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Abstract

The Asia–Europe–Pacific School of High-Energy Physics is intended to give young physicists an introduction
to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture
notes on Higgs physics, the theory of quantum chromodynamics, quarkonium physics, and physics beyond the
Standard Model.
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Preface

The third event in the series of the Asia–Europe–Pacific School of High-Energy Physics took place in Beijing,
China, from 12 to 25 October 2016. A strong team from IHEP and UCAS took care of the local organization,
while CERN and KEK collaborated to provide administrative support in preparation for the School.

The staff and students were housed in comfortable accommodation in the International Conference Centre
on the Yanqihu Campus, University of the Chinese Academy of Sciences that also provided the conference
facilities. The students shared accommodation, mixing nationalities to foster cultural exchange between partic-
ipants from different countries.

A total of 91 students of 22 different nationalities attended the school. About 74% of the students were
from Asia-Pacific countries, most of the others coming from Europe. Almost 90% of the participants were
working towards a PhD, while most of the others were advanced Masters students; the School was also open to
postdocs. Over 80% of the students were experimentalists; the school was also open to phenomenologists.

A total of 35 lectures were complemented by daily discussion sessions led by five discussion leaders.
The teachers (lecturers and discussion leaders) came from many different countries: Belgium, China, France,
Germany, India, Japan, Korea, Russia, Switzerland, the UK and the USA.

The programme required the active participation of the students. In addition to the discussion sessions that
addressed questions from the lecture courses, there was an evening session in which many students presented
posters about their own research work to their colleagues and the teaching staff.

Collaborative student projects in which the students of each discussion group worked together on an in-
depth study of a published experimental data analysis were an important activity. This required interacting,
outside of the formal teaching sessions, with colleagues from different countries and different cultures. A
student representative of each of the five groups presented a short summary of the conclusions of the group’s
work in a special evening session.

In addition to the academic side of the School, the participants had the occasion to experience many aspects
of Chinese culture, including visits to the Great Wall and to central Beijing where they saw the Temple of
Heaven and the Forbidden City. They also had ample opportunity to appreciate excellent Chinese food.

Our thanks go to the local-organization team and, in particular, to Jiangxi Lan, Yeliu Mo and Huan Xing
under the chairmanship of Changzheng Yuan, for all their work and assistance in preparing the School, on both
scientific and practical matters, and for their presence throughout the event.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, undoubtedly appreciated listening to and discussing with the teaching staff of world
renown.

We would like to express our special appreciation to Professor Fabiola Gianotti, Director General of CERN,
Professor Yifang Wang, Director General of IHEP, and Professor Masanori Yamauchi, Director General of
KEK, for their lectures on the particle-physics programmes at CERN, in China and in Japan. We would also
like to thank Professor Takaaki Kajita, winner of the 2015 Nobel Prize in Physics, for his special lecture about
Super Kamiokande.

We are very grateful to Kate Ross from CERN and to Misa Miyai from KEK for their untiring efforts on
administration for the School. We would also like to thank the members of the International Committees.
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Sponsorship from numerous bodies in many countries covered the cost of travel and/or local expenses of
their staff and students who attended the School. In addition, general sponsorship is gratefully acknowledged
from: Institute of High Energy Physics, Chinese Academy of Sciences (IHEP, CAS); National Natural Science
Foundation of China (NSFC); China Center of Advanced Science and Technology (CCAST); the CAS Center
for Excellence in Particle Physics (CCEPP); Ministry of Science and Technology (MOST), China; University
of Chinese Academy of Sciences (UCAS); CNRS/IN2P3, France; CERN; DESY, Germany; and KEK, Japan.

Nick Ellis
(On behalf of the Organizing Committee)
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Topics in Higgs Physics

J. Ellis*

Theoretical Particle Physics & Cosmology Group, Department of Physics, King’s College London,
United Kingdom

Abstract
These lecture notes review the theoretical background to the Higgs boson, pro-
vide an introduction to its phenomenology, and describe the experimental tests
that lead us to think that “beyond any reasonable doubt, it is a Higgs boson".
Motivations for expecting new physics beyond the Standard Model are re-
called, and the Standard Model effective field theory is advocated as a tool
to help search for it. The phenomenology of N = 1 and N = 2 supersym-
metric Higgs bosons is reviewed, and the prospects for possible future Higgs
factories are previewed.

KCL-PH-TH/2017-09, CERN-TH/2017-039

Keywords
Standard Model; Higgs boson; LHC; supersymmetry; future colliders.

1 Background to the Higgs Discovery
1.1 Historical introduction
The fundamental equations of physics have a high degree of symmetry - think the rotation and translation
symmetry of Newton’s equations, the gauge invariance of Maxwell’s equations for electrodynamics, the
boost symmetry of special relativity, or the the general coordinate invariance of general relativity - and
these theories are generally considered to be very beautiful. However, the solutions to these equations
often conceal these symmetries, and they appear asymmetric - people are not spherical, for example.
Sometimes these asymmetric solutions may even appear more beautiful than symmetric solutions - the
image of the Mona Lisa, for example, would not be so interesting if it were symmetric. Regardless of
these aesthetic considerations, the rich variety of physical phenomena clearly requires the potential to
break symmetries.

However, breaking a symmetry must be done with care - for example, the gauge invariance of
electrodynamics guarantees the renormalisability of quantum electrodynamics (QED) and hence its cal-
culability. The trick in formulating theories with ‘broken’ symmetry is often to hide the symmetry so
that it is not manifest, while maintaining it at a fundamental level and thereby preserving its attractive
features such as renormalizability. This can be done by postulating a lowest-energy (‘vacuum’) state of
the symmetric equations that does not possess the full symmetry of the underlying equations - an idea
known as spontaneously-broken or ‘hidden’ symmetry.

This idea originated in condensed-matter physics - an early example being the superfluidity that
plays an essential rôle in the LHC magnet system. In this case, the spontaneously-broken symmetry is
global, i.e., the symmetry transformations are independent of the spatial location within the superfluid.
This type of hidden symmetry was introduced into particle physics by Yoichiro Nambu [1], who used it to
understand the (relatively) low mass and the low-energy dynamics of the pion. According to his theory,
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Table 1: Particle content of the Standard Model. Each quark comes in 3 colours, and the electric charges of the
fermions are listed in the Table.

Bosons
Gauge bosons Higgs boson

γ, W+, W−, Z0, g1...8 φ

Fermions
Quarks Leptons

2/3 :
−1/3 :

(
u
d

)
,

(
c
s

)
,

(
t
b

)
0 :
−1 :

(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)

the underlying symmetry (in this case chiral symmetry) is not manifest, but is reflected in the couplings
of the pion, which would have no mass if the up and down quarks were strictly massless. Jeffrey Gold-
stone subsequently published a simple elementary field-theoretical model of this phenomenon [2] and
he, Abdus Salam and Steven Weinberg [3] subsequently proved rigorously that in a relativistic theory
every spontaneously-broken global symmetry would be reincarnated in a massless particle with specific
couplings, called a Nambu-Goldstone boson.

All well and good, but there are interesting cases where the spontaneously-broken symmetry is lo-
cal, as in a gauge theory - the prime example being the superconductivity that also plays an essential rôle
in the LHC magnet system. The theory of spontaneous gauge symmetry breaking in this non-relativistic
situation was first developed by Philip Anderson [4] and Nambu [5]. According to their theory, inside a
superconductor the (externally massless) photon acquires a medium-dependent mass by ‘eating’ Cooper
pairs of electrons in the lowest-energy (‘vacuum’) state inside the medium. Anderson also conjectured
that a similar phenomenon might be possible in a relativistic theory, but did not develop this idea. In-
deed, Walter Gilbert [6] argued that this would not be possible, because spontaneous symmetry breaking
seemed to require the presence of a vector breaking Lorentz symmetry explicitly.

However, in 1964 this argument was circumvented in papers by François Englert and Robert
Brout [7], and by Peter Higgs [8, 9]. The Englert-Brout paper was received by the journal where it
was published on June 26th, 1964, and a first paper by Higgs was received on July 27th, 1964. Unaware
of the paper by Englert and Brout, he pointed out a potential loophole in the Gilbert argument, and in a
second paper he constructed an explicit example. Curiously, whereas the first paper was accepted quickly
by the journal Physics Letters, that journal refused the second paper. It was subsequently accepted by
Physical Review Letters after an anonymous referee (generally held to be Nambu) suggested to Higgs
that he emphasise more the physical implications of his theory. Later in 1964, a more detailed descrip-
tion of this idea appeared in a paper by Gerald Guralnik, Carl Hagen and Tom Kibble [10]. Among all
these 1964 papers, the only one to point out explicitly on the appearance in the theory of a massive scalar
boson was Higgs, in his second paper [9], which is why it is generally referred to as the Higgs boson.

These authors considered the spontaneous breaking of an Abelian U(1) gauge theory. The analo-
gous phenomenon in a non-Abelian theory was first studied by Sashas Migdal and Polyakov [11], who
were unaware of the earlier papers. Publication of their paper was delayed because Soviet academicians
could not believe that two young students, as they were then, could come up with such a ground-breaking
theory. Partial breaking of a non-Abelian gauge symmetry was subsequently rediscovered by Kibble [12],
and this is the form of spontaneous symmetry breaking that is central to the Standard Model.

1.2 Summary of the Standard Model
Table 1 summarizes the particle content of the Standard Model (SM) [13, 14]. The weak and electro-
magnetic interactions are described by a Lagrangian that is symmetric under gauge transformations in a
SU(2)L×U(1)Y group, where the subscript L recalls that the weak SU(2) group acts only on left-handed
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fermions, and Y is the hypercharge. We can write the SU(2)L×U(1)Y part of the SM Lagrangian as

L = −1

4
F aµνF

aµν

+ iψ/Dψ + h.c.

+ ψiyijψjφ+ h.c.

+ |Dµφ|2 − V (φ) , (1)

which is short enough to write on a T-shirt or a pullover!

The first line in (1) contains the kinetic terms for the gauge bosons of the electroweak theory, where
the index a runs over the single U(1)Y gauge field,Aµ, and the three gauge fields W 1,2,3

µ associated with
SU(2)L. The U(1) field-strength tensor is the familiar

fµν = ∂νAµ − ∂µAν , (2)

and the SU(2)L field-strength tensor is

F aµν = ∂νW
a
µ − ∂µW a

ν + igεabcW
b
µW

c
ν for a = 1, 2, 3 . (3)

where g in (3) is the gauge coupling of SU(2)L and the εabc are its structure constants. The last term in
(3) arises from the non-Abelian nature of the SU(2) group. At first sight, all the gauge fields are massless,
in conflict with the massive nature of the weak bosons W± and Z0. As we see later, they acquire masses
through the Englert-Brout-Higgs mechanism, whose physical manifestation is the Higgs boson.

The second line in (1) contains the interactions between the spin-1/2 matter fields ψ and the gauge
fields via the covariant derivatives

Dµ = ∂µ +
ig′

2
AµY +

ig

2
τ ·Wµ , (4)

where g′ is the U(1) coupling constant, Y is the generator of the U(1) hypercharge, and τ ≡ (τ1, τ2, τ3)
is the set of SU(2) Pauli matrices that represent the SU(2) algebra.

The third line in (1) describes the interactions between the matter fields and the Higgs field, φ,
via the Yukawa couplings yij , which give fermions their masses when the Higgs field acquires a vacuum
expectation value (vev) 〈φ〉 6= 0. In the SM the Higgs field φ is a complex doublet of SU(2) with non-zero
U(1) hypercharge Y , so this vev breaks electroweak symmetry.

The fourth and final line in (1) describes dynamics of the Higgs sector. The first term is the kinetic
term for the Higgs field, which also includes a covariant derivative Dµ (4), and the second term in the
final line of (1) is the Higgs potential V (φ):

V (φ) = −µ2|φ|2 + λ|φ|4 . (5)

The negative sign of the first, quadratic term in (5) destabilizes the symmetric case 〈φ〉 = 0, and the
second, quartic term in (5) ensures that there is a stable minimum of the potential with

〈φ〉 ≡ v√
2

=
µ√
2λ
6= 0 , (6)

if λ > 0. The requirements that the coefficient of the quadratic term is negative and that of the quartic
term is positive are both problematic in the SM, as we shall see later.

Many different experiments have confirmed with high precision theoretical predictions derived
from the first two lines in the SM Lagrangian (1). However, until 2012 there was no experimental
evidence for the last two lines, and there was considerable theoretical doubt whether it could be correct.
However, during Run 1 of the LHC the ATLAS [15] and CMS [16] Collaborations discovered a particle
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with properties resembling those of the Higgs boson in the SM, as discussed later in this Lecture, albeit
with much less accuracy than, e.g., the precision electroweak tests based on properties of theW± and Z0

boson. The major tasks for future experiments at the LHC and elsewhere will include probing whether
the Higgs and other sectors of the SM Lagrangian in (1) hold up under more detailed scrutiny, whether
there are additional interactions between SM particles, and whether there is any evidence for new physics
beyond the SM, as discussed in the second Lecture.

1.3 Abelian (NG)AEBHGHKMP mechanism
As a warm-up exercise, we consider the simplest Abelian model for spontaneous gauge symmetry break-
ing, with just a U(1) gauge field Aµ and a single complex field φ described by the Lagrangian

L(A, φ) = −1

4
fµνf

µν + (Dµφ
†) (Dµφ)− V (φ) , (7)

where fµν is given by (2),Dµ ≡ ∂µ−ieAµ and V (φ) has the ‘Mexican hat’ form (5) illustrated in Fig. 1.
The U(1) gauge invariance implies that the theory is invariant under the local transformations

φ→ φ′ = eiα(x)φ = eiα(x)eiθ(x)η(x) ,

Aµ → A′µ = Aµ(x) +
1

e
∂µα(x) , (8)

where η(x) and θ(x) are the magnitude and phase of φ(x), respectively.

Fig. 1: The ‘Mexican hat’ potential (5). The lowest-energy state may be described by a random point around the
base of the hat. In the case of a global symmetry, motion around the bottom of the hat corresponds to a massless
spin-zero Nambu-Goldstone boson [1, 2]. In the case of a local (gauge) symmetry, this boson combines with
a massless spin-one gauge boson to yield a massive spin-one particle with three polarization states. The Higgs
boson [9] is a massive spin-zero particle corresponding to quantum fluctuations in the radial direction, up the side
of the hat.

We can exploit this gauge invariance to choose α(x) = −θ(x), in which case φ′(x) = η(x) and
the Lagrangian (7) takes the form

L(A′µ, η) = −1

4
f ′µνf

′µν + |(∂µ − ieA′µ)η|2 − V (η) , (9)

The minimum of the potential V (η) occurs at the following value of η:

η =
v√
2
≡ µ√

2λ
. (10)
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We can then rewrite (9) writing η = (v +H)/
√

2 and simplifying the notation: A′µ → Aµ, to obtain

L(Aµ, H) = −1

4
fµνf

µν + |(∂µ − ieAµ)(
v +H√

2
)|2 − V (

v +H√
2

) . (11)

Expanding (11) to quadratic order in Aµ and H , we find

L(Aµ, H) 3 −1

4
fµνf

µν + e2v2AµA
µ +

1

2
[(∂µH)2 −m2

HH
2] + . . . , (12)

where the gauge boson has acquired a mass mA = ev/2 and mH =
√

2µ =
√

2λv. The mass of the
vector boson results from the spontaneous symmetry gauge breaking mechanism, with the phase degree
of freedom θ of the complex scalar field φ, which is a Nambu-Goldstone boson, being ‘eaten’ by the
previously massless gauge boson - which has two polarization degrees of freedom - to become the third
polarization state needed for a massive gauge boson.

The simultaneous appearance of a massive scalar boson H is an inescapable feature of this mech-
anism, since it is related to the positivity of the curvature in the scalar potential around the minimum,
which is needed to fix the vev v. This insight was made explicit in the second 1964 paper by Higgs [9],
but was not mentioned in any of the other 1964 papers.

1.4 Spontaneous gauge symmetry breaking in the Standard Model
The principle of spontaneous gauge symmetry breaking can easily be extended to the case of a non-
Abelian group, in particular the SU(2)L×U(1)Y of the Standard Model. In this case, using the expres-
sions (2) and (3) for the gauge field strengths and the expression (4) for the covariant derivative of what
is now an isospin doublet of Higgs fields φ, we can expand the first (kinetic) term in the bottom line of
equation (1), |Dµφ|2, to obtain

L 3 −g
2v2

4
W+
µ W

µ− − g′2v2

8
BµB

µ +
gg′

4
BµW

µ3 − g2v2

8
W 3
µW

µ3 + . . . . (13)

where v is the vev of the scalar field, which is determined in the same way as the previous Abelian
example.

The first term in (13) yields masses for the charged vector bosons W±:

mW = g
v

2
. (14)

The other three terms yield a mass matrix for the two neutral gauge fields (B,W 3), which can be diago-
nalized to yield

mZ =
√
g2 + g′2

v

2
: Z ≡ gW 3 − g′B√

g2 + g′2
,

mA = 0 : A ≡ g′W 3 + g′B√
g2 + g′2

. (15)

The first of these mass eigenstates is the massiveZ studied in detail in experiments at the LEP accelerator,
in particular, and the second, massless eigenstate is identified with the photon. It is useful to introduce
the weak mixing angle θW :

tan θW ≡ g′

g
→ mZ =

mW

cos θW
, Z = cos θWW

3 − sin θWB, A = sin θWW
3 + cos θWA .

(16)
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Measuring θW in different ways with high precision has provided important consistency tests of the
Standard Model, and provided a clue about the mass of the Higgs boson before its discovery, as we
discuss later.

As in the previous Abelian case, there is again a massive scalar (Higgs) boson whose mass is
related to the curvature of the potential V (φ) in the radial direction, and has the value

MH =
√

2µ . (17)

The couplings of the Higgs boson to other Standard Model particles are predicted exactly. Expanding the
first (kinetic) term in the bottom line of equation (1), |Dµφ|2, beyond quadratic order, we find trilinear
couplings of the Higgs boson to the massive gauge bosons:

gHWW =
2mW

v
, gHZZ = =

2m2
Z

v
, (18)

and there are also important trilinear and quartic Higgs couplings. As was first pointed out be Wein-
berg [14], the third line in (1) links the Higgs-fermion couplings to their masses:

mf = yfv ↔ yf =
mf

v
. (19)

The couplings (18, 19) lead to characteristic predictions for the partial decay rates of the Standard Model
Higgs boson:

Γ(H → ff̄) = Nc
GFmH

4π
√

2
m2
f , (20)

where the number of colours Nc = 3 for quarks, 1 for leptons, and (for a sufficiently heavy Higgs
boson) [18]

Γ(H →W+W−) =
GFm

3
H

8π
√

2
F (
mW

mH
) , (21)

where F (mW /mH) is a phase-space factor, and there is a corresponding formula for Γ(H → ZZ) with
a prefactor 1/2. Experimentally, mH < 2mW , so the Higgs boson cannot decay into pairs of on-shell
gauge bosons, but the decays H →WW ∗, ZZ∗ are quite distinctive, and have been measured.

Measurements of the couplings of the boson discovered in 2012 and checking their consistency
with the predictions (18, 19) have led to the general acceptance that it is indeed a Higgs boson, as we
also discuss later. Future higher-precision measurements will see whether it is consistent with being the
single Higgs boson of the Standard Model, or whether the couplings exhibit deviations characteristic of
some scenario for new physics beyond the Standard Model.

1.5 Embarking on Higgs phenomenology
In 1975 Mary Gaillard, Dimitri Nanopoulos and I made the first attempt at a systematic survey of the
possible phenomenological profile of the Higgs boson [17,18]. At that time, the Standard Model was not
established, idea of spontaneous gauge symmetry breaking was far from being generally accepted, there
was general scepticism about scalar particles and, even if one bought all that, nobody had any idea how
heavy a Higgs boson might be. For all these reasons, we were rather cautious in the final paragraph of
our paper, writing "we do not want to encourage big experimental searches for the Higgs boson, but we
do feel that people doing experiments vulnerable to the Higgs boson should know how it may turn up."

Subsequently, searches for the Higgs boson were placed on the experimental agendas of the
LEP [19, 20] and LHC accelerators at CERN. For example, a review of the possibilities for new par-
ticle searches presented at the first workshop on prospective LHC physics in 1984 [21] discussed various
ways of producing the Standard Model Higgs boson at the LHC. There were also studies of Higgs pro-
duction at the ill-fated SSC [22], and the state of play was described extensively in [23]. However, in the
1980s there was still no indication what the Higgs mass might be.
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The first clues about mH emerged from the high-precision measurements at LEP and the SLC
that started in 1989. These and other experiments found excellent overall agreement with the predictions
of the Standard Model. However, this consistency depended on the existences if the top quark (which
was discovered several years later) and the Higgs boson. The accuracy of the LEP et al. measurements
pointed towards (what seemed at that time) a relatively heavy top quark [24] and a Higgs boson weighing
. 180 GeV [26].

These indications came about through quantum (loop) corrections to electroweak observables,
such as the W± and Z masses:

m2
W sin2 θW = m2

Z sin2 θW cos2 θW =
πα√
2GF

(1 + ∆r) , (22)

where ∆r is the leading one-loop radiative correction, which exhibits the following dependences on the
top and Higgs masses:

∆r 3 3GF

8π2
√

2
m2
t + . . . ,

GF
16π2

m2
W

(
11

3
ln
m2
H

m2
W

+ . . .

)
, (23)

where we have exhibited the leading dependences on mt and mH for large masses. These are relics
of the divergences that would appear if either the top quark or the Higgs boson were absent from the
Standard Model, which would render it non-renormalizable.

In the early 1990s, even before the top quark was discovered, the precision electroweak data were
providing indications that the Higgs mass was probably well below the unitarity limit of 1 TeV [25],
which were strengthened when the top quark mass was measured [26]. Back in 2011, just before the
Higgs boson was discovered, the precision electroweak data suggested a range mH = 100 ± 30 GeV.
In parallel, unsuccessful searches at LEP had implied that mH ≥ 114 GeV [27], and searches at the
Fermilab Tevatron collider had excluded a range around (160, 170) GeV [28]. Combining all the infor-
mation available in 2011, the Gfitter Group obtained the χ2 likelihood function shown in Fig. 2 [29],
corresponding to the estimate

mH = 125± 10 GeV . (24)

The success of this prediction was a tremendous success for the Standard Model at the quantum level.

1.6 Higgs production at the LHC
Fig. 3 displays various leading-order diagrams contributing to Higgs production at a proton-proton col-
lider: those for gg → H , vector boson fusion and associated V + H production are shown in the upper
row, and diagrams for associated t̄t + H and some of those for single t + H production are shown in
the lower row. The left panel of Fig. 4 displays the most important Higgs production cross sections at
the LHC at 13 TeV in the centre of mass, as functions of the Higgs mass [30]. The dominant cross
section for mH . 1 TeV is that for gluon fusion: gg → H via intermediate quark loops [31], the most
important in the Standard Model being the top quark. The next most important processes at low masses
mH . 100 GeV are the associated-production mechanisms qq̄ → W + H,Z + H [32], whereas the
vector-boson fusion processes W+W−, ZZ → H [33] are more important for mH & 100 GeV. Next in
the hierarchy of cross sections are the associated-production processes gg, qq̄ → bb̄H (which is difficult
to distinguish) and tt̄H [34] (which is more distinctive). Lowest in the hierarchy for mH . 200 GeV
is the cross section for producing H in association with a single t or t̄ [35]. The right panel of Fig. 4
displays is a zoom of the cross sections in a limited range of Higgs mass around 125 GeV [30]. The good
news is that for mH ∼ 125 GeV most of these cross sections are potentially measurable at the LHC, and
several of them have already been observed, as discussed later.

As can be seen in Fig. 4, the dominant gg → H cross section has a relatively large uncertainty.
This is because it is a strong-interaction process, which has relatively large perturbative corrections, and
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Fig. 2: The ∆χ2 as a function of mH for a complete fit to the data available in mid-2011 [29], including precision
electroweak data and the negative results of searches at LEP [27] and the Fermilab Tevatron [29] (grey bands). The
solid (dashed) lines represent results that include (omit) theoretical uncertainties.

gg → H Vector boson fusion Associated V +H production

t̄t+H production s-channel diagrams for t+H production

Fig. 3: Leading-order diagrams for Higgs production. Upper row: gg → H , vector boson fusion and associated
V +H production. Lower row: t̄t+H production and s-channel diagrams for single t+H production.

is induced at the loop level, implying that the calculation of these corrections is more arduous than for
a tree-level process. Nevertheless, a complete calculation of the gg → H cross section at the next-to-
next-to-leading order (NNLO) is available, as is a heroic N3LO calculation in the limit of a heavy top
quark [36]. The result of these efforts is the following estimate of the gg → H cross section [30]:

σ = 48.58 +2.22
−3.27 (theory) ± 1.56 (PDF, αs) pb , (25)

corresponding to a total uncertainty of < 10%. It is worth noting that the NLO correction more than
doubled the cross section, that the the NNLO correction was about 20% of the final estimate (25). How-
ever, the N3LO correction was only ∼ 3%, indicating that the perturbative QCD corrections are under
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Fig. 4: Calculations of the dominant production cross sections for a Standard Model Higgs boson, for a wide range
of masses (left panel) and for with a mH ∈ [120, 130] GeV (right panel) [30]. The uncertainties are represented
by the widths of the coloured bands for each production mechanism displayed.

Table 2: Breakdown of the theoretical uncertainties (in pb) in (25) that are associated with different approxima-
tions in the calculation of the gg → H cross section [30].

Scale Truncation PDFs (TH) Electroweak mt,b,c 1/mt
+0.10
−1.15 ±0.18 ±0.56 ±0.49 ±0.40 ±0.49

control. Table 2 compiles the principal theoretical uncertainties in the calculation (25) of the gg → H
cross section. The first is associated with the choice of scale in the perturbative QCD calculation, and the
second is an estimate of the uncertainty due to the truncation of the perturbative expansion. The third is
an estimate of the theoretical uncertainty in the use of the parton distribution functions (PDFs) and αs,
and the fourth is an estimate of the uncertainty in higher-order mixed electroweak and QCD perturbative
corrections. The fifth is the parametric uncertainty in the values of mt,b,c to be used, and the sixth and
last is an estimate of the uncertainty in the heavy-top approximation in the N3LO calculation. We see
that many uncertainties are comparable at the level of ±O(0.5) pb, indicating that a struggle on many
fronts will be needed to reduce substantially the theoretical error in (25).

Concerning the PDF uncertainties in (25), Fig. 5 shows that there is now good consistency between
the gg collision luminosities estimated by different PDF fitting groups with the recommendation of the
PDF4LHC Working Group [37]. The uncertainty from this source is currently estimated at∼ 2%, which
is comparable to the parametric uncertainty associated with αs. These are currently the largest individual
sources of uncertainty in the gg → H cross section.

There are smaller uncertainties in the cross sections for vector boson fusion (shown in the upper
panels of Fig. 6) andH production in association with aW± or Z boson (lower left panel of Fig. 6), both
of which have been calculated at NNLO including electroweak corrections at NLO [30]. In both cases,
there is good convergence of the perturbation expansion, and there are also quite small uncertainties in
the relevant quark parton PDFs. On the other hand, the uncertainties in the cross section for associated
tt̄ + H production (shown in the lower right panel of Fig. 6) are significantly greater. This is a strong
interaction cross section that has been calculated only at NLO, so there are considerable uncertainties
associated with the perturbation expansion. Also, there are greater uncertainties associated with the
choices of quark, antiquark and gluon PDFs. The situation is similar for single t or t̄ + H associated
production.
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Fig. 5: Comparison between the parton-parton production luminosities calculated using different PDF sets [30],
compared to the PDF4LHC recommendation [37].

1.7 Higgs decays
Since Higgs couplings to other particles are proportional to their masses, as seen in (18) and (19), it is
expected to decay predominantly into the heaviest particles that are kinematically accessible [17]. This
is apparent in the left panel of Fig. 7, which gives an overview of Higgs decay branching ratios for
a wide range of Higgs masses. In the specific case of interest when mH ' 125 GeV, as seen in the
right panel of Fig. 7 [30], we see that H → bb̄ decays are expected to dominate, with H → cc̄ decays
suppressed by (mc/mb)

2, and H → τ+τ− decays suppressed by a missing colour factor as well. Since
mH < 2mW,Z , only the off-shell decays H → WW ∗, ZZ∗ followed by W ∗, Z∗ → ff̄ decays are
possible. Nevertheless, because of the large vector-boson mass factors in (18), these three-body decays
have branching ratios comparable to the leading H → ff̄ two-body decays, as seen in the right panel of
Fig. 7.

Also comparable is the rate for H → gg decay, which is a loop-induced process: see Fig. 8. It is
difficult to observe H → gg decay directly, but is related to the rate for the dominant gg → H fusion
production process. The electroweak loop-induced decays H → γγ and Zγ occur with somewhat lower
branching ratios. However, the H → γγ mode is very clean, and was one of the discovery modes at
the LHC. The amplitude for H → γγ decay is generated by loops of massive charged particles [17] as
shown in Fig. 8. The most important contributors in the Standard Model are the top quark and the W±

boson. Their contributions may be written as follows:

Γ(H → γγ) =
GFα

2m3
H

128π3
√

2

∣∣ΣfNcQ
2
fA1/2(rf ) +A1(rW )

∣∣2 , (26)

where A1/2 and A1 are known functions of rf ≡ mf/mH and rf ≡ mW /mH that have opposite signs,
so that the top and W± contributions interfere destructively. In the Standard Model, the ggH amplitude
receives contributions only from the top and (less important) lighter quarks.
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Fig. 6: The cross sections for vector boson fusion production of the Higgs boson with the LHC at 7 TeV (upper
left panel), and at 14 TeV (upper right panel), for associated WH production at 7 and 14 TeV (lower left panel),
and for t̄tH production at 7 and 14 TeV (lower right panel), all as functions of mH [38].

The last decay mode shown in the right panel of Fig. 7 isH → µ+µ−, which is suppressed relative
toH → τ+τ− by a factor (mµ/mτ )2. Nevertheless, it also has quite a clean experimental signature, and
is expected to be the first decay of H into second-generation fermions to be probed.

There have been strong theoretical efforts to calculate perturbative corrections to H decays [30],
leading to the relatively small uncertainties shown in Fig. 7. The largest relative uncertainties are in
H → gg decay, because it is a loop-induced decay into strongly-interacting particles, and H → Zγ
decay, where high-order calculations are complicated by the masses of the initial-state H and the final-
state Z.

Echoing what was said earlier about Higgs production mechanisms, another piece of good news
is that for mH ' 125 GeV many Higgs decay modes ares measurable at the LHC. These happy chances
provide many opportunities to measure distinctive properties of the Higgs boson. Also, it is an amusing
irony that the largest H production mechanism, gg → H , and one of the cleanest H decay channels,
H → γγ, are both loop-induced processes. Thus, LHC data already give us access to quantum aspects
of Higgs physics, including the possible existence of new heavy particles beyond the Standard Model.

If the Higgs boson had weighed 750 GeV (just saying) [39], gathering a lot of information about
it would have been more difficult. In that case, observing other production modes besides gg → H and
vector-boson fusion at the LHC would have been difficult, and observing any other decays besides H →
W+W−, ZZ and tt̄would probably have been impossible in the absence of any other new particles [40].
Obviously, we regret the passing of the late lamented X(750) particle, which would have required new
physics to explain its production and decay, but we should thank our lucky stars for the openness of the
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Fig. 7: Calculations of the dominant decay branching ratios for a Standard Model Higgs boson over a large
range of masses (left panel) and with mass mH ∈ [120, 130] GeV (right panel) [30], where the uncertainties are
represented by the widths of the coloured bands for each decay mode displayed.

Fig. 8: Loop diagrams for H couplings to massless gauge bosons. In the Standard Model, the dominant fermion
diagram (left) for H → gg and γγ involves the top quark. The W± diagrams (middle and right) contribute only to
H → γγ. There are similar diagrams for H → Zγ.

H(125)!

1.8 The stakes in the Higgs search
The stakes in the Higgs search were very high. How is gauge symmetry broken: spontaneously (ele-
gantly) or explicitly (ugly and uncalculably)? Assuming that it is broken spontaneously, is it broken by
an elementary scalar field, which would be a novelty that raises perhaps more questions than it answers,
many of which are related to the hierarchy of mass scales in physics? The Higgs is very likely a por-
tal towards many issues in physics beyond the Standard Model. It would have been associated with a
phase transition in the Universe when it was about 10−12 seconds old, which maight have been when the
baryon asymmetry of the Universe was generated. The Higgs or a related scalar field might have caused
the Universe to expand (near-)exponentially in a bout of cosmological inflation when it was about 10−35

seconds old. And a Higgs field should contribute a factor ∼ 1060 too much to the dark energy measured
in the Universe today. The stakes in the search for the Higgs boson were undoubtedly high!

1.9 The mass of the Higgs boson
The discovery of the Higgs boson in 2012 [15, 16] was primarily based on the observation of excesses
of events in the γγ and 2`+2`− channels (where ` = µ or e), interpreted as being due to H → ZZ∗,
together with a broad excess of `+`− + missing transverse energy events, interpreted as being due to
H →WW ∗.
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Measurements of the γγ and 2`+2`− final states have enabled the mass of the Higgs boson to be
determined with high precision. The final combined results from ATLAS and CMS LHC Run 1 data
yield [41]

mH = 125.09± 0.21 (statistical)± 0.11 (systematic) GeV , (27)

a measurement at the level of 2 per mille that is dominated by the statistical error and hence can be further
reduced. An accurate measurement of mH is a sine qua non for precision tests of the Standard Model,
since it enters in the Higgs production cross section and decay branching ratios, as seen in the right
panels of Figs. 4 and 7. Moreover, it is crucial for the discussion below of the stability of electroweak
vacuum. As already mentioned, the measurement (27) is fully in line with previous indications from
precision electroweak data and previous searches at LEP [27] and the Fermilab Tevatron collider [28],
see Fig. 2. Fig. 9 shows a direct comparison between the ATLAS and CMS measurements of mH and
the χ2 function from a global analysis of the precision electroweak data, omitting the LEP and Tevatron
constraints [42]. We see that the measured value of mH agrees with the indication from the electroweak
data at the ∆χ2 ∼ 1.5 level.

This may seem like a disaster for the quest for physics beyond the Standard Model, but not so fast!

Fig. 9: The ∆χ2 as a function of mH for a fit to the precision electroweak data compared with the measurements
of mH by the ATLAS and CMS Collaborations [42].

1.10 The instability (?) of the electroweak vacuum
Let us consider the second, λφ4, term in the Higgs potential (5) It is essential for the Mexican hat form
of the potential seen in Fig. 1 and the existence of the non-zero vev (6) that λ > 0. However, like any
other coupling in a quantum field theory, λ is subject to renormalization. In the Standard Model, there
are two important sources of this renormalization at the one-loop level. One is that due to λ itself, which
tends to increase λ as the renomalization scale Q increases:

λ(Q) ' λ(v)

1− 3
4π2λ(v) ln (Q2/v2)

. (28)

Left to itself, this self-renormalization would cause λ to blow up at some high renormalization scale Q.
However, there is also importantant one-loop renormalization of λ due to loops of top quarks:

λ(Q) ' λ(v)− 3m4
t

4π2v2
ln
(
Q2/v2

)
, (29)
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which tends to decrease λ as the renomalization scale Q increases, driving it towards negative values. If
λ indeed turns negative, there soon appears a field value with lower energy than our electroweak vacuum,
which becomes unstable or at least metastable.

The left panel of Fig. 10 illustrates how the negative renormalization by the top quark drives λ < 0
in the Standard Model [43, 44], though this is subject to uncertainties in mt, in particular. As seen in the
right panel of Fig. 10, the current world averages of mt and mH suggest that these parameters indeed
lie within the region where the Standard Model electroweak vacuum is metastable. In my view, this is a
potential disaster (pun intended) that would require new physics to avert it.

Fig. 10: Left panel: The negative renormalization of the Higgs self-coupling by the top quark within the Standard
Model leads to an instability in the Higgs potential for field values ∼ 109 GeV [43]. Right panel: Experimental
measurements of mt and mH suggest that the electroweak vacuum of the Standard Model would be metastable,
modulo uncertainties in mt, in particular [44].

As seen in Fig. 10, the location and indeed existence of the instability scale ΛI are particularly
sensitive to mt, and also to αs as well as to mH . One calculation including higher-order effects yields
the following dependences on these parameters [44]:

log10

(
ΛI

GeV

)
= 9.4 + 0.7

( mH

GeV
− 125.15

)
− 1.0

( mt

GeV
− 173.34

)
+ 0.3

(
αs(mZ)− 0.1184

0.0007

)
.

(30)
Inserting the world average value (27) for mH , mt = 173.3±1.0 GeV and αs(mZ) = 0.1181±0.0011,
we estimate

log10 ΛI) = 9.4± 1.1 , (31)

indicating that (in the immortal words of the Apollo 13 astronauts) we have a problem [45].

Several words of caution are in order. The first is that the experimental measurement ofmH (27) is
already so accurate that it is the smallest source of uncertainty in (30). Concerning the larger uncertainty
due to mt, subsequent to the compilation of the world average value [46], several new measurements
have been published, including by D0: mt = 174.98 ± 0.76 GeV [47], by ATLAS: mt = 172.99 ±
0.91 GeV [48] and by CMS: mt = 172.4 ± 0.49 GeV [49]. These scatter above and below the official
world average, and a new compilation awaits better understanding of the discrepancies between them.
However, all these measurements lie in the unstable region of mt. A second comment concerns the
interpretation of the value of mt that the experiments measure. This is defined within a specific Monte
Carlo event simulation code, and one issue concerns the relation between this and the pole mass. Present
understanding is that the difference between these definitions∼ ΛQCD < 1 GeV, so this correction seems
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manageably small at the present time, though it will require more detailed analysis as the experimental
precision improves. Another issue concerns the relation between the pole mass and the MS mass that is
used in the loop calculations of vacuum stability. This relation has been calculated to O(α4

s) [50]:

mt|pole −mt|MS

mt|MS

≡ δm

mt|MS

≡ ∆ = 0.4244αs(mt) + 0.8345αs(mt)

+ 2.375αs(mt)
3 + (8.49± 0.25)αs(mt)

4 + . . . , (32)

leading to the numerical result

mt|pole = mt|MS + 7.557 + 1.1617 + 0.501 + 0.195 + . . . , (33)

where the numbers are for the O(αns ) corrections calculated for n = 1, 2, 3, 4 assuming mt|MS =
163.643 GeV. These corrections decrease systematically in magnitude, so the QCD perturbation series
seems to be well-behaved. The sum of the uncalculated higher-order terms has been estimated to be
∼ 250 GeV, with uncertainty of ∼ 70 GeV [51]. These effects are also below within the current experi-
mental precision.

Another comment concerns the length of the lifetime of our (in principle) unstable electroweak
vacuum, which may be much longer than the age of the Universe to date. This is certainly a necessary
consistency condition for the existence of physicists capable of recognizing the problem, but also leads
some of them to disregard it as unimportant. I disagree with this attitude for two reasons. One is because
the present vacuum energy is very small and positive. Arguments have been proposed how this might
come about if our vacuum is (one of) the lowest-energy state(s) in an extensive landscape, or one might
imagine that some approximate symmetry could yield a small positive value. Personally, I would find
the small value of the present vacuum energy much more difficult to understand if it is only a temporary
state, and if our universe will eventually decay into an anti-De Sitter state with negative vacuum energy
of much larger magnitude. The other reason for taking vacuum stability seriously as a requirement is
that, if it were not, fluctuations in the Higgs field in the hot and dense early universe would have taken
most of it into the anti-De Sitter “Big Crunch" phase, and the conventional expansion of the universe
would never have occurred [52, 53]. On the other hand, one could argue anthr*p*c*lly that if even an
infinitesimal part of the universe escaped the “Big Crunch", that would have been enough for sentient
physicists to come into being.

My own take on the instability problem is that we should take it seriously, and that it motivates
some form of new physics to stabilize the electroweak vacuum 1. Clearly, any such physics should
appear at some energy scale below ΛI ∼ 109 GeV, but might lie far beyond the reach of conceivable
accelerators. However, in my view it is the best hint for some new physics beyond the Standard Model
provided by Run 1 of the LHC.

What might this new physics look like? As we saw above, it is the negative sign of the top quark
loop that destabilizes the effective Higgs potential. In order to counteract it, one should introduce a scalar
φ, whose loop would have a positive sign, and which could in general have couplings of the forms [54]:

L 3 M2|φ|2 +
M2

0

v2
|H|2|φ|2 , (34)

where M and M0 are two mass parameters. Indeed, if one chooses M . 105 GeV, the effective Higgs
potential can be stabilized. However, avoiding a blow-up in λ as well as a negative value typically
requires some fine-tuning of M0, i.e., the coupling of the new scalar φ to the Higgs field H , at the per
mille level. The simplest way to stabilize the coupling is to postulate new fermions to counteract the φ−H
coupling in (34). But now we have introduced scalar partners of the top and fermionic partners of the
Higgs that make the theory reminiscent of supersymmetry [54]. So, why not postulate supersymmetry,
as we discuss in the second Lecture?

1Assuming that we have not misunderstood the experimental measurements of mt.
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1.11 Higgs coupling measurements
The ATLAS and CMS Collaborations have published a joint analysis of their measurements of Higgs
production and decay in various channels [55], as shown in Fig. 11. Several Higgs decay modes have
been established with high significance, including γγ, WW ∗, ZZ∗ and τ+τ−, and there are important
constraints on other Higgs decay models. The gg → H and vector boson fusion production mechanisms
have been established, and there are interesting constraints on H production in association with W±, Z
and tt̄ pairs.

Fig. 11: The products of cross sections σ and branching ratios B measured by the ATLAS and CMS Collaborations
in various channels, normalized to the Standard Model predictions [55].

However, many H couplings remain to be established. Most prominently, the H → bb̄ decay
that is expected to dominate has been seen only at the 2.6-σ level at the LHC and the 2.8-σ level at the
Tevatron [56]. Moreover, although there is indirect evidence for a tt̄H coupling from measurements of
the induced ggH and γγH couplings, there is no direct evidence in the absence of measurements of tt̄H
(or single t/t̄H) associated production. Also, there is as yet no evidence for H → µ+µ− decay, though
upper limits on it already provide interesting information, as we see in the second Lecture.

