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Abstract

The European School of High-Energy Physics is intended to give young physicists an introduction to the the-
oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on
the Electroweak standard model, the theory of quantum chromodynamics, physics beyond the standard model,
Electroweak symmetry breaking after the Higgs discovery, neutrino physics, and practical statistics for High
Energy Physics.
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Preface

The twenty-fifth event in the series of the European School of High-Energy Physics took place in Evora,
Portugal, from 6 to 19 September 2017. It was organized jointly by CERN, Geneva, Switzerland, and JINR,
Dubna, Russia, with support from LIP, FCT, the University of Evora, the Agência de Promoção Turística do
Alentejo and the Instituto de Turismo de Portugal. The local organization team was chaired by Patricia Conde
Muíño (LIP). The other members of the local committee were: Natália Antunes, Gaspar Barreira, Mourad
Bezzeghoud, Ruben Conceição, Michele Gallinaro, Ricardo Gonçalo, Isabel Lopes, José Maneira, António
Onofre, Jorge Romão and João Varela.

A total of 100 students of 33 different nationalities attended the school, mainly from institutes in member
states of CERN and/or JINR, but also some from other regions. The participants were generally students in
experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the Evora Hotel, just outside of the historic city centre. According to the tradition
of the school, the students shared twin rooms mixing participants of different nationalities.

A total of 31 lectures were complemented by daily discussion sessions led by six discussion leaders. The
students displayed their own research work in the form of posters in an evening session in the first week, and
the posters stayed on display until the end of the School. The full scientific programme was arranged in the
on-site conference facilities.

The School also included an element of outreach training, complementing the main scientific programme.
This consisted of a two-part course from the Inside Edge media training company. Additionally, students had
the opportunity to act out radio interviews under realistic conditions based on a hypothetical scenario.

The students from each discussion group subsequently carried out a collaborative project, preparing a talk
on a physics-related topic at a level appropriate for a general audience. The talks were given by student repre-
sentatives of each group in an evening session in the second week of the School. A jury, chaired by Catarina
Espirito Santo (LIP), judged the presentations; other members of the jury were Pedro Abreu (LIP), and José
Vítor Malheiros (Ciência Viva). We are very grateful to all of these people for their help.

Our thanks go to the local-organization team and, in particular, to Patricia Conde Muíño, for all of their
work and assistance in preparing the School, on both scientific and practical matters, and for their presence
throughout the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted
the School organizers and the participants in many ways. We are also extremely grateful for all of the support
and assistance provided by the University of Evora.

Very great thanks are due to the lecturers and discussion leaders for their active participation in the School
and for making the scientific programme so stimulating. The students, who in turn manifested their good spirits
during two intense weeks, appreciated listening to and discussing with the teaching staff of world renown.

We would like to express our strong appreciation to Fabiola Gianotti, Director General of CERN, and
Victor Matveev, Director of JINR, for their lectures on the scientific programmes of the two organizations and
for discussing with the School participants.

In parallel with the School, a public outreach event was organised in collaboration with the University
of Evora and LIP. This was introduced by Ana Costa Freitas, Rector of the University of Evora, Nick Ellis,
Director of the CERN Schools of Physics, Manuel Heitor, Minister for Science and Higher Education, and
Gaspar Barreira, Director of LIP. Fabiola Gianotti then gave a lecture entitled "The Higgs Particle and Our
Life" in front of an audience of about 300 people with others watching a webcast. This was followed by
questions from the audience that were answered by a panel composed of Gaspar Barreira, Fabiola Gianotti and
Victor Matveev, chaired by Pedro Abreu.
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In addition to the rich academic programme, the participants enjoyed numerous sports, leisure and cultural
activities in and around Evora. There was a half-day excursion to the fascinating local sites of megalithic
monuments, followed by a visit to the Convent Bom Jesus that included a wine tasting, buffet dinner and fado
concert. During the full-day excursion to Monsaraz, participants were able visit the castle and the old town,
and then spend the afternoon at the nautical club on the Alqueva reservoir with activities that included canoeing
and archery, followed by a traditional dinner at a restaurant before returning to the hotel. On the final Saturday
afternoon there was the option of a guided tour of the historic sites of Evora, followed by a buffet dinner hosted
by the university. The excursions provided an excellent environment for informal interactions between staff
and students.

We are very grateful to the School Administrators, Kate Ross (CERN) and Tatyana Donskova (JINR),
for their untiring efforts in the lengthy preparations for and the day-to-day operation of the School. Their
continuous care of the participants and their needs during the School was highly appreciated.

The success of the School was to a large extent due to the students themselves. Their poster session was very
well prepared and highly appreciated, their group projects were a big success, and throughout the School they
participated actively during the lectures, in the discussion sessions and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Quantum Field Theory and the Electroweak Standard Model

A.B. Arbuzov
BLTP JINR, Dubna, Russia

Abstract
Lecture notes with a brief introduction to Quantum field theory and the Stan-
dard Model are presented. The lectures were given at the 2017 European
School of High-Energy Physics. The main features, the present status, and
problems of the Standard Model are discussed.

Keywords
Lectures; Standard Model; Quantum Field Theory; Gauge symmetry; Z boson;
W boson; Higgs boson

1 Introduction
The lecture course consists of four main parts. In the Introduction, we will discuss what is the Standard
Model (SM) [1–3], its particle content, and the main principles of its construction. The second Section
contains brief notes on Quantum Field Theory (QFT), where we remind the main objects and rules
required further for construction of the SM. Sect. 3 describes some steps of the SM development. The
Lagrangian of the model is derived and discussed. Phenomenology and high-precision tests of the model
are overviewed in Sect. 4. The present status, problems, and prospects of the SM are summarized in
Conclusions. Some simple exercises and questions are given for students in each Section. These lectures
give only an overview of the subject while for details one should look in textbooks, e.g., [4–7], and
modern scientific papers.

1.1 What is the Standard Model?
Let us start with the definition of the main subject of the lecture course. It is the so-called Standard
Model. This name is quite widely accepted and commonly used to define a certain theoretical model in
high energy physics. This model is suited to describe properties and interactions of elementary particles.
One can say that at the present moment, the Standard Model is the most successful physical model ever.
In fact it describes with a high precision hundreds and hundreds independent observables. The model
made also a lot of predictions which have been verified later experimentally. Among other physical
models pretending to describe fundamental properties of Nature, the SM has the highest predictive power.
Moreover, the model is minimal: it is constructed using only fields, interactions, and parameters which
are necessary for consistency and/or observed experimentally. The minimality and in general the success
of the model is provided to a great extent by application of symmetry principles.

In spite of the nice theoretical features and successful experimental verification of the SM, we
hardly can believe that it is the true fundamental theory of Nature. First of all, it is only one of an
infinite number of possible models within Quantum field theory. So it has well defined grounds but
its uniqueness is questionable. Second, we will see that the SM and QFT itself do not seem to be the
most adequate (mathematical) language to describe Nature. One can also remind that gravity is not (yet)
joined uniformly with the SM interactions.

In any case, the SM is presently the main theoretical tool in high-energy physics. Most likely this
status will be preserved even if some new more fundamental physical model would be accepted by the
community. In this case the SM will be treated as an approximation (a low-energy limit) of that more
general theory. But for practical applications (in a certain energy domain) we will still use the SM.
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Fig. 1: Particle content of the Standard Model. Courtesy to Wikipedia: ’Standard Model of Elementary Particles’
by MissMJ — Own work by uploader, PBS NOVA, Fermilab, Office of Science, United States Department of
Energy, Particle Data Group.

1.2 Particle content of the Standard Model
Before construction of the SM, let us defined its content in the sense of fields and particles.

We would like to underline that the discovery of the Higgs boson at LHC in 2012 [8, 9] just
finalized the list of SM particles from the experimental point of view. Meanwhile the Higgs boson is one
of the key ingredients of the SM, so it was always in the list even so that its mass was unknown.

The particle content of the SM is given on Fig. 1. It consists of 12 fermions (spin = 1/2), 4 vector
gauge bosons (spin = 1), and one scalar Higgs boson (spin = 0). For each particle the chart contains
information about its mass, electric charge, and spin. One can see that the data on neutrino masses is
represented in the form of upper limits, since they have not been yet measured. Strictly speaking the
information about neutrino masses should be treated with care. According to the present knowledge, as
discussed in the course of lectures on Neutrino Physics, a neutrino particle of a given lepton flavor e.g.,
ντ , is not a mass eigenstate but a superposition of (at least) three states with different masses.

Fermions are of two types: leptons and quarks. They are:
— 3 charged leptons (e, µ, τ );
— 3 neutrinos νe, νµ, ντ (or ν1, ν2, ν3, see lectures on Neutrino physics);
— 6 quarks of different flavors, see lectures on Flavor Physics.

Each quark can have one of three colours, see lectures on QCD. Each fermion has 2 degrees of
freedom e.g., can have spin up or down, or can be either left or right. Each fermion particle in the SM
has an anti-particle, f 6= f̄ . The later statement is not yet verified for neutrinos, they might be Majorana
particles.
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Traditionally fermions are called matter fields, contrary the the so-called force fields, i.e., inter-
mediate vector bosons which mediate gauge interactions. Please keep in mind that this notion doesn’t
correspond to the common sense directly. In fact most of fermions are unstable and do not form the
’ordinary matter’ around us, while e.g., the mass of nuclear matter is provided to a large extent by glu-
ons. Moreover, looking at various Feynman diagrams we can see that fermions can serve as intermediate
particles in interaction processes.

In the SM we have the following boson fields:
— 8 vector (spin=1) gluons;
— 4 vector (spin=1) electroweak bosons: γ, Z, W+, W−;
— 1 scalar (spin=0) Higgs boson.

Gluons and photon are massless and have 2 degrees of freedom (polarizations), Z and W bosons
are massive and have 3 degrees of freedom (polarizations). By saying massless or massive we mean the
absence or presence of the corresponding terms in the Lagrangian of the SM. This is not always related
to observables in a straightforward way: e.g., gluons are not observed as free asymptotic massless states,
and masses of unstable W and Z bosons are defined indirectly from kinematics of their decay products.

Gluons and Electroweak (EW) bosons are gauge bosons, their interactions with fermions are fixed
by certain symmetries of the SM Lagrangian. Note that electrically neutral bosons (H , γ, Z, and gluons)
coincide with their anti-particles e.g., γ ≡ γ̄. Each of 8 gluons carries one color and one anti-color.

Besides the particle content, we have to list the interactions which are described by the Standard
Model. One of our final ultimate goals would be to answer the question “How many fundamental
interactions are there in Nature?” But we should understand that it is only a dream, a primary motivation
of our studies. Being scientists we should be always unsure about the true answer to this question. On the
other hand, we can certainly say, how many different interactions is there in a given model, for example
in the SM. To answer this question we have to look at the complete Lagrangian of the model, see e.g.,
book [10]. For the SM it looks very long and cumbersome. The SM Lagrangian contains kinetic terms for
all listed above fields and dozens of terms that describe interactions between them. So, before trying to
count the number of interactions we should understand the structure and symmetries of the Lagrangian.

1.3 Principles of the Standard Model
We are going to construct the SM Lagrangian. For this purpose, we have to define first the guiding
principles. That is important for optimization of the procedure. The same principles might be used
further in construction of other models.

First of all, we have to keep in mind that the SM is a model that is built within the local Quantum
field theory. From the beginning this condition strongly limits the types of terms that can appear in the
Lagrangian because of the Lorentz invariance, the Hermitian condition, the locality etc. One can make a
long list of various conditions. Here I list only the main principles which will be exploited in our way of
the SM construction:

– the generalized correspondence to various existing theories and models like Quantum Mechanics,
QED, the Fermi model etc.;

– the minimality, i.e., only observed and/or unavoidable objects (fields and interactions) are involved;
– the unitarity which is a general condition for cross sections and various transformations of fields

related to the fact that any probability limited from above by unity;
– the renormalizability is necessary for derivation of finite predictions for observable quantities at

the quantum level;
– the gauge principle for introduction of interactions (were possible).

The main guiding principle is the symmetry one. The SM possesses several different symmetries:
— the Lorentz (and Poincaré) symmetry,
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— the CPT symmetry,
— three gauge symmetries SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,
— the global SU(2)L × SU(2)R symmetry in the Higgs sector (it is broken spontaneously);
— some other symmetries, like the one between three generation of fermions, the one that provides
cancellation of axial anomalies etc.
In this context, one can mention also the conformal symmetry which is obviously broken in the SM, but
the mechanism of its breaking and the consequences are very important for the model.

2 Brief notes on Quantum field theory
The Standard Model is a model constructed within the local relativistic Quantum field theory. It means
that the SM obeys the general QFT rules. We should keep in mind that there are many other possible
QFT models, and the SM is distinguished between them mostly because of its successful experimental
verifications but also because of a number of its features like renormalizablity, unitarity, and cancellation
of axial anomalies. I assume that all students of the ESHEP school had courses on Quantum field theory.
Here we will just remind several features of QFT which are important for further construction of the SM
Lagrangian.

As it was already mentioned, we are going to preserve the correspondence to Quantum Mechanics
(QM). Historically, QFT was developed on the base of QM, in particular using the quantum oscillator
ansatz. But by itself QFT can be considered as a more profound fundamental construction, so one should
be able to define this theory without referring to QM. In fact, QFT can be formulated starting from the
basic classification of fields as unitary irreducible representations of the Lorentz group.

Let us first of all fix the notation. We will work in the natural system of units where the speed
of light c = 1 and the reduced Planck constant ~ = 1. The Lorentz indexes will be denoted by Greek
letters, like µ = 0, 1, 2, 3; pµ is a four-momentum of a particle, p = (p1, p2, p3) is a three-momentum,
p0 = E is the particle energy. The metric tensor of the Minkowsky space is chosen in the form

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , gµνpν = pµ, gµµ = 4. (1)

We will always assume summation over a Lorentz index if it is repeated twice: AµBµ ≡ A0B0−A1B1−
A2B2 − A3B3, where the metric tensor is used. In particular, the scalar product of two four-vectors is
defined as pq = pµqµ = p0q0 − p1q1 − p2q2 − p3q3. It is a relativistic invariant.

We will assume that there exist so-called asymptotic free final states for particle-like excitation
of quantum fields. These asymptotic states will be associated with initial or final state (elementary)
particles which fly in a free space without interactions. For such states we apply the on-mass-shell
condition p2 = pp = p2

0 − p2 = E2 − p2 = m2 where m is the mass of the particle.

Now we will postulate the properties of fields that are required for the construction of the SM. A
neutral scalar field can be defined as

ϕ(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxa−(p) + e+ipxa+(p)

)
, (2)

where a±(p) are creation and annihilation operators. Their commutation relations read

[a−(p), a+(p′)] ≡ a−(p)a+(p′)− a+(p′)a−(p) = δ(p− p′),

[a−(p), a−(p′)] = [a+(p), a+(p′)] = 0. (3)

The field is a function of four-coordinate x in the Minkowsky space. It behaves as a plane wave in the

4
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whole space. The Lagrangian1 for the neutral scalar field can be chosen in the form

L(x) =
1

2
(∂µϕ∂µϕ−m2ϕ2). (4)

Note that it depends only on the field and its first derivative. Variation of the action A ≡
∫

d4L(x) with
respect to variations of the field ϕ→ ϕ+ δϕ according to the least action principle gives

δ

∫
dxL(x) =

∫
dx

(
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)
= 0. (5)

Here we apply quite natural for QFT problems zero boundary conditions for the field and its derivative
at infinity and get the well-known Klein–Fock–Gordon equation of motion

(∂2
µ +m2)ϕ(x) = 0. (6)

EXERCISE: Check that the postulated above field ϕ(x) satisfies the equation.

Creation and annihilation operators act in the Fock space which consists of vacuum ground state
denoted as |0〉 and excitations over it. For the vacuum state we postulate

a−(p)|0〉 = 0, 〈0|a+(p) = 0, 〈0|0〉 = 1. (7)

Actually, a−(p)|0〉 = 0 · |0〉 but the vacuum state can be dropped since finally all observable quantities
are proportional to 〈0|0〉. The field excitations are states of the form

|f〉 =

∫
dp f(p)a+(p)|0〉, |g〉 =

∫
dpdq g(p,q)a+(p)a+(q)|0〉, . . . (8)

The most simple excitation a+(p)|0〉 ≡ |p〉 is used to describe a single on-mass-shell particle with
momentum p. Then a+(p)a+(q)|0〉 is a two-particle state and so on. Because of the presence of
modulating functions like f(p) and g(p,q), the Fock space is infinite-dimensional.

EXERCISES: 1) Find the norm 〈p|p〉; 2) check that operator N̂ =
∫

dp a+(p)a−(p) acts as a
particle number operator.

A charged scalar field is defined as

ϕ(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxa−(p) + e+ipxb+(p)

)
,

ϕ∗(x) =
1

(2π)3/2

∫
dp√
2p0

(
e−ipxb−(p) + e+ipxa+(p)

)
,

[a−(p), a+(p′)] = [b−(p), b+(p′)] = δ(p− p′), [a±, b±] = 0,

where operators a±(p) create and annihilate particles, while operators b±(p) are used for the same
purpose for anti-particles. Note that the choice of what is particle and what is anti-particle is arbitrary
here. The corresponding Lagrangian reads

L(φ, φ∗) = ∂µϕ
∗∂µϕ−m2ϕ∗ϕ. (9)

Note that ϕ and ϕ∗ are related by a generalized complex conjugation which involves operator transfor-
mations: (a±)∗ = a∓ and (b±)∗ = b∓. It is worth to note also that ϕ and ϕ∗ are not “a particle and an
anti-particle”.

1Actually it is a Lagrangian density.
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A massive charged vector field (remind W± bosons) is defined as

Uµ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

n=1,2,3

enµ(p)
(
e−ipxa−n (p) + e+ipxb+n (p)

)
,

U∗µ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

n=1,2,3

enµ(p)
(
e−ipxb−n (p) + e+ipxa+

n (p)
)
,

[a−n (p), a+
l (p′)] = [b−n (p), b+l (p′)] = δnlδ(p− p′), [a±, b±] = 0.

For polarization vectors enµ(p) the following conditions are applied:

enµ(p)elµ(p) = −δnl, pµe
n
µ(p) = 0. (10)

EXERCISE: Using the above orthogonality conditions, show that

∑

n=1,2,3

enµ(p)enν (p) = −
(
gµν −

pµpν
m2

)
. (11)

The Lagrangian for a massive charged vector field takes the form

L = −1

2

(
∂µU

∗
ν − ∂νU∗µ

)(
∂µUν − ∂νUµ

)
+m2U∗µUµ. (12)

The corresponding Euler–Lagrange equation reads

∂ν(∂µUν − ∂νUµ) +m2Uµ = 0.

EXERCISE: Using the above equation, show that ∂νUν(x) = 0, i.e., derive the Lorentz condition.
Note that the Lorentz condition removes from the field one of four independent degrees of freedom
(components).

A massless neutral vector field (a photon) is defined as

Aµ(x) =
1

(2π)3/2

∫
dp√
2p0

eλµ(p)
(
e−ipxa−λ (p) + e+ipxa+

λ (p)
)
, (13)

[a−λ (p), a+
ν (p′)] = −gλνδ(p− p′) eλµ(p)eλν (p) = gµν , eλµ(p)eνµ(p) = gλν .

Formally this field has four polarizations, but only two of them correspond to physical degrees of free-
dom. The corresponding Lagrangian reads

L = −1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ. (14)

A Dirac fermion field is defined as

Ψ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

r=1,2

(
e−ipxa−r (p)ur(p) + e+ipxb+r (p)vr(p)

)
, (15)

Ψ(x) =
1

(2π)3/2

∫
dp√
2p0

∑

r=1,2

(
e−ipxb−r (p)v̄r(p) + e+ipxa+

r (p)ūr(p)
)
,

[a−r (p), a+
s (p′)]+ = [b−r (p), b+s (p′)]+ = δrsδ(p− p′),

[a+
r (p), a+

s (p′)]+ = [a−r (p), b+s (p′)]+ = . . . = 0.

EXERCISE: Show that a+
r (p)a+

r (p) = 0, i.e., verify the Pauli principle.
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Here, ur, ur, ūr, and v̄r are four-component spinors, so Ψ(x) ≡ {Ψα(x)} is a four-vector column,
α = 1, 2, 3, 4, and Ψ(x) is a four-vector row,

ūu =
4∑

α=1

ūαuα =
4∑

α=1

uαūα = Tr(uū).

Spinors are solutions of the (Dirac) equations:

(p̂−m)ur(p) = 0, ūr(p)(p̂−m) = 0, (16)

(p̂+m)vr(p) = 0, v̄r(p)(p̂+m) = 0,

p̂ ≡ pµγµ = p0γ0 − p1γ1 − p2γ2 − p3γ3, m ≡ m1,

where 1 is the unit four-by-four matrix. For the solutions of the above equations we impose the normal-
ization conditions

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs.

The gamma matrixes (should) satisfy the commutation condition

[γµ, γν ]+ = 2gµν1 ⇒ γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1

and the condition of Hermitian conjugation

γ†µ = γ0γµγ0.

The latter leads to the rule of the Dirac conjugation:

Ψ = Ψ†γ0, ū = u†γ0, v̄ = v†γ0. (17)

EXERCISE: Show that the Dirac conjugation rule is consistent with the set of Dirac equations (16).

Note that explicit expressions for gamma matrixes are not unique, but they are not necessary for
construction of observables, QUESTION: Why is that so? The most common representations of gamma
matrixes are so-called Dirac’s (standard) and Weyl’s (spinor) ones.

Two values of index r in Eq. (15) correspond to two independent degrees of freedom for each
spinor in other words to two independent solutions of the Dirac equations. In most cases these two
degrees of freedom can be treated as two polarization states like ’spin up’ and ’spin down’. But in the
Standard Model, there is one special choice of the basis for spinors, namely we will distinguish Left (L)
and Right (R) chiral states of spinors. By definition,

ΨL ≡ PLΨ, ΨR ≡ PRΨ, PL,R ≡
1 −,+ γ5

2
, Ψ = ΨL + ΨR. (18)

Here γ5 ≡ iγ0γ1γ2γ3, this gamma-matrix has the properties

[γµ, γ5]+ = 0, γ2
5 = 1, γ†5 = γ5. (19)

As can be seen from Eq. (18), PL,R form a complete set of orthogonal projection operators,

P 2
L,R = PL,R PLPR = PRPL = 0, PL + PR = 1. (20)

The sign before γ5 in the definition of the projection operators in Eq. (18) corresponds to the standard
representation of gamma matrixes2. The Dirac conjugation (17) of left and right spinors gives

ΨL ≡ Ψ
1 + γ5

2
, ΨR ≡ Ψ

1− γ5

2
.

2In the spinor representation the sign is opposite: PL ≡ (1 + γ5)/2 and PR ≡ (1− γ5)/2.
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Note that the definition of the left and right chiral states was done without referring to spin projections
(helicity states). In fact, these are different ways to select a basis. Helicity and chirality states can be
identified to each other only for massless fermions.

Remind some properties of gamma matrixes

Trγµ = Trγ5 = 0, Trγµγν = 4gµν , Trγ5γµγν = 0,

Trγµγνγαγβ = 4(gµνgαβ − gµαgνβ + gµβgνα), Trγ5γµγνγαγβ = −4iεµναβ .

The equations for u and v are chosen so that we get the conventional Dirac equations

(iγµ∂µ −m)Ψ(x) = 0, i∂µΨ(x)γµ +mΨ(x) = 0.

These equations follow also from the Lagrangian

L =
i

2

[
Ψγµ(∂µΨ)− (∂µΨ)γµΨ

]
−mΨΨ ≡ iΨγµ∂µΨ−mΨΨ.

Note that the right-hand side is a short notation for the explicit Lagrangian which is given in the middle.

In QFT, Lagrangians (Hamiltonians) should be Hermitian: L† = L. QUESTION: What kind of
problems one can have with a non-Hermitian Hamiltonian?

Up to now we considered only free non-interacting fields. Studies of transitions between free
states is the main task of QFT3.

Let us postulate the transition amplitude (matrix element)M of a physical process:

M≡ 〈out|S|in〉, S ≡ T exp

(
i

∫
dxLI(ϕ(x))

)
. (21)

Here S is the so-called S-matrix which is the general evolution operator of quantum states. Letter T
means the time ordering operator, it will be discussed a bit later. The initial and final states are

|in〉 = a+(p1) . . . a+(ps)|0〉, |out〉 = a+(p′1) . . . a+(p′r)|0〉. (22)

The differential probability to evolve from |in〉 to |out〉 is

dw = (2π)4δ(
∑

p′i)
n1 . . . ns

2E1 . . . Es
|M|2

r∏

j=1

dp′j
(2π)32E′j

.

Here ni is the particle number density of ith particle beam.

Nontrivial transitions happen due to interactions of fields. QFT prefers dealing with local in-
teractions ⇒ LI = LI(ϕ(x)). By ’local’ we mean that all interaction terms in the Lagrangian are
constructed as products of fields (or their first derivatives) taken at the same space-time coordinate.

Here are some examples of interaction Lagrangians:

gϕ3(x), hϕ4(x), yϕ(x)Ψ(x)Ψ(x),

eΨ(x)γµΨ(x)Aµ(x), GΨ1(x)γµΨ1(x) ·Ψ2(x)γµΨ2(x).

IMPORTANT: Always keep in mind the dimension of your objects! The reference unit is the dimension
of energy (mass):

[E] = [m] = 1 ⇒ [p] = 1, [x] = −1. (23)

3Collective, nonperturbative effects, bound states etc. are also of interest, but that goes beyond the scope of these lectures.
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An action should be dimensionless
[∫

dxL(x)

]
= 0 ⇒ [L] = 4. (24)

EXERCISE: Show that [ϕ] = [Aµ] = 1 and [Ψ] = 3/2. Find the dimensions of the coupling
constants g, h, y, e, and G in the examples above.

By definition the time ordering operator acts as follows:

T A1(x1) . . . An(xn) = (−1)lAi1(xi1) . . . Ain(xin) with x0
i1 > . . . > x0

in , (25)

where l is the number of fermion field permutations.

The perturbative expansion of the S matrix exponent (21) leads to terms like

ingn

n!
〈0|a−(p′1) . . . a−(p′r)

∫
dx1 . . . dxnTϕ

3(x1) . . . ϕ3(xn)a+(p1) . . . a+(ps)|0〉.

Remind that fields ϕ also contain creation and annihilation operators. By permutation of operators
a−(p)a+(p′) = a+(p′)a−(p) + δ(p − p′) we move a− to the right and a+ to the left. At the end we
get either zero because a−|0〉 = 0 and 〉0|a+ = 0, or some finite terms proportional to 〈0|0〉 = 1.

EXERCISE: Show that [a−(p), ϕ(x)] = eipx

(2π)3/2
√

2p0
and [a−r (p),Ψ(x)]+ = eipxūr(p)

(2π)3/2
√

2p0
.

By definition the causal Green function is given by

〈0|Tϕ(x)ϕ(y)|0〉 ≡ −iDc(x− y). (26)

It is a building block for construction of amplitudes. One can show (see textbooks) that

(∂2 +m2)Dc(x) = δ(x), (27)

so that Dc is the Green function of the Klein–Fock–Gordon operator,

Dc(x) =
−1

(2π)4

∫
dp e−ipx

p2 −m2 + i0
, (28)

where +i0 is an infinitesimally small imaginary quantity which shifts the poles of the Green function
from the real axis in the complex plane. The sign of this quantity is chosen to fulfil the requirement of
the time ordering operation in Eq. (26).

For other fields we have

〈0|T Ψ(x)Ψ(y)|0〉 =
i

(2π)4

∫
dp e−ip(x−y)(p̂+m)

p2 −m2 + i0
,

〈0|T Uµ(x)U∗ν (y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y)(gµν − pµpν/m2)

p2 −m2 + i0
, (29)

〈0|T Aµ(x)Aν(y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y)gµν

p2 + i0
.

The Wick theorem states that for any combinations of fields

T A1 . . . An ≡
∑

(−1)l〈0|TAi1Ai2 |0〉 . . . 〈0|TAik−1
Aik |0〉 : Aik+1

. . . Ain : (30)

The sum is taken over all possible ways to pair the fields.

The normal ordering operation acts as

: a−1 a
+
2 a
−
3 a
−
4 a

+
5 a
−
6 a

+
7 : = (−1)la+

2 a
+
5 a

+
7 a
−
1 a
−
3 a
−
4 a
−
6 (31)
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so that all annihilation operators go to the right and all creation operators go to the left. The number of
fermion operator permutations l provides the factor (−1)l.

Using the Wick theorem we construct the Feynman rules for simple gφ3 and hϕ4 interactions. But
for the case of gauge interactions we need something more as we will see below.

It appears that symmetries play a crucial role in the QFT. There are two major types of symmetries
in the SM: global and local ones. By a global symmetry we mean invariance of a Lagrangian and
observables with respect to certain transformations of coordinates and/or fields if the transformations are
the same in each space-time point. If the transformations do depend on coordinates, the corresponding
symmetry is called local.

The 1st Noether (Nöther) theorem:
If an action is invariant with respect to transformations of a global Lie group Gr with r parameters,
then there are r linearly independent combinations of Lagrange derivatives which become complete
divergences; and vice versa.

If the field satisfies the Euler–Lagrange equations, then divJ = ∇J = 0, i.e., the Noether currents
are conserved. Integration of those divergences over a 3-dimensional volume (with certain boundary
conditions) leads to r conserved charges. Remind that conservation of the electric charge in QED is
related to the global U(1) symmetry of this model, and that Poincaré symmetries lead to conservation of
energy, momentum, and angular momentum.

Much more involved and actually important for us is the 2nd Noether theorem:
If the action is invariant with respect to the infinite-dimensional r-parametric group G∞,r with deriva-
tives up to the kth order, then there are r independent relations between Lagrange derivatives and deriva-
tives of them up to the kth order; and vice versa.

The importance of the second theorem is justified by the fact that gauge groups (and also the gen-
eral coordinate transformation in Einstein’s gravitational theory) are infinite-dimensional groups. The
2nd Noether theorem provides r conditions on the fields which are additional to the standard Euler–
Lagrange equations. These conditions should be used to exclude double counting of physically equiva-
lent field configurations.

2.1 Gauge symmetries
Let us start the discussion of local gauge symmetries with Quantum Electrodynamics (QED). The free
Lagrangians for electrons and photons

L0(Ψ) = iΨγµ∂µΨ−mΨΨ, L0(A) = −1

4
FµνFµν (32)

are invariant with respect to the global U(1) transformations

Ψ(x)→ exp(ieθ)Ψ(x), Ψ(x)→ exp(−ieθ)Ψ(x), Aµ(x)→ Aµ(x). (33)

One can note that Fµν is invariant also with respect to local transformations Aµ(x) → Aµ(x) +
∂µω(x), where ω(x) is an arbitrary (differentiable) function. For fermions the corresponding transfor-
mations are

Ψ(x)→ exp(ieω(x))Ψ(x), Ψ(x)→ exp(−ieω(x))Ψ(x), (34)

i.e., where the global constant angle θ in Eq. (33) is substituted by a local function ω(x) which varies
from one space-time point to another.

The question is how to make the fermion Lagrangian being also invariant with respect to the local
transformations? The answer is to introduce the so-called covariant derivative:

∂µ → Dµ, DµΨ ≡ (∂µ − ieAµ)Ψ, DµΨ ≡ (∂µ + ieAµ)Ψ. (35)
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Then we get the QED Lagrangian

LQED = −1

4
FµνFµν + iΨγµDµΨ−mΨΨ

= −1

4
FµνFµν + iΨγµ∂µΨ−mΨΨ + eΨγµΨAµ,

where the last term describes interaction of electrons and positrons with photons. The most important
point here is that the structure of the interaction term is completely fixed by the gauge symmetry. Nev-
ertheless, there is one specific feature of the abelian U(1) case, namely the values of electric charges
(coupling constants) can be different for different fermions e.g., for up and down quarks.

EXERCISES: 1) Check the covariance: DµΨ → eieω(x)(DµΨ); 2) construct the Lagrangian of
scalar QED (use Eqs. (9) and (14)).

Let’s look now again at the free photon Lagrangian

L0(A) = −1

4
(∂µAν − ∂νAµ)2 = −1

2
AνKµνAν ,

Kµν = gµν∂
2 − ∂µ∂ν ⇒ Kµν(p) = pµpν − gµνp2.

