φ1 and φ2 but due to the statistical azimuthal rotation symmetry
it is a function of the difference φ1 − φ2, only. Experimentally, the correlation function is typically
measured with a rapidity gap ∆η imposed between the two particles whose correlation in azimuthal
angle is studied. The last equation in (26) is the prediction for this correlation function in a fluid dynamic
model. It shows that one can obtain the squares of the harmonic flow coefficients v2

m by performing
a Fourier decomposition of the correlation function C(φ1 − φ2). Now, surprisingly, if one does the
corresponding analysis for a set of events with very high multiplicity corresponding to the centrality
class with the lowest impact parameters as shown in Fig. 11, one finds that the flow coefficients v2, v3,
v4, v5 and v6 are actually all non-zero! At the same time, the full correlation function is actually very
nicely represented by the superposition of these harmonic modes.

This result is surprising for two reasons. First, the symmetry with respect to φ→ φ+ π discussed
below eq. (25) would imply that the odd flow coefficients v3, v5 etc. should vanish. Moreover, for very
central collisions, the elliptic flow coefficient v2 as well as higher order even coefficients v4, v6 etc.
should actually vanish, as well, if they simply measure the effect of a non-vanishing impact parameter.
The fact that this is not the case shows that additional effects not discussed so far must play a role here.
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Fig. 11: Two-particle azimuthal correlation for the 0-1% centrality class as measured by the ALICE collaboration.
The solid red line shows the sum of the contributions from anisotropic flow coefficients v2, v3, v4 and v5 (dashed
lines). Figure taken from ref. [30].

�10 �5 0 5 10

�5

0

5

Fig. 12: Transverse energy density from a Monte-Carlo Glauber model. See text for further explanations. Figure
taken from ref. [31].

In fact, what we have not discussed so far, are event-by-event fluctuations in the initial energy
density distribution. We have based our arguments, for example for v3 = v5 = 0, on smooth and
symmetric energy densities corresponding to expectation values. For a single event, the energy densities
can deviate from this simple picture, however. This is actually predicted by realistic models of the
initial state. Consider for example the Glauber model. The nuclei are here modeled as a combination
of nucleons which have a statistical distribution in the form of a Woods-Saxon profile. A heavy ion
collision is modeled by a superposition of individual collisions between nucleons. We will not discuss
the details of this model here but illustrate the resulting energy density in Fig. 12. On the left hand
side, the transverse positions of the nucleons in the two nuclei are marked by the red and black rings.
The size corresponds to the nuclear cross section. Those nucleons that overlap with nucleons from the
other nucleus are marked in addition by blue and green rings. The right hand side of fig. 12 shows the
energy density that results if one associates a certain Gaussian-shaped contribution to each individual
nucleon-nucleon collision.

Because of the fluctuations in the initial energy density, sizable flow coefficients vm can be gener-
ated by the fluid dynamic expansion, even for central collisions. Beyond the energy density, also the other
fluid dynamic fields such as fluid velocity, shear stress, bulk viscous pressure or baryon number density
may actually have fluctuating initial configurations. It is currently an interesting direction of research to
understand this better, both from analyzing experimental data and from theoretical investigations.

At this point, a few remarks on theoretical simulations of heavy ion collisions based on relativistic
fluid dynamics might be in order. Specialized numerical codes have been developed for this purpose
and typically they solve a variant of second order relativistic fluid dynamics for given initial conditions
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u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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Fig. 13: Root-mean-square anisotropic flow coefficients 〈v2
n〉1/2 as a function of transverse momentum (left panel)

and centrality (right panel) as calculated by numerical fluid dynamic simulations [32], compared to experimental
data by the ATLAS [29] and ALICE collaborations [30]. Figures taken from ref. [32].

and also include a description of the kinetic freeze-out and in some cases a subsequent phase of hadron
resonance decays and further scatterings described by kinetic theory. The codes use the thermodynamic
equation of state as calculated from lattice QCD and initial conditions which fluctuate from event-to-
event and are calculated from the Monte-Carlo Glauber or related models. The transport properties such
as η/s are usually varied with the goal of determining the experimentally favored value. A result of such a
comparison is shown exemplarily in Fig. 13. Typical values for η/s that are favored by such comparisons
between theory and experiment are in the range of a few times 1/(4π) ≈ 0.08. This suggests that the
fluid dynamics in the relevant phase might be dominated by strongly coupled degrees of freedom. More
realistically, η/s should not be constant but vary with temperature T and it will be one of the challenges
for the coming years to see how one can constrain this dependence from the experimental data.

6 Initial state fluctuations and their fluid dynamic propagation
Because fluctuations in fluid dynamic fields have played such an interesting role in heavy ion phe-
nomenology in the recent years, and will probably continue to do so in the coming years, we will discuss
them here in a little more detail.

Interesting are in particular initial fluid perturbations which are event-by-event fluctuations around
a background or average of fluid fields at the (proper) time τ0 where the fluid dynamic description is ini-
tialized. Examples for fluid dynamic fields are the energy density ε, the fluid velocity uµ, the shear stress
πµν or the bulk viscous pressure πbulk. Although they can usually be neglected, there are questions for
which also other variables like the baryon number density nB , the electric charge density, electromag-
netic fields or others have to be taken into account. Fluctuations in fluid fields are particularly interesting
because they are governed by universal evolution equations and because they can be used to constrain the
thermodynamic and transport properties of a QCD fluid. Moreover, they contain interesting information
from early times and can be taken as a measure for deviations from complete thermal equilibrium.

In some respects, the situations is similar as for the cosmic microwave background and the large
scale structure which are studied in cosmology. Also there, the fluctuation spectrum contains very in-
teresting information from early times and from the history of the dynamical expansion. Much can be
learned because many numbers can be measured and compared to theory. This in turn has lead cosmol-
ogists to a detailed understanding of the evolution history and the properties of our universe. A similar
development may eventually trigger something like a precision era in heavy ion physics.

What would one have to do to understand initial fluid fluctuations in detail? Here is a program:
First, one would have to characterize initial state fluctuations in a suitable and ideally complete way.
Second, these fluctuations or perturbations need to be propagated through the fluid dynamic regime.
Third, one has to determine their influence on particle spectra and harmonic flow coefficients. Finally,

15

A VERY BRIEF INTRODUCTION TO HEAVY ION PHYSICS

155



one should take also perturbations from non-hydro sources, as for example jets, into account.

One possibility to implement the above program is in terms of numerical simulations, or more
specific, event-by-event viscous relativistic hydrodynamic simulations (see e.g. ref. [33] for a recent
overview). However, one can also make progress by (semi) analytic methods which are closer to the
theoretical methods used to in cosmology. This shows the parallels between the big bang and the little
bangs in the laboratory in more detail.

The theoretical approach called “Mode-by-mode fluid dynamics” or “Fluid dynamic perturbation
theory for heavy ions” works in analogy to the Cosmological perturbation theory [25]. For that, one
first solves the fluid equations of motion for a smooth background corresponding essentially to an av-
eraged initial condition and afterwards order-by-order in perturbations around that configuration. The
convergence properties of this expansion have been investigated and seem favorable [34]. The back-
ground solution can be taken symmetric with respect to azimuthal rotations and Bjorken boosts in the
longitudinal direction while the perturbations can break these (statistical) symmetries.

For mode-by-mode fluid dynamics, a characterization of initial conditions in terms of a Bessel-
Fourier expansion is particularly favorable. To that end one writes a transverse density distribution, say
for the enthalpy density w = ε+ p in the following form [25, 35, 36],

w(r, φ) = wBG(r) + wBG(r)
∑

m,l

w
(m)
l eimφ Jm

(
z

(m)
l ρ(r)

)
. (27)

The function wBG(r) parametrizes the azimuthally symmetric background configuration. The argument
of the Bessel functions Jm is given by the numbers z(m)

l which correspond to the l’th zero crossing of the
function Jm(z), and the function ρ(r) which maps the relevant range of transverse radii r to the interval
[0,1]. A particularly useful choice is discussed in ref. [36].

The expansion coefficients w(m)
l are dimensionless and have a discrete azimuthal wavenumber m

as well as a radial wavenumber l. Higher values of m and l correspond to finer spatial resolution. The
coefficients w(m)

l can also be related to the so-called eccentricities, another popular way to characterize
initial transverse density distributions. While the expansion in (27) can be used for scalar quantities
such as enthalpy density, a similar expansion can be used for vectors (such as the fluid velocity) and
tensors (such as the shear stress). Observe that when all the coefficients w(m)

l vanish, one is left with the
background configuration, only. The configuration in (27) is independent or rapidity η but it is straight
forward to extend the scheme in that direction.

Quite generically, one can now solve the fluid equations of motion by the following perturbative
scheme. One writes the hydrodynamic fields h = (w, uµ, πµν , πBulk, . . .) at initial time τ0 as h =
h0 + ε h1 with the background configuration h0 and the fluctuation part ε h1. We have introduced here
a formal expansion parameter ε. At later times τ > τ0 one can write the fluid fields as h = h0 +
ε h1 + ε2h2 + ε3h3 + . . .. Solving for the time evolution in this scheme implies to determine h0 as
the solution of full, non-linear fluid equations but in a partcularly symmetric situation with azimuthal
rotation and Bjorken boost invariance. The linear term h1 is a solution of the linearized fluid equations
where the linearization is done around the background configuration h0. This solution can be determined
mode-by-mode, i. e. for each mode with one azimuthal wavenumber m and radial wavenumber l in the
expansion (27). The quadratic term h2 can be obtained from an iterative solution involving quadratic
interactions between modes and so on.