The first analyses of Higgs data from Run 2 of the LHC have also been shown by ATLAS and
CMS [57]. The distinctive H → γγ and ZZ∗ decays have been seen again with 10-σ significance, the
Higgs production cross section at 13 TeV is in line with theoretical calculations, and the searches are on
for H → µ+µ− and associated tt̄H and single t/t̄H production.

1.12 Not a big deal?
Shortly after the discovery of the Higgs boson, Peter Higgs was quoted in the Times of London as
saying: “A discovery widely acclaimed as the most important scientific advance in a generation has been
overhyped" [58]. I would very humbly and respectfully beg to disagree. Without the Higgs boson (or
something to do its job), there would be no atoms because electrons would escape from nuclei at the
speed of light, the weak interactions responsible for radioactivity would not be weak, and the universe
would be totally unliveable. It was a big deal.
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2 The Particle Physics Higgsaw Puzzle
2.1 Has the LHC found the missing piece?
The first piece of the particle physics jigsaw puzzle to be discovered was the electron in 1997, and it
took 115 years until a candidate for the final missing piece of the Standard Model, the Higgs boson,
was discovered in 2012 [15, 16]. In the first Lecture, I was jumping the gun, blithely assuming that the
particle discovered in 2012 is indeed the Higgs boson. In this Lecture we first review the experimental
and theoretical justifications for this assumption. In the language of jigsaw puzzles, is it the right shape,
and does it have the right size, in the language of particle physics, does it have the right spin, parity and
couplings? We then discuss what physics may lie behind and beyond it, and review how to probe these
ideas with possible future accelerators.

2.2 What are its spin and parity?
Since the H(125) particle decays into pairs of photons, Lorentz invariance assures us that it cannot have
spin 1, but it might a priori have spin 0, 2 or higher and, in each case, it might have either positive or
negative parity. Many tests of the H(125) spin and parity have been proposed theoretically and carried
out by the LHC experiments. Examples include the polar angle distribution in H → γγ decays and
final-state angular correlations in H → WW ∗ → ` + `−+ missing transverse energy decays and in
H → ZZ∗ → 2` + 2`− decays [59]. Also, the kinematics of H(125) production mechanisms such as
production in association with a W or Z boson would differ for different spin-parity assignments [60],
which have been probed by the Fermilab Tevatron experiments [61].

One example of a spin-parity analysis of the H(125) in the X → ZZ → 2`+2`1 final state
is shown in Fig. 12 [62]. This and all the other published analyses are in excellent agreement with
the JP = 0+ spin-parity assignment predicted for the Higgs boson, and all the alternative spin-parity
assignments studied have been strongly excluded. These include the pseudoscalar 0− possibility and
various spin-2 possibilities. The H(125) passed these first important experimental tests with flying
colours.

Fig. 12: Comparison between the Standard Model Higgs boson hypothesis in the X → ZZ → 2`+2`− final state
with various spin-two JP hypotheses [62].

2.3 Does it couple to particle masses?
It is a fundamental property of the Higgs boson that, since the field vev gives masses to the other elemen-
tary particles, the H couplings to them should be proportional to their masses, see (18) and (19). One
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way to test this is to analyze theH(125) production and decay data assuming couplings to other particles
that are proportional to some nonlinear power of their masses [63]:

yf =
(mf

M

)1+ε
, gV =

(
m

2(1+ε)
V

M1+2ε

)
, (35)

where the unknown power ε and mass scale M are to be fitted to the data, the Standard Model expec-
tations being ε = 0 and M = v = 246 GeV. The result of such an analysis performed jointly by the
ATLAS and CMS Collaborations is shown in Fig. 13 [55], including the best fit and the 68 and 95% CL
bands. The joint analysis yields

ε = 0.023+0.029
−0.027 , M = 233± 13 GeV , (36)

which are highly compatible with the Standard Model predictions. In this way, the H(125) passed
another crucial experimental test. We can also see explicitly in Fig. 13 that the decay rates for H →
µ+µ− and τ+τ− must be very different, a first strong violation of lepton universality, as expected in the
mass-dependent couplings of the Higgs boson.

Fig. 13: A fit to a parametrization of the form (35) to Higgs coupling measurements by the ATLAS and CMS
Collaborations in various channels. The dotted line connects the Standard Model predictions, the best fit is shown
as a red line, and the 68 and 95% CL ranges are shown as green and yellow bands [55].

2.4 Flavour-changing couplings?
Flavour-changing couplings of the Higgs boson are expected to be very suppressed in the Standard
Model, though they might be present in extensions with multiple Higgs multiplets. Upper limits on
flavour-changing interactions at low energies and dipole moments can be used to constrain the the pos-
sible flavour-changing interactions of the H(125) [64]. Examples of relevant tree and loop diagrams
involving H are shown in Fig. 14. Upper limits on flavour-changing quark interactions exclude the
observability of quark-flavour-violating H(125) decays, but lepton-flavour-violating decays could be
relatively large. We found that the branching ratio for either H → τµ or τe (but not both) could be
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Fig. 14: Left panel: Tree-level H-exchange diagram that may contribute to a generic flavour-changing ampli-
tude. Right panel: One-loop H-exchange diagram that may contribute to anomalous magnetic and electric dipole
moments of charged leptons (i = j), or to radiative lepton-flavour-violating decays (i 6= j) [64].

O(10)%, comparable to the Standard Model prediction for BR(H → τ+τ−), whereas the branching
ratio for H → µe must be < 2× 10−5. Analyses of LHC Run 1 data yielded results [65,66] compatible
with these upper limits:

CMS : BR(H → τµ) = 0.84+0.39
−0.37%, BR(H → τe) < 0.69%, BR(H → eµ) < 0.036% ,

ATLAS : BR(H → τµ) = 0.77± 0.62% . (37)

That said, the CMS result for BR(H → τµ), in particular, whetted theoretical appetites for additional
data from Run 2 of the LHC. A first preliminary result from CMS does not indicate any deviation from
the Standard Model [67], but this is definitely une affaire à suivre!

2.5 Loop-induced couplings
As mentioned in the first Lecture, two of the most important Higgs couplings are induced by loop dia-
grams, namely the ggH vertex responsible for the dominant H production mechanism, which is mainly
generated by the top quark in the Standard Model, and the Hγγ vertex responsible for one of the most
distinctive H(125) decays, which is mainly generated by loops of top quarks and W± bosons in the
Standard Model, as shown in Fig. 8. Via these vertices, the Run 1 LHC data have already provided
important consistency checks on the Standard Model predictions for the H couplings at the quantum
level. Fig. 15 displays the combined ATLAS and CMS constraints on the magnitudes of the Hγγ and
ggH couplings relative to their Standard Model values [55]. We see good consistency at the 10 to 20%
level, which also provides significant restrictions on possible extensions of the Standard Model such as
a fourth generation, supersymmetric particles and heavy vector-like quarks.

2.6 Is it elementary or composite?
Broadly speaking, there are two schools of theoretical thought about this question.

On the one hand, many theorists are attracted by the idea of an elementary Higgs scalar field, as
in the original formulation, but are concerned by the problems connected with loop corrections to the
Higgs mass. Quantum corrections to the mass parameter µ in the effective potential (5) due to, e.g., the
top quark or the Higgs self-coupling, exhibit quadratic divergences. If one cuts the loop integrals off at
some momentum scale Λ, one is left with large residual contributions if Λ is identified with some high
new physics scale such as that of grand unification or the Planck mass. In the case of a loop of fermions
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Fig. 15: A fit by the ATLAS and CMS Collaborations to the magnitudes of the Hγγ and ggH couplings, normal-
ized by factors (κγ , κg) relative to their Standard Model values [55].

(a)

H

f

(b)

H

S

Fig. 16: One-loop quantum corrections to the mass-squared of the Higgs boson due to (a) the loop of a generic
fermion f , (b) a generic scalar S.

f such as the top quark, shown in Fig. 16(a), one finds

∆m2
H = −

y2f
8π2

[2Λ2 + 6m2
f ln(Λ/mf ) + ...] , (38)

where yf is the Yukawa coupling and the . . . represent non-divergent mass-dependent terms, and in the
case of a loop of scalars S, shown in Fig. 16(b), one finds similar divergent contributions:

∆m2
H =

λS
16π2

[Λ2 − 2m2
S ln(Λ/mS) + ...] . (39)

If the Standard Model were to remain valid up to the Planck scale, MP ' 1019 GeV, so that Λ = MP ,
each of the quadratic “corrections" would be ' 1034 times larger than the physical mass-squared of the
Higgs, namely (104) GeV2.

The relatively small physical value of the Higgs mass is not protected by any symmetry of the
Standard Model, and keeping it small seems to require some unnatural fine-tuning unless there is some
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suitable new physics at the TeV scale. The favoured example of such new physics in an elementary
Higgs scenario is supersymmetry, which exploits the opposite signs of loop corrections due to fermions
and bosons in (38, 39). If these occur in pairs with related couplings:

λS = 2λ2f (40)

as in supersymmetric models [68], and if the differences between the masses of supersymmetric partners
are O(1) TeV so that the subleading terms in (38, 39) are not large, the quadratic term µ in the Higgs
potential (5) is kept naturally small, and hence also the Higgs mass and the electroweak scale. One of
the miracles of supersymmetry is that the symmetry between fermions and bosons cancels not only the
one-loop quadratic divergences (38, 39), but also all quadratic divergences at higher order in perturbation
theory, as well as many logarithmic divergences [69].

On the other hand, many other theorists believe that the Higgs is composite, a bound state of
fermions like Cooper pairs in BCS superconductivity and pions in QCD. Such a theory has a natural
cut-off at the scale of the strongly-interacting composite dynamics, analogous to ΛQCD. The Standard
Model does not contain any candidate for this new strong dynamics, and attention focused initially on
some scaled-up version of QCD [70]. However, simple models of this type were incompatible with
the precision electroweak data mentioned in the first Lecture, and predicted a heavy strongly-interacting
scalar particle unlike the Higgs boson discovered in 2012. Accordingly, attention has shifted to an
alternative idea that the Higgs boson is analogous to the pion of QCD, namely that it is a pseudo-Nambu-
Goldstone boson of some larger chiral symmetry that is broken down to the Standard Model, much like
the pion in QCD [71]. In such a model, the lightness of the Higgs boson is enforced by this approximate
chiral symmetry. Generic features of such theories include a coloured top partner fermion that cancels
the one-loop Higgs mass corrections due to the top quark, some new scalars and/or gauge bosons with
relatively low masses . 1 TeV, and a strongly-interacting ultraviolet completion at a mass scale that is
O(10) TeV.

A convenient way to parametrize the phenomenology of such a theory is to assume that the Higgs
sector has an underlying SU(2)×SU(2) structure that is broken down to a custodial SU(2) symmetry
so as to retain the successful tree-level relation ρ ≡ mW /mZ cos θW ' 1. The Goldstone bosons
πa : a = 1, 2, 3 of this symmetry-breaking pattern that are ‘eaten’ by the W± and Z to become their
longitudinal polarization states are then parametrized by a traceless 2 × 2 matrix Σ = exp(iσaπa/v),
with the following couplings to the Higgs boson H:

L =
v2

4
TrDµΣDµΣ

(
1 + 2a

H

v
+ b

H2

v2
+ . . .

)
−miψ̄

i
LΣ

(
c
H

v
+ . . .

)
+ h.c.

+
1

2
∂µH∂

µH +
1

2
H2 + d3

1

6

(
3m2

H

v

)
H3 + d4

1

24

(
3m2

H

v

)
H4 + ... , (41)

where the coefficients a, b, c, . . . are normalized so that they are all unity in the Standard Model. The task
of experiments is then to measure these coefficients and see whether they differ from these predictions, as
they may in composite Higgs models. For example, in two minimal composite Higgs models MCHM4,5

one has

MCHM4 : a =
√

1− ζ, c =
√

1− ζ ,

MCHM5 : a =
√

1− ζ, c =
1− 2ζ√

1− ζ , (42)

where ζ is a model parameter that is not specified a priori.

Fig. 17 shows two experimental analyses of the data, using a different notation: a→ κV , c→ κF .
The left panel compares the constraints from Higgs data alone (yellow and orange ellipses) with the
result of a global analysis including also precision electroweak data (blue ellipses) [72]. We see that
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these are largely complementary, with the Higgs data constraining κF = c and the electroweak data
constraining κV = a. The Standard Model prediction κF = c = 1, κV = a = 1 is close to the best-fit
point and well within the global 68% CL contour. The right panel compares ATLAS and CMS Higgs
measurements with the predictions (42) of the MCHM4,5 models [73]. We see that the data require
ζ . 0.1, necessitating some tuning of these models so that their predictions resemble those of the
Standard Model.

Fig. 17: Left panel: A fit by the Gfitter Group to the LHC H coupling measurements (orange and yellow ellipses)
and in combination with precision electroweak data (blue ellipses) [72]. Right panel: Comparison of ATLAS and
CMS constraints on H couplings with predictions of the MCHM4,5 models [73].

Fig. 18 shows how the different Higgs coupling measurements by ATLAS and CMS combine to
give their overall constraints on (κV , κF ) [55]. Most of the measurements are relatively insensitive to
the sign of κF , the exception being that of the Hγγ coupling. Its sensitivity is due to the interference
between the top andW± loop contributions to the coupling, which interfere destructively for the Standard
Model (positive) sign of κF and constructively for the non-standard (negative) sign. Largely as a result
of this asymmetry, the combined fit decisively favours the Standard Model sign of κF . Measuring the
cross section for single t/t̄H production could also provide a direct determination of this sign, and could
probe the possible existence of a CP-violating tt̄H coupling [74].

The general conclusion of these analyses using the parametrization (41) is that there is no indica-
tion of any deviation from the Standard Model predictions for the H couplings of the form that might
have arisen in a composite Higgs scenario. Introducing a single global modification factor µ for the H
couplings to Standard Model particles, the combined ATLAS and CMS data imply that [55]

µ = 1.09+0.11
−0.10 = 1.09± 0.07 (stat.)± 0.04 (expt)± 0.03 (thbgrd)+0.07

−0.06 (thsig) , (43)

where the last three uncertainties are systematics. Thus, overall the strength of the Higgs couplings agrees
with the Standard Model at the ∼ 10% level, though individual couplings have larger uncertainties.
Moreover, there is no evidence for any decays of H to unknown particles, in particular invisible decays.
The H(125) particle looks very much the way it was predicted in the Standard Model.

For this reason, the Physics Class of the Swedish Academy stated in its citation for the 2013 Nobel
Prize [75] that Today we believe that “Beyond any reasonable doubt, it is a Higgs boson." 2.

2This quotation was taken from the preprint version of [63]. They apparently did not notice that this phrase was removed
from the published version of [63] at the insistence of the anonymous referee, who considered that “Beyond any reasonable
doubt" is not a scientific statement.
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Fig. 18: A fit by the ATLAS and CMS Collaborations to the magnitudes of the HV V and Hf̄f couplings,
normalized by factors (κV , κF ) relative to their Standard Model values [55].

2.7 The Standard Model effective field theory
At this point a popular approach is to assume that theH(125) particle is exactly Standard Model-like, and
use it in a model-independent search for new physics that could manifest itself via higher-dimensional
effective interactions between Standard Model fields, in particular those of dimension 6 [76]:

Leff =
∑

n

cn
Λ2
On , (44)

where Λ is some characteristic scale of new physics and the cn are unknown dimensionless coefficients.
These can be constrained by a combination of data on Higgs properties, precision electroweak data,
triple-gauge couplings (TGCs), etc.. The beauty of this approach is that it provides an integrated frame-
work for analyzing all these categories of data in a unified and consistent way.

This attractive approach is, however, unwieldy when applied in full generality, because of the
large number of possible dimension-6 operators, even if one assumes the SU(2)×U(1) symmetry of
the Standard Model. For this reason, one often makes simplifying assumptions, e.g., about the flavour
structure of the operators. Furthermore, if one restricts attention to precision electroweak observables,
Higgs and TGC measurements, global fits to these data become manageable. Table 3 lists the CP-even
dimension-6 operators [77] relevant for these measurements. In each case, we also indicate the categories
of observables that provide the greatest sensitivities to the operator coefficients.

The left panel of Fig. 19 shows results from a fit to precision data on leptonic electroweak observ-
ables [78]. The lower horizontal axis shows the possible numerical values of these coefficients, and the
upper horizontal axis shows the corresponding new physics scales. Here and in subsequent plots, the
green bars are for fits to individual operator coefficients assuming the other operators are absent, and the
bars of other colours are for global fits marginalizing of all the operators that could contribute. In general,
these coloured bars extend further than the green bars. The right panel of Fig. 19 extends this analysis
to include hadronic electroweak observables [78]. The vertical dashed lines in the two panels are for the
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Table 3: The relevant CP-even dimension-6 operators in the basis [77] that we use. For each operator, we list the
categories of observables that provide the greatest sensitivities to the operator.

EWPTs Higgs Physics TGCs
OW = ig

2

(
H†σa ↔ DµH

)
DνW a

µν

OB = ig′

2

(
H† ↔ DµH

)
∂νBµν O3W = g εabc

3! W
a ν
µ W b

νρW
c ρµ

OT = 1
2

(
H†↔ DµH

)2 OHW = ig(DµH)†σa(DνH)W a
µν

O(3) l
LL = (L̄Lσ

aγµLL) (L̄Lσ
aγµLL) OHB = ig′(DµH)†(DνH)Bµν

OeR = (iH†↔ DµH)(ēRγ
µeR) Og = g2s |H|2GAµνGAµν

OuR = (iH†↔ DµH)(ūRγ
µuR) Oγ = g′2|H|2BµνBµν

OdR = (iH†↔ DµH)(d̄Rγ
µdR) OH = 1

2 (∂µ|H|2)2

O(3) q
L = (iH†σa↔ DµH)(Q̄Lσ

aγµQL) Of = yf |H|2F̄LH(c)fR + h.c.
OqL = (iH†↔ DµH)(Q̄Lγ

µQL) O6 = λ|H|6

same new physics scale, and serve to emphasize the point that the constraints on hadronic observables
are, in general, weaker than those on leptonic observables and, moreover, some exhibit deviations from
the Standard Model predictions that remain to be understood. However, in both cases the new-physics
constraints are in the multi-TeV range.

Fig. 19: The 95% CL ranges from an analysis [78] of precision leptonic electroweak observables (left panel) and
including also hadronic electroweak observables (right panel). The upper (green) bars denote fits to individual
operator coefficients, and the lower (red) bars are for marginalized multi-operator fits. The upper axis should be
read with factor mW /v ∼ 1/3 for the combination c̄W + c̄B .

The left panel of Fig. 20 shows results from global fits to data on Higgs production strengths and
kinematics (blue bars), to data on TGCs (red bars), and their combination (black bars) [78]. The green
bars again show the results of fits to individual operator coefficients, which are generally smaller than
the other bars. We note that the constraints on the new-physics scale from Higgs and TGC data shown
in the left panel of Fig. 20 are, in general, weaker than from the precision electroweak data: they are
typically only a fraction of a TeV. The right panel Fig. 20 emphasizes the complementarity of Higgs and
TGC measurements, as reflected in anomalous TGC couplings. The orange and yellow ellipses show
the constraints from direct TGC measurements, whereas the green ellipses show the indirect constraints
from Higgs measurements, and the blue ellipses show the results of a global fit [79].

The Standard Model effective field theory is the preferred framework for analyzing future LHC
data. Fig. 21 shows the results of global fits to LHC Higgs data using only production rates (left panel)
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Fig. 20: Left panel: The 95% CL ranges for individual operator fits (green bars), and the marginalised 95% ranges
for multi-operator fits. The blue bars combine the LHC signal-strength data with the kinematic distributions for
associatedH+V production measured by the ATLAS and D0 Collaborations, the red bars includeh the LHC TGC
data, and the black bars show results from a global combination with both the associated production and TGC
data [78]. Note that the coefficients c̄γ,g are shown magnified by factors of 100, so for these coefficients the upper
axis should be read with a factor of 10. Right panel: The 68 and 95% CL ranges in the plane of anomalous TGCs
(δg1,z, δκγ) including LEP TGC constraints, LHC Higgs data and their combination [79].

and including production kinematics (right panel) [30]. In each case, the blue bars are obtained from an
analysis of present data, the green bars illustrate the prospective sensitivities with 300/fb of data, and the
red bars those with 3000/fb of data. The prospective sensitivities are impressive, particularly when the
kinematical information is included.

2.8 Beware of historical hubris
Despite the continuing absence of any direct evidence for the new physics beyond the Standard Model at
the LHC, one should not become disheartened. History abounds with examples of people who thought
they knew it all, but did not. In 1894, just before the discoveries of radioactivity and the electron, Albert
Michelson declared that “The more important fundamental laws and facts of physical science have all
been discovered" [80]. More recently, prior to the string revolution, Stephen Hawking asked “Is the End
in Sight for Theoretical Physics?" [81]. However, my favourite example of a lack of ability to think
outside the box is the Spanish Royal Commission that rejected a proposal by Christopher Columbus to
sail west before 1492: “So many centuries after the Creation, it is unlikely that anyone could find hitherto
unknown lands of any value" [82]. Many of us have seen referees’ reports with a similar flavour.

2.9 The Standard Model is not enough
The title of this Subsection is a paraphrase of the title of a James Bond movie [83] and, in deference to
him, one may cite 007 reasons for anticipating physics beyond the Standard Model. 001) As discussed
in Lecture 1, within the Standard Model the electroweak vacuum is unstable against decay to high H
field values. 002) The Standard Model has no candidate for the astrophysical dark matter. 003) The
Cabibbo-Kobayashi-Maskawa (CKM) Model does not explain the origin of the matter in the universe.
004) The Standard Model does not have a satisfactory mechanism for generating neutrino masses. 005)
The Standard Model does not explain or stabilize the hierarchy of mass scales in physics. 006) The
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Fig. 21: Results of present and prospective global fits to LHC Higgs data using only production rates (left panel)
and including production kinematics (right panel). The blue bars are obtained from an analysis of present data,
the green bars illustrate the prospective sensitivities with 300/fb of data, and the red bars those with 3000/fb of
data [30].

Standard Model does not have a satisfactory mechanism for cosmological inflation. 007) We need a
quantum theory of gravity.

Several of these issues will be addressed by LHC measurements during Run 2, e.g., the top quark
mass will be determined more accurately, there will be searches for dark matter particles, there will be
searches for CP violation and other flavour physics beyond the CKM model, as well as new particles that
could help stabilize the electroweak scale. Personally, I am a fan of supersymmetry as a framework that
could solve or at least mitigate many of the problems on James Bond’s list, so I focus now on that theory.

2.10 Supersymmetry
Supersymmetry is an extension of the Standard Model that has long been favoured by many theorists [84].
Some are disappointed that it has not yet appeared at the LHC, but then neither has any other proposed
extension of the Standard Model such as compositeness or extra dimensions. Rather, I would argue that
Run 1 of the LHC has provided three new additional reasons to favour supersymmetry.

One is the apparent instability of the electroweak vacuum within the Standard Model, which can
be stabilized by a theory resembling supersymmetry, as discussed in Subsection 1.10. Specifically, in
a supersymmetric theory the negative running of the Higgs quartic self-coupling λ due to the top quark
loop is exactly cancelled by stop squark loops. Moreover, the negative sign of the quadratic term in the
Higgs potential (5) and hence the appearance of the electroweak vacuum can be understood dynamically
as a different effect of renormalization by the heavy top quark via the logarithmic terms in (38 39).

A second Run 1 motivation for supersymmetry is the mass of the Higgs boson. Minimal super-
symmetric models predicted that it should weigh . 130 GeV [85], as discussed in more detail in the next
Subsection, in agreement with the measurement (27). This is because supersymmetry actually predicts
the magnitude of the Higgs quartic self-coupling: λ ∼ g2 + g′2, where g and g′ are the SU(2) and U(1)
couplings of the Standard Model.

The third Run-1 motivation for supersymmetry is that simple supersymmetric models also pre-

26

J. ELLIS

26



dicted that the Higgs couplings should be with a few % of the Standard Model values, in perfect consis-
tency with the measurements to date [86]. In fact, in a supersymmetric model it may be very difficult to
measure any deviations from the Standard Model predictions for the Higgs couplings [87], as discussed
later.

These new reasons for liking supersymmetry are in addition to the many traditional reasons to
like it, such as its ability to stabilize the mass hierarchy via the cancellation of the quadratic divergences
in loop corrections to the Higgs mass (38 39) [68], the fact that it naturally predicts a cold dark matter
particle [88], the fact that it improves the accuracy of the grand unification prediction for sin2 θW [89],
and its essential rôle in the superstring framework for a theory of quantum gravity.

2.11 Higgs bosons in supersymmetry
Even the minimal supersymmetric extension of the Standard Model (MSSM) requires two complex
Higgs doublets, in order to cancel out anomalous triangle diagrams with higgsinos that would other-
wise destroy the renomalizability of the theory, and in order to give masses to all the quarks. These two
complex Higgs doublets contain 8 degrees of freedom, of which 3 are combined with the massless W±

and Z fields to give them masses, as discussed in Subsection 1.4. There remain 5 degrees of freedom
that manifest themselves as massive Higgs bosons, two neutral scalars h,H , one neutral pseudoscalar A
and two charged bosons H±.

The tree-level Higgs mass-squared matrix has the following form in the MSSM:

M2,N=1
tree =

(
m2
Z cos2 β +m2

A sin2 β −(m2
A +m2

Z) cosβ sinβ
−(m2

A +m2
Z) cosβ sinβ m2

Z sin2 β +m2
A cos2 β

)
. (45)

Diagonalizing (45), we find that the masses of the two scalars at the classical (tree) level can be written
as

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)
, (46)

where tanβ is the ratio of the vevs of the 2 Higgs doublets. At face value, the formula (46) implies
that the lighter neutral scalar Higgs boson h should have a mass < mZ . However, there is an important
one-loop correction to mh due to the stop squarks t̃1,2:

∆m2
h =

3m4
t

4π2v2
ln

(
mt̃1

mt̃2

m2
t

)
+ . . . , (47)

which can increase mh by . 40 GeV, as seen in Fig. 22. As also seen there, if the other Higgs bosons
H,A andH± are heavy, they are expected to all be quite degenerate in mass. A curiosity of Fig. 22 is the
possibility that the heavier neutral scalarH might weigh . 130 GeV, with the h even lighter [90]. It may
be difficult to reconcile this possibility with the LHC measurements of the couplings of the H(125), but
the possibility of a lighter Higgs boson should not be discounted completely, and further experimental
searches in the low-mass range are welcome!

2.12 More supersymmetry, not less?
The Standard Model contains chiral fermions, i.e., the left- and right-handed fermion states live in in-
equivalent representations of the SU(2)×U(1) gauge group. As such, they can be accommodated only
within supermultiplets of simple N = 1 supersymmetry. Theories with N ≥ 2 supersymmetries would
require left- and right-handed fermions to transform identically under SU(2)×U(1), so phenomenolog-
ical supersymmetric models such as the MSSM are usually restricted to N = 1. However, left-right
symmetric (vector-like) fermions appear in many extensions of the Standard Model, such as models with
extra dimensions, string compactifications and some grand unified theories. These extensions of the
Standard Model could accommodate N = 2 supersymmetry.
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Fig. 22: A representative calculation of MSSM Higgs masses in the mmax
h scenario with tanβ = 5, using the

FeynHiggs 2.2 code [91]. Note a region at larger mA where the lighter neutral scalar Higgs boson may weigh
∼ 125 GeV [85], and a smaller region at small mA where the heavier neutral scalar Higgs boson may weigh
∼ 125 GeV [90].

In the MSSM, although the quarks and leptons are chiral, the Higgs representations forma vector-
like pair, and so could in principle also accommodate N = 2 supersymmetry [92]. One could consider
the possibility that the Higgs sector is just the tip of an N = 2 supersymmetric iceberg, which would
also include an N = 2 gauge sector and possibly vector-like fermion supermultiplets, as occurs in some
string compactifications and grand unified theories.

So, what would an N = 2 Higgs sector look like?

In this case, differently from (47), the tree-level mass-squared matrix is:

M2,N=2
tree =

(
m2
Z cos2 β +m2

A sin2 β −(m2
A −m2

Z) cosβ sinβ
−(m2

A −m2
Z) cosβ sinβ m2

Z sin2 β +m2
A cos2 β

)
. (48)

The crucial difference: is the replacement: m2
A+m2

Z → m2
A−m2

Z in the off-diagonal terms between the
N = 1 and N = 2 cases (45) and (48). The corresponding tree-level Higgs masses after diagonalization
are shown in Fig. 23. In theN = 1 case (left panel) we see level repulsion formA ∼ 100 GeV. However,
in the N = 2 case (right panel) we see linear level crossing with

mN=2
h = mZ , mN=2

H = mA (49)

at the tree level. Moreover, at the tree level theN = 2 Higgs sector is ‘aligned’, so that the lighter neutral
Higgs boson has exactly the same couplings as in the Standard Model [92].

The dominant one-loop corrections ε to (45) and (48) are those due to top quarks and stop squarks,
which appear in their [22] entries. Let us assume that they are such as to give the measured Higgs boson
mass mh = 125 GeV. In the N = 1 case the required loop correction is [93]

εN=1 = ∆M2,N=1
22 =

m2
h(m2

A +m2
Z −m2

h)−m2
Am

2
Z cos2 2β

m2
Z cos2 β +m2

A sin2 β −m2
h

, (50)
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Fig. 23: A comparison between the tree-level values of Higgs masses in the MSSM (left panel) and in the N = 2

supersymmetric model (right panel) [92].

whereas in the N = 2 case it is [92]

εN=2 = ∆M2,N=2
22 =

2(m2
A −m2

h)(m2
h −m2

Z)

cos 2β
(
m2
Z −m2

A

)
+m2

A − 2m2
h +m2

Z

. (51)

Fig. 24 compares (left panel) the required value of mH for tanβ = 1 in the two cases, (middle panel)
the value of mH − mA as a function of mA for tanβ = 3, and (right panel) the value of mH − mA

as a function of tanβ for mA = 300 GeV [92]. We see that mH can be lighter in the N = 2 case
than when N = 1, and that mH − mA is also smaller, in general. Another effect of doubling up on
supersymmetry in the Higgs sector is seen in Fig. 25, where we compare the supersymmetry-breaking
mass scale MSUSY that is needed in the N = 1 and N = 2 cases for different values of the squark mass
miixing parameter Xt [92]. We see a consistent pattern that smaller values of MSUSY are required when
N = 2 than when N = 1 for any fixed values of mA and tanβ.

On the other hand, the sensitivities of the LHC searches are also different, as seen in the (mA, tanβ)
plane in Fig. 26 [92]. The upper part of this plane (shaded grey) is excluded by direct LHC searches for
H,A → τ+τ−, which have similar sensitivities in the N = 1 and N = 2 cases. The red (green) curves
show the ranges of mA that are excluded indirectly by the LHC. We see that mA & 200 GeV is allowed
in the N = 2 case, whereas mA & 350 GeV is required when N = 1. The bottom line is that both
supersymmetry and supersymmetric Higgs bosons may be closer in an N = 2 supersymmetric model
than has been suggested by the N = 1 MSSM.

2.13 What next: A Higgs factory?
Now that a (the?) Higgs boson has been discovered, there is naturally a lot of interest in studying it
in detail. The LHC has considerable potential in this respect, with a target of eventually accumulating
3000/fb of data with the HL-LHC that has now been approved by the CERN Council [94]. Ideas for
future Higgs factories should take this into account, and should be able to demonstrate how much better
they can measure the Higgs boson, as well as look for other possible new physics. Two proposals for
linear e+e− colliders are on the market: the ILC that aims initially at a centre-of-mass energy of 500 GeV
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Fig. 24: Left panel: The value of mH required to obtain mh = 125 GeV via one-loop radiative corrections for
tanβ = 1 in the MSSM and N = 2 supersymmetry [92]. Middle panel: The value of mH −mA as a function of
mA for tanβ = 3. Right panel: The value of mH −mA as a function of tanβ for mA = 300 GeV.

Fig. 25: Contours of the supersymmetry-breaking mass scale MSUSY that are required as functions of mA and
tanβ to yield mh = 125 GeV in the MSSM scenario (dotted lines) and the N = 2 scenario (full lines) [92]. The
left panel is for Xt = 0, and the right panel is for the maximal-mixing scenario with Xt =

√
6MSUSY .

with a planned upgrade to 1 TeV [95], and CLIC that aims at centre-of-mass energies between 350 GeV
and 3 TeV [96], as seen in Fig. 27. Designs for circular e+e− colliders, CEPC in China [97] and FCC-
ee near CERN [98], are now also being discussed. As also seen in Fig. 27, these are more limited in
centre-of-mass energy, but have the potential for higher luminosities for probing the Higgs boson via the
e+e− → ZH process, and for precision electroweak studies at the Z peak and the W+W− threshold.

The capabilities of the ILC [95] and FCC-ee [99] for Higgs coupling measurements are shown in
the left and right panels of Fig. 28, respectively. The capabilities of the LHC, HL-LHC, ILC and FCC-
ee to probe the Hγγ,HZZ,HWW and Hgg couplings are shown in Fig. 29, and compared with the
deviations form the Standard Model that are expected in different supersymmetric models whose param-
eters were chosen to be consistent with LHC data [87]. As mentioned previously, these typically predict
very small deviations from the Standard Model that will be very difficult to distinguish experimentally.
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Fig. 26: The direct exclusion from searches for heavy scalars in the H/A→ ττ final state (grey shading), and the
indirect bounds from measurements of Higgs couplings to fermions and massive bosons at Run 1 of the LHC in
the MSSM (green) and the N = 2 model (red) [92].

Moreover, the current theoretical uncertainties in these predictions, indicated by the green bars, are large
compared with the prospective experimental accuracies at the FCC-ee, in particular. More theoretical
work will be needed!

As discussed earlier, a favoured approach is to use future Higgs, precision electroweak and TGC
measurements to constrain the coefficients of possible dimension-6 operators constructed out of Standard
Model fields. Fig. 30 compares the LHC constraints (left panel) and the prospective FCC-ee sensitivities
(right panel) in global fits to the scale Λ in dimension-6 operator coefficients [100]. Fig. 31 compares
the sensitivities of the ILC and FCC-ee in fits combining Higgs and precision electroweak data (left
panel), and combining Higgs and TGC data (right panel) [100]. In the left panel, the shadings compare
results obtained with and without estimates of the theoretical uncertainties in the precision electroweak
observables: we see again the importance of minimizing these. In the right panel, the effects of including
TGC measurements at the ILC are also indicated by shading.

By virtue of its higher centre-of-mass energy, the CLIC proposal for an e+e− collider has particu-
lar advantages in looking for the effects of dimension-6 operators, since the effects of their interferences
with Standard Model amplitudes typically increase∝ E2 [101]. The following are some examples of the
sensitivities to dimension-6 operator coefficients at 350 GeV and 3 TeV for associated HZ production:

∆σ(HZ)

σ(HZ)

∣∣∣∣
350 GeV

= 16c̄HW + 4.7c̄HB + 35c̄W + 11c̄B − c̄H + 5.5c̄γ ,

∆σ(HZ)

σ(HZ)

∣∣∣∣
3 TeV

= 2130c̄HW + 637c̄HB + 2150c̄W + 193c̄B − c̄H + 7.4c̄γ , (52)

31

TOPICS IN HIGGS PHYSICS

31



Fig. 27: The design luminosities at various centre-of-mass energies of projects for future high-energy e+e−

colliders [95–98].

Fig. 28: Left panel: Prospective measurements of Higgs couplings at the ILC [95]. Right panel: Prospective
measurements of Higgs couplings at FCC-ee [99].

and for e+e− →W+W− production :

∆σ(W+W−)

σ(W+W−)

∣∣∣∣
350 GeV

= 0.63c̄HW + 0.31c̄HB + 4.6c̄W − 0.43c̄3W ,

∆σ(W+W−)

σ(W+W−)

∣∣∣∣
3 TeV

= 13c̄HW + 7.8c̄HB + 17c̄W − 4.4c̄3W . (53)

The sensitivities to most of the operator coefficients indeed increase substantially with the centre-of-mass
energy, for both the associated H + Z and W+W− cross-sections, confirming the expected competitive
advantage of the high energies attainable with CLIC. Fig. 32 shows the increase in sensitivity of CLIC
operating at 3 TeV compared with 350 GeV or 1.4 TeV for a number of dimension-6 operator coeffi-
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Fig. 29: Comparison between prospective measurements of Higgs branching ratios at future colliders, low- and
high-mass CMSSM and NUHM1 predictions (red and purple symbols) and the current uncertainties within the
Standard Model (turquoise bars) [87].

Fig. 30: Left panel: Constraints on dimension-6 operator coefficients from measurements at the LHC. Right panel:
Prospective corresponding constraints from measurements at FCC-ee [100].

cients [101]. The green bars are for fits including individual operators, and the red bars are for global fits
with the coefficients marginalized.

Studies of the sensitivities to Higgs properties of a 100-TeV pp collider such as FCC-hh are still at
an early stage. However, as seen in Fig. 33, the Higgs production cross sections will be much larger than
at the LHC, and there will be extensive opportunities for kinematical measurements as well as overall
production rates [102]. Moreover, such a machine might provide the first opportunity to measure directly
the triple-Higgs coupling with respectable accuracy, since it contributes to the HH cross section that
increases by almost two orders of magnitude compared to the LHC, as seen in Fig. 33 (grey line).
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Fig. 31: Summary of the reaches for the dimension-6 operator coefficients, in individual fits (green) and when
marginalised in a global fit including all operators (red), from projected ILC250 (lighter shades) and FCC-ee
(darker shades) precision measurements [100]. The left plot shows the operators that are most strongly constrained
by electroweak precision observables and Higgs physics, and the different shades of dark green and dark red
illustrate the effects of theoretical uncertainties at FCC-ee. The right plot is constrained primarily by Higgs physics
and TGCs, and the different shades of light green demonstrate the improved sensitivity when TGCs are included
in the ILC250 analysis.

Fig. 32: The estimated sensitivities of CLIC measurements at centre-of-mass energies of 350 GeV, 1.4 TeV and
3.0 TeV to the scales of various (combinations of) dimension-6 operator coefficients [101]. The results of individual
(marginalised) fits are shown as green (red) bars. The lighter (darker) green bars in the left panel include (omit)
the prospective HZ Higgsstrahlung constraint.

2.14 Final remarks
“Beyond any reasonable doubt", the LHC has discovered a (possibly the) Higgs boson [75]. Whilst
being a tremendous success for theoretical physics, it also represents a tremendous challenge. Even in
the minimal elementary Higgs model, both the terms in the Higgs potential present problems. Does the
quartic term turn negative at high scales, implying vacuum instability? How come the quadratic term
is so small compared to plausible fundamental mass scales in physics such as the Planck mass? The
LHC may yet discover new physics beyond the Standard Model during Run 2. If it does, the global
priority for high-energy physics will surely be to study it. If it does not discover new physics at the TeV
scale, it will be natural to focus future accelerator experiments on the Higgs boson. Either way, in my
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Fig. 33: The most important cross sections for Higgs productions in pp collisions, as functions of the centre-of-
mass energy up to 100 TeV [102].

personal opinion future circular colliders may offer the best experimental prospects, being able to probe
the 10 TeV scale indirectly via high-precision low-energy experiments, and directly via the production
of new heavy particles.

Acknowledgements
The author thanks the UK STFC for support via the research grant ST/J002798/1.

References
[1] Y. Nambu, Phys. Rev. Lett. 4 (1960) 380.
[2] J. Goldstone, Nuovo Cim. 19 (1961) 154.
[3] J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127 (1962) 965.
[4] P. W. Anderson, Phys. Rev. 130 (1963) 439.
[5] Y. Nambu, Phys. Rev. 117 (1960) 648.
[6] W. Gilbert, Phys. Rev. Lett. 12 (1964) 713.
[7] F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321.
[8] P. W. Higgs, Phys. Lett. 12 (1964) 132.
[9] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508.

[10] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585.
[11] A. A. Migdal and A. M. Polyakov, J. Exptl. Theoret. Physics (U.S.S.R.) 51 (1966) 135.
[12] T. W. B. Kibble, Phys. Rev. 155 (1967) 1554.
[13] A. Salam, in the Proceedings of 8th Nobel Symposium, Lerum, Sweden, 19-25 May 1968, pp. 367.
[14] S. Weinberg, Phys. Rev. Lett. 19, (1967) 1264.
[15] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-ex]].

35

TOPICS IN HIGGS PHYSICS

35



[16] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235 [hep-ex]].
[17] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292.
[18] See also P. W. Higgs, Phys. Rev. 145 (1966) 1156.
[19] J. Ellis and M. K. Gaillard, Theoretical remarks, in L. Camilleri et al., Physics with very high-energy

e+e− colliding beams, CERN report 76-18 (Nov. 1976), pp. 21-94; J. D. Bjorken, Weak interaction
theory and neutral currents, in the Proceedings of 4th SLAC Summer Institute on Particle Physics:
Weak Interactions at High Energies & the Production of New Particles, Stanford, California, 2-10
Aug 1976, SLAC Report 198 (Nov. 1976), pp. 1-84, also available as SLAC-PUB-1866, Jan. 1977;
B. L. Ioffe and V. A. Khoze, Sov. J. Part. Nucl. 9 (1978) 50 [Fiz. Elem. Chast. Atom. Yadra 9 (1978)
118], also available as LENINGRAD-76-274, Nov 1976; G. Barbiellini, G. Bonneaud, G. Coignet,
J. Ellis, J. F. Grivaz, M. K. Gaillard, C. Matteuzzi and B. H. Wiik, The production and detection of
Higgs particles at LEP, DESY 79/27, ECFA/LEP SSG/9/4, May 1979.