Operator Kµν(p) has zero modes (since pµKµν = 0), so it is not invertable. Definition of the photon
propagator within the functional integral formalism becomes impossible. The reason is the unresolved
symmetry. The solution is to introduce a gauge fixing term into the Lagrangian:

L0(A) = −1

4
FµνFµν −

1

2α
(∂µAµ)2 ⇒

〈0|T Aµ(x)Aν(y)|0〉 =
−i

(2π)4

∫
dp e−ip(x−y) gµν + (α− 1)pµpν/p

2

p2 + i0
.

It is very important that physical quantities do not depend on the value of α.

Let us briefly discuss the features of non-abelian Gauge symmetries which will be also used in the
construction of the SM. Transformations for a non-abelian case read

Ψi → exp igωataijΨj , [ta, tb] = ifabctc,

Ba
µ → Ba

µ + ∂µω
a + gfabcBb

µω
c, F aµν ≡ ∂µBa

ν − ∂νBa
µ + gfabcBb

µB
c
ν ,

where ta are the group generators, fabc are the structure constants (see details in the lectures on QCD).

We introduce the covariant derivative

∂µΨ→ DµΨ ≡ (∂µ − igBa
µt
a)Ψ

and get

L(Ψ, B) = iΨγµDµΨ + L(B),

L(B) = −1

4
F aµνF

a
µν −

1

2α
(∂µB

a
µ)2 = −1

4

(
∂µB

a
ν − ∂νBa

µ

)2 − 1

2α
(∂µB

a
µ)2

− g

2
fabc

(
∂µB

a
ν − ∂νBa

µ

)
Bb
µB

c
ν −

g2

4
fabcfadeBb

µB
c
νB

d
µB

e
ν .

Note that L(B) contains self-interactions and can not be treated as a ’free Lagrangian’. There is no any
mass term for the gauge field in the Lagrangian, mB ≡ 0, because such a term would be not gauge-
invariant. It is worth to note that the non-abelian charge g is universal, i.e., it is the same for all fields
which are transformed by the given group.
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Exclusion of double-counting due to the physical equivalence of the field configurations related to
each other by non-abelian gauge transformations is nontrivial. Functional integration over those identical
configurations (or application of the BRST method) leads to the appearance of the so-called Faddeev–
Popov ghosts:

L(Ψ, B)→ L(Ψ, B) + Lgh,
Lgh = −∂µc̄a∂µca + gfacbc̄aBc

µ∂µc
a = −∂µc̄a∂µca − gfacb∂µc̄aBc

µc
a, (36)

where c and c̄ are ghost fields, they are fermion-like states with a boson-like kinetic term. Keep in mind
that Faddeev–Popov ghosts are fictitious particles. In the Feynman rules they (should) appear only as
virtual states in propagators but not in the initial and final asymptotic states. Formally, ghosts can be
found also in QED, but they are non-interacting since fabc = 0 there, and can be totally omitted.

2.2 Regularization and renormalization
Higher-order terms in the perturbative series contain loop integrals which can be ultraviolet (UV) diver-
gent, e.g.,

I2 ≡
∫

d4p

(p2 + i0)((k − p)2 + i0)
∼
∫ |p|3 d|p|

|p|4 ∼ ln∞. (37)

Introduction of an upper cut-off M on the integration variable leads to a finite, i.e., regularized value of
the integral:

Icut−off
2 = iπ2

(
ln
M2

k2
+ 1

)
+O

(
k2

M2

)
= iπ2

(
ln
M2

µ2
− ln

k2

µ2
+ 1

)
+O

(
k2

M2

)
. (38)

Another possibility is the dimensional regularization where dim = 4→ dim = 4− 2ε

Idim.reg.
2 = µ2ε

∫
d4−2εp

(p2 + i0)((k − p)2 + i0)
= iπ2

(
1

ε
− ln

k2

µ2
+ 2

)
+O (ε) . (39)

Here the divergence is parameterized by the ε−1 term. The origin of UV divergences is the locality of
interactions in QFT.

Let’s consider a three-point (vertex) function in the gφ3 model, it looks like

G =

∫
dx dy dz ϕ(x)ϕ(y)ϕ(z)F (x, y, z),

F dim.reg. =
A

ε
δ(y − x)δ(z − x) + . . .

IMPORTANT: It means that UV-divergent terms are local (here because of the delta-functions).

A QFT model is called renormalizable if all UV-divergent terms are of the type of the ones existing
in the original (semi)classical Lagrangian. Otherwise the model is non-renormalizable.

EXAMPLES:
a) renormalizable models: QED, QCD, the SM [proved by ’t Hooft & Veltman], hϕ4, gϕ3;
b) non-renormalizable models: the Fermi model with L ∼ G(ΨγµΨ)2 and General Relativity.

It can be shown that models with dimensionful ([G] < 0) coupling constants are non-renormalizable.

In renormalizable models all UV divergences can be subtracted from amplitudes and shifted into
counter terms in L. In this way each term in L gets a renormalization constant. For the model describing
a scalar field with the ϕ4 self-interaction we get

L =
Z2

2
(∂ϕ)2 − Zmm

2

2
ϕ2 + Z4hϕ

4 =
1

2
(∂ϕB)2 − m2

B

2
ϕ2 + hBϕ

4,
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Fig. 2: Beta decay.

where ϕB =
√
Z2ϕ, m2

B = m2ZMZ
−1
2 , hB = hZ4Z

−2
2 are so-called bare field, mass, and charge,

Zi(h, ε) = 1 +
Ah

ε
+
Bh2

ε2
+
Ch2

ε
+O(h3).

Renormalization constants are chosen in such a way that divergences in amplitudes are cancelled out
with divergences in Zi. By construction, that happens order by order.

R. Feynman said once: “I think that the renormalization theory is simply a way to sweep the diffi-
culties of the divergences of electrodynamics under the rug.” Physicists are still not fully satisfied by the
renormalization procedure, but the method has been verified in many models. Moreover, renormalizable
models including the SM appear to be the most successful ones in the description of phenomenology.
For these reasons we say now that renormalization is the general feature of physical theories.

Physical results should not depend on the auxiliary scale µ. This condition leads to the appearance
of the renormalization group (RG). Schematically in calculation of an observable, we proceed in the
following way

F (k, g,m)
∞−→ Freg(k,M, g,m)

M→∞−→ Fren(k, µ, g,m)
RG−→ Fphys(k,Λ,m),

where Λ is a dimensionful scale. Charge (and mass) become running, i.e., energy-dependent:

g → g

(
g,
µ′

µ

)
, β(g) ≡ dg

d lnµ

∣∣∣∣
gB=Const

. (40)

Note that the renormalization scale µ unavoidably appears in any scheme. Scheme and scale
dependencies are reduced after including higher and higher orders of the perturbation theory.

At this point we stop the brief introduction to Quantum field theory, comprehensive details can be
found in textbooks, e.g., Refs. [4, 6, 7].

3 Construction of the Standard Model
3.1 The Fermi model and Cabibbo–Kobayashi–Maskawa mixing matrix
To describe the β-decay n→ p+ e− + νe in 1933, see Fig. 2, Enrico Fermi suggested a simple model:

Lint = GΨnγρΨp︸ ︷︷ ︸
J
(N)
ρ

·ΨνγρΨe︸ ︷︷ ︸
J
(l)†
ρ

+h.c.

with interactions in the form of a product of two vector currents. This model was inspired by QED where
similar vector currents appear.
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In 1957 R. Marshak & G. Sudarshan; and R. Feynman & M. Gell-Mann modified the model:

LFermi =
GFermi√

2
JµJ

†
µ,

Jµ = Ψeγρ
1− γ5

2
Ψνe + Ψµγρ

1− γ5

2
Ψνµ + (V −A)nucleons + h.c. (41)

Explicit V-A (Vector minus Axial–vector) form of weak interactions means the 100% violation of parity.
In fact, it appears that only left fermions participate in weak interactions, while right fermions don’t.
Please remind that massive left fermions are not states with a definite spin. The modification of the
model was required to describe differential distributions of beta-decays. Note that the CP symmetry in
Lagrangian (41) is still preserved.

The modern form of the Fermi Lagrangian includes 3 fermion generations:

LFermi =
GFermi√

2
(eL µL τL)γρ



νe,L
νµ,L
ντ,L


 · (u′L c′L t′L)V †u γρVd



d′L
s′L
b′L


+ . . .

Quarks {q′} are the eigenstates of the strong interactions, and {q} are the eigenstates of the weak ones.

Matrixes Vd and Vu describe quark mixing (see details in lectures on Flavour Physics):


d
s
b


 = Vd ×



d′

s′

b′


 , V †uVd ≡ VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 .

By construction, in this model (and further in the SM) the mixing matrixes are unitary: Vi†Vi = 1. In a
sense, this property just keeps the number of quarks during the transformation to be conserved. VCKM

contains 4 independent parameters: 3 angles and 1 phase.

QUESTION: What is mixed by VCKM? E.g., what is mixed by the Vud element of VCKM?

The Fermi model describes β-decays and the muon decay µ → e + ν̄e + νµ with a very high
precision. Nevertheless, there are two critical problems:
1. The model is non-renormalizable, remind that the dimension of the Fermi coupling constant [GFermi] =
−2.
2. Unitarity in this model is violated: consider, e.g., within the Fermi model the total cross section of
electron-neutrino scattering

σtotal(eνe → eνe) ∼
G2

Fermi

π
s, s = (pe + pνe)

2. (42)

This cross section obviously growth with energy. Meanwhile the unitarity condition for lth partial wave
in the scattering theory requires that σl <

4π(2l+1)
s . For l = 1 we reach the unitarity limit at s0 =

2π
√

3/GFermi ≈ 0.9 · 106 GeV2. So at energies above ∼ 103 GeV the Fermi model is completely
senseless and somewhere below this scale another model should enter the game.

3.2 (Electro)Weak interactions in SM
The modern point of view is: a renormalizable QFT model which preserves unitarity is a Yang–Mills
(non-abelian) gauge model. So we have to try to construct an interaction Lagrangian using the principle
of gauge symmetry.

Let’s try to do that for description of weak interactions. At the first step we introduce a massive
vector W boson

Lint = −gw(JαWα + J†αW
†
α). (43)
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Fig. 3: Feynman diagram for electron-neutrino scattering with W boson exchange.

Then the scattering amplitude, see Fig. 3, takes the form

T = i(2π)4g2
wJα

gαβ − kαkβ/M2
W

k2 −M2
W

J†β, (44)

where k is the W boson momentum. If |k| �MW we reproduce the Fermi model with

GFermi√
2

=
g2
w

M2
W

.

However such a way to introduce interactions again leads to a non-renormalizable model. The problem
appears due to the specific momentum dependence in the propagator of a massive vector particle, see
Eq. (29). Moreover, the mass term of the gauge boson is not gauge invariant.

The minimal way to introduce electromagnetic and weak interactions as gauge ones is to take the
group SU(2) ⊗ U(1). The abelian group U(1) is the same as the one that gives conservation of the
electric charge in QED. Instead of the electric charge Q we introduce now the hypercharge Y . The U(1)
gauge symmetry provides interactions of fermions with a massless vector (photon-like) field Bµ. The
non-abelian group SU(2) is the same as the one used for description of spinors in Quantum mechanics.
Instead of spin we use here the notion of weak isospin I . There are three massless vector Yang–Mills
bosons in the adjoint representation of this group: W a

µ , a = 1, 2, 3. Two of them can be electrically
charged and the third one should be neutral. Introduction of the third (electro)weak boson is unavoidable,
even so that we had not have experimental evidences of weak neutral currents at the times of the SM
invention.
QUESTION: Why weak interactions in the charged current (like muon and beta decays) were discovered
experimentally much earlier than the neutral current ones?

One can show that the model built above for gauge SU(2) ⊗ U(1) interactions of fermions and
vector bosons is renormalizable and unitary. But this model doesn’t describe the reality since all gauge
bosons should be massless because of the gauge symmetry condition. To resolve this problem we need
a mechanism that will provide masses for some vector bosons without an explicit breaking of the gauge
symmetry.

3.3 The Brout–Englert–Higgs mechanism
Let’s consider the simple abelian U(1) symmetry for interaction of a charged scalar field ϕ with a vector
field Aµ:

L = ∂µϕ
∗∂µϕ− V (ϕ)− 1

4
F 2
µν + ie(ϕ∗∂µϕ− ∂µϕ∗ϕ)Aµ + e2AµAµϕ

∗ϕ.
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Fig. 4: The Higgs field potential. Picture courtesy: E.P.S. Shellard, DAMTP, Cambridge. From
http://www.geocities.com/CapeCanaveral/ 2123/breaking.htm.

If V (ϕ) ≡ V (ϕ∗ · ϕ), L is invariant with respect to local U(1) gauge transformations

ϕ→ eieω(x)ϕ, ϕ∗ → e−ieω(x)ϕ∗, Aµ → Aµ + ∂µω(x). (45)

In polar coordinates ϕ ≡ σ(x)eiθ(x) and ϕ∗ ≡ σ(x)e−iθ(x) and the Lagrangian takes the form

L = ∂µσ∂µσ + e2σ2 (Aµ −
1

e
∂µθ)

︸ ︷︷ ︸
≡Bµ

(Aµ −
1

e
∂µθ)

︸ ︷︷ ︸
≡Bµ

−V (ϕ∗ϕ)− 1

4
F 2
µν . (46)

Note that after the change of variables Aµ + 1
e∂µθ → Bµ, we have Fµν(A) = Fµν(B) since θ(x) is a

double differentiable function.

We see that θ(x) is completely swallowed by the field Bµ(x). So we made just a change of
variables. But which set of variables is the true physical one? This question is related to the choice of
variables in which the secondary quantization should be performed. And the answer can be given by
measurements. In fact, according to Quantum mechanics only quantum eigenstates can be observed, so
we have a reference point. Another argument can be given by a condition on the system stability.

R. Brout & F. Englert [11], and P. Higgs [12], see also a brief review in the Scientific Background
on the Nobel Prize in Physics 2013 [13], suggested to take the scalar potential in the form

V (ϕ∗ϕ) = λ(ϕ∗ϕ)2 +m2ϕ∗ϕ. (47)

For λ > 0 and m2 < 0 we get the shape of a Mexican hat, see Fig. 4. We have chosen a potential for
which V (ϕ∗ϕ) = V (σ2), while θ(x) corresponds to the rotational symmetry of the potential.

By looking at the derivative of the potential dV (σ)
dσ = 0, we find two critical points: σ = 0 is the

local maximum, and σ0 =
√
−m2

2λ is the global minimum. The stability condition suggest to shift from
zero to the global minimum: σ(x)→ h(x) + σ0. So we get

L = ∂µh∂µh+ e2h2BµBµ + 2e2σ0hBµBµ + e2σ2
0BµBµ − V (h)− 1

4
F 2
µν . (48)

We see that field Bµ got the mass

m2
B = 2e2σ2

0 = −e
2m2

λ
> 0. (49)

So, we generated a mass term for the vector field without putting it into the Lagrangian by hand. That is
the core of the Brout–Englert–Higgs mechanism.
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The quantity σ0 ≡ v is the vacuum expectation value (vev) of σ(x),

v ≡ 〈0|σ|0〉, v =
1

V0

∫

V0

d3x σ(x). (50)

Look now at the potential (keep in mind m2 = −2λv2)

V (h) = λ(h+ v)4 +m2(h+ v)2

= λh4 + 4λvh3 + h2 (6λv2 +m2)︸ ︷︷ ︸
2m2

h=4λv2

+h (4λv3 + 2m2v)︸ ︷︷ ︸
=0

+λv4 +m2v2.

So, the scalar field h has a normal (not tachyon-like) mass term, m2
h > 0. One can see that the initial

tachyons ϕ are not physically observable, since they are not pure states in the basis of the secondary
quantized system of fields.

It is worth to note that even so that the field content of the Lagrangian is changed, but the number
of degrees of freedom is conserved. In fact initially we had two components of the scalar field and two
components of the massless vector field, and after the change of variables we have a single scalar field
plus a massive vector field with 3 independent components: 2 + 2 = 1 + 3.

The field θ(x) is a Nambu–Goldstone boson (a goldstone). It is massless,mθ = 0, and corresponds
to effortless rotations around the vertical symmetry axis of the potential. In general, the Goldstone
theorem claims that in a model with spontaneous breaking of a continuous global symmetry Gn (remind
the first Noether theorem) there exist as many massless modes, as there are group generators which do
not preserve the vacuum invariance.

The constant term λv4 + m2v2 obviously doesn’t affect equations of motion in QFT, but it con-
tributes to the Universe energy density (too much, actually). That makes a problem for Cosmology.
Formally, one can make a shift of the initial Lagrangian just by this term and avoid the problem at the
present time of the Universe evolution.

One has to keep in mind that the term “spontaneous breaking of the gauge symmetry” is just a
common notation, while in fact a (local) gauge symmetry can not be broken spontaneously as proved by
S. Elitzur [14]. A detailed discussion can be found in [15], see also [16].

Now let us return to the case of the Standard Model. To generate masses for 3 vector bosons we
need at least 3 goldstones. The minimal possibility is to introduce one complex scalar doublet field:

Φ ≡
(

Φ1

Φ2

)
, Φ† = (Φ∗1 Φ∗2). (51)

Then the following Lagrangian is SU(2)⊗ U(1) invariant

L = (DµΦ)†(DµΦ)−m2Φ†Φ− λ(Φ†Φ)2 − 1

4
W a
µνW

a
µν −

1

4
BµνBµν ,

Bµν ≡ ∂µBν − ∂νBµ, W a
µν ≡ ∂µW a

ν − ∂νW a
µ + gεabcW b

µW
c
ν ,

DµΦ ≡ ∂µΦ + igW a
µ

τa

2
Φ +

i

2
g′BµΦ. (52)

Again for m2 < 0 there is a non-trivial minimum of the Higgs potential and a non-zero vev of a com-
ponent: 〈0|Φ2|0〉 = η/

√
2. In accord with the Goldstone theorem, three massless bosons appear. The

global SU(2)× SU(2) symmetry of the Higgs sector is reduced to the custodial SU(2) symmetry.

3.4 Electroweak bosons
The gauge bosons of the SU(2)⊗ U(1) group can be represented as

W+
µ =

W 1
µ + iW 2

µ√
2

, W−µ =
W 1
µ − iW 2

µ√
2

, W 0
µ = W 3

µ , Bµ. (53)
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W 0
µ and Bµ are both neutral and have the same quantum numbers, so they can mix. In a quantum world,

“can” means “do”:

W 0
µ = cos θw Zµ + sin θw Aµ,

Bµ = − sin θw Zµ + cos θw Aµ, (54)

where θw is the weak mixing angle, introduced first by S. Glashow, θw is known also the Weinberg angle.
Remind that we have to choose variables which correspond to observables. Vector bosons Zµ and Aµ
are linear combinations of the primary fields W 0

µ and Bµ.

It is interesting to note that Sheldon Glashow, Abdus Salam, and Steven Weinberg have got the
Nobel Prize in 1979, before the discovery of Z and W bosons in 1983, and even much longer before
the discovery of the Higgs boson. So the Standard Model had been distinguished before experimental
confirmation of its key components.

Look now at the scalar fields:

Φ ≡ 1√
2

(
Ψ2(x) + iΨ1(x)
η + σ(x) + iξ(x)

)
, Φ† = . . .

Fields Ψ1,2 and ξ become massless Goldstone bosons. We hide them into the vector fields:

W i
µ →W i

µ +
2

gη
∂µΨi ⇒ MW =

gη

2
,

Zµ =
g√

g2 + g′2
W 0
µ −

g′√
g2 + g′2

Bµ −
2

η
√
g2 + g′2

∂µξ ⇒ MZ =
η
√
g2 + g′2

2
. (55)

The photon field appears massless by construction. Looking at the mixing we get

cos θw =
g√

g2 + g′2
=
MW

MZ
.

The non-abelian tensor

W a
µν ≡ ∂µW a

ν − ∂νW a
µ + gεabcW b

µW
c
ν

leads to triple and quartic self-interactions of the primary W a
µ bosons, since

L = −1

4
W a
µνW

a
µν + . . . (56)

Fields Bµ and W a
µ were not interacting between each other. But after the spontaneous breaking of the

global symmetry in the Higgs sector, and the consequent change of the basis {W 0
µ , Bµ} → {Zµ, Aµ},

we get interactions of charged W±µ bosons with photons. And the charge of the physical W bosons is
well known from the condition of charge conservation applied to beta-decays. That allows to fix the
relation between the constants:

e =
gg′√
g2 + g′2

= g sin θw. (57)

We see that the very construction of the SM requires phenomenological input. So on the way of the SM
building, not everything comes out automatically from symmetry principles etc.
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3.5 EW interactions of fermions
We have chosen the SU(2)⊗U(1) symmetry group. To account for parity violation in weak decays, we
assume different behavior of left and right fermions under SU(2)L transformations:

left doublets

(
νe
e

)

L

,

(
u
d

)

L

+ 2 other generations,

right singlets eR, uR, dR, (νe,R) + 2 other generations.

To preserve the gauge invariance, the fermion Lagrangian is constructed with the help of covariant deriva-
tives:

L(Ψ) =
∑

Ψi

[
i

2

(
ΨLγαDαΨL −DαΨLγαΨL

)
+
i

2

(
ΨRγαDαΨR −DαΨRγαΨR

)]
,

DαΨL ≡ ∂αΨL +
igτ b

2
W b
αΨL − ig1BαΨL, DαΨR ≡ ∂αΨL − ig2BαΨL.

All interactions of the SM fermions with electroweak vector bosons are here. But coupling constants g1,2

still have to be fixed and related to observables.

Fermions have weak isospins and hypercharges (I, Y ):

ΨL :

(
1

2
, −2g1

g′

)
, ΨR :

(
0, −2g2

g′

)
. (58)

Looking at interactions of left and right electrons with Aµ in L(Ψ) we fix their hypercharges:

eL :

(
−1

2
, −1

)
, eR :

(
0, −2

)
. (59)

The Gell-Mann–Nishijima formula works for all fermions:

Q = I3 +
Y

2
, (60)

where Q is the electric charge of the given fermion, I3 is its weak isospin projection, and Y is its
hypercharge.

Interactions of leptons with W± and Z bosons come out in the form

LI = − g√
2
ēLγµνe,LW

−
µ + h.c.− gZµ

2 cos θw

[
ν̄e,Lγµνe,L

+ēγµ

(
−(1− 2 sin2 θw)

1− γ5

2
+ 2 sin2 θw

1 + γ5

2

)
e

]

⇒ gw =
g

2
√

2
, M2

W =
g2
√

2

8GFermi
=

e2
√

2

8GFermi sin2 θw
=

πα√
2GFermi sin2 θw

.

That gives MW = 38.5
sin θw

GeV, remind MZ = MW
cos θw

.

We can see that the Higgs boson vev is directly related to the Fermi coupling constant:

v = (
√

2GFermi)
−1/2 ≈ 246.22 GeV. (61)

So this quantity had been known with a high precision long before the discovery of the Higgs boson and
the experimental measurement of its mass.

QUESTION: Why neutral weak currents in the SM do not change flavour (at the tree level)?

19

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

19



Fig. 5: Vertexes of EW boson self-interactions.

3.6 Self-interactions of EW bosons and Faddeev–Popov ghosts
Because of the non-abelian SU(2)L group structure and mixing of the neutral vector bosons, we have a
rather reach structure of EW boson self-interactions, see Fig. 5. The corresponding contributions to the
SM Lagrangian look as follows:

L3 ∼ ie
cos θw
sin θw

[
(∂µW

−
ν − ∂νW−µ )W+

µ Zν − (∂µW
+
ν − ∂νW+

µ )W−µ Zν

+W−µ W
+
ν (∂µZν − ∂νZµ)

]

L4 ∼ −
e2

2 sin2 θw

[
(W+

µ W
−
µ )2 −W+

µ W
+
µ W

−
ν W

−
ν

]
,

−e
2 cos2 θw

sin2 θw

[
W+
µ W

−
µ ZνZν −W+

µ ZµW
−
µ Zν

]

−e
2 cos2 θw

sin2 θw

[
2W+

µ W
−
µ ZνAν −W+

µ ZµW
−
µ Aν −W+

µ AµW
−
µ Zν

]

−e2

[
W+
µ W

−
µ AνAν −W+

µ AµW
−
µ Aν

]
.

As we discussed earlier, an accurate treatment of non-abelian gauge symmetries leads to introduc-
tion of Faddeev–Popov ghosts. For the SU(2) case we obtain 3 ghosts: ca(x), a = 1, 2, 3,

c1 =
X+ +X−√

2
, c2 =

X+ −X−√
2

, c3 = YZ cos θw − YA sin θw,

Lgh = ∂µc̄i(∂µci − gεijkcjW k
µ )

︸ ︷︷ ︸
kinetic + int. with Wa

+ int. with Φ︸ ︷︷ ︸
Mgh, int. with H

.

Propagators of the ghost fields read

DYγ (k) =
i

k2 + i0
, DYZ (k) =

i

k2 − ξZM2
Z + i0

, DX(k) =
i

k2 − ξWM2
W + i0

,

where ξi are the gauge parameters. Note that masses of the ghosts Yγ , YZ , and X± coincide with the
ones of photon, Z, and W±, respectively. That is important for gauge invariance of total amplitudes.
The ghosts appear only in propagators, but not in the final or initial asymptotic states.

3.7 Generation of fermion masses
We observe massive fermions, but the SU(2)L gauge symmetry forbids fermion mass terms, since

mΨΨ = m

(
Ψ

1 + γ5

2
+ Ψ

1− γ5

2

)(
1 + γ5

2
Ψ +

1− γ5

2
Ψ

)
= m(ΨLΨR + ΨRΨL) (62)

while ΨL and ΨR are transformed in different ways under SU(2)L. The SM solution is to introduce
Yukawa interactions of fermions with the primary Higgs boson doublet field:

LY = −yd(ūLd̄L)

(
φ+

φ0

)
dR − yu(ūLd̄L)

(
φ0∗

−φ−
)
uR
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− yl(ν̄L l̄L)

(
φ+

φ0

)
lR − yν(ν̄L l̄L)

(
φ0∗

−φ−
)
νR + h.c.

The form of this Lagrangian is fixed by the condition of the SU(2)L gauge invariance. It is worth to
note that neutrino masses can be generated exactly in the same way as the up quark ones. Of course,
that requires introduction of additional Yukawa constants yν . The Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) mixing matrix for (Dirac) neutrinos can be embedded in the SM.

QUESTION: Why do we need “h.c.” in LY ?

Spontaneous breaking of the global symmetry in the Higgs sector provides mass terms for fermions
and Yukawa interactions of fermions with the Higgs boson:

LY = −v +H√
2

[
ydd̄d+ yuūu+ yl l̄l + yν ν̄ν

]
⇒ mf =

yf√
2
v.

By construction, the coupling of the Higgs boson to a fermion is proportional to its mass mf . It is
interesting to note that the top quark Yukawa coupling is very close to 1. And there is a very strong
hierarchy of fermion masses:

yt ≈ 0.99 � ye ≈ 3 · 10−6 � yν ≈?

The question mark in the last case is given not only because we do not know neutrino masses, but also
since we are not sure the they are generated by the same mechanism.

Quarks can mix and Yukawa interactions are not necessarily diagonal neither in the basis of weak
interaction eigenstates, nor in the basis of the strong ones. In the eigenstate basis of a given interaction
for the case of three generations, the Yukawa coupling constants are 3× 3 matrixes:

LY = −
3∑

j,k=1

{
(ūjLd̄jL)

[(
φ+

φ0

)
y

(d)
jk dkR +

(
φ0∗

−φ−
)
y

(u)
jk ukR

]

+ (ν̄jL l̄jL)

[(
φ+

φ0

)
y

(l)
jk lkR +

(
φ0∗

−φ−
)
y

(ν)
jk νkR

]}
+ h.c.

where indexes j and k mark the generation number.

Charged lepton mixing is formally allowed in the SM, but not (yet) observed experimentally.
Searches for lepton flavour violating processes, like the µ→ eγ decay, are being performed.

3.8 Short form of the SM Lagrangian
At CERN one can buy souvenirs with the Standard Model Lagrangian represented in a very short com-
pressed form:

LSM = −1

4
FµνF

µν

+ iΨ̄ 6DΨ + h.c.

+ ΨiyijΨjΦ + h.c.

+ |DµΦ|2 − V (Φ). (63)

We can understand now the meaning of each term. First of all, we see that the Lagrangian is given in
the initial form before the spontaneous symmetry breaking. Summation over SU(3)C , SU(2)L, and
U(1)Y gauge groups is implicitly assumed in the first term. The second line represents the kinetic terms
and gauge interactions of fermions provided by the covariant derivative(s). The third line is the Yukawa
interaction of fermions with the primary scalar doublet field. And the fourth line represents the kinetic
and potential terms of the scalar field.

EXERCISE: Find two ’misprints’ in the Lagrangian (63) which break the commonly accepted
QFT notation discussed in Sect. 2.
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Fig. 6: Triangular anomaly diagram.

3.9 Axial anomaly
There are axial-vector currents in the SM:

JAµ = Ψγµγ5Ψ. (64)

In the case of massless fermions, the unbroken global symmetry (via the Noether theorem) leads to
conservation of these currents: ∂µJµ = 0. For massive fermions ∂µJAµ = 2imΨγ5Ψ. But one-loop
corrections, see Fig. 6, give

∂µJ
A
µ = 2imΨγ5Ψ +

α

2π
FµνF̃µν , F̃µν ≡

1

2
εµναβFαβ. (65)

That fact is known as the axial or chiral or triangular Adler–Bell–Jackiw anomaly, see [6] for details.
So at the quantum level the classical symmetry is lost. That is a real problem for the theory. In simple
words, such a symmetry breaking makes the classical and quantum levels of the theory being inconsistent
to each other. Moreover, the resulting quantum theory looses unitarity.

But in the SM the axial anomalies apparently cancel out. This can be seen for all possible combi-
nation of external gauge bosons:
1) (W W W ) and (W BB) — automatically since left leptons and quarks are doublets;

2) (BW W ) — since Qe + 2Qu +Qd = 0;

3) (BBB) — since Qe = −1, Qν = 0, Qu = 2
3 , Qd = −1

3 ;

4) (B g g) — automatically (g = gluon);

5) (B gr gr) — the same as ’3)’ (gr = graviton).
Here B and W are the primary U(1) and SU(2)L gauge bosons. Note that anomalies cancel out in each
generation separately. It is interesting to note that condition ’2)’ means that the hydrogen atom is neutral.

It is very important that the axial anomalies cancel out in the complete SM: with the SU(3)C ⊗
SU(2)L ⊗ U(1)Y gauge symmetries. So there is a nontrivial connection between the QCD and EW
sectors of the model.

QUESTION: Where is γ5 in the (BBB) case?

3.10 Parameters and interactions in the SM
The SM has quite a lot of parameters. We do not know (yet) where do they come from and have to define
their values from observations. Let us fist count the number of independent free parameters in the SM.
It is convenient to perform this exercise by looking at the initial form of the SM Lagrangian before the
change of variables invoked by the spontaneous symmetry breaking. So, we have:

– 3 gauge charges (g1, g2, gs);
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– 2 parameters in the Higgs potential;
– 9 Yukawa couplings for charged fermions;
– 4 parameters in the CKM matrix.

It makes in total 18 free parameters for the canonical Standard Model. Sometimes, we add also as a free
parameter θCP which is responsible for CP symmetry violation in the QCD sector. But at the present
time this parameter is determined experimentally to be consistent with zero, so we can drop it for the
time being. Moreover, we can include neutrino masses and mixing, as described above. That would give
in addition 4 (or 6 for the Majorana case) parameters in the PMNS matrix and 3 more Yukawa couplings.

QUESTION: How many independent dimensionful parameters is there in the SM?

Most likely that many of the listed parameters are not true independent ones. There should be
some hidden symmetries and relations. Those certainly go beyond the SM. In spite of a large number
of parameters the SM is distinguished between many other models by its minimality and predictive
power. For example, the supersymmetric extension of the SM formally has more than one hundred free
parameters, and for this reason it is not able to provide unambiguous predictions for concrete observables.

Let us now count the interactions in the SM. Obviously, we should do that in accord with the QFT
rules. The key point is to exploit symmetries, first of all the gauge ones. But looking at the Lagrangian it
might be not clear what actually should be counted:
— number of different vertexes in Feynman rules?
— number of particle which mediate interactions?
— number of coupling constants?