In order to find the linear solution h1, it is advantageous to use again a Fourier expansion in the
azimuthal direction and with respect to rapidity. In that way, one can effectively reduce the numerical
problem from a 3+1 dimensional partial differential equation to a 1+1 dimensional one. The latter is
rather easy to solve numerically. This reduction of the complexity helps also to find the quadratic and
higher order terms.

The perturbative scheme can also be used at freeze-out. For that purpose one propagates both
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the background and the perturbations until the freeze-out surface has been reached. In the perturbative
scheme, the latter is determined by the background solution alone and can correspond for example to
constant background temperature. (In general, there is no precise understanding of where the freeze-out
surface is positioned exactly.) The freeze-out surface is then as symmetric as the background config-
uration. Also the particle spectrum due to the background inherits these symmetries. However, the
corrections due to the perturbations are not symmetric. In contrast, at linear order, they inherit the trans-
formation behavior of the initial modes. At quadratic and higher orders this is a little more involved but
straight forward to determine directly or by simple group theoretic methods.

One can expand the resulting particle spectrum for a single event to linear order in initial state
perturbations like [37]

ln

(
dN single event

pTdpTdφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑

m,l

w
(m)
l eimφθ

(m)
l (pT )

︸ ︷︷ ︸
from fluctuations

+ . . . . (28)

Note that each mode comes with an angle, w(m)
l = |w(m)

l | e
−imψ(m)

l and the contribution of each mode
has different pT -dependence, θ(m)

l (pT ). At quadratic order, the expression in (28) is supplemented by a
term or the form ∑

m1,m2,l1,l2

w
(m1)
l1

w
(m2)
l2

ei(m1+m2)φ κ
(m1,m2)
l1,l2

(pT ). (29)

The non-linearities parametrized by the function κ(m1,m2)
l1,l2

(pT ) arise both from the non-linear terms in
the fluid dynamic evolution and from non-linear terms at freeze-out.

One can also determine the harmonic flow coefficients defined in eq. (25) within this scheme. For
a single event one has

V ∗m = vme
−imψm

=
∑

l

S(m)l w
(m)
l +

∑

m1,m2,
l1,l2

S(m1,m2)l1,l2
w

(m1)
l1

w
(m2)
l2

δm,m1+m2
+ . . .

The function S(m)l is here the linear dynamic response function and S(m1,m2)l1,l2
may be called a

quadratic dynamic response function and so on. The symmetries of the problem imply a conservation
of azimuthal wavenumber. The response functions can be determined and they depend on the thermo-
dynamic and transport properties of the fluid formed by the quark gluon plasma, in particular viscosity.
One of the challenges for the coming years will be to understand these dependencies in detail and to use
the experimental knowledge about the response functions in order to constrain the thermodynamic and
transport properties of QCD from experimental data.

7 Jet quenching
We will now leave the fluid dynamic considerations aside and concentrate for the remaining time on
processes at higher energies. More specific, consider again the transverse momentum distribution of
charged particles in Fig. 7. At small transverse momenta and for central collisions, the particle spectra
are determined by the decay products of a thermalized medium. This is reflected in a close-to-exponential
shape, which shows up as a straight line on the logarithmic scale of Fig. 7. In contract, the physics of high
energetic particles and partons is different: they are not thermalized but can nevertheless be influenced by
the medium. More specific, they can loose energy and momentum to the medium when they fly through
it.

To understand this in a little more detail, let us first recapitulate some elements of the description
of high energetic processes in conventional hadron collisions (for example proton - proton or proton -
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antiproton collisions). An important theoretical concept is the one of factorization. According to this
principle, processes at high energy are governed by a convolution of

– Process-independent parton distribution functions which parametrize the probability to find par-
tons with given momentum in the incident hadron.

– Process-dependent hard scattering cross sections which determine the probability that initial par-
tons scatter to final state partons with given momenta.

– Process-independent parton fragmentation functions which describe the probability that final state
partons fragments into a jet with certain hadron content.

A very detailed theoretical and experimental understanding of high energetic processes in hadron
collisions using perturbative QCD has been gained over the years with the help of the factorization
principle. This constitutes a solid foundation to measure changes occurring in heavy ion collisions. A
very short summary of these changes is as follows. Nuclear parton distribution functions differ from
proton parton distribution functions but may be measured by proton-nucleus collisions, electron-nucleus
collisions etc. Hard scattering cross sections are not modified by the medium if the momentum transfer
is high enough. The key modification in a heavy ion context compared to hadron collisions is: After
production, high energetic partons must propagate through the hot and dense medium produced in heavy
ion collisions. By interactions with the (soft) gluons and quarks in the medium, high energetic partons
loose part of their energy and momentum. Because parton production rates are steeply falling with
energy, energy loss leads to a reduction of the number of partons with large energy. This can be clearly
seen in Fig. 7.

The energy loss of highly energetic partons in a heavy ion collision can also be seen on the level
of reconstructed jets. One prominent observable in this context is the so-called dijet asymmetry which is
defined as

AJ =
pT,1 − pT,2
pT,1 + pT,2

(30)

where pT,1 and pT,2 are the transverse momenta of a leading and a sub-leading jet, respectively. Event
distributions of this observable are shown in Fig. 14 for different centrality classes, as measured by the
CMS collaboration. Also shown there are results of simulations based on the Monte-Carlo code PYTHIA,
which does not take any jet energy loss into account. For peripheral collisions, the distribution is also
compared to proton-proton collisions. As one can see clearly, the measured asymmetries in heavy ion
collisions have the tendency to be larger than in the simulations for central collisions, which illustrates
that a significant fraction of transverse momentum gets transported outside the jet cone by interactions
with the medium.

We do not have the space here to discuss the theory of jet energy loss in detail. Very briefly, the
main parton energy loss mechanism in QCD is medium induced gluon radiation [39, 40]. This is in
some aspects analogous to bremsstrahlung in QED. While in vacuum QCD, there are essentially only
small angle (colinear) splittings of gluons and quarks, in the context of a heavy ion collisions, additional
kicks from scattering with the medium lead to larger angles. In a statistical description, this leads to a
broadening of the transverse momentum k⊥ (orthogonal to the main parton momentum) by a diffusion
or random walk type process,

d

dt

〈
k2
⊥
〉

= q̂. (31)

Here, q̂ is the so-called jet quenching parameter. Based on this principle, a detailed theoretical description
can be formulated. In addition to transverse momentum broadening, interactions with the medium also
induce color decoherence. Jet energy loss models have been implemented also in Monte-Carlo codes,
for example JEWEL [41, 42].

In addition to calorimetric jet observables, a traditional measure of energy loss is the so called
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180 CMS Collaboration / Physics Letters B 712 (2012) 176–197

Fig. 3. Dijet asymmetry ratio, A J , for leading jets of pT,1 > 120 GeV/c and subleading jets of pT,2 > 30 GeV/c with a selection of !φ1,2 > 2π/3 between the two jets. Results
are shown for six bins of collision centrality, corresponding to selections of 70–100% to 0–10% of the total inelastic cross section. Results from data are shown as points, while
the histogram shows the results for pythia dijets embedded into hydjet PbPb simulated events. Data from pp collisions at 2.76 TeV are shown as open points in comparison
to PbPb results of 70–100% centrality. The error bars represent the statistical uncertainties.

Fig. 4. Dijet asymmetry ratio, A J , in bins of leading jet transverse momentum from 120 < pT,1 < 150 GeV/c to pT,1 > 300 GeV/c for subleading jets of pT,2 > 30 GeV/c
and !φ1,2 > 2π/3 between leading and subleading jets. Results for 0–20% central PbPb events are shown as points, while the histogram shows the results for pythia dijets
embedded into hydjet PbPb simulated events. The error bars represent the statistical uncertainties.

which should be taken into account in the interpretation of the av-
erage value. However, in the bins with leading jet pT > 180 GeV/c,
more than 95% of the leading jets are correlated with a subleading
jet, indicating that the bias due to dijet selection is very small.

3.3. The dependence of dijet momentum imbalance on the pT of the
leading jet

The dependence of the energy loss on the leading jet mo-
mentum can be studied using the jet transverse momentum ratio
pT,2/pT,1. The mean value of this ratio is presented as a func-

tion of pT,1 in Fig. 6 for three bins of collision centrality, 50–100%,
20–50%, and 0–20%. The pythia+hydjet simulations are shown as
squares and the PbPb data are shown as points. Statistical and
systematic uncertainties are plotted as error bars and brackets, re-
spectively. The main contributions to the systematic uncertainty in
pT,2/pT,1 are the uncertainties in the pT-dependent residual en-
ergy scale and the effects of the underlying event on the jet energy
resolution. Earlier studies of jet-track correlations [9] have shown
that the energy composition of the quenched jets was not signifi-
cantly different, which puts a constraint on the energy scale uncer-
tainty. The uncertainty on the energy scale is derived from three

Fig. 14: Dijet asymmetry ratioAJ for leading jets of pT,1 > 120 GeV and sub-leading jets of pT,2 > 30 GeV, with
a selection of ∆φ1,2 > 2π/3 between the two jets, for different centrality classes. Experimental results (points) are
compared to simulations (histograms) based on PYTHIA and HYDJET (without any parton energy loss). Figure
taken from ref. [38].

nuclear modification factor,

RhAA(pT , η, centrality) =

dN
AA→h
medium
dpT dη〈

NAA
coll

〉
dN

pp→h
vacuum

dpT dη

. (32)

This ratio of production cross sections for a particle h in heavy ion (AA) collisions and the scaled proton-
proton (pp) reference can be defined for many different processes. It depends in general on transverse
momentum pT , rapidity η and centrality but some of these variables are sometimes integrated over.
Nuclear modification factors have been measured for many different particles h. Note that this variable
depends also sensitively on the proton-proton reference. This can sometimes be a problem, in particular
when no measurements exist for a given collision energy and one therefore has to rely on interpolations.
In a similar way to RAA, one defines also the modification factor RpA for proton - ion collisions or RCP
as a ratio between cross sections for central and peripheral collisions.