[20] H. Baer et al., New particles, in Physics at LEP, edited by J. Ellis and R. D. Peccei, CERN-1986-
002-V-1 (CERN, Geneva, 1986), pp. 297-348, https://doi.org/10.5170/CERN-1986-002-V-1.297;
J. Boucrot et al., Search for neutral Higgs at LEP 200, in Proceedings of the ECFA workshop on
LEP 200, Aachen, Germany, 29 Sept.–1 Oct. 1986, edited by A. Böhm and W. Hoogland, CERN-
1987-008-V-2 (CERN, Geneva, 1987), p. 312, https://doi.org/10.5170/CERN-1987-008-V-2.312;
P. J. Franzini and P. Taxil, Higgs search, in Workshop on Z Physics at LEP1. Volume 2: Higgs
search and new physics, edited by G. Altarelli, R. Kleiss and C. Verzegnassi, CERN-1989-008
(CERN, Geneva, 1989), pp. 59-119, https://doi.org/10.5170/CERN-1989-008-V-2.59;
E. Accommando et al., Higgs physics, in Physics at LEP 2. Volume 1, CERN-1996-001 (CERN,
Geneva, 1996), pp. 351-462, https://doi.org/10.5170/CERN-1996-001-V-1.351.

[21] J. R. Ellis, G. Gelmini and H. Kowalski, New particles and their experimental signatures, in Pro-
ceedings of the ECFA/CERN Workshop on the Possibility of a Large Hadron Collider, Lausanne and
Geneva, Mar. 21-27, 1984, CERN Report 84-10, ECFA 84/85, Vol. 2, pp. 393-454, also available
as DESY 84/071, CERN-TH-3493/84 (1984).

[22] E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Rev. Mod. Phys. 56 (1984) 579 Ad-
dendum: [Rev. Mod. Phys. 58 (1986) 1065]. http://dx.doi.org/10.1103/RevModPhys.56.579,
http://dx.doi.org/10.1103/RevModPhys.58.1065.

[23] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide, for an updated
version, see Front. Phys. 80 (2000) 1.

[24] J. R. Ellis and G. L. Fogli, Phys. Lett. B 213 (1988) 526, http://doi.org/10.1016/0370-
2693(88)91304-4; Phys. Lett. B 231 (1989) 189, http://dx.doi.org/10.1016/0370-2693(89)90138-X.

[25] C. Vayonakis, Lett. Nuovo Cimento 17 (1976) 383; M. Veltman, Acta Phys. Pol. B8 (1977) 475; B.
W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D16 (1977) 1519.

[26] J. R. Ellis and G. L. Fogli, Phys. Lett. B 249 (1990) 543, J. R. Ellis, G. L. Fogli and E. Lisi, Phys.
Lett. B 274 (1992) 456 and Phys. Lett. B 318 (1993) 148.

[27] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3
and OPAL Collaborations], Phys. Lett. B 565 (2003) 61 [hep-ex/0306033].

[28] Tevatron New Phenomena and Higgs Working Group and CDF and D0 Collaborations,
[arXiv:1107.5518 [hep-ex]].

[29] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott and J. Stelzer [Gfitter
Group], Eur. Phys. J. C 72 (2012) 2003, [arXiv:1107.0975 [hep-ph]].

[30] D. de Florian et al. [LHC Higgs Cross Section Working Group], [arXiv:1610.07922 [hep-ph]].
[31] H. M. Georgi, S. L. Glashow, M. E. Machacek and D. V. Nanopoulos, Phys. Rev. Lett. 40 (1978)

692, http://dx.doi.org/10.1103/PhysRevLett.40.692.
[32] S. L. Glashow, D. V. Nanopoulos and A. Yildiz, Phys. Rev. D 18 (1978) 1724,

http://dx.doi.org/10.1103/PhysRevD.18.1724.

36

J. ELLIS

36



[33] R. N. Cahn and S. Dawson, Phys. Lett. 136B (1984) 196 Erratum: [Phys. Lett. 138B (1984) 464],
http://dx.doi.org/10.1016/0370-2693(84)91180-8

[34] R. Raitio and W. W. Wada, Phys. Rev. D 19 (1979) 941,
http://dx.doi.org/10.1103/PhysRevD.19.941; J. N. Ng and P. Zakarauskas, Phys. Rev. D 29
(1984) 876, http://dx.doi.org/10.1103/PhysRevD.29.876; Z. Kunszt, Nucl. Phys. B 247 (1984) 339,
http://dx.doi.org/10.1016/0550-3213(84)90553-4.

[35] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Phys. Rev. D 64 (2001) 094023,
http://dx.doi.org/10.1103/PhysRevD.64.094023 [hep-ph/0106293].

[36] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos and B. Mistl-
berger, JHEP 1605 (2016) 058, http://dx.doi.org/10.1007/JHEP05(2016)058, [arXiv:1602.00695
[hep-ph]].

[37] J. Huston [PDF4LHC Collaboration], PoS DIS 2010 (2010) 036.
[38] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group], [arXiv:1307.1347 [hep-ph]].
[39] J. Olsen, CMS physics results from Run 2 presented on Dec. 15th, 2015,

https://indico.cern.ch/event/442432/; CMS Collaboration, CMS PAS EXO-15-004,
https://cds.cern.ch/record/2114808/files/EXO-15-004-pas.pdf;
M. Kado, ATLAS physics results from Run 2 presented on Dec. 15th, 2015,
https://indico.cern.ch/event/442432/; ATLAS Collaboration, ATLAS-CONF-2015-081,
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-081/.

[40] J. Ellis, S. A. R. Ellis, J. Quevillon, V. Sanz and T. You, JHEP 1603 (2016) 176,
http://dx.doi.org/10.1007/JHEP03(2016)176, [arXiv:1512.05327 [hep-ph]].

[41] G. Aad et al. [ATLAS and CMS Collaborations], Phys. Rev. Lett. 114 (2015) 191803,
http://dx.doi.org/10.1103/PhysRevLett.114.191803, [arXiv:1503.07589 [hep-ex]].

[42] M. Baak et al. [Gfitter Group], Eur. Phys. J. C 72 (2012) 2205,
http://dx.doi.org/10.1140/epjc/s10052-012-2205-9, [arXiv:1209.2716 [hep-ph]].

[43] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia,
JHEP 1208 (2012) 098, [arXiv:1205.6497 [hep-ph]].

[44] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP
1312 (2013) 089, http://dx.doi.org/10.1007/JHEP12(2013)089, [arXiv:1307.3536 [hep-ph]].

[45] A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner and O. L. Veretin, Phys. Rev. Lett. 115 (2015) 201802,
http://dx.doi.org/10.1103/PhysRevLett.115.201802, [arXiv:1507.08833 [hep-ph]].

[46] ATLAS, CDF, CMS and D0 Collaborations, [arXiv:1403.4427 [hep-ex]].
[47] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 91 (2015) 112003,

http://dx.doi.org/10.1103/PhysRevD.91.112003, [arXiv:1501.07912 [hep-ex]].
[48] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75 (2015) 330,

http://dx.doi.org/10.1140/epjc/s10052-015-3544-0, [arXiv:1503.05427 [hep-ex]].
[49] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. D 93 (2016) 072004,

http://dx.doi.org/10.1103/PhysRevD.93.072004, [arXiv:1509.04044 [hep-ex]].
[50] P. Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. Lett. 114 (2015)142002

, http://dx.doi.org/10.1103/PhysRevLett.114.142002, [arXiv:1502.01030 [hep-ph]].
[51] M. Beneke, P. Marquard, P. Nason and M. Steinhauser, [arXiv:1605.03609 [hep-ph]].
[52] M. Fairbairn, P. Grothaus and R. Hogan, JCAP 1406 (2014) 039, http://dx.doi.org/10.1088/1475-

7516/2014/06/039, [arXiv:1403.7483 [hep-ph]].
[53] A. Hook, J. Kearney, B. Shakya and K. M. Zurek, JHEP 1501 (2015) 061,

http://dx.doi.org/10.1007/JHEP01(2015)061, [arXiv:1404.5953 [hep-ph]].
[54] J. R. Ellis and D. Ross, Phys. Lett. B 506 (2001) 331, [arXiv:hep-ph/0012067].
[55] G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608 (2016) 045,

37

TOPICS IN HIGGS PHYSICS

37



http://dx.doi.org/10.1007/JHEP08(2016)045, [arXiv:1606.02266 [hep-ex]].
[56] T. Aaltonen et al. [CDF and D0 Collaborations], Phys. Rev. Lett. 109 (2012) 071804,

http://dx.doi.org/10.1103/PhysRevLett.109.071804, [arXiv:1207.6436 [hep-ex]].
[57] ATLAS Collaboration, http://atlas.cern/updates/physics-briefing/atlas-observes

-higgs-boson-run-2-data;
CMS Collaboration, http://cms-results.web.cern.ch/cms-results/public-results/
preliminary-results/HIG/index.html.

[58] Peter Higgs, as quoted in The Times newspaper, June 7th, 2013:
http://www.thetimes.co.uk/tto/science/article3784820.ece.

[59] J. Ellis and D. S. Hwang, JHEP 1209 (2012) 071, [arXiv:1202.6660 [hep-ph]]; J. Ellis, R. Fok,
D. S. Hwang, V. Sanz and T. You, Eur. Phys. J. C 73 (2013) 2488, [arXiv:1210.5229 [hep-ph]];
S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran and A. Whitbeck, Phys.
Rev. D 86 (2012) 095031, [arXiv:1208.4018 [hep-ph]].

[60] J. Ellis, D. S. Hwang, V. Sanz and T. You, JHEP 1211 (2012) 134, [arXiv:1208.6002 [hep-ph]].
[61] T. Aaltonen et al. [CDF and D0 Collaborations], [arXiv:1502.00967 [hep-ex]].
[62] V. Khachatryan et al. [CMS Collaboration], [arXiv:1411.3441 [hep-ex]]; see also G. Aad et al.

[ATLAS Collaboration], Phys. Lett. B 726 (2013) 120, [arXiv:1307.1432 [hep-ex]];
[63] J. Ellis and T. You, JHEP 1306 (2013) 103, [arXiv:1303.3879 [hep-ph]].
[64] G. Blankenburg, J. Ellis and G. Isidori, Phys. Lett. B 712 (2012) 386, [arXiv:1202.5704 [hep-ph]];

R. Harnik, J. Kopp and J. Zupan, JHEP 1303 (2013) 026, [arXiv:1209.1397 [hep-ph]].
[65] V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 749 (2015) 337,

http://dx.doi.org/10.1016/j.physletb.2015.07.053, [arXiv:1502.07400 [hep-ex]].
[66] G. Aad et al. [ATLAS Collaboration], JHEP 1511 (2015) 211,

http://dx.doi.org/10.1007/JHEP11(2015)211, [arXiv:1508.03372 [hep-ex]].
[67] CMS Collaboration, https://cds.cern.ch/record/2159682/files/HIG-16-005-pas.pdf.
[68] L. Maiani, Proc. Summer School on Particle Physics, Gif-sur-Yvette, 1979 (IN2P3, Paris, 1980) p.

3; G. ’t Hooft, in: G. ’t Hooft et al., eds., Recent Developments in Field Theories (Plenum Press,
New York, 1980); E. Witten, Nucl. Phys. B188 (1981) 513; R.K. Kaul, Phys. Lett. 109B (1982) 19.

[69] J. Iliopoulos and B. Zumino, Nucl. Phys. B 76 (1974) 310, http://dx.doi.org/10.1016/0550-
3213(74)90388-5.

[70] See, for example: S. Weinberg, Phys. Rev. D 13 (1976) 974.
[71] See, for example: N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207 (2002)

034, [arXiv:hep-ph/0206021].
[72] M. Baak et al. [Gfitter Group], Eur. Phys. J. C 74 (2014) 3046,

http://dx.doi.org/10.1140/epjc/s10052-014-3046-5, [arXiv:1407.3792 [hep-ph]].
[73] ATLAS and CMS Collaborations, ATLAS-CONF-2015-044, CMS-PAS-HIG-15-002.
[74] J. Ellis, D. S. Hwang, K. Sakurai and M. Takeuchi, JHEP 1404 (2014) 004,

http://dx.doi.org/10.1007/JHEP04(2014)004, [arXiv:1312.5736 [hep-ph]].
[75] Class for Physics of the Royal Swedish Academy of Sciences, The BEH-Mechanism, Interactions

with Short-Range Forces and Scalar Particles,
http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/
advanced-physicsprize2013.pdf.

[76] W. Buchmuller and D. Wyler, Nucl. Phys. B 268 (1986) 621.
[77] A. Pomarol and F. Riva, JHEP 1401 (2014) 151, [arXiv:1308.2803 [hep-ph]].
[78] J. Ellis, V. Sanz and T. You, JHEP 1503 (2015) 157, http://dx.doi.org/10.1007/JHEP03(2015)157

[arXiv:1410.7703 [hep-ph]].

38

J. ELLIS

38



[79] A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Phys. Rev. Lett. 116
(2016)011801, http://dx.doi.org/10.1103/PhysRevLett.116.011801, [arXiv:1508.00581 [hep-ph]].

[80] A. Michelson, https://en.wikiquote.org/wiki/Albert_A._Michelson.
[81] S. W. Hawking, Is The End In Sight For Theoretical Physics?, Phys. Bull. 32 (1981) 15.
[82] Spanish Royal Commission, https://en.wikiquote.org/wiki/Talk:Incorrect_predictions.
[83] J. Bond, http://www.imdb.com/title/tt0143145/.
[84] P. Fayet and S. Ferrara, Phys. Rept. 32 (1977) 249, http://dx.doi.org/10.1016/0370-1573(77)90066-

7; H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985) 75, http://dx.doi.org/10.1016/0370-
1573(85)90051-1; H. P. Nilles, Phys. Rept. 110 (1984) 1, http://dx.doi.org/10.1016/0370-
1573(84)90008-5; S. P. Martin, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [Adv.
Ser. Direct. High Energy Phys. 18 (1998) 1], http://dx.doi.org/10.1142/978981283965_0001,
10.1142/9789814307505_0001 [hep-ph/9709356].

[85] J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 257 (1991) 83; H. E. Haber and R. Hempfling,
Phys. Rev. Lett. 66 (1991) 1815; Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85
(1991) 1.

[86] J. R. Ellis, S. Heinemeyer, K. A. Olive and G. Weiglein, JHEP 0301 (2003) 006,
http://dx.doi.org/10.1088/1126-6708/2003/01/006 [hep-ph/0211206].

[87] O. Buchmueller, M. Citron, J. Ellis, S. Guha, J. Marrouche, K. A. Olive, K. de
Vries and J. Zheng, Eur. Phys. J. C 75 (2015) 469, Erratum: [Eur. Phys. J. C 76
(2016) 190], http://dx.doi.org/10.1140/epjc/s10052-015-3675-3, 10.1140/epjc/s10052-016-4010-3,
[arXiv:1505.04702 [hep-ph]].

[88] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl. Phys. B 238 (1984)
453, http://dx.doi.org/10.1016/0550-3213(84)90461-9.

[89] J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. B260 (1991) 131; U. Amaldi, W. de Boer and
H. Furstenau, Phys. Lett. B260 (1991) 447; P. Langacker and M. Luo, Phys. Review D44 (1991)
817; C. Giunti, C. W. Kim and U. W. Lee, Mod. Phys. Lett. A 6 (1991) 1745.

[90] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein and L. Zeune, Eur. Phys. J. C 73
(2013) 2354, [arXiv:1211.1955 [hep-ph]].

[91] FeynHiggs Collaboration, http://www.feynhiggs.de.
[92] J. Ellis, J. Quevillon and V. Sanz, JHEP 1610 (2016) 086,

http://dx.doi.org/10.1007/JHEP10(2016)086, [arXiv:1607.05541 [hep-ph]].
[93] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Phys. Lett. B 708 (2012) 162,

http://dx.doi.org/10.1016/j.physletb.2012.01.053, [arXiv:1112.3028 [hep-ph]].
[94] P. Campana, M. Klute and P. Wells, Ann. Rev. Nucl. Part. Sci. 66 (2016) 273,

http://dx.doi.org/10.1146/annurev-nucl-102115-044812, [arXiv:1603.09549 [hep-ex]].
[95] G. Aarons et al. [ILC Collaboration], [arXiv:0709.1893 [hep-ph]]; ILC TDR, H. Baer, T. Barklow,

K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List and H. E. Logan et al., [arXiv:1306.6352 [hep-
ph]]; D. M. Asner et al., [arXiv:1310.0763 [hep-ph]].

[96] CLIC CDR, eds. M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney,
H. Schmickler, D. Schulte and N. Toge, CERN-2012-007,
http://project-clic-cdr.web.cern.ch/project-CLIC-CDR/; M. J. Boland et al. [CLIC
and CLICdp Collaborations], http://dx.doi.org/10.5170/CERN-2016-004, [arXiv:1608.07537
[physics.acc-ph]]; H. Abramowicz et al., [arXiv:1608.07538 [hep-ex]].

[97] CEPC-SPPC Study Group, IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01.
[98] M. Bicer et al. [TLEP Design Study Working Group Collaboration], JHEP 1401 (2014) 164,

[arXiv:1308.6176 [hep-ex]].
[99] J. Ellis and T. You, unpublished.

39

TOPICS IN HIGGS PHYSICS

39



[100] J. Ellis and T. You, JHEP 1603 (2016) 089, http://dx.doi.org/10.1007/JHEP03(2016)089,
[arXiv:1510.04561 [hep-ph]].

[101] J. Ellis, P. Roloff, V. Sanz and T. You, [arXiv:1701.04804 [hep-ph]].
[102] R. Contino et al., [arXiv:1606.09408 [hep-ph]].

40

J. ELLIS

40



Basics of QCD for the LHC: pp→ H +X as a case study*

F. Maltoni
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Abstract
Quantum Chromo Dynamics (QCD) provides the theoretical framework for
any study of TeV scale physics at LHC. Being familiar with the basic concepts
and techniques of QCD is therefore a must for any high-energy physicist. In
these notes we consider Higgs production via gluon fusion as an example on
how accurate and flexible predictions can be obtained in perturbative QCD. We
start by illustrating how to calculate the total cross section at the leading order
(yet one loop) in the strong coupling αS and go through the details of the next-
to-leading order calculation eventually highlighting the limitations of fixed-
order predictions at the parton level. Finally, we briefly discuss how more ex-
clusive (and practical) predictions can be obtained through matching/merging
fixed-order results with parton showers.

Keywords
Lectures; quantum chromodynamics; effective field theory; parton showers;
perturbation theory; Monte Carlo.

1 Introduction
Strongly interacting particles can be described in terms of a SU(3) gauge theory field theory involving
gluons and quarks:

LQCD = −1

4
Gµν,aGaµν +

∑

f

ψ̄fi i /Dij ψ
f
j , (1)

where the sum runs over the quark flavors,

Gaµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν ,

Dµ,ij = ∂µδij + igst
a
ijA

a
µ ,

and taij are the Gell-Mann matrices in the fundamental representation and fabc are the structure functions
of SU(3), with

[ta, tb] = ifabctc . (2)

Notwithstanding its apparent simplicity, QCD is an amazingly rich theory which is able to account for
a wide diversity of phenomena, ranging from really strong (non-perturbative) interactions at low scales,
below 1 GeV, to rather weak (perturbative) interactions up to scales of the TeV at colliders, from low
density to high density states such as those happening in nuclei collisions or inside stars, from low to
high temperatures. For proton-proton collisions at the LHC, where one can consider zero temperature
and density, QCD is complicated enough that we have no means available (for the moment!) to solve
it exactly and we have to resort to a variety of approximate methods, including perturbation theory
(when the coupling is small) and lattice calculations (when the coupling is large). Thanks to the work of

*This article has already been published in the 2013 CERN-Latin-American School of High-Energy Physics,
https://doi.org/10.5170/CERN-2015-001.
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M. Mulders and C. Z. Yuan, CERN Yellow Reports: School Proceedings, Vol. 2/2018, CERN-2018-004-SP (CERN, Geneva, 2018),
KEK Proceedings 2018-9
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theoretical and experimental physicists over the last fourty years we are convinced that QCD is a good
theory of the strong interactions, of course in the range of energies explored so far and to the level of the
theoretical accuracy that can be achieved with current technologies.

There are many excellent references on QCD with applications to collider physics, from books,
(e.g., [1]) to review articles, to write-up of lectures given in schools, and in particular some of those
given at the CERN schools over the years. My lectures at the school were largely based on the inspiring
ones by Michelangelo Mangano [2], Paolo Nason [3] and on the most recent ones by Gavin Salam [4],
which I warmly reccommend. In these notes, I’ll present a case study, i.e. how QCD can make accurate
predictions for Higgs production in gluon fusion at the LHC. The aim is to see the basic concepts at work
for a realistic and very important process so to verify their understanding and also to have a closer look at
the basic techniques used to perform such calculations. When needed and to avoid repetitions, I will refer
to specific sections of Ref. [4] as [QCD: Section number] where the reader will find further information
on the basic concepts. Links to simple Mathematica® notebooks with the calculations described below
can be found at http://maltoni.home.cern.ch/.

2 Higgs cross section at the LHC
The factorisation theorem states that the total cross section for the inclusive production of Higgs at the
LHC can be written as 1

σ(H +X) = Σi,j

∫
dx1fi(x1, µF )

∫
dx2fj(x2, µF )× σ̂ij→H+x(s,mH , µF , µR) , (3)

where the fi/j(x, µF ) are the parton distributions functions (long distance term, non-perturbatively cal-
culable) and σ̂ is the partonic cross section (short distance term, calculable in perturbation theory).
σ̂ can be written as an expansion in αS :

σ̂(ij → H + x) = σ̂(0)(ij → H)

+ σ̂(1)(ij → H + up to 1 parton)

+ σ̂(2)(ij → H + up to 2 partons)

+ . . . (4)

where the first term gives the leading order (LO) approximation and it is of order α2
S , the second next-

to-leading (NLO) order (α3
S) and so on.

It is interesting to know how the Higgs predictions improved and evolved over time. The LO
production was considered a long ago [5], the next-to-leading order (NLO) QCD corrections [6–9] were
calculated decades ago in the so-called effective field theory (HEFT) approximation (which will be ex-
plained in the following) as well in the full SM and found to be very large (σNLO/σLO ∼ 2). This
motivated the formidable endeavour of the next-to-next-to-leading order (NNLO) QCD calculations,
which have been fully evaluated in HEFT [10–12]. Given that corrections to the HEFT been estimated
through a power expansion [13–16] and found to have a negligible impact on total rates, NNLO is the
current state of the art for fixed-order predictions.

Before going into the details of the computation of the Higgs cross section, let us remind a few
general important points that are relevant for any computation in QCD.

1Be careful here as for simplicity we adopt the usual pragmatic approach on Higgs production at the LHC and imagine it
coming from different channels: gluon-gluon fusion, vector-boson-fusion, vector-boson-associated...and so on. We restrict the
discussion to the first one which is the leading mechanism. In fact, various channels overlap if contributions are organized as
powers of strong and weak couplings (e.g., gg → H appears at the same order in αS and yt as gg → tt̄H) and in general
they mix-up once higher-order QCD and EW corrections are included. The separation into channels is anyway useful from the
experimental point of view as they typically lead to different final state signatures.
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– At LO the factorisation theorem reduces to the parton model: the parton distribution functions
fi(x) are just the probabilities (and therefore positive-definite) of finding a given parton in the
initial state hadrons at a given resolution scale µF and σ̂ gives the probability that such partons
with a total energy s = x1x2S will "fuse" into a Higgs.

– Total cross sections are the first and simplest example of a larger class of observables, called In-
frared Safe (IS) quantities [QCD:2.3.2], which can be consistently computed in QCD and then
compared to experimental data. Such quantities always need to be (at least to some degree) inclu-
sive on possible extra radiation and in particular resilient under soft and/or collinear radiation. The
most known example of IS quantities beyond total cross sections are jets [QCD:5]. The constraint
of infrared safety becomes non-trivial already at NLO for Eq. (3).

– Total cross sections always inclusive of any possible extra QCD radiation in the event, hereby
denoted by X , even when the calculation is performed at LO. In this case, extra radiation up to
the scale µF is accounted for by the parton distribution function’s (PDF), while hard radiation is
consistently neglected being of higher order (αS). Alternatively, one can prove that the total cross
section for producing "just a Higgs", i.e., Higgs + no resolvable radiation at an arbitrary small
scale is exactly zero at all orders in perturbation theory.

– A very important point to always keep in mind is that the the "adjectives" LO, NLO, NNLO need
to be always referred to a specific observable, i.e. different observables in a given calculation can
be predicted at a different order. For example, when talking about a "NNLO calculation for Higgs
production in gluon fusion", what is really meant is that the total inclusive cross section is known
at NNLO. The same calculation can predict the rate for Higgs+1 jet (inclusive and exclusive) at
NLO and Higgs+2 jets only at LO (where exclusive and inclusive is the same).

– Beyond LO, the separation between long-distance and short-distance physics as described by µF
(and also µR) becomes non-trivial. µF and µR represent arbitrary scales in the calculation, whose
dependence is generated by the truncation of the perturbative expansion at a given order. Exploiting
the fact that physical results must be independent on such scales one finds renormalisation-group
type equations, such as the β function of QCD [QCD:1.2.3] and the so-called DGLAP evolution
equations for the PDF’s [QCD:3.2].

– The residual dependence of σ on µF and µR at any given order in perturbation theory is often used
to gauge the accuracy of the predictions [QCD:4.4.1]. This is by itself a very crude approxima-
tion, while the towers of leading (subleading,...) log’s of the scales can be predicted at all orders
in perturbation theory, only an explicit computation is able to provide the finite terms at higher
orders. In practice, it is common to choose central scales as the typical hard scale in a process
and vary them independently between 1/2 and 2 to identify an uncertainty. However, no solid and
unique procedure exists to identify central reference values and variation intervals and to associate
a confidence level. However, milder scale dependence of higher-order results compared to lower
ones is always used to gauge the improvement on the accuracy of a given prediction.

3 pp → H +X at leading order
At LO Eq. 3 can be rewritten as

σLO(H +X) =

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fg(x1, µF )fg(x2, µF )× σ̂(0)(gg → H) , (5)

where τ0 = m2
H/S and s = x1x2S. σ̂ for a 2→ 1 process can be rewritten as

σ̂ =
1

2s
|A|2 d3P

(2π)32EH
(2π)4δ4(p+ q − PH)

=
1

2s
|A|22πδ(s−m2

H) , (6)
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where

τ ≡ x1x2 =
S

s
, τ0 =

m2
H

S
. (7)

Performing the change of variables x1, x2 → τ, y with x1 ≡
√
τey, x2 ≡

√
τe−y (verify that the

jacobian J is equal to 1) the change of the integration limits and the result becomes

σLO(H +X) =
π|A|2
m2
HS

∫ − log
√
τ0

log
√
τ0

dy xg(
√
τ0e

y)g(
√
τ0e
−y) . (8)

This expression shows that for the cross section of a 2→ 1 process at LO, the contribution from the par-
ton distributions (a quantity known as gluon-gluon luminosity) factorises from the dynamics (|A|2). The
gluon-gluon luminosity depends only on the kinematics in the limits of integration and can be computed
once for all for each Higgs mass. The problem is therefore reduced to the computation of the amplitude
A.

3.1 My first loop (yet finite!) amplitude: gg → H

Being a color singlet, the Higgs does not couple directly to gluons. However, as no fundamental symme-
try forbidding it is present 2 it can via a loop of a colored and massive particle. In the SM such states are
the heavy quarks. Let us consider one quark at the time, i.e., the diagram(s) shown in Fig. 1. The first
observation to make, even before starting the calculation, is that even though a triangle loop in general
can give rise to divergences, both in the ultra-violet (UV) and in the infrared (IR), in this case we expect
a finite result. There are several different ways of convincing that this must be the case. A simple one
goes as follows. Divergent terms always factorize over lower order amplitudes. The one-loop amplitude
is the first non-zero term contributing to gg → H in the perturbative expansion. Therefore there cannot
be any divergence. A finite amplitude, however, does not mean that a consistent regularisation procedure
is not needed. The reason is that in intermediate steps of the calculation infinities are found that cancel
at the end, yet might leave finite terms. As we will see in gg → H such finite terms are actually nec-
essary to guarantee the gauge invariance of the result, clearly showing that there is no ambiguity in the
procedure. 3

To evaluate the diagram of Fig. 1 (there are actually two diagrams, the one shown and another one
with the gluons exchanged. They give the same contribution so we’ll just multiply our final result by
two), we employ use dimensional regularisation in d = 4− 2ε dimensions. 4

Using the QCD Feynman rules [QCD: Fig. 3] and the Yukawa interaction, the expression for the
amplitude corresponding to the diagram of Fig. 1 reads:

iA = −(−igs)2Tr(tatb)

(−imQ

v

)∫
dd`

(2π)d
tµν

Den
(i)3εµ(p)εν(q) (9)

where the overall minus sign is due to the closed fermion loop.5 The denominator is Den = (`2 −
m2
Q)[(`+p)2−m2

Q][(`−q)2−m2
Q]. Emplyoing the usual Feynman parametrization method to combine

2In fact, classically, scale invariance would forbid such a coupling. However, scale invariance is broken by renormalisation
and therefore it is not a symmetry.

3Less obvious is the case of γγ → H where the contribution coming from gauge bosons loop has to be done in different
gauges (or via low-energy-theorems) to prove the uniqueness and the correctness of dimensional regularisation procedure.
Interestingly enough, people seem to forget this fact quite regularly over the years.

4Dimensional regularisation comes in several different flavors and attention has to be paid to the details of the implementa-
tion. All formulas quoted in the main body of these lecture notes are in the so-called Conventional Dimensional Regularization
(CDR) which is the regularisation procedure where the MS scheme is defined. In practice, NLO calculations nowadays are
done in a different scheme which limits the use of the d-dimensional Dirac algebra to the loop computation.

5εµ(p) are the transverse gluon polarizations.
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Fig. 1: Representative Feynman diagram for the process gg → H . Another diagram, the one with the gluons
exchanged, contributes to the total amplitude.

the denominators of the loop integral into one:

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0

dy

[Ax+By + C(1− x− y)]3
(10)

one obtains
1

Den
= 2

∫
dx dy

1

[`2 −m2
Q + 2` · (px− qy)]3

. (11)

The next step is to shift the integration momenta to `′ = `+ px− qy so the denominator takes the form

1

Den
→ 2

∫
dx dy

1

[`′ 2 −m2
Q +m2

Hxy]3
. (12)

The numerator of the loop integral in the shifted loop momentum becomes

tµν = Tr

[
(/̀+mQ)γµ(/̀+ /p+mQ)(/̀− /q +mQ)γν

]

= 4mQ

[
gµν(m2

Q − `2 −
m2
H

2
) + 4`µ`ν + pνqµ

]
. (13)

where we have used the fact that for transverse gluons, ε(p) · p = 0 and so terms proportional to the
external momenta, pµ or qν , have been dropped. The above expression shows already several interesting
aspects.

The first one is that the trace is proportional to the heavy quark mass. This can be easily understood
as an effect of the spin-flip coupling of the Higgs. Gluons or photons do not change the spin of the
fermion, as vectors map left (right) spinors into left (right) spinors, while the scalars do couple left (right)
spinors with right (left) ones. If the quark circulating in the loop is massless then the trace vanishes due
to helicity conservation, independently of the actual Yukawa coupling. This is the reason why even when
the Yukawa coupling of the light quark and the Higgs is enhanced (such as in SUSY or 2HDM with large
tanβ), the contribution is anyway suppressed by the kinematical mass.
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The second point is that simple power counting shows that the terms proportional to the squared
loop momentum `2 and `µ`ν give rise to UV divergences. This means that an intermediate and consin-
stent regularisation prescription is needed for intermediate manipulations and that divergences will have
to cancel in the final result.

By shifting momenta in the numerator, dropping terms linear in `′ and using the relation
∫
ddk

kµkν

(k2 − C)m
=

1

d
gµν

∫
ddk

k2

(k2 − C)m
(14)

to write the amplitude in the form

iA = −
2g2
sm

2
Q

v
δab
∫

dd`′

(2π)d

∫
dxdy

{
gµν
[
m2
Q + `′2

(
4− d
d

)
+m2

H(xy − 1

2
)

]

+pνqµ(1− 4xy)

}
2dxdy

(`′2 −m2
Q +m2

Hxy)3
εµ(p)εν(q). (15)

This expression shows that if one computes the integral in d = 4, the UV divergent term is absent. For
d = 4− 2ε, however, this gives rise to a left-over finite piece, as the scalar integrals are given by

∫
dd`

(2π)d
`2

(`2 − C)3
=

i

32π2
(4π)ε

Γ(1 + ε)

ε
(2− ε)C−ε

∫
dd`

(2π)d
1

(`2 − C)3
= − i

32π2
(4π)εΓ(1 + ε)C−1−ε . (16)

So it is manifest that the divergence 1/ε cancels against the (4− d)/d term leaving a finite piece, which
in fact ensures that the final result is gauge invariant. By combining it with the other terms in the squared
parenthesis we obtain

A(gg → H) = −
αSm

2
Q

πv
δab
(
gµν

m2
H

2
− pνqµ

)
εµ(p)εν(q)

∫
dxdy

(
1− 4xy

m2
Q −m2

Hxy

)
. (17)

(Note that we have multiplied by 2 in Eq. (17) to include the diagram where the gluon legs are crossed.)
The Feynman integral of Eq. (17) can easily be performed to find an analytic result if desired. Note
that the tensor structure could have been predicted from the start by imposing gauge invariance, i.e.,
pµAµν = qνAµν = 0. By defining I(a) as

I(a) ≡
∫ 1

0
dx

∫ 1−x

0
dy

1− 4xy

1− axy , a =
m2
H

m2
Q

, (18)

one can factorise a 1/m2
Q out of the integral and cancel the overall m2

Q in front of the amplitude (17). In
other terms the heavy quark mass dependence is confined in I(a).
For a light quark, mQ � mH ,

I(a)
a→∞−→ − 1

2a
log2 a = −

m2
Q

2m2
H

log2
m2
Q

m2
H

, (19)

showing that in the Standard Model the charm and bottom quark contributions are strongly suppressed
by the square of the quark mass over Higgs mass ratio and come with a minus sign (with respect to the
top-quark one).
The opposite limit, mH � mQ,

I(a)
a→0−→ 1

3
, (20)
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which is found to be an extremely good approximation even for mQ ∼ mH , is quite surprising at first.
In this case the amplitude reads

A(gg → H)
mQ�mH−→ − αS

3πv
δab
(
gµν

m2
H

2
− pνqµ

)
εµ(p)εν(q). (21)

i.e., the amplitude gg → H becomes independent of the mass of the heavy fermion in the loop. This is
a special case of a general low energy theorem (which holds in the pH → 0 limit) that states that if the
colored particle mass, independently of the other quantum numbers such as its spin acquires (all of) its
mass via the Higgs mechanism, it will contribute to the amplitude gg → H independently of its mass.
In other words gg → H acts as a counter of heavy colored particles. In a four generation scenario, for
instance, the contribution from the t′ and b′ would lead to a factor of three increase at the amplitude level,
i.e. a factor 9 at the cross section level. Note that this is in an apparent contradiction with of our intuition
that heavy particles should decouple and not affect the physics at lower energy. The heavy states would
not decouple because of our assumption that their (whole) mass is due to electroweak symmetry breaking
and the interaction with the Higgs. Another interesting case is that of SUSY, where down-type and up-
type quarks can couple differently to the Higgs(es) and other colored states (squarks) are present in the
spectrum. At large tanβ, i.e. when mb tanβ ' mt, the Higgs bottom couplings are enhanced by a
factor tanβ, while those of the top suppressed by a cotβ. However, the scaling with masses is different
in the two limits and the contribution from the bottom anyway suppressed by mQ/mH . In addition,
the the two contributions will have an opposite sign so that will actually interfere destructively in the
amplitude squared. What about the squark contributions? Being heavy scalars and therefore coming
with an opposite sign shouldn’t the stop cancel exactly the contributions from the top and the others
squarks give the dominant contribution? In this case, one has to remember that in (possibly) realistic
SUSY models the mass of a squark has two sources: one from the coupling to the Higgs vev, which
due to SUSY, it is exactly equal to the SM partner coupling and the other from the SUSY soft-breaking
terms. For light quarks the latter are by far dominant giving a scaling forA of the typemq/mq̃, so highly
suppressed and decoupling. A light stop instead, mt̃ ' mt could lead to a possibly strong suppression
of A.

3.2 Total cross section at the LHC at LO
The result can be written as:

σLO(pp→ H +X) =
α2
S(µR)

64πv2
| I
(
m2
H

m2
Q

)
|2 τ0

∫ − log
√
τ0

log
√
τ0

dyg(
√
τ0e

y, µF )g(
√
τ0e
−y, µF ) (22)

Using LO PDF’s available in public libraries, such as LHAPDF [17] one can easily compute the gluon-
gluon luminosity and therefore the LO Higgs cross section at the LHC14, see Fig. 2. An example is
given in a Mathematica® notebook that can be found at the web address mentioned at the end of the
Introduction. An interesting exercise is to vary the value of the renormalisation and factorisation scales
around the natural central choice µR = µF = mH to try to estimate the unknown higher-orders terms
in the perturbative expansion. It has to be noted that at LO, the cross section depends on µR only
through αS(µR) which appears in the short distance coefficient and therefore as an overall factor α2

S ,
and depends on µF only via the PDF’s (both dependences are of logarithmic nature, as the application
of the renormalisation group equations easily shows). In other words the dependence on the scales is
maximal as there is no explicit dependence on the log of the scales in the short distance coefficients that
can compensate those in the coupling and in the PDF’s. At this order, this is consistent as scale changes
correspond to a change of at least one order in αS more and in a LO computation only the first term in the
perturbative expansion is present. The result of varying the scales independently 1/2mH < µR, µF <
2mH with 1/2 < µF /µR < 2 in the LO predictions for the LHC is shown in Fig. 9 for different Higgs
masses. Result are normalized to the central reference choice µR = µF = mH .
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Fig. 2: Example of a plot for the LO cross section for pp→ H at the LHC14 (pb) as a function of the Higgs mass
(GeV) obtained with Mathematica® notebook available from the author (link in the text). The red (lower) curve is
the large top-mass limit, while the blue (upper) curve is the result withe full top-mass dependence.

4 Higgs Effective field theory
The main result of the simple calculation gg → H is that gluon fusion is basically independent of the
heavy quark mass for a light Higgs boson. The result of Eq. (33) can be easily derived starting from the
effective vertex,

Leff =
αS
12π

GaµνG
a µν

(
H

v

)

=
βF
gs
GaµνG

a µν

(
H

2v

)
(1− δ),

where

βF =
g3
sNF

24π2
(23)

is the contribution of heavy fermion loops to the SU(3) beta function and δ = 2αS/π.6 (NF is the
number of heavy fermions with m� mH .) The effective Lagrangian of Eq. (23) gives ggH , gggH and
ggggH vertices and can be used to compute the radiative corrections ofO(α3

S) to gluon production. The
correction in principle involve 2-loop diagrams. However, using the effective vertices from Eq. (23), the
O(α3

S) corrections can be found from a 1-loop calculation. To fix the notation we shall use

Leff = −1

4
AHGaµνG

a,µν , (24)

where Gaµν is the field strength of the SU(3) color gluon field and H is the Higgs-boson field. The
effective coupling A is given by

A =
αS
3πv

(
1 +

11

4

αS
π

)
, (25)

6The (1 − δ) term arises from a subtlety in the use of the low energy theorem. Since the Higgs coupling to the heavy
fermions is Mf (1 + H

v
)ff , the counterterm for the Higgs Yukawa coupling is fixed in terms of the renormalisation of the

fermion mass and wavefunction. The beta function, on the other hand, is evaluated at q2 = 0. The 1− δ term corrects for this
mismatch.
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(a)

p1 µ a

p2 ν b

iAδ
ab

H
µν

(p1,p2)

(b)

p1 µ a

p2 ν b

p3 σ c

-Agf
abc

V
µνσ

(p1,p2,p3)

(c)

p1 µ a

p2 ν b

p3 σ c

p4 λ d

-iAg
2
X

abcd
µνσλ

Fig. 3: Feynman rules in the EFT where the top quark is integrated out. Gluon momenta are outgoing.

where v is the vacuum expectation value parameter, v2 = (GF
√

2)−1 = (246)2 GeV2 and the αS
correction is included, as discussed above. The effective Lagrangian generates vertices involving the
Higgs boson and two, three or four gluons. The associated Feynman rules are displayed in Fig. 3. The
two-gluon–Higgs-boson vertex is proportional to the tensor

Hµν(p1, p2) = gµνp1 · p2 − pν1pµ2 , (26)

while the vertices involving three and four gluons and the Higgs boson are exactly proportional to their
counterparts from pure QCD

V µνρ(p1, p2, p3) = (p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ, (27)

and

Xµνρσ
abcd = fabefcde(g

µρgνσ − gµσgνρ) + facefbde(g
µνgρσ − gµσgνρ)

+ fadefbce(g
µνgρσ − gµρgνσ). (28)

5 gg → Higgs @ NLO
The HEFT is clearly a very powerful approximation as it turns a loop computation into a tree-level one.
That means that within the HEFT the calculation of the total cross section for Higgs production at NLO
will appear as a usual NLO calculation, i.e., involving only one-loop and tree-level diagrams. This is
what we describe in this section.
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5.1 The NLO computation in a nutshell
At NLO Eq. 3 can be rewritten as

σNLO(H +X) =

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fg(x1, µF )fg(x2, µF )[σ̂
(0)
B (gg → H) + σ̂

(1)
V (gg → H)]

+
∑

ijk

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2fi(x1, µF )fj(x2, µF )× σ̂(1)
R (ij → H k) , (29)

where σ̂(0)(gg → H) and σ̂(1)
V (gg → H) denote the Born-level and the virtual cross sections, while

σ̂
(1)
R (ij → H k) is the real-emission cross section:

σ̂
(0,1)
B,V (gg → H) =

1

2s
|AB,V |

2
dΦB ,

σ̂
(1)
R (ij → Hk) =

1

2s
|AR|

2
dΦR ,

In general, the virtual term contains ultraviolet (UV), soft and collinear divergences. The UV divergences
are absorbed by a universal redefinition of the couplings entering at the Born amplitude, as dictated by the
renormalisation of the SM. When integrated over the full real phase space, the real term generates soft and
collinear divergences, too, and only when infrared(IR)-safe quantities are computed, these divergences
cancel to yield a finite result. IR-safe observables O(Φ) can be best understood by considering the soft
or collinear limit in the real phase space, i.e. when the additional parton has low energy or is parallel to
another parton. In this limit, an IR-safe observable yields limO(ΦR) = O(ΦB), where the Born-level
configuration ΦB is obtained from ΦR by eliminating the soft particle (in case of soft singularities) or by
merging the collinear particles (in case of collinear singularities).