Our choice here is to count coupling constants. In fact that will automatically help us to avoid
double coupling of the same interactions. This way how to count interactions is dictated by the QFT
rules. So we have:

– 3 gauge charges (g1, g2, gs);
– 1 self-coupling λ in the Higgs potential;
– 9 Yukawa couplings for charged fermions.

If required we can add 3 Yukawa couplings for neutrinos. We see that the SM contains 5 types of
interactions: 3 gauge ones, the self-interaction of scalar bosons, and the Yukawa interactions of the
scalar bosons with fermions. Note also that even we like some interactions e.g., the gauge ones, in the
SM more than others, we can not say that any of them is more fundamental than others just since they all
are in the same Lagrangian.

3.11 The naturalness problem in the SM
The most serious and actually the only one real theoretical problem of the SM is the naturalness problem
known also as fine-tuning or hierarchy one. Note that all but one masses in the SM are generated due
to the spontaneous symmetry breaking in the Higgs sector. While the scalar boson mass itself has been
introduced by hands (of Peter Higgs et al.) from the beginning. The tachyon mass term breaks the scale
invariance (the conformal symmetry) explicitly.

So the running of all but one masses is suppressed by the classical symmetries. As the result,
all other masses run with energy only logarithmically, but the Higgs mass gets quadratically divergent
radiative corrections. In the one-loop approximation we get

M2
H = (M0

H)2 +
3Λ2

8π2v2

[
M2
H + 2M2

W +M2
Z − 4m2

t

]
,

where Λ is a formal UV cut-off. At the same time Λ can be the energy scale of a new physics which
is coupled to the EW one. In particular Λ can be even the Planck mass scale. On the other hand, it is
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unnatural to have Λ � MH . The most natural option would be Λ ∼ MH e.g., everything is defined by
the EW scale. But that is not the case of the SM. . . There are two general ways to solve the problem:
— either to exploit some (super)symmetry to cancel out the huge terms;
— or to introduce some new physics at a scale not very far from the electroweak one, i.e., making Λ
being not large. One can find in the literature quite a lot of models for both options. But the experimental
data coming from modern accelerators and rare decay studies disfavor most of scenarios of new physics
with scales up to about 1 TeV and even higher. Moreover, it was shown that the measured value of the
Higgs boson mass makes the SM being self-consistent up to very high energies even up to the Planck
mass scale [17]. Direct and indirect experimental searches push up and up possible energy scale of new
physical phenomena. So the naturalness problem becomes nowadays more and more prominent. And
the question, why the top quark mass, the Higgs boson mass and and vacuum expectation value v are of
the same order becomes more and more intriguing. In a sense, the problem is not about how to deal with
divergent radiative corrections, but how to understand the very origin of the EW energy scale.

After the discovery of the Higgs boson and the measurement of its mass, we found some remark-
able empirical relation between parameters of the SM. In particular the equality

v =
√
M2
H +M2

W +M2
Z +m2

t (66)

holds within the experimental errors: 246.22 = 246±1 GeV. Obviously, there should be some tight clear
relation between the top quark mass and the Higgs boson one (or the EW scale in general). The present
version of the SM does not explain this puzzle.

EXERCISE: Divide both sides of Eq. (66) by v and find a relation between coupling constants.

Another interesting relation also involves the Higgs boson and the top quark:

2
m2
h

m2
t

= 1.05 ≈ 1 ≈ 2
m2
t

v2
≡ y2

t = 0.99. (67)

It might be that these relations are of a pure numerological nature, but they certainly indicate some hidden
properties of the SM.

4 Phenomenology of the Standard Model
Let us discuss input parameters of the SM. It was convenient to count their number in the primary form
of the Lagrangian. But for practical applications we use different sets, see e.g., Table 1. Various EW
schemes with different sets of practical input parameters are possible (and actually used), since there are
relations between them. One should keep in mind that the result of calculations does depend on the choice
because we usually work in a limited order of the perturbation theory, while the true relations between
the parameters (and between observed quantities) involve the complete series. So simple relations appear
only at the lowest order, quantum effects (radiative corrections) make them complicated.

Table 1: Input parameters of the SM.

18(19)= 1 1 1 1 1 9 4 (1)
primary: g′ g gs mΦ λ yf yjk θCP

practical: α MW αs GFermi MH mf VCKM 0

A comprehensive up-to-date set of the SM parameters can be found in the Review of Particle
Physics published by the Particle Data Group Collaboration [18]. Let us look at some values of input
parameters extracted from experiments:

– The fine structure constant: α−1(0) = 137.035999074(44) from (g − 2)e;
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Fig. 7: The Feynman diagram for muon decay in the SM.

– The SM predicts MW = MZ cos θw ⇒ MW < MZ , we have now
MZ = 91.1876(21) GeV from LEP1/SLC, MW = 80.385(15) GeV from LEP2/Tevatron/LHC;

– The Fermi coupling constant: GFermi = 1.1663787(6) · 10−5 GeV−2 from muon decay,
– The top quark mass: mt = 173.1(6) GeV from Tevatron/LHC;
– The Higgs boson mass: MH = 125.09(21)(11) GeV from ATLAS & CMS (March 2015).

One can see that the precision in definition of the parameters varies by several orders of magnitude. That
is related to experimental uncertainties and to the limited accuracy of theoretical calculations which are
required to extract the parameter values from the data.

QUESTION: What parameter of the canonical, i.e., without neutrino masses and mixing SM is
known now with the least precision?

4.1 The muon decay
Let us consider a few examples of particle interaction processes and start with the muon decay µ− →
e− + ν̄e + νµ, see Fig. 7. It is the most clean weak-interaction process. One can say that this process is
one of keystones of particle physics. The muon decay width reads

Γµ =
1

τµ
=
G2

Fermim
5
µ

192π3

[
f(m2

e/m
2
µ) +O(m2

µ/M
2
W ) +O(α)

]
,

f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx,

O(m2
µ/M

2
W ) ∼ 10−6, O(α) ∼ 10−3,

where O(α) includes effects of radiative corrections due to loop (virtual) effects and real photon and/or
e+e− pair emission.

As mentioned above, the value of the Fermi coupling constant is extracted from the data on the
muon lifetime, GFermi = 1.1663787(6) · 10−5 GeV−2. The high precision is provided by a large ex-
perimental statistics, low systematical errors of the final state electron observation, and by accurate the-
oretical calculations of radiative corrections. But impressive precision (∼ 1 · 10−6) in the measurement
of the muon life time doesn’t give by itself any valuable test of the SM. QUESTION: Why is that so?
On the other hand, studies of differential distributions in electron energy and angle do allow to test the
V − A structure of weak interactions and look for other possible types of interactions which can be
parameterized in a model-independent way by the so-called Michel parameters.

4.2 Electron and muon anomalous magnetic moments
The Dirac equations predict gyromagnetic ratio gf = 2 in the fermion magnetic moment ~M = gf

e
2mf

~s.
Julian Schwinger in 1948 found that one-loop QED corrections to the vertex function give the so-called
anomalous magnetic moment:

af ≡
gf − 2

2
≈ α

2π
= 0.001 161 . . . (68)
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For the electron case, the Harvard experiment [19] obtained

aexp
e = 1 159 652 180.73 (28) · 10−12 [0.24ppb].

The SM predicts [20]

aSM
e = 1 159 652 181.643 (25)8th(23)10th(16)EW+had.(763)δα · 10−12.

The perfect agreement between the measurement and the theoretical prediction is a triumph of Quantum
electrodynamics. In particular, we note that af 6= 0 is a pure quantum loop effect which is absent as in
classical physics as well as in Quantum mechanics.

It is worth to note that the extremely high precision in the experimental measurement of the elec-
tron anomalous magnetic moment allows to use it as a reference point for definition of the fine structure
constant: aexp

e ⇒ α−1(0) = 137.035999074(44).

For the anomalous magnetic moment of muon, the E821 experiment at BNL in 2006 published
the following result of data analysis:

aexp
µ = 116 592 089 (54)(33) · 10−11 [0.5ppm].

The corresponding theoretical value and the difference are

aSM
µ = 116 591 840 (59) · 10−11 [0.5ppm] (69)

∆aµ ≡ aexp
µ − aSM

µ = 249 (87) · 10−11 [∼ 3σ].

First, one can see that both experimental and theoretical values are very accurate. Second, there is a dis-
crepancy of the order of three standard deviations. That is a rather rare case for the SM tests. Moreover,
this discrepancy remains for a long period of time in spite of intensive efforts of experimentalists and
theoreticians.

The SM prediction consists of the QED, hadronic, and weak contributions:

aµ = aµ(QED) + aµ(hadronic) + aµ(weak), (70)

aµ(QED) = 116 584 718 845 (9)(19)(7)(30) · 10−14 [5 loops],

aµ(hadronic) = aµ(had. vac.pol.) + aµ(had. l.b.l),= 6949 (37)(21) · 10−11 + 116 (40) · 10−11,

aµ(weak) = 154 (2) · 10−11 [2 loops].

Note that the QED contribution to the muon anomalous magnetic moment is essentially the same as the
one to the electron magnetic moment. The only difference is coming from the dependence on electron
and muon masses. As concerning the hadronic and weak interaction contributions, they are enhanced by
the factor m2

µ/m
2
e with respect to the electron case. The same factor typically appears for hypothetical

contributions of new interactions beyond the SM. For this reason anomalous magnetic moments of muon
and tau lepton are potentially more sensitive to new physics contributions.

One can see that the difference between the theoretical prediction and the experimental data is
almost twice the contribution of weak interactions: ∆aµ ∼ 2× aµ(weak). Here by ’weak’ we mean the
complete electroweak calculation minus the pure QED contribution. The weak interactions have been
directly tested with high precision experimentally. So it is not so simple to attribute the difference to an
effect of new physics. Nevertheless, there is a bunch of theoretical models that try to resolve the problem
by introduction of new interactions and/or new particles.

4.3 Vacuum polarization
By direct calculation in QED, one can see that virtual charged fermion anti-fermion pairs provide a
screening effect for the electric force between probe charges. Resummation of bubbles, see Fig. 8, gives

α(q2) =
α(0)

1−Π(q2)
, e.g. α−1(M2

Z) ≈ 128.944(19),
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Fig. 8: The one-loop Feynman diagram for QED vacuum polarization.

Π(q2) =
α(0)

π

(
1

3
ln

(−q2

m2
e

)
− 5

9
+ δ(q2)

)
+O(α2),

δ(q2) = δµ(q2) + δτ (q2) + δW (q2) + δhadr.(q
2). (71)

The hadronic contribution to vacuum polarization δhadr.(q
2) for |q2| below a few GeV2 is not calculable

within the perturbation theory. Now we get it from experimental data on e+e− → hadrons and τ →
ντ + hadrons with the help of dispersion relations, see e.g., review [21]. Lattice results for this quantity
are approaching.

Note that screening, i.e., an effective reduction of the observed charge with increasing of distance,
is related to the minus sign attributed to a fermion loop in the Feynman rules.

QUESTION: Estimate the value of q2
0 at which α(q2

0) =∞.

This singularity is known as the Landau pole. Formally, such a behaviour of QED brakes unitarity
at large energies. But that happens at energies much higher than any practical energy scale including
the Planck mass and the mass of the visible part of the Universe. So we keep this problem in mind as a
theoretical issue which stimulates our searches for a more fundamental description of Nature.

4.4 Experimental tests of the SM at LEP
After the analysis of LEP1 and LEP2 experimental data, the LEP Electroweak Working Group (LEP-
EWWG) [22] illustrated the overall status of the Standard Model by the so-called pulls, see Fig. 9.
The pulls are defined as differences between the measurement and the SM prediction calculated for the
central values of the fitted SM input parameters [α(M2

Z) = 1/128.878, αs(M2
Z) = 0.1194, MZ =

91.1865 GeV, mt = 171.1 GeV] divided by the experimental error. Although there are several points
where deviations between the theory and experiment approach two standard deviations, the average sit-
uation should be ranked as extremely good. We note that the level of precision reached is of the order of
∼ 10−3, and that it is extremely non-trivial to control all experimental systematics at this level.

Through quantum effects the observed cross sections of electron-positron annihilation at LEP
depend on all parameters of the Standard Model including the Higgs boson mass. The so-called yellow
band plot Fig. 10 shows the fit of MH performed by LEPEWWG [22] with the LEP data in March 2012.
The left yellow area has been excluded by direct searches at LEP, and the right one was also excluded by
LHC. The plot is derived from a combined fit of all the world experimental data to the SM exploiting the
best knowledge of precision theoretical calculations which is realized in computer codes ZFITTER [23]
and TOPAZ0 [24]. One can see that the data was not very sensitive to MH , but the fit unambiguously
prefers a relatively light Higgs boson. Now we can say that the measured value of this parameter agrees
very well with the LEP fit. That indirectly confirms again the consistency and the power of the Standard
Model.

It is interesting also to look at the behavior of the cross sections of electron-positron annihilation
into hadrons as a function of energy Fig. 11. A clear peak at the Z boson mass is seen. The excellent
agreement of the experimental data with the SM predictions is achieved only after inclusion of QCD and
electroweak radiative corrections which reach dozens of percent in the vicinity of the peak.

A peculiar result was obtained at LEP for the number of (light) neutrinos, see Fig. 12. Even so that
the final state neutrinos in the process e+ + e− → Z → ν+ ν̄ was not observed, the corresponding cross
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Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1871 ± 0.0021    .08

ΓZ [GeV]ΓZ [GeV] 2.4944 ± 0.0024   -.56

σhadr [nb]σ0 41.544 ± 0.037   1.75

ReRe 20.768 ± 0.024   1.16

AfbA0,e 0.01701 ± 0.00095    .80

AeAe 0.1483 ± 0.0051    .21

AτAτ 0.1425 ± 0.0044  -1.07

sin2θeffsin2θlept 0.2321 ± 0.0010    .60

mW [GeV]mW [GeV] 80.350 ± 0.056   -.62

RbRb 0.21642 ± 0.00073    .81

RcRc 0.1674 ± 0.0038  -1.27

AfbA0,b 0.0988 ± 0.0020  -2.20

AfbA0,c 0.0692 ± 0.0037  -1.23

AbAb 0.911 ± 0.025   -.95

AcAc 0.630 ± 0.026  -1.46

sin2θeffsin2θlept 0.23099 ± 0.00026  -1.95

sin2θWsin2θW 0.2255 ± 0.0021   1.13

mW [GeV]mW [GeV] 80.448 ± 0.062   1.02

mt [GeV]mt [GeV] 174.3 ± 5.1    .22

∆αhad(mZ)∆α(5) 0.02804 ± 0.00065   -.05

Stanford 1999

Fig. 9: Pulls of pseudo-observables at LEP [22].

section was restored with the help of the separately measured hadronic and leptonic cross sections [22],
and the total Z boson width.

It appears that the dependence of LEP observables on quantum loop effects involving top quark is
rather strong. So even without approaching the direct production of top quark, LEP experiments were
able to extract information about its mass. The top quark mass ’history’ (till 2006) is shown by Fig. 13.
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��

Fig. 10: The curve shows ∆χ2
min(M2

H) = χ2
min(M2

H) − χ2
min as a function of MH . The width of the shaded

band around the curve shows the theoretical uncertainty. The vertical bands show the 95% CL exclusion limit on
MH from the direct searches at LEP (left) and at LHC (right). The dashed curve is the result obtained using the
evaluation of ∆α(5)(M2

Z). The dotted curve corresponds to a fit including also the low-Q2 data.
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Fig. 11: Measurements of the e+e− → hadrons cross section.
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Fig. 14: Cross-sections of electroweak SM processes at LEP2.

In general, all LEP measurements of various cross-sections of electroweak SM processes were
found in a very good agreement with theoretical predictions obtained within the SM, see plot Fig. 14 from
the LEPEWWG [22] 2013 report. The dots show the measurements and curves are the SM predictions
with radiative corrections taken into account.

4.5 Measurements of SM processes at LHC
The Large Hadron Collider at CERN is not only a discovery machine. In fact the large luminosity and
advanced detectors allow to perform there high-precision tests of the Standard Model. High statistics on
many SM processes is collected. Plots Fig. 15 and Fig. 16 show the public preliminary results of the
ATLAS and CMS collaborations. One can see that we have again a good agreement for all channels.
Certainly, the tests of the SM will be continued at LHC at higher energies and luminosity. That is one
of the main tasks the LHC physical programme. The proton-antiproton collider Tevatron has proven that
hadronic colliders can do high-precision studies of the SM. In particular, CDF and D0 experiments at
Tevatron managed to exceed LEP in the precision of the W boson mass measurement.

At LHC the best precision in SM processes measurement is reached for the Drell–Yan-like pro-
cesses. A schematic diagram for such a process is shown on Fig. 17. These processes are distinguished
by production of final state leptons which can be accurately detected. We differ the neutral current (NC)
Drell–Yan-like processes which involve intermediate Z bosons and photons, and the charged current
(CC) ones which go through W± bosons. The main contribution to the (observed) total cross section of
these processes comes from the domain where the invariant mass of the final state lepton pair is close
to the masses of Z and W bosons. So these processes are also known as single Z and W production
reactions. The CC and NC Drell–Yan-like processes at LHC are used for:

31

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

31



Fig. 15: SM cross sections measured by ATLAS (public results).

Fig. 16: SM cross sections measured by CMS (public results).
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Fig. 17: Schematic Feynman diagram for the charged current Drell–Yan-like process.

– luminosity monitoring;
– W mass and width measurements;
– extraction of parton density functions;
– detector calibration;
– background to many other processes;
– and new physics searches.

In particular, a new peak in the observed invariant-mass distribution of final leptons can indicate the
presence of a new intermediate particle.

5 Conclusions
Let us summarize the status of the SM. We see that it is a rather elegant construction which allows making
systematic predictions for an extremely wide range of observables in particle physics. The energy range
of its applicability covers the whole domain which is explored experimentally while the true limits remain
unknown. We do not understand all features of the model, the origin(s) of its symmetries and parameter
values. But we see that the SM has the highest predictive power among all models in particle physics
and it successfully passed verification at thousands of experiments.

There are several particularly nice features of the SM:

– it is renormalizable and unitary⇒ it gives finite predictions;
– its predictions do agree with experimental data;
– symmetry principles are extensively exploited;
– it is minimal;
– all its particles are discovered;
– the structure of interactions is fixed (but not yet tested everywhere);
– not so many free parameters, all are fixed;
– CP violation is allowed;
– tree-level flavor-changing neutral currents are not present;
– there is a room to incorporate neutrino masses and mixing.

In principle in the future, the SM can be embedded into a more general theory as an effective low-energy
approximation. But in any case the SM will remain the working tool in the energy domain relevant for
the absolute majority of our experiments.

For many reasons we do not believe that the SM is the final ’theory of everything’. Of course
first of all, we have to mention that the SM is not joined with General Relativity. But frankly speaking,
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that is mostly the problem of GR, since the SM itself is ready to be incorporated into a generalized
joint QFT construction, while GR is not (yet) quantized. The naturalness problem discussed above in
Sect. 3.11 indicates that either some new physics should be very close to the EW energy scale, or we do
not understand features of the renormalization procedure in the SM. In general, we have a lot of open
questions within the SM:

– the origin of symmetries;
– the origin of EW and QCD energy scales;
– the origin of 3 fermion generations;
– the origin of neutrino masses;
– the hierarchy of lepton masses;
– the absence of strong CP violation in the QCD sector;
– confinement in QCD, and so on. . .

There are also some phenomenological issues:

– the baryon asymmetry in the Universe;
– the dark matter;
– the dark energy;
– the proton charge radius, (g − 2)µ, and not much else. . .

The first three items above are related to Cosmology, see the corresponding lecture course. We should
note also that most of observations in Cosmology and Astrophysics are well described within the Stan-
dard Model (and General Relativity). But for the listed cases we need most likely something beyond
the SM. The last item in the list claims that there are some tensions in the predictions of the SM and
measurements at experiments in particle physics.

So we see that the SM is build using some nice fundamental principles but also with a substantial
phenomenological input. The most valuable task for high-energy physicists now is to find the limits of
the SM applicability energy domain. Yes, we hope to discover soon new physical phenomena. But any
kind of new physics ought to preserve the correspondence to the SM. The SM contains good mechanisms
to generate masses of vector bosons and fermions, but it doesn’t show the origin(s) of the electroweak
and QCD energy scales.

So, the SM can not be the full story in particle physics, we still have a lot to explore. Good luck!
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Lectures on QCD for hadron colliders

K. Melnikov
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Abstract
I discuss how perturbative QCD can be used to describe outcomes of hard
hadron collisions in a detailed and precise way. To an extent that four lectures
permit, we touch upon fixed order computations, resummations, parton dis-
tribution functions and parton showers. Main ideas behind these concepts are
explained and derivations of many important results are given. The importance
of understanding the soft and collinear limits of scattering amplitudes for the
perturbative QCD description of hadron collisions is repeatedly emphasized.
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1 Introduction
Experiments at the LHC where proton beams collide with the center of mass energy of 13 TeV are
rightfully described as experiments at the energy frontier. Being at the energy frontier is important since,
by increasing the collision energy, we create a situation where events with larger momentum transfer
or larger energy deposition become possible. Such events are interesting because, if enough energy is
packed into a small volume, it becomes possible to knock out new heavy elementary particles from the
vacuum and to study their properties. It is hoped that, in doing so, we will be able to determine the
Lagrangian that governs physics beyond the Standard Model.

This approach is at the heart of many measurements performed by ATLAS and CMS collaborations
at the LHC. While these experiments scored clear successes since the start of the LHC in 2010, for
example by discovering the celebrated Higgs boson [1, 2], they keep struggling to break through the
“Standard Model barrier”, see Fig. 1. As many exclusion limits improve to the point, that masses of new
heavy particles, that are still not excluded, become so large that their frequent production at the LHC is
hardly possible, it becomes clear that further searches for physics beyond the Standard Model based on
the idea of clear, resonance-like structures emerging on top of relatively flat backgrounds will have to
be supplemented by entirely new search strategies. Indeed, if new particles are not seen directly at the
LHC, they can hide in complex final states, if they are light, or, if they are heavy, they can be virtually
produced for short periods of time and then disappear back into the vacuum. In the latter case, we may
hope to detect these virtual particles since they affect properties of Standard Model particles that we
observe experimentally.

Given this situation, we are forced to think if precision physics at the LHC is possible and whether
or not it can become a tool to discover physics beyond the Standard Model. It is important to realize
that systematic precision studies at hadron colliders – aimed at discovering New Physics through indirect
effects – were never attempted before. This is not surprising given the fact that hadrons are compos-
ite particles kept together by a poorly understood strong force. If we can not understand or compute
properties of a single proton, how can we confidently describe what happens if two protons collide?

It is generally believed that this can be done if the collision energy is high enough and if we
select events where momentum transfer is very large. Such events occur at small distances and, since
physics of strong interactions at short distances becomes more perturbative, the understanding of the
strong force improves. Of course, it never becomes perfect. So the question is how far we can drive
the idea of the precision LHC physics before poor control over the strong force catches up with us.

Proceedings of the 2017 European School of High-Energy Physics, Evora, Portugal, 6–19 September 2017, edited by M. Mulders and
G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 3/2018, CERN-2018-006-SP (CERN, Geneva, 2018)

2519-8041– c© CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2018-003.37

37

https://doi.org/10.23730/CYRSP-2018-003.37


The LHC experiments struggle  to get past the ``Standard Model barrier’’  and 
discover physics beyond it. As many exclusion limits improve (increase), we face 
the  prospect of having to understand how to find New Physics  either in  complex 
final states (if it is light) or  in tails of distributions (if it is heavy).  This forces us to 
consider if  precision studies at the LHC -- a hadron collider (!) -- are possible.  

Exclusion limits for stops and gluinos after ICHEP2016

Gluino	decays	to	bb+LSP	

ICHEP2016,	Aug	9,	2016	 Searches	for	SUSY	 10	

Gluinos:	highest	SUSY	producCon	cross	secCon	
•  can	give	access	to	other	sparCcles	via	decay	chains	
•  here:	consider	decays	to	two	quarks	and	the	LSP	

Hadronic	search	with	b-jets	
•  ≥4	jets,	≥3	b,	no	lepton	(this	model)	
•  key	variables:	#b-jets,	MET,	meff,	mT,	large-radius	jet	masses			

ATLAS-CONF-2016-052	 Other	results	
•  CMS-SUS-16-014	
•  CMS-SUS-16-015	
•  CMS-SUS-16-016	

Top	squarks	(the	so:	side)	

ICHEP2016,	Aug	9,	2016	 Searches	for	SUSY	 20	

Direct	producCon		
•  Δm<m(W):	experimentally	challenging	but	could	explain	
DM	density	due	to	co-annihilaCon	

•  handles:	ISR	jets,	so:	leptons	

Hadronic	 CMS-SUS-16-029	 2	leptons	 CMS-SUS-16-025	

for	prompt	decays	

 A challenge
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Fig. 1: Recent exclusion limits by ATLAS and CMS collaborations. The constraints on gluino and stop masses
start challenging an established paradigm in high-energy physics.

This problem is non-trivial since, as we will see, we have very poor understanding of non-perturbative
effects in hadron collisions. Unfortunately, non-perturbative effects need to be modeled anyhow, for
instance to describe a transformation of partons to hadrons since it is the latter that interact with particle
detectors. Since modeling non-perturbative effects necessarily involves some arbitrariness, it is important
to find out which aspects of hadron collisions can be described and understood from first principles.
This requirement is stronger than the ability of tools that we use to study hadron collisions (i.e. parton
showers, fixed order computations, resummations etc.) to describe data since this can happen by accident
or because one can tune these tools to do that.

As we will see in these lectures, all tools that we use to describe hadron collisions are based on ap-
proximations and all of them have limited range of applicability. For this reason, we need to understand,
parametrically, the approximations that are made on the way from the Standard Model Lagrangian to a
theory behind a particular measurement and we need to be convinced that a particular approximation is
justified in each case. We need to be sure that the framework that we use is systematically improvable
and, if not, we need to know its ultimate limit1.

In short, we need to start asking questions about the foundations of what we do to describe hard
hadron collisions and keep in mind that a significant fraction of the current lore, ideas and approaches
dates back to times when even an order-of-magnitude understanding of hadron collider physics was
considered a success. There is no question that currently we strive for more.

The key for describing hard scattering processes in hadron collisions is provided by the collinear
factorization theorem in QCD [3]. Within this framework, colliding protons are viewed as beams of
partons (massless quarks and gluons), each carrying a fraction of proton energy. Probabilities to find
partons with definite energy fractions are called parton distribution functions (PDFs). These objects are
universal, i.e. they do not depend on a process under investigation. Therefore, they can be determined
in some processes and used to describe many other. Partons interact with each other and produce final
states composed of Standard Model particles such a leptons, gauge bosons and QCD partons themselves.
We interpret these QCD partons in final states as seeds of hadronic energy flows that are barely affected
by non-perturbative QCD effects. We call these seeds jets.2

The production cross sections for processes with final states composed of QCD jets and Standard
1One of the possible questions is what is the order beyond which perturbative computations become meaningless?
2 Unfortunately, due to time constraints, we could not discuss jets during the lectures. A comprehensive introduction into

this very important subject can be found in Ref. [4].
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Model particles in hard hadron collisions can thus be computed using the following formula

dσ =
∑

i1,i2

∫
dx1dx2fi1(x1)fi2(x2)dσi1i2(x1, x2)FJ

(
1 +O(ΛnQCD/Q

n)
)
, n ≥ 1. (1)

Here x1,2 are fractions of incoming hadron’s energies carried by partons i1 and i2 and fi1,2 are the parton
distribution functions. Finally, FJ is a function that, if necessary, defines jets by combining in a smart
way QCD partons that appear in the final state.

The last term in Eq. (1) represents genuine non-perturbative effects that take us beyond the simple
picture of parton scattering and fragmentation into jets. These effects are expected to be suppressed by
the ratio of ΛQCD/Q where Q is the smallest of hard scales in the problem and ΛQCD ≈ 300 MeV is the
non-perturbative parameter of QCD. Note that, according to Eq. (1) we do not know how strongly these
effects are supposed to be suppressed. It is believed that, in many cases, the exponent n in Eq. (1) is n = 2
but there are arguments that suggest that n = 1 is possible especially if one studies complex kinematic
distributions. Numerically, if n = 1 and Q = 30 GeV, the non-perturbative effects are estimated to be
just a few percent. Note that non-perturbative of that magnitude are comparable to the accuracy to which
partonic cross sections for certain hadron collider processes have been calculated. This implies that
disentangling perturbative, non-perturbative and New Physics contributions to hadronic cross sections
becomes problematic and may require careful investigation.

Note also that the non-perturbative contribution in Eq. (1) is highly non-trivial, in spite of its simple
appearance since it contains different physical effects such as double-parton scattering, hadronization,
contributions from the underlying events etc. Experimentalists know how important it is to simulate all
these effects if one wants to extract real physics from hadron collisions but, according to the formula that
we are going to use all the time, all these effects are just power corrections that can not be described from
first principles. This fact alone should be worrisome enough since it shows a different take on what the
LHC physics is all about by theorists and experimentalists. We will discuss how these two approaches
can be reconciled when we will talk about the parton showers at the end of these lectures. Our next step
is to discuss the basics of the quantum field theory of strong interactions, the QCD.

Before we dive into this discussion, let me state the obvious – it is impossible to explain the
details of a complex quantum field theory, the QCD, and discuss its numerous applications to hadron
collider physics in four lectures. Although I will do my best in communicating the main ideas of this
theory, students should be well-advised to consult numerous textbooks on quantum field theory and the
use of QCD to describe hadron collisions. An incomplete list of useful references can be found in the
bibliography [5–9].

2 Basic facts about QCD for colliders
The upshot of the discussion in the previous Section and the collinear factorization formula Eq. (1) is
that hard scattering processes at the LHC can be understood in terms of partons, i.e. quarks and gluons;
only limited knowledge about protons is needed. Physics of quarks and gluons is governed by a field
theory of strong interactions, the QCD. QCD is a non-abelian SU(3)-gauge theory so it is complicated
and I can not describe all the details of this theory in these lectures. Instead, I will provide a few basic
facts about QCD that we will use later. More information on QCD can be found in textbooks on particle
physics and quantum field theory [5].

Similar to any other quantum field theory, QCD is described by a Lagrangian. It reads

LQCD =
∑

q̄j

(
iD̂ −mj

)
qj −

1

4
GaµνG

a,µν , (2)

where we sum over six quark flavors – up, down, strange, charm, bottom and top. The theory describes
interactions of these quarks with carriers of the strong force, the gluons. Quarks (gluons) transform under
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QCD Feynman rules 

Friday, December 22, 17Fig. 2: QCD Feynman rules. Solid lines refer to quarks, wavy lines to gluons gluons and dashed lines to ghosts.
Gluons in the three-gluon vertex are outgoing.

the fundamental (adjoined) representation of the gauge group SU(3), respectively. It is often said that
there are also unphysical ghost particles in QCD; we will say a few words about them below. The various
quantities that appear in the Lagrangian Eq. (2) are

Dµ = ∂µ − igsT aAaµ, Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν , (3)

where T a and fabc are generators and structure constants of the Lie algebra of the gauge group SU(3).

It follows from the Lagrangian LQCD that gluons interact with quarks and antiquarks and also
with other gluons. We can associate these interactions with color charges of the corresponding particles;
however, since there are eight Lie algebra generators and many structure constants, it becomes difficult
to say what the color charges really are. Since we can not observe color, physical processes are sensitive
to average color charges; those are provided by the corresponding Casimir invariants of a particular
representation R CR =

∑
T aRT

a
R. These Casimir invariants evaluate to CF = 4/3 and CA = 3 for the

fundamental and adjoined representations, respectively. The importance of these numbers is that they
show that the color charge of a gluon is larger than the color charge of a quark. Physically, this means
that gluons interact stronger and radiate more, leading to e.g. higher multiplicities in gluon-initiated jets
as compared to quark-initiated.

Similar to any quantum field theory, QCD can be characterized by Feynman rules that describe
elementary interactions between different particles in the theory. The Feynman rules are shown in Fig. 2.
It is seen from Fig. (2) that, indeed quarks interact with gluons and gluons interact with quarks and
gluons. Interaction between quarks and gluons is very much QED-like except for additional SU(3)
matrices that describe the color chargers.

In addition to quarks and gluons there are additional particles – ghosts. Ghosts are described
by scalar anti-commuting fields, directly violating the spin-statistics theorem. The reason ghosts are so
strange is that they appear in the theory for technical reasons, i.e. as a tool to allow for the quantization
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of QCD in covariant gauges where gluons are assigned four polarizations instead of two. When this is
done in QED, two additional photon polarizations decouple from the theory automatically thanks to the
so-called Ward identities. In QCD this does not happen and the primary role of a ghost is to ensure that
contributions of unphysical gluon polarizations are removed from cross sections with on-shell gluons
even if the latter are computed using unphysical density matrices.