A compilation of various nuclear modification factors by the CMS collaboration is shown in Fig.
15. One observes that unidentified charged particles and b-quarks are quenched, while photons, W- and
Z-bosons are not quenched, i.e. they have RAA = 1 within the experimental uncertainties. This is of
course expected because these particles are color-neutral.

8 Quarkonia in hot matter
For the last part of these introductory lectures we will be concerned with quarkonia, which are bound
states of heavy quark - antiquark pairs in the context of heavy ion collisions. This is a traditional field of
study in the context of the quark gluon plasma for the following reasons.

Some interesting and important questions concerning the quark gluon plasma are: How can one
test deconfinement of quarks and gluons at large temperature? Or related: What prevents the formation
of a meson in a quark-gluon plasma? The attractive force between a quark and an antiquark is actually
screened within a plasma at non-vanishing temperature when the two are separated by more than the
typical distance between free color charges in the medium. This effect can be seen nicely in lattice QCD
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Figure 2.14 The nuclear modification factor RAA in the range up to transverse

momenta mT =
√

m2 + p2
T of 100 GeV for the 10% most central Pb+Pb col-

lisions at the LHC. Data are shown for charged hadrons, b-quarks identified via
secondary J/ψ-decays, as well as for photons and the electroweak gauge bosons
W and Z . The latter do not interact strongly with the medium and can hence
emerge from heavy ion collisions unsuppressed and without energy loss. Data
were compiled by the CMS collaboration from Refs. [265, 271, 267, 270, 272].

in the most central collisions.The suppression increases mildly with transverse
momentum and persists up to the highest pT experimentally measured so far,
see Fig. 2.14. Figures 2.13 and 2.14 illustrate a direct manifestation of jet
quenching: for RAA = 0.2, 80% of the energetic hadrons that would be seen in
the absence of a medium are gone.

(2) Jet quenching is not observed in Rd Au and RpPb

In deuteron–gold collisions at RHIC, Rd Au is consistent with or greater than 1
for all centralities and all transverse momenta. Jet quenching is not observed.
Very first data for RpPb at the LHC support this conclusion [12]. In fact, the
centrality dependence measured at RHIC is opposite to that seen in gold–
gold collisions, with Rd Au reaching maximal values of around 1.5 for pT =
3–5 GeV/c in the most central collisions [23, 15]. The high pT hadrons are
measured at or near mid-rapidity, meaning that they are well separated from
the fragments of the struck gold nucleus. And, d-Au collisions produce at best
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Fig. 15: Nuclear modification factor RAA for different particles as a function of the transverse mass mT =√
m2 + p2

T as measured and compiled by the CMS collaboration. Figure taken from ref. [43].

simulations.

One can ask more quantitatively: How close do quark and anti-quark have to be in order for
their interaction not to be screened? And how does this depend on temperature? It was suggested to
investigate these questions for bound states of heavy quark-antiquark pairs (quarkonia) by Matsui and
Satz in 1986 [44].

A few examples of charmonium states (cc̄ bound states) are the J/ψ(1S) with a mass of 3.09 GeV,
the ψ(2S) with a mass of 3.69 GeV, the χc1(1P) with mass 3.51 GeV or the χc2(1P) with a mass of 3.56
GeV. Some bottomonium states (bb̄ bound states) are the Υ(1S) with mass 9.46 GeV and its excited
states, the Υ(2S) with a mass of 10.02 GeV and the Υ(3S) with a mass of 10.36 GeV.

The traditional picture of what should happen to these bound states at non-vanishing temperature
is the one of sequential suppression. Qualitatively, when the temperature is increased, larger mesons
or bound states are hindered from binding first while smaller bound states can survive up to higher
temperature. (The typical distance between free color charges becomes smaller at higher temperature.)
An heuristic Schrödinger equation approach using screened static quark potentials [45] suggests for
example that the J/ψ(1S) dissociates at Td ≈ 2.1Tc. The ψ(2S) is larger and dissociates at Td ≈ 1.1Tc.
The bottomonium state Υ(1S) dissociates at Td ≈ 4Tc while Υ(2S) is larger and dissociates already
at Td ≈ 1.6Tc and Υ(3S) is even larger and dissociates at Td ≈ 1.2Tc. While this picture gives
some guidance, the use of static potentials to describe bound states in a QCD medium is somewhat
questionable.

While there is little doubt that the qualitative picture sketched above is qualitatively correct, there
are also some confounding effects that must be taken into account to properly understand quarkonia in
the context of heavy ion collisions. Some of them are:

– Cold nuclear matter effects (which are already present for pA collisions) must be understood.
– The collective dynamics of heavy ion collisions plays a role, i. e. the expansion, fluid dynamic

flow etc.
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Figure 2.16 The invariant mass distribution of dimuons in Pb+Pb (above) and
p+p (below) collisions measured by the CMS collaboration. In comparison to the
benchmark measurement in p+p, the higherϒ resonances are strongly suppressed.
Figures taken from Ref. [269].

higher excited states melt completely at CERN SPS and RHIC energies provides a
natural interpretation for the fact that the suppression of the J/ψ yield and its cen-
trality dependence in nucleus–nucleus collisions at the CERN SPS and RHIC are
comparable. However, since these earlier studies did not have experimental access
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Fig. 16: Invariant mass spectrum of di-muons in heavy ion (left panel) and proton-proton (right panel) collisions.
See text for further discussion. Figures taken from ref. [46].

– Quarkonia are in general not at rest with respect to the medium.
– The formation of quarkonium bound states is purely understood but should also takes some time.

What is the influence of the medium for that process?
– Quarkonia can also be formed by recombination of open heavy quarks at hadronization / chemical

freeze-out.

At present there is no clear picture about the quantitative importance and the interplay of all these effects,
yet. However, experimental and theoretical efforts to improve the understanding of quarkonia in the
context of heavy ion collisions are ongoing.

As a particularly clear example for the suppression effects that can arise due to a hot medium,
consider the number of µ+ µ− pairs as a function of their center of mass energy as measured by CMS.
Fig. 16 shows this for Pb-Pb collisions in the left panel and for comparison the corresponding curve for
proton-proton collisions in the right panel. One can see directly that the excited states of Υ are clearly
suppressed in heavy ion collisions compared to pp collisions at the equivalent collision energy. It is a
more difficult question, however, whether this already proves sequential suppression according to the
Matsui & Satz picture.

9 Conclusions
To conclude these introductory lectures one may say that we are on the way of understanding the proper-
ties of QCD at high temperature and density with the help of relativistic heavy ion collision experiments.

Many experimental results for particles at small transverse momentum can be understood in terms
of relativistic fluid dynamics. As it turns out, heavy ion collisions at RHIC and LHC energies produce a
rather strongly coupled liquid with a small ratio of shear viscosity to entropy density η/s. New data with
improved statistics will provide more insights and better constraints in the coming years.

High momentum partons loose energy when traversing the dense QCD medium. A more detailed
understanding of this effect is currently gained from reconstructed jets and more detailed data on nuclear
modification factors.

Modifications of heavy quark bound state spectra in heavy ion collisions have been observed both
for charm and bottom quarks. A more detailed quantitative understanding of this physics is work in
progress.

Finally, other topics such as initial state physics, photons & di-leptons, the results from the low
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energy run at RHIC and many more had to be skipped here for a lack of time but that does not make
them less interesting in any way.
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Abstract
In these lecture notes the frequentist methods used in the Higgs search, discov-
ery and measurement are reviewed. The idea is that the reader will be able to
understand what lies beneath the surface of the results and the plots shown in
the experiments publications. Though the results shown are mainly from AT-
LAS and CMS, the methods and the lessons can be propagated to other fields
such as Astro-Particles and fixed target experiments.

Keywords
CERN report; ESHEP; statistics; data analysis.

1 Introduction
These lecture notes are based on statistics lectures I gave in the European CERN school for High Energy
Physics, 2015. They contain material published mainly in the following two papers: "Asymptotic for-
mulae for likelihood-based tests of new physics" by Cowan, Cranmer, Gross and Vitells [1] and "Trial
factors or the look elsewhere effect in high energy physics" by Gross and Vitells [2]. The frequentist
approach used in the Higgs search, discovery and measurement are reviewed. Examples from real data
analysis are given to clarify the methods.

2 The Search for the Higgs Boson
From Wikipedia: On 4 July 2012, the discovery of a new particle with a mass between 125 and 127
GeV/c2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has
been shown to behave, interact, and decay in many of the ways predicted by the Standard Model.