There several ways to handle the cancellation of the singularities, which fall into two large cat-
egories, process-dependent and process-independent methods. In the former, one treats each calcula-
tion/process independently and performs manipulations of the integrals over the phase space so to obtain
analytic or semi-analytic results.

Process independent methods, on the other hand, are based on a very fundamental result, i.e., that
the pattern of the soft and collinear divergences is universal and depends only on the quantum numbers
of the initial and final state particles in the Born process. That means that given the Born amplitude, one
can predict the divergences that will show up in the virtual contributions and will be then cancelled over
integration of the extra radiation in the reals. More importantly, such divergences come in just a handful
of different types that can be dealt with once and for all.

Let us now rewrite Eq. (29) in a general and short-hand notation

σNLO ≡
∫

dΦB [B(ΦB) + V (ΦB)]O(ΦB) +

∫
dΦRR(ΦR) O(ΦR) (30)

which will be useful in the following. A NLO cross section is written in terms of matrix elements for
the Born and virtual integrated over the Born phase space plus the real matrix elements integrated over
the real phase space. Within a subtraction method, the real phase space is parametrized in terms of
an underlying Born phase space ΦB and a radiation phase space ΦR|B . A necessary requirement upon
this parametrization is that, in the singular limits, by merging collinear partons, or eliminating the soft
parton, the real phase becomes equal to the underlying Born one. Then the expectation value of an
IR-safe observable reads

∫
dσ(NLO)O(Φ) =

∫
dΦB

[
B(ΦB) + V (ΦB) +

∫
dΦR|BS(ΦR)

]
O(ΦB)

+

∫
dΦR [R(ΦR) O(ΦR)− S(ΦR)O(ΦB)] . (31)
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The third member of the above equation is obtained by adding and subtracting the same quantity from
the two terms of the second member. The terms S(ΦR|B) are the subtraction terms, which contain all
soft and collinear singularities of the real-emission term. Using the universality of soft and collinear
divergences, they are written in a factorised form as

S(ΦR) = B(ΦB)⊗ S̃(ΦR|B) , (32)

where the S̃(ΦR|B) can be composed from universal, process-independent subtraction kernels with ana-
lytically known (divergent) integrals. These integral, when summed and added to the virtual term, yield
a finite result. The second term of the last member of Eq. (31) is also finite if O is an IR-safe observable,
since by construction S cancels all singularities in R in the soft and collinear regions. The most popular
subtraction schemes currently used in public NLO codes are based on the dipole subtraction [18] and the
so-called FKS scheme [19]. The case of gg → H at NLO is particularly simple as the Born amplitude
is a 2 → 1 process. This means that the integration over phase space of the real corrections is particu-
larly simple and can therefore be done analytically. This has also the pedagogical advantage that shows
explicitly where the divergences come from and to “see” the cancellations term by term. We study the
process gg → H at NLO, in the large top-quark mass limit. All results given below are in Conventional
Dimensional Regularization (CDR), where matrix elements are calculated in d dimensions, including the
Born and real contributions, as well as the integration over phase space [6].

5.2 gg → H: Born in d dimensions
The Born amplitude is calculated via the HEFT feynman rules. The only difference with respect to
the previous calculation stems from the fact that now the computation has to be done in d = 4 − 2ε-
dimensions, with ε infinitesimal. The phase space do not bring any extra ε term. However, the matrix
element changes (

gµν
m2
H

2
− pνqµ

)2

=
1

4
(d− 2)m4

H , (33)

as well as the average over the initial state gluon polarizations which in d-dimensions are d − 2. This
gives

σ̂B =
α2
S

π

m2
H

576v2s

µ2ε

(1− ε) δ(1− z)

≡ σ̂0 δ(1− z) , (34)

where z ≡ m2
H/s is the inelasticity of the process, i.e. the fraction of the parton parton energy that

goes into the Higgs (for the Born z = 1). µ is the usual arbitrary scale that needs to be introduced
in dimensional regularisation to correct for the different dimensions and keep the action adimensional
(~ = c = 1). Note that a cross section in d dimensions has dimensions [σ] = M2−d. Also note that we
have defined σ̂0 as containing an explicit factor z.

5.3 gg → H: virtual corrections
There are several diagrams appearing at one-loop. Diagrams involving bubbles on the external gluon legs
(with 3-point gluon-gluon-gluon and gluon-gluon-Higgs verteces) give rise to scaleless integrals that are
zero in dimensional regularisation, see Fig. 4, left diagram. The qq̄ → H process, see Fig 4 right, is
proportional to the mq parton mass which are taken massless and therefore null at all orders. As a result,
only two diagrams are non-zero, i.e., the vertex correction and the bubble with the four gluon vertex as
shown in Fig. 5

σ̂tri = σ̂0 δ(1− z)
[
1 +

αS
2π
CA

(
µ2

m2
H

)ε
cΓ

(
− 2

ε2
+

10

3ε
+

179

36
+ π2

)]
, (35)
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Fig. 4: Example of Feynman diagrams giving null contributions to ij → H at one-loop in the HEFT. Bubbles on
the gluon legs are zero in dimensional regularisation. qq̄ → H is zero at all orders in perturbation theory ifmq = 0

due to chiral symmetry.

g

H

g

Fig. 5: Feynman diagrams giving non-zero contributionsto gg → H at one-loop in the HEFT.

σ̂bub = σ̂0 δ(1− z)
[
1 +

αS
2π
CA

(
µ2

m2
H

)ε
cΓ

(
−10

3ε
− 179

36

)]
, (36)

where

cΓ = (4π)ε
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
. (37)

To obtain the results above, one has to write down the loop amplitudes, perform a few simplifications and
the decomposition of the tensor integrals appearing in the amplitudes so to express the results in terms
of the following two scalar integrals:

µ2ε

∫
dd`

(2π)d
1

`2(`+ pH)2
= cΓ

(
µ2

m2
H

)ε(
1

ε
+ 2

)
,

µ2ε

∫
dd`

(2π)d
1

`2(`+ p1)2(`+ p2)2
=

cΓ

2m2
H

(
µ2

m2
H

)ε(
2

ε2
− π2

)
, (38)

with pH = p1 + p2. Summing the contributions of the two diagrams above with the αS correction from
Eq. (25), we obtain

σ̂V = σ̂0 δ(1− z)
[
1 +

αS
2π
CA

(
µ2

m2
H

)ε
cΓ

(
− 2

ε2
+

11

3
+ π2

)]
, (39)

i.e., the total virtual contribution is proportional to the Born amplitude and it contains pole(s) in powers
of 1/ε. The fact that the full virtual amplitude is proportional to the Born is due to the simplicity of a
2→ 1 process. However, in general one can prove that the divergent contributions must be proportional
to the Born in the case of collinear (and collinear-soft, the double pole) divergences and to the so-called
color-connected Born for the soft ones. Given that the Born amplitude is proportional to α2

S and we
are calculating QCD corrections, we also expect UV divergences, which are proportional to 1/ε. The
fact that apparently we do not see any pole in 1/ε in the result above, it simply means that there is an
accidental cancellation between simple poles of IR origin and that of UV origin, as we did not keep them
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�q

q

H

g

Fig. 6: Feynman diagrams giving qq̄ real contributions in the infinite top-quark mass limit. These contributions
are finite.

distinct in the calculation. To leave only IR poles in the amplitude to be cancelled with those coming
from the real contribution, we therefore proceed here to renormalisation of αS . This can be attained by
the substitution in σ̂0, see also [QCD:1.2.3],

αS → αMS
S (µR) = αS

[
1− αS

2π
cΓ

(
µ2

µ2
R

)ε
b0
ε

]
, (40)

where b0 = 11/6CA − 2nfTF /3. The UV-renormalized virtual amplitude is

σ̂MS
V (gg) = σ̂0 δ(1− z)

[
1 +

αS
2π
CA

(
µ2

m2
H

)ε
cΓ

(
− 2

ε2
− 2

ε

b0
CA
− 2

b0
CA

log
m2
H

µ2
R

+
11

3
+ π2

)]
. (41)

where now the poles in 1/ε2, 1/ε are only of IR nature. Another important feature which is manifest in
the expression above is the appearance of an explicit log of the renormalisation scale in the short distance
part. As mentioned before, this the improvement expected on the scale dependence of a NLO result: the
µR dependence of the α2

S(µR) overall coefficient is exactly cancelled by the explicit log up to order α3
S .

5.4 Real Contributions
Real corrections imply the calculation of 2 → 2 tree-level amplitudes and their integration over phase
space in d dimensions. All possible initial and final state partons, gluons, quarks and anti-quarks need to
be included,

1. qq̄ → Hg + crossing (i.e., q̄q → Hg) ,
2. qg → Hq + crossings (i.e., q̄g → Hq̄ , gq → Hq , gq̄ → Hq̄) ,
3. gg → Hg .

It is easy to predict which divergences to expect from each of the subprocesses above. The reason is
that out of the possible (by Lorentz and color invariance) underlying Born amplitudes, i.e., qq̄ → H and
gg → H , the only non-zero one is gg → H . Therefore the first processes must give a finite result when
integrated over phase space, the second ones can only contain collinear divergences to be absorbed in
quark PDF’s, while the last is expected to give rise to soft and collinear divergences, part of which will be
absorbed in the gluon PDF’s and the rest canceled against those coming from the virtual contributions,
Eq. (41).

5.4.1 qq̄ → Hg

This contribution, shown in Fig. 6 is finite and can be calculated directly in four dimensions. A simple
calculation gives

|M|2 =
4

81

α3
S

πv2

(u2 + t2)

s
, (42)
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H

qq

g

Fig. 7: Feynman diagrams giving qg real contributions in the infinite top-quark mass limit.

to be integrated over the 4-dimensional phase space

dΦ2 =
1

8π
(1− z) dv , (43)

where v = 1/2(1 + cos θ) and z = m2
H/s as usual. Using

t = −s(1− z)(1− v) , (44)

u = −s(1− z)v , (45)

gives

σ̂R(qq̄) = σ̂0
αS
2π

64

27

(1− z)3

z
. (46)

5.4.2 gq → Hq

Let us consider now the contribution from the diagrams with an initial quark, i.e., the process gq → Hq.
The d-dimensional averaged/summed over initial/final state polarizations and colors amplitude is

|M|2 = − 1

54(1− ε)
α3
S

πv2

(u2 + s2)− ε(u+ s)2

t
. (47)

Integrating it over the d-dimensional phase space

dΦ2 =
1

8π

(
4π

s

)ε 1

Γ(1− ε) z
ε(1− z)1−2ε v−ε(1− v)−εdv (48)

one gets

σ̂R(gq) = σ̂0
αS
2π
CF

(
µ2

m2
H

)ε
cΓ

[
−1

ε
pgq(z) + z − 3

2

(1− z)2

z
+ pgq(z) log

(1− z)2

z

]
, (49)

where the pgq(z) color-stripped Altarelli-Parisi splitting function is given in the Appendix, Eqs. (67). We
perform the factorisation of the collinear divergences adding the counterterm

σcoll.
c.t. (gq) = σ0

αS
2π

[(
µ2

µ2
F

)ε
cΓ

ε
Pgq(z)

]
. (50)

We note that in fact in CDR the cross section factorises over the d-dimensional spllitting functions
Eqs. (68). However, the collinear counter-term in MS is defined with the 4-dimensional Altarelli-Parisi
splitting functions, Eqs. (67), and that is why we have written the result above in terms of pgq(z) leaving
out a finite term z (also note that our definition of σ0, Eq. (34), contains a factor z). This gives

σ̂MS
R (gq) = σ̂R(gq) + σ̂coll.

c.t. (gq)

= σ0
αS
2π
CF

[
pgq(z) log

m2
H

µ2
F

+ pgq(z) log
(1− z)2

z
+ z − 3

2

(1− z)2

z

]
. (51)
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Fig. 8: Feynman diagrams giving gg real contributions in the infinite top-quark mass limit.

5.4.3 gg → Hg

The calculation of the d-dimensional gg → Hg amplitude involves the four diagrams shown in Fig. 8
and it is not so trivial to do by hand, yet the final result is very compact:

|M|2 =
1

24(1− ε)2

α3
S

πv2

(m8
H + s4 + t4 + u4)(1− 2ε) + 1

2ε(m
4
H + s2 + t2 + u2)2

stu
. (52)

This example is illustrative of the fact that keeping track of the ε parts in the amplitude squared makes
the calculation significantly more complex for at least two reasons. First the structure of the result
itself is more involved. Second, one is forced to work at the squared amplitude level as d dimensional
contributions come from the (d − 2 dimensional ) gluon polarizations and therefore cannot exploit the
beauty, power and simplicity of helicity amplitude techniques [20, 21]. Computing QCD amplitudes
where states have fixed polarizations entails huge simplifications and allows to make predictions for
amplitudes with many external partons. For example, tree-level amplitudes in the HEFT involving up to 5
extra partons can be easily obtained automatically using tools such as ALPGEN [22] or MADGRAPH [23].
Fortunately, it turns out that is possible to use a different scheme than CDR and actually perform the
computation of the Born and real matrix elements in exactly four dimensions (yet integrate them over the
d-dimensional phase space). This involves a different (and a bit tricky) d-dimensional algebra for the loop
computations and the introduction of (universal) finite terms for the initial-state counter-terms and UV
subtractions, yet with an enormous computational simplification. All public NLO codes for processes at
the LHC in practice do use such "maximally four dimensional" d-dimensional regularisation schemes.
Integrating the amplitude (52) over the d-dimensional phase space of Eq. (48) gives

σ̂R(gg) = σ̂0
αS
2π
CA

(
µ2

m2
H

)ε
cΓ

[(
2

ε2
+

2

ε

b0
CA
− π2

3

)
δ(1− z)

−2

ε
pgg(z)−

11

3

(1− z)3

z
− 4

(1− z)2(1 + z2) + z2

z(1− z) log z

+ 4
1 + z4 + (1− z)4

z

(
log(1− z)

1− z

)

+

]
, (53)
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where the plus prescription is defined as follows:
∫ 1

0
dx [h(x)]+f(x) =

∫ 1

0
dxh(x)[f(x)− f(1)] . (54)

Note that the 2
ε
b0
CA
δ(1 − z) in Eq. (53) comes from rexpressing the divergent term −4

ε [
z

(1−z)+ + 1−z
z +

z(1− z)] in terms of −2
εpgg(z), see Eq. (67). The factorisation of the collinear divergence is handled by

adding the corresponding counterterm

σ̂coll.
c.t. (gg) = 2 σ̂0

αS
2π

[(
µ2

µ2
F

)ε
cΓ

ε
Pgg(z)

]
, (55)

which gives

σ̂MS
R (gg) = σ̂R(gg) + σ̂coll.

c.t. (gg)

= σ̂0
αS
2π
CA

(
µ2

m2
H

)ε
cΓ

[(
2

ε2
+

2

ε

b0
CA
− π2

3

)
δ(1− z)

+2pgg log
m2
H

µ2
F

− 11

3

(1− z)3

z
− 4

(1− z)2(1 + z2) + z2

z(1− z) log z

+ 4
1 + z4 + (1− z)4

z

(
log(1− z)

1− z

)

+

]
. (56)

We can now recognise that the IR poles match those of the virtual contributions in Eq. (41). Adding up
the contributions from real and virtual contributions of the gg channel we obtain (note that our definition
of σ0, Eq. (34), contains a factor z):

σ̂MS(gg) = σ̂MS
R (gg) + σ̂MS

V (gg)

= σ0
αS
2π
CA

[(
11

3
+

2

3
π2 − 2

b0
CA

log
m2
H

µ2
R

)
δ(1− z)

−11

3

(1− z)3

z
+ 2pgg log

m2
H

µ2
F

− 4
(1− z + z2)2

z(1− z) log z

+ 8
(1− z + z2)2

z

(
log(1− z)

1− z

)

+

]
. (57)

As predicted, the final results for the short distance coefficients is finite (yet scheme dependent) and does
contain the necessary log’s of the renormalisation and factorisation scales that compensate up to α3

S the
corresponding dependences in α2

S(µR) of the Born amplitude and in the PDF’s.

5.5 NLO results: discussion
The expressions above can be easily implemented in a numerical code to perform the convolution in-
tegrals with PDF’s. A few simple numerical optimizations, such as the choice of integration variables,
and a bit of attention to the implementation of the + distributions, that’s all is needed. The reader can
find a sample implementation in a Mathematica® notebook at the web address mentioned at the end of
the Introduction. By running the code with different scale choices, one can associate an uncertainty to
the NLO predictions as done at LO. The result, shown in Fig. 9, comes as a big surprise! The NLO
calculation predicts a rate twice as large and the respective LO and NLO uncertainty bands do not even
overlap. That means that our naive estimate of the uncertainties at LO is totally off and therefore unre-
liable. It seems also to suggest that perturbation expansion is at stake here. As we had mentioned, this
motivated the computation of the NNLO corrections, which are also shown in Fig. 9. Fortunately, NNLO
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Fig. 9: K-factors for Higgs production from gluon fusion at the LHC. Uncertainty bands are obtained via indepen-
dent scale variation 1/2mH < µR, µF < 2mH with 1/2 < µF /µR < 2. The LO and NLO bands can be obtained
by implementing the formulas obtained in these notes in a code that perfoms the numerical integration over the
PDF’s. Cross-checks and NNLO results can be obtained with HNNLO [24]. (Plot courtesy of M. Grazzini).

predictions do overlap with NLO and also display a smaller scale dependence, so that the perturbation
picture seems safe starting from NLO on. In fact, this behavior is rather special to pp → H + X and
it is often rephrased by saying that what we call LO (in the perturbative expansion) is not actually the
leading one in size and therefore we should not start from that. For instance, in Drell-Yan or VBF this
does not happen, and the perturbative expansions (seem to) converge beautifully, see Fig. 10. In any
case, the Higgs production reminds us an important fact that we should always keep in mind: scale vari-
ation cannot by definition reproduce missing finite terms in the perturbative expansion and as such can
only give an indication of what the real uncertainties could be. On the other hand, comparison between
predictions from LO and NNLO, their stabilization (or lack thereof) and the use of approximate meth-
ods to determine (classes of) higher order terms, all together can provide a rather solid picture on the
theoretical uncertainties on a case-by-case basis. We mention, in passing, another important source of
uncertainties in making predictions for hadron colliders, i.e., that coming from imperfect knowledge of
the PDF’s. Uncertainties are related to unknown higher-order terms in the DGLAP evolution equations
that determine as well as from the extraction of the initial condition from experimental data, see [QCD:3]
and in particular [QCD:3.3.2]. 7

As far as total cross sections are concerned, the situation is therefore pretty clear. Fixed-order
calculations come equipped with self-detecting procedures that can give us information on whether a
prediction is reliable or not. If not, it can be systematically improved by including higher-order terms
(almost for free nowadays at NLO, yet at a rather high cost at NNLO) and uncertainties can be easily
estimated. So it is natural to ask, what about other IR-safe observables?

Let us consider, once again pp → H + X as an example, and focus on the Higgs momentum
(fully inclusive) distribution, which can be parametrized in terms of only two variables8, the rapidity yH

7The latter does in fact imply also the prediction of experimental observables at the same order in perturbation theory and
therefore are also intrinsically also affected by scale dependencies. Such effects are not included normally in the estimation of
the uncertainties coming from PDF’s.

8We do not consider the azimuthal angle φ, because for symmetry reasons can only lead to a uniform distribution
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σ (pb) at LHC
√s = 7 TeV

scale choice:
Q/4 ≤ µR,µF ≤ 4Q
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Fig. 10: Examples of improvement in the predictions of processes at LHC in going from LO to NNLO. On the
left, scale dependence of the predictions for Z/γ∗ production (at y = 0) at the LHC14, at fixed order [25]. On
the right, Higgs production at the LHC7 via VBF [26] as a function of the Higgs mass. The bands are obtained by
independent scale variation in the interval Q/4 ≤ µF , µR ≤ 4Q, Q being the virtuality of the W,Z fusing into the
Higgs. In both cases the perturbative expansion behaves extremely well and NNLO predictions overlap with those
at LO and NLO and display a much smaller residual uncertainty.

and the transverse momentum pTH . At LO (referred to the total cross section), the Higgs can be boosted
in the forward or backward directions in the lab system, yH = 1

2 log x1
x2

, yet it has always pTH = 0, i.e.
the distribution in pTH is a delta function centered at pTH = 0. At NLO (again referred to the total cross
section), 2 → 2 diagrams enter in the calculation and the Higgs can have a non-zero pTH . Since at any
point in phase space with pTH 6= 0 this is the first non-zero contribution, the observable pTH of the Higgs
is only at LO. In other words if we want to know the pTH distribution of the Higgs at NLO over all phase
space, we need at least a NNLO prediction for the cross section. Another way of thinking about it is to
ask oneself what kind of diagrams are present in the calculation for that observable in a given area of the
phase space: if there are only tree-level diagrams then the observable is LO. It is important when working
with NLO codes to always think about what kind of observables are actually predicted at NLO, what at
LO and what not even at LO. Again, a NNLO computation for the total cross section for pp→ H +X ,
gives NNLO information on the Higgs rapidity distribution, NLO for the Higgs pTH and pp→ H + 1-jet
observables, LO for pp→ H + 2-jets observables and the structure of the jet in H + 1-jet events and no
information at all on pp → H + 3-jets observables. In short, a fixed-order computation can only make
predictions for a finite number of observables, typically with a rather limited number of resolved partons
and a very small number of unresolved ones, i.e. just one for a NLO computation and up to two for a
NNLO computation. This is the first main limitation of a fixed-order computation. However, it is not the
only one.

Consider again the pTH distribution of the Higgs as predicted by a NLO computation for the total
cross section, Fig. 11. This curve can be easily obtained using the expressions in four dimensions of
Eqs. (42,47,52), performing the integration over the polar angle together with the PDF’s via a Monte-
Carlo method and plotting it point-by-point during the integration. The pTH distribution is divergent in
pTH = 0 as expected from soft and beam-collinear emissions. As we have learnt such divergences are
proportional to δ(1 − z) where z is the fraction of parton-parton energy taken by the Higgs and are
cancelled by the virtual contributions, all of which reside in pT = 0. So the cancellation between real
and virtual contributions, all of it happens in the first bin of the histogram. How do we interpret such
weird distribution? A useful way is to think about the size of the bin of the distribution as our resolution
scale: with a rather coarse binning there is no "going-to-infinity" and predictions are rather stable (this of
course includes the total cross section which corresponds to using only one bin), while with thin binning,
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Fig. 11: Higgs pTH spectrum for a Higgs of mH = 120 GeV at the LHC7. The labeling NLO and NLL+NLO
refer to the total cross section. The curves are normalized to the same value (=total cross section is the same). The
green curve is just a LO prediction for the pTH of the Higgs. The logarithmic divergence at pTH → 0 is cancelled by
the negative infinite virtual contributions at pTH = 0 (not shown!). The resummed prediction (red curve) features a
“physical” smooth behavior at small pTH . (The resummed prediction is obtained via HqT [27]).

we start to be sensitive to low energy and virtual emissions which become increasingly important and
are not included at all in a fixed-order approach. This is the case where resummed predictions come into
rescue: one finds that the leading part of soft emissions (real and virtual) is universal, it can be considered
at all orders and included by identifying the log’s associated to it and exponentiating them. This can be
done either at very high accuracy analytically yet fully inclusively or in a numerical and exclusive way
at the leading log with a parton shower (which actually resums both soft and collinear enhancements).
The result of including these effects analytically is shown in Fig. 11, red curve. In very crude words, the
effect of the resummation is to spread the δ(pT ) of the virtual contributions over a range of a few tens of
GeV with the effect of smoothing out the divergence and producing a "physical" distribution.

In summary, fixed-order calculations in perturbative QCD can be performed in a well-defined
and quite simple framework, i.e. in the context of the factorization theorem. It is therefore possible to
make predictions for inclusive quantities in hadron colliders, which can be systematically improved at
the "only" price of an (exponential) increase in the complexity of the calculation. In practice, however,
the use of fixed-order predictions is limited by several other important drawbacks. First, only processes
with a few resolved partons can be calculated, while in practice we know that hundreds of hadrons can be
produced in a single proton-proton interaction of which we are bound to ignore the details. Second, sharp
infinities appear in the phase that do cancel between real and virtual contributions if inclusive enough
observables are defined, yet lead to unphysical distributions in specific areas of the phase space and/or
when the resolved partons become either soft or collinear. Such local positive and negative infinities are
unphysical because they appear only due the artificial truncation of the perturbative expansion. Finally,
the fact that plus and minus infinities appear locally in phase space also means that fixed order predictions
beyond LO cannot be used as probability functions to generate events as distributed in nature. Parton
showers, i.e. fully exclusive resummation, and their merging/matching with fixed-order predictions,
provide an elegant and powerful way out to all the above limitations.
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6 Beyond fixed-order predictions
As we have explicitly verified, fixed-order predictions have important limitations both of principle (ar-
eas of phase space and observables, such as jet substructure are poorly described, no hadrons but only
partons) and in practice (no event simulation is possible). Fortunately, an alternative approach exists that
is based on the fact that the IR structure, soft or collinear, of QCD is universal and contributions can
be resummed at all orders. Last but not least, formulas that describe the emission of soft and collinear
partons are amenable of a probabilistic interpretation and therefore not only it is possible to perform an
explicit resummation but also to associate a full “history" to an hard scattering event, i.e., to associate
to every event a full-fledged description of an high-energy event from the two initial protons to the final
(possibly hundreds) of hadrons and leptons in the final state. In addition, in the latest years, enormous
progress has been achieved in combining the accuracy of fixed-order predictions with the flexibility of
parton showers. These methods are briefly presented here together with their applications to Higgs pro-
duction. The short presentation below is adapted from Ref. [28]. The reader is also referred to [QCD:4.4]
for further details, examples and references.

6.1 Parton Showers
Parton Showers (PS) are able to dress a given Born process with all the dominant (i.e. enhanced by
collinear logarithms, and to some extent also soft ones) QCD radiation processes at all orders in pertur-
bation theory. In particular, the dominant contributons, i.e. those given by the leading logarithms, coming
from both real and virtual emissions are included. The cross section for the first (which is often also the
hardest) emission in a shower reads:

dσ1st step = dΦBB(ΦB)
[
∆(pmin

⊥ ) + dΦR|B∆(pT(ΦR|B))P (ΦR|B)
]
, (58)

where ∆(pT) denotes the Sudakov form factor

∆(pT) = exp

[
−
∫

dΦR|BP (ΦR|B)Θ(pT(ΦR)− pT)

]
. (59)

This Sudakov form factor can be understood as a no-emission probability of secondary partons down to
a resolution scale of pT. Here P (ΦR|B) is a process-independent universal splitting function that allows
to write the PS approximation to the real cross section RPS, typically given schematically by a product
of the underlying Born-level term folded with a splitting kernel P

RPS(Φ) = P (ΦR|B)B(ΦB). (60)

In this framework, ΦR|B is often expressed in terms of three showering variables, like the virtuality t in
the splitting process, the energy fraction of the splitting z and the azimuth φ. A very simple (and widely
used) choice for the splitting function, is

P (ΦR|B)dΦR|B =
αS(t)

2π
Pa→bc(z)

dφ

2π

dt

t
dz (61)

where P (z) are Altarelli-Parisi splitting functions on which any QCD amplitude factorisises in the
collinear limit b ‖ c.

The above definition of the Sudakov form factor, guarantees that the square bracket in Eq. (58)
integrates to unity, a manifestation of the probabilistic nature of the parton shower. Thus, integrating the
shower cross section over the radiation variables yields the total cross section, given at LO by the Born
amplitude. The corresponding radiation pattern consists of two parts: one given by the first term in the
square bracket, where no further resolvable emission above the parton-shower cut-off pmin

⊥ – typically of
the order of 1 GeV – emerges, and the other given by the second term in the square bracket describing
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the first emission, as determined by the splitting kernel. It is important to stress that the real-emission
cross section in a PS generator is only correct in the small angle and/or soft limit, whereRPS is a reliable
approximation of the complete matrix element.

After the 1st step the process is repeated using the new configuration as the Born one.

While rather crude, the PS approximation is a very powerful one, due mainly to the great flexi-
bility and simplicity in the implementation of 2 → 1 and 2 → 2 high-Q2 processes. In addition, once
augmented with a hadronisation model the simulation can easily provide a full description of a collision
in terms of physical final states, i.e., hadrons, leptons and photons. In the current terminology a generic
Monte Carlo generator mainly refers to such tools, the most relevant examples of are PYTHIA 6 and
PYTHIA 8 [29, 30], HERWIG [31], HERWIG++ [32], and SHERPA [33]. A very clear and exhaustive
presentation of parton shower generators can be found in Ref. [34].

6.2 Matrix-element merging (ME+PS)
In parton showers algorithms QCD radiation is generated in the collinear and soft approximation, using
Markov chain techniques based on Sudakov form factors. Hard and widely separated jets are thus poorly
described in this approach. On the other hand, tree-level fixed order amplitudes can provide reliable
predictions in the hard region, while failing in the collinear and soft limits. To combine both descriptions
and avoid double counting or gaps between samples with different multiplicity, an appropriate merging
method is required.

Matrix-element merging [35] aims at correcting as many large-angle emissions as possible with the
corresponding tree-level accurate prediction, rather than only small-angle accurate. This is achieved by
generating events up to a given (high) multiplicity using a matrix-element generator, with some internal
jet-resolution parameter Qcut on the jet separation, such that practically all emissions above this scale
are described by corresponding tree-level matrix elements. Their contributions are corrected for running-
coupling effects and by Sudakov form factors. Radiation below Qcut on the other hand is generated by
a parton-shower program, which is required to veto radiation with separation larger than Qcut. As far as
the hardest emission is concerned, matrix-element merging is as accurate as matrix-element corrections
(when these are available) or NLO+PS. Since they lack NLO virtual corrections, however, they do not
reach NLO accuracy for inclusive quantities. Nevertheless, they are capable to achieve leading-order
accuracy for multiple hard radiation, beyond the hardest only, while NLO+PS programs, relying on the
parton shower there are only accurate in the collinear and/or soft limit for these quantities.

Several merging schemes have been proposed, which include the CKKW scheme [35–37] and its
improvements [38, 39], the MLM matching [40], and the kT -MLM variation [41]. The MLM schemes
have been implemented in several matrix element codes such as ALPGEN [22], MADGRAPH [23],
through interfaces to PYTHIA/HERWIG, while SHERPA [33] and HERWIG++ [32] have adopted the
CKKW schemes and rely on their own parton showers. In Ref. [42] a detailed, although somewhat
outdated description of each method has been given and a comparative study has been performed.

6.3 NLO+PS in a nutshell
Several proposals have been made for the full inclusion of complete NLO effects in PS generators. At this
moment, only two of them have reached a mature enough stage to be used in practice: MC@NLO [43]
and POWHEG [44]. Both methods correct – in different ways – the real-emission matrix element to
achieve an exact tree-level emission matrix element, even at large angle. As we have seen in the previous
subsection, this is what is also achieved with matrix-element corrections in parton showers, at least for
the simplest processes listed earlier. This, however, is not sufficient for the NLO accuracy, since the
effect of virtual corrections also needs to be included. In both methods, the real-emission cross section
is split into a singular and non-singular part, R = Rs +Rf . One then computes the total NLO inclusive
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cross section, excluding the finite contribution, at fixed underlying Born kinematics, defined as

B̄s = B(ΦB) +

[
V (ΦB) +

∫
dΦR|BR

s(ΦR|B)

]
, (62)

and uses the formula

dσNLO+PS = dΦBB̄
s(ΦB)

[
∆s(pmin

⊥ ) + dΦR|B
Rs(ΦR)

B(ΦB)
∆s(pT(Φ))

]
+ dΦRR

f (ΦR) (63)

for the generation of the events. In this formula, the term B̄ can be understood as a local K-factor
reweighting the soft matrix-element correction part of the simulation. Clearly, employing the fact that
the term in the first square bracket integrates to unity, as before, the cross section integrates to the full
NLO cross section.

In MC@NLO one chooses Rs to be identically equal to the term B ⊗ P that the PS generator
employs to generate emissions. Within MC@NLO, n -body events are obtained using the B̄s function,
and then fed to the PS, which will generate the hardest emission according to Eq. (62). These are called S
events in the MC@NLO language. An appropriate number of events are also generated according to the
Rf cross section, and are directly passed to the PS generator. These are calledH events. In MC@NLO,
Rf = R − Rs is not positive definite, and it is thus necessary to generate negative weighted events in
this framework. A library of MC@NLO Higgs processes (gluon fusion, vector-boson associated pro-
duction, and charged Higgs associated with top) is available at Ref. [45], which is interfaced to HERWIG

and HERWIG++. A fully automatized approach, AMC@NLO [46] implemented in the MADGRAPH

framework, is now available that allows to compute and combine all necessary ingredients (Born, real,
virtual matrix elements plus counterterms) at the user’s request.

In POWHEG, one chooses Rs ≤ R, and in many cases even Rs = R, so that the finite cross
section Rf vanishes. In this case, the hardest emission is generated within POWHEG itself, and the
process is passed to the parton shower only after the hardest radiation is generated. Positive weighted
events are obtained, since Rf can always be chosen to be positive definite. In all cases the chosen Rs

has exactly the same singularity structure as R, so that Rf always yield a finite contribution to the cross
section. Implementations of Higgs production processes with the POWHEG method are available in
HERWIG++ [47], in the POWHEGBOX [48] (interfaced to both HERWIG and PYTHIA) and recently in
SHERPA [49].

6.4 Improved descriptions of Higgs production
Being of primary importance, Higgs kinematic distributions are now quite well predicted and also avail-
able via public codes such as ResBos [50] and HqT [27,51]. Differential pTH distributions accurate to LO
yet featuring the exact bottom- and top-quarks mass loop dependence (and therefore can be used also for
predictions of scalar Higgs in BSM) can be obtained via HIGLU [52] as well as via HPro [53]. However,
in experimental analyses, it is also crucial to get as precise predictions as possible for exclusive observ-
ables that involve extra jets, such as the jet pT spectra and the jet rates, at both parton and hadron level.
To optimize the search strategies and in particular to curb the very large backgrounds, current analyses
both at Tevatron and at the LHC select 0-,1- and 2-jet events and perform independent analyses on each
sample. The final systematic uncertainties are effected by both the theoretical and experimental ones
of such a jet-bin based separation. In the HEFT, fully exclusive parton- and hadron-level calculations
can now be performed by Parton Shower (PS) programs or with NLO QCD codes matched with parton
showers: via the MC@NLO and POWHEG methods. Beyond the HEFT, fully exclusive predictions
ME+PS and NLO+PS techniques has become available only recently [54, 55]. The reason is that one
needs to compromise between the validity of HEFT and the complexity of higher loop calculations.

Fig. 12 shows a comparison of the predictions of the pT of the Higgs at LHC7 as obtained in
HEFT from:
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Fig. 12: Higgs pTH spectrum for a Higgs of mH = 140 GeV as predicted by a series of improved predictions:
NNLL+NNLO resummed (red solid), MC@NLO + Pythia (blue dashes), matrix-element + Pythia merged results
(magenta dashes), POWHEG + Pythia (cyan dashes). All predictions display similar features, i.e. a peak between
10-20 GeV and a similar shape at high-pTH with differences that lie within their respective uncertainties (not shown).

– a full analytical resummation at NNLL;
– MC@NLO (w/ PYTHIA);
– ME+PS merging (MADGRAPH+PYTHIA);
– POWHEG (w/ PYTHIA).

We first stress (again) that this observable which is at NLO at high-pT only in the Hqt predictions.
The ME+PS approach is built to be LO for all observables, while MC@NLO and POWHEG predic-
tions are based on the NLO calculation for the total cross section, the same performed in these notes.
Notwidthstanding we see that given the expected uncertainties which are quite large above all at high-pT

the shapes are in substantial agreement both in the low and high-pT ranges. In Fig. 13 the pT distribu-
tions for the first and second jets are shown comparing the ME+PS prediction based on the HEFT and
one with the full top-mass depedence and PYTHIA. Even in this case the agreeement between the various
approaches is extremely good for a light Higgs. For a very heavy Higgs difference in the pT distributions
of the extra jets become visibile at quite a high pT , a region not very relevant phenomenologically.

7 Conclusions
Progress in the field of QCD predictions for the LHC in the form of MC tools usable by both theorists and
experimentalists has made tremendous progress in the last years. It is fair to say that we are now able (or
close to be able in some specific very challenging cases) to compute automatically or semi-automatically
any interesting cross section for Standard Model and Beyond processes at NLO accuracy and interface
it with parton shower programs for event generation. In the LHC era the lowest acceptable accuracy for
any serious phenomenological and experimental study is via an NLO event generator. LHC precision
physics is now at NNLO in QCD and NLO in EW. Any physicist interested in making discoveries at the
LHC needs to be familiar with the ideas, the physics and the reach of the current QCD simulation tools.

To this aim, we have considered pp → H + X as a case study. We have illustrated how accurate
and useful predictions for cross sections and other observables can be obtained in QCD, starting from
the calculation of Born amplitude (at one loop) and the corresponding hadronic cross section. We have
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Fig. 13: Jet pT distributions for associated jets in gluon fusion production of mH = 140 GeV and mH = 500 GeV
Higgs bosons at 7 TeV LHC.

then considered Higgs production at NLO in the HEFT and discussed the limitations of fixed-order
predictions. Finally, we have briefly discussed how fully exclusive predictions are obtained with modern
tools, that allow to reach the accuracy of NLO predictions together with the full exclusivity of a parton
shower approach.

Appendix
Splitting functions and collinear counterterms
We define the 4-dimensional splitting functions as in (4.94) of the ESW book:

Pqq(z) = CF pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(64)

Pqg(z) = TR pqg(z) = TR
[
z2 + (1− z)2

]
(65)

Pgq(z) = CF pgq(z) = CF

[
1 + (1− z)2

z

]
(66)

Pgg(z) = CA pgg(z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ b0 δ(1− z) , (67)

where b0 = 11/6CA−2nfTF /3. We also define the following quantities as the extension of the splitting
functions in d-dimensions:

P d
ij(z) = Pij(z) + εP εij(z) (68)

where

P εqq(z) = CF p
ε
qq(z) = −CF (1− z) (69)

P εqg(z) = TR p
ε
qg(z) = −TR2z(1− z) (70)

P εgq(z) = CF p
ε
gq(z) = −CF z (71)

P εgg(z) = 0 (72)

factorisation of the collinear divergences is performed through the addition of the following counterterm
for each parton in the initial state:

σCDR
c.t. = σCDR

0

αS
2π

[(
µ2

µ2
F

)ε
cΓ

ε
Pij(z)

]
(73)
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where σSCHEME
0 is the LO cross section and its value depends on the scheme (see the example for Drell-

Yan)]. In CDR, when there is a collinear divergence, the cross section behaves as

σcoll
R ∼ −1

ε
P d
ij(z)σ

CDR
0 + other terms . (74)

Adding the counterterm (73), leaves a finite part

σMS
R ∼ −P εij(z) (σCDR

0 |ε→0) + other terms . (75)
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Quarkonium physics: NRQCD factorization formula for J/ψ→ e+e−
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Abstract
In this lecture, we briefly review the nonrelativistic QCD (NRQCD) factor-
ization approach to describe the quarkonium production and decay. In the
NRQCD factorization formula, the long-distance nature of a heavy quarko-
nium is factorized into the NRQCD long-distance matrix elements (LDMEs)
and a physical measurable is expressed as a linear combination of the LDMEs.
If we apply the perturbation theory to enhance the theoretical accuracies in the
short-distance contributions there is no way to avoid non-analytic Coulomb
divergences in the static limit of the heavy quark and infrared divergences. A
systematic procedure to isolate such long-distance contributions out of the cor-
rection terms in the short-distance coefficients is called matching. As a heuris-
tic example of finding the NRQCD factorization formula for a specific process,
we demonstrate the matching procedure of determining the short-distance co-
efficients involving the leptonic decay of the S-wave spin-triplet state.

Keywords
NRQCD factorization formula; short-distance coefficient; long-distance NRQCD
matrix elements; matching.

1 Introduction
The heavy quarkonium is the bound system of a heavy quark (Q) and a heavy antiquark (Q̄), where
Q = c or b. If Q = c (b), it is called a charmonium (bottomonium). As we do for a hydrogen atom,
we allocate the following quantum numbers for a quarkonium system: In order to describe the radial
excitation we use the principal quantum number n. The orbital angular momentum quantum number L
(= 0, 1, 2, · · · ) is used to identify the relative motion between Q and Q̄. The states with L = 0, 1, 2
are also called the S-, P -, D-wave states, respectively. The spin angular momentum quantum number
S indicates whether the pair is in the spin-singlet (S = 0) or in the spin-triplet (S = 1) state. The
spectroscopic notation 2S+1LJ is used to represent a physical quarkonium state, where J is the total
angular momentum quantum number. A physical quarkonium system is in a color singlet state. However,
we can also think of a QQ̄ pair created or annihilated at short distances in a certain color combination.
The notations 2S+1L

[1]
J and 2S+1L

[8]
J are used for the color-singlet and -octet states, respectively. A

physical quarkonium system of 2S+1L
[1]
J state is a simultaneous eigenstate of both the parity P and

the charge conjugation parity C. If we consider the fact that the spin wave function for a QQ̄ pair is
symmetric (antisymmetric) when S = 0 (S = 1), then we find that the corresponding symmetry factor
in the spin wave function for the exchange of Q and Q̄ is (−1)S+1. The orbital angular momentum wave
function has the parity (−1)L and the intrinsic parities of Q and Q̄ differ. Thus the parity of the QQ̄
bound state is P = (−1)L+1. Because the charge conjugation is equivalent to the interchange of the
positions and spins for the Q and Q̄, C = (−1)S+1 and P = (−1)L+S . In Table 1 we list the quantum
numbers of various quarkonia.