If physical gluon polarizations are used to describe external states, ghosts do not appear as external
particles. For a gluon that moves along the z direction with momentum k, the two physical polarizations
are

k = (k0, 0, 0, k0), ε+ =
1√
2

(0, 1, i, 0) , ε− =
1√
2

(0, 1,−i, 0) . (4)

Note that physical gluon polarizations satisfy the following transversality condition

k · ε± = 0. (5)

We will make use of this condition when discussing soft and collinear limits of real emission matrix
elements.

The situation with internal gluons is somewhat more complex; one can, in principle, employ glu-
ons with only physical polarizations (and the non-propagating color-electric field) to do loop computa-
tions, but this leads to additional complications. In practice, it is more convenient to use covariant gauges
and ghosts for computing loop corrections to scattering amplitudes and Green’s functions.

Fixed order computations in QCD employ an expansion in the strong coupling constant αs. How-
ever, we do not know its numerical value since, thanks to confinement, we observe colorless states –
hadrons – whereas αs refers to interactions between color charges that we associate with quarks and
gluons. To determine αs, we measure it at high energies where description of final states in terms of jets
produced by quarks and gluons becomes appropriate. For example, from studies of Z-boson decays, we
know that αs(Mz) ≈ 0.12. We also find that if we want to describe QCD processes at other energies, we
can absorb significant part of quantum corrections into the “running”, i.e. “energy”-dependent, coupling
constant. In particular, we find that at higher energies or, more precisely, higher momentum transfers,
quantum corrections can be described by using a smaller coupling constant. This phenomenon, known
as asymptotic freedom, is described by the formula

αs(µ) =
1

β0 ln µ
2

Λ
2
QCD

, β0 =
33− 2nf

12π
≈ 0.5|nf=5, (6)

where nf is the number of “active” quark flavors.3

Asymptotic freedom is central to our ability to describe hard scattering processes at the LHC in
QCD perturbative theory since the smallness of the coupling constant is a pre-requisite for the success of
perturbative description. Note that for typical LHC processes the strong coupling constant is small but not
tiny. This implies that quite often QCD corrections need to be computed to higher orders to claim high
precision. The technology for computing next-to-leading QCD corrections to many processes of interest
was developed in mid 1990s [10,11] and an important ingredient was added about ten years ago [12,13].
Since then, the development of theoretical methods for next-to-next-to-leading order (NNLO) computa-
tions became of great interest to the community of theorists interested in precision LHC phenomenology.
Very recently, we have seen the emergence of several key technologies for NNLO computations [14] and
dramatic increase in the number of their applications to LHC physics [15].

The use of QCD to describe hard scattering processes at the LHC is intimately connected with
the detailed understanding of how scattering amplitudes behave in the so-called soft and collinear limits.
The soft limit corresponds to a situation where energy of an emitted gluon becomes small. The collinear

3An “active” quark is a quark whose mass is smaller than the scale µ.
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The running coupling constant
It is possible to absorb large quantum corrections to the so-called running coupling 
constant.  The coupling constant in QCD runs in such a way that it decreases at large 
momenta transfers or short distances.  This phenomenon, known as the asymptotic 
freedom, enables us to describe perturbatively hard scattering processes at the LHC. 

Choice of scale in the QCD coupling should be correlated with kinematics; for collider 
physics purposes, the transverse momentum of a jet relative to an emitter is often  
a good choice. We will see an example where understanding of this fact plays a 
crucial  role in getting the physics right.

Friday, December 22, 17

Fig. 3: The strong coupling constants as determined from different measurements and its evolution with momen-
tum transfer.

limit corresponds to a situation where at least two external particles propagate in the same direction so
that the relative angle between their momenta is small.

Scattering amplitudes become infinite if either soft or collinear limit is taken. Hence, soft and
collinear limits describe kinematic situations where scattering amplitudes are large and which, therefore,
provide dominant contributions to cross sections. This fact alone would have justified the need to under-
stand soft and collinear limits of QCD amplitudes but there are more reasons to do that. They are listed
below.

First, we can only apply perturbative QCD to describe observables that are insensitive to infra-
red and collinear dynamics. This is because infra-red and collinear dynamics is non-perturbative and,
therefore, it can not be described as an expansion in αs. Hence, it is important to understand soft and
collinear limits of scattering amplitudes to enable construction of observables that can be described and
understood in perturbative QCD.

Second, soft and collinear limits of amplitudes lead to non-integrable singularities in perturbative
computations of cross sections. Obtaining finite fixed order predictions in high orders of perturbative
QCD requires us to understand in detail how soft and collinear singularities cancel in the total cross
section or in other infra-red safe observables.

Third, soft and collinear limits often determine enhanced contributions to scattering amplitudes
and cross sections. These enhanced contributions may invalidate fixed order predictions and, for this
reason, they are essential for resummations, PDF evolution and parton showers. Understanding universal
factorization properties of matrix elements in these limits is crucial for the success of the resummation
program.

Finally, soft and collinear emissions dominate high-multiplicity final states. Understanding high-
multiplicity final state in QCD is important for describing the evolution from hard scattering processes
that occur at short distances to large distances where non-perturbative transition from QCD partons to
observable hadrons occurs.

In what follows, we will look at different ways to describe hard hadron collisions, emphasizing
the role of soft and collinear limits for these descriptions. We will start with a relatively simple picture of
fixed order computations. We will continue by making it more complex in order to improve the descrip-
tion of certain observables. Quite often, I will use toy models and examples from QED to explain the
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relevant physics, instead of talking about QCD directly. The reason for this is that QED physics is similar
to QCD but QCD, being a non-abelian theory, is technically more involved. Therefore, understanding
physics of hard collisions in a simpler gauge theory – QED – is a crucial step towards mastering QCD.

The remainder of these lectures is organized as follows. In the next Section I will discuss the
production of lepton pairs in hadron collisions at leading order in perturbative expansion in QCD. We
will find that the results of the calculation provide a decent description of rapidity and invariant mass
distributions of a lepton pair but completely fail to describe its transverse momentum distribution. We
will attempt to improve on this result by considering NLO QCD corrections to dilepton pair production
in hadron collisions in Section 4. We will find that, although we can describe the transverse momentum
distribution of a lepton pair at high p⊥, we fail to do that at low values of the transverse momentum. In
Section 5 we explain that at low values of the transverse momenta, perturbative expansion is in expan-
sion in αs ln2(s/p2

⊥), rather than αs, which can be of order one, so that all such contributions need to be
resummed. We explain how to resum such terms in QCD perturbative series in Section 5. Upon doing so,
we will discover that it is necessary to choose the factorization scale of parton distribution proportional
to p⊥, in order to achieve the resummation of p⊥-dependent logarithms at small values of the transverse
momentum. To understand the reason for that, we will discuss the parton distribution functions and the
meaning of the factorization scale in Section 6. Parton distribution functions provide a limited informa-
tion about the composition of the final state. To improve on that, parton showers are used. In Section 7
we explain the basic ideas behind parton showers and show how parton showers can be used to generate
unweighted events. We conclude in Section 8.

3 Lepton pair production at leading order
In this Section, we discuss production of lepton pairs (e+e−, µ+µ−, τ+τ−) in hadron collisions at
leading order in perturbative QCD. We will only consider the photon-mediated process; the exchange of
the Z-boson between quarks and leptons will be neglected.

According to the factorization theorem Eq. (1), production of a lepton pair in hadron collisions is
described by the following formula at leading order in perturbative QCD

dσ
H1+H2→l+l− =

∑

i∈[q,q̄]

∫
dx1dx2fi(x1)fī(x2) dσ

īi→l+l−(x1P1, x2P2). (7)

Here P1,2 are the momenta of the colliding hadrons H1,2, respectively. The momenta of incoming
hadrons are taken to be light-like P 2

1 = P 2
2 = 0, i.e. all the mass effects are neglected. The four-

momenta of the colliding massless quarks are then p1 = x1P1 and p2 = x2P2. Parton distribution
functions fq,q̄(x) are extracted from experimental measurements and are considered to be known for our
purposes. Although there are gluon partons in a proton, they do not contribute to leading order cross
section for lepton pair production.

To compute the hadronic cross section we need the cross section for the partonic process qq̄ →
l+l−. Computation of this cross section proceeds in a standard way. The matrix element reads

iM =
ie2Qqδkm

Q2

[
ū(k1, λ1)γµv(k2, λ2)

]
[v̄(p2, ξ2)γµu(p1, ξ1] , (8)

where Qq is the electric charge of colliding quarks, k and m are their colors, λ1,2 and ξ1,2 are the
polarization labels and k1,2 are the four-momenta of a lepton and an anti-lepton, respectively. We will
treat leptons as massless particles. We also introduced the four-momentum Q = p1 + p2 = k1 + k2 that
flows through the propagator of a virtual photon.

To compute the cross section, we need to square the matrix element in Eq. (8) and sum it over
polarizations of the initial and final state particles. This computation is simplified if we use the standard
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trick that allows us to turn sums over polarizations into traces of products of Dirac matrices. The key
formula reads ∑

λ

u(p, λ)αū(p, λ)β =
∑

λ

v(p, λ)αv̄(p, λ)β = p̂αβ. (9)

We use Eq. (9) and write

∑

{λ,ξ}

∑

color

|M|2 = Nc

(e2Qq)
2

Q4 Tr
[
k̂1γµk̂2γν

]
Tr [p̂2γ

µp̂1γ
ν ] , (10)

where Nc = 3 is the number of colors. We calculate the two traces using the standard formula

Tr
[
âγµb̂γν

]
= 4

(
aµbν + aνbµ − gµνa · b

)
, (11)

and find
∑

{λ,ξ}

∑

color

|M|2 =
32Nc(e

2Qq)
2

Q4 [(k1p2)(k2p1) + (k1p1)(k1p2)] . (12)

To compute the cross section, we write

dσ
qq̄→e+e− =

1

2s

1

4

1

N2
c

∑

{λ,ξ}

∑

color

|M|2 [dk1][dk2](2π)4δ(4)(p1 + p2 − k1 − k2), (13)

where the prefactors describe the flux factor 2s = 4p1p2 and the averaging over spins and colors of the
incoming quarks. We also introduced a convenient notation for the Lorentz-invariant phase space of a
single particle with momentum p

[dp] =
d3p

(2π)32p0

. (14)

We will now rewrite the phase-space in a way that will allow us to separate two processes – the
production of a virtual photon with the total momentumQ = k1 +k2 and the decay of this virtual photon
to a lepton pair. For qq̄ → l+l− process the procedure that we describe is perhaps an overkill, but it is
useful to understand it since it can be very helpful in more complicated cases. To this end, we introduce
an auxiliary vector Q and write

1 =

∫
d4Q δ(4)(Q− p1 − p2). (15)

We insert this integral into the phase space and simplify it by separating integration over Q2 = M2

[dk1][dk2](2π)4δ(p1 + p2 − k1 − k2)

= [dk1][dk2](2π)4δ(p1 + p2 − k1 − k2)d4Qδ(4)(Q− p1 − p2)

= dM2δ(M2 −Q2)d4Qδ(4)(Q− p1 − p2)[dk1][dk2](2π)4δ(Q− k1 − k2)

= dM2δ(M2 − s) [dk1][dk2](2π)4δ(Q− k1 − k2)|
Q=p1+p2,Q

2
=M

2 .

(16)

This formula does what we wanted since it separates the production of a (virtual) particle with the mass
M2 = s from its decay to a di-lepton final state.

To compute the cross section we need to integrate over lepton momenta. There are different ways
to do that. Since, according to Eqs. (12,13,16)

dσ
qq̄→e+e− ∼

∫
[dk1][dk2]δ(Q− k1 − k2) kµ1k

ν
2 (p1,µp2,ν + p1,νp2,µ), (17)
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we need to understand how to compute the following tensor integral
∫

[dk1][dk2](2π)4δ(Q− k1 − k2)kµ1k
ν
2 = Iµν . (18)

This integral is a rank-two tensor; therefore, it can only depend on the metric tensor and a rank-two
tensor constructed using the vector Q. Thus, we write

Iµν = I1Q
2gµν + I2Q

µQν . (19)

To compute the form factors I1,2, it is convenient to contract Iµν with gµν and QµQν , compute the
contracted integrals separately and solve the system of linear equations for the two form factors. To
illustrate this procedure, consider gµνI

µν . This integral reads

Q2 (4I1 + I2) =

∫
[dk1][dk2](2π)4δ(Q− k1 − k2)(k1k2). (20)

We use k1k2 = Q2/2 and find

8I1 + 2I2 =

∫
[dk1][dk2](2π)4δ(Q− k1 − k2). (21)

The integral on the right hand side is the two-particle phase space. To compute it, it is convenient

to use the fact that it is Lorentz-invariant and choose a frame where Q = (Q0,~0) with Q0 =

√
Q2. The

integral becomes

ILips =

∫
[dk1][dk2](2π)4δ(Q− k1 − k2) =

∫
[dk1][dk2](2π)4δ(Q0 − ω1 − ω2)δ(3)(~k1 + ~k2). (22)

The integration over ~k2 is used to eliminate the three-momentum conserving δ-function; the integration
over the absolute value of |k1| is used to eliminate the energy-conserving δ-function. The remaining
integration over directions of the three-momentum k1 are unconstrained. Therefore, we obtain

ILips =
1

8π

∫
dΩ1

4π
=

1

8π

π∫

0

dθ sin θ

2

2π∫

0

dφ

2π
=

1

8π
. (23)

A very similar computation can be performed for QµQνI
µν = Q4(I1 + I2). In fact, since Qk1 =

Qk2 = Q2/2, the calculation is almost identical. Solving the two linear equations for I1, I2, we find

Iµν =
1

96π

(
Q2gµν + 2QµQν

)
. (24)

We employ Eq. (24) to compute the cross section for qq̄ → l+l− and use Nc = 3, p1p2 = Q2/2 =
s/2 and Qp1 = Q2/2 = s/2, to arrive at the final result

dσ
qq̄→e+e−

dM2 =
4πα2Q2

q

9s
δ(s−M2). (25)

We will use Eq. (25) to compute the hadronic cross section for lepton pair production. To this end,
we employ the collinear factorization formula Eq. (7) and the partonic cross section Eq. (25), integrated
over M2, to obtain

σH1+H2→p1+p2
=
∑

i∈[q,q̄]

∫
dx1dx2fi(x1)fī(x2)

4πα2Q2
i

9M2 . (26)
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Here the invariant mass of the lepton pair M2 is expressed through the center of mass energy squared of
the two colliding hadrons S as M2 = Sx1x2.

It is convenient to rewrite the integration over x1 and x2 through the invariant mass M2 and the
rapidity of the lepton pair. The rapidity is defined as

Y =
1

2
ln
Q0 +Qz
Q0 −Qz

, (27)

where Qz is the component of the four-momentum of the lepton pair Q = k1 + k2 along the collision
axis. Using the momentum conservation Q = k1 + k2 = p1 + p2 = x1P1 + x2P2 and the fact that
hadrons collide in the center-of-mass frame along the z-axis, we find

Y =
1

2
ln
Q0 +Qz
Q0 −Qz

=
1

2
ln
P2Q

P1Q
=

1

2
ln
x1

x2

p2Q

p1Q
=

1

2
ln
x1

x2
. (28)

Since M2 = Sx1x2 we can write

x1 =

√
M2

S
eY , x2 =

√
M2

S
e−Y . (29)

Finally, we can trade the integration over x1, x2 for the integration over M2 and Y . Computing the
Jacobian of the transformation, we obtain

dx1dx2 =
dM2dY

S
. (30)

Integration boundaries follow from the conditions on the momenta fractions 0 < x1,2 < 1 and read

|Y | < 1

2
ln

S

M2 , 0 < M2 < S. (31)

The final result for the hadronic cross-section reads

M2 dσ
H1+H2→l+l−

dM2dY
=

4πα2

9S

∑

i∈[q,q̄]

Q2
i fi(x

∗
1)fī(x

∗
2), (32)

where x∗1,2 =

√
M2/Se±Y .

The above formula provides interesting information about kinematics of lepton pairs that are pro-
duced in hadron collisions. It predicts non-trivial distributions in the invariant mass and the rapidity of
a lepton pair. However, the very same formula also predicts that momenta of lepton pairs are aligned
with the collision axis and that no lepton pairs with non-vanishing momenta components transverse to
the collision axis are produced in hadron collisions. Indeed, since Q = x1P1 + x2P2, the transverse
momentum distribution predicted by our computation reads dσ/d2 ~Q⊥ ∼ δ( ~Q⊥).

It is instructive to compare these predictions with the results of actual measurements. The mea-
sured distributions of the invariant masses of lepton pairs and the rapidity are shown in Fig. 4. The
experimental results include the Z exchange between quarks and leptons, c.f. the peak in the left pane
at around Mll ∼ 90 Gev, so they can not be directly compared with our computation. However, if we
were to include the Z-exchange into our theoretical prediction, we would describe data shown in Fig. 4
reasonably well.

However, the situation becomes very different for the transverse momentum distribution of a lep-
ton pair, shown in Fig. 5. As we explained earlier, the leading order computation predicts that lepton
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The differential cross section 

The differential cross section that we just computed provides non-trivial information 
about invariant mass  and rapidity distribution of a lepton pair.  However, the lepton 
pair has vanishing transverse (i.e. relative to the collision axis) momentum; this is 
unfortunate since  in reality the transverse momentum distribution of a lepton pair is 
non-trivial and extends from low to high pt.

Friday, December 22, 17

Fig. 4: Invariant mass (left) and rapidity (right) distributions of lepton pairs at the LHC. Z-exchanges are included
and the results compared with theoretical predictions that include higher order QCD corrections. If we were
to include the Z-exchange in our cross section computation and then plot the invariant mass and the rapidity
distributions, we would describe experimental data reasonably well.

The differential cross section 
The transverse momentum distribution of a lepton pair is generated by emission(s) of 
gluons.  These emissions can be soft (and multiple), producing a vector boson with  low 
transverse momentum) or hard (and then one does not need many gluons to produce 
significant recoil and, moreover, multiple emissions are suppressed). We will start with 
the discussion of the latter case (one emission, big recoil).

Friday, December 22, 17

Fig. 5: The lepton pair transverse momentum distribution measured by the CMS collaboration. Clearly, it is very
different from dσ/d2p⊥ ∼ δ(2)(~p⊥) predicted by the leading order computation.

pairs produced in hadron collisions have vanishing transverse momenta. This prediction is in direct con-
tradiction with the results of experimental measurements shown in Fig. 5. To summarize, we see that
leading order QCD theory works reasonably well for the invariant mass and the rapidity distributions but
that it fails for the transverse momentum distribution of a lepton pair. So, what is going on?

To understand how non-trivial transverse momentum distribution of a lepton pair can be produced,
we recall that our computation of the lepton pair production cross section was performed at leading order
in perturbative QCD. If we go to higher orders, two things can happen. First, the interaction strengths
between quarks and photons changes because of the virtual QCD corrections. Second, a gluon can be
emitted by an incoming quark or an incoming anti-quark; such contributions are called real-emission
corrections. If this gluon happens to have a non-vanishing transverse momentum, the lepton pair will
have to balance it because of momentum conservation; this may generate a continuous spectrum of lepton
pairs with different transverse momenta in accord with experimental measurements. We will substantiate
these considerations with mathematical formulas in the next Section.
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4 Lepton pair production at next-to-leading order in perturbative QCD
To make this discussion more quantitative, we need to be able to compute next-to-leading order QCD
corrections to lepton pair production cross section in hadron collisions. We will start with the discussion
of the real emission process qq̄ → e+e− + g. We will denote the gluon momentum as p3. We write the
real-emission cross section in a particular way

dσR =
1

2s

∫
[dp3]FLM(1, 2, 3), (33)

where
FLM(1, 2, 3) = NA|M(1, 2, 3)|2(2π)4δ(p1 + p2 − p3 − k1 − k2) dLips

e
+
e
− , (34)

NA is the required symmetry factor that includes averaging over spins and colors of the colliding partons
and |(M(1, 2, 3)|2 is the matrix element squared for qq̄ → e+e−+g process, summed over polarizations
and colors of all particles. Also, dLips

e
+
e
− = [dk1][dk2] is the phase-space of the lepton pair. Note also

that observables are reconstructed from the momenta of particles that appear in the function FLM; this
remark will be important once we get to the discussion of the subtraction procedure later in this Section.

We would like to compute the contribution of the the real-emission process to the production rate
of lepton pairs in hadron collisions. This requires integrating over gluon and dilepton phase spaces in
Eq. (33). We will show now that this integral can not be computed.

To see this, let us understand the conditions on the matrix elements that ensure that the real emis-
sion contribution can be computed. We begin by considering the integration over gluon energy. The
phase space element scales as

[dp3] ∼ E2
3dE3

E3
∼ E3dE3. (35)

The lower integration boundary is E3 = 0, the upper integration boundary follows from the energy
conservation. Therefore

dσR ∼
E

max
3∫

0

dE3E3|M(1, 2, 3)|2. (36)

It follows that if limE3→0M(1, 2, 3) ∼ E−1
3 , the integral over E3 does not converge at the lower inte-

gration boundary.

We can check how the matrix element behaves when the energy of the gluon becomes small. The
matrix element reads

M(1, 2, 3) = gsT
a
jiv̄(p2)

[
γµ(p̂1 − p̂3)ε̂

(p1 − p3)2 −
ε̂ (p̂2 − p̂3) γµ

(p2 − p3)2

]
u(p1)× [e2Qq]

Q2 ū(k1)γµv(k2), (37)

where, as before, Q is the four-momentum of the lepton pair, gs is the strong coupling constant and εµ is
the gluon polarization vector.

We are interested in the behavior of the amplitude Eq. (37) in the limit E3 → 0; this implies that
p3 vanishes, component by component. Since (p1,2 − p3)2 = −2p1,2p3 ∼ O(E3) and since we are only
interested in the contribution toM that scales as E−1

3 , we can neglect p3 in the numerators of the two
terms in square brackets in Eq. (37) and keep it in the denominators.

Further simplifications are possible in Eq. (37). Consider the first term in square brackets as an
example. We find

v̄(p2)

[
γµ(p̂1 − p̂3)ε̂

(p1 − p3)2

]
u(p1)→ v̄(p2)γµp̂1ε̂u(p1)

(−2p1p3)
→ − p1 · ε

p1 · p3
v̄(p2)γµu(p1), (38)
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where we used p̂1ε̂u(p1) = (2p1 · ε − ε̂p̂1)u(p1) = 2p1 · εu(p1) as follows from the anticommutation
relations of the Dirac matrices and the Dirac equation p̂1u(p1) = 0.

Repeating the calculation to simplify the second term in the square brackets in Eq. (37), we find
the soft limit of the amplitude

lim
E3→0

M(1, 2, 3) = −gsT aij
(
p1ε

p1p3
− p2ε

p2p3

)
M′(1, 2). (39)

Here M′(1, 2) is the amplitude for the elastic process qq̄ → e+e− with the color factor δij removed.
It is now straightforward to compute the amplitude squared summed over colors and polarizations. We
obtain

lim
E3→0

|M(1, 2, 3)|2 = Eik(1, 2, 3)|M(1, 2)|2, (40)

where the eikonal factor reads

Eik(1, 2, 3) = g2
sCF

2p1p2

(p1p3)(p2p3)
. (41)

There are two comments to make about this result. First, soft limits of scattering amplitudes are
universal; they depend on the color charges of colliding energetic particles and their momenta. The
hard scattering amplitude that appears in the soft limit describes a process without soft gluon radiation,
i.e. qq̄ → e+e− in our case. Second, it is clear from Eqs. (40,41) that the amplitude squared for the
qq̄ → e+e− + g process indeed scales as E−2

3 in the soft limit. As the result, its contribution to the real
emission cross section diverges at E3 = 0

σR ∼
Emax∫

0

dE3

E3
=∞, (42)

and, therefore, can not be computed.

We will discuss how to solve this problem below. For now, we will study another kinematic region
where integration over the gluon four-momentum becomes problematic. To appreciate that there might
be another problem, consider again the gluon emission amplitude shown in Eq. (37) and look at the first
term in square brackets that describes gluon emission off the incoming quark. The denominator of this
term is s13 = (p1 − p3)2 = −2p1p3 = −2E1E3(1 − cos θ13). It vanishes if the energy of the emitted
gluon vanishes – this is the situation that we just discussed. However, s13 also vanishes if θ13 → 0
that corresponds to a situation when the gluon is emitted along the direction of the incoming quark.
Since the gluon emission phase space scales as [dp3] ∼ θ13dθ13, for small θ13 the amplitude squared
should diverge weaker than |M(1, 2, 3)|2 ∼ θ−2

13 for the rate to be calculable. Unfortunately, a naive
computation of this collinear limit

|M(1, 2, 3)|2 ∼ s−2
13 ∼ θ−4

13 , (43)

indicates a very strong singularity which, however, is inconsistent with e.g. the soft limit of the amplitude
squared, c.f. Eq. (41).

To understand what is going on, we need to study the collinear limit of the amplitude more care-
fully. To this end, it is convenient to employ the so-called Sudakov decomposition for the gluon momen-
tum

p3 = xp1 + βp2 + p3⊥, (44)

where the transverse momentum is defined by the conditions p1p3⊥ = p2p3⊥ = 0. Since the gluon p3 is
on the mass shell, p2

3 = 0, we find
sxβ = ~p 2

3,⊥. (45)
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If the gluon is emitted along the direction of the incoming quark, x ∼ 1, p3,⊥ ∼
√
sθ13 and β ∼ θ2

13; the
latter scaling follows from Eq. (45).

We use the Sudakov decomposition in the matrix element for qq̄ → e+e− + g assuming that
the gluon is emitted collinearly to the momentum of the incoming quark. We will first show that the
singularity that appears when θ13 → 0 is significantly weaker than the naive estimate Eq. (43). To see
this, consider the most singular contribution to the amplitude in the θ13 → 0 limit that arises from the
term that describes gluon emission off the quark line

Mq(1, 2, 3) = gsT
a
jiv̄(p2)

[
γµ(p̂1 − p̂3)ε̂

−2p1p3

]
u(p1)× [e2Qq]

Q2 ū(k1)γµv(k2). (46)

We use the Sudakov decomposition for the gluon momentum in this expression and look for the most
singular term in the limit θ13 → 0. We replace p3 using the Sudakov decomposition as in Eq. (44) and
use scalings of β and p3,⊥ with θ13 to discard subleading terms. The most singular term corresponds to
the amplitude Eq. (46) with p3 in the numerator replaced with xp1. We find

lim
θ13→0

Mq(1, 2, 3) = − gsT
a
ij

2p1p3
(1− x)v̄(p2)γµp̂1εu(p1)× [e2Qq]

Q2 ū(k1)γµv(k2)

= − gsT
a
ij

2p1p3
(1− x)(2p1ε) v̄(p2)γµu(p1)× [e2Qq]

Q2 ū(k1)γµv(k2),

(47)

where again at the last step we used the anti-commutation relation of the Dirac matrices and the Dirac
equation p̂1u(p1) = 0.

The expression Eq. (47) seems to confirm the naive estimate of the strength of the singularity of
the amplitude in the θ13 → 0 limit since p1p3 ∼ β ∼ θ2

13 and the numerator in Eq. (47) contains no
θ13. However this conclusion is misleading. Indeed, since ε is the polarization vector of a physical
gluon, it satisfies the transversality condition p3ε = 0. We use this equation to find the scaling of
the scalar product p1ε that appears in in Eq.(47) using the Sudakov decomposition for p3. We obtain
x(p1ε) + β(p2ε) + (p3⊥ε) = 0, so that

p1ε = −p3⊥ε
x
− βp2ε

x
∼ O(θ13). (48)

Hence, thanks to the fact that we deal with the gauge theory, the matrix element in the collinear limit is
less singular than the naive estimate shows. Using Eqs. (47,48), we findM(1, 2, 3) ∼ θ−1

13 .

To compute the collinear limit of the amplitude, we need to account for all terms that scale as
θ−1

13 but all other terms can be neglected. In particular, we do not need to consider contributions to
the amplitude which describe the emission of gluons by an anti-quark since they scale as O(1). The
calculation is straightforward but somewhat messy and we do not present it here. Instead, we just report
the result

lim
θ13→0

|M(1, 2, 3)|2 =
2g2
s

(p1 − p3)2Pqq

(
E1

E1 − E3

)
|M(1− 3, 2)|2, (49)

where

Pqq = CF
1 + z2

1− z (50)

is the so-called q → qg splitting function and the notationM(1−3, 2) means that the matrix element for
the leading order process qq̄ → e+e− has to be computed for the four-momenta of the incoming quark
given by pµq = (E1 − E3)/E1 p

µ
1 . Clearly, pq can be thought of as the four-momentum of a quark after

it emitted the collinear gluon with the energy E3.
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It should be clear from this discussion that a very similar situation occurs when the gluon is
emitted by an incoming anti-quark. The limit for the amplitude squared in this case is obtained after
simple modifications in Eq. (49)

lim
θ23→0

|M(1, 2, 3)|2 =
2g2
s

(p2 − p3)2Pqq

(
E2

E2 − E3

)
|M(1, 2− 3)|2, (51)

whereM(1, 2− 3) refers to leading order matrix element where the four-momentum of an anti-quark is
taken to be pµq̄ = (E2 − E3)/E2 p

µ
2 .

Clearly, since the matrix element squared scales as |M(1, 2, 3)|2 ∼ θ−2 for small emission angles,
it is not possible to compute the contribution of the real emission process to the production rate

σR ∼
∫

[dp3]|M(1, 2, 3)|2 ∼
π∫

0

θdθ θ−2 =∞. (52)

To understand what to do with these infinities, we need to turn them into something tractable. To
this end, we use an idea of the regularization that appears in theoretical physics over and again. It is
based on the understanding that all infinities look similar and so it is difficult to trace where they come
from. On the other hand, if we introduce a parameter that allows us to control how these infinities arise in
the corresponding limits, we can start to distinguish between them thereby making the first step towards
understanding what to do about them.

There are different ways to regularize these infinities. One option is to imagine that the scattering
process occurs in a space-time whose dimensionality is larger than four. Scalings of amplitudes in the
soft and collinear limits remain the same but the scaling of the gluon phase space changes. Indeed, if we
consider, for the sake of example, the process qq̄ → e+e− + g in the five-dimensional space-time, we
find

[dp3]5d ∼ E2
3dE3, [dp3]5d ∼ θ2dθ. (53)

These scalings of the phase space imply that soft and collinear limits of the amplitude squared can be
integrated in five-dimensional space-time without a problem. Of course at this point it is not clear how
this observation can be used to perform computations in four-dimensional space-time since four- and
five-dimensional space-times are clearly rather different.

An interesting idea [16] is to treat the dimensionality of space-time as a formal parameter without
assuming it to be integer. It is conventional to denote the space-time dimensionality as d and to write
d = 4− 2ε. If we are able to perform all the relevant computations without requiring d to be integer and
if, at the end, we can take the ε → 0 limit, we will be able to write our results as an expansion around
four-dimensional space-time and regularize infinities that we observed earlier.

It is easy to see that this strategy is quite sensible. Indeed, the phase-space element for a massless
particle with four momentum k = (k0,~k), k2 = 0 in a d-dimensional space-time is defined as

[dk] =
kd−2

0 dk0dΩ(d−1)

2(2π)d−1
. (54)

The solid angle in non-integer number of dimensions is defined recursively

dΩ(d−1) = d cos θ (1− cos2 θ)(d−4)/2 dΩ(d−2), Ω(d) =
2πd/2

Γ(d/2)
. (55)

We will now show that this modification of the phase-space regularizes soft and collinear singu-
larities. To this end, consider the integral of the eikonal factor over the single gluon phase space. It
reads

IE =

∫
[dp3]

2p1 · p2

p3 · p1p3 · p2
θ(Emax − E3). (56)
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The momenta p1,2 are back-to-back and we choose the z-axis to be the collision axis. The resulting
integral becomes

IE =

Emax∫

0

4Ed−2
3 dE3

2(2π)d−1E3
3

1∫

−1

d cos θ(1− cos2 θ)(d−4)/2 dΩ(d−2)

(1− cos2 θ)

=
2Ω(d−2)

(2π)d−1

Emax∫

0

dE3

E1+2ε
3

1∫

−1

d cos θ

(1− cos2 θ)1+ε .