High Energy Physicists (HEP) rely on a hypothesis: The Standard Model. This model relies on the
existence of the 2012 discovery of the Higgs Boson. The minimal content of the Standard Model includes
the Higgs Boson, the Quarks, the Leptons and the force mediating Bosons including the photons, gluons,
W and Z. However, the Standard Model suffers from some problems, e.g. the hierarchy and naturality
problems that are solved by various extensions of the Model and include other particles that are yet to be
discovered. The challenge of HEP is to generate tons of data and to develop powerful analyses to tell if
the data indeed contains evidence for new particles. Once the new particle, such as the 2012 scalar, has
been discovered, the next step would have been to measure its mass, and confirm that it has the expected
properties of the Higgs Boson (Spin, CP). Perhaps it is not the expected Standard Model Higgs Boson,
but a member of a family of Scalar Bosons, the rest, yet to be discovered.

The statistical challenge is obvious: to tell in the most powerful way, and to the best of our current
scientific knowledge, if, in our data, there is new physics, beyond what is already known. In that sense,
what is already known is the background to what we search, which is treated as the signal. The complex-
ity of the apparatus and the physics (both signal and background) suffer from large systematic errors that
should be taken care of in a correct statistical way.

Though the Higgs Boson has been already discovered, in these lecture notes, for pedagogic rea-
sons, it is assumed, that, the so-called Standard Model, contains no Higgs Boson, serve as the background
to the signal, which is the Higgs Boson. The Higgs Boson cannot exist without the Standard Model, so
there are two nested hypotheses tested against each other. The Standard Model (denoted by b for back-
ground) and the Standard Model containing a Higgs Boson with a mass mH , i.e. the signal+background,
denoted by s(mH) + b.

Proceedings of the 2015 European School of High-Energy Physics, Bansko, Bulgaria, 2 – 15 September 2015, edited by M. Mulders
and G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 4/2017, CERN-2017-008-SP (CERN, Geneva, 2017)
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3 Essential Terminology
3.1 A Tale of Two Hypotheses
From Wikipedia: A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For
a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists
generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with
the available scientific theories.

The expected signal and background are determined by the corresponding cross sections, lumi-
nosity delivered by the accelerator and the detectors response (efficiency and geometrical acceptance).
s(mH) is given by

s(mH) = L · σSM (mH) · ε ·A. (1)

Where L is the luminosity delivered by the accelerator, σSM (mH) is the Standard Model (SM) produc-
tion cross section of the Higgs Boson, and ε and A are the efficiency and geometrical acceptance of the
detector. For simplicity, let’s assume a counting experiment and let n be the number of observed events,
then

n = µs(mH) + b. (2)

b is the expected background, and µ is the signal strength given by

µ =
σobs
σSM

. (3)

There are therefore two hypotheses. One is the background only (b), and the other is the µs(mH) + b
hypothesis, i.e., a Higgs Boson with a strength µ on top of the background. For a Standard Model Higgs
Boson, we expect to measure µ = 1.0. The background only hypothesis is denoted by H0 while Hµ is
the Higgs Boson hypothesis with H1 being the SM Higgs Boson hypothesis.

3.2 Testing an Hypothesis
From Wikipedia: A statistical hypothesis test is a method of statistical inference. Commonly, two statisti-
cal data sets are compared, or a data set obtained by sampling is compared against a synthetic data set
from an idealized model. A hypothesis is proposed for the statistical relationship between the two data
sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship
between two data sets. The comparison is deemed statistically significant if the relationship between
the data sets would be an unlikely realization of the null hypothesis according to a threshold probabil-
ityï£¡the significance level. Hypothesis tests are used in determining what outcomes of a study would
lead to a rejection of the null hypothesis for a pre-specified level of significance.

The first step in any hypothesis testing is to identify and state the relevant null, Hnull and al-
ternative Halt hypotheses.The next step is to define a test statistic, q, under the null hypothesis (the
tested hypothesis). We then compute from the observations the observed value qobs of the test statistic
q. Finally, decide (based on qobs ) to either fail to reject the null hypothesis or reject it in favour of an
alternative hypothesis.

3.3 Discovery and Exclusion in a Nut Shell
To establish a discovery we define the null hypothesis as the background only hypothesis, Hnull = H0,
and test it. We either fail to reject it or manage to reject it in favour of the alternative hypothesis,
Halt = Hµ. Rejection of the null H0 hypothesis at the level of 5σ (see 3.5) is considered a discovery.
Defining the null hypothesis asHnull = Hµ enables the exclusion of the signal. For example, if we define
the null hypothesis as the Standard Model Higgs with a mass mH , Hnull = H1, testing and rejecting
this hypothesis at the 95% Confidnece Level (see 3.5) is considered an exclusion of the Standard Model
Higgs with a mass mH .
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3.4 A Test Statistic
As defined in Wikipedia: A hypothesis test is typically specified in terms of a test statistic, considered
as a numerical summary of a data-set that reduces the data to one value that can be used to perform
the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within
observed data, behaviours that would distinguish the null from the alternative hypothesis, where such
an alternative is prescribed, or that would characterise the null hypothesis if there is no explicitly stated
alternative hypothesis, which often occurs when performing a measurement.

One example for using a test statistic is the discovery of the Higgs, when the data of Billions
of Collisions is summarised in one number which determines if LHC rejected the background only
hypothesis in favour of the Higgs Boson with a mass mH or not.

There are many ways to define a test statistic based on the nature of the required test. Test statistics
for discovery or exclusion are commonly based on Likelihood ratios.

Note that the likelihood is a function of the data, i.e.

L(H0) = Prob(x|H0) (4)

where x is the data.

Before classifying the test statistics in a formal way, let us take a simplified approach. The two
most common test statistics in High Energy Physics are the Neyman-Pearson (NP) and Profile Likelihood
(PL). The NP test statistic given by

qNP = −2ln
L(H0)

L(H1)
. (5)

L(H0) and L(H1) are the likelihoods of the null (b) and alternative (s(mH) + b) hypotheses. Note that
inverting the roles of the null and alternative hypotheses, simply swap the sign of the NP test statistic. The
PL test statistic depends on the tested hypothesis and for a simple counting experiment (see Equation 2),
when testing the b-only hypothesis, H0, the test statistic is given by

q0 = −2ln
L(b)

L(µ̂s(mH) + b)
. (6)

µ̂ is the Maximul Likelihood Estimators (MLE) of µ. In this simplified example b is assumed to be
known. The probability distribution function (PDF) of both test statistics under the null f(qNP |b),f(q0|b)
and the alternative f(qNP |s(mH) + b),f(q0|s(mH) + b) hypotheses are shown in Figure 1.

3.5 What is the p-value
As defined in Wikipedia: An important property of a test statistic is that its sampling distribution under
the null hypothesis must be calculable, either exactly or approximately, which allows p-values to be
calculated.

The observed p− value is a measure of the incompatibility of the data with the tested hypothesis.
It is the probability, under assumption of the null hypothesis Hnull, of finding data of equal or greater
incompatibility with the predictions ofHnull. This is clearly illustrated in Figure 1 for the PL test statistic
by the light blue area (right plot). Here H0 is the tested null hypothesis (b only) and the p − value is
given by

p =

∫ ∞

q0,obs

f(q0|b)dq0. (7)

One can regard the hypothesis as excluded if its p-value is observed below a specified threshold
(usually denoted by α).

Now, depending on the nature of the statistical test, one considers a one-sided or two-sided p-
value. When performing a measurement, any deviation above or below the mean is drawing our attention
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Fig. 1: The pdf of the Neyman-Pearson qNP (left) and PL (Profile-Likelihood), q0 (right) test statistics, under the
null (b) and alternative (s(mH) + b) hypotheses.

and might serve an indication of some anomaly or new physics. Here we consider a two sided p-value.
However, when trying to reject an hypothesis while performing searches, one usually considers only
one-sided tail probabilities. When the null hypothesis is the b-only hypothesis, downward fluctuations of
the background, are not considered as an evidence against the background. Likewise, when deriving a
limit, upward fluctuations of the hypothesised signal are not considered as an evidence against the signal.
In both cases only one-sided tail probabilities are considered.

In particle physics, when performing searches, one usually converts the p-value into an equivalent
significance, Z defined such that a Gaussian distributed variable, which is found Z standard deviations
above its mean, has an upper-tail probability equal to p (Figure 2). That is,

Z = Φ−1(1− p) , (8)

where Φ−1 is the quantile (inverse of the cumulative distribution) of the standard Gaussian. For a signal

Fig. 2: The relationship between a p-value and a significance of Z sigma.

process such as the Higgs boson, the particle physics community has a tendency to regard rejection of
the background hypothesis with a significance of at least Z = 5, as an appropriate level to constitute
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a discovery. This corresponds to p = 2.87 × 10−7. For purposes of excluding a signal hypothesis, a
threshold p-value of 0.05 (i.e., 95% confidence level) is often used, which corresponds to Z = 1.64.
This should not be confused with a 1.96σ fluctuation of a Gaussian variable that gives 0.05 for the
two-sided tail area.

Note that, for a sufficiently large data sample, one would obtain a p-value of 0.5 for data in perfect
agreement with the expected background. With the definition of Z given above, this gives Z = 0.

3.6 Expected Significance and the Asimov Data Set
As defined in Wikipedia: The use of a single representative individual to stand in for the entire population
can help in evaluating the sensitivity of a statistical method. Franchise, a science fiction short story by
Isaac Asimov, was cited as the inspiration of the term "Asimov data set", where an ensemble of simulated
experiments can be replaced by a single representative one.