Among various quarkonia, the 3S
[1]
1 charmonium J/ψ of mass about 3.1 GeV was discovered first

in 1974 [1, 2]. This state has a very long life time and, therefore, it has a very narrow width so that it
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Table 1: Quantum numbers of quarkonia with n = 1.

2S+1L
[1]
J charmonium bottomonium S L JPC

1S
[1]
0 ηc ηb 0 0 0−+

3S
[1]
1 J/ψ Υ 1 0 1−−

1P
[1]
1 hc hb 0 1 1+−

3P
[1]
J(=0,1,2) χcJ χbJ 1 1 J++

Fig. 1: The Feynman diagrams involving the decay modes J/ψ → e+e− (left) and J/ψ → light hadrons (right) at
LO in αs, respectively. There are 5 more diagrams for the light-hadronic decay that can be obtained by permutation
of three gluons.

Fig. 2: The Feynman diagrams involving the decay modes ηc or χc0 → γγ (left) and ηc or χc0 → light hadrons
(right) at LO in αs, respectively. There is another diagram that can be obtained by exchanging the two final-state
particles for each diagram.

can be detected as a sharp resonance in the invariant mass distribution of the lepton pair in the decay
mode J/ψ → e+e− or µ+µ−. The annihilation of J/ψ involves the annihilation of a QQ̄ pair because
it cannot decay into two charmed mesons (DD̄) whose invariant mass is greater than the J/ψ mass. At
leading order (LO) in the strong coupling constant αs the light-hadronic decay mode is dominated by the
three-gluon final state of the color-singlet combination whose decay rate is of order α3

s . This suppression
of the hadronic decay mode of the J/ψ makes its width sharper than other quarkonium states such as
ηc or χc0 whose leading decay modes are into two gluons. This elementary interpretation is based on
the conservation of the charge conjugation parity C as well as the parity P of QCD. Because a physical
S-wave spin-triplet QQ̄ bound state has JPC = 1−−, it may only decay into an odd number of gluons
that make a color singlet combination. Thus the color-singlet combination of three gluons appears at
LO in αs so that the dominance of the hadronic decay mode is less severe for the S-wave spin-triplet
state in comparison with the cases of the S-wave spin-singlet and the P -wave spin-triplet states whose
charge conjugation parities are +1. Hence, the leading contributions to the 1S

[1]
0 or 3P

[1]
J hadronic decay

rates are color-singlet combination of two gluons that are of order α2
s . Therefore, the narrow width of

3S
[1]
1 quarkonium in comparison with other states is well understood in QCD and allows clean signals.

In Table 2 we list the total decay rates, branching fractions for the electromagnetic decay modes, and
those for the light-hadronic modes for J/ψ, ηc, and χc0. In Figs. 1 and 2, we list Feynman diagrams for

2
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Table 2: The total decay widths Γtot, the branching fractions BrEM for the electromagnetic decay modes, and the
branching fractions Brhad for the light-hadronic decay modes for J/ψ, ηc, and χc0.

Γtot BrEM Brhad

J/ψ 93 keV 2× 6% 88%
ηc 32 MeV 1.6× 10−4 ∼ 1
χc0 11 MeV 2.2× 10−4 ∼ 1

the electromagnetic and light-hadronic decays of J/ψ and ηc (χc0), respectively, at LO in αs.

An S-wave spin-triplet charmoniumH is usually detected at colliders through the muon-antimuon
or electron-positron pair final states. However, the original hadron H ′ that results in these final states
is not unique. It can be the 3S

[1]
1 charmonium itself or other hadrons that decay into particles including

a 3S
[1]
1 charmonium. The mother hadron H ′ is mostly another charmonium resonance or B mesons. If

H ′ is a higher quarkonium resonance, then the main decay mechanism is through the strong or electro-
magnetic interaction. If H ′ is a b hadron, then its decay is governed by the weak interaction so that the
vertex of `+`− is secondary and it is largely separated from the primary vertex (collision point) at which
b hadrons are created. The CDF Collaboration of the Fermilab Tevatron installed the Silicon Vertex
Detector (SVX) [3] to achieve the asymptotic impact parameter resolutions of order 10 µm. The SVX
enabled one to reconstruct b hadrons effectively so that one can easily separate the signals coming from
b hadron decays and isolate the signals from the directly produced charmonium or higher charmonium
resonances that we call prompt charmonium. Although the SVX is useful to separate the prompt char-
monium signal from the charmonium coming from the decay of b hadrons, it is unable to distinguish
the signals of the directly produced charmonium from those coming from the feeddowns of higher char-
monium resonances. The prompt ψ(2S) is the same as the direct ψ(2S) because it does not have any
feeddowns from higher resonances. In the case of J/ψ, the prompt signal contains the direct J/ψ, J/ψ
coming from the feeddowns χcJ → J/ψ + γ and ψ(2S) → J/ψππ. Here, the χcJ is either the direct
χcJ or that coming from ψ(2S)→ χcJ + γ.

The advent of the SVX sped up the progress of the phenomenological studies of prompt J/ψ and
ψ(2S). This has eliminated the non-prompt samples whose theoretical prediction has large uncertainties.
The enormous surplus of these charmonia measured by the CDF Collaboration at the Fermilab Tevatron
in comparison with the prediction based on the conventional phenomenological model so called the color-
singlet model (CSM) was successfully explained in Ref. [4] by introduction of the color-octet mechanism
[5] of the nonrelativistic QCD (NRQCD) factorization approach [6]. This success of explaining the
production rate was followed by a puzzling contradiction that the measurements of the J/ψ polarization
at the Tevatron and at the LHC are against the theoretical prediction that the prompt J/ψ produced with
large transverse momentum pT should be transversely polarized [7–13]. In 2014, this puzzle has indeed
been resolved by considering the leading-power factorization [14].

In this lecture, we briefly review the NRQCD factorization approach to describe the production and
decay of the heavy quarkonium. In Sec. 2 we briefly review the quarkonium theory by considering the
basic nature of a quarkonium, an old phenomenological model CSM, the origin of the soft singularities
that appear in the perturbative computation of a measurable involving a quarkonium. In the latter part of
this section we review the NRQCD factorization approach that provides a systematic procedure to isolate
such infrared-sensitive factors out of the short-distance coefficients in the factorization formula. In Sec. 3
we provide a demonstration of matching that determines the short-distance coefficients of the NRQCD
factorization formula for a specific process by considering the leptonic decay of the S-wave spin-triplet
state and we summarize in Sec. 4.
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2 Quarkonium theory
In this section, we briefly review theories regarding heavy quarkonium production and decay. We first
summarize the fundamental nature of heavy quarkonia. Next we introduce a phenomenological model
so called the color-singlet model that had been resorted until mid 1990’s. At the end of this section,
we summarize basic ideas of the NRQCD factorization approach which is the most rigorous theoretical
approach at present.

2.1 Basic nature of quarkonia
The heavy quarkonium H is a bound state of a heavy quark Q and an antiquark Q̄ whose interaction
is dominated by the strong interaction. Because the Q and Q̄ are heavy, the speed of Q or Q̄ in the
meson rest frame is assumed to be much smaller than the speed of light. For example, the masses of the
spin-triplet states J/ψ and ψ(2S) are about 3.1 GeV and 3.7 GeV, respectively. In the case of bottomonia
Υ(1S) and Υ(2S), they are about 9.5 GeV and 10 GeV, respectively. The mass difference between the
1S and 2S states are about 500 – 600 MeV for both cc̄ and bb̄ states. This mass difference can be scaled
by∼ mQv

2
Q roughly based on the Virial theorem, where mQ and vQ are the mass and the speed of the Q

in the meson rest frame, respectively. Thus one can guess that v2
c ∼ 0.3 and v2

b ∼ 0.1. There are typical
scales that involve the strong interaction in a quarkonium: The heavy-quark mass∼ mQ is the hard scale
that governs the creation or annihilation of H . The heavy-quark momentum ∼ mQvQ in the meson rest
frame is the scale that determines the typical size ∼ 1/(mQvQ) of the bound state. The life time of the
bound state ∼ 1/(mQv

2
Q) is scaled by the reciprocal of the binding energy ∼ mQv

2
Q. If we can take the

approximation that vQ � 1, then these scales are well separated as mQ � mQvQ � mQv
2
Q [6].

The complete production or decay process of a heavy quarkonium H includes all of these interac-
tions over a wide range of scales simultaneously. The annihilation or creation of a QQ̄ pair involving a
hard scale of order mQ or higher can be treated perturbatively because αs(mQ) is assumed to be small.
The interaction of Q and Q̄ that makes the bound state is governed by the strong interaction of scale
similar to or less than mQvQ or mQv

2
Q are nonperturbative. One can make a guess that the perturbative

factor and the nonperturbative factor are separable. The CSM assumes that the two factors are factorized
as the product of the short-distance factor that is controlled by the hard scale and the long-distance factor
that is responsible for the quarkonium wave function. The NRQCD factorization is a rigorous framework
that factorizes the two factors in a systematic double power expansions in αs(mQ) and vQ.

2.2 Color-singlet model
The CSM assumes that the short-distance factor and the long-distance factor are factorized. In addition,
it allows only the color-singlet QQ̄ pair with the spectroscopic state identical to the physical quarkonium
state in the short-distance contributions [15–27]. According to the CSM, the decay rates for J/ψ →
e+e− and χc0 → light hadrons are factorized as

Γ(J/ψ → e+e−) = Γ̂
[
cc̄(3S

[1]
1 )→ e+e−

]
× |R(0)|2, (1a)

Γ(χc0 → hadrons) = Γ̂
[
cc̄(3P

[1]
0 )→ gg

]
× |R′(0)|2, (1b)

where Γ̂’s are the corresponding short-distance factors that are assumed not to be sensitive to long-
distance interactions. R(0) and R′(0) are radial wave function at the origin and the first-order derivative
of the radial wave function at the origin, respectively. The J/ψ decay rate formula is an immediate
application of the Van Royen-Weisskopf formula for a meson decay into a lepton pair [28]. However,
in the CSM, the infrared (IR) insensitivity of the short-distance coefficient Γ̂ is not guaranteed at higher
orders in αs. For example, as shown in Fig. 3, the short-distance coefficient for the light-hadronic decay
of χc0 contains the three-body decay mode χc0 → gqq̄, where q is a light quark, at the next-to-leading
order (NLO) in αs. In the end point limit of the phase space that the q and q̄ are back to back, the gluon
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Fig. 3: One of the Feynman diagrams involving χc0 → light hadrons at NLO in αs.

becomes soft. The IR divergence due to the attachment of a soft gluon to c and c̄ does not cancel if
one cannot ignore the relative momentum between c and c̄. This remaining IR divergence of the short-
distance coefficient at this order leads to the failure in factorization of the CSM [5]. Such a failure of
factorization in the CSM appears also in the S-wave case from order v4

Q [29, 30] even at LO in αs. The
order-αs correction to the short-distance process for J/ψ → e+e− also brings in the IR sensitivity to all
orders in vQ as shown in Ref. [31].

2.3 Infrared divergence
The cancellation of the IR divergence when we attach a soft gluon to the QQ̄ pair is exact as long as
the two momenta for the Q and Q̄ are identical to each other. However, such cancellation does not hold
once the two momenta are different. We demonstrate this phenomenon in a schematic way. Consider the
amplitude for the production of a QQ̄ pair

iM0 = ū(p1)Av(p2), (2)

where A is the amputated amplitude that excludes the external lines for the QQ̄ pair, p1 and p2 are
the momenta for the on-shell Q and Q̄, respectively, with p2

1 = p2
2 = m2. They can be expressed as

linear combinations of the momentum P = p1 + p2 for the QQ̄ pair and half their relative momentum
q = (p1 − p2)/2 as

p1 =
1

2
P + q, (3a)

p2 =
1

2
P − q. (3b)

Analogously one can apply a similar method to the annihilation decay process.

If we attach a gluon with momentum k to the external line of the heavy quarkQ, then the amplitude
becomes

iM1 = gsµ
εū(p1)[−i/ε∗] i(/p1 + /k +m)

(p1 + k)2 −m2
T aAv(p2)

= gsµ
εū(p1)

/ε∗(/p1 + /k +m)

(p1 + k)2 −m2
T aAv(p2)

= gsµ
εū(p1)

2ε∗ · (p1 + k)− (/p1 + /k −m)/ε∗

2p1 · k
T aAv(p2), (4)

where ε∗ and a are the polarization vector and color index of the gluon, T a is the generator of the
fundamental representation of color SU(Nc) with Nc = 3, gs =

√
4παs, µ is the renormalization scale,

and we use dimensional regularization in d = 4 − 2ε space-time dimensions. By making use of the
equation of motion for the external quark,

ū(p1)(/p1 −m) = 0, (5)
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and the transverse condition for the external gluon

ε∗ · k = 0, (6)

we find that

iM1 = gsµ
εū(p1)

2ε∗ · p1 − /k/ε∗
2p1 · k

T aAv(p2). (7)

Taking the leading contribution as k → 0 to collect the IR sensitive part, we find that

iMIR
1 = gsµ

ε p1 · ε∗
p1 · k

ū(p1)T aΓv(p2). (8)

If we attach a gluon with momentum k to the external line of the heavy antiquark Q̄, then

iM2 = ū(p1)AT a i(−/p2 − /k +m)

(−p2 − k)2 −m2
[−i/ε∗]v(p2)

= gsµ
εū(p1)AT a /ε

∗(−/p2 − /k +m)

(p2 + k)2 −m2
v(p2)

= gsµ
εū(p1)AT a−2ε∗ · (p2 + k) + (/p2 + /k +m)/ε∗

2p2 · k
v(p2). (9)

By making use of the equation of motion for the external antiquark,

(/p2 +m)v(p2) = 0, (10)

and the transverse condition
ε∗ · k = 0, (11)

we find that

iM2 = gsµ
εū(p1)AT a−2ε∗ · (p2 + k) + /k/ε∗

2p2 · k
v(p2). (12)

Taking the leading contribution as k → 0 to collect the IR sensitive part, we find that

iM2 = −gsµε
p2 · ε∗
p2 · k

ū(p1)AT av(p2). (13)

In summary, the approximation for the final-state quark and antiquark amplitude emitting a soft
gluon with momentum k and the polarization vector ε∗ can be expressed as

i(M1 +M2) = iM0|A→A′ , (14)

where

A′ = gsµ
ε

[
T a
p1 · ε∗
p1 · k

A−AT a p2 · ε∗
p2 · k

]
. (15)

We consider the simplest case like the amputated amplitude for γ∗ → QQ̄ that is free of color structure.
In such a case, the soft-gluon attachment leads to the replacement A → A′ = CsoftA, where

Csoft = gsµ
εT a

[
p1 · ε∗
p1 · k

− p2 · ε∗
p2 · k

]

= gsµ
εT a

[
(1

2P + q) · ε∗
(1

2P + q) · k −
(1

2P − q) · ε∗
(1

2P − q) · k

]
. (16)

It is manifest that the factor Csoft vanishes in the limit q → 0. Thus the soft-gluon attachment is free
of IR divergence as long as we consider the S-wave case with vanishing relative momentum q = 0. In
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case of the P -wave contribution, the cancellation does not hold and the attachment of a soft gluon leads
to the IR divergence. Even in the S-wave case, the relativistic correction of order v2

Q at the amplitude
level brings in the IR divergence. Therefore, in the cross section or the decay rate, the S-wave process
acquires the IR divergence from relative order v4

Q or higher. Note that the soft gluon does not change
the spin state of the QQ̄ pair while it carries the orbital angular momentum resulting in the transition
with ∆L = ±1. Because the gluon carries color, the color state of the QQ̄ state changes. This is a
chromoelectric dipole transition. As a result, the perturbative corrections to the short-distance coefficient
for the amplitude of the color-singlet QQ̄ pair acquires the sensitivity to the long-distance contribution.
Without introducing a systematic separation of this long-distance contribution of QCD corrections, the
factorization is not achieved in the CSM.

2.4 NRQCD factorization approach
We have observed that the perturbative QCD correction to the short-distance coefficient involving the an-
nihilation decay or production of a color-singletQQ̄ pair with the spectroscopic state 2S+1L

[1]
J introduces

IR sensitive contributions if one does not neglect vQ. The divergent contribution involves the QQ̄ pair
with the spectroscopic state 2S+1L

′[8]
J ′ , where L′ −L = ±1 and S is invariant. Actually this contribution

can be understood as the QCD correction to the state 2S+1L
′[8]
J ′ through the long-distance QCD interac-

tions. Based on this, the Fock-state expansion can be made to express a physical quarkonium state such
as χc0 as |χc0〉 = |cc̄(3P

[1]
0 )〉+ |cc̄(3S

[8]
1 ) + gsoft〉+ · · · , while the CSM only allows |χc0〉 = |cc̄(3P

[1]
0 )〉.

The higher-order Fock state components are scaled with powers of vQ that involves the strength of the
corresponding long-distance interactions. The NRQCD factorization approach is a systematic theoretical
formalism to treat these long-distance transition of a QQ̄ state to another as a power series of vQ that are
assumed to be small like v2

c ∼ 0.3 and v2
b ∼ 0.1. By making use of this formalism, the separation of the

long-distance contribution out of the perturbative corrections to the short-distance coefficient is carried
out. If such a separation is proved to be valid to all orders in αs, then we call it the factorization theorem.
A rigorous proof of the factorization theorem has been made for the electromagnetic annihilation decay
and the annihilation decay into light hadrons [6] as a generalization of the work on the P -wave quarko-
nium decay [5]. The rigorousness of the proof is similar to that for the Drell-Yan process [32]. Since
the introduction of the factorization conjecture for the inclusive quarkonium production in Ref. [6], a
bunch of phenomenological studies and the corresponding experimental verifications have been carried
out. We refer the readers to a recent review paper [33] for more details. The rigorous construction of
the factorization theorem for the inclusive quarkonium production is still under way. Such efforts can be
found, for example, in Refs. [34–37].

2.4.1 NRQCD Lagrangian
In order to describe the long-distance QCD interactions of the QQ̄ pair, it is convenient to reformulate
the full QCD in terms of an effective theory called the NRQCD. The NRQCD Lagrangian is therefore
equivalent to the full QCD except that in NRQCD the annihilation and/or decay of the QQ̄ pair is forbid-
den because they are of the scale above the ultraviolet (UV) cutoff ∼ mQ of this effective theory. Thus
the full QCD Lagrangian can be expressed as the sum of the Lagrangian Llight for the light degrees of
freedom and that (Lheavy) for the heavy quark as

LQCD = Llight + Lheavy + δL. (17)

Llight is identical to that for the full QCD as

Llight = −1

2
trGµνGµν +

∑

q

Ψ̄q(i/D −mq)Ψq, (18)
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whereGµν = Gµνa T a andGµνa is the field strength tensor of the gluon with color index a, Ψq is the Dirac
spinor field for the light quark q, mq is the mass of the light quark q, Dµ = (Dt,−D) = ∂µ + igsA

µ is
the gauge-covariant derivative, and Aµ = (φ,A) = AµaT a is the SU(3) color matrix valued gauge field.
Lheavy is the contribution to the heavy quark and antiquark at LO in vQ:

Lheavy = ψ†
(
iDt +

D2

2mQ

)
ψ + χ†

(
iDt −

D2

2mQ

)
χ, (19)

where ψ (χ) is the Pauli spinor field that annihilates (creates) a heavy quark (antiquark). The leading
contribution Lheavy and the relativistic corrections δLbilinear can be obtained by block-diagonalizing the
full QCD Lagrangian for the heavy quark by making use of the Foldy-Wouthuysen-Tani transformation
[38] except that we have subtracted the mass terms. Explicit expressions for the bilinear contributions
can be found in Eq. (25) of Ref. [5]. The remaining contribution δL is expressed as

δL = δLbilinear + δLfour-fermion. (20)

Here, δLbilinear is bilinear in either the quark field or the antiquark field that can be read off from the
block-diagonalized expression of the full-QCD Lagrangian for the heavy quark. A convenient set of
Feynman rules for the NRQCD perturbation theory involving the bilinear contribution can be found in
Table I of Ref. [39]. The annihilation decay of a QQ̄ pair cannot be reproduced in terms of Lheavy and
δLbilinear. Such contribution can only be reproduced by the four-fermion terms,

δLfour-fermion =
∑

n

fn(Λ)

mdn−4
Q

On(Λ), (21)

where fn(Λ) is the short-distance coefficient that is insensitive to the long-distance interactions, On(Λ)
is a higher dimensional operator, and dn is the dimension of the operator On(Λ). Because the scale
involving the creation or annihilation of a QQ̄ pair is above the UV cutoff Λ, such a relativistic effects
can only be reproduced by adding four-fermion operators like ψ†χχ†ψ. In the following section, we list
definitions of four-quark operators and summarize a way to determine the short-distance coefficient by
matching NRQCD Lagrangian on to the full QCD counterpart.

2.4.2 NRQCD operators
We list frequently used four-fermion NRQCD operatorsOn(Λ) that appear in δLfour-fermion. The dimension-
6 operators of On(Λ) that involve light-hadronic decays are given by

O(1S
[1]
0 ) = ψ†χχ†ψ, (22a)

O(3S
[1]
1 ) = ψ†σχ · χ†σψ, (22b)

O(1S
[8]
0 ) = ψ†T aχχ†T aψ, (22c)

O(3S
[8]
1 ) = ψ†σT aχ · χ†σT aψ. (22d)

The color-singlet dimension-8 operators that involve light-hadronic decays are given by

O(1P
[1]
1 ) = ψ†

(
− i

2

←→
D

)
χ · χ†

(
− i

2

←→
D

)
ψ, (23a)

O(3P
[1]
0 ) = ψ†

(
− i

2

←→
D · σ

)
χχ†

(
− i

2

←→
D · σ

)
ψ, (23b)

O(3P
[1]
1 ) = ψ†

(
− i

2

←→
D × σ

)
χ · χ†

(
− i

2

←→
D × σ

)
ψ, (23c)

O(3P
[1]
2 ) = ψ†

(
− i

2

←→
D (iσj)

)
χχ†

(
− i

2

←→
D (iσj)

)
ψ, (23d)
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O2(1S
[1]
0 ) =

1

2

[
ψ†χ · χ†

(
− i

2

←→
D

)2

ψ + h.c.

]
, (23e)

O2(3S
[1]
1 ) =

1

2

[
ψ†σχ · χ†σ

(
− i

2

←→
D

)2

ψ + h.c.

]
, (23f)

O2(3S
[1]
1 ,3D

[1]
1 ) =

1

2

[
ψ†χχ†

(
− i

2

)2←→
D (i←→D j)ψ + h.c.

]
, (23g)

whereO2(2S+1L
[1]
J ) represents the relativistic corrections of relative order v2

Q to the LO operatorO(2S+1L
[1]
J )

and A(iBj) = 1
2

(
AiBj +AjBi

)
− 1

3δ
ijAkBk is the traceless symmetric component of the Cartesian

tensor AiBj . The corresponding color-octet operators can be obtained in a similar manner as those for
the dimension-6 case that are listed in Eq. (22).

The four-quark operators involving the electromagnetic annihilation decay of a QQ̄ pair is very
similar to those for the light-hadronic decay except that the virtual state is the QCD vacuum. This re-
placement can be achieved by inserting the projection operator |0〉〈0| that projects out the QCD vacuum.
In addition, the color-octet operators are omitted because they have vanishing contribution to the vacuum-
to-quarkonium matrix element. For example, the dimension-6 operators for electromagnetic annihilation
decay of a QQ̄ pair are given by

OEM(1S
[1]
0 ) = ψ†χ|0〉〈0|χ†ψ, (24a)

OEM(3S
[1]
1 ) = ψ†σχ|0〉 · 〈0|χ†σψ. (24b)

2.4.3 NRQCD factorization formula
By making use of the effective Lagrangian δLfour-fermion and the optical theorem, one can evaluate the
inclusive decay rate of H as [6]

Γ(H → X) = 2Im〈H|δLfour-fermion|H〉

=
∑

n

2Imfn(Λ)

Mdn−4
〈H|On(Λ)|H〉, (25)

where |H〉 is an eigenstate of the NRQCD Hamiltonian with the standard nonrelativistic normalization
〈H(P ′)|H(P )〉 = (2π)3δ(3)(P ′−P ). In Appendix A of Ref. [6], one can find a systematic way to read
off the short-distance coefficients fn(Λ) and fEM

n (Λ) by evaluating the QQ̄→ QQ̄ scattering amplitude
in full QCD, taking the imaginary part, and comparing this expression with the linear combination of
the corresponding perturbative NRQCD matrix elements 〈QQ̄|On(Λ)|QQ̄〉 and 〈QQ̄|OEM

n (Λ)|QQ̄〉,
respectively. Because the NRQCD matrix elements for H and QQ̄ have a common structure in the
short-distance limit, the corresponding short-distance coefficients must be equal. This step is called the
perturbative matching. The NRQCD long-distance matrix element (LDME) 〈H|On(Λ)|H〉 cannot be
computed perturbatively. Instead, some of them can be computed on the lattice [40–42] or they must be
determined phenomenologically against experimental data involving the LDME. The numerical accuracy
of the NRQCD factorization formula can be improved by extending the perturbative corrections to the
short-distance coefficients and by considering as many NRQCD LDMEs that are suppressed in powers
of vQ as possible. In practice, it is impossible to extend the series in vQ to all orders because it brings
in too many LDMEs in comparison with the number of independent measurables. There is no way but
to terminate the series at a certain order as long as the terminated factorization formula has uncertainties
within desirable accuracies. The velocity scaling rules of NRQCD [6,43], that are derived in the Coulomb
gauge on which the NRQCD LDMEs are formulated, can be used to determine the relative importance
of the NRQCD LDMEs.
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2.4.4 Matching
The short-distance coefficients fn(Λ) in Eq. (25) are insensitive to the long-distance nature of the quarko-
nium state and can be computed perturbatively. In order to determine the coefficients for the light-
hadronic decays, we can consider the full-QCD amplitude A(QQ̄ → QQ̄) for the scattering process
QQ̄ → QQ̄ whose intermediate state consists of only light degrees of freedom. This full-QCD expres-
sion can be expanded as a linear combination of perturbative NRQCD matrix elements 〈QQ̄|On(Λ)|QQ̄〉
as

A(QQ̄→ QQ̄) =
∑

n

fn(Λ)

Mdn−4
〈QQ̄|On(Λ)|QQ̄〉, (26)

which is given in Ref. [6]. Thus the determination of fn(Λ) is straightforward by reading off the co-
efficient of 〈QQ̄|On(Λ)|QQ̄〉 in this expansion. This process is called the matching. Substituting the
coefficients fn(Λ) into the NRQCD factorization formula in Eq. (25), one can predict the light-hadronic
decay rate as long as the nonperturbative NRQCD LDMEs 〈H|On(Λ)|H〉 are known.

The determination of the short-distance coefficients for the NRQCD factorization formula for the
electromagnetic decay is quite similar to that for the light-hadronic decay. However, in the electromag-
netic decay, the intermediate state for the scattering amplitude QQ̄→ QQ̄ must not include any colored
particles.

3 Application to J/ψ → e+e−

While the coefficients at LO in αs are intrinsically free of IR divergence, higher-order corrections acquire
soft singularities. The NRQCD factorization approach provides a systematic procedure to isolate such
a long-distance contribution. This long-distance contribution will be identified as the αs corrections to
the NRQCD LDMEs and eventually we can obtain the short-distance coefficients that are insensitive
to the long-distance interactions. We provide only a schematic description and further details can be
found in Refs. [31, 44–46]. In this section, we demonstrate how to carry out the matching procedure
to determine the short-distance coefficients of the NRQCD factorization formula by considering the
relativistic corrections to J/ψ → e+e− at NLO in αs. The relativistic corrections are to be computed to
all orders in vc keeping the 3S

[1]
1 contribution only.

The NRQCD factorization formula for J/ψ → e+e− at LO in vc and at order αs is given in
Ref. [6] that can be read off from the result in Ref. [47]:

Γ[J/ψ → e+e−] =
8πe2

cα
2

3M2
J/Ψ

(
1− 4CF

αs
π

)
〈J/ψ|OEM(3S

[1]
1 )|J/ψ〉, (27)

where ec is the fractional electric charge of the charm quark, α is the electromagnetic fine structure
constant, CF = (N2

c − 1)/(2Nc) = 4/3, and the J/ψ mass can be set MJ/ψ = 2mc at order v0
c .

The order-α2
s and -α3

s corrections are also available in Ref. [48] and [49], respectively. The perturbative
matching introduced in the previous section involves the analysis of the scattering amplitudeQQ̄→ QQ̄.
In case of the electromagnetic decay that omits QCD states in the final state, it is convenient to carry out
perturbative matching at the amplitude level.

In quite a few processes involving charmonium production and decay, the corresponding predic-
tions at LO in αs and at LO in vc have poor accuracies in comparison with the empirical data. It is partly
due to the fact that both αs and vc for a charmonium process are not sufficiently small. For example,
the prediction of the cross section for the exclusive process e+e− → J/ψ + ηc at B factories is smaller
than the empirical values [50] by about an order of magnitude at LO in both αs and vc [51, 52]. A rea-
sonable agreement between theory and experiment for this process was reached only after including the
order-αs corrections and the relativistic corrections resummed to all orders in vc [53–55]. As is stated
in Refs. [45], the NRQCD LDMEs involving relativistic corrections has intrinsic power UV divergence
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that must be subtracted in dimensional regularization, that is the most commonly used in phenomenol-
ogy. This leads to large numerical uncertainties in determining the LDMEs even in the signs when we
compute the LDMEs on the lattice which employs a hard cutoff regulator [45, 56]. The generalized
Gremm-Kapustin relation [45, 57] can be used to resum relativistic corrections to a color-singlet contri-
bution resulting in a significant improvement of the numerical accuracies in the theoretical predictions.
We regularize the UV and IR singularities using dimensional regularization in d = 4 − 2ε space-time
dimensions.

3.1 1-loop matching
The amplitude for J/ψ → e+e− can be factorized into the leptonic current, which is free of colored
particles, and the hadronic part AµH [31],

−ieec iAµH = 〈0|J µEM|H〉, (28)

where −e is the electric charge, H is the spin-triplet S-wave charmonium (J/ψ), and J µEM is the heavy-
quark electromagnetic current

J µEM = (−ieec)ψ̄γµψ. (29)

The conservation of the electromagnetic current restricts that iA0
H = 0 in the quarkonium rest frame. In

that frame, the spatial component must be a linear combination of the NRQCD matrix elements as

iAiH =
√

2mH

∑

n

cn〈0|Oin|H〉, (30)

where cn are short-distance coefficients, Oin are the NRQCD operators, and mH is the quarkonium
mass. The overall factor

√
2mH is introduced because the quarkonium state |H〉 on the right side is

normalized nonrelativistically while the full expression is normalized relativistically. We can think of
the corresponding amplitude for the free QQ̄ pair, where Q = c. The short-distance nature of the
process for the QQ̄ pair must be identical to that of the H . Therefore, QQ̄ must be in a state QQ̄(3S

[1]
1 ).

Thus the two processes have a common set of short-distance coefficients cn. Then the coefficients cn can
be determined from the following matching formula:

iAiQQ̄ =
∑

n

cn〈0|Oin|QQ̄〉, (31)

where Ai
QQ̄

is the amplitude for the on-shell QQ̄ pair that has the same short-distance process as AiH
and |QQ̄〉 is the on-shell QQ̄ pair state. At LO in αs, the short-distance coefficients are free of UV and
IR divergences. If we consider the perturbation of the amplitude corrected to order αs, then the matching
formula is modified as

iAi(0)

QQ̄
=

∑

n

c(0)
n 〈0|Oin|QQ̄〉(0), (32)

iAi(0)

QQ̄
+ iAi(1)

QQ̄
=

∑

n

(c(0)
n + c(1)

n )〈0|Oin|QQ̄〉(0) +
∑

n

c(0)
n 〈0|Oin|QQ̄〉(1), (33)

where the superscript (i) stands for the order in αs. As the first step, we can read off the coefficients
c

(0)
n from the expression for iAi(0)

QQ̄
. Note that the NRQCD LDME 〈0|Oin|QQ̄〉(i) can be computed

perturbatively although the LDME 〈0|Oin|H〉 for a quarkonium state is nonperturbative. As the next
step, we subtract Eq. (32) from Eq. (33).

iAi(1)

QQ̄
=

∑

n

c(1)
n 〈0|Oin|QQ̄〉(0) +

∑

n

c(0)
n 〈0|Oin|QQ̄〉(1). (34)
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The first term is the order-αs correction to the short-distance coefficient multiplied by the NRQCD ME
at LO. The second term is the LO short-distance coefficient multiplied by the NRQCD ME at NLO.
The IR divergent contribution of the short-distance coefficient, for example in the CSM, at NLO in αs
is to be identified as the second term in this expression. In this manner, the separation of long-distance
contribution from the short-distance factor is being carried out order by order systematically.

In order to find the relativistic corrections, it is convenient to define the following perturbative
NRQCD LDMEs for the QQ̄ pair:

〈0|Oi1n|QQ̄〉(0) = 〈0|χ†
(
− i

2

←→∇
)2n

σiψ|QQ̄〉(0)

= q2nη†σiξ, (35a)

〈0|Oi2n|QQ̄〉(0) = 〈0|χ†
(
− i

2

←→∇
)2n−2(

− i
2

←→∇ i

)(
− i

2

←→∇ · σ
)
ψ|QQ̄〉(0)

= q2n−2qiη†q · σξ, (35b)

where ξ and η are Pauli spinors for the Q and Q̄, respectively, q = (p1 − p2)/2, p1 and p2 are the
momenta for Q and Q̄, respectively, and q is the spatial component of q in the QQ̄ rest frame.

Then the one-loop matching formula reduces into

iAi(1)

QQ̄
=

∑

n

c
(1)
1n 〈0|Oi1n|QQ̄〉(0) +

∑

n

c
(1)
2n 〈0|Oi2n|QQ̄〉(0) + iANRQCD,i

QQ̄
, (36)

where iANRQCD,i
QQ̄

represents the contribution that is a product of the short-distance coefficient at LO in
αs and the perturbative NRQCD MEs at NLO in αs. For further information on the matching procedure,
refer to Ref. [31].

3.2 computation ofAµ
QQ̄

To any order in αs, the QQ̄ amplitude corresponding to the hadronic current AµH is of the form [31]

iAµ
QQ̄

= v̄(p2) [ZQ(1 + Λ)γµ +Bqµ]u(p1), (37)

where ZQ is the heavy-quark wave function renormalization factor, Λ is the multiplicative factor for
the vertex correction, and B is the multiplicative correction factor coming from the magnetic moment
contribution that appears from order αs corrections to the vertex. At LO in αs, ZQ = 1 and Λ = 0
and B = 0. The B term contributes to the S-wave spin-triplet contribution only from the corrections of
order αs with relativistic corrections. One can find the values for ZQ and Λ at order αs keeping only the
leading contributions in powers in vc, for example, in Refs. [31] and [58] and as

ZQ = 1 +
αsCF

4π

(
− 1

εUV
− 2

εIR
− 3 log

4πµ2e−γE

m2
c

− 4

)
, (38a)

Λ =
αsCF

4π

{
1

εUV
+

2

εIR
+ 3 log

4πµ2e−γE

m2
c

− 4 +
1

vc

(
π2 − iπ

εIR
− iπ log

πµ2e−γE

q2

)}
, (38b)

where µ is the dimensional regularization scale, γE is the Euler-Marscheroni constant, and the subscript
of 1/ε indicates the origin of divergence.

If we keep the leading contributions in vc only at this order, then the contribution proportianal to
qµ in the current in Eq. (37) does not appear because the corresponding NRQCD ME is to be neglected.
Then, it is sufficient to know

ZQ(1 + Λ) = 1 +
αsCF

4π

{
−8 +

1

vc

[
π2 − iπ

εIR
− iπ log

πµ2e−γE

q2

]}
+O(α2

s). (39)
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The result shows that the IR divergence survives while the UV divergence cancels. In addition, there is a
non-analytic contribution as vc → 0 which is originated from the Coulomb interaction.

According to Ref. [31], the correction factors contributing to the S-wave spin-triplet state re-
summed to all orders in vc are given by

ZQ(1 + Λ) = 1 +
αsCF

4π

{
2[(1 + δ2)L(δ)− 1]

(
1

εIR
+ log

4πµ2e−γE

m2
c

)
+ 6δ2L(δ)

−4(1 + δ2)K(δ)− 4 + (1 + δ2)

[
π2

δ
− iπ

δ

(
1

εIR
+ log

πµ2e−γE

q2
+

3δ2

1 + δ2

)]}
,

(40)

B =
αsCF

4π

1− δ2

mc

[
2L(δ)− iπ

δ

]
, (41)

where

δ =
vc√

1 + v2
c

, (42a)

L(δ) =
1

2δ
log

1 + δ

1− δ , (42b)

K(δ) =
1

4δ

[
Li2

(
2δ

1 + δ

)
− Li2

(
− 2δ

1 + δ

)]
, (42c)

and Li2 is the Spence function:

Li2(x) =

∫ 0

x
dt

log(1− t)
t

. (42d)

We use the nonrelativistic normalization for the spinors to find that

v̄(p2)γiu(p1) = η†σiξ − qiη†q · σξ
E(E +mc)

, (43a)

v̄(p2)qiu(p1) = −q
iη†q · σξ
E

, (43b)

where E =
√
m2
c + q2 that is the energy of the quark or antiquark in the QQ̄ rest frame. Substituting

Eq. (43) into Eq. (37) and expanding in powers of vc, we obtain

iAiQQ̄ = η†σiξ
[
1 +

αsCF
4π

{
8v2
c

3

(
1

εIR
+ log

4πµ2e−γE

m2
c

)
− 8 +

2v2
c

9

+

(
1 +

3v2
c

2

)[
π2

vc
− iπ

vc

(
1

εIR
+ log

πµ2e−γE

q2

)]
− 3iπvc

]

−q
iη†q · σξ

2m2
c

{
1 +

αsCF
4π

[
−4 +

π2

vc
− iπ

vc

(
1

εIR
+ log

πµ2e−γE

q2
+ 2

)]}
+O(v3

c ). (44)

In comparison with the case in Eq. (39), there are a lot of terms that carries IR divergences and non-
analytic Coulomb contributions. Note that the term proportional to qiη†q · σξ contributes to both the
S-wave spin-triplet state and D-wave state.

3.3 computation ofANRQCD,µ
QQ̄

Next we compute the amplitude iANRQCD,µ
QQ̄

by making use of the NRQCD perturbation theory rather
than the full QCD. Again, the amplitude must be of the form

iANRQCD,µ
QQ̄

= v̄(p2)
[
ZNRQCD
Q (1 + ΛNRQCD)γµ +BNRQCDqµ

]
u(p1). (45)
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If we follow the standard approach that is described in Ref. [5], it is practically impossible to carry out
the NRQCD perturbation because there are infinite number of Feynman rules that involve the relativistic
corrections to all orders in vc. Fortunately, the authors of Ref. [31] have devised a very convenient way to
achieve this goal without applying the infinite number of Feynman rules. Instead, they have introduced
an equivalent way in which they evaluate the loop integral to remove the UV power divergent scaleless
integrals. Here, we quote the results of Ref. [31]:

ZNRQCD
Q (1 + ΛNRQCD) = 1 +

αsCF
4π

{
2[(1 + δ2)L(δ)− 1]

(
1

εIR
− 1

εUV

)

+(1 + δ2)

[
π2

δ
− iπ

δ

(
1

εIR
+ log

πµ2e−γE

q2
+

3δ2

1 + δ2

)]}
, (46a)

BNRQCD =
αsCF

4π

1− δ2

mc

[
− iπ
δ

]
. (46b)

If we apply Eqs. (43) and (46) into Eq. (45) and expand in powers of vc, then we find that

iANRQCD,i
QQ̄

= η†σiξ
{

1 +
αsCF

4π

{
8v2
c

3

(
1

εIR
− 1

εUV

)
+

(
1 +

3v2
c

2

)[
π2

vc
− iπ

vc

(
1

εIR
+ log

πµ2e−γE

q2

)]
− 3iπvc

}

−q
iη†q · σξ

2m2
c

{
1 +

αsCF
4π

[
π2

vc
− iπ

vc

(
1

εIR
+ log

πµ2e−γE

q2
+ 2

)]}
+O(v3

c ). (47)

3.4 determination of short-distance coefficients
Now we are ready to apply the matching condition in Eq. (36) to determine the short-distance coefficients.
In this step, the IR divergent contribution and the non-analytic Coulomb divergent terms in Eqs. (44) and
(47) cancel. The remaining UV divergence is to be removed by renormalizing the NRQCD operator in
the modified minimal subtraction (MS) scheme as

χ†σiψ =
[
χ†σiψ

]
MS
− (4πe−γE)ε

εUV

2αsCF
3πm2

c

χ†
(
− i

2

←→∇
)2

σiψ, (48)

where the subscript MS indicates that the corresponding operator is renormalized in the MS scheme. The
resultant short-distance coefficients are free of long-distance sensitivities:

c
(1)
10 =

αsCF
4π

(−8), (49a)

c
(1)
11 =

αsCF
4π

1

m2
c

(
2

9
+

8

3
log

µ2
NRQCD

m2
c

)
, (49b)

c
(1)
21 =

αsCF
4π

2

m2
c

, (49c)

(49d)

where µNRQCD is the NRQCD factorization scale. At LO in αs through order v2
c , the short-distance

coefficients are given by [29, 31, 59]

c
(0)
1n = δn0, (50a)

c
(0)
21 = − 1

2m2
c

. (50b)
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In order to apply this factorization formula for an S-wave spin-triplet state like J/ψ, we need to
project out the S-wave contribution out of iAi

QQ̄
. Thus we decompose the operator Oi2n into

Oi2n =
Oi1n
d− 1

+OiDn, (51)

where the D-wave operator OiDn is defined by

OiDn = χ†
(
− i

2

←→∇
)2n−2

[(
− i

2

←→∇ i

)(
− i

2

←→∇ · σ
)
− 1

d− 1

(
− i

2

←→∇
)2

σi

]
ψ. (52)

The S-wave component in iAi
QQ̄

through order αsv2 is

iAiQQ̄
∣∣∣∣
S−wave

= (c
(0)
10 + c

(1)
10 )〈0|Oi10|QQ̄〉+

(
c

(1)
11 +

c
(0)
21 + c

(1)
21

d− 1

)
〈0|Oi11|QQ̄〉

=

(
1− 8αsCF

4π

)
〈0|χ†σiψ|QQ̄〉+

[
αsCF

4π

(
2

9
+

8

3
log

µ2
NRQCD

m2
c

)

+
1

d− 1

(
−1

2
+

2αsCF
4π

)]〈0|χ†
(
− i

2

←→∇
)2
σiψ|QQ̄〉

m2
c

=

(
1− 8αsCF

4π

)
〈0|χ†σiψ|QQ̄〉

+

[
−1

6
+
αsCF

4π

(
8

9
+

8

3
log

µ2
NRQCD

m2
c

)] 〈0|χ†
(
− i

2

←→∇
)2
σiψ|QQ̄〉

m2
c

. (53)

Our final results for the NRQCD factorization formula for the hadronic current that contributes to the
leptonic decay of the S-wave spin-triplet state is

iAiH
∣∣∣∣
S−wave

=
√

2mH

(
1− 8αsCF

4π

)
〈0|χ†σiψ|H〉

+
√

2mH

[
−1

6
+
αsCF

4π

(
8

9
+

8

3
log

µ2
NRQCD

m2
c

)] 〈0|χ†
(
− i

2

←→∇
)2
σiψ|H〉

m2
c

. (54)

4 Summary
In this lecture, we have briefly reviewed the NRQCD factorization approach to describe the quarkonium
production and decay. In the NRQCD factorization formula, the long-distance nature of heavy quarko-
nium is factorized into the NRQCD long-distance matrix elements (LDMEs) and a physical measurable
is expressed as a linear combination of LDMEs. We have reviewed that the infrared sensitivity emerges
if we apply the perturbation theory to enhance the theoretical accuracies in the short-distance contribu-
tions. This infrared divergence always appears as long as one does not neglect vQ and there exists the
non-analytic Coulomb singularities as vQ → 0. The color-singlet model breaks down because this theory
is not equipped with a systematic procedure to cure this problem. In the NRQCD factorization approach,
the corresponding short-distance factors are free of infrared sensitivities. In order to improve the numer-
ical accuracies of such a measurable, one can compute corrections in powers of αs and vQ. One can
truncate the series in vQ by considering the velocity scaling rules that estimate the relative numerical
importance of a long-distance process in powers of vQ.
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A systematic procedure to isolate such a long-distance interactions out of the correction terms in
the short-distance coefficients is called matching. The matching procedure makes use of the fact that the
short-distance coefficients for the NRQCD factorization formula for a quarkonium must be identical to
those for the on-shell QQ̄ counterparts. While one cannot compute the NRQCD LDMEs for a quarko-
nium, one can compute the NRQCD LDMEs for an on-shell QQ̄ pair under the NRQCD perturbation
theory. By comparing the QQ̄ amplitude computed in the full QCD with that computed in the NRQCD
perturbation theory, one can isolate the infrared sensitive contributions and absorb them into the NRQCD
LDMEs. The resultant short-distance factors are free of infrared divergences. A standard renormalization
procedure can be applied to absorb the remaining UV divergences. As a heuristic example of finding the
NRQCD factorization formula for a specific process, we have demonstrated the matching procedure of
determining the short-distance coefficients involving the leptonic decay of the S-wave spin-triplet state.