(57)

The last two integrals are easy to compute assuming that ε < 0, so that integrals converge at the otherwise
problematic boundaries. The integral over gluon energy is straightforward

Emax∫

0

dE3

E1+2ε
3

= −E
−2ε
max

2ε
. (58)

To compute the integral over the polar angle in Eq. (57) we need to change the integration variable
cos θ = 1− 2x, 0 < x < 1. Then

1∫

−1

d cos θ

(1− cos2 θ)1+ε = 2−1−2ε

1∫

0

dx(x(1− x))−1−ε = −2−2ε Γ2(1− ε)
εΓ(1− 2ε)

. (59)

Since Γ(1 + xε) ≈ 1 +O(ε), we find

IE =
1

4π2ε2
+O(1/ε). (60)

It follows from the above equation that that integrations over energy and the polar angle produce terms
that become infinite in the d → 4 limit. However, the relevant integrals are indeed regularized and we
can study how the 1/ε singularities disappear when all the different contributions to cross sections are
combined.

We will try to achieve this without integrating over any measureable degrees of freedom of the
emitted gluon. Since, as we saw, the 1/ε singularities appear only after integration over gluon energies
and angles, we need to design a procedure that allows us to integrate over emitted gluons without affecting
the observables. This is accomplished with the help of the so-called so-called subtraction procedure. The
idea is to systematically subtract simplified versions of real emission contributions that, on one hand,
make the (subtracted) real emission cross sections integrable in d = 4 and, on the other hand, are simple
enough to be integrated over the unresolved phase-space in d 6= 4.

To see how this procedure works in detail, it is convenient to introduce particular notation to extract
soft and collinear limits from the matrix elements and the corresponding phase space. We write

S3FLM(1, 2, 3) = lim
p3→0

FLM(1, 2, 3) = g2
sCF

2p1p2

(p1p3)(p2p3)
FLM(1, 2),

C31FLM(1, 2, 3) = lim
θ13→0

FLM(1, 2, 3) =
2g2
s

(p1 − p3)2Pqq

(
E1

E1 − E3

)
FLM(1− 3, 2),

C32FLM(1, 2, 3) = lim
θ23→0

FLM(1, 2, 3) =
2g2
s

(p2 − p3)2Pqq

(
E2

E2 − E3

)
FLM(1, 2− 3),

(61)

where the splitting function Pqq is given by

Pqq(z) = CF

(
1 + z2

1− z − ε(1− z)
)
. (62)
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Note that the O(ε) term that appears in Pqq in Eq. (62) is the consequence of additional gluon polariza-
tions that need to be accounted for in case of the (4− 2ε)-dimensional space-time.

We now use the operators introduced in Eq. (61) to subtract soft and collinear singularities. It is
convenient to denote integration over the relevant phase spaces, continued to d dimensions, using angle
brackets

dσR = 〈FLM(1, 2, 3)〉. (63)

As we already discussed, dσR can not be computed in four-dimensional space-time since it exhibits soft
and collinear singularities. To isolate them, we rewrite Eq. (63) in the following way

〈FLM(1, 2, 3)〉 = 〈(I − S3)FLM(1, 2, 3)〉+ 〈S3FLM(1, 2, 3)〉
= 〈(I − C31 − C32)(I − S3)FLM(1, 2, 3)〉
+ 〈(C31 + C32)(I − S3)FLM(1, 2, 3)〉+ 〈S3FLM(1, 2, 3)〉,

(64)

where I is an identity operator. It is instructive to explore different terms on the right hand side of
Eq. (64) keeping an eye on the simplifications in hard matrix elements that occur once soft and collinear
operators act on FLM(1, 2, 3).

First, we note that the term

〈ONLOFLM(1, 2, 3)〉 = 〈(I − C31 − C32)(I − S3)FLM(1, 2, 3)〉 (65)

does not have infra-red and collinear singularities and, therefore, can be computed in four dimensions.
This is so because all the potentially singular limits are subtracted from the hard matrix element. Note
that it is important to perform the subtraction in a “nested” way, i.e. the collinear subtraction is applied
to the soft-subtracted matrix element squared.

The remaining two terms in Eq. (64) depend on the simplified matrix elements where gluon mo-
mentum does not appear at all (soft subtraction) or changes the energy of the incoming partons (collinear
subtraction). Therefore, one can integrate these terms over some parts of the gluon phase-space without
specifying the hard matrix element. Before we discuss this step in detail, we would like to simplify
Eq. (64). To this end, we rewrite the last two terms in the following way

〈(C31 + C32)(I − S3)FLM(1, 2, 3)〉+ 〈S3FLM(1, 2, 3)〉
= 〈(C31 + C32)FLM(1, 2, 3)〉+ 〈(I − C31 − C32)S3FLM(1, 2, 3)〉, (66)

and focus on the last term. Taking S3FLM(1, 2, 3) from Eq. (61), we compute

C31S3FLM(1, 2, 3) = g2
sCF

2E1

E3(p1p3)
FLM(1, 2),

C32S3FLM(1, 2, 3) = g2
sCF

2E2

E3(p2p3)
FLM(1, 2),

(67)

For the head-on collisions, we find

2E1

E3(p1p3)
+

2E2

E3(p2p3)
=

2E1(p2p3) + 2E2(p1p3)

E3(p1p3)(p2p3)
=

2p1p2

(p3p1)(p2p1)
. (68)

Therefore,
〈(I − C31 − C32)S3FLM(1, 2, 3)〉 = 0, (69)

which implies a simplified subtraction formula

〈FLM(1, 2, 3)〉 = 〈ONLOFLM(1, 2, 3)〉+ 〈(C31 + C32)FLM(1, 2, 3)〉. (70)
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As we already mentioned, the first term on the right hand side of Eq. (70) is finite and can be computed
in a straightforward way. We will now study the collinear subtraction terms.

We take 〈C31FLM(1, 2, 3)〉 as an example and write

〈C31FLM(1, 2, 3)〉 =

∫
[dp3]

g2
s

(p1 − p3)2Pqq

(
E1

E1 − E3

)
(2s)−1FLM(1− 3, 2)

=

∫
Ed−3

3 dE3 dΩ(d−1)

2(2π)d−1

g2
s

−2E1E3(1− cos θ13)
Pqq

(
E1

E1 − E3

)
(2s)−1FLM

(
E1 − E3

E3
1, 2

)
.

(71)

Since FLM(1−3, 2) is independent of the gluon emission angle, we can integrate over it. This is a typical
simplification that occurs with the subtraction terms since hard matrix elements in the subtraction terms
depend on a limited number of gluon kinematic variables, if at all. Integration over the gluon emission
angle is straightforward and we obtain

∫
dΩ(d−1)

1− cos θ13
= −Ω(d−2) 2−2εΓ2(1− ε)

ε Γ(1− 2ε)
. (72)

The 1/ε factor that appears after the integration over angle is the collinear divergence that we discussed
earlier.

The remaining integration over energy of the emitted gluon in Eq. (71) can not be performed
without specifying the hard matrix element. However, it is possible to write the integrand in Eq. (71)
in a more transparent way by changing the integration variable. We write E3 = E1(1 − z) and use
Pqq(1/z) = −Pqq(z)/z which can be verified using explicit expression for the splitting function in
Eq. (62). Putting everything together, we obtain

〈C31FLM(1, 2, 3)〉 = − [αs]

ε

Γ2(1− ε)
Γ(1− 2ε)

(2E1)−2ε

1∫

zmin

dz

(1− z)2εPqq(z) 〈
FLM(z · 1, 2)

z
〉, (73)

where

[αs] =
αsµ

2εeεγE

2πΓ(1− ε) , (74)

is the strong coupling constant at the scale µ and zmin = 1− Emax/E1.

A glance at the splitting function in Eq. (62) reveals that the remaining integration in Eq. (73) leads
to divergences. Indeed, in the z → 1 limit, Pqq ∼ 2CF /(1− z), so that the integration over z can not be
preformed in four dimensions. The first thing we need to do is to extract the z → 1 singularity without
specifying the hard matrix element. This is easy to accomplish – since this singularity is logarithmic it
can be easily subtracted. More precisely, we split the Pqq function into singular and regular parts and
write

Pqq =
2CF
1− z + P reg

qq , P reg
qq = −CF (1 + z + ε(1− z)). (75)

Then, we introduce a new notation G(z) = 〈FLM(z · 1, 2)/z〉 and write the relevant integral as

1∫

zmin

dz

(1− z)2εPqq(z) G(z) =

1∫

0

dz

[
2CF

(1− z)1+2ε + (1− z)−2εP reg
qq

]
G(z). (76)

Note that we replaced zmin with zero, as the lower integration boundary; this is allowed because the
minimal value of z is determined by the energy-momentum conservation condition for the process
q(zp1) + q̄(p2)→ l+l− which implies that a non-vanishing energy of the incoming quark is required to
produce a pair of leptons.
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The first term on the right hand side in Eq. (76) requires further analysis; the second term does not
lead to singularities and, therefore, can be integrated numerically, expanding around d = 4. To deal with
the first term, we write

1∫

0

dz
2CF

(1− z)1+2εG(z) =

1∫

0

dz
2CF

(1− z)1+2ε (G(z)−G(1))− CF
ε
G(1)

= −CF
ε
G(1) + 2CF

∞∑

n=0

(−1)n(2ε)n

n!

1∫

0

Dn(z)G(z).

(77)

In the last step we introduced the so-called “plus”-distributions that are defined as follows

Dn(z) =

[
lnn(1− z)

1− z

]

+

⇒
1∫

0

dz Dn(z) G(z) =

1∫

0

dz
lnn(1− z)

(1− z) [G(z)−G(1)] . (78)

Clearly, these distributions provide a way to regulate an integral that otherwise diverges at z = 1.

Putting everything together and expanding the result in powers of ε up to O(ε0), we obtain the
following expression for the collinear subtraction term

〈C31FLM(1, 2, 3)〉 = − [αs]

ε

Γ2(1− ε)
Γ(1− 2ε)

s−ε
[(
−CF

ε
+

3CF
2

)
〈FLM(1, 2)〉

+

1∫

0

dzPqq,R(z)〈FLM(z · 1, 2)

z
〉


 ,

(79)

where
Pqq,R(z) = P (0)

qq + εP εqq,R(z) +O(ε2), (80)

and

P (0)
qq = CF

(
2D0(z)− (1 + z) +

3

2
δ(1− z)

)
,

P
(ε)
qq,R(z) = CF (2(1 + z) log(1− z)− (1− z)− 4D1(z)) .

(81)

A similar analysis can be performed for the emission off the incoming anti-quark. Combining the
relevant formulas, we derive the result for the real emission cross section

2sdσR =2[αs]s
−ε
(
CF

ε2
+

3CF
2ε

)
× Γ2(1− 2ε)

Γ(1− 2ε)
〈FLM(1, 2)〉

− [αs]s
−ε

ε

Γ(1− ε)2

Γ(1− 2ε)

1∫

0

dz P (0)
qq (z)〈FLM(z1, 2)

z
+
FLM(1, z2)

z
〉

− [αs]s
−ε Γ(1− ε)2

Γ(1− 2ε)

1∫

0

dz P
(ε)
qq,R(z)〈FLM(z1, 2)

z
+
FLM(1, z2)

z
〉

+ 〈ONLOFLM(1, 2, 4)〉.

(82)

Terms on the right hand side in Eq. (82) are written as an expansion in 1/ε. We note that the strongest
singularityO(1/ε2) appears in terms that depend on the cross section of the elastic (no-emission) process
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qq̄ → e+e− in leading order kinematics. We also note that there is a large number of terms in Eq. (82)
that exhibitO(1/ε) singularities and depend on cross sections of the leading order process in the boosted
kinematics, i.e. when a quark with reduced energy annihilates with an anti-quark, or vice versa.

As it is clearly seen from Eq. (82), the partonic process with additional gluon radiated into a final
state leads to divergent contribution to the production cross section. If perturbative approach to hard
hadron collisions is to make sense, there should be other contributions that cancel the singularities. What
are these additional contributions? Clearly, for the cancellation of the divergent terms to happen, the
relevant pieces must at the very least have a similar dependence on the hard scattering cross section as
divergent terms in Eq. (82). Since the most singular term has tree-level kinematics, it is reasonable to
imagine that virtual corrections to leading order process may produce a divergent result and, hopefully,
cancel the singularities in the integrated real-emission cross section.

We can compute the virtual corrections to qq̄ → e+e− process explicitly and it may be, in fact,
necessary to do so if we want to understand their contribution to dilepton pair production fully. However,
if we are interested in understanding how divergences in real and virtual contributions cancel out, there
is a better way. Indeed, it was pointed out by S. Catani [17] that infra-red divergences of one-loop
amplitudes in QCD are known for a generic process. Such infra-red divergences depend on the color
charges of external particles, certain kinematic invariants and leading order scattering amplitudes. In
case of dilepton pair production, the scattering amplitude can be written as

Mfull =M0 +
αs(µ)

2π
M1−loop +O(α2

s), M1−loop = I1(ε)M0 +Mfin
1−loop, (83)

where

I1(ε) = − eεγE

Γ(1− ε)

[
CF

ε2
+

3CF
2ε

](
µ2

−s− i0

)−ε
. (84)

Squaring the amplitude and accounting for the interference betweenM0 andM1−loop, we obtain
the following result for the virtual corrections to leading order cross section

2sdσV = −2[αs] cos(επ)

(
CF

ε2
+

3CF
2ε

)
s−ε〈FLM(1, 2)〉+ 〈F fin

LV (1, 2)〉. (85)

The last term on the right hand side represents the finite contribution that can be computed in four
dimensions; all 1/ε divergences that appear in virtual contributions to cross sections are shown explicitly.

To compute the rate, we combine real Eq. (82) and virtual Eq. (85) corrections. It is easy to see
that divergent parts of virtual corrections and contributions to real emission corrections proportional to
〈FLM(1, 2)〉 cancel almost entirely. Expanding in ε, we find

2sdσR+V = − [αs]s
−ε

ε

Γ(1− ε)2

Γ(1− 2ε)

1∫

0

dz P (0)
qq (z)〈FLM(z1, 2)

z
+
FLM(1, z2)

z
〉

+
2π2CF

3

αs
2π
〈FLM(1, 2)〉 − αs

2π

1∫

0

dz P
(ε)
qq,R(z)〈FLM(z1, 2)

z
+
FLM(1, z2)

z
〉

+ 〈ONLOFLM(1, 2, 3)〉.

(86)

As can be seen from Eq. (86), the remaining divergences are associated with tree-level cross sections for
dilepton pair production that, however, describe a situation where a pair is boosted along the collision
axis. A boost along the collision axis changes rapidity distribution and can, in principle, be absorbed
into a re-definition of parton distribution functions. Indeed, we have seen in discussing the leading order
cross section that parton distribution functions determine the rapidity distribution of dilepton pairs.
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When we talked about the leading order cross section, we said that parton distribution functions
are universal non-perturbative objects that are determined in experiment. What does it mean then, that
they can be changed to absorb divergent contributions to partonic cross sections? Well, the point is that
theoretical predictions for experimental quantities include divergent contributions – what is measured in
the experiment is a combination of bare parton distribution functions and the divergent terms that appear
in perturbative computations. It is the combination of the two that defines physical parton distribution
functions.

Therefore, similar to all other parameters that appear in perturbative computations in Quantum
Field Theory, we start with the so-called bare parton distribution functions and write them as physical
parton distributions and the counter-terms whose role is to remove the divergences. Similar to ordinary
ultraviolet renormalization in Quantum Field Theory, counter-terms for parton distribution functions lead
to the renormalization group equation which in this case is known as Dokshitzer-Gribov-Altarelli-Parisi
(DGLAP) evolution equation [18]. We will talk about this equation in Section 6. For now, we just
quote the relation between bare and renormalized parton distribution functions that we use to remove
remaining singularities in the NLO cross section Eq.(86). The renomalization of parton distribution
functions amounts to the replacement

fbare
i →

[
δ̂ij +

αs(µ)

2πε
P

(0)
ij +O(α2

s)

]
⊗ fj(µ), (87)

where summation over repeated index is assumed and the convolution is defined as follows

[f1 ⊗ f2] (z) =

1∫

0

dx1dx2f1(x1)f2(x2)δ(z − x1x2). (88)

Since we consider qq̄ collisions, the function P (0)
ij needs to be substituted with the Altarelli-Parisi

kernels P (0)
qq Eq. (81). In fact, a glance at Eq. (86) shows that the remaining divergences in our compu-

tation are proportional to P (0)
qq and have exactly the right form to be canceled by the renormalization of

parton distribution functions Eq. (87). We use Eq. (87) in leading order cross section, expand it through
O(αs) and combine the additional terms with the NLO cross section Eq. (86). We observe that all 1/ε
terms cancel and we find

2sdσNLO = 〈F fin
LV(1, 2) +

αs
2π

2π2

3
CFFLM(1, 2)〉+ 〈ONLOFLM(1, 2, 4)〉

+
αs
2π

1∫

0

dz

[
P (0)
qq (z) ln

s

µ2 − P
(ε)
qq,R(z)

]
〈FLM(z1, 2)

z
+
FLM(1, z2)

z
〉.

(89)

Since the NLO contribution to the partonic cross section Eq.(89) contains no 1/ε singularities, all quan-
tities there can be computed in four-dimensional space-time. We note that Eq. (89) provides a fully-
differential cross-section for the lepton pair production in partonic collisions since no integration over
resolved phase-space has been performed there. The NLO contribution to the hadronic cross section is
obtained by convoluting the differential partonic cross section Eq. (89) with parton distribution functions.

Computation of NLO QCD corrections to dilepton pair production described in this Section shows
the importance of soft and collinear limits of the matrix elements for computing physical infra-red safe
quantities. Although our discussion focused on a particular process, it’s main ingredients are universal
and can be used to construct a general algorithm for NLO computations [10, 11]. Extensions of these
approaches to even higher orders are also possible; in fact, recently several methods were proposed that
can be used to perform fully-differential NNLO QCD computations [14]. Making these methods com-
putationally more efficient is very important for extending their applicability to more complex processes
and significant effort currently goes into that.
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Transverse momentum distribution of a lepton pair

Friday, December 22, 17

Fig. 6: Transverse momentum distribution of a lepton pair at the Tevatron. Fixed order and resummed results are
compared [20].

Going back to our result Eq. (89), we can ask what will happen if we use it to compute kinematic
distributions of a lepton pair. Recall that we started thinking about NLO QCD contribution to dilepton
production cross section because the leading order result did not properly describe the transverse mo-
mentum distribution of a lepton pair. Using next-to-leading order predictions for the cross section, we
find a refined description of the invariant mass and the rapidity distributions of a lepton pair. Although
its qualitative features are similar to what we observed at leading order, they describe experimental data
much better and their dependence on unphysical parameters such as the renormalization and the factor-
izations scales is significantly reduced. We also find a non-trivial transverse momentum distribution as
shown in Fig. 6 which is a clear improvement over the leading order result. However, although the NLO
QCD distribution provides a decent description of the experimental results (cf. Fig. 5) at high p⊥, it keeps
growing with the decrease of the transverse momentum in contrast to the experimental result that reaches
maximum at finite p⊥ and decrease after that. Therefore, in comparison to leading order computations,
we have a partial success with understanding the p⊥-spectrum of dilepton pairs since, apparently, its
high-p⊥ region is amenable to perturbative treatment, whereas something more complex occurs at low
transverse momenta. We will try to understand what is happening there in the next Section.

5 Small-p⊥ resummation
We will discuss the small-p⊥ region in the context of QED, ignoring all complications related to the non-
Abelian nature of QCD. However, the result that we will get will be valid in QCD as well provided that we
trade electric charges for color ones. The QED analysis that we describe below follows the classic paper
by Parisi and Petronzio [21]; their discussion of the problem was instrumental in setting up the stage
for a modern understanding of small-p⊥ resummation that is a very important topic for applications of
perturbative QCD to hadron collider processes (see e.g. Ref. [22] for contemporary perspective).

We consider production of muon pairs in electron-positron collisions. We assume that muons are
heavy and do not radiate photons. We are interested in understanding QED effects that are related to
initial state radiation. This is very similar to gluon emissions in qq̄ annihilation to lepton pairs studied in
the previous Section.

We are interested in the transverse momentum distribution of a muon pair in the limit when the
transverse momentum of a pair p⊥ becomes very small. We will see that in each order of perturbation
theory there are terms that contain two powers of L = log s/p2

⊥ � 1 per power of α � 1. As the
transverse momentum decreases, the logarithm increases whereas α stays fixed. Hence, we can reach
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values of p⊥ such that
αL2 ∼ 1, αL� 1. (90)

The appearance of αL2 in each order of perturbative expansion does not allow us to truncate the series
and forces us to resum contributions to perturbative cross sections that scale as σ(k) ∼ σ0 αkL2k ∼
σ0, k = 0, 1, 2, .... Clearly, all other contributions, for examples σ(k) ∼ σ0 α

k+1L2k ∼ α σ0 � σ0,
are small and can be neglected.

Two powers of p⊥-dependent logarithms per power of α can only be generated by photon emis-
sions that are soft and collinear at the same time. As we already know from the previous Section, a single
soft photon emission can be described by the eikonal factor

lim
k→0
|M(e+, e−; k)|

2
≈ e2 2p1p2

(p1k)(p2k)
|M(e+, e−)|

2
. (91)

Consider now the head-on collision where p1 = (E1, 0, 0, E1) and p2 = (E2, 0, 0,−E2). We
parametrize the photon momentum as k = ω(1, sin θ cosφ, sin θ sinφ, cos θ). The eikonal factor be-
comes

2p1p2

(p1k)(p2k)
=

4E1E2

E1E2ω
2(1− cos θ)(1 + cos θ)

=
4

~k2
⊥
, (92)

where we used |~k⊥| = ω sin θ for the absolute value of the photon transverse momentum. Hence, we
find

|M(e+, e−; k)|2 ≈ 4e2

~k2
⊥
|M(e+, e−)|2. (93)

We need to understand what happens if we integrate the radiation amplitude squared Eq. (93) over
the photon phase space. Since the photon is soft we can neglect the photon momentum k in the δ-function
that enforces energy-momentum conservation. We then identify the µ+µ− transverse momentum p⊥
with the photon transverse momentum. The phase space element reads

d3k

(2π)32ω
=

d cos θdφωdω

16π3 =
1

8π2 d cos θ ωdω. (94)

Since k⊥ = ω sin θ, we can express the emission angle θ in terms of the transverse momentum

cos θ = ±

√

1− k2
⊥
ω2 . (95)

Changing variables cos θ → k⊥ in Eq. (94), we obtain

d3k

(2π)32ω
=

1

8π2

2k⊥dk⊥dω√
ω2 − k2

⊥

. (96)

We are interested in computing the real-emission cross section in the logarithmic approximation. There-
fore, we write

dω√
ω2 − k2

⊥

≈ dω

ω
. (97)

Integration over ω will have to be cut at ω ≈ k⊥ from below and at ω ≈ √s from above. The first
condition follows from the approximation in Eq. (97); the second condition from the requirement that
the emitted photon is soft.
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Combining the matrix element with the phase space parametrization we obtain

dσγ

dk2
⊥

= σ0
2α

π

1

k2
⊥

√
s∫

k⊥

dω

ω
= σ0

α

π

ln s

k
2
⊥

k2
⊥
. (98)

This formula shows once again that the transverse momentum distribution computed through first order
in perturbation theory grows strongly in the limit k⊥ → 0. In fact, the growth is so strong that is can
overcome suppression provided by the fine structure constant α and make the radiation cross section
larger than the Born one. Clearly, perturbative expansion in α becomes meaningless in this case.

It is important to understand the role of virtual corrections in shaping the transverse momentum
distribution. The virtual corrections reside at k⊥ = 0. To understand how they can be included in
our computation, we calculate the cross section to produce a µ+µ− pair with a transverse momentum
between 0 and p⊥. We define

Σ(p⊥) =
1

σ0

p
2
⊥∫

0

dσtot

dk2
⊥

dk2
⊥. (99)

Expanding the total cross section in powers of α and introducing dσγ+V to denote O(α) contribution to
the cross section that includes both real emission and virtual corrections, we write

Σ(p⊥)− 1 =
1

σ0

p
2
⊥∫

0

dσγ+V

dk2
⊥

dk2
⊥ =

1

σ0

s∫

0

dσγ+V

dk2
⊥

dk2
⊥ −

1

σ0

s∫

p
2
⊥

dσγ

dk2
⊥

dk2
⊥ (100)

The first term – given by an integral from 0 to s represents the radiative correction to the total cross
section for µ+µ− production in the logarithmic approximation, with both real and virtual corrections
included. Such corrections contain no large logarithms and, since we only care about terms that scale as
αL2, can be set to zero. This identification, effectively, provides an infra-red regularization prescription
that allows us to define the integrand at k2

⊥ = 0 without computing virtual corrections. Thus, we require

1

σ0

s∫

0

dσγ+V

dk2
⊥

dk2
⊥ = O(αs)⇒ 0, (101)

and use Eq. (100) to derive
Σ(p⊥) = 1− α

2π
ln2 s

p2
⊥
. (102)

It is possible to re-write the integrand in Eq. (100) in such a way that Eq. (102) is obtained by the direct
integration. The idea is to introduce the plus-distribution. We define

dσ

σ0dk2
⊥

= δ(k2
⊥) +

α

π

[
1

k2
⊥

ln
s

k2
⊥

]

+

, (103)

where the +-prescription is defined on an interval k2
⊥ ∈ [0, s]. To illustrate how this works, we compute

the total cross section using Eq. (103). We find

Σ(s1/2) =
1

σ0

s∫

0

dσ

dk2
⊥

dk2
⊥ =

s∫

0

dk2
⊥

(
δ(k2
⊥) +

α

π

[
1

k2
⊥

ln
s

k2
⊥

]

+

)

= 1 +
α

π

s∫

0

dk2
⊥

k2
⊥

ln

(
s

k2
⊥

)
(1− 1) = 1.

(104)

24

K. MELNIKOV

60



To extend this result to higher orders in α, we need to understand multiple photon emissions in
the soft approximation. It is well-known [5] that soft photon emissions completely factorize so that a
n-photon emission amplitude reads

Mn = en
n∏

i=1

(
p1εi
p1ki

− p2εi
p2ki

)
M0. (105)

Here εi and ki are the polarization vector and the four-momentum of the i-th photon, respectively. Squar-
ingMn and summing over photon polarizations, we obtain

∑

pol

|Mn|2 = |M0|2
n∏

i=1

e2 2p1p2

(p1ki)(p2ki)
(106)

It follows from Eq. (106) that the emission probability of each of the n photons is determined by an
eikonal factor studied at the beginning of this Section. We use the expression for the amplitude squared
to compute the transverse momentum distribution of the muon pair. It reads

1

σ0

d2σn

d2~p⊥
=

1

n!

∫ n∏

i=1

d3~ki

(2π)32ωi

[
e22p1p2

(p1 · ki)(p2 · ki)

]
δ(2)

(
~p⊥ −

n∑

i

~k⊥,i

)
. (107)

To proceed further, we need to find a way to factorize the δ-function that contains the sum of photon
transverse momenta preventing us from integrating over any of them. To this end, we write the δ-function
as an integral over auxiliary two-component vector that we will refer to as the “impact parameter”

δ(2)
(
~p⊥ −

∑
~ki,⊥

)
=

∫
d2~b

(2π)2 e
−i~b
(
~p⊥−

n∑
i=1

~ki,⊥

)

. (108)

Using this equation, we re-write the cross section for emitting n-photon, integrating along the way over
their energies. We find

1

σ0

d2σn

d2~p⊥
=

1

n!

∫
d2~b

(2π)2 e
−i~b~p⊥

[
α

π

∫
d2~k⊥
π~k2
⊥

ln
s

k2
⊥
e−i

~b~k⊥

]n
, (109)

where the integration over k⊥ is cut at k2
⊥ = s. The apparent singularity at k⊥ = 0 is regulated in

the same way as in case of the single photon emission – we introduce a plus-prescription ensuring the
cancellation of real and virtual corrections for fully inclusive quantities.

It is clear from Eq. (109) that the summation over n can be performed in a straightforward manner.
We obtain

dσ

σ0d2~p⊥
=
∞∑

n=0

d2σn

σ0d2~p⊥
=

∫
d2~b

(2π)2 e
−i~b~p⊥ σ̂(b), (110)

where

σ̂(b) = e
α
π
ν(b), ν(b) =

|k⊥|<
√
s∫

0

d2~k⊥
π

[
1

k2
⊥

ln
s

k2
⊥

]

+

ei
~b~k⊥ . (111)

The result given in Eq. (110) is the differential cross section for producing a muon pair with momentum
p⊥ in the double logarithmic approximation. This formula is implicit because of the integration over the
impact parameter. In what follows, we will compute some of the integrals explicitly and arrive at the
result for the cross section that is more transparent. In particular, we are interested in understanding if
the differential cross section in Eq. (110) exhibits a turnover at low values of the transverse momentum,
a feature that was clearly missing in the result of the next-to-leading order computation.
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To proceed with sufficiently complicated integrations in Eq. (110), we note that the integrals in
Eqs. (110,111) depend on ~p⊥,~b and s. From Eq. (110) it follows that b ∼ 1/p⊥. Since

√
s� p⊥, sb2 �

1. We need to compute the various quantities in Eqs.(110,111) taking advantage of these hierarchical
relations between the various parameters that appear there.

We begin with the computation of ν(b). We perform the angular integration and find

ν(b) =

|k⊥|<
√
s∫

0

d2~k⊥
π

[
1

k2
⊥

ln
s

k2
⊥

]

+

ei
~b~k⊥ =

|k⊥|<
√
s∫

0

dk2
⊥

k2
⊥

ln
s

k2
⊥

2π∫

0

dϕ

2π

[
eibk⊥ cosϕ − 1

]

=

s∫

0

dk2
⊥

k2
⊥

ln
s

k2
⊥

[J0(b⊥k⊥)− 1] ,

(112)

where J0(x) is the Bessel function of the first kind.4 To make the integral more tractable, we change
variables k⊥ → ξ = b⊥k⊥ and obtain

ν(b) = 2

√
sb∫

0

dξ

ξ
ln

[
sb2

ξ2

]
[J0(ξ)− 1] . (113)

We now integrate by parts, use J0(0) = 1, dJ0(ξ)/dξ = −J1(ξ), and find

ν(b) =
1

2
ln2(sb2)

(
J0(
√
sb)− 1

)
+ 2

√
sb∫

0

dξ
[
ln(sb2) ln ξ − ln2 ξ

]
J1(ξ). (114)

Since J0(
√
sb) ∼ (

√
sb)−1/2 and since the integral with J1(ξ) converges at infinity, we can neglect quite

a number of terms in Eq. (114) if we focus on the double logarithmic contributions. We find

ν(b) ≈ −1

2
ln2(sb2) +O(ln(sb2)). (115)

The cross section becomes

1

σ0

d2σ

d2~p⊥
=

∫
d2~b

(2π)2 e
−i~b~p⊥e−

α
2π

ln
2
(sb

2
) =

1

2π

∞∫

0

db b J0(bp⊥) e−
α
2π

ln
2
(sb

2
), (116)

where in the last step we integrated over directions of the vector ~b. To proceed further, we change
integration variables b→ y where b = y/p⊥ and expand the integrand assuming that α ln2 s/p⊥ ∼ 1 but
α ln s/p⊥ � 1. We obtain

1

σ0

d2σ

d2~p⊥
=

1

2πp2
⊥
e
− α

2π
ln

2 s

p
2
⊥

∞∫

0

dy y J0(y)

(
1− 2α

π
ln

s

p2
⊥

ln y + ...