It is often useful to quantify the sensitivity of an experiment by reporting the expected significance
one would obtain with a given measurement under the assumption of various hypotheses. For example,
the sensitivity to discovery of a given signal process H1 could be characterized by the expectation value,
under the assumption of H1, of the value of Z obtained from a test of H0. This would not be the same as
the Z obtained using Eq. (8) with the expectation of the p-value, however, because the relation between
Z and p is nonlinear. The median Z and p will, however, satisfy Eq. (8) because this is a monotonic
relation. Therefore we take the term ‘expected significance’ to refer to the median.

In the Standard Model there is only one Higgs Boson with well defined couplings. To find the
discovery sensitivity of an experiment, one needs to generate one ensemble of experiments containing
the Higgs Boson at the tested mass. However, if one goes beyond the Standard Model, e.g., supersym-
metric models, one faces a multi-dimensional parameter space where the Higgs Boson’s couplings, and
hence its production cross section and decay properties (both related to the signal strength) vary as a
function of the parameters. For each point in parameter space one needs to estimate the experiment’s
discovery sensitivity. One faces the need to generate an enormous number of ensembles of experiments
and evaluate the median sensitivity for each ensemble.

In [1] it was shown that one can replace each ensemble of the alternate-hypothesis experiments
with one data set that represents the typical experiment. This “Asimov” data set delivers the desired
median sensitivity. Hence, one is exempted from the need to perform an ensemble of experiments for
each set of parameters.

The Asimov data set is constructed such that when one uses it to evaluate the estimators for all
parameters, one obtains the true parameter values.

As intuitively used for years till proven at [1], the Asimov data set can trivially be constructed
from the true parameters values. For example, in a counting experiment (see Eq. 2) the Asimov data
set corresponding to the H1 hypothesis is nA = s + b. and the one correspond to the H0 hypothesis is
nA = b. As strange as it reads, the Asimov data set is not necessarily an integer.

3.7 Nuisance Parameters.
From Wikipedia: In statistics, a nuisance parameter is any parameter which is not of immediate interest
but which must be accounted for in the analysis of those parameters which are of interest.

A widely used procedure to establish discovery (or exclusion) in particle physics is based on a
frequentist significance test using a likelihood ratio as a test statistic. In addition to parameters of interest
such as the rate (cross section) of the signal process, the signal and background models will contain in
general nuisance parameters whose values are not taken as known a priori but rather must be fitted from
the data.

It is assumed that the parametric model is sufficiently flexible so that for some value of the param-
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eters it can be regarded as true. The additional flexibility introduced to parametrise systematic effects
results, as it should, in a loss in sensitivity. To the degree that the model is not able to reflect the truth
accurately, an additional systematic uncertainty will be present that is not quantified by the statistical
method presented here.

Here, nuisance parameters are denoted by θ.The likelihood is then a function of the parameter of
interest, say, µ. Then L = L(µ, θ). When testing Hµ, the Profile Likelihood test statistic in the presence
of nuisance parameters, become

qµ = −2ln
L(µ,

ˆ̂
θµ)

L(µ̂, θ̂)
. (9)

µ is the parameter of interest, θ represent the nuisance parameters (including b). A hat stands for the
MLE (Maximum Likelihood Estimator) while a double hat is the constrained MLE, i.e. the MLE of θ,
fixing µ. It is common to say that θ is profiled.

3.8 Confidence Interval, Confidence Level and Coverage.
From Wikipedia: A confidence interval (CI) is a type of interval estimate of a population parameter. It
is an observed interval (i.e., it is calculated from the observations), in principle different from sample
to sample, that frequently includes the value of an unobservable parameter of interest if the experiment
is repeated. How frequently the observed interval contains the (true) parameter is determined by the
confidence level... Whereas two-sided confidence limits form a confidence interval, their one-sided coun-
terparts are referred to as lower or upper confidence bounds.

Say, the result of a measurement is given by µ = 1.1± 0.3. This means that the Confidence Inter-
val, CI, is µ = [0.8, 1.4] at the 68% Confidence Level (CL). I.e., in an ensemble of repeated experiments,
each producing a CI, 68% of the Confidence Intervals contain the unknown true value of the parameter
of interest µ.

There are many ways to derive a CI at a given CL. If, the method produces a CI that contains the
true value of the parameter of interest (p.o.i) more than the CL (e.g. in our example, more than 68%), the
method is said to over-cover, and is considered conservative. If, however, the CI contains the true value
of the p.o.i. less than the claimed Confidence Level, the method is considered to under-cover, which
means, one cannot trust the CL, and the true CL might be lower than the claimed one.

3.9 Upper Limits and Confidence Levels.
If one deduces that the CI of µ contains µ = 0, i.e. µ = [0, µup] at the 95% CL, then one says that
µ < µup at the 95% CL. This means that in an ensemble of experiments, 95% of the intervals contain
the true value of µ including µ = 0.

If µ < 1 at the 95% CL, and µ is given by Eq. 3, i.e.

µ =
σobs(mH)

σSM (mH)
< 1 (10)

one concludes that σobs(mH) < σSM (mH), i.e. a SM Higgs with a mass mH is excluded at the 95%
CL.

3.10 The Neyman Pearson Lemma.
Wikipedia: In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson,
states that when performing a hypothesis test between two simple hypothesesHnull andHalt, the likelihood-
ratio test which rejects Hnull in favour of Halt is the most powerful test at (a given ) significance level...

When we reject the null hypothesis Hnull based on a very small p-value, we also take a risk. We
might be wrong (this is referred to as a type I error, see section 3.11). The null hypothesis can still be true
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and the p-value is a measure for this risk. The p-value can therefore be interpreted as the false-positive
rate and it satisfies

p ≤ Prob(reject Hnull|Hnull = TRUE) (11)

However, if while rejecting the null hypothesis, the probability for the alternative hypothesis to be true
is small.... the test statistic is probably not doing its job, i.e. it is not powerful. The power of a test is
therefore related to the probability that Halt = TRUE while rejecting Hnull, i.e.

POWER = Prob(rejectHnull|Halt = TRUE). (12)

Neyman and Pearson showed [3], that (in the absence of nuisance parameters) the most powerful test
statistic is the likelihood ratio defined in Eq. 5.

3.11 Type I & Type II Errors, the Modified Frequentist p-value, or, the CLs Technique.
Wikipedia: CLs (from Confidence Levels) is a statistical method for setting upper limits (also called
exclusion limits) on model parameters, a particular form of interval estimation used for parameters that
can take only non-negative values...... .....it differs from standard confidence intervals in that the stated
confidence level of the interval is not equal to its coverage probability. The reason for this deviation is
that standard upper limits based on a most powerful test necessarily produce empty intervals with some
fixed probability when the parameter value is zero, and this property is considered undesirable by most
physicists and statisticians.

For the sake of clarity let us define now type I and type II errors. Type I error is the probability to
reject the null hypothesis, when the null hypothesis is true. This is referred to as "False Positive". It is
usually denoted by α, i.e. α = Prob(rejectHnull|Hnull = TRUE). Type II error, referred to as "False
Negative", is when we accept the null hypothesis, when the alternative hypothesis is true. It is usually
denoted by β. β = Prob(AcceptHnull|Hnull = FALSE) = Prob(AcceptHnull|Halt = TRUE).
Quoting Birnbaum [4]: A concept of statistical evidence is not plausible unless it finds strong evidence
for Halt against Hnull, with small probability α when Hnull is true, and with much larger probability
(1− β) ) when Halt is true. 1− β = Prob(rejectHnull|Halt = TRUE) is defined as the power of the
statistical test. Since rejecting Hnull is accepting Halt by definition, we find

POWER = 1− β = Prob(acceptHalt|Halt = TRUE) = 1− Prob(rejectHalt|Halt = TRUE).
(13)

Let Hnull = Hs+b, i.e. the s + b hypothesis, then, given an observation, Hs+b is rejected if the p-
value= ps+b ≤ α. At the threshold we find

ps+b = Prob(reject Hs+b|Hs+b = TRUE). (14)

with a power ( Equation 13 ) of
Power = 1− pb. (15)

A situation occurs when the power is very small and the experiment has no sensitivity to reject with high
power the s+b hypothesis, because it almost rejects the b-only hypothesis as well, as seen in Figure 3. A
way out, was suggested by the CLs technique [5] which is based on Birnbaum [4]. Birnbaum suggested
in 1962 that the the {p − value}/{power} should be used as a measure of the strength of statistical
evidence provided by significance tests, rather than the p − value alone. This translates into using a
modified p− value

p′s+b =
ps+b

1− pb
(16)

Equation 16 can also be interpreted as a normalised p-value, where ps+b is normalised to the acceptance
probability of Hb. Obviously if, while rejecting Hs+b one does not accept Hb , one does not have a
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Fig. 3: An illustration showing the reasoning of the CLs method. In this situation a signal+background hypothesis
might be rejected though the experiment has no sensitivity to observe that particular signal.

sensitivity to exclude the s+ b hypothesis.

p′s+b =
Prob(reject Hs+b|Hs+b = TRUE)

Prob(accept Hb|Hb = TRUE)
(17)

The CLs method lacks a frequentist coverage. However, it lacks it in places where the experiment
is insensitive to the expected signal! And this is not necessarily a disadvantage from the physicists point
of view! Here is what happens: One uses the Neyman-Pearson likelihood ratio as a test statistics. When
the expected signal is very low the two pdf are almost overlapping (see Figure 3). The background might
fluctuate down resulting in a very small ps+b. As a result we are tempted to exclude the signal hypothesis.
However, it is not the signal hypothesis s, that is excluded, but the signal+background hypothesis s+ b.
It is the small expected signal s << s+ b that is leading to a false exclusion. To protect against such an
inference one uses the modified p − value (Eq. 16) as a criterion for taking a decision of rejecting the
signal hypothesis.