In the latter part of the lecture, we have reviewed the NRQCD factorization approach for J/ψ
hadroproduction and polarization. Due to the page limit of the proceedings contribution, we were not
able to describe these subjects in the text. We refer the readers to Ref. [60] for details.
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Abstract
We motivate various reasons for going beyond Standard Model. A detailed
introduction of Supersymmetry is presented and the Supersymmetric Standard
Model is introduced. The present status of supersymmetry is reviewed. A
brief introduction to extra dimensions is presented. These are notes for lectures
presented at AEPSHEP 2016, Beijing, China.
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1 Prerequisites
In the course of these lectures, I will summarise the various reasons we need to extend the Standard
Model of Particle Physics. This includes theoretical issues like hierarchy problem and phenomenological
issues like dark matter, neutrino masses etc. Of all the models which have been proposed to be extensions
of the Standard Model, we focus on supersymmetry. To discuss how supersymmetry solves the hierarchy
problem, we will use a simple toy model of SUSY QED. In this model, we show that scalar masses
are protected by supersymmetry. We then discuss the construction of the Minimal Supersymmetric
Standard Model (MSSM) including soft supersymmetry breaking and electroweak symmetry breaking.
The physical mass spectrum of the supersymmetric particles is presented.

In the second part, I discuss the phenomenological status of the MSSM, reviewing all the probes
of supersymmetric particles in various direct and indirect experiments. I review the status in flavour
violating rare decays, dark matter and of course the LHC results. I then discuss the implications of vari-
ous results on various supersymmetry breaking models, like minimal Supergravity/Constrained Minimal
Supersymmetric Standard Model (mSUGRA/cMSSM) and Gauge Mediation. I finally close with with
a small discussion on extra-dimensional models. An is provided on the Standard Model, which is to
make these lecture notes self-consistent. We will refer to some of the equations in the appendix while
discussing MSSM.

A small list of textbooks and review articles on BSM physics is given below: (a) P. Ramond,
Journeys Beyond Standard Model [1], (b)R. N. Mohapatra, Unification and Supersymmetry [2], (c) G.
G. Ross, Grand Unified Theories [3], (d) T. T. Yanagida, Physics of Neutrino Physics and Applications
to Astrophysics [4] (e) C. Csaki and F. Tanedo, Beyond Standard Model, [5], which contains a modern
review of most of the ideas of extensions of physics beyond Standard Model. I also recommend a concise
and a pedagogical review by (f) Gautam Bhattacharyya [6].

2 Why BSM ?
The Standard Model provides a coherent successful explanation of electroweak and strong interactions in
terms of a (non-abelian) gauged quantum field theory. A lightning review of the structure of the Standard
Model lagrangian is presented in Appendix A. The Standard Model has been well tested at various
colliders starting from the CERN SPS where theW and Z bosons have been discovered. All the particles
in the SM fermion spectrum have been discovered with the top quark discovered in 1995 and the tau
neutrino in 2000. Precision measurements conducted at CERN LEP experiment confirm that the quantum

Proceedings of the 2016 Asia–Europe–Pacific School of High-Energy Physics, Beijing, China, 12-25 October 2016, edited by
M. Mulders and C. Z. Yuan, CERN Yellow Reports: School Proceedings, Vol. 2/2018, CERN-2018-004-SP (CERN, Geneva, 2018),
KEK Proceedings 2018-9

2519-8041– c© CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2018-002.87
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Table 1: A summary of some of the main reasons why we consider Standard Model to be incomplete.

Phenomenological Theoretical
neutrino masses hierarchy problem

dark matter Grand Unification, Quantum Gravity
leptogenesis/baryogenesis Strong CP

perturbative theory of the SM works very well and matches with the experiment. Measurements of the
rare decays at various B-factories like Babar and Belle studied the flavour mixing and CP violation of the
quark sector confirming the Cabibbo-Kobayashi-Masakawa (CKM) mixing of the Standard Model. In
addition, other measurements include the renormalisation group running of αs, qauntum chromodynamic
(QCD) corrections to electroweak and strong production cross-sections, electric and magnetic dipole
moments etc,. The crowning glory being the recent discovery of the Higgs boson which confirms the
symmetry breaking mechanism of the Standard Model. While this success of the Standard Model is
amazing, there are still several theoretical and phenomenological issues with the Standard Model which
give us strong hints that the Standard Model is not the complete picture of the Nature. In the following
we list some of the reasons why we need to go beyond the Standard Model.

2.1 Hierarchy Problem
Quantum field theories with a fundamental scalar have a technical problem called hierarchy problem.
We will illustrate this problem by comparing two well known theories, namely, QED (Quantum Electro-
dynamics) and Yukawa theory [7, 8].

Consider QED, the lagrangian is given by

LQED = Ψ̄
(
i /D −me

)
Ψ− 1

4
FµνF

µν (1)

Here the electron mass is protected by a symmetry. In the limit me → 0 , there is an enhanced
symmetry in the theory, which is the chiral symmetry of the electron. Using cut-off regularisation, we
find at 1-loop the correction to the electron mass to be

∆me ∼ e2me ln Λ (2)

This correction is proportional to electron mass itself, and thus, in the limit me → 0, ∆me → 0.
This holds true at all orders in perturbation theory, with the chiral symmetry protecting the left handed
and right handed states separately. Theories such as these are called ‘natural’ theories based on G. ’t
Hooft principle of naturalness [9]. u In these theories, there is an enhanced symmetry in the limit when
a parameter of the theory is set to zero.

Consider now a Yukawa theory with the following lagrangian:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2
Sφ

2 + ψ(i/∂ −mF )ψ + yψ̄ψφ (3)

In this case, the mass of the scalar particle is not protected by any symmetry. In the limit mS → 0
there is no enhanced symmetry in the theory. Furthermore, the corrections to the scalar mass at 1-loop
are not proportional to scalar mass itself. Thus even if we set the tree level scalar mass term to zero, it can
be generated at higher order in perturbation theory. The correction from the fermion Yukawa coupling to
the scalar mass at 1-loop (using dimensional regularisation) is given by

δm2
S = −y2m2

F ln

(
m2
F

µ2

)
, (4)
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where µ is the parameter which sets the renormalisation scale. The fermion corrections to the scalar
mass do not decouple in the limit mF →∞ but instead drive mass to infinity. Theories such as these are
technically unnatural theories. We now consider the case of the Standard Model.

In the Standard Model, the Higgs boson is introduced as a fundamental scale, making it a tech-
nically unnatural theory. The mass of the Higgs boson is not protected by any symmetry. In the limit
m2
H → 0 there is no enhanced symmetry in the Standard Model. There are several ways in which this

unnaturalness manifests itself in the Standard Model which forms the crux of the hierarchy problem.

(a) Within a framework of Grand Unification
Consider a Grand Unified theory (GUT) which is spontaneously broken at the GUT scale. All the parti-
cles which are so far protected by the GUT symmetry, like the GUT gauge bosons are no longer protected
by it. They attain masses at the GUT scale ∼ O(g2

GUTM
2
GUT ). However, the particles which are pro-

tected by the residual symmetry of the theory do not attain masses. The Standard Model gauge bosons
remain massless as they are protected by the Standard Model gauge symmetry, which remains unbroken
at the GUT scale. The SM fermions remain massless as they are protected by the chiral symmetries.
The Higgs boson, however as we have discussed does not posses any symmetry which protects it’s mass.
Thus when the GUT symmetry is broken, one would expect that the SM Higgs boson also attains mass of
the order of GUT scale [10]. To avoid this, one can fine tune the parameters of the GUT scalar potential
so that the SM Higgs can be light ≈ 125 GeV. However, such a fine tuned mass may not be stable under
radiative corrections as discussed earlier. This gets related to the doublet triplet splitting problem in GUT
models like SU(5) [11].

(b) SM as an effective theory
Irrespective of the existence of a Grand Unified Theory at the high scale, the Standard Model is by no
means a complete theory of the Universe. This is because gravitational interactions are not incorporated
in the Standard Model. The gravitational interactions become important (quantum mechanically) at a
scale around MPl ∼ 1019 GeV. The Standard Model can be viewed as an effective lagrangian of the full
theory describing all the interactions including quantum gravity. Assuming Standard Model is valid all
the way up to the Planck scale and remains perturbative, one can derive the one loop effective lagrangian
of the SM [68]. Again since the Higgs mass is not protected by any symmetry, it gets corrected by the
highest momentum cut-off of the effective theory which is the MPl.

δm2
h ≈ 1

16π2
Λ2 ≈ 1

16π2
M2
Pl,

(m2
h)phys ≈ (m2

h)bare + δm2
h (5)

where δm2
h represents the radiative correction to the Higgs mass and (m2

h)bare and (m2
h)phys represent

the bare and the physical Higgs masses. It would mean that to generate the Higgs mass of the right order
(m2

h)phys ∼ (125 GeV)2, one needs fine tuning of one part in O(1038) between the bare mass term and
radiative corrections, which is highly unnatural [12]. In the next section, we will discuss ways to make
the Standard Model natural.

In the rest of this section, we will summarise the other theoretical and phenomenological reasons
to go beyond the Standard Model.

2.1.1 Evolution of Standard Model gauge couplings
Most Grand Unified theories are described in terms of a single (also simple) gauge group for all three
interactions, namely, strong and electroweak interactions, and also a single coupling constant. Examples
are SU(5) guage group and SO(10) gauge group. They predict that all gauge couplings of the Standard
Model unify at the GUT scale. Using the renormalisation group equations for the gauge couplings of
the Standard Model, we can run these couplings from the weak scale, where they are well known, all
the way up to GUT scale. With the particle content of the Standard Model, as we can see from Fig.(1),
the gauge couplings do not exactly unify at the high scale. This figure assumes an SU(5) GUT at the
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Fig. 1: Evolution of gauge couplings in the Standard Model. It can be clearly seen that they do not unify at high
scale.

high scale. The non-unification can be seen as an indication for existence of new particles at the weak
scale, which in turn modify the renormalisation group equations such that the gauge couplings unify at
the GUT scale.

2.1.2 Dark Matter
There is strong phenomenological evidence for the existence of dark matter at all length scales in Nature.
The (virial velocity) rotational curves of (spherical) galaxies, collision of bullet cluster, structure forma-
tion and measurement of cosmological energy density of the universe all point out to the existence of
dark matter. More details on this can be found in lectures by Moroi san [13]. The Standard Model does
not have a particle which can be the dark matter. The dark particle should be chargeless, (most probably)
colourless and long lived (stable). Quarks (in addtion to be being coloured) and charged leptons are
charged. The gauge and Higgs bosons are short lived. Neutrinos are too light (and thus fast) to form
large scale structure which requires significant amount of cold dark matter. One possibility is that the
dark matter is made up of a stand-alone particle independent of the Standard Model. A more interesting
possibility would be to consider that dark matter is a part of the physics beyond standard model and
could have weak interactions (Weakly Interacting Massive Particle). Frameworks like supersymmetry
and extra-dimensions typically have such a particle, which thus could be produced at a collider.

2.1.3 Baryon Asymmetry
The standard big bang cosmology predicts equal amount of matter and anti-matter to be present at the
beginning of the Universe. However, as the Universe evolved only matter remained and most of the
anti-matter disappeared. An asymmetry of the order of one part in 1010 between matter and anti-matter
at the big bang epoch is sufficient to generate the almost complete matter domination that we see in the
present epoch. Three well known mechanism exist for generation of baryon asymmetry (a) Electroweak
baryogenesis (b) GUT baryogenesis and (c) leptogenesis. All the above three mechanisms require Stan-
dard Model to be extended. Of the three, leptogenesis can be successfully incorporated with the most
minimal extension while solving the neutrino mass problem also. More details can be found in [13].
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2.1.4 Neutrino Masses
Starting from 1998, it has been increasingly established that neutrinos have masses. The corresponding
mixing angles are Currently, the two mass squared differences and the three mixing angles have been well
measured. Questions about whether they are Dirac or Majorana, CP-violation in the leptonic sector are
still to be answered. However, the present information is sufficient to argue that discovery of neutrino
masses signals existence of physics beyond Standard Model. The new physics could be in terms of
new particles or new symmetries or both. More aspects of this physics are discussed in Kajitha san’s
lectures [14].

2.1.5 Strong CP problem
One of the questions which is not discussed in the present set of lectures is called the Strong CP problem.
The strong interactions conserve CP to a high degree even though a CP violating term 〈θ〉QCDGµνG̃µν ,
where G̃µν is the dual field strength tensor of the Gluon Fields, is allowed by the QCD SU(3) gauge
group in the lagrangian. The question is why the coefficient 〈θ〉QCD is very small and is close to zero.
One of the popular solutions to the strong CP problem require to introduce additional new particles called
axions in to the Standard Model. This topic has been discussed in detail in your cosmology lectures by
Moroi san [13].

In addition to the above, there are other issues like the flavour problem in the SM, which we will
not elaborate here.

2.2 Nature and energy scale New Physics
After considering the various reasons for going beyond the Standard Model, let us discuss the possible
nature of new physics and the energy scale of the new physics from various indications we have discussed
so far. We will consider the following indications for new physics: (i) Neutrino Masses: There is a wide
range of scales available from keV to 1015 GeV where new physics can manifest itself to explain neutrino
masses. If neutrinos are Majorana like, various kinds of seesaw mechanisms are available to explain the
neutrino masses and their mixing patterns within this energy range. If they are Dirac, the right handed
neutrinos are introduced at the neutrino mass scale with an extra symmetry (lepton number) protecting
them. (ii) Dark Matter: Here too there is a wide range in the mass spin, and interactions of the dark
matter particle available to satisfy the relic density of the universe as well as the direct and indirect
experimental constraints. However, if the dark matter has weak interactions, then a particle of mass
∼ 100 GeV satisfies the relic density constraint. This is the so-called WIMP miracle. (iii). Baryogensis
can be explained by leptogenesis via right handed neutrinos with masses between a TeV and the GUT
scale. (iv). Solutions to hierarchy problem however predict masses close to a TeV.

Let us now concentrate on solutions to the hierarchy problem as the motivation for new physics.
Since the New Physics is closely related to the nature of the Higgs boson and the hierarchy problem, there
can be two broad classes of solutions to be considered: (a) The Standard Model is valid only up to the
scale of quantum gravity as we discussed above. However, the cut-off scale of new physics or quantum
gravity, is low, i.e, it is no longer Λ ∼ MPl but, Λ ∼ (1TeV ). This is possible in theories with extra
space time dimensions where the fundamental Planck constant in α extra dimensional theory is related
to the four dimensional MPl by M2

Pl = M2+n
? Rn. By choosing sufficiently large extra dimensions,

the fundamental Planck scale can be brought close to TeV scale in a theory with n extra dimensions.
If the gravity in the extra dimensions is assumed to be strongly interacting, then the radius of the extra
dimensions could be much smaller.

Another possibility is that Higgs is not a elementary particle at all, but is a composite of some
other tiny fundamental particles. In such a case, the Standard Model is valid only up to a scale where the
compositeness of the Higgs comes in to play. A well known example of this type is the pion in ordinary
QCD. The pion, a pseudo-scalar particle can be treated as an elementary particle up to energies close to
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a (maximum ) GeV, but beyond that energy scale, the composite nature of the pion should be considered.
The quarks become elementary particles from that energy scale. (b) There is a symmetry which protects
the Higgs mass. Models of the type Supersymmetry, Little Higgs, Twin Higgs come in to this category.
Of these, supersymmetry is interesting as a symmetry of quantum field theory. When softly broken, it
preserves most of it’s nice features and remains perturbative and calculable. In the following sections,
we will introduce supersymmetry and construct the Minimal Supersymmetric Standard Model (MSSM).
We then study the phenomenology of this model and discuss the present status of this model. A small
supplement to a introduction to extra-dimensions will be provided in the appendix B.

Supersymmetries were first introduced in the context of string theories by Ramond. In quantum
field theories, this symmetry is realised through fermionic generators, thus escaping the no-go theorems
of Coleman and Mandula [15]. The simplest Lagrangian realising this symmetry in four dimensions was
built by Wess and Zumino which contains a spin 1

2 fermion and a scalar. Supersymmetry relates a particle
with another particle varied by a spin 1/2. For example, spin 0 and spin 1/2 form a supersymmetric pair,
similarly, spin 1/2 and spin 1 form a supersymmetric pair. Supersymmetry ensures that the within a pair,
both the particles have the same mass and same couplings.

In particle physics, supersymmetry plays an important role in protecting the Higgs mass. To
understand how it protects the Higgs mass, let us repeat the hierarchy problem once again. The Higgs
mass enters as a bare mass parameter in the Standard Model lagrangian, eq.(A.10). Contributions from
the self energy diagrams of the Higgs are quadratically divergent pushing the Higgs mass up to cut-off
scale. In the absence of any new physics at the intermediate energies, the cut-off scale is typicallyMGUT

or Mplanck. As we have seen, cancellation of these divergences with the bare mass parameter would
require fine-tuning of order one part in 10−38 rendering the theory ‘unnatural’. On the other hand, if one
has additional contributions, say, for example, for the diagram with the Higgs self coupling, there is an
additional contribution from a fermionic loop, with the fermion carrying the same mass as the scalar, the
contribution from this additional diagram would now cancel the quadratically divergent part of the SM
diagram, with the total contribution now being only logarithmically divergent. If this mechanism needs
to work for all the diagrams, not just for the Higgs self-coupling and for all orders in perturbation theory,
it would require a symmetry which would relate a fermion and a boson with same mass. Supersymmetry
is such a symmetry.

3 Supersymmetry and Superfields
Supersymmetry is based on graded Lie algebra, which means it’s generators are anti-commuting Grass-
man operators. For N = 1 supersymmetry we have

{Qα, Q†β̇} = 2σµ
αβ̇
Pµ (6)

The supersymmetry generators change the spin of an field by 1/2 unit. For example a scalar (spin
=0) is transformed to spin 1/2 field.

|fermion >= Q†|scalar > . (7)

Furthermore, since
[Q,Pµ] = [Q†, Pµ] = 0 (8)

it can be shown that, the particle and it’s super-partner have the same mass. Furthermore, as long as
supersymmetry is conserved, the particle and it’s superpartner also share the same couplings.

We now move to study the simplest irreducible representations of N = 1 SUSY algebra. Two of
the simplest supermultiplets will be of use are the chiral supermultiplet and the Vector supermultiplet.
The supermultiplets can be expressed in terms of superfields which can be thought of as ‘upgraded’
versions of quantum fields. Superfields are functions (fields) written over a ‘superspace’ made of ordinary

6

S. K. VEMPATI

92



space (xµ) and two fermionic ‘directions’ (θ,θ̄); they are made up of quantum fields whose spins differ by
1/2. To build interaction lagrangians one normally resorts to this formalism, originally given by Salam
and Strathdee [16], as superfields simplify addition and multiplication of the representations. It should
be noted however that the component fields may always be recovered from superfields by a power series
expansion in grassman variable, θ.

Given that supersymmetry transforms a fermion into a boson and vice-versa, supermultiplets or
superfields are multiplets which collect fermion-boson pairs which transform in to each other. We will
deal with two kinds of superfields - vector superfields and chiral superfields. A chiral superfield has
particle content in the off-shell formalism, contains a weyl fermion, a scalar and and an auxiliary scalar
field generally denoted by F. A vector superfield contains a spin 1 boson, a spin 1/2 fermion and an
auxiliary scalar field called D.

A chiral superfield has an expansion :

Φ = φ+
√

2θψ + θθF, (9)

where φ is the scalar component, ψ, the two component spin 1/2 fermion and F the auxiliary field.

The second possible function of the superfields is the analytic or holomorphic function of the
superfields called the superpotential, W . This would mean that W is purely a function of complex
fields (z1z2z3) or its conjugates (z?1z

?
2z
?
3). This function essentially gives the interaction part of the

lagrangian which is independent of the gauge couplings, like the Yukawa couplings. If renormalis-
ability is demanded, the dimension of the superpotential is restricted to be less than or equal to three,
[W ] ≤ 3 i.e, only products of three or less number of chiral superfields are allowed.

The θθ components of the product of three chiral superfields is given as [17]

ΦiΦjΦk|θθ = −ψiψjφk − ψjψkφi − ψkψiφj + Fiφjφk + Fjφkφi + Fkφiφj , (10)

where as earlier, ψi represents the fermionic, φi the scalar and Fi the auxiliary component of the chiral
superfield Φi. Similarly for the product of two superfields on has :

ΦiΦj |θθ = −ψiψj + Fiφj + Fjφi (11)

A vector superfield in (Wess-Zumino gauge) has an expansion :

V = −θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄D (12)

Remember that in supersymmetric theories, the gauge symmetry is imposed by the transformations
on matter superfields as :

Φ′ = eiΛltlΦ (13)

where Λl is an arbitrary chiral superfield and tl represent the generators of the gauge group which are l
in number and the index l is summed over1.

The gauge invariance is restored in the kinetic part by introducing a (real) vector superfield, V
such that the combination

Φ†egV Φ (14)

remains gauge invariant. For this to happen, the vector superfield V itselves transforms under the gauge
symmetry as

δV = i(Λ− Λ†) (15)

1To be more specific, tl is just a number for the abelian groups. For non-abelian groups, tl is a matrix and so is Λl, with
Λij = tlijΛl Note that V is also becomes a matrix in this case.
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The supersymmetric invariant kinetic part of the lagrangian is given by:

Lkin =

∫
dθ2dθ̄2Φ†egV Φ = Φ†egV Φ|θθθ̄θ̄ (16)

Remember that the function egV truncates at 1
2g

2V 2 in the Wess-Zumino gauge. In fact, in this
gauge, this function can be determined by noting:

expVWZ = 1− θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+
1

2
θθθ̄θ̄ (D − 1

2
AµAµ), (17)

for an abelian Vector superfield. Here as usual λ denotes the gaugino field whileAµ represents the gauge
field. D represents the auxiliary field of the Vector multiplet. The extension to the non-abelian case is
straight forward.

Finally, for every vector superfield (or a set of superfields) we have an associated field strength
superfield Wα, which gives the kinetic terms for the gauginos and the field strength tensors for the
gauge fields. Given that it is a chiral superfield, the component expansion is given by taking the θθ
component of ‘square’ of that superfield. In the Wess-Zumino gauge,Wα = −1

4D̄D̄DαVWZ [17] (D is
the differential operator on superfields) and the lagrangian has the form :

L ⊃ 1

4

(
WαWα|θθ +W α̇Wα̇|θ̄θ̄

)
=

1

2
D2 − 1

4
FµνF

µν − iλσµ∂µλ̄ (18)

D represents the auxiliary component of the vector superfields. The extension to non-abelian vector
superfields in straight forward.

3.1 How supersymmetry works
We now demonstrate with a simple example of supersymmetric QED as how in supersymmetric theories,
the mass of the scalar particle is protected. The QED lagragian is U(1) invariant, which is given by

LQED =
−1

4
FµνF

µν + Ψ̄ (i∂µγµ −me) Ψ + ieΨ̄γµΨAµ, (19)

where Ψ stands for the Dirac fermion field, the electron, Aµ is the photon field. We would like to
construct the supersymmetric version of the lagrangian. For each ‘left handed’ or chiral field, we now
replace it with a chiral superfield. Thus the two chiral components of the Dirac field, Ψ = ΨL + ΨR,
where ΨL,R = (1 ± γ5)/2 Ψ. In the supersymmetric version, each of the chiral components will be
replaced by a corresponding chiral superfield. Thus we will have ΨL,R → ΦL,R. As we have seen each
chiral superfield contains, a fermion along with a spin zero partner. The ΦL,R contain {eL,R, ẽL,R} a
left(right) electron along with it’s spin zero partner, left (right) handed selectron. Note that the left/right
subscripts on the scalar does not indicate the chiral structure of the scalar particles, but just to distinguish
them from their chiral fermion partners - one complex scalars for each chiral fermion. The photon field is
replaced by a vector superfield, V , introduced above, which contains the photon fieldAµ and it’s spin half
fermonic partner, the photino, λ or Ã. We denote it by V = {Aµ, Ã}. To construct the supersymmetric
QED lagrangian, we will need to construct the superpotential , the Kahler potential and the field strength
superpotential as discussed above.

The superpotential is just given by W = meΦLΦR. To get the lagrangian in terms of the compo-
nent fields, one needs to expand the superfields in the superspace and do the two-component grassman
integration, which corresponds to identifying the co-efficient of the θθ component. The Kähler potential
is given by

K = Φ†Le
gV ΦL + Φ†Re

gV ΦR (20)

The K and W functions are U(1) gauge invariant. To get the lagragian in terms of the component fields,
we have to integrate K over the superspace, which leaves us with the coefficient of θ2θ̄2 term. The third
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function is the field strength superpotential, which leads to the kinetic terms for the photon field and
photino fields. The product of two field strength superpotentials WαWα is integrated over superspace
and the coefficient of θθ gives the component lagrangian. Before writing down the full lagrangian, we
should remember that the auxiliary fields F and D should be removed by using their (non-dynamical)
equations of motion, which leads to the following definitions in terms of scalar fields:

F =
∂W

φi
; D = gqiφ

?φ (21)

where φ runs over all the scalar fields in the theory, g is the coupling constant and qi are the charges of
the field. Putting everything together we have the following lagrangian for supersymmetric QED:

LSQED = −1

4
FµνF

µν + iλ̄σ̄µ∂µλ+ (DµẽL)†(DµẽL) + (DµẽR)†(DµẽR)

+ iēLσ
µDµeL + iēLσ̄

µDµeL +
(√

2eeLλẽ
†
L +H.c

)
+
(√

2eeRλẽ
†
R +H.c

)

+ me(eLeR + ēRēL)−m2
e(|ẽL|2 − |ẽR|2)− e2

2
(ẽ2
L − ẽ2

R)2 (22)

The last two terms are the F 2 and D2 terms respectively. Dµ = ∂µ + ieAµ, e being the electromagnetic
coupling. The charges are normalised to be +1 for ΦL and -1 for ΦR. We can easily read of the various
Feynman rules of supersymmetric QED from the above lagrangian, Eq.(22). The vertices are presented
in Fig. 2. A couple of points are important to note here: (a) There s no covariant derivative for the
photino. It does not interact with the gauge bosons. (b) The scalar quartic couplings are given by the
gauge couplings. This is to ensure that the couplings of fermions and the scalars remain the same keeping
supersymmetry intact.

The slectron, which has the same mass as the electron, does not receive large mass corrections as it
is protected by supersymmetry. All the mass corrections are proportional the mass of the electron itself,
protected by the so called non-renormalisable theorems of supersymmetry. The one loop corrections to
the selectron mass are given by diagrams of the type shown in Fig. 3. The boson loops cancel with the
fermionic loops, note that both of them have the same coupling and mass structure but with opposite sign
as a consequence of supersymmetry. This cancellation holds at all orders in perturbation theory. This
is how the mass of any scalar in any supersymmetry theory is predicted. We now use this theory as a
stepping block to construct the full MSSM. We do so by constantly connecting with the SM lagrangian,
it’s particle content and gauge group, summarised in Appendix A.

4 Particle Spectrum of the MSSM
What we aim to build over the course of next few lectures is a supersymmetric version of the Standard
Model, which means the lagrangian we construct should not only be gauge invariant under the Standard
Model gauge group GSM but also now be supersymmetric invariant. Such a model is called Minimal
Supersymmetric Standard Model with the word ’Minimal’ referring to minimal choice of the particle
spectrum required to make it work. Furthermore, we would also like the MSSM to be renormalisable
and anomaly free, just like the Standard Model is.

The minimal supersymmetric extension of the Standard Model is built by replacing every standard
model matter field by a chiral superfield and every vector field by a vector superfield. Thus the existing
particle spectrum of the Standard Model is doubled. The particle spectrum of the MSSM and their
transformation properties under GSM is given by,

Qi ≡
(
uLi ũLi

dLi d̃Li

)
∼
(

3, 2,
1

6

)
U ci ≡

(
uci ũci

)
∼
(

3̄, 1, − 2

3

)

Di ≡
(
dci d̃ci

)
∼
(

3̄, 1,
1

3

)
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Feynman Rules in Supersymmetric QED  

Only one vertex in QED

QED

scalar QED 
photino-selectron-electron

quartic coupling of the scalar particles of the 

 same strength as gauge coupling 
the selectron mass is protected in  this theory  

from large radiative corrections

Fig. 2: Feynman Diagrams in Supersymmetric Quantum Electrodynamics contain vertices from QED, Scalar QED
and further new diagrams like the last two ones.

Fig. 3: Typical 1-loop corrections to the left and right selectron masses in supersymmetric QED.

Li ≡
(
νLi ν̃Li

eLi ẽLi

)
∼
(

1, 2, − 1

2

)
Ei ≡

(
eci ẽci

)
∼ (1, 1, 1)

(23)

The scalar partners of the quarks and the leptons are typically named as ‘s’quarks and ‘s’leptons. To-
gether they are called sfermions. For example, the scalar partner of the top quark is known as the ‘stop’.
In the above, these are represented by a ‘tilde’ on their SM counterparts. As in the earlier case, the index
i stands for the generation index.

There are two distinct features in the spectrum of MSSM : (a) Note that we have used the conju-
gates of the right handed particles, instead of the right handed particles themselves. There is no additional
conjugation on the superfield itselves, the c in the superscript just to remind ourselves that this chiral su-
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perfield is made up of conjugates of SM quantum fields. In eq.(8), uc = u†R and ũc = ũ?R. This way
of writing down the particle spectrum is highly useful for reasons to be mentioned later in this section.
Secondly (b) At least two Higgs superfields are required to complete the spectrum - one giving masses
to the up-type quarks and the other giving masses to the down type quarks and charged leptons. As men-
tioned earlier, this is the minimal number of Higgs particles required for the model to be consistent from
a quantum field theory point of view2. These two Higgs superfields have the following transformation
properties under GSM :

H1 ≡
(
H0

1 H̃0
1

H−1 H̃−1

)
∼
(

1, 2, − 1

2

)

H2 ≡
(
H+

2 H̃+
2

H0
2 H̃0

2

)
∼
(

1, 2,
1

2

)
(24)

The Higgsinos are represented by a˜on them. This completes the matter spectrum of the MSSM. Then
there are the gauge bosons and their super particles.

In the MSSM, corresponding to three gauge groups of the SM and for each of their corresponding
gauge bosons, we need to add a vector superfield which transforms as the adjoint under the gauge group
action. Each vector superfield contains the gauge boson and its corresponding super partner called gaug-
ino. Thus in MSSM we have the following vector superfields and their corresponding transformation
properties under the gauge group, completing the particle spectrum of the MSSM:

V A
s :

(
GµA G̃A

)
∼ (8, 1, 0)

V I
W :

(
WµI W̃ I

)
∼ (1, 3, 0)

VY :
(
Bµ B̃

)
∼ (1, 1, 0) (25)

The G’s (G and G̃) represent the gluonic fields and their superpartners called gluinos, the index A runs
from 1 to 8. The W ’s are the SU(2) gauge bosons and their superpartners ‘Winos’, the index I taking
values from 1 to 3 and finally Bs represents the U(1) gauge boson and its superpartner ‘Bino’. Together
all the superpartners of the gauge bosons are called ‘gauginos’. This completes the particle spectrum of
the MSSM.

5 The superpotential and R-parity
The supersymmetric invariant lagrangian is constructed from functions of superfields. In general there
are three functions which are: (a) The Kähler potential, K, which is a real function of the superfields
(b) The superpotential W , which is a holomorphic (analytic) function of the superfields, and (c) the
gauge kinetic function fαβ which appears in supersymmetric gauge theories. This is the coefficient of
the product of field strength superfields,WαWβ . The field strength superfield is derived from the vector
superfields contained in the model. fαβ determines the normalisation for the gauge kinetic terms. In
MSSM, fαβ = δαβ . The lagrangian of the MSSM is thus given in terms of GSM gauge invariant func-
tions K, W and add the field strength superfieldW , for each of the vector superfields in the spectrum.

The gauge invariant Kähler potential has already been discussed in the eqs.(16). For the MSSM
case, the Kähler potential will contain all the three vector superfields corresponding to the GSM given in
the eq.(25). Thus we have :

Lkin =

∫
dθ2dθ̄2

∑

SU(3),SU(2),U(1)

Φ†β e
gV Φβ (26)

2The Higgs field has a fermionic partner, higgsino which contributes to the anomalies of the SM. At least two such fields
with opposite hyper-charges (U(1)Y ) should exist to cancel the anomalies of the Standard Model.
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where the index β runs over all the matter fields Φβ = {Qi, U ci , Dc
i , Li, e

c
i , H1, H2}3 in appropriate

representations. Corresponding to each of the gauge groups in GSM , all the matter fields which trans-
form non-trivially under this gauge group4 are individually taken and the grassman (dθ2dθ̄2) integral is
evaluated with the corresponding vector superfields in the exponential

After expanding and evaluating the integral, we get the lagrangian which is supersymmetric in-
variant in terms of the ordinary quantum fields - the SM particles and the superparticles. This part of
the lagrangian would give us the kinetic terms for the SM fermions, kinetic terms for the sfermions
and their interactions with the gauge bosons and in addition also the interactions of the type: fermion-
sfermion-gaugino which are structurally like the Yukawa interactions (ffφ), but carry gauge couplings.
Similarly, for the Higgs fields, this part of the lagrangian gives the kinetic terms for the Higgs fields and
their fermionic superpartners Higgsinos and the interaction of the gauge bosons with the Higgs fields and
Higgs-Higgsino-gaugino vertices.

Imposing the restriction of renormalisability the most general GSM gauge invariant form of the
W for the matter spectrum of MSSM (8,24) is given as

W = W1 +W2, (27)

where

W1 = huijQiU
c
jH2 + hdijQiD

c
jH1 + heijLiE

c
jH1 + µH1H2 (28)

W2 = εiLiH2 + λijkLiLjE
c
k + λ′ijkLiQjD

c
k + λ′′ijkU

c
iD

c
jD

c
k. (29)

Here we have arranged the entire superpotential in to two parts,W1 andW2 with a purpose. Though both
these parts are gauge invariant, W2 also violates the global lepton number and baryon quantum numbers.
The simultaneous presence of both these set of operators can lead to rapid proton decay and thus can
make the MSSM phenomenologically invalid. For these reasons, one typically imposes an additional
symmetry called R-parity in MSSM which removes all the dangerous operators in W2. We will deal
with R-parity in greater detail in the next section. For the present, let us just set W2 to be zero due to a
symmetry called R-parity and just call W1 as W . The lagrangian can be derived from the superpotential
containing (mostly) gauge invariant product of the three superfields by taking the θθ component, which
can be represented in the integral form as

Lyuk =

∫
dθ2 W (Φ) +

∫
dθ̄2 W̄ (Φ̄) (30)

This part gives the standard Yukawa couplings for the fermions with the Higgs, in addition also give the
fermion-sfermion-higgsino couplings and scalar terms. For example, the coupling huij Qiu

c
jH2 in the

superpotential has the following expansion in terms of the component fields :

Lyuk ⊃ huij Qiu
c
jH2 |θθ

⊃ huij ( uiu
c
jH

0
2 − diucjH+

2 ) |θθ
⊃ huij(ψuiψucjφH0

2
+ φũiψucjψH̃0

2
+ ψuiφũcjψH̃0

2
− ψdiψucjφH+

2
− φd̃iψucjψH̃+

2
− ψdiφũcjψH̃+

2
)(31)

≡ huij ( uiu
c
jH

0
2 + ũiu

c
jH̃

0
2 + uiũ

c
jH̃

0
2 − diucjH+

2 − d̃iucjH̃+
2 − diũcjH̃+

2 ), (32)

where in the last equation, we have used the same notation for the chiral superfield as well as for its
lowest component namely the scalar component. Note that we have not written the F-terms which give
rise to the scalar terms in the potential. Similarly, there is the µ term which gives ‘Majorana’ type mass
term for the Higgsino fields.

3The indices i, j, k always stand for the three generations through out this notes, taking values between 1 and 3.
4As given in the list of representations in eqs. (8,24)
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In the MSSM, we have to add the corresponding field strength W superfields for electroweak
vector superfields, W and B as well as for the gluonic G vector superfields of eqs.(25).

So far we have kept the auxiliary fields (D and F ) of various chiral and vector superfields in the
component form of our lagrangian. However, given that these fields are unphysical, they have to be
removed from the lagrangian to go “on-shell". To eliminate the D and F fields, we have to use the
equations of motions of these fields which have simple solutions for the F and D as :

Fi =
∂W

∂φi
; DA = −gA φ?i T

A
ij φj , (33)

where φi represents all the scalar fields present in MSSM. The index A runs over all the gauge groups
in the model. For example, for U(1)Y , TAij = (Y 2/2)δij . The F and D terms together form the scalar
potential of the MSSM5 which is given as

V =
∑

i

|Fi |2 +
1

2
DADA (34)

Putting together, we see that the lagrangian of the MSSM with SUSY unbroken is of the form :

L(0)
MSSM =

∫ (
dθ2 W (Φ) +H.c

)
+

∫
dθ2 dθ̄2 Φ†i e

gV Φi +

∫ (
dθ2WαWα +H.c

)
. (35)

where all the functions appearing in (35) have been discussed in eqs.(26,28) and (18).

5.1 R-parity
In the previous section, we have seen that there are terms in the superpotential, eq.(29) which are invariant
under the Standard Model gauge group GSM but however violate baryon (B) and individual lepton
numbers (Le,µ,τ ). At the first sight, it is bit surprising : the matter superfields carry the same quantum
numbers under the GSM just like the ordinary matter fields do in the Standard Model and B and Le,µ,τ
violating terms are not present in the Standard Model. The reason can be traced to the fact that in the
MSSM, where matter sector is represented in terms of superfields, there is no distinction between the
fermions and the bosons of the model. In the Standard Model, the Higgs field is a boson and the leptons
and quarks are fermions and they are different representations of the Lorentz group. This distinction
is lost in the MSSM, the Higgs superfield, H1 and the lepton superfields Li have the same quantum
numbers under GSM and given that they are both (chiral) superfields, there is no way of distinguishing
them. For this reason, the second part of the superpotential W2 makes an appearance in supersymmetric
version of the Standard Model. In fact, the first three terms of eq.(29) can be achieved by replacing
H1 → Li in the terms containing H1 of W1.

The first three terms of the second part of the superpotential W2 (eq.(29)), are lepton number
violating whereas the last term is baryon number violating. The simultaneous presence of both these
interactions can lead to proton decay, for example, through a squark exchange. An example of such an
process in given in Figure 1. Experimentally the proton is quite stable. In fact its life time is pretty
large >∼ O(1033) years [18]. Thus products of these couplings (λ′′ and one of (λ′ , ε, λ) which can lead
to proton decay are severely constrained to be of the order of (O)(10−20)6. Thus to make the MSSM
phenomenologically viable one should expect these couplings inW2 to take such extremely small values.