)
, (117)

where ellipses stand for O(α2) terms that can be neglected. Integration over y can be performed using
the known results for definite integrals of the Bessel functions

∞∫

0

dyyJ0(y) = 0,

∞∫

0

dyJ0(y) ln y = −1. (118)

4Vast amount of information about special functions in general and Bessel functions in particular can be found in a classic
book by Abramowitz and Stegun [23].
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Using these results in Eq. (117), we derive the resummed cross section

1

σ0

d2σ

d2~p⊥
=

α

π2p2
⊥

ln
s

p2
⊥
e
− α

2π
ln

2 s

p
2
⊥ . (119)

It follows from Eq. (119) that the resummed p⊥ distribution has a turnover, in contrast to the p⊥
distribution that is predicted by a single photon emission. The distribution peaks at

pmax
⊥ ≈ √se−

π
2α . (120)

Note that pmax
⊥ has a non-analytic dependence on the fine structure constant α and, for this reason, it can

not be obtained in any finite order of perturbation theory.5

The transverse momentum distribution of a lepton pair in QED reflects all the subtleties of a
resummed computation, but can be performed analytically until the very end thanks to the simplicity of
this case. It is useful to take a look at the QCD formula that describes resummed transverse momentum
distribution of a lepton pair in hadron collisions under the assumption that a pair is produced through a
decay of an intermediate on-shell Z-boson; the Z-boson itself is produced in the qq̄ annihilation. The
resummed cross section reads [24]

dσZ

dp2
⊥
≈
∑

q

σqq̄0

2

∞∫

0

db b J0(bp⊥)e−S(b,MZ)

1∫

0

dx1dx2δ

(
x1x2 −

M2
Z

S

)

× [q(x1, b0/b)q̄(x2, b0/b) + q ↔ q̄] ,

(121)

where s is the hadronic center-of-mass energy squared, σqq̄0 = π
√

2GFM
2
Z(V 2

q +A2
q)/(3S), b0 = 2e−γE

and

S(b,Q) =

Q
2∫

(b0/b)
2

dq2

q2

[
ln
Q2

q2 A(αs(q)) +B(αs(q))

]
, (122)

where the two functions A and B can be computed in QCD perturbation theory

A(αs) =
∞∑

n=1

(αs
2π

)n
An, B(αs) =

∞∑

n=1

(αs
2π

)n
Bn. (123)

It is easy to see the similarities between the resummed cross sections in QCD and QED. However, an
interesting feature of the QCD result is the appearance of the transverse momentum in parton distribution
functions. Indeed, since b ∼ p⊥ and since the factorization scale for parton distribution functions in
Eq. (121) is chosen to be 1/b, it appears that one can only resum the ln

√
s/p⊥ contributions provided that

the factorization scale is proportional to p⊥. We already mentioned the dependence of parton distribution
functions on the factorization scale when we talked about fixed order computations and the relation
between bare and physical parton distribution functions. In the next Section we will discuss the origin of
parton distribution functions and the physical meaning of the factorization scale.

6 Partons and their evolution
We have seen in the previous Section that the resummed formula for the transverse momentum distribu-
tion includes parton distribution functions evaluated at a particular scale 1/b ∼ p⊥ which is correlated
with the transverse momentum of the produced lepton pair. If we want to understand why it is so, we

5However, the vaue of p⊥ for which the distribution reaches its maximum is outside the validity range of our computation
since α/π ln(

√
s/p

max
⊥ ) ∼ 1.
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need to understand the physics behind parton distribution functions. Similar to the discussion in the
previous Section, it is much easier to discuss this problem in QED first and then explain how the QED
results generalize to the QCD case.

Consider a process where an electron collides with a target that we will denote as X and produces
a final state with a photon and another particle Y , e +X → γ + Y . We will be interested in a situation
where the final state photon is emitted in the forward direction, i.e. it follows the momentum of the
incoming electron. To describe this kinematic situation, we employ the collinear approximation to the
matrix element squared that we already used when discussing the NLO QCD corrections to the Drell-Yan
process. We write

∑

pol

|Me(p)+X→γ+Y |2 ≈
−2e2

(p− q)2

1 + z2

z(1− z)
∑

pol

|Me(zp)+X→Y |2, (124)

where q is the four-momentum of the emitted photon that is parametrized as

q = (1− z)p+ βp̄+ q⊥. (125)

Here (1 − z) is the fraction of the original electron energy carried away by the photon. The photon
emission angle θγ is assumed to be small. The transverse momentum and the component of the four-
momentum q along the complementary light-cone direction p̄, β, scale as q⊥/

√
s ∼ θγ � 1 and β ∼

θ2
γ � 1.

We use the approximate formula for the matrix element squared Eq. (124) to compute the cross
section

dσe+X→γ+Y =

∫
[dq][dpY ](2π)4δ(4)(p+ pX − q − pY )

1

4(pX · p)
1

2

∑

pol

|Me(p)+X→γ+Y |2

≈
∫

[dq][dpY ](2π)4δ(4)(zp+ pX − pY )
−2e2

(p− q)2

1 + z2

1− z
1

4(pX · zp)
1

2

∑

pol

|Me(zp)+X→Y |2

≈
∫

[dq]
−2e2

(p− q)2

1 + z2

1− z dσ(e(zp) +X → Y ).

(126)

To arrive at the final formula, we used the collinear approximation for the photon momentum q →
(1 − z)p in the energy-momentum conserving δ-function and combined the reduced matrix element,
the δ-function, [dpY ] etc. into a differential cross section for the process e + X → Y where the four-
momentum of the incoming electron is zp. To proceed further, we need to write the integration measure
[dq] in Eq.(126) in a convenient way. It is easy to see that the following formula holds in the collinear
θγ → 0 limit

d3q

(2π)32q0

−2e2

(p− q)2 =
α

2π

dq2
⊥

q2
⊥

dz. (127)

Using this result in Eq. (126), we derive the forward photon emission contribution to the cross section of
the process e+X → γ + Y

dσe+X→γ+Y =
α

2π

1∫

0

dz
1 + z2

1− z

∫
dq2
⊥

q2
⊥

dσ(e(zp) +X → Y ). (128)

There are three problems with the cross section formula shown in Eq. (128). The first problem is
that integration over z diverges at z = 1. The second problem is that integration over q⊥ appears to be
unrestricted from above. The third problem is that integration over q⊥ diverges at q⊥ = 0.
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It is easy to understand that the two last problems are, essentially, self-inflicted. Indeed, a diver-
gence at large values of q⊥ is related to the approximate treatment of the phase space that was justified
because q⊥ was considered small, q⊥ �

√
s. Therefore, with the logarithmic accuracy, integration over

q⊥ should be cut at some value q⊥ = q⊥,max ∼
√
s. The exact value of q⊥,max is, at this point, impos-

sible to determine but since the dependence on this parameter is logarithmic and, therefore, weak, we
do not need to be careful about it. Since, parametrically, q⊥,max is of the order of the center of mass
energy of the collision, we will use q⊥,max =

√
s in what follows. Physically, it corresponds to the

largest transverse momentum of the photon that we believe can still be be treated in the collinear approx-
imation. Similarly, the divergence at small q⊥ is related to our treatment of an incoming electron as a
massless particle. This approximation is only justified for q⊥ � me and, therefore, we should cut the
integration over q⊥ from below at q⊥ ∼ me. Again, the exact value of the lower integration boundary is
not important if we are content with the logarithmic accuracy of the calculation.

The divergence at z = 1 is more subtle. Since q ≈ (1 − z)p, z → 1 corresponds to a situation
where a soft photon is emitted. As we know from the discussion of the NLO computations, the emission
of soft photons is indeed divergent and the divergence is canceled by the virtual corrections. The virtual
corrections corresponds to elastic scattering process and, therefore, reside at z = 1. We can regulate
the real emission contribution and introduce virtual corrections by writing the inclusive production cross
section for the particle Y in the following way

dσincl
e+X→Y =

1∫

0

dz dσ(e(zp) +X → Y ) fe/e(z, s), (129)

where

fe/e(z, s) = δ(1− z) +
α

2π

([
1 + z2

1− z

]

+

+ V δ(1− z)
)

log
s

m2
e

. (130)

Note that the structure of Eq. (129) is analogous to what we do in hadron collider physics when we
compute hadronic cross sections by convoluting parton distributions with partonic cross sections. We
therefore interpret fe/e(z, s) as the distribution of an “electron parton” in an original physical electron
generated by the (real and virtual) emissions of collinear photons. Note that similar to parton distribution
functions, the function fe/e(z, s) has two arguments: the first argument describes the energy fraction of
the incoming electron carried by a parton, the second argument refers to an upper boundary imposed
on q⊥ integration which, effectively, corresponds to a definition of the kinematic region where collinear
description of the final state is considered to be sensible.

We expect that collinear photon emissions generate a non-trivial energy spectrum of the “electron
partons”, but the number of electrons remains unchanged. This implies

1∫

0

dz fe/e(z, s) = 1 ⇒ fe/e(z, s) = δ(1− z) +
α

2π

[
1 + z2

1− z

]

+

ln
s

m2
e

. (131)

Note that the “electron number conservation” condition allows us to fix virtual corrections without com-
puting them. The plus-distribution that multiplies the logarithm ln s/m2

e is the electron splitting function

Pee =

[
1 + z2

1− z

]

+

= 2D0(z)− (1 + z) +
3

2
δ(1− z). (132)

Note that, up to a color factor, it coincides with the quark splitting function P (0)
qq discussed in Section 3.

The electron distribution function Eq. (131) has a number of important properties. If the collision
energy is small s ∼ m2

e, the electron PDF reads fe/e(z,m
2
e) = δ(1 − z). This implies that collinear
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emissions at low energies do not happen often. If, on the other hand, s � m2
e, fe/e(z, s) becomes very

sensitive to additional radiation since corrections to the elastic piece are controlled by the parameter
α/π log(s/m2

e) and not by the fine structure constant α. Although in QED this parameter becomes close
to one at inconceivably large energies, in QCD this happens earlier, which implies that the resummation
of these logarithmically enhanced terms needs to be carried out. We will return to this point shortly.

We have discussed the process e+X → γ+Y in the collinear approximation. However, it is also
possible to consider a process e+X → e+Y which corresponds to γ+X → Y elastic process. Working
in the collinear approximation for that process, one can define a distribution function of a photon parton
in the physical electron. The corresponding function reads

fe/γ(z, s) =
α

2π

1 + (1− z)2

z
ln

s

m2
e

. (133)

Note that fe/γ(z,m2
e) = 0, i.e. there are no photons in an electron if the radiation is suppressed.

It is instructive to compute the average momentum carried by the photon and electron constituents
in a physical electron. Since the two distribution functions originate from the same splitting e → e + γ
with the only difference that in one case we tag an electron and in the other case a photon, we expect that
the average momenta carried by a photon and by an electron sum up to the momentum of the incoming
electron. Clearly, this is true in every individual splitting and, therefore, it should be true on average.
Performing explicit computation of the energy fractions

〈z〉e =

1∫

0

dz fe/e(z, s) z = 1− 2α

3π
ln

s

m2
e

, 〈z〉γ =

1∫

0

dz fγ/e(z, s) z =
2α

3π
ln

s

m2
e

, (134)

we find
〈z〉e + 〈z〉γ = 1, (135)

in agreement with the expectations.

We would like to generalize these results to the case when multiple photons are emitted; we will
start with the case of two photons. There are two diagrams that contribute in this case and a 1/2! factor
in the phase space that is necessary to include because photons are identical particles. The two diagrams
differ by order in which photons are emitted off the incoming electron line. We note that these diagrams
change the production cross section by an amount proportional to O(α2). Since we are only interested
in contributions where each power of α is accompanied by a large logarithm ln(s/m2

e), we need to
understand how these diagrams can generate two powers of ln(s/m2

e).

To see this, it is sufficient to compare propagators of an electron after the first and the second
emissions. Consider a diagram where electron emits a photon with momentum q1 and then a photon with
momentum q2. Electron propagator after the first emission scales as 1/q2

1,⊥, so that integration over q1,⊥
is already logarithmic. The integration over q2,⊥ can only be logarithmic if q1,⊥ � q2,⊥ so that q1,⊥ can
be neglected in the electron propagator after the second emission. Clearly, everything that has just been
said applies also to the second diagram – where electron first emits a photon with momentum q2 and then
the photon with momentum q1 – after the replacement q1 ↔ q2. Hence, to account for both diagrams,
we can take the contribution of the first one and remove the 1/2! symmetry factor from the phase space.

The constraints on the transverse momenta of the emitted photons define integration regions over
q⊥ that lead to the double-logarithmic enhancement of these O(α2) contributions. Since the transverse
momentum ordering described above implies sequential approach of the collinear limits, it is clear that
the Sudakov decomposition of the second emission needs to be performed relative to the electron four-
momentum after the emission of the first photon, i.e.

q1 = (1− z1)p+ ..., q2 = (1− z2)z1p+ .... (136)
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Generalizing this discussion to arbitrary number of photons and neglecting the possibility that an
electron fluctuates into a virtual photon, we obtain the following result for the inclusive cross section

σe+X→Y+anything =

1∫

0

dz fe/e(z, s) dσ(e(zp) +X → Y ). (137)

where

fe/e(z, s) = δ(1− z) +
∞∑

n=1

( α
2π

)n 1∫

0

dznPee(zn)

s∫

m
2
e

dq2
n,⊥

q2
n,⊥

×

1∫

0

dzn−1Pee(zn−1)

q
2
n,⊥∫

m
2
e

dq2
n−1,⊥

q2
n−1,⊥

× · · · ×
1∫

0

dz1Pee(z1)

q
2
2,⊥∫

m
2
e

dq2
1,⊥

q2
1,⊥

δ(z1...zn − z).

(138)

This expression appears to be relatively complicated. However, we can re-write it in a more compact
form by computing logarithmic derivative of fe/e(s, z) with respect to s. Recall that

√
s represents the

largest value of the transverse momentum of an emitted photon that we agree to treat in the collinear
approximation.

It is straightforward to compute the derivative since s appears only as an upper boundary of the
left-most integral over p⊥ in each term in Eq. (138). We obtain

s
∂fe/e(z, s)

∂s
=

α

2π

1∫

0

dz1Pee(z1)


δ(z − z1) +

α

2π

1∫

0

dz2Pee(z2)

s∫

m
2
e

dq2
2,⊥

q2
2,⊥

δ(z − z1z2) + · · ·


 .

(139)
We can cast the right-hand side of this equation into a more recognizable expression by removing z1

from all δ-functions that appear in square brackets in Eq. (139). We use the identity

δ(z − z1 · · · ) =
1

z1
δ(z/z1 − · · · ), (140)

and realize that the expression in square brackets in Eq. (139) can be identified with 1/z1fe/e(z/z1, s).
Hence, the differential equation Eq. (139) becomes

s
∂fe/e(z, s)

∂s
=

α

2π

1∫

0

dz1

z1
Pee(z1)fe/e(z/z1, s) =

1∫

0

dz1dz2Pee(z1)fe/e(z2, s)δ(z − z1z2). (141)

This is the QED version of the celebrated Dokshitzer-Gribov-Altarelli-Parisi (DGLAP) evolution equa-
tion [18]. We note that Eq. (141) is not complete since we neglected possible splittings of an electron
to a photon or to a positron, but it gives us an idea of how the DGLAP equation looks like and how it
appears.

The DGLAP equation can be solved provided that the distribution function is known for some
value of s. In the QED case s = m2

e is special and fe/e(z,m
2
e) = δ(1 − z). We can find fe/e(z, s) for

s 6= m2
e by solving the DGLAP equation Eq. (141).

We will now summarize what we have seen so far. Parton distribution functions naturally ap-
pear if we attempt to describe quasi-collinear emissions by colliding particles, including the elementary
ones. These functions depend on two parameters – the fraction of energy of the incoming particle that
a parton carries into a hard collision and the “factorization scale” which, roughly, corresponds to the
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Partons and their evolution
The DGLAP equations imply that parton distribution functions at any scale can be 
determined  if they are known at some scale.  So, the strategy is to parametrize PDFs at a 
relatively low  scale and then use evolution and various data to constrain (determine) 
PDFs. Propagation  of errors is an important question that is being constantly discussed 
and refined. 
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Another complication is that extraction of PDFs involves fixed order cross section 
computations. When fixed order results change (i.e. by accounting for higher order 
corrections), the PDFs change  as well (provided, of course, that data does not).  It is 
therefore customary to extract PDFs using fixed order cross sections of certain 
accuracy (LO, NLO, NNLO).  These (LO, NLO, NNLO) PDFs sets should be used to 
predict physical observables using matching orders in computed partonic cross 
sections. 

Friday, December 22, 17

Fig. 7: Typical proton parton distribution functions at the factorization scale 3 GeV.

maximal value of the transverse momentum that is considered acceptable to be treated in the collinear
approximation and whose impact on final state kinematics is ignored. Although we have illustrated these
points in the context of QED, they are valid in QCD as well. The most important difference between
QED and QCD is that in QCD we do not know the initial condition for parton distribution functions
at low factorization scale since QCD is non-perturbative and since we are mostly interested in parton
distribution functions of non-elementary particles (protons, neutrons etc.). On the other hand, the QCD
evolution equations are very similar to what we derived in QED, with obvious modifications to allow
for transitions between different types of partons and the running of the coupling constant. The DGLAP
equations in QCD read

s
∂qi(z, s)

∂s
=
αs(s)

2π

1∫

0

dξ

ξ

[
Pq→q(ξ)qi(ξ/z) + Pq̄→q(ξ)q̄i(z/ξ, s)

+ Pq′→q(ξ)
∑

j 6=i

(
qj(z/ξ, s) + q̄j(z/ξ, s)

)
+ Pg→q(ξ) g(z/ξ, s)

]
,

s
∂q̄i(z, s)

∂s
=
αs(s)

2π

1∫

0

dξ

ξ

[
Pq→q(ξ)q̄i(ξ/z) + Pq̄→q(ξ)qi(z/ξ, s)

+ Pq′→q(ξ)
∑

j 6=i

(
qj(z/ξ, s) + q̄j(z/ξ, s)

)
+ Pg→q(ξ) g(z/ξ, s)

]
,

s
∂g(z, s)

∂s
=
αs(s)

2π

1∫

0

dξ

ξ

[
Pq→g(ξ)

∑(
qj(z/ξ, s) + q̄j(z/, ξ)

)
+ Pg→g(ξ) g(z/ξ, s)

]
.

(142)

The Altarelli-Parisi splitting functions in QCD are well-known. At leading order, all of them,
except Pgg, can be obtained from the corresponding QED results. We present the leading order splitting
functions here for completeness

Pq→q = CF

[
1 + z2

1− z

]

+

, Pq→g = CF
1 + (1− z)2

z
, Pg→q = TR(z2 + (1− z)2),

Pg→g = 2CA

[
1− z
z

+
z

(1− z)+
+ z(1− z) +

(
11

6
CA −

2nfTR
3

)
δ(1− z)

]
.

(143)

The DGLAP equations imply that parton distribution functions at any scale can be determined if
they are known at some scale. So, the strategy is to parametrize parton distributions at a relatively low
scale and then use the DGLAP evolution and various data to determine them. Typical results are shown
in Fig. 7 where quarks are split into valence (constituent) and sea (produced by the gluon splitting)
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Parton distribution functions
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Below are some phenomenological results that demonstrate the current state-of-the-
art in PDF determination for both  Drell-Yan and Higgs boson production.  In general, 
the situation appears to be quite reasonable, with results of different PDF-fitting 
groups showing signs of convergence (was not always the case). 
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Fig. 8: Comparison of physical cross sections for a few selected processes computed with popular parton distribu-
tion functions.

contributions. Understanding uncertainties in the determination of parton distribution functions is an
important question that is being constantly discussed and refined [25]. Another complication is that
extraction of PDFs involves fixed order cross section computations. When fixed order results change
(i.e. by accounting for higher order QCD corrections), the PDFs change as well (provided, of course,
that data does not). It is therefore customary to extract PDFs employing fixed order cross sections of
certain accuracy (LO, NLO, NNLO). These (LO, NLO, NNLO) PDFs sets should be used to predict
physical observables using matching orders in computed partonic cross sections.

How well do we know parton distributions functions? A snapshot of the current situation is shown
in Fig. 8 for a variety of Standard Model processes including pp → V with V = W,Z, pp → H and
pp → tt̄H . We see that different PDF sets are in reasonable agreement and, at this point, there are no
PDF sets that are in a clear disagreement with the other sets. This is quite encouraging and suggests
that, with sufficient effort, parton distribution functions can be understood well-enough to allow for the
precision physics program at the LHC.

7 Parton showers
Parton distribution functions provide limited information about final state particles. Indeed, to derive
the DGLAP evolution equation, we integrate over momenta of the emitted particles loosing information
about kinematics of the final state. This may not be ideal since, in certain cases, we may want to have a
more detailed description of the final states. This can be done with the help of the so-called parton shower
programs. The most famous examples of such programs are PYTHIA, HERWIG and SHERPA [26]
whose relevance for experiments in high-energy physics is hard to overstate. The goal of this Section is
to introduce basic ideas behind parton showers and explain how they can be used to simulate unweighted
events.

7.1 The toy model
Following the spirit of the previous Sections, we will start the discussion of parton showers with a toy
model inspired by soft emissions in QED. As we have already mentioned in these Lectures, soft emis-
sions in QED completely factorize, c.f. Eq. (105). The cross section in the soft photon approximation
is obtained by integrating over photon energies with an additional constraint that the total radiated en-
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ergy and the energy that remains in the radiator E can not exceed the total energy available before the
emissions. We write

dσn =
αn

n!
dσ0 dE

n∏

i=1

dωi
ωi

δ(ET − E −
n∑

i=1

ωi). (144)

We integrate over the energy E of the radiator and find

dσn =
αn

n!
dσ0

n∏

i=1

dωi
ωi

θ(ET −
∑

ωi). (145)

Solving the θ-function constraint and introducing a lower integration boundary for integration over ω,
we write

dσn =
αn

n!
dσ0

ET∫

λ

dω1

ω1

ET−ω1∫

λ

dω2

ω2

ET−ω1−ω2∫

λ

dω3

ω3
· · ·

ET−ω1−ω2−···−ωn−1∫

λ

dωn
ωn

. (146)

The cross section σn is a function of ET /λ; we would like to evaluate this function in the limit λ → 0
which corresponds to ET /λ → ∞. We will now show that, in order to pick up the largest logarithmic
contribution to the integral dσn, we can neglect all dependencies on energies in integration boundaries
in Eq. (146)

ET∫

λ

dω1

ω1

ET−ω1∫

λ

dω2

ω2

ET−ω1−ω2∫

λ

dω3

ω3
· · · →

ET∫

λ

dω1

ω1

ET∫

λ

dω2

ω2

ET∫

λ

dω3

ω3
· · · = logn

ET
λ
. (147)

To illustrate why this approximation gives the correct highest power of a large logarithm, we
consider the case of the two emissions and compute

I2 =

ET∫

λ

dω1

ω1

ET−ω1∫

λ

dω2

ω2
=

ET∫

λ

dω1

ω1
log

ET − ω1

λ

=

ET∫

λ

dω1

ω1

[
ln
ET
λ

+ ln

(
1− ω

ET

)]
= ln2 ET

λ
+

ET∫

λ

dω1

ω1
ln

(
1− ω1

ET

) (148)

Note that the last integral is convergent in the ω1 → 0 limit, so that the dependence on λ can be neglected.
Upon doing that and changing integration variables ω1 = ET ξ, we arrive at

I2 ≈ ln2 ET
λ

+

1∫

0

dξ

ξ
ln (1− ξ) = ln2 ET

λ
− π2

6
≈ ln2 ET

λ
, (149)

where in the last step we neglected the constant term. Clearly, the logarithmically-enhanced term can be
obtained if we neglect the dependence of the integration boundaries on the photon energy

I2 =

ET∫

λ

dω1

ω1

ET−ω1∫

λ

dω2

ω2
≈

ET∫

λ

dω1

ω1

ET∫

λ

dω2

ω2
= ln2 ET

λ
. (150)

The generalization to the case of a larger number of photons is obvious. We conclude that, with the
leading logarithmic accuracy, the cross section for producing n photons reads

dσn ≈
αn

n!
σ0 lnn

ET
λ
. (151)
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The cross section for emitting any number of photons is obtained by summing Eq. (151) over n. We
obtain

dσ =
∞∑

0

dσn = dσ0 e
α ln

ET
λ . (152)

The result shown in Eq. (152) is rather strange since it implies that soft emissions make the cross
section very large. We know from previous discussions that this can only happen if virtual corrections are
improperly neglected and, if real and virtual corrections are combined, no logarithmically enhanced cor-
rections appear in the cross section integrated over all soft emissions. Since we work with the logarithmic
accuracy, we have to find

dσfull = dσ0, (153)

in variance with Eq. (152).

To account for virtual corrections we write, in accord with Eq. (153),

dσfull = dσ0V e
α lnET /λ, (154)

where V = e−α lnET /λ represents the effect of virtual corrections. We can now expand the real emission
exponential back and find

1 =
∞∑

n=0

Pn, (155)

where

Pn = e−α lnET /λ αn
ET∫

λ

dω1

ω1

ω1∫

λ

dω2

ω2

ω2∫

λ

dω3

ω3
· · ·

ωn−1∫

λ

dωn
ωn

. (156)

We interpret the different contributions in Eq. (155) as the relative probabilities to produce a final state
with certain number of photons. Integrations over ω’s in Eq. (156) represent sampling over different
kinematic configurations that contribute to these final states. Our goal is to turn Eqs. (155,156) into a
generator of unweighted events where, similar to experimental reality, each event is characterized by a
collection of photons with definite energies.

To proceed further, we introduce a notation φ(x, y) = α lnx/y, write

e−α lnET /λ = e−φ(ET ,ω1)e−φ(ω1,ω2)...e−φ(ωn−1,ωn)e−φ(ωn,λ), (157)

and insert this representation into the integral in Eq. (156). We obtain

Pn = αn
ET∫

λ

dω1

ω1
e−φ(ET ,ω1)

ω1∫

λ

dω2

ω2
e−φ(ω1,ω2)..

ωn−1∫

λ

dωn
ωn

e−φ(ωn−1,ωn)e−φ(ωn,λ) (158)

We then change variables ωi → ri = e−φ(ωi−1,ωi), find the Jacobians of the variable transforma-
tions and the new integration boundaries

dri = α
dωi
ωi

e−φ(ωi−1,ωi), rmin(ωi−1) < ri < 1, rmin(ω) = e−α lnω/λ. (159)

We then write Pn using new variables

Pn =

1∫

r
min

(ω0)

dr1

1∫

r
min

(ω1)

dr2..

1∫

r
min

(ωn−1)

drn e
−φ(ωn,λ), (160)
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where ω0 = ET .

It is instructive to compute the probability to emit n + X photons, where X is an arbitrary final
state. This probability is given by

Pn+X =

1∫

r
min

(ω0)

dr1

1∫

r
in

(ω1)

dr2..

1∫

r
min

(ωn−1)

drn

×


e
−φ(ωn,λ) +

1∫

r
min

(ωn)

drn+1e
−φ(ωn+1,λ) +

1∫

r
min

(ωn)

drn+1

1∫

r
min

(ωn+1)

drn+2e
−φ(ωn+2,λ) + · · ·




=

1∫

r
min

(ω0)

dr1

1∫

r
in

(ω1)

dr2..

1∫

r
min

(ωn−1)

drn,

(161)

where in the last step we used the fact that the expression in square brackets is the total probability to
produce any final state which isi equal to one.

The formula Eq. (161) suggests how events can be generated since the probability to emit a photon
with particular energy is independent of whether or not subsequent emissions occur. The first step is to
decide if at least one emission happened. The probability for at least one emission is given by

P1 =

1∫

r
min

(ET )

dr1. (162)

The probability that event contains no (resolved) emissions is given by P0 = rmin(ET ) = 1− P1.

To produce events with these probability distributions, we generate a random number with the flat
probability distribution 0 < ξ1 < 1. If ξ1 < P0, no emission happened. We exit the generation process
and register an event which contains no photon emissions. To generate another event, we return to the
beginning of the generation process.

If, on the other hand, P0 < ξ1 < 1, the photon emission did happen. We find the energy of the
emitted photon by solving the equation ξ1 = e−φ(ω0,ω1) for ω1. The result reads ω1 = ω0ξ

1/α
1 . Next, we

need to determine if the second photon is emitted. We repeat the first step with the only difference that
we use ω1 instead of ET to compute the no-emission probability. For example, if the second emission
does happen, the energy of the second photon reads ω2 = ω1ξ

1/α
2 .

Clearly, we can keep doing that until a no-emission event is generated. Note that the probability
to generate a no-emission event grows because energies of the radiated photons decrease as we generate
more and more photons. Once the energy of the emitted photon becomes comparable to λ, the no-
emission probability becomes close to one and the generation process has a high chance to terminate. At
any rate, once the no-emission event is generated, we exit the event generation process. At this point,
we have the list of photons with their energies; this list provides complete kinematic description of the
generated event. If we need to generate another event, we start from the beginning. One can work with
these unweighted events in the same way experimentalists work with real events recorded in experiments
at the LHC and compute the relevant cross sections and distributions simply by combining them in an
appropriate way.

The above procedure gives us a toy model of a parton shower. It shows that parton showers develop
an approximate treatment of perturbative corrections to cross sections and distribution by picking up the
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logarithmically enhanced terms, treating the radiation phase space in a simplified manner and preserving
hard cross sections by requiring that integrated real emission and virtual corrections cancel each other
exactly. This last feature allows us to define a “conserved quantity” that we then recast into a probability
and use it to generate events with particular kinematic features of final state particles.

7.2 Parton shower description of collinear emissions
We would like to move beyond the toy model and develop a parton shower description of a gauge theory.
We will again start with QED and make use of our discussion of parton distribution functions. To
develop the probabilistic picture, inherent to parton showers, we need to understand what can play a role
of a conserved quantity in case of collinear emissions. To this end, recall that an electron distribution in
a physical electron satisfies the DGLAP evolution equation

s
∂

∂s
fe/e(z, s) =

α

2π

1∫

0

dz1dz2Pee(z1)fe/e(z2, s)δ(z − z1z2). (163)

We integrate both sides of this equation over z and find

s
∂

∂s

1∫

0

dz fe/e(z, s) =

1∫

0

dz1Pee(z1)

1∫

0

dz2fe/e(z2) = 0, (164)

where the last step follows from the fact that Pee(z) is a plus-distribution, c.f. Eq. (132).

The above equation implies that the integral of fe/e(z, s) over z is independent of s and since
fe/e(z,m

2
e) = δ(1− z), we find

1∫

0

dzfe/e(z, s) = 1. (165)

We would like to interpret Eq. (165) as a probability conservation condition that will allow us to
compute the relative probabilities of collinear photon emissions. To this end, we re-write the DGLAP
equation by separating real and virtual corrections in the splitting function

s
∂

∂s
fe/e(z, s) =

α

2π

1∫

0

dξP̃ee(ξ)

[
fe/e(z/ξ, s)

ξ
− fe/e(z, s)

]
, (166)

where P̃ee(ξ) = (1+ξ2)/(1−ξ). We would like to treat the two terms on the right hand side of Eq. (166)
separately; to do that we need to introduce a cut-off on the integration over ξ, ξ < 1 − δ. After moving
fe/e(z, s) to the left hand side of Eq.(166), we obtain

s
∂

∂s
fe/e(z, s) +

α

2π




1−δ∫

0

dξ P̃ee(ξ)


 fe/e(z, s) =

1−δ∫

0

dξ

ξ
P̃ee(ξ)fe/e(

z

ξ
, s). (167)

We will solve Eq.(167) in the approximation δ → 0. Note that the singularity at ξ = 0 is irrelevant since
it is protected by the fact that the splitting function vanishes for values of arguments that are bigger than
one. To solve Eq. (167), we remove the homogeneous part of the equation by writing

fe/e(z, s) = ∆(s)g(z, s), (168)
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and choose ∆(s) to satisfy the differential equation

s
∂

∂s
∆(s) +

α

2π




1−δ∫

0

dξ P̃ee(ξ)


∆(s) = 0. (169)

The equation for g(z, s) becomes

s
∂g(z, s)

∂s
=

α

2π

1−δ∫

0

dξ

ξ
P̃ee(ξ)g(z/ξ, s). (170)

To find the splitting function fe/e(z, s) we need to solve the differential equations Eqs. (169,170).
We begin with Eq. (169). Its solution reads

∆(s,m2
e) = exp


− α

2π

s∫

m
2
e

dt

t

1−δ∫

0

dξP̃ee(ξ)


. (171)

We note that ∆(s,m2
e) is known as the Sudakov form factor. As we will see later, it describes a proba-

bility of the elastic (no-emission) process.