As a result, for heavy Higgses with low cross section, where the experiment lacks sensitivity,
the false exclusion rate is too low and the method over-covers. This is conservative because it avoids
excluding when there is no sensitivity. When the signal cross section is high (light mH ), the coverage is
close to full.

3.12 Feldman-Cousins: Ensuring Coverage by Neyman Construction.
Wikipedia: Neyman construction is a frequentist method to construct an interval at a confidence level
CL%, that if we repeat the experiment many times the interval will contain the true value a fraction
CL% of the time, this way, one guarantees full coverage by construction.

As said, the Neyman construction is a method of parameter estimation that ensures coverage. One
scans over all the possible true values of some parameter s and defines an acceptance interval for each
s, based on the known pdf, f(sm|s), of the measured sm given a possible true s (there is only ONE
unknown true s though). The (e.g.) 68% acceptance interval [sl, sh](s) is defined via the integration
[sl, sh](s) = {sm|

∫ sh
sl
f(sm|s)dsm = 68%} (Figure 4). Even in the simplest case where f is a Gaussian,
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there is an ambiguity in the choice of the integration boundaries, which will lead to two-sided intervals,
or one-sided integral bounded from below or above. To sort out the integration limits one needs to specify
an ordering rule (i.e. which measurements should be considered within the integration boundaries and
which should stay out). The construction of the acceptance intervals for all s forms a belt from which
one can easily get the corresponding (e.g.) 68% confidence interval [sd, su](so), given one measurement
so via inversion (Figure 4).

s

s

msl sh
sd

su

so

Fig. 4: An illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the mea-
sured parameter space sm for a given possible true s, [sl, sh](s). Given an observation so one can construct the
confidence interval [sd, su] via inversion, as indicated in the Figure.

3.12.1 The Feldman-Cousins Method
The full Neyman construction was introduced to HEP by Feldman and Cousins [6]. The test statistic is
the likelihood ratio q(s) = L(s+b)

L(ŝ+b) where ŝ is the MLE of s (in L(ŝ + b) ) under the constraint that s
is physically allowed (i.e. positive). To construct a 68% acceptance interval in the number of observed
events, [n1, n2], one is using q as an ordering rule, i.e.

∑n2
n1
p(n|s, b) ≥ 68% where only terms with

decreasing order of q(n) are included in the sum, till the sum exceeds the 68% confidence (see Fig. 4).
When no events are observed, one is using this constructed Neyman belt to derive a confidence interval,
which, depending on the observation, might be a one-sided or a two-sided interval. This method is
therefore called the unified method, because it avoids a flip-flop of the inference (i.e. one decides to flip
from a limit to an interval if the result is significant enough...).

One can clearly see in Fig. 4 that depending on the observation, so, one gets either a one sided bound, or
a two sided interval.

A noted difficulty with this approach is that an experiment with higher expected background which ob-
serves no events might set a better upper limit than an experiment with lower or no expected background.
This would never occur with the CLs method.

Another difficulty is that this approach does not incorporate a treatment of nuisance parameters. How-
ever, it can either be plugged in "by hand", using the hybrid Cousins and Highland method [7] or in the
LHC way, i.e. using the Profile Likelihood [1] as described above.
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4 Classification of Test Statistics.
Depending on the nature of the test, one can classify the various test statistics, all based on Likelihood
ratios, where the nuisance parameters are profiled (e.g. Eq. 9). The classification is based on [1] and is
shown in Table 1.

Table 1: Classification of Test Statistics

Test
Stat.

Purpose Expression LR

q0 discovery of positive
signal

q0 =

{−2 lnλ(0) µ̂ ≥ 0

0 µ̂ < 0
λ(0) = L(0,

ˆ̂
~θ)

L(µ̂,~̂θ)

tµ 2-sided measure-
ment

tµ = −2lnλ(µ) λ(µ) = L(µ,
ˆ̂
~θ)

L(µ̂,~̂θ)

t̃µ avoid negative signal
(Feldman-Cousins)

t̃µ = −2lnλ̃(µ) λ̃(µ) =





L(µ,
ˆ̂
~θ(µ))

L(µ̂,~̂θ)
µ̂ ≥ 0

L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
~θ(0))

µ̂ < 0

qµ exclusion qµ =

{
−2 lnλ(µ) µ̂ ≤ µ
0 µ̂ > µ

q̃µ exclusion of positive
signal

q̃µ =





−2 ln L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
~θ(µ))

L(µ̂,~̂θ)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ

5 Asymptotic Formulae
Wikipedia: In mathematics and statistics, an asymptotic distribution is a distribution that is in a sense
the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymp-
totic distribution is in providing approximations to the cumulative distribution functions of statistical
estimators.

The frequentist approach of statistics requires the knowledge of the probability distribution func-
tions (PDFs) of the test statistic under the null and alternative hypotheses. These PDFs are used to find
both the significance for a specific data set and the expected significance. However, obtaining these
PDFs, can involve Monte Carlo generations that are computationally expensive. Ref [1] developed the
asymptotic formulae based on results due to Wilks [8] and Wald [9] by which one can obtain both the
significance for given data as well as the full sampling distribution of the significance under the hypothe-
sis of different signal models, all without recourse to Monte Carlo. In this way one can find, for example,
the median significance and also a measure of how much one would expect this to vary as a result of
statistical fluctuations in the data. Obtaining the same things with Monte Carlo is sometimes impossible.
One LHC collision might take o(10mins) to generate, and one needs over 107 events to calculate a 5σ
tail of a PDF. Moreover, the test statistics involve heavy duty fits which also take time. Combining AT-
LAS and CMS results in over 4000 Nuisance Parameters. Repeated fits of that many parameters result
often in failure fits. Some we are not even aware of. It could be that the PDF generated by toys is subject
to unknown failure of fits and is not reliable for p − value calculations. In most cases, the number of
events involved is satisfying the condition for the asymptotic approximation to work.
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All of the asymptotic approximations of the PDFs of the test statistics shown in Table 1 have been
calculated under the null and alternative hypotheses [1]. There is no point in reproducing them all here.
Three common uses are for exclusion, discovery and measurement.

5.1 Exclusion
For exclusion one can either use qµ or q̃µ (Table 1) as a test statistic. In numerical examples we have found
that the difference between the two tests is negligible, but use of qµ leads to important simplifications.
Furthermore, in the context of the asymptotic approximation, the two statistics are equivalent. That is,
assuming the approximations below, qµ can be expressed as a monotonic function of q̃µ and thus they
lead to the same results. We will therefore recommend the use of qµ for the derivation of exclusion.

Using the asymptoric formulae of [1] we find that f(qµ|µ) distributes as a half-chi-square:

f(qµ|µ) =
1

2
δ(qµ) +

1

2

1√
2π

1
√
qµ
e−qµ/2 . (18)

It is therefore recommended to verify that f(qµ|µ) ∼ χ2
1. This is usually the case, in particular when

combining channels.

The cumulative distribution is

F (qµ|µ) = Φ
(√

qµ

)
. (19)

5.1.1 The p − value

The p-value of the hypothesized µ is

pµ = 1− F (qµ|µ) = 1− Φ
(√

qµ

)
(20)

and therefore the corresponding significance is

Zµ = Φ−1(1− pµ) =
√
qµ . (21)

If the p-value is found below a specified threshold α (often one takes α = 0.05), then the value of µ
is said to be excluded at a confidence level (CL) of 1 − α. The upper limit on µ is the largest µ with
pµ ≤ α. Here this can be obtained simply by setting pµ = α and solving for µ. One finds

µup = µ̂+ σΦ−1(1− α) . (22)

For example, α = 0.05 gives Φ−1(1− α) = 1.64. Any point µ0 satisfying µ0 ≤ µup is excluded at the
100(1 − α)% Confidence Level. (for α = 0.05 the 95% Confidence Interval does not contain µ = µ0).
Also as noted above, σ depends in general on the hypothesized µ. Thus in practice one may find the
upper limit numerically as the value of µ for which pµ = α.

5.1.2 Expected Limit and Error Bands
To find the expected limit, one should plug in the Asimov data which represents the alternative hypoth-
esis, which in this case is the expected background (with no fluctuations). The signal strength is set to
zero (in a simple counting experiment n = b). One then gets qµ,A and the corresponding µmedup is given
by solving qµmedup ,A = 1.642 (for α = 0.05). The error bands are given by

µup+N = σ(Φ−1(1− α) +N) (23)
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with

σ2 =
µ2

qµ,A
(24)

µ can be taken as µmedup in the calculation of σ.

5.2 Expected Limit and Error Bands a-la “(CLs)"
To avoid setting limits when the experiment is not sensitive to the signal, one might use the modified
p-value defined above, ”p′s+b”

p′s+b =
ps+b

1− pb
(25)

We find

p′µ =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√qµ)

(26)

The median and expected error bands will therefore be

µup+N = σ(Φ−1(1− αΦ(N)) +N) (27)

with

σ2 =
µ2

qµ,A
(28)

To get the 95% expected upper limit, set α = 0.05. µ can be taken as µmedup in the calculation of σ..