A more natural way of dealing with such small numbers for these couplings would be to set them
to be zero. This can be arrived at by imposing a discrete symmetry on the lagrangian called R-parity.

5Later we will see that there are also additional terms which contribute to the scalar potential which come from the super-
symmetry breaking sector.

6The magnitude of these constraints depends also on the scale of supersymmetry breaking, which we will come to discuss
only in the next section. For a list of constraints on R-violating couplings, please see G. Bhattacharyya [19].
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R-parity has been originally introduced as a discrete R-symmetry 7 by Ferrar and Fayet [20] and then
later realised to be of the following form by Ferrar and Weinberg [21] acting on the component fields:

Rp = (−1)3(B−L)+2s, (36)

where B and L represent the Baryon and Lepton number respectively and s represents the spin of the
particle. Under R-parity the transformation properties of various superfields can be summarised as:

{V A
s , V

I
w , Vy} → {V A

s , V
I
w , Vy}

θ → −θ?
{Qi, U ci , Dc

i , Li, E
c
i } → −{Qi, U ci , Dc

i , Li, E
c
i }

{H1, H2} → {H1, H2} (37)

Imposing these constraints on the superfields will now set all the couplings in W2 to zero.

Imposing R-parity has an advantage that it provides a natural candidate for dark matter. This can
be seen by observing that R-parity distinguishes a particle from its superpartner. This ensures that every
interaction vertex has at least two supersymmetric partners when R-parity is conserved. The lightest
supersymmetric particle (LSP) cannot decay in to a pair of SM particles and remains stable. R-parity
can also be thought of as a remnant symmetry theories with an additional U(1) symmetry, which is
natural in a large class of supersymmetric Grand Unified theories. Finally, one curious fact about R-
parity : it should be noted that R-parity constraints baryon and lepton number violating couplings of
dimension four or rather only at the renormalisable level. If one allows for non-renormalisable operators
in the MSSM, i.e that is terms of dimension more than three in the superpotential, they can induce dim
6 operators which violate baryon and lepton numbers at the lagrangian level and are still allowed by
R-parity. Such operators are typically suppressed by high mass scale ∼MPl or MGUT and thus are less
dangerous. In the present set of lectures, we will always impose R-parity in the MSSM so that the proton
does not decay, though there are alternatives to R-parity which can also make proton stable.

6 Supersymmetry breaking
So far, we have seen that the Supersymmetric Standard Model lagrangian can also be organised in a
similar way like the Standard Model lagrangian though one uses functions of superfields now to get the
lagrangian rather than the ordinary fields. In the present section we will cover the last part (term) of the
total MSSM lagrangian

LMSSM = Lgauge/kinetic (K(Φ, V )) + Lyukawa (W (Φ)) + Lscalar
(
F 2, D2

)
+ LSSB (38)

which we have left out so far and that concerns supersymmetry breaking (SSB). Note that the first three
terms are essentially from L(0)

MSSM of eq.(35). In Nature, we do not observe supersymmetry. Super-
symmetry breaking has to be incorporated in the MSSM to make it realistic. In a general lagrangian,
supersymmetry can be broken spontaneously if the auxiliary fields F or D appearing in the definitions of
the chiral and vector superfields respectively attain a vacuum expectation value (vev). If the F fields get
a vev, it is called F -breaking whereas if the D fields get a vev, it is called D-breaking.

Incorporation of spontaneous SUSY breaking in MSSM would mean that at least one (or more)
of the F-components corresponding to one ( or more) of the MSSM chiral (matter) superfields would
attain a vacuum expectation value. However, this approach fails as this leads to phenomenologically
unacceptable prediction that at least one of the super-partner should be lighter (in mass) than the ordinary
particle. This is not valid phenomenologically as such a light super partner (of SM particle) has been
ruled out experimentally. One has to think of a different approach for incorporating supersymmetry
breaking in to the MSSM [23].

7R-symmetries are symmetries under which the θ parameter transform non-trivially.
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Supersymmetry Breaking

Hidden Sector

Messengers 
MSSM 

Visble Sector 

Fig. 4: A schematic diagram showing SUSY breaking using Hidden sector models

One of the most popular and successful approaches has been to assume another sector of the theory
consisting of superfields which are not charged under the Standard Model gauge group. Such a sector
of the theory is called ‘Hidden Sector’ as they cannot been "seen" like the Standard Model particles and
remain hidden. Supersymmetry can be broken spontaneously in this sector. This information is commu-
nicated to the visible sector or MSSM through a messenger sector. The messenger sector can be made
up of gravitational interactions or ordinary gauge interactions. The communication of supersymmetry
breaking leads to supersymmetry breaking terms in MSSM. Thus, supersymmetry is not broken sponta-
neously within the MSSM, but explicitly by adding supersymmetry breaking terms in the lagrangian.

However, not all supersymmetric terms can be added. We need to add only those terms which
do not re-introduce quadratic divergences back into the theory8. It should be noted that in most models
of spontaneous supersymmetry breaking, only such terms are generated. These terms which are called
“soft" supersymmetry breaking terms can be classified as follows:

– a) Mass terms for the gauginos which are a part of the various vector superfields of the MSSM.
– b) Mass terms for the scalar particles,m2

φij
φ?iφj with φi,j representing the scalar partners of chiral

superfields of the MSSM.
– c) Trilinear scalar interactions, Aijkφiφjφk corresponding to the cubic terms in the superpotential.
– d) Bilinear scalar interactions, Bijφiφj corresponding to the bilinear terms in the superpotential.

Note that all the above terms are dimensionful. Adding these terms would make the MSSM non-
supersymmetric and thus realistic. The total MSSM lagrangian is thus equal to

Ltotal = L(0)
MSSM + LSSB (39)

with L(0)
MSSM given in eq.(35). Sometimes in literature we have LSSB = Lsoft. Let us now see the

complete list of all the soft SUSY breaking terms one can incorporate in the MSSM:

1. Gaugino Mass terms: Corresponding to the three vector superfields (for gauge groups U(1),
SU(2) and SU(3)) we have B̃, W̃ and G̃) we have three gaugino mass terms which are given
as M1B̃B̃, M2W̃IW̃I and M3G̃AG̃A, where I(A) runs over all the SU(2)(SU(3)) group gener-
ators.

2. Scalar Mass terms: For every scalar in each chiral (matter) superfield , we can add a mass term
of the form m2 φ?iφj . Note that the generation indices i, j need not be the same. Thus the mass
terms can violate flavour. Further, given that SUSY is broken prior to SU(2) × U(1) breaking ,
all these mass terms for the scalar fields should be written in terms of their ‘unbroken’ SU(2) ×

8Interaction terms and other couplings which do not lead to quadratically divergent (in cut-off Λ) terms in the theory
once loop corrections are taken in to consideration. It essentially means we only add dimensional full couplings which are
supersymmetry breaking.
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U(1) representations. Thus the scalar mass terms are : m2
Qij
Q̃†i Q̃j , m2

uij ũ
c?
i ũ
c
j , m2

dij
d̃c
?
i d̃
c
j ,

m2
Lij
L̃†i L̃j , m2

eij ẽ
c?
i ẽ
c
j , m2

H1
H†1H1 and m2

H2
H†2H2.

3. Trilinear Scalar Couplings: As mentioned again, there are only three types of trilinear scalar
couplings one can write which are GSM gauge invariant. In fact, their form exactly follows from
the Yukawa couplings. These are : AuijQ̃iũ

c
jH2, AdijQ̃id̃

c
jH1 and AeijL̃iẽ

c
jH1.

4. Bilinear Scalar Couplings: Finally, there is only one bilinear scalar coupling (other than the mass
terms) which is gauge invariant. The form of this term also follows from the superpotential. It is
given as : BH1H2.

Adding all these terms completes the lagrangian for the MSSM. However, the particles are still not in
their ‘physical’ basis as SU(2)×U(1) breaking is not yet incorporated. Once incorporated the physical
states of the MSSM and their couplings could be derived.

7 SU(2) × U(1) breaking
As a starting point, it is important to realize that the MSSM is a two Higgs doublet model i.e, SM with
two Higgs doublets instead of one, with a different set of couplings [24]. Just as in Standard Model,
spontaneous breaking of SU(2)L × U(1)Y → U(1)EM can be incorporated here too. Doing this leads
to constraints relating various parameters of the model. To see this, consider the neutral Higgs part of
the total scalar potential including the soft terms. It is given as

Vscalar = (m2
H1

+ µ2)|H0
1 |2 + (m2

H2
+ µ2)|H0

2 |2 − (BµµH
0
1H

0
2 +H.c)

+
1

8
(g2 + g′2)(H0

2
2 −H0

1
2
)2 + . . . , (40)

where H0
1 , H

0
2 stand for the neutral Higgs scalars and we have parameterised the bilinear soft term

B ≡ Bµµ. Firstly, we should require that the potential should be bounded from below. This gives the
condition (in field configurations where the D-term goes to zero, i.e, the second line in eq.(40)):

2Bµ < 2|µ|2 + m2
H2

+m2
H1

(41)

Secondly, the existence of a minima for the above potential would require at least one of the Higgs mass
squared to be negative giving the condition, (determinant of the 2× 2 neutral Higgs mass squared matrix
should be negative)

B2
µ > (|µ|2 + m2

H2
) (|µ|2 +m2

H1
) (42)

In addition to ensuring the existence of a minima, one would also require that the minima should be able
to reproduce the standard model relations i.e, correct gauge boson masses. We insist that both the neutral
Higgs attain vacuum expectation values :

< H0
1 >=

v1√
2

; < H0
2 >=

v2√
2

(43)

and furthermore we define
v2

1 + v2
2 = v2 = 2462 GeV2,

where v represents the vev of the Standard Model (SM) Higgs field. However, these vevs should corre-
spond to the minima of the MSSM potential. The minima are derived by requiring ∂V/∂H0

1 = 0 and
∂V/H0

2 = 0 at the minimum, where the form of V is given in eq.(40). These derivative conditions
lead to relations between the various parameters of the model at the minimum of the potential. We have,
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using the Higgs vev (43) and the formulae for9 M2
Z = 1

4(g2 + g
′ 2)v2, the minimisation conditions can

rewritten as

1

2
M2
Z =

m2
H1
− tan2 β m2

H2

tan2 β − 1
− µ2

Sin2β =
2Bµ µ

m2
H2

+m2
H1

+ 2µ2
, (44)

where we have used the definition tanβ = v2/v1 as the ratio of the vacuum expectation values ofH0
2 and

H0
1 respectively. Note that the parameters m2

H1
, m2

H2
, Bµ are all supersymmetry breaking ‘soft’ terms.

µ is the coupling which comes in the superpotential giving the supersymmetry conserving masses to the
Higgs scalars. These are related to the Standard Model parametersMZ and a ratio of vevs, parameterised
by an angle tanβ. Thus these conditions relate SUSY breaking soft parameters with the SUSY conserving
ones and the Standard Model parameters. For any model of supersymmetry to make contact with reality,
the above two conditions (44 )need to be satisfied.

The above minimisation conditions are given for the ‘tree level’ potential only. 1-loop corrections
a ’la Coleman-Weinberg can significantly modify these minima. We will discuss a part of them in later
sections when we discuss the Higgs spectrum. Finally we should mention that, in a more concrete
approach, one should consider the entire scalar potential including all the scalars in the theory, not just
confining ourselves to the neutral Higgs scalars. For such a potential one should further demand that
there are no deeper minima which are color and charge breaking (which effectively means none of the
colored and charged scalar fields get vacuum expectation values). These conditions lead to additional
constraints on parameters of the MSSM [25].

8 Mass spectrum
We have seen in the earlier section, supersymmetry breaking terms introduce mass-splittings between
ordinary particles and their super-partners. Given that particles have zero masses in the limit of exact
GSM , only superpartners are given soft mass terms. After the SU(2) ×U(1) breaking, ordinary particles
as well as superparticles attain mass terms. For the supersymmetric partners, these mass terms are either
additional contributions or mixing terms between the various super-particles. Thus, just like in the case of
ordinary SM fermions, where one has to diagonalise the fermion mass matrices to write the lagrangian
in the ‘on-shell’ format or the physical basis, a similar diagonalisation has to be done for the super-
symmetric particles and their mass matrices.

8.1 The Neutralino Sector
To begin with lets start with the gauge sector. The superpartners of the neutral gauge bosons (neutral
gauginos) and the fermionic partners of the neutral higgs bosons (neutral higgsinos) mix to form Neu-
tralinos. The neutralino mass matrix in the basis

L ⊃ 1

2
ΨNMNΨT

N +H.c

where ΨN = {B̃, W̃ 0, H̃0
1 , H̃

0
2} is given as :

MN =




M1 0 −MZcβ sθW MZsβ sθW
0 M2 MZcβ cθW MZsβ cθW

−MZcβ sθW MZcβ cθW 0 −µ
MZsβ sθW −MZsβ cθW −µ 0


 , (45)

9In this lecture note, we will be using g2 = g = gW for the SU(2) coupling, whereas g′ = g1 for the U(1)Y coupling and
gs = g3 for the SU(3) strong coupling.
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with cβ(sβ) and cθW (sθW ) standing for cosβ(sinβ) and cos θW (sin θW ) respectively. As mentioned
earlier, M1 and M2 are the soft parameters, whereas µ is the superpotential parameter, thus SUSY
conserving. The angle β is typically taken as a input parameter, tanβ = v2/v1 whereas θW is the
Weinberg angle given by the inverse tangent of the ratio of the gauge couplings as in the SM. Note that
the neutralino mass matrix being a Majorana mass matrix is complex symmetric in nature. Hence it is
diagonalised by a unitary matrix N ,

N∗ ·MÑ ·N † = Diag.(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
) (46)

The states are rotated by χ0
i = N?Ψ to go the physical basis.

8.2 The Chargino Sector
In a similar manner to the neutralino sector, all the fermionic partners of the charged gauge bosons and of
the charged Higgs bosons mix after electroweak symmetry breaking. However, they combine in a such
a way that a Wino-Higgsino Weyl fermion pair forms a Dirac fermion called the chargino. This mass
matrix is given as

L ⊃ −1

2

(
W̃− H̃−1

) ( M2

√
2MW sinβ√

2MW cosβ µ

)(
W̃+

H̃+
2

)
, (47)

Given the non-symmetric (non-hermitian) matrix nature of this matrix, it is diagonalised by a bi-unitary
transformation, U∗ ·MC · V † = Diag.(mχ+

1
,mχ+

2
). The chargino eigenstates are typically represented

by χ± with mass eigenvalues mχ± . The explicit forms for U and V can be found by the eigenvectors of
MCM

†
C and M †CMC respectively [26].

8.3 The Sfermion Sector
Next let us come to the sfermion sector. Remember that we have added different scalar fields for the right
and left handed fermions in the Standard Model. After electroweak symmetry breaking, the sfermions
corresponding to the left fermion and the right fermion mix with each other. Furthermore while writing
down the mass matrix for the sfermions, we should remember that these terms could break the flavour
i.e, we can have mass terms which mix different generation. Thus, in general the sfermion mass matrix
is a 6× 6 mass matrix given as :

ξ† M2
f̃
ξ ; ξ = {f̃Li , f̃Ri}

From the total scalar potential, the mass matrix for these sfermions can be derived using standard defini-
tion given as

m2
ij =




∂2V
∂φi∂φ?j

∂2V
∂φi∂φj

∂2V
∂φ?i ∂φ

?
j

∂2V
∂φ?i ∂φj


 (48)

Using this for sfermions, we have :

M2
f̃

=

(
m2
f̃LL

m2
f̃LR

m2 †
f̃LR

m2
f̃RR

)
, (49)

where each of the above entries represents 3×3 matrices in the generation space. More specifically, they
have the form (as usual, i, j are generation indices):

m2
f̃LiLj

= M2
f̃LiLj

+m2
fδij +M2

Z cos 2β(T3 + sin2 θWQem)δij

m2
f̃LiRj

=
((
Y A
f ·v2v1 −mfµ

tanβ
cotβ

)
for f =e,d

u

)
δij
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m2
f̃RR

= M2
f̃Rij

+
(
m2
f +M2

Z cos 2β sin2 θWQem
)
δij (50)

In the above, M2
f̃L

represents the soft mass term for the corresponding fermion (L for left, R for right),
T3 is the eigenvalue of the diagonal generator of SU(2), mf is the mass of the fermion with Y and
Qem representing the hypercharge and electromagnetic charge (in units of the charge of the electron )
respectively. The sfermion mass matrices are hermitian and are thus diagonalised by a unitary rotation,
Rf̃R

†
f̃

= 1:

Rf̃ ·Mf̃ ·R
†
f̃

= Diag.(mf̃1
,mf̃2

, . . . ,mf̃6
) (51)

8.4 The Higgs sector
Now let us turn our attention to the Higgs fields. We will use again use the standard formula of eq.(48),
to derive the Higgs mass matrices. The eight Higgs degrees of freedom form a 8× 8 Higgs mass matrix
which breaks down diagonally in to three 2× 2 mass matrices10.

The mass matrices are divided in to charged sector, CP odd neutral and CP even neutral. This helps
us in identifying the goldstone modes and the physical spectrum in an simple manner. Before writing
down the mass matrices, let us first define the following parameters :

m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2, m2
3 = Bµµ.

In terms of these parameters, the various mass matrices and the corresponding physical states obtained
after diagonalising the mass matrices are given below:

Charged Higgs and Goldstone Modes:

(
H+

1 H+
2

)( m2
1 + 1

8(g2
1 + g2

2)(v2
1 − v2

2) + 1
4g

2
2v

2
2 m2

3 + 1
4g

2
2v1v2

m2
3 + 1

4g
2
2v1v2 m2

2 − 1
8(g2

1 + g2
2)(v2

1 − v2
2) + 1

4g
2
2v

2
2

)(
H−1
H−2

)

(52)
Using the minimisation conditions (44), this matrix becomes,

(
H+

1 H+
2

)
(
m2

3

v1v2
+

1

4
g2

2)

(
v2

2 v1v2

v1v2 v2
1

)(
H−1
H−2

)
(53)

which has determinant zero leading to the two eigenvalues as :

m2
G± = 0

m2
H± =

(
m2

3

v1v2
+

1

4
g2

2

)
(v2

1 + v2
2), (54)

=
2m2

3

sin2β
+M2

W (55)

where G± represents the Goldstone mode. The physical states are obtained just by rotating the original
states in terms of the H1, H2 fields by an mixing angle. The mixing angle in the present case (in the
unitary gauge) is just tanβ:

(
H±

G±

)
=

(
sinβ cosβ
−cosβ sinβ

)(
H±

G±

)
(56)

CP odd Higgs and Goldstone Modes:
10The discussion in this section closely follows from the discussion presented in Ref. [27]
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Let us now turn our attention to the CP-odd Higgs sector. The mass matrices can be written in a similar
manner but this time for imaginary components of the neutral Higgs.

(
ImH0

1 ImH0
2

)( m2
1 + 1

8(g2
1 + g2

2)(v2
1 − v2

2) m2
3

m2
3 m2

2 − 1
8(g2

1 + g2
2)(v2

1 − v2
2)

)(
ImH0

1

ImH0
2

)
(57)

As before, again using the minimisation conditions, this matrix becomes,

(
ImH0

1 ImH0
2

)
m2

3

(
v2/v1 1

1 v1/v2

)(
ImH0

1

ImH0
2

)
(58)

which has determinant zero leading to the two eigenvalues as :

m2
G0 = 0

m2
A0 =

(
m2

3

v1v2

)
(v2

1 + v2
2) =

2m2
3

sin2β
(59)

Similar to the charged sector, the mixing angle between these two states in the unitary gauge is again just
tanβ.

1√
2

(
A0

G0

)
=

(
sinβ cosβ
−cosβ sinβ

)(
ImH0

1

ImH0
2

)
(60)

CP even Higgs:
Finally, let us come to the real part of the neutral Higgs sector. The mass matrix in this case is given by
the following.

(
ReH0

1 ReH0
2

) 1

2

(
2m2

1 + 1
4(g2

1 + g2
2)(3v2

1 − v2
2) −2m2

3 − 1
4v1v2(g2

1 + g2
2)

−2m2
3 − 1

4v1v2(g2
1 + g2

2) 2m2
2 + 1

4(g2
1 + g2

2)(3v2
2 − v2

1)

)(
ReH0

1

ReH0
2

)

(61)
Note that in the present case, there is no Goldstone mode. As before, we will use the minimisation
conditions and further using the definition of m2

A from eq.(59), we have :

(
ReH0

1 ReH0
2

)( m2
Asin

2β +M2
z cosβ −(m2

A +m2
Z)sinβcosβ

−(m2
A +m2

Z)sinβcosβ m2
Acos

2β +M2
z sinβ

)(
ReH0

1

ReH0
2

)
(62)

The matrix has two eigenvalues which are given by the two signs of the following equation:

m2
H,h =

1

2

[
m2
A +m2

Z ± {(m2
A +m2

Z)2 − 4m2
Zm

2
Acos

22β}1/2
]

(63)

The heavier eigenvalue m2
H , is obtained by taken the positive sign, whereas the lighter eigenvalue m2

h is
obtained by taking the negative sign respectively. The mixing angle between these two states can be read
out from the mass matrix of the above11 as :

tan 2α =
m2
A +m2

Z

m2
A −m2

Z

tan 2β (64)

Tree Level Catastrophe:
So far we have seen that out of the eight Higgs degrees of freedom, three of them form the Goldstone
modes after incorporating SU(2)× U(1) breaking and there are five physical Higgs bosons fields in the
MSSM spectrum. These are the charged Higgs (H±) a CP-odd Higgs (A) and two CP-even Higgs bosons

11The mixing angle for a 2 × 2 symmetric matrix, Cij is given by

tan2θ = 2C12/(C22 − C11).
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(h,H). From the mass spectrum analysis above, we have seen that the mass eigenvalues of these Higgs
bosons are related to each other. In fact, putting together all the eigenvalue equations, we summarise the
relations between them as follows :

m2
H± = m2

A +m2
W > max(M2

W ,m
2
A)

m2
h +m2

H = m2
A +m2

Z

mH > max(mA,mZ)

mh < min(mA,MZ)|cos2β| < min(mA,mZ) (65)

Let us concentrate on the last relation of the above eq.(65). The condition on the lightest CP even Higgs
mass, mh, tell us that it should be equal to mZ in the limit tanβ is saturated to be maximum, such that
cos2β → 1 and mA → ∞. If these limits are not saturated, it is evident that the light higgs mass
is less that mZ . This is one of main predictions of MSSM which could make it easily falsifiable from
the current generation of experiments like LEP, Tevatron and the upcoming LHC. Given that present day
experiments have not found a Higgs less that Z-boson mass, it is tempting to conclude that the MSSM is
not realised in Nature. However caution should be exercised before taking such a route as our results are
valid only at the tree level. In fact, in a series of papers in the early nineties [28], it has been shown that
large one-loop corrections to the Higgs mass can easily circumvent this limit.

The light Higgs Spectrum at 1-loop
As mentioned previously, radiative corrections can significantly modify the mass relations which we
have presented in the previous section. As is evident, these corrections can be very important for the
light Higgs boson mass. Along with the 1-loop corrections previously, in the recent years dominant parts
of two-loop corrections have also been available [29] with a more complete version recently given [30].
In the following we will present the one-loop corrections to the light Higgs mass and try to understand
the implications for the condition eq.(65). Writing down the 1-loop corrections to the CP-even part of
the Higgs mass matrix as :

M2
Re = M2

Re(0) + δM2
Re, (66)

where M2
Re(0) represents the tree level mass matrix given by eq.(62) and δM2

Re represents its one-loop
correction. The dominant one-loop correction comes from the top quark and stop squark loops which
can be written in the following form:

δM2
Re =

(
∆11 ∆12

∆12 ∆22

)
, (67)

where

∆11 =
3GFm

4
t

2
√

2π2sin2β

[
µ(At + µcotβ)

m2
t̃1
−m2

t̃2

]2(
2−

m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

ln
m2
t̃1

m2
t̃2

)

∆12 =
3GFm

4
t

2
√

2π2sin2β

[
µ(At + µcotβ)

m2
t̃1
−m2

t̃2

]
ln
m2
t̃1

m2
t̃2

+
At
µ

∆11

∆22 =
3GFm

4
t√

2π2sin2β

[
ln
m2
t̃1
m2
t̃2

m2
t

+
At(At + µcotβ)

m2
t̃1
−mt̃2

ln
m2
t̃1

m2
t̃2

]
+
At
µ

∆11 (68)

In the above GF represents Fermi Decay constant, mt, the top mass, m2
t̃1
, m2

t̃1
are the eigenvalues of the

stop mass matrix andAt is the trilinear scalar coupling (corresponding to the top Yukawa coupling) in the
stop mass matrix. µ and the angle β have their usual meanings. Taking in to account these corrections,
the condition (65) takes the form:

m2
h < m2

Zcos22β + ∆11cos2β + ∆12sin2β + ∆22sin2β (69)
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Some SUSY CODES
Spectrum Generators Dark Matter

Flavour Physics Collider Physics 

SPHENO 
SOFTSUSY 
ISASUSY 
SUSPECT  
SUSEFLAV  
FLEXISUSY  

SARAH

ISADM 
SuperISoRelic 
MicroOmegas 

Dark SUSY 

SuperIso 
SUSYFLAVOR 

SuperLFV  
ISABSMU  
SUSEFLAV  

ISAJET 
Prospino 

Higlu 
SUSHI 

MADGRAPH 
CHECKMATE

http://www.hepforge.org5

Fig. 5: Some of the computer codes relevant for studying supersymmetric phenomenology.

Given that mt is quite large, almost twice the mZ mass, for suitable values of the stop masses, it is clear
that the tree level upper limit on the light Higgs mass is now evaded. However, a reasonable upper limit
can still be got by assuming reasonable values for the stop mass. For example assuming stop masses to
be around 1 TeV and maximal mixing the stop sector, one attains an upper bound on the light Higgs mass
as:

mh
<∼ 135 GeV. (70)

8.5 Feynman Rules
In this section, we have written down all the mass matrices of the superpartners, their eigenvalues and
finally the eigenvectors which are required to transform the superpartners in to their physical basis. The
feynman rules corresponding to the various vertices have to be written down in this basis. Thus various
soft supersymmetry breaking and supersymmetry conserving parameters entering these mass matrices
would now determine these couplings as well as the masses, which in turn determine the strength of
various physical processes like crosssections and decay rates. A complete list of the Feynman rules in
the mass basis can be found in various references like Physics Reports like Haber & Kane [26] and D
Chung et. al [32] and also in textbooks like Sparticles [27] and Baer & Tata [31]. A complete set of
Feynman rules is out of reach of this set of lectures. Here I will just present two examples to illustrate
the points I have been making here.

Due to the mixing between the fermionic partners of the gauge bosons and the fermionic partners
of the Higgs bosons, the gauge and the yukawa vertices get mixed in MSSM. We will present here the
vertices of fermion-sfermion-chargino and fermion-sfermion-neutralino where this is evident.
(i) Fermion-Sfermion-Chargino :
This is the first vertex on the left of the figure. The explicit structure of this vertex is given by:

C̃iAX = CRiAXPR + CLiAXPL (71)

where PL(PR) are the project operators12 and CR and CL are given by

cRiAX = −g2(U)A1R
ν
Xi (72)

CLiAX = g2
mli√

2mW cosβ
(V )A2R

ν
Xi (73)

In the aboveU and V are the diagonalising matrices of chargino mass matrixMC ,Rν is the diagonalising
matrix of the sneutrino mass matrix, M2

ν̃ . And the indices A and X runs over the dimensions of the
12PL = (1 − γ5)/2 and PR = (1 + γ5)/2.
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respective matrices (A = 1, 2 for Charginos, X = 1, 2, 3 for sneutrinos), whereas i as usual runs over
the generations,mli is the mass of the i th lepton and rest of the parameters carry the standard definitions.
(ii) Fermion-Sfermion-Neutralino :
In a similar manner, the fermion-sfermion-neutralino vertex is given by:

D̃iAX = DR
iAXPR +DL

iAXPL (74)

where DL and DR have the following forms:

DR
iAX = − g2√

2

{
[−NA2 −NA1tanθW ]RlXi +

mli

mW cosβ
NA3R

l
X,i+3

}
(75)

DL
iAX = − g2√

2

{
mli

mW cosβ
NA3R

l
Xi + 2NA1tanθWR

l
X,i+3

}
(76)

In the above N is diagonalising matrices of neutralino mass matrix MN , Rl is the diagonalising matrix
of the slepton mass matrix, M2

l̃
. And the indices A and X runs over the dimensions of the respec-

tive matrices (A = 1, .., 4 for neutralinos, X = 1, .., 6 for sleptons), whereas i as usual runs over the
generations.

9 Phenomenology of Supersymmetric Models
We now have all the ingredients to discuss the phenomenology of supersymmetric theories. Before doing
that, let us summarise some main features of supersymmetric theories:

– Supersymmetric theories are calculable. Compared to other extensions of SM, this is one of the
most important positive characteristics of supersymmetric theories.

– The three gauge couplings unify in MSSM leading to a successful incorporation of it in a Grand
Unified theory.

– As discussed before, the Higgs mass remains stable under radiative corrections.
– The MSSM with R-parity also provides a natural dark matter candidate in terms of the lightest

supersymmetric particle (LSP). In most models, the LSP is the lightest neutralino providing a
good WIMP candidate.

The spectrum of the supersymmetric particles discussed so far in sections 8 is defined at the tree level,
except for the Higgs mass. In actual phenomenological calculations, radiative corrections to the all
mass matrices and couplings are computed. The MSSM parameters are masses are typically defined at
1-loop level and the SM parameters defined at two loop level. Most of these calculations are tedious,
long and are done by computer programs called spectrum generators. These programs not only compute
the masses at high precision, but also compute that the electroweak symmetry breaking conditions, direct
and indirect constraints on supersymmetric spectrum, supersymmetric contributions to rare processes like
b → sγ etc are also computed. Some of these spectrum generators are SOFTSUSY, SPHENO,suspect,
etc. We have constructed our own spectrum generator SUSEFLAV. While these have been the traditional
spectrum generators, recently, there have been more flexible programs available which have much larger
applicability like Flexisusy, SARAH etc. The reference [33] provides more detailed discussions in this
regard. A small summary of available programs is available in Fig 5.

The phenomenology of supersymmetry can divided in to three small sub-areas through which we
probe supersymmetry : (a) LHC searches (b) Flavour and other precision measurements like electric and
magnetic dipole moments (c) Astrophysical/cosmological probes like dark matter, matter-anti-matter
relic density etc. These three ‘roads’ are schematically depicted in Fig 6. We now review the present
status of each of these sectors. An additional sector which has huge impact on various models of super-
symmetry breaking is the Higgs sector which will be summarised in the next section. For a recent review
on the present status of supersymmetric models, please see, N. Craig’s review [34].
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 Model  
of 

SUSY 

LHC DM
Flavour and 
CP violation

4

Fig. 6: A schematic representation of the three directions through which we probe supersymmetry

8

Searches at LHC 

Coloured  particles are produced more copiously at the LHC 

So squarks and gluinos have the strongest constraints 

 

More Examples

• These come from S. Martin’s SUSY primer - a good resource 

http://arxiv.org/pdf/hep-ph/9709356v4Fig. 7: A list of Feynman diagrams contributing to the production of gluinos and first two generation squarks is
presented above. From Ref. [59]

9.1 LHC limits
At the LHC, the dominant processes are strong processes, which lead to the production of strongly inter-
acting supersymmetric particles, such as gluinos and squarks. The main production channels are through
qq, qg, and gg initial states as depicted in Fig 7. These production cross-sections are large about 1pb
first two generations of squarks and gluinos if their masses are around a TeV. The cross-sections however
fall off rapidly with increasing masses as shown in Fig. 8. As can be seen in the figure, the production
cross-sections for stops are about an order of magnitude smaller for 100 GeV stops, but fall even more
rapidly reaching ∼ 10 fb for 1 TeV stops. The backgrounds are very large, typically by several orders
of magnitude as shown in Fig. 8. Inspite of these difficulties, the LHC experiments, ATLAS and CMS
looking for supersymmetry have already put strong constraints on the masses of the superpartners.

As expected the strongest constraints are on the coloured supersymmetric partners such as gluinos
and first two generation squarks. Gluinos are ruled out between 0.8-2.1 TeV depending on the lightest
neutralino mass. Similarly the first two generation squarks are ruled out up to 1-2.0 TeV. The third
generation top partners, the stops are ruled out between 200-700 GeV. The limits on weakly interacting
particles such as charginos and neutralinos are steadily improving and reaching to 1 TeV in some extreme
limits. It should be noted that most of these limits are within simplified models of supersymmetry and
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Figure 1: NLO+NLL production cross sections for the case of equal degenerate squark and gluino masses as a
function of mass at

√
s = 13 TeV.
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Figure 2: NLO+NLL production cross sections for the case of equal degenerate squark and gluino masses as a
function of mass at

√
s = 14 TeV.

6

SUSY production cross-sections 

arxiv : 1407.5066

fall rapidly

with mass 

Review :

1105.1110

C. Sander                                                  SUSY Searches at CMS                                                  SUSY 2015 - Lake Tahoe 7

• SM is incomplete (DM, hierarchy 
problem, gravity, neutral atoms 
…) 

• SUSY is able to provide 

simultaneously solutions to 
some of these shortcomings 

• SUSY is broken: Masses are 
heavy and cross sections are low 

• Most attractive when masses in 
TeV range → searches @LHC 

• Challenge: suppress and 
understand SM backgrounds 
with orders of magnitude larger 
cross sections

Introduction Christian Sanders, For CMS,

Talk at SUSY 2015 

backgrounds are

typically large

Fig. 8: A summary of production crosssection magnitudes (left) and backgrounds (right) is presented in the above
figures.

therefore could lead to large variations in various other models.

A summary of these limits are presented in Fig. 9.

9.2 Flavour Constraints
Flavour physics is already covered in this school [37]. Here, I focus on the discussion relavant for MSSM.
The supersymmetric soft terms introduced in the Sec. 6 contain flavour violating soft terms.

Lsoft = m2
Qii
Q̃†i Q̃i +m2

uii ũ
c?
i ũ
c
i +m2

dii
d̃c
?
i d̃
c
i +m2

Lii
L̃†i L̃i +m2

eij ẽ
c?
i ẽ
c
i (77)

+
(

∆u,d
i 6=j

)
LL
Q̃†i Q̃j +

(
∆u
i 6=j
)
RR

ũc
?
i ũ
c
j +

(
∆d
i 6=j
)
RR

d̃c
?
i d̃
c
j

+
(

∆l
i 6=j
)
LL
L̃†i L̃j +

(
∆l
i 6=j
)
LR

ẽ?i ẽ
c
j + . . .

As mentioned previously, the soft mass terms m2
ij and the trilinear scalar couplings Aijk can

violate flavour. This gives us new flavour violating structures beyond the standard CKM structure of the
quark sector which can also be incorporated in the MSSM. Furthermore, all these couplings can also be
complex and thus could serve as new sources of CP violation in addition to the CKM phase present in
the Standard Model. Given that all these terms arbitrary and could be of any magnitude close to weak
scale, these terms can contribute dominantly compared to the SM amplitudes to various flavour violating
processes at the weak scale, like flavour violating decays like b → s + γ or flavour oscillations like
K0 ↔ K̄0 etc and even flavour violating decays which do not have any Standard Model counterparts
like µ→ e+ γ etc. A sample Feynman diagrams are listed in Fig. 10. The CP violating phases can also
contribute to electric dipole moments (EDM)s which are precisely measured at experiments.

To analyse the phenomenological impact of these processes on these terms, an useful and pow-
erful tool is the so called Mass Insertion (MI) approximation. In this approximation, we use flavour
diagonal gaugino vertices and the flavour changing is encoded in non-diagonal sfermion propagators.
These propagators are then expanded assuming that the flavour changing parts are much smaller than the
flavour diagonal ones. In this way we can isolate the relevant elements of the sfermion mass matrix for
a given flavour changing process and it is not necessary to analyse the full 6 × 6 sfermion mass matrix.
Using this method, the experimental limits lead to upper bounds on the parameters (or combinations of)
δfij ≡ ∆f

ij/m
2
f̃
, known as mass insertions; where ∆f

ij is the flavour-violating off-diagonal entry appear-

ing in the f = (u, d, l) sfermion mass matrices and m2
f̃

is the average sfermion mass. In addition, the
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Fig. 9: A summary of current limits are presented from the CMS [35] experiment. Similar results are also presented
by the ATLAS experiment. [36]

FIG. 1: The diagrams contributing to µ → e, γ decays

Irrespective of the source, LFV at the weak scale can be parametrised in a model-independent
manner in terms of a mass insertion (MI), ∆l

ij, the flavour violating off-diagonal entry appearing
in the slepton mass matrix2. These MI are further subdivided into LL/LR/RL/RR types, labelled
by the chirality of the corresponding SM fermions3. Depending on the model, one or several of
these types of MI can simultaneously be present at the weak scale. In the presence of any of these
parameters, 1-loop diagrams mediated by gauginos, higgsinos (neutral and 3 charged fermionic
partners of gauge and Higgs bosons) and sleptons lead to lepton flavour violating processes such as
µ → e + γ, µ → 3e, µ → e conversion in nuclei, etc (an example diagram is shown in Fig.1). The
strength of these processes crucially depends on the MI factor δlij ≡ ∆l

ij/m
2
l̃
, wherem2

l̃
is the average

slepton mass. For |δ| < 1, which is expected to be the case for most models, one can always use the
MI approximation [15, 19] to compute the amplitudes of the relevant processes. Such computations
have been done long ago, considering the neutral gaugino diagrams [6, 7]. It has been realised later
that, in addition to the flavour violating LL/RR MI, considering the Higgsinos/gaugino mixing, as
well as the flavour diagonal left-right mixing in the slepton mass matrix, can significantly enhance
the amplitudes of these processes at large tan β [20]. These computations have since then been
updated by Hisano–Nomura [21] and Masina–Savoy [22], including this mixing as well as the
charged gaugino/higgsino contribution4. Taking the tan β factor into account, the branching ratio
of lj → li, γ for the dominant LL MI is roughly given by:

BR(lj → liγ) ≈
α3 |δlij |2
G2

F m4
SUSY

tan2 β, (1)

where mSUSY represents the typical supersymmetry breaking mass such as the gaugino/slepton
mass. For large |δ| ∼ 1 or for many δ’s present simultaneously, it is instructive to diagonalise the
slepton mass matrix and evaluate the precise amplitudes in the mass-eigenstate basis. A complete
computation in this basis has been presented in [23] for several LFV processes such as lj → li + γ;
lj → 3li; µ → e conversion in nuclei. The processes discussed so far are the ones mediated by
neutralino and chargino sector. However, Higgs bosons (h0,H0, A0) are also sensitive to flavour
violation and mediate processes such as µ → e conversion [25], τ → 3µ [26], τ → µη [27]. The
amplitudes of these processes are sensitive to a higher degree in tan β than the chargino/neutralino

2 In the basis where the charged lepton mass matrix is diagonal.
3 i, j, k denote generation indices throughout the present work.
4 Another important feature is that the interference between various contributions could lead to suppressed am-
plitudes in some regions of the parameter space [21, 22, 23]. This typically occurs for RR type MI as long as
universality in the gaugino masses is maintained at the high scale. Although in a completely generic situation
without any universal boundary conditions, such cancellations can occur for LL type MI also [24].
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Fig. 9: 1 loop chargino contribution to the electron EDM at leading order in chargino mass insertions.

It is also useful to use a technique similar to Eq. (88) to expand the chargino mass matrix. In this case
we have to be careful because the chargino mass matrix is not hermitian. However due to the necessary
chirality flip in the chargino line we know that the EDM is a function of odd powers ofMχ+ [83],

2∑

j=1

Uj2Vj1mχ+
j
A(m2

χ+
j
) =

2∑

j,k,l=1

Ulkmχ+
l
Vl1 Uj2A(m

2
χ+
j
)U∗

jk. (93)

where we have simply introduced an identity δlj =
∑

k UlkU
∗
jk. Now, assuming MW ≪ M2, µ, we can

use Eq. (88) to develop the loop function A(x) as a function of the hermitian matrix Mχ+M †
χ+ and we

get,

deχ+ ≃ −α e me

4π sin2 θW

Im
[∑

k

(
Mχ+M †

χ+

)
2k

(
Mχ+

)
k1

]

√
2MW cos β m2

ν̃e

A(r1)−A(r2)

m2
χ+
1
−m2

χ+
2

=
−α e me tan β

4π sin2 θW

Im[M2 µ]

m2
ν̃e

A(r1)−A(r2)

m2
χ+
1
−m2

χ+
2

(94)

with ri = m2
χ+
i

/m2
ν̃e . This structure with three chargino MIs is shown in figure 9. Here we can see that

only ϕµ enters in the chargino contribution. In fact arg(M2 µ) is the rephasing invariant expression of
the observable phase that we usually call ϕµ. Again we can make a rough estimate with µ ≃ M2 ≃
mν̃ ≃ 200 GeV (taking the derivative of A(r)),

deχ+ ≃ 1.5× 10−25 tan β sinϕµ e cm. (95)

Now, comparing with the experimental bound on the electron EDM, we obtain a much stronger bound,
(tan β ϕµ) ≤ 0.01. These two examples give a clear idea of the strength of the “SUSY CP problem”.

As we have seen in these examples typically the bound on ϕµ is stronger than the bound on
ϕA. There are several reason for this, as we can see ϕµ enters the down-type sfermion mass matrix
together with tan β while ϕA is not enhanced by this factor. Furthermore, ϕµ appears also in the chargino
and neutralino mass matrices. This difference is increased if we consider the bounds on the original
parameters atMGUT. The µ phase is unchanged in the RGE evolution, but ϕA = arg(M1/2A0) (where
M1/2 is the gaugino mass) is reduced due to large gaugino contributions to the trilinear couplings in the
running fromMGUT toMW . The bounds we typically find in the literature[84, 85] are,

ϕµ ≤ 10−2 − 10−3, ϕA ≤ 10−1 − 10−2. (96)

Nevertheless, a full computation should take into account all the different contributions to the elec-
tron and neutron EDM. In the case of the electron, we have both chargino and neutralino contributions at
1 loop. For the neutron EDM, we have to include also the gluino contribution, the quark chromoelectric

Fig. 10: Feynman Diagram contributing to the rare decay µ → e + γ in mass eigenstate basis (left) and in mass
insertion basis or flavour basis (right).