We integrate Eq. (170) over s and find

g(z, s) = g(z,m2
e) +

α

2π

s∫

m
2
e

dt

t

1−δ∫

0

dξ

ξ
P̃ee(ξ)g(z/ξ, t). (172)

If we multiply both sides of this equation with ∆(s,m2
e) and use the fact that ∆(m2

e,m
2
e) = 1, we obtain

fe/e(z, s) = ∆(s,m2
e)fe/e(z,m

2
e) +

α

2π

s∫

m
2
e

dt

t
∆(s, t)

1−ξmin∫

0

dξ

ξ
P̃ee(ξ) fe/e(z/ξ, t). (173)

We can expand the right hand side of Eq. (173) in power series in α, treating the Sudakov form
factor as quantity of order one and using fe/e(z,m

2
e) = δ(1 − z). This is very similar to what we did

when constructing the probability conservation equation in the toy model. We obtain

fe/e(s, z) = ∆(s,m2
e)δ(1− z) +

α

2π

s∫

m
2
e

dt1
t1

∆(s, t1)

1−δ∫

0

dξ1P̃ee(ξ1)∆(t1,m
2
e)δ(z − ξ1)

+
( α

2π

)2
s∫

m
2
e

dt1
t1

∆(s, t1)

1−δ∫

0

dξ1P̃ee(ξ1)

t1∫

m
2
e

dt2
t2

∆(t1, t2)

1−δ∫

0

dξ2P̃ee(ξ2)∆(t2,m
2
e)δ(z − ξ1ξ2)

+ · · ·

(174)

We now integrate both sides of Eq. (174) over z, use the “probability conservation” condition Eq. (165)
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and obtain an equation that we can use to generate events in exactly the same way as in the toy model

1 = ∆(s,m2
e) +

α

2π

s∫

m
2
e

dt1
t1

∆(s, t1)

1−δ∫

0

dξ1P̃ee(ξ1)∆(t1,m
2
e)

+
( α

2π

)2
s∫

m
2
e

dt1
t1

∆(s, t1)

1−δ∫

0

dξ1P̃ee(ξ1)

t1∫

m
2
e

dt2
t2

∆(t1, t2)

1−δ∫

0

dξ2P̃ee(ξ2)∆(t2,m
2
e)

+ · · ·

(175)

Each term in these series represents a probability of a process with a fixed number of resolved photons.
The generation process works similarly to the toy model. Note that this similarity can be made exact if,
similar to the toy model, we introduce a random variable

ri = ∆(ti−1, ti), t0 = s. (176)

Indeed, since

dri =
α

2π

dti
ti

1−δ∫

0

dξ1P̃ee(ξ1) ∆(ti−1, ti), (177)

Eq. (175) can be cast into a form that is identical to e.g. Eq. (161) discussed in the context of the toy
model. Therefore, we can generate events following our earlier discussion. The only difference is that
we need more than one random variables to describe momentum of an emitted photon.

We now explain the procedure in detail. We begin with generating a random number 0 < r < 1
and solving the equation

∆(s, t1) = r (178)

for t1. If t1 < m2
e, then no emission happens, we exit the generation process and, if necessary, start

anew. If, on the other hand, we find t1 > m2
e, then the emission happens. To determine the energy of the

photon, we generate another random variable 0 < y1 < 1 and solve for ξ1

y1 =

ξ1∫
0

dξ̄Pee(ξ̄)

1−δ∫
0

dξ̄Pee(ξ̄)

. (179)

The two variables, ξ1 and t1 allow us to compute the four-momentum of the radiated photon

qµ1 = (1− ξ1)pµ + β1p̄
µ + q⊥,1n

µ
⊥,1, (180)

where q⊥,1 =
√
t1, nµ⊥,1 is a randomly generated unit vector, n2

⊥,1 = −1, in a plane transverse to p and
p̄ and β1 = t1/((1− ξ1)2pp̄).

Once the photon is generated, the next step is repeated with s replaced by t1. This means that we
again generate a random number 0 < r < 1 and solve the equation

r = ∆(t1, t2) (181)

for t2. If we find that t2 < m2
e, we declare that no further photon emission happened and we exit the

generation process. If, on the other hand, t2 > m2
e, we generate abother random variable y2, determine

ξ2 from an analog of Eq. (179) and compute the momentum of the second emitted photon as

qµ2 = (1− ξ2)ξ1p
µ + β2p̄

µ + q⊥,2n
µ
⊥,2, (182)
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where q⊥,2 =
√
t2 etc. This process continues unless at some stage the no-emission event is generated.

If this happens, we exit the generation process. At this point we have a list of photon momenta that
describes an event – with fully specified final state – for the process e + X → Y + photons in the
collinear approximation for the emitted photons.

The generalization to QCD is, in principle, straightforward since the above discussion is built
around the analysis of the DGLAP evolution equation for the structure functions. One can repeat all the
steps almost verbatim and arrive at a similar conclusion. One aspect that, in principle, one should also
consider in QED, is a possibility to split into different types of partons. Indeed, in QCD all different
types of branchings a → b + c have to be taken into account. As the result, there are different Sudakov
form factor for different partons and a sum over all types of possible branchings appears in the exponent.
The other aspect that we have been systematically neglecting in our QED discussion is the running of the
coupling constant that definitely has to be accounted for in QCD. The Sudakov form factor of a parton a
reads

∆a(s, s0) = exp




s∫

s0

dt

t

αs(t)

2π

1−δ∫

0

dξ
∑

b

Pa→b(ξ)


. (183)

We generate events in exactly the same way as discussed above except that at every step we need to
decide which branching actually happens. This is done based on the relative probabilities for individual
branchings

wa→b =

1−δ∫
0

dξPa→b(ξ)

1−δ∫
0

dξ
∑
b

Pa→b(ξ)

. (184)

7.3 Soft emissions and parton showers
We have discussed how to generate events that describe emissions of collinear partons from initial state
particles. Note that since we generate collinear emissions and since collinear emissions from different
particles do not interfere, it becomes straightforward to generalize our discussion to an arbitrary number
of incoming and outgoing particles. However, we have also seen in the computation of NLO QCD
corrections that infra-red divergences – and related logarithmically-enhanced contributions – can have
either collinear or soft origin. The construction of a parton shower that we described addresses collinear
singularities and large collinear logarithms. However, if soft contributions are to play an important role,
how can they be accommodated into this framework?

The important difference between soft and collinear emissions is that soft gluons emitted by differ-
ent color charges necessarily interfere so that emission of soft gluons does not occur locally in the phase
space – it requires a snapshot of the whole system. This is very different from independent collinear
emissions and it is unclear a priori if the parton shower framework can accommodate soft emissions.

It turns out that it is actually possible to describe soft emissions with parton showers. In fact,
there are at least two ways to do that; I will explain below the classic one [7] based on the concept of
the so-called angular ordering.6 To understand what this is, consider a soft photon emission from an
electron-positron pair that is produced in the splitting of a virtual photon γ∗ → e+e−. We know that the
full matrix element squared is given by the eikonal factor and the elastic matrix element squared, and
that the differential cross section can be described by the following formula

dσ = dσ0
α

2π

dω

ω

dΩ

(2π)

2p1p2 ω
2

(p1k)(p2k)
. (185)

6 Another popular option is to employ a suitable color basis and the fact that certain color-order ampltudes do not interfere
in the limit where number of colors is considered to be a large parameter, see Ref. [28].
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It is convenient to denote the scalar products of four-vectors as pipj = EiEj(1− cos θij) = EiEjξij , so
that the eikonal factor that appears in the formula for the cross section reads

2p1p2 ω
2

(p1k)(p2k)
=

2ξ12

ξ1kξ2k
= 2W (1, 2; k). (186)

We now re-write the radiator function W (1, 2; k) in the following way

W (1, 2; k) =
ξ12

ξ1kξ2k
=

1

2

(
ξ12

ξ1kξ2k
− 1

ξ2k
+

1

ξ1k

)
+ (1⇔ 2) = W1(1, 2; k) +W2(1, 2; k). (187)

We would like to interpret the function W1(1, 2; k) as the photon emission off the electron with mo-
mentum p1 and the function W2(1, 2; k) as the photon emission off the positron with momentum p2.
To understand why this interpretation is meaningful, it is useful to study the collinear limits of the
two radiator functions. Consider W1(1, 2; k) as an example. If the photon is emitted along the di-
rection of the electron, ξ1,k → 0, ξ2k → ξ1,2 and W1(1, 2, k) ≈ 1/ξ1,k � W2(1, 2; k). On the
contrary, if the photon is emitted along the direction of the positron, ξ2,k → 0, ξ1k → ξ12 and
W2(1, 2; k) ≈ 1/ξ2,k �W1(1, 2; k).

The situation becomes particularly transparent if we integrate over the azimuthal angle of the
emitted photon defined in the following way. For the function W1(1, 2; k), we choose a reference
frame where the electron momentum is the z-axis, i.e. n1 = (0, 0, 1), the momentum of the positron
is in the x − z plane, i.e. n2 = (sin θ12, 0, cos θ12) and the photon momentum is arbitrary ~nk =
(sin θ cosφ, sin θ sinφ, cos θ). Suppose that we want to integrate the function W1(1, 2; k) over the angle
φ. The only φ-dependent scalar product in W1(1, 2; k) is ξ2,k = 1 − sin θ12 sin θ cosφ − cos θ12 cos θ.
The relevant integral reads

2π∫

0

dφ

(2π)

1

a+ b cosφ
=

1√
a2 − b2

⇒
2π∫

0

dφ

(2π)

1

ξ2k
=

1

|ξ1k − ξ12|
. (188)

Using this result to integrate the radiator function W1, we obtain

2π∫

0

dφ

(2π)
W1(1, 2; k) =

2π∫

0

dφ

(2π)

1

2ξ1k

(
ξ12 − ξ1k

ξ2k
+ 1

)
=

1

2ξ1k

(
ξ12 − ξ1k

|ξ12 − ξ1k|
+ 1

)
=
θ(ξ12 − ξ1k)

ξ1k
.

(189)

We repeat the same computation for the second radiator function W2(1, 2; k). However, in this
case we integrate over a different azimuthal angle since we align the z-axis with the positron direction
vector n2. If we do that, we find

2π∫

0

dφ

(2π)
W2(1, 2; k) =

θ(ξ12 − ξ2k)

ξ2k
. (190)

Combining the results for W1,2, we obtain a simple formula for the full radiator function

W (1, 2; k) = W1(1, 2; k) +W2(1, 2; k)⇒ θ(ξ1k − ξ12)

ξ1k
+
θ(ξ2k − ξ12)

ξ2k
. (191)

Note that this formula is obtained upon averaging the two contributing radiator functions over different
azimuthal angles.

We can now use the radiator function Eq. (191) to compute the cross section. We find

dσ = dσ0
α

2π

dω

ω

2∑

i=1

dξ1k

ξ1k
θ(ξ12 − ξik). (192)
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This formula shows remarkable features that enable probabilistic interpretation of soft photon emissions.
Indeed, since for small emission angles ξij ≈ θ2

ij/2, according to Eq. (192), electron and positron emit
soft photons independently of each other provided that the emission angle is smaller than the opening
angle of the pair, θ1k < θ12, θ2k < θ12. If emission at a larger angle happens, the interference of
emissions by the electron and the positron effectively shuts off the radiation completely.

What makes this result interesting for the construction of a parton shower is that it appears to
be possible to describe soft emissions by making educated choices of evolution variables. Indeed, we
have so far discussed the parton shower evolution as being driven by the logarithmic integration over
the transverse momentum of the emitted particle. However, since k⊥ ∼ ωθ, one can trade logarithmic
integration over the transverse momentum for the integration over emission angle

dk⊥
k⊥

=
dθ

θ
=

1

2

dξ

ξ
(193)

The natural ordering of the emission angles, i.e. larger emission angles closer to a hard process followed
by smaller emission angles at the end of the cascade, allows to resum both soft and collinear logarithms
in an event.

Although the above discussion is sufficiently general to be used in QCD parton showers, there is
one aspect of it that is too QED-specific and, for this reason, warrants a clarification. Indeed, in QED, the
variety of charge-changing processes is very limited since in a splitting a → b + c, one of the particles
is always neutral. This is clearly not the case in QCD, where a color-charged gluon can split into a
quark-anti-quark pair. Since working with QCD amplitudes and introducing convenient notations for
color charges will take us astray, it is more useful to introduce a toy model that, on one hand, will be easy
to work with and, on the other hand, will not suffer from the limitation of QED described above. To this
end, we consider a soft photon emission amplitude off a final state with three charged particles

M∼
3∑

i=1

Qi
piε

pik
M0. (194)

Gauge-invariance dictates that
3∑
i=1

Qi = 0, but does not impose constraints on individual charges. Upon

squaring the amplitude and summing over photon polarizations, we find

|M|2 ∼ −
∑

ij

QiQj
pipj

(pik)(pjk)
|M0|2. (195)

Expressing this result in terms of the radiator function, we obtain

W = −Q1Q2W12 −Q1Q3W13 −Q2Q3W23. (196)

We then re-write charge products through charge squares, e.g. −Q1Q2 = (Q2
1 + Q2

2 − Q2
3)/2 using

Q1 +Q2 +Q3 = 0 and derive

W =
1

2

[
Q2

1 (W12 +W13 −W23) +Q2
2 (W12 +W23 −W13) +Q2

3 (W13 +W23 −W12)
]
. (197)

We would like to re-write this expression in a way that will make an interpretation in terms of
successive independent emissions possible. To this end, we split each radiator function into a sum of
relevant terms and average each such term over respective azimuthal angles. We also consider a kinematic
configuration where the opening angle between p1 and p2 is much smaller than the opening angle between
p12 and p3, c.f. Fig. 9.
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Parton showers
The final formula that we can write down is, therefore and it is susceptible to the 
description using the relative angle as ordered variable for events generation. Even 
if opening angles are not chosen to be primary variables, one can check at every 
step that the energy ordering is respected. Again, the fact that simple ordering 
allows us to account for the interferences makes this construction  very important 
for practical parton showers. 

123

1

2

3

Friday, December 22, 17

Fig. 9: Soft emissions after azimuthal ordering, see Eq. (202).

To see how the hierarchy of angles can be exploited, consider the term in Eq. (197) that is propor-
tional to Q2

1 and write

W12 +W13 −W23 →W
[1]
12 +W

[2]
12 +W

[1]
13 +W

[3]
13 −W

[2]
23 −W

[3]
23

= 2W
[1]
12 +

{
(W

[1]
13 −W

[1]
12 ) + (W

[1]
12 −W

[2]
23 )
}

+
{
W

[3]
13 −W

[3]
23

}
.

(198)

We now study the different terms separately. We find

(W
[1]
13 −W

[1]
12 ) + (W

[1]
12 −W

[2]
23 ) =

(θ(ξ13 − ξ1k)− θ(ξ12 − ξ1k))

ξ1k
− (θ(ξ23 − ξ2k)− θ(ξ12 − ξ2k))

ξ2k

⇒
∫

dΩk

[
(W

[1]
13 −W

[1]
12 ) + (W

[1]
12 −W

[2]
23 )
]

= ln
θ13

θ23
∼ 1,

(199)

for θ12 � θ13. This result implies that the combination of radiator functions displayed in Eq. (199) does
not lead to large logarithmic corrections and, for this reason, can be neglected. A similar analysis of the
last term in Eq. (198) leads to a similar conclusion

(W
[3]
13 −W

[3]
23 ) =

θ(ξ13 − ξ3k)

ξ3k
− θ(ξ23 − ξ3k)

ξ3k
⇒
∫

dΩk(W
[3]
13 −W

[3]
23 ) = ln

θ13

θ23
∼ 1. (200)

Hence, for the kinematic case that we are interested in, the following replacement is valid with the
logarithmic accuracy

W12 +W13 −W23 → 2W12. (201)

Similar arguments allow us to simplify the radiator function in Eq. (197) and write it as

W ≈ Q2
1W

[1]
12 +Q2

2W
[2]
12 + (Q1 +Q2)2W

[12]
12,3 +Q2

3W
[3]
12,3. (202)

Here W [12]
12,3 describes emission off the “parent parton” of the two partons 1 and 2. It reads W [12]

12,3 =
θ(ξ12,3 − ξ12,k)θ(ξ12,k − ξ12)/ξ12,k.

The interpretation of Eq. (202) is straightforward. It shows that soft radiation can be described
by independent emissions off four particles that appear in the amplitude – partons 1, 2 and 3 and the
“parent” of the two partons 1 and 2. The radiation off each of these particles is proportional to its charge
squared. The radiation is restricted by the opening angles of the corresponding “dipoles”. For example,
the “parent” of 1 and 2 radiates to an opening angle between ~n1 ∼ ~n2 an ~n3 but 1 and 2 radiate into
an opening angle between themselves. It should be clear from previous discussions that this structure
easily lends itself to a parton shower description provided that opening angles are chosen as independent
evolution variables.
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7.4 Parton showers connect perturbative and non-perturbative descriptions of hadron collisions
We have seen that parton showers can be used to generate unweighted events and, within certain approx-
imations, produce final states with arbitrary number of quarks and gluons starting from a few energetic
particles in the event. These initial hard particles provide seeds of energy flows that a hardly affected by
non-perturbative effects. These energy flows provide foundations for hadron jets, a trademark of high-
energy collisions. Collinear and soft radiation described by parton showers builds up these jets and fills
them with large number of partons. When relative transverse momenta of gluons and quarks generated
by parton showers become small, QCD turns into a non-perturbative theory and generation of further
emissions of quarks and gluons becomes meaningless. At this point, one employs phenomenological
models that describe a parton-to-hadron transition, i.e. they allow us to transform an ensemble of quarks
and gluons into a hadronic final state. Although the description of such a transition is empirical (see
e.g. Refs. [7, 26]), it is very important since hadrons, not partons, hit particle detectors. Therefore, prop-
erties of hard events that we strive to understand are deduced from particle composition, multiplicities
and energy depositions of hadrons observed in particle detectors. Our ability to connect these measure-
ments with properties of the hard scattering relies on parton shower Monte Carlo and the description of
parton-to-hadron transition.

It is important to stress that the interplay between fixed orders and parton showers drives the
development of both tools. In particular, spectacular progress in our ability to perform sophisticated
fixed order computations lead to a possibility to describe better the kinematics of hard jets, as produced in
short-distance collisions, leaving the parton shower with a task that it does best – filling these jets with the
soft and collinear radiation. The ideas of merging and matching [27] emphasize the need to combine fixed
orders with parton showers; they also put additional pressure on parton shower algorithms to become
more refined theoretical tools with higher (and well-defined) parametric accuracy. The progress in this
field will be crucial for extracting maximal physics information from the LHC and making precision
physics at the LHC a viable opportunity.

8 Conclusions
The goal of these lectures was to describe how the theory of strong interactions – Quantum Chromody-
namics – is applied to describe hard collisions at the LHC. QCD is crucial for the success of the LHC
physics program since two strongly interacting particles – protons – are collided there. In spite of this
fact, if we look at the right observables, LHC physics is mainly determined by interactions of quarks
and gluons rather than hadrons and these interactions can be understood directly from the Standard
Model Lagrangian. Recent theoretical developments that include advances in fixed order computations,
resummations, parton shower algorithms and determination of parton distribution functions allowed us
to describe hard scattering data at the LHC with very high precision. We hope that this high precision
predictions for many LHC observabels will, one day, be used to find something unexpected and will, in
this way, completement direct searches for physics beyond the Standard Model at the LHC [29].
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Abstract
We discuss the status of the Standard Model (SM): the principles; the La-
grangian; the problems; open questions and the ways beyond. Then we con-
sider possible physics beyond the SM: New symmetries (Gauge, SUSY); New
particles (gauge, axion, superpartners); New dimensions (extra, large, com-
pact, etc) or a New Paradigm (strings, branes, gravity). In conclusion, we
formulate the first priority tasks for the future HEP program.

Keywords
Lectures; physics beyond the Standard Model; supersymmetry; extra dimen-
sions; grand unification; Axions, String theory

1 Introduction: The Standard Model
Physics of elementary particles today is perfectly described by the Standard Model of fundamental inter-
actions which accumulates all achievements of the recent years. It is usually said that with the discovery
of the Higgs boson the Standard Model is completed. Nevertheless, it still contains many puzzles and
possibly requires some modification in future. The search for new physics beyond the Standard Model
is inevitably based on comparison of experimental data with predictions of the Standard Model since the
particles observed in the final states are the well-known stable ones and new physics as a rule manifests
itself in the form of excess above the SM background.

It is instructive to remind the main principles in the foundation of the Standard Model and possible
ways to go beyond it. They are:

– Three groups of gauged symmetries SU(3)× SU(2)× U(1)

– Three families of quarks and leptons in representations (3× 2, 3× 1, 1× 2, 1× 1)

– Brout-Englert-Higgs mechanism of spontaneous EW symmetry breaking accompanied by the
Higgs boson

– Mixing of flavours with the help of the Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-
Maki-Nakagava-Sakato (PMNS) matrices

– CP violation via the phase factors in the flavour mixing matrices
– Confinement of quarks and gluons inside hadrons
– Baryon and lepton number conservation
– CPT invariance which leads to the existence of antimatter

The principles of the Standard Model allow its small modifications with respect to the minimal
scheme. Thus, for instance, it is possible to add new families of matter particles, additional Higgs
bosons, the presence or absence of right-handed neutrino, Dirac or Majorana nature of neutrino is fully
acceptable.

The formalism of the Standard Model is based on local quantum field theory. The SM is described
by Lagrangian which is built in accordance with the Lorentz invariance and invariance under three gauged
groups of symmetry and also obeys the principle of renormalizability, which means that it contains only
the operators of dimension 2, 3 and 4 [1].

L = Lgauge + LY ukawa + LHiggs, (1)
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Lgauge = −1

4
GaµνG

a
µν −

1

4
AiµνA

i
µν −

1

4
BµνBµν

+iLαγ
µDµLα + iQαγ

µDµQα + ilαγ
µDµlα

+iUαγ
µDµUα + iDαγ

µDµDα + (DµH)†(DµH)

+iN̄αγ
µ∂µNα ← possible rigth-handed neutrino

LY ukawa = ylαβLαlβH + ydαβQαDβH + yuαβQαUβH̃ + h.c.,

+yNαβL̄αNβH̃ ← possible rigth-handed neutrino

where H̃ = iτ2H
†.

LHiggs = −V = m2H†H − λ

2
(H†H)2.

Here y are the Yukawa and λ is the Higgs coupling constants, respectively, both dimensionless and m is
the only dimensional mass parameter.

The symmetries of the SM allow one to fix all the interactions of quarks and leptons which are
performed by the exchange of the force carriers, namely, by gluons, W and Z bosons, photons and
the Higgs boson in the case of strong, weak, electromagnetic and Yukawa interactions, respectively.
The only freedom is the choice of parameters: 3 gauge couplings gi, 3 (or 4) Yukawa matrices ykαβ ,
the Higgs coupling λ, and the mass parameter m. All of them are not predicted by the SM but are
measured experimentally. The existence of the right-handed neutrino leads to two additional terms in
the Lagrangian, the kinetic one and the interaction with the Higgs boson. If the neutrino is a Majorana
particle, then one should also add the Majorana mass term.

The Standard model has some drawbacks which, however, are manifested at very high energies
where it can possibly be replaced by a new theory. Below, we list some of them.

1) The running couplings of the SM tend to infinity at finite energies (the Landau pole [2]). This
is true for the U(1) and the Higgs couplings (see Fig.1, left). Thus, the running of the U(1) coupling in
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Fig. 1: The dependence of the abelian gauge and the Higgs couplings on momenta transfer (left). The behaviour
of the coupling in the vicinity of the Landau pole (right).

the leading order is described by the formula

α1(Q2) =
α10

1− 41
10
α10
4π log(Q2/M2

Z)
(2)

and goes to infinity atQ∗ = MZexp(
20π

41α10
) ∼ 1041 GeV (see Fig.1 right). The Landau pole has a wrong

sign residue that indicates the presence of unphysical ghost fields - intrinsic problem and inconsistency
of a theory, which leads to the violation of causality. And though it takes place at energies much higher
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than the Planck mass where, as we assume, quantum gravity might change everything, formally a theory
with the Landau pole is not self consistent.

2) Radiative corrections lead to the violation of stability of the electroweak vacuum. The whole
construction of the SM may be in trouble being metastable or even unstable. This is also related to the
behaviour of the Higgs coupling which crosses zero and then becomes negative at the energies close to
1011 GeV (see Fig 2. [3]) However, the situation strongly depends on the accuracy of the measurement
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p
5/3g0, g2 = g, g3 = gs, of the

top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt and ↵s by ±3�.

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4
t g

2
s + 30y6

t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0 GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓
Mt [GeV]� 173.1

0.7

◆
� 0.5

✓
↵s(MZ)� 0.1184

0.0007

◆
± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4 ± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126 GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5 GeV, whose main contributions

can be decomposed as follows:

+ 0.6 GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2 GeV due to the Yukawa threshold corrections to �;

� 0.2 GeV from RG equation at 3 loops (from [12,13]);

� 0.1 GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).

17

Fig. 2: Dependence of the Higgs coupling on energy scale for various values of the top quark mass in the region
where it crosses zero and becomes negative (left) and the regions of stability of the Higgs potential as functions of
the top quark and the Higgs boson masses (right).

of the top quark and the Higgs boson masses and on the order of perturbation theory. The tendency when
accounting for higher orders is that with increasing accuracy the instability point moves toward higher
energies and possibly might reach the Planck scale (see Fig. 3 [4]). The situation may change if there are

Fig. 3: The same as Fig.2 (right) but with bigger resolution. The left panel corresponds to the NLO corrections
while the right panel to the NNLO ones. One can see that the allowed spot moves towards the stability border line

new heavy particles beyond the SM.

3) New physics at the high energy scale might destroy the electroweak scale of the Standard Model
due to radiative corrections. This is because contrary to quarks, leptons and intermediate weak bosons the
mass of the Higgs boson is not protected by any symmetry. For this reason the radiative correction to the
mass of the Higgs boson due to the interaction with hypothetical heavy particles, which are proportional
to their mass squared, destroy the electroweak scale. The example of such interaction in the Grand
Unified theories is shown in Fig.4. The existing mass hierarchy MW /MGUT ∼ 10−14 might be broken.
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This is called the hierarchy problem.

l ight

heavy

2 2 2

−1 1 6

~ ~ ~

10 10 102

2

Fig. 4: The one loop diagram which gives the contribution to the renormalization of the Higgs boson mass due to
the interaction with hypothetical heavy particles

Notice that this is not a problem of the SM itself (the quadratic divergences are absorbed into the
redefinition of the bare mass which is unobservable), but leads to a quadratic dependence of low energy
physics on unknown high energy one that is not acceptable. The way out of this situation might be a new
physics at intermediate energies.

The Standard Model puts some questions, the answers to which might lie beyond it. They are:

– why is the symmetry group SU(3)× SU(2)× U(1)?
– why are there 3 generations of matter particles?
– why does the SM obey the quark-lepton symmetry?
– why does the weak interaction have a V −A structure?
– why is the SM left-right asymmetric?
– why are the baryon and lepton numbers conserved?
– etc.

It is not clear also how some mechanisms inside the SM work. In particular, it is not clear

– how confinement actually works
– how the quark-hadron phase transition happens
– how neutrinos get a mass
– how CP violation occurs in the Universe
– how to protect the SM from would be heavy scale physics

There are other questions to the Standard Model:

– Is it self consistent quantum field theory?
– Does it describe all experimental data?
– Are there any indications for physics beyond the SM?
– Is there another scale except for the EW and the Planck ones?
– Is it compatible with Cosmology? (Where is Dark Matter?)

2 Possible Physics Beyond the Standard Model
Let us look at the high energy physics panorama from the point of view of the energy scale (see Fig.5).
Besides the electroweak scale ∼ 102 GeV and the Planck scale ∼ 1019 GeV there is a scale of quantum
chromodynamics Λ ∼ 200 MeV, the whole spectra of quark, lepton, intermediate vector boson and the
Higgs boson masses, all related to the electroweak scale. Presumably, there is also a string scale ∼ 1018

GeV, the Grand unification scale∼ 1016 GeV, the Majorana mass scale∼ 1012 GeV, the vacuum stability
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Fig. 5: The high energy physics panorama from the point of view of the energy scale

scale ∼ 1011 GeV and finally somewhere in the interval from 103 to 1019 GeV there is a supersymmetry
scale.

So far there are no indications that all these scales and new physics related to them exist and high
energy physics today stays in a kind of fog masking the horizon of knowledge. But sooner or later the
fog will clear away and we will see the ways of future science. At the moment we live in the era of data
when theory suggests various ways of development and only experiment can show the right road.

The way out beyond the Standard Model is performed along the following directions:

1. Extension of the symmetry group of the SM : supersymmetry, Grand Unified Theories, new
U(1) factors, etc. This way one may solve the problem of the Landau pole, the problem of stability, the
hierarchy problem, and also the Dark Matter problem.

2. Addition of new particles: extra generations of matter, extra gauge bosons, extra Higgs bosons,
extra neutrinos, etc. This way one may solve the problem of stability and the Dark Matter problem.

3. Introduction of extra dimensions of space: compact or flat extra dimensions. This opportunity
opens a whole new world of possibilities, one may solve the problem of stability and the hierarchy
problem, get a new insight into gravity.

4. Transition to a new paradigm beyond the local QFT: string theory, brane world, etc. The main
hope here is the unification of gravity with other interactions and the construction of quantum gravity.

Note the paradox in modern high energy physics. If usually a new theory emerges as a reply to
experimental data which are not explained in an old theory, in our case we try to construct a new theory
and persistently look for experimental data which go beyond the Standard Model but cannot find them
so far. The existing small deviations from the SM at the level of a few sigma such as in the forward-
backward asymmetries in electron-positron scattering or in the anomalous magnetic moment of muon
are possibly due to uncertainty of the experiment or data processing. The neutrino oscillations indicating
that neutrinos have a mass will probably require a slight modification of the SM: however, there might
also be described inside it. Dark Matter, almost the only indication of incompleteness of the SM, yet
might be related to heavy Majorana neutrinos and require nothing else.

Nevertheless, there is a vast field of theoretical models of physics beyond the Standard Model. The
question is which of these models is correct and adequate to Nature. Note that the prevailing paradigm
in most of the attempts to go beyond the SM is the idea of unification. It dates back to the unifica-
tion of electricity and magnetism in Maxwell theory, unification of electromagnetic and weak forces in
electroweak theory, merging of three forces in Grand unified theory, attempts to unify with gravity and
creation of the theory of everything on the basis of a string theory. This scenario, though it did not find
any experimental verification, still seems possible and has no reasonable alternative.
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3 New Symmetries
Extension of the symmetry group of the SM can be performed along two directions: extension of the
Lorentz group and extension of the internal symmetry group. In the first case, we are talking about
supersymmetric extension.

3.1 Supersymmetry
Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity
within a singe framework [5–9]. Supersymmetry emerged from attempts to generalize the Poincaré
algebra to mix representations with different spin [5]. It happened to be a problematic task due to “no-
go” theorems preventing such generalizations [10]. The way out was found by introducing the so-called
graded Lie algebras, i. e. adding anti-commutators to usual commutators of the Lorentz algebra. Such a
generalization, described below, appeared to be the only possible one within the relativistic field theory.

If Q is a generator of the SUSY algebra, then acting on a boson state it produces a fermion one
and vice versa

Q̄ |boson〉 = |fermion〉, Q |fermion〉 = |boson〉.
Combined with the usual Poincaré and internal symmetry algebra the Super-Poincaré Lie algebra con-
tains additional SUSY generators Qiα and Q̄iα̇ [7]

[Pµ, Pν ] = 0,

[Pµ,Mρσ] = i (gµρPσ − gµσPρ),
[Mµν ,Mρσ] = i (gνρMµσ − gνσMµρ − gµρMνσ + gµσMνρ),

[Br, Bs] = i CtrsBt, [Br, Pµ] = [Br,Mµσ] = 0,

[Qiα, Pµ] = [Q̄iα̇, Pµ] = 0,

[Qiα,Mµν ] =
1

2
(σµν)βαQ

i
β, [Q̄iα̇,Mµν ] = −1

2
Q̄i
β̇
(σ̄µν)β̇α̇,

{Qiα, Q̄jβ̇} = 2 δij(σµ)αβ̇Pµ,

[Qiα, Br] = (br)
i
jQ

j
α, Q̄

i
α̇, Br] = −Q̄jα̇(br)

i
j ,

{Qiα, Qjβ} = 2 εαβZ
ij , Zij = arijbr, Zij = Z+

ij ,

(3)

{Q̄iα̇, Q̄jβ̇} = −2 εα̇β̇Z
ij , [Zij , anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.
(4)

Here Pµ and Mµν are the four-momentum and angular momentum operators, respectively, Br are the
internal symmetry generators, Qi and Q̄i are the spinorial SUSY generators and Zij are the so-called
central charges; α, α̇, β, β̇ are the spinorial indices. In the simplest case, one has one spinor generator
Qα (and the conjugated one Q̄α̇) that corresponds to the ordinary or N = 1 supersymmetry. When
N > 1 one has the extended supersymmetry.