Note that for N = 0 we find the median limit

µmedup = σΦ−1(1− 0.5α) (29)

The expected µ and the expectation for error band N is shown in Figure 5. one can clearly see the
shrinkage of the error band, µup+Nσ − µup+(N−1)σ, when N → −∞

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

N

µ
u

p

µ
up + Nσ

 = σ Φ
−1

( 1 − α Φ(N) ) +Nσ

Fig. 5: µup+Nσ as a function of N (in units of σ). Red is based on ps+b blue is based on p′s+b (CLs).
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Fig. 6: The observed (full line) and expected (dashed line) 95% CL combined upper limits on the SM Higgs boson
signal strength (µup) in the full mass range mH considered in this analysis. The dashed curves show the median
expected limit in the absence of a signal and the green and yellow bands indicate the corresponding 68% and 95%
intervals.

5.3 Example from the Higgs Boson Search
Figure 6 taken from [10] shows µup as a function of mH at one of the stages of the Higgs search. The
mass range where µup(mH) ≤ 1 is where a SM Higgs Boson with a mass mH is excluded. Obviously
one cannot exclude the Higgs aroundmH = 125 GeV, where a real signal is being built up with luminos-
ity µup > 1. The median expected is given by the dashed line (following Equation 29 with α = 0.05).
The error bands are derived using Equation 27, with N = ±1 (Green) and N = ±2 (yellow).

Figure 7 taken from the same reference, shows p′s+b (labeled in the Figure as CLs), as a function
of mH . Mass regions where p′s+b ≤ 0.05 are excluded at, at least, the 95% CL.
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Fig. 7: The value of the combined CLs (p′s+b), testing the Standard Model Higgs boson hypothesis, as a function
of mH in the full mass range of this analysis. The expected CLs is shown in the dashed curves. The regions with
CLs < 0.05 are excluded at least at 95% CL. The 95% and 99% CL values are indicated as dashed horizontal
lines.

13

PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICS

177



5.4 Measurement
Let the statistic be tµ = −2 lnλ(µ) (Table 1) as the basis of the statistical test of a hypothesized value
of µ. This could be a test of µ = 0 for purposes of establishing existence of a signal process, or non-
zero values of µ for purposes of obtaining a confidence interval. In the asymptotic regime the pdf of tµ
distributes like a χ2 with one degree of freedom, under the Hµ hypothesis.

f(tµ|µ) =
1√
2π

1√
tµ
e−tµ/2 . (30)

To measure µ, one scans the test statistics, finds µ̂ and σup, σlo by substituting tµ = 1. The 68%
Confidence Interval of µ is then estimated to be [µ̂ − σlo, µ̂ + σup]. If one wants to estimate with how
many standard deviations a specific value of µ, e.g. µ = 0. is unlikely, one calculates

√
t0.

To get the expcted µ one repeats the above procedure, calculating tµ with the Asimov data set, for which
µ̂ = µ.

A formulation of the asymptotic properties of tµ is given in [1].

5.5 Discovery
To establish a discovery one tries to reject the background only hypothesis. We use the qo test statistics
(Table 1). Since we do not want downward fluctuations of the background to serve as an evidence against
the background we define the test statistics such that q0 = 0 if µ̂ < 0. The test statistic is therefore given
by (Table 1):

q0 =




−2 ln L(0)

L(µ̂) µ̂ ≥ 0,

0 µ̂ < 0 ,
(31)

Under the background only hypothesis, H0, q0 is asymptotically distributed as half a chi squared with
one degree of freedom, i.e.

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1√
q0
e−q0/2 . (32)

The significance of the observation is given by

Z0 = Φ−1(1− p0) =
√
q0 . (33)

The p0 value can easily be calculated using

p0 = 1− F (q0|0) , (34)

where

F (q0|0) = Φ
(√

q0

)
. (35)

A significance of 3σ is considered as an observation, while a significance exceeding 5σ is regarded as
a discovery. The reason for using such a large number to establish a discovery is because of the Look
Elsewhere Effect, discussed in section 7.

5.6 Discovery Example
In Figure 10 we show the p− value as a function of the mass, taken from the ATLAS discovery confer-
ence note [10]. Both, the p− value and its corresponding significance are indicated. One clearly sees an
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upward fluctuation of the background (downward fluctuation in p − value) around a mass of 125 GeV.
The fluctuation is at the level of 5σ. For other masses the p − value fluctuates around 0.5, meaning a
significance of 0σ. The expected p − value is given by the dashed line. One can clearly see that only
aroundmH = 125 GeV, the expected and the observed p−value are similar, indicating a signal strength
µ ∼ 1, as can clearly be seen in Figure 11.

5.6.1 Significance in a nut-shell.
Many people use a thumbnail formula Z = s√

b
to estimated the significance of an apparent signal. s

represents here n− b, where b is the expected background, and n is the number of observed events.

Using the profile likelihood formalism we can get a much more accurate estimation for the appar-
ent observed significance [1].

If we regard b as known, the data consist only of n and thus the likelihood function is

L(µ) =
(µs+ b)n

n!
e−(µs+b) , (36)

The test statistic for discovery q0 can be written

q0 =




−2 ln L(0)

L(µ̂) µ̂ ≥ 0,

0 µ̂ < 0 ,
(37)

where µ̂ = n− b. For sufficiently large b we can use the asymptotic formula [1] to obtain

Z0 =
√
q0 =





√
2
(
n ln n

b + b− n
)

µ̂ ≥ 0,

0 µ̂ < 0.
(38)

To approximate the median significance assuming the nominal signal hypothesis (µ = 1) we
replace n by the Asimov value s+ b to obtain

med[Z0|1] =
√
q0,A =

√
2 ((s+ b) ln(1 + s/b)− s) . (39)

Expanding the logarithm in s/b one finds

med[Z0|1] =
s√
b

(1 +O(s/b)) . (40)

Although Z0 ≈ s/
√
b has been widely used for cases where s + b is large, one sees here that this final

approximation is strictly valid only for s � b. We therefore recommend to use Eq. 39 to estimate a
significance in a nut shell. It is much more accurate.

6 Testing an hypothesis with boundaries.
In [6] Feldman and Cousins derive the test statistics with the physical condition, namely, the true value
of µ must be positive, i.e. µ > 0. In [1] the t̃µ test statistic is introduced (see Table 1) in order to avoid
a negative non-physical signal. As a result, depends on the observation, a two sided (measurement) or
one sided (limit) Confidence Interval is obtained. This is the equivalence of the Feldman-Cousins test
statistic with the advantage of taking care of the nuisance parameters. The original Feldman-Cousins
test statistic is not considering systematics. In [1] the asymptotic formula of t̃µ is derived. In a later
paper [11] the same authors improve the test statistic by taking into account two sided boundaries. This
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is the case, for example when one wants to measure or set limits on the measurement of a Branching
Ratio, which must be 0 < BR < 1 by definition. The revised t̃µ is defined by

t̃µ =





−2 ln L(µ,
ˆ̂
θ(µ))

L(µ−,
ˆ̂
θ(µ−))

µ̂ ≤ µ−

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ− < µ̂ < µ+

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ+,
ˆ̂
θ(µ+))

µ̂ ≥ µ+ ,

(41)

ˆ̂
θ represent the nuisance parameters, ˆ̂

θ(µ) is the conditional maximum likelihood estimate of θ given µ.
µ− and µ+ are the physical boundaries. The Feldman-Cousins test statistic is retrieved for µ− = 0 and
no upper boundary, µ+. The asymptotic formulas are derived in [11].

6.1 Pull
The pull of a nuisance parameter θ, with an expectation θ0 is defined as:

pull(θ) =
θ̂ − θ0

σθ
(42)

the pull quantifies how far from its expected value we had to "pull" the parameter while finding the MLE.
A healthy situation is when the pull average is zero with a standard deviation close to 1, if this is not
the case, further investigation is required. The expected value of a nuisance parameter and its assumed
standard deviation will be based on an auxiliary measurement or MC studies.

6.2 Impact
the impact of a nuisance parameter is defined as:

impact(θ) = ∆µ± = ˆ̂µθ0±σθ − µ̂ (43)

where ˆ̂µθ0±σ is the MLE of µ when we profile every parameter except θ, and set the value of θ to its
expectation value plus or minus one standard deviation. The impact gives a measure of how much our
parameter of interest varies as we change the nuisance parameter. Obviously not all nuisance parameters
are equally important, so a nuisance parameter with low impact may be possibly discarded (or "pruned")
to simplify the fit procedure.

6.3 Example of pull and impact
To illustrate the use of impact and pull, consider a simple counting experiment which measures n events,
with n = µ · s · A · ε + b, where s is the number of signal events, µ is the p.o.i and A (acceptance) ε
(efficiency) and b (background) are nuisance parameters with gaussian distributions.
The likelihood is given by:

L(µ,A, ε, b) =
(µsAε+ b)n

n!
exp (−(µsAε+ b)) exp

(
−(b− bobs)2

σb

)
exp

(
−(A−Aobs)2

σA

)
exp

(
−(ε− εobs)2

σε

)

(44)
For each nuisance parameter, there is an "observed" value which could come from some auxiliary mea-
surement. In this simplified case all nuisance parameters are measured by their MLEs, i.e. (θ̂ = θobs).
We assume the "true" value of the parameters are known to be θ0.
The pulls are calculated straightforward from equation 42. The impact is calculated with the test statistic

tµ(ε) = −2lnL(ˆ̂µ,
ˆ̂
A,ε,

ˆ̂
b)

L(µ̂,Â,ε̂,b̂)
(for the nuisance parameter ε), with double hat indicating that the fit is con-

strained to ε, as was described above. Table 2 shows the values of the parameters used in the toy
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calculation. The measured value for n, was picked from a poisson distribution with expectation value
of nexp = µ · s · A · ε + b (the true, Asimov, values) and εobs Aobs and bobs were picked from gaussian
distributions.