.

mass-insertions are further sub-divided into LL/LR/RL/RR types, labeled by the chirality of the corre-
sponding SM fermions. The latest set of results on the hadronic sector can be found in [38] and in the
leptonic sector in [39]. The limits on various δ’s coming from various flavour violating processes have
been computed and tabulate in the literature and can be found for instance in Ref. [40, 41] (For a more
recent statistical approach, see also [42]).

These limits show that the flavour violating terms should be typically at least a couple of orders
of magnitude suppressed compared to the flavour conserving soft terms. The flavour problem could also
be alleviated by considering decoupling soft masses or alignment mechanisms (see [40] and references
there in ). While this is true for the first two generations of soft terms, the recent results from B-factories
have started constraining flavour violating terms involving the third generation too.
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ij\AB LL LR RL RR

12 1.4× 10−2 9.0× 10−5 9.0× 10−5 9.0× 10−3

13 9.0× 10−2 1.7× 10−2 1.7× 10−2 7.0× 10−2

23 1.6× 10−1 4.5× 10−3 6.0× 10−3 2.2× 10−1

TABLE III: 95% probability bounds on |
(
δdij
)
AB

| obtained using the data set described in Section IV. See

the text for details.

Process Present Bounds Expected Future Bounds

BR(µ → e γ) 1.2 × 10−11 O(10−13 − 10−14)

BR(µ → e e e) 1.1 × 10−12 O(10−13 − 10−14)

BR(µ → e in Nuclei (Ti)) 1.1 × 10−12 O(10−18)

BR(τ → e γ) 1.1 × 10−7 O(10−8)

BR(τ → e e e) 2.7 × 10−7 O(10−8)

BR(τ → e µµ) 2. × 10−7 O(10−8)

BR(τ → µ γ) 6.8 × 10−8 O(10−8)

BR(τ → µµµ) 2 × 10−7 O(10−8)

BR(τ → µ e e) 2.4 × 10−7 O(10−8)

TABLE IV: Present and Upcoming experimental limits on various leptonic processes at 90% C.L.

of double MIs
(
δdij

)
LL

(
δdjj

)
LR

in chromomagnetic operators. This dependence however becomes

sizable only for very large values of tanβ.

VI. MASS INSERTION BOUNDS FROM LEPTONIC PROCESSES

In this section, we study the constraints on slepton mass matrices in low energy SUSY imposed

by several LFV transitions, namely li → ljγ, li → ljlklk and µ–e transitions in nuclei [46]. The

present and projected bounds on these processes are summarized in Table IV. These processes

are mediated by chargino and neutralino loops and therefore they depend on all the parameters

entering chargino and neutralino mass matrices. In order to constrain the leptonic MIs δij , we

will first obtain the spectrum at the weak scale for our SU(5) GUT theory as has been mentioned

in detail in section IV. Furthermore, we take all the flavor off-diagonal entries in the slepton

mass matrices equal to zero except for the entry corresponding to the MI we want to bound. To

calculate the branching ratios of the different processes, we work in the mass eigenstates basis

Fig. 11: Bounds on (δ)dij) from Flavour data in the hadronic sector from the paper [41]. The parameter space
chosen is such that the third generation squark masses are close to 500 GeV and the weakly interacting gauginos
are around 200 GeV. These bounds scale inversely with the squark mass and thus can be scaled for the present
limits on them.

An important point is that if we set all the flavour violating off-diagonal entries to zero through
some mechanism or by choosing an appropriate supersymmetry breaking mechanism (as we will see in
the next section), contribution from supersymmetric sector to flavour violation will not be completely
zero. This is because CKM (Cabibbo-Kobayashi-Masakawa) matrix will induce non-trivial flavour vi-
olating interactions between the SM fermion and it’s supersymmetric partner. One of the strongest
constraints in this case comes from BR(b → s + γ) which has been measured very precisely by the
experimental collaborations (with an error of about 5% at the one sigma level). The present numbers are
as follows [43]

BR(b→ s+ γ)exp = (3.43± 0.21± 0.07)× 10−4

BR(b→ s+ γ)SM = (3.36± 0.23)× 10−4 (78)

Given the closeness of the Standard Model expectation to the experimental number, any new physics
should either be very heavy such that it’s contributions to this rare process are suppressed or should
contain cancellations within its contributions such that the total SM+ New physics contribution is close to
the experimental value. Both these scenarios are possible within the MSSM. If supersymmetric partners
are heavy & a few TeV, then their contributions to b→ s+ γ are highly suppressed. On the other hand,
it is possible that the dominant contributions from charged Higgs and the chargino diagrams cancel with
each other (they come with opposite sign) for a large region of the parameter space. The general class of
new physics models which do not introduce any new flavour violation other than the one originating from
the CKM matrix in the Standard Model come under the umbrella of “Minimal Flavour Violation" [44].

9.3 Dark Matter
While supersymmetry offers many dark matter candidates like axino, saxion, gravitino etc, one of the
most popular candidate is the lightest neutralino. For reviews, please see [45]. The neutralinos are
as we have seen linear combinations of neutral gauginos and higgsinos. The composition of the lightest
neutralino determines it’s annihilation cross-section, which in turn determines its mass required to satisfy
the relic density of the universe. The relic density has been measured very well by the satellite based
experiments of the cosmic microwave background radiation (CMB), notably by WMAP and the Planck
satellites. The present day relic density is given to be [46]

ΩCDMh
2 = 0.01199± 0.0022 (79)

Note that the lightest neutralino from the neutralino mass matrix of eq.(45) has the form

Mχ0
1

= NB̃1B̃
0 +NW̃1W̃

0 +NH̃u1H̃
0
u +NH̃d1H̃

0
d (80)
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We now look at various possible compositions of the LSP to satisfy this relic density.
f (a) Pure Bino: If the neutralino is a pure Bino, the annihilation cross-section is given by [47]

〈σχv〉 =
3g4 tan θ4

W r(1 + r2)

2πm2
ẽR
x(1 + r)4

(81)

where x = M1
T the mass of the bino over the temperature and r =. θW is the weak mixing angle, or the

Weinberg angle. The relic density in this case is given by

ΩB̃h
2 = 1.3× 10−2

( mẽR

100 GeV

)2 (1 + r)4

r2(1 + r)2

(
1 + 0.07 log

√
r 100 GeV
mẽR

)
(82)

The above relic density is typically large for reasonable range of parameters. One thus invokes typically
co-annihilating partners which are very close in the mass with the bino, there by increasing the cross-
section and there by bringing down the relic density to acceptable levels.
(b) Pure Wino: In this case the cross-section of the dark matter particle goes as g, the weak coupling and
is given by

〈σχv〉 =

(
3g4

16πM2
2

)
(83)

where M2 stands for the Wino mass. The relic density is approximately given by

ΩW̃h
2 ∼ 0.13

(
M2

2.5 TeV

)2

(84)

This requires heavy Neutralino of the order of 2.5 TeV.
(c) Pure Higgsino: In this case the cross-section of the dark matter particle is given by

〈σχv〉 =
3g4

512πµ2

(
21 + 3 tan θ2

W + 11 tan θ4
W

)
(85)

The relic density in this case is given by

ΩH̃h
2 ∼ 0.10

( µ

1 TeV

)2
(86)

A neutralino of 1 TeV would be required to satisfy the relic density. In summary a pure bino neutralino
can be light but would require co-annihilating partners (or other mechanisms) to have the correct relic
density, whereas both a pure Higgsino or a pure Wino would have to close to a TeV or larger. Admixtures
of various components can however give the right relic density.

In addition to the relic density constraint, the WIMP dark matter is tested at the various direct
detection experiments summarised in your cosmology lectures [13]. They also receive constraints from
various indirect dark matter detection experiments like FERMI, AMS 02 etc. Here we present the up-
dated constraints for various supersymmetric models from Ref. [48]. From the figures, one can see
that supersymmetric neutralino dark matter is strongly constrained from the LUX results. Regions with
co-annihilations are still largely allowed.

9.4 Higgs Mass Constraint
This part of the lectures might have been discussed already in the school [49]. As we have seen in the
MSSM, the lightest neutral Higgs mass is a calculable quantity. It an be considered as a prediction of
a supersymmetric model as it is dependent dominantly on a very few parameters such as tanβ, stop
masses, and the stop mixing paramter Xt ≡ At + µ cotβ. Thus the measured Higgs can be provide a
strong constraint on supersymmetric models. In fact, this constraint is as strong as the constraint from
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Figure 8. The (m�̃0
1
, �SI

p ) planes in the CMSSM (upper left), the NUHM1 (upper right), the NUHM2

(lower left) and the pMSSM10 (lower right). The red and blue solid lines are the ��2 = 2.30 and 5.99
contours, and the solid purple lines show the projected 95% exclusion sensitivity of the LUX-Zepelin
(LZ) experiment [35]. The green and black lines show the current sensitivities of the XENON100 [33]
and LUX [34] experiments, respectively, and the dashed orange line shows the astrophysical neutrino
‘floor’ [37], below which astrophysical neutrino backgrounds dominate (yellow region).

ing on protons. In [5] it was shown that similar
cancellations hold when the cross section for spin-
independent scattering on neutrons is considered,
instead of the proton case shown in Fig. 8.
Table 1 also summarizes the observability of

DM particles in direct searches in the di↵erent
scenarios considered. We see a degree of com-

plementarity between the LHC and direct DM
searches.
We have focused in this article on the prospects

for direct searches for DM scattering. A comple-
mentary probe of the properties of supersymmet-
ric DM is through indirect detection, searching
for the traces of DM annihilation in the Galaxy.

Fig. 12: Status of supersymmetric dark matter searches [48]: exclusion limits in the CMSSM (upper left), the
NUHM1 (upper right), the NUHM2 (lower left) and the pMSSM10 (lower right). The red and blue solid lines are
the ∆χ2 = 2.30 and 5.99 contours, and the solid purple lines show the projected 95% exclusion sensitivity of the
LUX-Zepelin (LZ) experiment. The green and black lines show the current sensitivities of the XENON100 and
LUX experiments, respectively, and the dashed orange line shows the astrophysical neutrino ’floor’, below which
astrophysical neutrino backgrounds dominate (yellow region).

non-discovery of supersymmetry particles at the LHC, summarised in section 9.1 if not stronger. The
calculation of the Higgs mass is done currently at three loop level. While the 1-loop corrections are large,
two loop corrections can also be significant giving corrections to the order of 10-12 GeV in regions of
parameter space. While recently full three loop calculations are being done, the efforts are towards
bringing down the theoretical error in the Higgs mass computation to be around 1 GeV. For a recent
review on the computation of the Higgs mass in MSSM, including various schemes, please see Patrick
Draper’s review [50].

To see implications of the Higgs mass measurement on supersymmetric stop parameter space,
please see fig (13). We can see from the figure that for zero stop mixing Xt ∼ 0, the stops should be
above 3 TeV or heavier to give the correct Higgs mass. On the other hand, in the limit of maximal stop
mixing Xt ∼

√
6msusy, where msusy =

√
mt̃1

mt̃2
, stop can be as light as a couple hundred GeV. This

’no-go ’ theorem should be considered from the point of view of discoverability at LHC. While stops
up to 1-1.5 TeV can be discovered by the time full run of LHC is completed, it is not possible produce
stops of the order of 3-4 TeV at the LHC. Since typically stops are the lightest colored particles in
most supersymmetric models, this has strong implications on discoverability of various supersymmetric
models.

Due to the requirement that the Xt should be large to generate the right higgs mass, another
important constraint comes to play. This is from the scalar potential of the MSSM. Remember that Xt is
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Figure 3: Comparison between the EFT computation (lower blue band) and two existing codes: FeynHiggs [41]
and Suspect [39]. We used a degenerate SUSY spectrum with mass mSUSY in the DR-scheme with tan� = 20.
The plot on the left is mh vs mSUSY for vanishing stop mixing. The plot on the right is mh vs Xt/mSUSY for
mSUSY = 2 TeV. On the left plot the instability of the non-EFT codes at large mSUSY is visible.

due to the missing 2-loop corrections in the top mass7. Note that, as discussed in the previous
section, the uncertainty in the EFT approach is dominated by the 3-loop top matching conditions,
the 2-loop ones are thus mandatory in any precision computation of the Higgs mass. We checked
that after their inclusion, the FeynHiggs code would perfectly agree with the EFT computation
at zero squark mixing. At maximal mixing the disagreement would be reduced to 4 GeV, which
should be within the expected theoretical uncertainties of the diagrammatic computation.

For comparison, in fig. 3 we also show the results obtained with a di↵erent code (Suspect [39])
which uses a diagrammatic approach but unlike FeynHiggs, does not perform RGE improvement
and its applicability becomes questionable for mSUSY in the multi TeV region.

3 Results

After having seen that the EFT computation is reliable for most of the relevant parameter space
we present here some of the implications for the supersymmetric spectrum. Given the generic
agreement with previous computations using the same approach, we tried to be as complemen-
tary as possible in the presentation of our results, putting emphasis on the improvements of our
computation and novel analysis in the EFT approach.

3.1 Where is SUSY?

Fig. 4 represents the parameter space compatible with the experimental value of the Higgs mass in
the plane of (m1/2, m0) for zero (blue) and increasing values (red) of the stop mixing. For simplicity
we took degenerate scalar masses m0 as well as degenerate fermion masses m1/2 = M1,2,3 = µ. All

7It was brought to our attention that a similar observation was also made in [42].
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Fig. 13: A comparison [51] of the various computations of the Higgs mass in MSSM: the EFT computation (lower
blue band) is compared to two existing codes; FeynHiggs and Suspect. A degenerate SUSY spectrum was used
with mass mSUSY in the DR-scheme with tanβ = 20. The plot on the left shows mh vs mSUSY for vanishing
stop mixing. The plot on the right shows mh vs Xt/mSUSY for mSUSY = 2 TeV. On the left plot the instability of
the non-EFT codes at large mSUSY is visible.

FIG. 1. Stable (blue, vertical lines), meta-stable (green, stars) and unstable (red, checkered)

vacuum in the mh vs. Xt/MS plane. The left panel represents three field analysis and the right

panel four field analysis.

mass given by [42–45]

m2
h ⇡M2

Z cos2 2� +
3g2

2m
4
t

8⇡2M2
W


ln

✓
mt̃1mt̃2

m2
t

◆
+

X2
t

mt̃1mt̃2

✓
1� X2

t

12mt̃1mt̃2

◆�
, (2)

where Xt = At�µ/ tan �. The first term is the usual tree level mass term and the second term

is the dominant 1-loop correction from the top-stop loop. For stops of the O(1 TeV), a value

of 125 GeV for the mass of the light Higgs requires a significant contribution from the Xt

terms. The contribution from these terms gets maximized for values of |Xt| ⇠
p

6 mt̃1mt̃2 .

Such large values for Xt typically translate into large values of the trilinear coupling At ⇠ 1

TeV, i.e. comparable to the stop masses. It has been known that large values of At can lead

to charge and color breaking minima [15–23]3. In light of this, it would be interesting to

know whether large At values required to satisfy the Higgs mass measurement lead to color

and charged breaking (CCB) minima. We have done an exhaustive numerical analysis (as

will be detailed in the next section) looking for charge and color breaking minima in the

field space of the two Higgs doublets and t̃L and t̃R. We have classified the various possible

minima as follows:

3 Alternate sources of CCB have also been suggested as in Ref. [46].

4

Fig. 14: Stable (blue, vertical lines), meta-stable (green, stars) and unstable (red, checkered) vacuum in the mh vs
Xt/MS plane, from three-field analysis (left) and four-field analysis (right) [52].

a trilinear term of stops and the Higgs, and thus, there is a danger that the stops get a vacuum expectation
value for large values of it. If stop fields get a vaccum expectation value, they break the charge and
colour symmetries of the Standard Model which is unwanted and unphysical. Thus these regions of the
parameter space should be avoided. In Fig. (14 ), we show the present constraints from charge and colour
breaking minima and in the parameter space of Xt and higgs mass from the Ref. [52]. As can be seen, a
significant portion of the Higgs mass region is invalid or unphysical due to constraints from charge and
colour breaking minima.

10 ‘Standard’ Models of Supersymmetry breaking
So far we have included supersymmetry breaking within the MSSM through a set of explicit super-
symmetry breaking soft terms however, at a more fundamental we would like to understand the origins
of these soft terms as coming from a theory where supersymmetry is spontaneously broken. In a pre-
vious section, we have mentioned that supersymmetry needs to be broken spontaneously in a hidden
sector and then communicated to the visible sector through a messenger sector. In the below we will
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consider two main models for the messenger sector (a) the gravitational interactions and (b) the gauge
interactions. But before we proceed to list problems with the general form soft supersymmetry breaking
terms as discussed in the previous section. This is essential to understand what kind of constructions
of supersymmetric breaking models are likely to be realised in Nature and thus are consistent with phe-
nomenology.

The way we have parameterised supersymmetry breaking in the MSSM, using a set of gauge
invariant soft terms, at the first sight, seems to be the most natural thing to do in the absence of a
complete theory of supersymmetry breaking. However, this approach is itselves laden with problems as
we realise once we start confronting this model with phenomenology. The two main problems can be
listed as below:
(i). Large number of parameters
Compared to the SM, in MSSM, we have a set of more than 50 new particles; writing down all possible
gauge invariant and supersymmetry breaking soft terms, limits the number of possible terms to about
105. All these terms are completely arbitrary, there is no theoretical input on their magnitudes, relative
strengths, in short there is no theoretical guiding principle about these terms. Given that these are large
in number, they can significantly effect the phenomenology. In fact, the MSSM in its softly broken form
seems to have lost predictive power except to say that there are some new particles within a broad range
in mass(energy) scale. The main culprit being the large dimensional parameter space∼ 105 dimensional
space which determines the couplings of the supersymmetric particles and their the masses. If there is
a model of supersymmetry breaking which can act as a guiding principle and reduce the number of free
parameters of the MSSM, it would only make MSSM more predictive.

(ii). Large Flavour and CP violations. We have seen in the previous section that generic supersymmetry
breaking leads to large flavour and CP violating soft terms. The limits are very strong on these terms.
In light of this stringent constraint, it is more plausible to think that the fundamental supersymmetry
breaking mechanism some how suppresses these flavour violating entries. Similarly, this mechanism
should also reduce the number of parameters such that the MSSM could be easily be confronted with
phenomenology and make it more predictive. We will consider two such models of supersymmetry
breaking below which will use two different kinds of messenger sectors.

10.1 Minimal Supergravity
In the minimal supergravity framework, gravitational interactions play the role of messenger sector.
Supersymmetry is broken spontaneously in the hidden sector. This information is communicated to the
MSSM sector through gravitational sector leading to the soft terms. Since gravitational interactions play
an important role only at very high energies, Mp ∼ O(1019) GeV, the breaking information is passed
on to the visible sector only at those scales. The strength of the soft terms is characterised roughly
by, m2

f̃
≈ M2

S/Mplanck, where MS is the scale of supersymmetry breaking. These masses can be

comparable to weak scale for MS ∼ 1010 GeV. This M2
S can correspond to the F-term vev of the Hidden

sector. The above mechanism of supersymmetry breaking is called supergravity (SUGRA) mediated
supersymmetry breaking.

A particular class of supergravity mediated supersymmetry breaking models are those which go
under the name of "minimal" supergravity. This model has special features that it reduces to total num-
ber of free parameters determining the entire soft spectrum to five. Furthermore, it also removes the
dangerous flavour violating soft terms in the MSSM. The classic features of this model are the following
boundary conditions to the soft terms at the high scale ∼ MPlanck :

– All the gaugino mass terms are equal at the high scale.

M1 = M2 = M3 = M1/2
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Figure 1: Top left: The profile likelihood ratio in the m0-m1/2 plane of the CMSSM. The white lines depict
the 68% and 95% CL contours while the white star indicates the best-fit point. Top right: Colouring of
the 95% CL region to indicate which mechanisms contribute to keeping the neutralino relic density below
the observed value. Note that the colouring is not exclusive, i.e. overlapping colours indicates that multiple
mechanisms may contribute in the given region. Bottom: Similarly coloured plots for the m0-m1/2 planes of
the NUHM1 (left) and NUHM2 (right). Figures from [7].

best-fit is provided by the stop co-annihilation region in the lower-left part of the plane. The
preferred parameter space also encompasses a region at larger values for the mass parameters,
where an over-abundant relic density is avoided through chargino co-annihilation and/or resonant
annihilation through the A/H-funnel. Interestingly, the stau-coannihilation region is now excluded
at 95% CL in the CMSSM.

Results for the m0-m1/2 planes of the NUHM1 and NUHM2 are shown in the bottom row
of Figure 1. Compared to the CMSSM, the additional parametric freedom in the NUHM1 and
NUHM2 leads to a widening of the preferred parameter space. The best-fit region is again the stop
co-annihilation region, but now also the stau co-annihilation region is allowed at the 95% CL.

The stop co-annihilation region in the CMSSM extends down to stop masses of around 250 GeV.
Due a stop–neutralino mass difference of less than 50 GeV it will be challenging to fully explore

2

Fig. 15: Status of the CMSSM (top) and NUHM1 and NUHM2 (bottom) models according to GAMBIT [53]. Top
left: the profile likelihood ratio (top left) in the m0 −m1/2 plane of the CMSSM. The white lines depict the 68%
and 95% CL contours while the white star indicates the best fit. Top right and bottom plots: colouring of the 95%
CL regions to indicate which mechanisms contribute to keeping the neutralino relic density below the observed
value. Note that the colouring is not exclusive, i.e. overlapping colours indicate that multiple mechanisms may
contribute in the given region.

– All the scalar mass terms at the high scale are equal.

m2
φij

= m2
0δij

– All the trilinear scalar interactions are equal at the high scale.

Aijk = Ahijk

– All bilinear scalar interactions are equal at the high scale.

Bij = B

Using these boundary conditions, one evolves the soft terms to the weak scale using renormalisation
group equations. It is possible to construct supergravity models which can give rise to such kind of
strong universality in soft terms close to Planck scale. This would require the Kahler potential of the
theory to be of the canonical form. As mentioned earlier, the advantage of this model is that it drastically
reduces the number of parameters of the theory to about five, m0,M (or equivalently M2), ratio of the
vevs of the two Higgs, tanβ, A, B. Thus, these models are also known as ‘Constrained’ MSSM in
literature. The supersymmetric mass spectrum of these models has been extensively studied in literature.
The Lightest Supersymmetric Particle (LSP) is mostly a neutralino in this case.

The present status of the CMSSM is summarised in a detailed analysis by the GAMBIT collabora-
tion [53]. As can be seen from Fig.15, the most of the valid regions point to a very heavy supersymmetric
spectrum way outside the reach of the LHC.
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FIG. 5. Messenger scale required to produce su�ciently large |At| for mh = 123 GeV (left) and mh = 125 GeV
(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
�. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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FIG. 6. Higgs mass as a function of MS , with Xt = 0. The
green band is the output of FeynHiggs together with its as-
sociated uncertainty. The blue line represents 1-loop renor-
malization group evolution in the Standard Model matched
to the MSSM at MS . The blue bands give estimates of errors
from varying the top mass between 172 and 174 GeV (darker
band) and the renormalization scale between mt/2 and 2mt

(lighter band).

Fig. 16: Implications of the Higgs discovery on minimal GMSB models [54]: the coloured regions indicate the
messenger scale required to produce a sufficiently large |At| for mh = 123 GeV (left) and mh = 125 GeV (right)
through renormalization group evolution.

10.2 Gauge Mediated Supersymmetry breaking
In a more generic case, the Kahler potential need not have the required canonical form. In particular,
most low energy effective supergravities from string theories do not posses such a Kahler potential. In
such a case, large FCNC’s and again large number of parameters are expected from supergravity theories.
An alternative mechanism has been proposed which tries to avoid these problems in a natural way. The
key idea is to use gauge interactions instead of gravity to mediate the supersymmetry breaking from the
hidden (also called secluded sector sometimes) to the visible MSSM sector. In this case supersymmetry
breaking can be communicated at much lower energies ∼ 100 TeV.

A typical model would contain a susy breaking sector called ‘messenger sector’ which contains a
set of superfields transforming under a gauge group which ‘contains’ GSM . Supersymmetry is broken
spontaneously in this sector and this breaking information is passed on to the ordinary sector through
gauge bosons and their fermionic partners in loops. The end-effect of this mechanism also is to add the
soft terms in to the lagrangian. But now these soft terms are flavour diagonal as they are generated by
gauge interactions. The soft terms at the messenger scale also have simple expressions in terms of the
susy breaking parameters. In addition, in minimal models of gauge mediated supersymmetry breaking,
only one parameter can essentially determine the entire soft spectrum.

In a similar manner as in the above, the low energy susy spectrum is determined by the RG scaling
of the soft parameters. But now the high scale is around 100 TeV instead of MGUT as in the previous
case. The mass spectrum of these models has been studied in many papers. The lightest supersymmetric
particle in this case is mostly the gravitino in contrast to the mSUGRA case.

The discovery of the Higgs boson with a mass range ∼ 126 GeV has put strong constraints on the
(minimal ) GMSB models. In Fig. 16, we present the analysis of Ref. [54] which shows that it is not
possible to generate the correct higgs mass in GMSB models unless the stop and the gluino spectrum
is made very heavy, much out of the reach of LHC. Several models have been proposed since then to
generate Higgs mass while keeping the stops light ∼ 1− 2TeV. The popular among them involve adding
Yukawa interactions between the messengers and the MSSM fields in addition to the gauge interactions.
A survey of these kind of models is presented in Ref. [55].

Another popular supersymmetry breaking mechanism is called Anomaly mediated supersymmetry
breaking [66], which are not covered in this set of lectures.
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GeV as seen from Fig. 3. Moreover, for this range of MD, the Higgs mass constraint can

only be satisfied with large At. However, such a large At enhances the Higgsino-stop loop

contribution in the B ! Xs� decay (see Eqs. (15,16)) significantly. This in turn pushes the

degenerate scale to the higher values seen in Fig. 3. The Bs ! µ+µ� constraint remains sub-

dominant in whole of the parameter space. After considering all the constraints in Eq. (21),

the lower bound on the degenerate scale is MD ' 600 GeV for ±10% deviation from the

exact degeneracy.

In the left side panel of Fig. 4, we show the correlation between the masses of lightest stop

and lightest neutralino for the points in Fig. 3. We see that in the resulting spectrum, the

lightest stop could be as light as 550 GeV with lightest neutralino to be around 500 GeV. As

noted earlier, the current limits on mt̃1 do not apply if mt̃1 > 400 GeV and mt̃1�m�̃0
1

< 200

GeV. It is also challenging for the next runs of LHC to probe this entire region because

of the possible close degeneracy in the stop-neutralino masses. In order to account for the

observed value of (g� 2) of muon at 2�, one gets an upper bound on the lightest stop mass

and it is required to be . 1 TeV. For mt̃1 ' 1 TeV the stop pair production cross-section is

⇠ 10 fb at 14 TeV LHC.

In the right-hand panel of Fig. 4 we plot the same points as in the left panel but in the

mg̃ � m�̃0
1

plane. We see that mg̃ . 1.2 TeV if muonic (g � 2) is to be within 2� of its

measured value. More interesting is the non-vanishing gap between the LSP mass and mg̃.

We have checked that this occurs because radiative corrections typically increase mg̃ by a

factor ⇠ 15↵3

4⇡
⇠ 10%, while mixing e↵ects tend to reduce the mass of the LSP as well as the

lighter top squark. The qualitative di↵erence in the stop-LSP and gluino-LSP mass gaps

(which obviously impact LHC searches) plays an important role in the determination of the

14

Fig. 17: Parameter space allowed for degenerate/compressed MSSM scenarios [56]. The green (orange) regions
in the At −MD plane are consistent with the experimental value of (g − 2)µ at 2σ (3σ).

10.2.1 Radiative Electroweak symmetry breaking
In both gravity mediated as well as gauge mediated supersymmetry breaking models, we have seen that
RG running effects have to included to study the soft terms at the weak scale. Typically, the soft masses
which appear at those scales are positive at the high scale. But radiative corrections can significantly
modify the low scale values of these parameters; in particular, making one of the Higgs mass squared to
be negative at the weak scale leading to spontaneous breaking of electroweak symmetry. This mechanism
is called radiative electroweak symmetry breaking.

10.3 Escaping The LHC limits
The LHC has not seen any signals of supersymmetric particles. This has put strong constraints on various
supersymmetric models as we have seen. In fact, in most models, this would push all the supersymmetric
particles to be very heavy ∼ with masses around several TeV. However, it could be that the supersym-
metry particles are present within masses close to TeV, and they somehow escaped detection at the LHC.
Several ideas were presented : stealth supersymmetry, compressed/degenerate supersymmetry, R-parity
violation etc.

In the following we will not go in to the details of all the possible scenarios discussed above
but make a few comments on the compressed/degenerate supersymmetry models. In these models, all
the supersymmetric particles are almost degenerate in mass. Thus the decay chains of supersymmetric
particles produced at LHC will end up leading to very soft (very low energy) final state particles that
will not trigger the detectors at the LHC. Thus the only constraints would be from the Higgs mass,
b→ s+ γ and other indirect constraints. In Fig.17 we show the parameter space remaining after taking
in to consideration all these constraints. As you can see, the mass spectrum of MSSM can still be low to
give the correct contribution to muon g−2. The degenerate MSSM scenarios are tested by the mono-jet,
mono-photon searches at the LHC. The current limits can be found at [35].

11 Remarks
The present set of lectures are only a set of elementary introduction to the MSSM. More detailed accounts
can be found in various references which we have listed at various places in the text. In preparing for these
set of lectures, I have greatly benefitted from various review articles and text books. I have already listed
some of them at various places in the text. Some parts of it are taken from [57,58]. Martin’s review [59]
is perhaps the most comprehensive and popular references. It is also constantly updated. Another review
which I strongly recommend is by Matteo Bertollini [60]. Some other excellent reviews are [61] and [62].
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A concise introduction can also be found in [63]. For more formal aspects of supersymmetry including
a good introduction to supergravity please have a look at [64] and [65]. Happy Susying.
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Appendices
A A lightning recap of the Standard Model
The present recap is only for completeness sake and is not considered a detailed introduction to quantum
field theories and electroweak standard model can be found in lectures by Prof. Kitano [67].

The Standard Model (SM) is a spontaneously broken Yang-Mills quantum field theory describing
the strong and electroweak interactions. The theoretical assumption on which the Standard Model rests
on is the principle of local gauge invariance with the gauge group given by

GSM ≡ SU(3)c × SU(2)L × U(1)Y , (A.1)

where the subscript c stands for color, L stands for the ‘left-handed’ chiral group whereas Y is the
hypercharge. The particle spectrum and their transformation properties under these gauge groups are
given as,

Qi ≡
(
uLi
dLi

)
∼
(

3, 2,
1

6

)
Ui ≡ uRi ∼

(
3̄, 1,

2

3

)

Di ≡ dRi ∼
(

3̄, 1, − 1

3

)

Li ≡
(
νLi
eLi

)
∼
(

1, 2, − 1

2

)
Ei ≡ eRi ∼ (1, 1, − 1)

In the above i stands for the generation index, which runs over the there generations i = 1, 2, 3. Qi rep-
resents the left handed quark doublets containing both the up and down quarks of each generation. Simi-
larly, Li represents left handed lepton doublet, Ui, Di, Ei represent right handed up-quark, down-quark
and charged lepton singlets respectively. The numbers in the parenthesis represent the transformation
properties of the particles under GSM in the order given in eq.(A.1). For example, the quark doublet Q
transforms a triplet (3) under SU(3) of strong interactions, a doublet (2) under weak interactions gauge
group and carry a hypercharge (Y/2) of 1/6 13. In addition to the fermion spectra represented above,
there is also a fundamental scalar called Higgs whose transformation properties are given as

H ≡
(
H+

H0

)
∼ (1, 2, 1/2) . (A.2)

However, the requirement of local gauge invariance will not be fulfilled unless one includes the
gauge boson fields also. Including them, the total lagrangian with the above particle spectrum and gauge
group can be represented as,

13Note that the hypercharges are fixed by the Gellman-Nishijima relation Y/2 = Q− T3, where Q stands for the charge of
the particle and T3 is the eigenvalue of the third generation of the particle under SU(2).
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LSM = LF + LYM + Lyuk + LS . (A.3)

The fermion part LF gives the kinetic terms for the fermions as well as their interactions with the gauge
bosons. It is given as,

LF = iΨ̄γµDµΨ, (A.4)

where Ψ represents all the fermions in the model,

Ψ = (Qi Ui, Di, Li, Ei) (A.5)

where Dµ represents the covariant derivative of the field given as,

Dµ = ∂µ− igsGAµλA − i
g

2
W I
µτ

I − ig′BµY (A.6)

Here A = 1, .., 8 with GAµ representing the SU(3)c gauge bosons, I = 1, 2, 3 with W I
µ representing the

SU(2)L gauge bosons. The U(1)Y gauge field is represented by Bµ. The kinetic terms for the gauge
fields and their self interactions are given by,

LYM = −1

4
GµνAGAµν −

1

4
WµνIW I

µν −
1

4
BµνBµν (A.7)

with

GAµν = ∂µG
A
ν − ∂νGAµ + gs fABCG

B
µG

C
ν

F Iµν = ∂µW
I
ν − ∂νW I

µ + g fIJKW
J
µW

K
ν

Bµν = ∂µBν − ∂νBµ, (A.8)

where fABC(IJK) represent the structure constants of the SU(3)(SU(2)) group.

In addition to the gauge bosons, the fermions also interact with the Higgs boson, through the
dimensionless Yukawa couplings given by

Lyuk = huijQ̄iUjH̃ + hdijQ̄iDjH + heijL̄iEjH +H.c (A.9)

where H̃ = iσ2H?. These couplings are responsible for the fermions to attain masses once the gauge
symmetry is broken from GSM → SU(3)c × U(1)em. This itselves is achieved by the scalar part of
the lagrangian which undergoes spontaneous symmetry breakdown. The scalar part of the lagrangian is
given by,

LS = (DµH)†DµH − V (H), (A.10)

where
V (H) = µ2H†H + λ

(
H†H

)2
(A.11)

For µ2 < 0, the Higgs field attains a vacuum expectation value (vev) at the minimum of the potential.
The resulting goldstone bosons are ‘eaten away’ by the gauge bosons making them massive through the
so-called Higgs mechanism. Only one degree of the Higgs field remains physical, the only scalar particle
of the SM - the Higgs boson. The fermions also attain their masses through their Yukawa couplings,
once the Higgs field attains a vev. The only exception is the neutrinos which do not attain any mass due
to the absence of right handed neutrinos in the particle spectrum and thus the corresponding Yukawa
couplings. Finally, the Standard Model is renormalisable and anomaly free. We would also insist that
the Supersymmetric version of the Standard Model keeps these features of the Standard Model intact.
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B Extra Dimensions and the hierarchy problem
Extra-dimensions with a flat geometry are simplest realizations of models with additional space dimen-
sions. The extra-dimensions are in general compactified on an n− torus thus forming a compact mani-
fold Mn. Thus the total space-time is a R(4)×Mn manifold, where R(4) corresponds to the usual 3 + 1
space-time. In earlier realizations of such theories the SM spectrum was confined on the 3 + 1 manifold
while only gravity was allowed to extend into the bulk. In addition to 1 massless 4D graviton, 1 massless
gauge field and 1 massless scalar, we get a tower of massive gravitons called Kaluza-Klein modes.

We now consider examples where specific realizations of extra-dimensional scenarios can be use-
ful in solving the hierarchy problem. They include (a) ADD model ( b) RS model.

B.1 ADD model
The proposal to use extra-dimensional brane-world scenarios to solve the hierarchy problem was first put
forward by Arkani-Hamed, Dimopoulos and Dvali [69]. The model assumes a setup with n extra spatial
dimensions compactified on a n − sphere with equal radius a. The metric for the 4 + n dimensional
space-time is given as

ds2 = ηµνdx
µdxν − na2φ2 (B.1)

where 0 ≤ φ ≤ 2π. While the SM spectrum is assumed to be confined on the 3-brane, only gravity is
allowed to propagate in all the 4 + n dimensions. The 4 + n dimensional gravity action is given as

S4+n = M2+n
?

∫
d4+n

√
g4+nR4+n (B.2)

where M? is the 4 + n dimensional fundamental Planck scale. Integrating Eq.(B.2) over the n compact
extra dimension yields

S4+n = M2+n
? (2πa)n

∫
d4x
√
−g4R4

S4+n = M2+n
? (2πa)nS4 (B.3)

where the effective 4 dimensional Planck scale is then M2
pl = M2+n

? (2πa)n and S4 effective 4D gravity
action.

Putting M? ∼ 1 TeV, we find the condition on the compactification radius a as

a ∼ ×10
30
n
−17cm (B.4)

Putting n = 1, above gives a value of a which is ∼ 1013cm. This would signal deviations from Newto-
nian gravity at the astronomical scale and hence is ruled out. For n ≥ 2 we get a ≤ 10−2 cm thus leading
to possible modifications of Newtonian gravity at the sub-millimeter scale. Thus the ADD model links
the two fundamental scales of nature by means of a large volume factor related to the size of the bulk.
Hence such models are referred to as large extra-dimensional models.

B.2 Randall Sundrum model of warped extra dimension
The ADD model reduced the higher fundamental “Planck" scale to around the TeV scale from which
the effective 4D scale of 1015 TeV resulted owing to the large volume of the extra-dimensions. This
explanation of the hierarchy problem between the electroweak scale and the Planck scale in the ADD
model resulted in its reintroduction between the compactification scale (10−2 cm) and the electroweak
scale (10−17 cm). As a result an alternate extra-dimensional mechanism to generate the hierarchy was put
forward by Randall and Sundrum [70]. The model consisted of a single extra-dimension compactified
on S1/Z2 orbifold. Thus the domain of the extra-dimensional coordinate is [0, πR] where R is the
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compactification radius. A 3-brane14 is introduced at each of the orbifold fixed point. The brane at
y = 0 is referred to as the hidden brane while the brane at y = πR is referred to as the visible brane.
Introduction of a large bulk cosmological constant Λ “warps" the bulk. Brane localized sources are added
to balance the effects of Λ thereby inducing a vanishing effective 4D cosmological constant. An ansatz
for the line element with a warped geometry is given as

ds2 = GMNdx
MdxN = e−2σ(y)ηµνdx

µdxν − dy2 (B.5)

where ηµν is the Minkowski metric. Unlike the ADD case, the presence of the exponential factor e−kry

renders this metric to be non-factorizable. The metric induced at each of the orbifold fixed points are
given as

gvisµν = Gµν(xµ, y = πR) ghidµν = Gµν(xµ, y = 0) (B.6)

Thus action for the theory in the absence of any matter is as follows:

S = SGravity + Svis + Shid (B.7)

where

SGravity =

∫
d4xdφ

√
−G[2M3R+ Λ]

Svis =

∫
d4x
√−gs[−Vvis]

Shid =

∫
d4x
√
−gp[−Vhid]

(B.8)

where Λ is the bulk cosmological constant. Vvis and Vhid are the brane localized potential at the corre-
sponding branes and M is higher dimensional Planck scale. The Einstein’s equations corresponding to
the action in Eq.(B.8)

σ
′2

R2
=

−Λ

24M3
(B.9)

σ
′′

=
VhidRδ(φ)

12M3
+
VvisRδ(φ− π)

12M3

(B.10)

Solving for σ we get

σ = R|φ|
√
−Λ

24M3
(B.11)

This solution is valid only for Λ < 0 implying that the space between the two 3 − branes is an Anti
De-Sitter space. Differentiating σ in Eq.(B.11) twice we get

σ
′′

= 2R

√
−Λ

24M3
[δ(φ)− δ(φ− π)] (B.12)

Thus comparing above equation with the second line in Eq.(B.10) we get Vhid = −Vvis = 24M3k,Λ =
−24M3k2 where k = −Λ

24M3 being the reduced Planck scale. Thus, we see that we have two opposite
tension branes. The hidden brane has positive tension and the visible brane tension is the negative of the
former.

143-brane here means a 4 dimensional spacetime.
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The higher dimensional fundamental Planck scale M is related to the effective 4-D Planck scale
MPl by the following relation

M2
Pl =

M3

k

[
1− e−2kRπ

]
(B.13)

This implies a weak dependence of MPl on the compactification radius R.

The resolution to the hierarchy problem can be seen by considering the Higgs field to be localized
on the visible brane. The action in this case is given as

S =

∫
d4x
√−gvis

[
gµνvis(∂µH)†∂νH −m2H†H + λ(H†H)2

]
(B.14)

where
√−gvis = e−4kRπ and gµνvis = e2kRπηµν . Redefining the Higgs field as H → ekRπH the action

in Eq.(B.14) reduces to

S =

∫
d4x

[
ηµνvis(∂µH)†∂νH − (e−kRπm)2H†H + λ(H†H)2

]
(B.15)

We see that the effective Higgs mass is now defined as

meff = e−kRπm (B.16)

Choosing kR ∼ O(10) electroweak scale Higgs mass can be achieved by exponential warping of scales
thus solving the Hierarchy problem. The radius R in the RS setup was considered a free parameter
and was appropriately adjusted to resolve the hierarchy problem. Metric fluctuations along the radial
direction corresponds to the existence of a massless radion. The radius R is determined by the vev of the
radion and is not included in the dynamics of the original RS setup. A proposal in this direction to was
put forward by Goldberger and Wise [71]. A massive bulk scalar field with brane localized potentials
is introduced. The role of the scalar field is to generate a potential for the radion. It can be shown that
the radion attains a mass at the minimum of the potential thus generating an R at which the hierarchy
problem is solved for reasonable choices of parameters in the radion potential. The radius of the AdS
space is very small i.e. R ∼ 1

k and hence such models are referred to as small extra-dimensional models.
The observed weakness of gravity in this scenario can be very elegantly explained by the localization of
the zero mode gravitons towards the UV resulting in small overlap with IR brane where the SM fields
are localized.
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