Figure 8 shows a typical overlay plot of pull and impact (right plot for Asimov and left plot for some
toy data set). Note the different x-axis (top for the impact, bottom for the pull). Figure 9 shows in more
detail the calculation of the impact - it shows the scan of tµ(ε), ˆ̂µ(ε) and the procedure leading from
ε̂± σε points to the Impact range (right plot for Asimov and left plot for some toy data set).

Parameter Asimov Measured
s 90 -
n 131.5 132
µ 1 1.4
ε 0.5 0.465
σε 0.05 -
A 0.7 0.487
σA 0.2 -
b 100 103.21
σb 10 -

Table 2: Parameters for toy experiment

-2 -1 0 1 2
Δμ±

ϵ

A

b

-2 -1 0 1 2

θ
^
- θ0

σθo

-2 -1 0 1 2
Δμ±

ϵ

A

b

-2 -1 0 1 2

θ
^
- θ0

σθo

Fig. 8: Impact and pull for the three nuisance parameters (right plot for Asimov and left plot for some toy data set).
The yellow rectangles show the impact range (upper x-axis) and the coloured dots show the pull (lower x-axis)
with one σ error bars

7 The Look Elsewhere Effect (LEE).
Wikipedia: The look-elsewhere effect is a phenomenon in the statistical analysis of scientific experiments,
particularly in complex particle physics experiments, where an apparently statistically significant obser-
vation may have actually arisen by chance because of the size of the parameter space to be searched.Once
the possibility of look-elsewhere error in an analysis is acknowledged, it can be compensated for by care-
ful application of standard mathematical techniques [2].

7.1 The LEE with one parameter (m) undefined under the null hypothesis.
When searching for a new resonance somewhere in a possible mass range, the significance of observing
a local excess of events must take into account the probability of observing such an excess anywhere in
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Fig. 9: Calculation of the impact of the nuisance parameter ε (right plot for Asimov and left plot for some toy data
set). The upper plot shows the MLE of µ when profiling all parameters except ε (the blue curve) and the red X’s
show the point where ˆ̂µ(ε) intersects with the ε̂± σε points (the dashed vertical lines), which marks the end points

of the impact. The bottom plot shows the scan of the test statistic tµ(ε) = −2lnL(ˆ̂µ,
ˆ̂
A,ε,

ˆ̂
b)

L(µ̂,Â,ε̂,b̂)
and shows that the ε̂±σε

points correspond to min(tµ(ε))± 1

the range. This is the so called “look elsewhere effect”. The effect can be quantified in terms of a trial
factor, which is the ratio between the probability of observing the excess at some fixed mass point (local
p− value), to the probability of observing it anywhere in the range (global p− value). The question we
try to answer with a p− value is What is the probability of observing an excess anywhere in the search
range". For years it was a common knowledge that in order to convert the local probability into a global
probability one has to apply a trial factor which is simply the number of possible independent search
regions, i.e. trial # =

pfloat
pfix

= search range
mass resolution . In [2] it was shown that an important factor was missing

from this rule of thumb estimation. The trial number is linearly dependent on the local significance. This
can be intuitively understood by the possibility of havung a look elsewhere effect within the independent
search range, where the number of possibilities peak can arrange itself is proportional to the significance.
The trial number is therefore asymptotically (for small p− values, i.e. large significance) given by

trial# ≈ 1 +

√
π

2
NZfix (45)

where N is the number of independent search regions.

The trial factor is thus asymptotically linear with both the effective number of independent regions,
and with the fixed-mass significance.

The number of independent search region is not a trivial quantity. The resolution might not be well
defined and is usually depending on the mass. We applied the formula obtained by Davies [12] for an
hypothesis testing when a nuisance parameter (the mass) is known only under the alternative hypothesis.
The mass is not defined under the null (background only) hypothesis.

Let q0(m, θ) be the discovery test statistics (following Equation 31). m is undefined under the null
hypothesis (µ = 0). Nevertheless, there is a dependence of q0 on the mass through the denominator.

q0(m) =




−2 ln L(0)

L(µ̂,m) µ̂ ≥ 0,

0 µ̂ < 0 ,
(46)
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Given some data set, we scan q0(m) and find the maximal one (smallest p − value over all possible
masses). We define it as

q̂0 ≡ maxm[q0(m)] = q0(m̂) (47)

Since for any given m, q0(m̂ ≥ q0(m), the global p − value, pglobal ≥ plocal. Hence, the trial number
is always greater or equal to one, Trial# ≥ 1. We find that for high local significance (at the tail of the
pdf distributions), the following relation exists between the global and local p− value:

P (q0(m̂) > u) ≈ 1

2
P (χ2

1 > u) +NP (χ2
2 > u) (48)

where in the tail u → ∞. N is the number of independent search regions. To obtain this we find the
average number of upcrossings at a level u = Z2, nu, i.e. E[nu] = N e−u/2.

Since we are interested to know the global significance for high level , normally u = Z2 > 16, the
number of upcrossings is very small and one needs to generate expensive toys to estimate E[nu]. One
then renormalize the upcrossings level. Let us pick a low level u0 where the number of upcrossings is
relatively large and the statistical error on the estimation is therefore small (normally one picks u0 = 0
or u0 = 0.52). We find E(nu0) = N e−u0/2 and therefore

E(nu) = E(nu0)e
u0−u

2 (49)

Finally we find that the answer to the question: What is the probability to have a fluctuation with a
significance bigger than Z =

√
u all over a given mass range? is given by

Pglobal(u) ≈ plocal(u) + E(nu0)e
u0−u

2 (50)

where u0 is some low reference level, where the estimation of the number of upcrossings E(nu0) is easy
and fast.

To illustrate it let us look at a real example from the Higgs Boson search and discovery. In the
following Figures we show the p0 (Figure 10) and the signal strength µ (Figure 11) as a function of the
Higgs mass. The plots are taken from the ATLAS discovery conference note [10]. Z = 0 corresponds
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Fig. 10: The local probability p0 for a background-only experiment to be more signal-like than the observation in
the full mass range of this analysis as a function of mH . The dashed curves show the median expected local p0

under the hypothesis of a Standard Model Higgs boson production signal at that mass. The horizontal dashed lines
indicate the p-values corresponding to significances of 1σ to 6σ.

to either p0 = 0.5 or µ̂ = 0. Se we have to count the number of up-crossings at 0σ. We should have
performed a few Momte Carlo experiments and count the average number of up-crossings at u = 0. But
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Fig. 11: The combined best-fit signal strength µ̂ as a function of the Higgs boson mass hypothesis in the full mass
range of this analysis

this seems to be not practical when we combine all the channels. Instead we could simply take the data
itself and count nu0 = 9±3. This accuracy is sufficient for the estimation of the trial number. Following
Equation 50, substituting u0 = 0 and u = 52 = 25, we find

pglobal = O(10−7) + 9× e−25/2 = 3.3× 10−5 (51)

The trial number is about trial# ≈ 10−5

10−7 ≈ 100 and it reduces the significance from 5σ to 4σ.

7.2 The LEE with two parameters (m,Γ) undefined under the null hypothesis.
In cases where there are two parameters undefined under the null hypothesis, such as mass (m) and width
(Γ) the Look Elsewhere Effect is broader. Ref [13] solved the case for a multi-dimensional search.

Suppose we would like to estimate the global significance of some observed excess. When allow-
ing both the mass and the width float, we observe that the highest significance of Zσ occurs for some
specific mass and width. This observation corresponds to a local background fluctuation with a p-value
of plocal. However, any fluctuation at any mass and width in the 2D search plane of m and Γ would have
drawn our attention. The increased probability to observe a fluctuation of Zσ or more anywhere in the
mass-width plane A = (m,Γ) (LEE) is given by the global p-value, pglobal. The local p-value is based
on scanning the q0(m,Γ) test statistic, q0(m,Γ) given by

q0(m,Γ) = −2 log
L(0,m,Γ,

ˆ̂
θ)

L(µ̂, m̂, Γ̂, θ̂)
. (52)

The distribution of the maximum local significance u = Z2 = maxm,Γ q0(m,Γ) was studied in [13].
The global p-value is given by

pglobal ≈ E[φ(Au)] = plocal + e−u/2(N1 +
√
uN2) (53)

where N1 and N2 are coefficients that are estimated by calculating the average Euler characteristic of
the plane A. To solve for N1 and N2, it is convenient to set two reference levels u0 and u1, find the
Euler characteristics for each level, and solve the consequent system of two linear equations. In a 2D
manifold with closed islands, some with holes, each disconnected full island takes the value +1. Each
hole contributes −1. In that sense a full round shape has the Euler characteristic of +1. If you dig a hole
in it, its Euler characteristics becomes +1− 1 = 0 (Figure 12).

An example can be taken from the search for di-photon in ATLAS [14]. In Figure 13 one sees
the 2D (mX ,ΓX/mX ) plane. The manifold Au is obtained by slicing this plane at a level u = Z2. The
Euler characteristic is the number of "disconnected" islands in that slice.

20

E. GROSS

184



Fig. 12: Illustration of the Euler characteristic of some 2-dimensional manifold.
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