Motivation for supersymmetry in particle physics is based on the following remarkable features of
SUSY theories:

Unification with gravity The representations of the Super-Poincaré algebra contain particles with
different spin contrary to the Poincaré algebra where spin is a conserved quantity. This opens the way to
unification of all other forces with gravity since the carriers of the gauge interactions have spin 1 and of
gravity - spin2, and in the case of supersymmetry, they might be in the same multiplet. Starting with the
graviton state of spin 2 and acting by the SUSY generators, we get the following chain of states:

spin 2 → spin
3

2
→ spin 1 → spin

1

2
→ spin 0.
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Thus, the partial unification of matter (the fermions) with forces (the bosons) naturally arises from an
attempt to unify gravity with other interactions.

Taking infinitesimal transformations δε = εαQα, δ̄ε̄ = Q̄α̇ε̄
α̇, and using Eqn. (4), one gets

{δε, δ̄ε̄} = 2 (εσµε̄)Pµ, (5)

where ε, ε̄ are the transformation parameters. Choosing ε to be local, i. e. the function of the space-time
point ε = ε(x), one finds from Eqn. (5) that the anticommutator of two SUSY transformations is a local
coordinate translation, and the theory, which is invariant under the local coordinate transformation is the
General Relativity. Thus, making SUSY local, one naturally obtains the General Relativity, or the theory
of gravity, or supergravity [6].

Unification of gauge couplings To see how the couplings change with energy, one has to consider
the renormalization group equations. They are well known in the leading orders of perturbation theory
in any given model. Besides, one has to know the initial conditions at low energy which are measured
experimentally. After the precise measurement of the SU(3) × SU(2) × U(1) coupling constants at
LEP, it became possible to check the unification numerically. Using these numbers as input and running
the RG equations one can check the unification hypothesis. Taking first just the SM, one can see that
the couplings do not unify with an offset of 8 sigma. On the contrary, if one switches to supersymmetric
generalization of the SM at some energy threshold, unification is perfectly possible with the SUSY
scale around 1 TeV that gives additional indication at the low energy supersymmetry. The result is
demonstrated in Fig. 6 [11] showing the evolution of the inverse of the couplings as a function of the
logarithm of energy. In this presentation, the evolution becomes a straight line in the first order. The
second order corrections are small and do not cause any visible deviation from the straight line.
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Fig. 6: The evolution of the inverse of the three coupling constants in the Standard Model (left) and in the super-
symmetric extension of the SM (MSSM) (right).

Protection of the hierarchy Supersymmetry provides natural preservation of the hierarchy and pro-
tection of the low energy scale against radiative corrections. Moreover, SUSY automatically cancels the
quadratic corrections in all orders of perturbation theory. This is due to the contributions of superpartners
of ordinary particles. The contribution from boson loops cancels those from the fermion ones because of
an additional factor (−1) coming from the Fermi statistics, as shown in Fig. 7.

One can see here two types of contribution. The first line is the contribution of the heavy Higgs
boson and its superpartner (higgsino). The strength of the interaction is given by the Yukawa coupling
constant λ. The second line represents the gauge interaction proportional to the gauge coupling constant
g with the contribution from the heavy gauge boson and its heavy superpartner (gaugino).
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Fig. 7: Cancellation of the quadratic terms (divergencies).

Explanation of the EW symmetry breaking To break the Electroweak symmetry, we use the Brout-
Englert-Higgs mechanism of spontaneous symmetry breaking. However, the form of the scalar field
potential is taken ad hoc. On the contrary SUSY models provide such an explanation. One originally
starts with unbroken potential shown in Fig.8 (left) and then arrives at the famous Mexican hat potential
Fig.8 (right) as a result of radiative corrections [12]. Thus, supersymmetry provides the mechanism of
radiative EW symmetry breaking in a natural way.

ν ν

φ
φ

Fig. 8: EW symmetry breaking

Provides the DM particle Supersymmetry provides an excellent candidate for the cold dark matter,
namely, the neutralino, the lightest superparticle which is the lightest combination of superparnters of
the photon, Z-boson and two neutral Higgses.

|χ̃0
1〉 = N1|B0〉+N2|W 3

0 〉+N3|H1〉+N4|H2〉.

It is neutral, heavy, stable and takes part in weak interactions, precisely what is needed for a WIMP.
Besides, one can easily get the right amount of DM with the electroweak annihilation cross-section.

A natural question arises: what is the content of SUSY theory, what kind of states is possible? To
answer this question, consider massless states. Let us start with the ground state labeled by the energy
and the helicity, the projection of the spin on the direction of momenta, and let it be annihilated byQi [7]

Vacuum = |E, λ〉, Qi|E, λ〉 = 0.

Then one- and many-particle states can be constructed with the help of creation operators as

State Expression # of states

vacuum |E, λ〉 1
1-particle Q̄i|E, λ〉 = |E, λ+ 1

2〉i N

2-particle Q̄iQ̄j |E, λ = |E, λ+ 1〉ij N(N−1)
2

. . . . . . . . .

N -particle Q̄1 . . . Q̄N |E, λ〉 = |E, λ+ N
2 〉 1
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The total # of states is:
N∑

k=0

(
N
k

)
= 2N = 2N−1 bosons + 2N−1 fermions. The energy E is not

changed, since according to (4) the operators Q̄i commute with the Hamiltonian.

Thus, one has a sequence of bosonic and fermionic states and the total number of the bosons equals
that of the fermions. This is a generic property of any supersymmetric theory. However, in CPT invariant
theories the number of states is doubled since CPT transformation changes the sign of helicity. Hence,
in the CPT invariant theories, one has to add the states with the opposite helicity to the above mentioned
ones.

Let us consider some examples. We take N = 1 and λ = 0. Then one has the following set of
states:

N = 1 λ = 0
helicity 0 1

2 helicity 0 − 1
2

CPT
=⇒

# of states 1 1 # of states 1 1

Hence, the complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor with two helicity states.

This is an example of the so-called self-conjugated multiplet. There are also self-conjugated multi-
plets withN > 1 corresponding to the extended supersymmetry. Two particular examples are theN = 4
super Yang-Mills multiplet and the N = 8 supergravity multiplet

N = 4 SUSY YM λ = −1

helicity −1 −1/2 0 1/2 1
# of states 1 4 6 4 1

N = 8 SUGRA λ = −2

−2 −3/2 −1 −1/2 0 1/2 1 3/2 2
1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very rich and contain a vast number of
particles.

In what follows, we shall consider simple supersymmetry, or the N = 1 supersymmetry, contrary
to extended supersymmetries withN > 1. In this case, one has the following types of the supermultiplets
with lower spins:

- chiral supermultiplet (φ, ψ) containing the scalar state φ and the chiral fermion ψ;

- vector supermultiplet (λ,Aµ) containing the Majorana spinor λ and the vector field Aµ;

- gravity supermultiplet (g̃, g) containing graviton g of spin 2 and gravitino g̃ of spin 3/2.

Each of multiplets contains two physical states, one boson and one fermion. From these multiplets
one constructs all supersymmetric models with N=1 supersymmetry.

To construct a supersymmetric generalization of the SM [13], one has to put all the particles into
these multiplets. For instance, the quarks should go into the chiral multiplet and the photon into the
vector multiplet. The members of the same multiplet have the same quantum numbers and differ only by
spin. Since in the SM there are no particles of different spin having the same quantum numbers, one has
to add the corresponding partner for all particles of the SM, thus doubling the number of particles (see
fig. 9 [14]) The particle content of the MSSM then appears as shown in Table 3.1. Hereafter, the tilde
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Fig. 9: The minimal supersymmetric generalization of the standard Model

Superfield Bosons Fermions SU(3)SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0
Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0
V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0
Matter
Li

Ei
sleptons

{
L̃i = (ν̃, ẽ)L
Ẽi = ẽR

leptons
{
Li = (ν, e)L
Ei = ecR

1
1

2
1

−1
2

Qi

Ui

Di

squarks





Q̃i = (ũ, d̃)L
Ũi = ũR
D̃i = d̃R

quarks





Qi = (u, d)L
Ui = ucR
Di = dcR

3
3∗

3∗

2
1
1

1/3
−4/3

2/3

Higgs
H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

S Singlet s singlino s 1 1 0

Table 1: Particle content of the MSSM and the NMSSM (the last line)

denotes the superpartner of the ordinary particle. In the last line an extra singlet field is added which
corresponds to the so-called Next-to-Minimal model (NMSSM) [15].

The presence of the extra Higgs doublet in the SUSY model is a novel feature of the theory. In
the MSSM one has two doublets with the quantum numbers (1,2,-1) and (1,2,1). Thus, in the MSSM,
as actually in any two Higgs doublet model, one has five physical Higgs bosons: two CP -even neutral
Higgs, one CP -odd neutral Higgs and two charged ones.

The interactions of the superpartners are essentially the same as in the SM, but two of three par-
ticles involved into the interaction at any vertex are replaced by the superpartners. Typical vertices are
shown in Fig. 10. The tilde above the letter denotes the corresponding superpartner. Note that the cou-
pling in all the vertices involving the superpartners is the same as in the SM as dictated by supersymmtry.

The above-mentioned rule together with the Feynman rules for the SM enables one to draw dia-
grams describing creation of the superpartners. One of the most promising processes is the e+e− anni-
hilation (see Fig. 11). The usual kinematic restriction is given by the c.m. energy mmax

sparticle ≤
√
s/2.
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+

Fig. 10: The gauge-matter interaction, the gauge self-interaction and the Yukawa interaction.

Fig. 11: Creation of the superpartners at electron-positron colliders.

At the hadron colliders the signatures are similar to those at the e+e− machines; however, here one has
wider possibilities. Besides the usual annihilation channel, one has numerous processes of gluon fusion,
quark-antiquark and quark-gluon scattering (see Fig. 12) [16]. The creation of superpartners can be
accompanied by the creation of ordinary particles as well. They crucially depend on the SUSY breaking
pattern and on the mass spectrum of the superpartners.

The decay properties of the superpartners also depend on their masses. For the quark and lepton
superpartners the main processes are shown in Fig. 13. One can notice that the line of superpatners shown
in blue is never broken. At the final state one always has a lighter superpartner. This is a consequence of
additional new symmetry.
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Fig. 12: Examples of diagrams for the SUSY particle production via the strong interactions (top rows for g̃g̃, q̃q̃
and g̃q̃, respectively) and the electroweak interactions (the lowest row).

squarks q̃L,R → q + χ̃0
i

q̃L → q′ + χ̃±i
q̃L,R → q + g̃

sleptons l̃→ l + χ̃0
i

l̃L → νl + χ̃±i

chargino χ̃±i → e+ νe + χ̃0
i

χ±i → q + q̄′ + χ̃0
i

gluino g̃ → q = q̄ + γ̃
g̃ → g + γ̃

neutralino χ̃0
i → χ̃0

1 + l+ + l− final states l+l− + /ET
χ̃0
i → χ̃0

1 + q + q̄′ 2jets + /ET
χ̃0
i → χ̃±1 + l± + νl γ + /ET
χ̃0
i → χ̃0

1 + νl + ν̄l /ET

Fig. 13: Decay of superpartners
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The interactions of superpartners in the MSSM obey new U(1) symmetry calledR-symmetry [17]
which is reduced to the discrete group Z2 and is called R-parity. The R-parity quantum number is

R = (−1)3(B−L)+2S (6)

for the particles with the spin S. Thus, all the ordinary particles have the R-parity quantum number
equal to R = +1, while all the superpartners have the R-parity quantum number equal to R = −1.
Conservation of the R-parity has two important consequences: the superpartners are created in pairs and
the lightest superparticle (LSP) is stable. Usually, it is the photino γ̃, the superpartner of the photon
with some admixture of the neutral higgsino. This is the candidate for the DM particle which should be
neutral and has survived since the Big Bang.

Breaking of SUSY in the MSSM Usually, it is assumed that supersymmetry is broken sponta-
neously via the v.e.v.s of some fields. However, in the case of supersymmetry, one can not use scalar
fields like the Higgs field, but rather the auxiliary fields present in any SUSY multiplet. There are two ba-
sic mechanisms of spontaneous SUSY breaking: the Fayet-Iliopoulos (orD-type) mechanism [18] based
on the D auxiliary field from the vector multiplet and the O’Raifeartaigh (or F -type) mechanism [19]
based on the F auxiliary field from the chiral multiplet. Unfortunately, one can not explicitly use these
mechanisms within the MSSM since none of the fields of the MSSM can develop the nonzero v.e.v.
without spoiling the gauge invariance. Therefore, the spontaneous SUSY breaking should take place via
some other fields.

The most common scenario for producing low-energy supersymmetry breaking is called the hid-
den sector scenario [20]. According to this scenario, there exist two sectors: the usual matter belongs to
the "visible" one, while the second, "hidden" sector, contains the fields which lead to breaking of super-
symmetry. These two sectors interact with each other by an exchange of some fields called messengers,
which mediate SUSY breaking from the hidden to the visible sector. There might be various types of the
messenger fields: gravity, gauge, etc. The hidden sector is the weakest part of the MSSM. It contains a
lot of ambiguities and leads to uncertainties of the MSSM predictions.

All mechanisms of the soft SUSY breaking are different in details but are common in the results.
To make certain predictions, one usually introduces the so-called soft supersymmetry breaking terms
that violate supersymmetry by the operators of dimension lower than four. For the MSSM without the
R-parity violation one has in general

− LBreaking = (7)

=
∑

i

m2
0i |ϕi|2 +

(
1

2

∑

α

Mαλ̃αλ̃α +BH1H2 +AUabQ̃aŨ
c
bH2 +ADabQ̃aD̃

c
bH1 +ALabL̃aẼ

c
bH1

)
,

where we have suppressed the SU(2) indices. Here ϕi are all the scalar fields, λ̃α are the gaugino fields,
Q̃, Ũ , D̃ and L̃, Ẽ are the squark and slepton fields, respectively, and H1,2 are the SU(2) doublet Higgs
fields.

Equation. (7) contains a vast number of free parameters which spoils the predictiive power of the
model. To reduce their number, we adopt the so-called universality hypothesis, i. e., we assume the
universality or equality of various soft parameters at the high energy scale, namely, we put all the spin-0
particle masses to be equal to the universal value m0, all the spin-1/2 particle (gaugino) masses to be
equal to m1/2 and all the cubic and quadratic terms proportional to A and B, to repeat the structure of
the Yukawa superpotential. This is an additional requirement motivated by the supergravity mechanism
of SUSY breaking. The universality is not a necessary requirement and one may consider nonuniversal
soft terms as well. In this case, Eqn. (7) takes the form

− LBreaking = (8)
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= m2
0

∑

i

|ϕi|2 +

(
m1/2

2

∑

α

λ̃αλ̃α +BµH1H2 +A
[
yUabQ̃aŨ

c
bH2 + yDabQ̃aD̃

c
bH1 + yLabL̃aẼ

c
bH1

]
)
.

Manifestation of SUSY Search for supersymmetry was and still is one of the main tasks in high
energy physics. In particle physics this is direct production at colliders at high energies, indirect mani-
festation at low energies in high precision observables like rare decays or g − 2 of the muon and search
for long-lived SUSY particles. In astrophysics this is a measurement of the dark matter abundance in
the Universe, search for the DM annihilation signal in cosmic rays and direct interaction of DM with the
nucleon target in underground experimrnts. So far there is no positive signal anywhere.

Under the assumption that supersymmetry exists at the TeV scale the superpartners of ordinary
particles have to be produced at the LHC. Typical processes of creation of superpartners in strong and
weak interaction are shown in Fig.14 [21]. A typical signature of supersymmetry is the presence of

Fig. 14: Creation of superpartners in weak (left) and strong (right) interactions. The expected final states are also
shown

missing energy and missing transverse momentum carried away by the lightest supersymmetric particle
χ0

1 which is neutral and stable.

So far the creation of superpartners at the LHC is not found, there are only limits on the masses of
hypothetical new particles. To present and analyze the data, two different approaches are used: the high
energy input and the low energy input. In the first case, one introduces universal high energy parameters
like m0,m1/2, A0, tanβ of the MSSM [13] and performs the analysis in this universal parameter space.
The advantage of this approach is that one has a small number of universal parameters for all particles.
The disadvantage is that this set it model dependent (MSSM, NMSSM, etc). In the second case one
uses the low energy parameters like masses of superpartners, m̃g, m̃q, m̃χ or mA, tanβ. The advantage
is that it is model independent, the disadvantage is that one has many parameters and they are process
dependent. Both the approaches are used in practice.

As one can see from Fig.15 [22], the progress achieved at the LHC run is rather remarkable. The
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boundary of possible values of masses of the scalar quarks and gluino have reached approximately 1500
and 1000 GeV, respectively. For the stop quarks it is almost two times lower. This is because the created
squark always decays into the corresponding quark and in the case of the top quark, due to its heaviness,
the phase space decreases and so does the resulting branching ratio. For the lightest neutralino the mass
boundary varies between 100 and 400 GeV depending on the values of other masses. The constraints on
the masses of charged weakly interacting particles are almost two times higher than those for the neutral
ones but depend on the decay mode. Let us stress once more that the obtained mass limits depend on
the assumed decay modes which in their turn depend on the mass spectrum of superpartners, which is
unknown. The presented constraints refer to the natural scenario.
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Fig. 15: Search for supersymmetry: the universal parameter plot (upper row) and the superpartner mass plot (lower
row)

The enormous progress reached by the LHC is slightly disappointing. The natural question arises:
Are we looking in the right direction? Or maybe we have not yet reached the needed mass interval?
The answers to these questions can be obtained at the next runs of the accelerator. For the doubled
energy the cross-sections of the particle production with the masses around 1 TeV rise almost by an
order of magnitude, and one might expect much higher statistics. Taking the gauge coupling unification
seriously, SUSY may have some chance to be seen at the LHC, and a good chance at the FCC. The mass
range reach of the high luminosity LHC and the FCC collider are shown in Fig.16.

3.2 Grand Unification
Grand Unification is an extension of the Gauge symmetry of the SM. Grand Unified Theories (GUT)
unify strong, weak and electromagnetic interactions in the framework of a single theory based on a simple
symmetry group [24]. In this case the internal symmetry group of the SM, namely, SU(3) × SU(2) ×
U(1) becomes a part of a wider groupGGUT . All known interactions are considered as different branches
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Fig. 16: Search for supersymmetry at the LHC and FCC [23]

of a unique interaction associated with a simple gauge group. The unification (or splitting) occurs at high
energy

Low energy ⇒ High energy
SUc(3)⊗ SUL(2)⊗ UY (1) ⇒ GGUT (or Gn + discrete symmetry)

gluons W,Z photon ⇒ gauge bosons
quarks leptons ⇒ fermions
g3 g2 g1 ⇒ gGUT

At first sight this is impossible due to a big difference in the values of the couplings of strong,
weak and electromagnetic interactions. The crucial point here is the running coupling constants. Ac-
cording to the renormalization group equations, all the couplings depend on the energy scale. In the SM

strong

weak

electromagnetic

GUT

S
tr

e
n
g
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e

GeV

102 1016

Fig. 17: The running coupling constants in the GUT scenario

the strong and weak couplings associated with non-abelian gauge groups decrease with energy, while
the electromagnetic one associated with the abelian group on the contrary increases. Thus, it becomes
possible that on some energy scale they become equal (see Fig.17).

According to the GUT idea, this equality is not occasional but is a manifestation of unique origin
of these three interactions. As a result of spontaneous symmetry breaking, the unifying group is broken
and unique interaction is splitted into three branches which we call strong, weak and electromagnetic
interactions.

The symmetry group of a Grand Unified Theory should be sufficiently wide to include the group
of the SM and should have appropriate complex representations to fit quarks and leptons inside them.
This means that the rank of this group (the maximal number of linearly independent generators that
commute with each other) should be equal or larger to that of the SM group, i.e. 4. Remind the
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classical groups of rank l: SUl+1, SO2l+1, SO2l, Sp2l. Thus, the minimal group of rank 4 is SU(5).
SU(5) GUT - Minimal GUT

SU(5) is a minimal group (rank 4) into which SU(3) ⊗ SU(2) ⊗ U(1) can be embedded and
which has complex representations needed for chiral fermions. This group satisfies all the requirements
mentioned above. Particle content of the SU(5) GUT is the following:

Gauge sector. Wµ = WA
µ T

A, A = 1, 2, . . . 24, TA are the generators of SU(5). It is a
24− plet which can be represented as a traceless 5× 5 matrix

Wµ =




... X1
µ Y 1

µ

Gaµ
λa

2 − 1√
15
Bµ13

... X2
µ Y 2

µ

... X3
µ Y 3

µ

· · · · · · · · · ... · · · · · ·
X∗1µ X∗2µ X∗3µ

... 1
2A

3
µ +

√
3
20Bµ W+

µ

Y ∗1µ Y ∗2µ Y ∗3µ
... W−µ −1

2A
3
µ +

√
3
20Bµ




Among 24 gauge bosons there are 8 gluonsGaµ, 3 weak bosonsW±µ andA3
µ and 1 U(1) bosonBµ. There

are also 12 new fieldsXµ and Yµ. They are usually called lepto-quarks because they mediate lepto-quark
transition leading to baryon No violation. The gauge multiplet has the following SU(3) ⊗ SU(2)
decomposition

24 = (8, 1) +(1, 3) +(3, 2) + (3, 2)
gluons W and Z leptoquarks

All fermions are taken to be left-handed. Right-handed particles are replaced by the corresponding left-
handed conjugated ones. The minimal fundamental representation of SU(5) is 5. However, it is more
convenient to use the conjugated one which has appropriate SU(3)⊗ SU(2)⊗ U(1) quantum numbers

5∗ = (3, 1,−2/3) + (1, 2, 1)

It is naturally identified with d-quark and electron-neutrino doublet

5∗ = (dc1, d
c
2, d

c
3, e
−, νe)Left

To find place for the other members of the same family, we have to go beyond the fundamental
representation. Surprisingly, the next (after 5) representation, 10 = (5 × 5)asym has precisely correct
quantum numbers

10 = (3, 2, 1/3) + (3∗, 1,−4/3) + (1, 1,−2)

It is a 5× 5 antisymmetric matrix and its fermion assignment is

10 =




0 uc3 −uc2 u1 d1

0 uc1 u2 d2

0 u3 d3

0 e+

0



Left

,
ucL → uR
e+
L → eR

.

Thus, all known fermions exactly fit to (5∗ + 10) representations of SU(5). Now new fermions
appear. Note that there is no room for the right-handed neutrino νR. Hence either neutrino is massless
in the SU(5) model or it could be a singlet that does not take part in gauge interaction. In spite of the
left- right asymmetry of the model there are no anomalies in the gauge currents. They are automatically
cancelled between contributions of 5∗ and 10.
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SO(10) - optimal GUT. The next popular GUT is based on the SO(10) group of rank 5. The
advantage of this model is that all the fermions of the same generation belong to a single irreducible
representation 16

16 = (u1 u2 u3 d1 d2 d3 νe e
− uc1 u

c
2 u

c
3 d

c
1 d

c
2 d

c
3 ν

c
e e

+)Left

Note that contrary to the SU(5) model the right-handed neutrino (left-handed antineutrino) is present
now. This means that the neutrino in the SO(10) model is massive. The gauge field in the SO(10)
model has dimension 45. The SO(10) multiplets find their natural decomposition in terms of that of
SU(5)

16 = 5∗ + 10 + 1 fermions,

45 = 24 + 10 + 10∗ + 1 gauge bosons.

E(6) GUT The next example is the model based on the exceptional group E(6) of rank 6. It is
left-right symmetric

E(6) ⊃ SUC(3)⊗ SUL(3)⊗ SUR(3).

Fermions belong to a single fundamental representation 27 which has the following decomposition under
SO(10)

27 = 16 + 10 + 1,

while the gauge bosons form an adjoint representation 78. This model contains a lot of new particles. Its
attractiveness is mainly due to the appearance of E(6) GUT in superstring inspired models.

The GUT symmetry is broken spontaneously via the same Brout-Englert-Higgs mechanism. In
the case of SU(5) it occurs in two stages: one introduces two Higgs multiplets: 24 which breaks SU(5)
down to SU(3)⊗ SU(2)⊗ U(1) and 5 which breaks SU(3)⊗ SU(2)⊗ U(1) down to SU(3)⊗ U(1).
The v.e.v are chosen to be

< Φ24 >=




V
V

V
−3/2 V

−3/2 V



, < H5 >=




0
0
0
0

v/
√

2



,

where V ∼MGUT ∼ 1015 Gev and v ∼ 250 Gev .

The symmetry breaking in the SO(10) model can be achieved in two different ways and needs at
least three different scales M1 �M2 � · · ·MW

↗ SU(5)
M2→ SU(3) ⊗ SU(2)⊗ U(1)

MW→ SU(3) ⊗ U(1)
SO(10) M1

↘ SO(6)⊗ SO(4) ∼ SU(4)⊗ SUL(2)⊗ SUR(2)

The Grand Unified Theories solve many problems of the SM, for instance, the absence of the
Landau pole, reduction of the number of parameters, all particles might sit in a single representation (16
of SO(10)), unification of quarks and leptons, open the way to baryon and lepton number violation, etc.
However, they produce new problems. This is first of all the hierarchy problem. Indeed, the unification of
the couplings takes place at the GUT scale ∼ 1015 − 1016 GeV where spontaneous symmetry breaking
takes place. The new heavy particles acquire masses of the order of this scale. Interacting with the
Higgs boson of the SM they create the radiative corrections to its mass of the order of their own, thus
destroying the hierarchy (see Fig.4). The solution of this problem might be obtained in SUSY GUTs
where these unwanted corrections are canceled with the contributions of superpartners in all orders of
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PT. This way supersymmetry stabilizes GUTs eliminating the influence of unknown heavy physics on
low energy observables preserving hierarchy.

Since in GUTs quarks and leptons belong to the same representation of the gauge group, the
interactions with the new gauge bosons leads to the processes where quarks convert into leptons and vice
versa, i.e. to the violation of the baryon and lepton numbers, contrary to the SM. The key prediction of
GUTs is proton decay. It takes place according to the process shown in Fig.18 (left) with creation of π0

meson and positron. The proton life time is proportional to the mass of the heavy X boson τP ∼ M4
X

u

u

d

e+

d

d

X

u

u

d s

u

ν
κ H

q

l

Fig. 18: The diagrams giving a contribution to proton decay in the usual GUT (left) and in the supersymmetric
version (right)

that gives the value bigger than 1030 years. The modern experimental data give the lower bound ∼ 1034

years. At the same time, in the supersymmetric case there might be other modes of proton decay with
creation of K+ meson and antineutrino (see Fig.18 right). In this case, the decay rate is additionally
suppressed due to the loop with superpartners inside. Experimental constraint here is weaker ∼ 1033

years. The search for the proton decay is continued. The observation of such a decay would be the
confirmation of the GUT hypothesis.

3.3 Extra symmetry factors
A less radical change of the symmetry group of the SM is the presence of additional symmetry factors
like U(1)′ or SU(2)′, etc. These additional factors are typical for the string theory models and might
continue the symmetry pattern of the SM. The presence of such factors leads to the existence of additional
gauge bosons A′, Z ′,W ′, etc. At colliders they might appear as characteristic single or double jet events
with high energy (see Fig.19 [25]).

Fig. 19: Single jet and dijet events with high transverse energy

Experimentally studied are the processes with Z ′ boson production (dimuon events), W produc-
tion (single muon/jets), resonant tt̄ production, diboson events and monojet events with missing energy
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(see Fig.20 [26]). So far there are no positive signatures and we have just the bounds on the masses of
these hypothetical particles of an order of TeV.
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Fig. 20: Search for additional gauge bosons at the LHC

The other popular example of hypothetical new symmetries is the additional U(1)′ factor asso-
ciated with the so-called dark photon. The mixture with the ordinary photon due to the non-diagonal
term L ∼ FµνF

′
µν leads to conversion of the ordinary photon into the dark one that might be observed

experimentally. There are already some dedicated experiments. Presumably the dark photon might be
the dark matter particle.

4 New Particles
The Standard model can be extended introducing new particles as we have seen by example of super-
symmetry or additional symmetry factors. However, there are many other possibilities of addition of new
particles which are not related to the extension of the symmetry group.

4.1 Extended Higgs sector
Possible extension of the Higgs sector of the SM is an actual question which might be answered in the
near future. Is the discovered Higgs boson the only one or not? What are the alternatives to the one
Higgs doublet model?

The nearest extension of the SM is the two Higgs doublet model [27]. It is also realized in the
case of the Minimal Supersymmetric Standard Model (MSSM) [13]. Here the up and down quarks and
leptons interact with different doublets each of which has a vacuum expectation value. In this case, one
has 5 Higgs bosons: two CP-even, one CP-odd and two charged ones (see Fig.21 (left)).

The next popular step is the introduction of an additional Higgs field which is a singlet with respect
to the gauge group of the SM. In the case of supersymmetry, this model is called the NMSSM, the next-to
minimal [15]. Here one has already seven Higgs bosons. The sample spectrum of particles for various
models is shown in Fig.21, right. Note that in the case of the NMSSM, one has two light CP-even Higgs
bosons and the discovered particle might correspond to both H1 and to H2. The reason why we do not
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Fig. 21: The field content and the spectrum in various models of the Higgs sector

see the lightest Higgs boson H1 in the second case is that it has a large admixture of the singlet state and
hence very weakly interacts with the SM particles.

How to check these options experimentally? There are two methods: to measure the couplings of
the 125-GeV Higgs boson with quarks, leptons and intermediate gauge bosons and check whether they
deviate from the predictions of the SM. In the latter case they correspond to the straight line in the plot
representing the couplings as functions of the masses of particles (see Fig.22 [28]). Here the name of the
game is high precision which can be achieved increasing the luminosity.
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Fig. 22: Dependence of the Higgs couplings on the masses of quarks, leptons and intermediate gauge bosons

The task for the near future is the precision analysis of the discovered Higgs boson. It is necessary
to measure its characteristics like the mass and the width and also all decay constants with the accuracy
ten times higher than the reached one. Quite possible that this task requires a construction of the electron-
positron collider, for instance, the linear collider ILC. Figure 23 shows the expected results for the Higgs
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Fig. 23: The measurement of the mass and the width of the Higgs boson in various channels at the ILC: e+e− →
HZ → bb̄qq̄, qq̄l+l−,W+W−qq̄,W+W−l+l−

boson mass measurement at the ILC in various channels [29].

It is planned that the accuracy of the Higgs mass measurement will achieve ∼50 MeV that is 5-7
times higher than the achieved one. Another task is the accurate determination of the constants of all
decays which will possibly allow one to distinguish the one-doublet model from the two-doublet one.
Figure 24 shows the planned accuracies of the measurement of the couplings of the Higgs boson with the
SM particles at the LHC for the integrated luminosity of 300 1/fb (left), which is ten times higher than
today. For comparison we also show the same data for the ILC (middle). The accuracy of measurement
of the couplings at the ILC will allow one not only to distinguish different models but also check the
predictions of supersymmetric theories (right).

Fig. 24: The measurement of the Higgs boson couplings at the LHC and ILC [30]

22

D. KAZAKOV

104



The second way is the direct observation of additional Higgs bosons.
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Fig. 25: The search for the heavy and charged Higgs bosons at the LHC

The search for additional Higgs bosons, both the neutral and the charged ones, are performed
now at the LHC in various channels. Up to now no signature is seen and we have only the constraints
on the masses and parameters of the interaction. Unfortunately, there are no clear predictions for these
parameters as it was with the 125-GeV Higgs boson. The results of experimental analysis are shown in
Fig.25 [31]. The search for additional Higgs bosons in the interval 200 < mH < 1000 GeV did not give
positive results so far.

4.2 Axions and axion-like particles
A completely different type of particles is represented axions and axion-like particles. They are related
to the problem of CP-violation in strong interactions. As is well known, in the SM CP-violation is
due to the phase factors in the quark and lepton mixing matrices. In the quark sector this phase is
very small δ13 = 1.2 ± 0.1 rad. However, strong interactions due to the axial anomaly produce a new
effective interaction αs

8πGG̃θQCD which has a topological nature and changes the CP-violating phase
θ = θQCD +Nfδ.

LSM ∈ −q̄L




mue
iδ/2 0 ...

0 mde
iδ/2 ...

0 0 ...






u
d
...



R

− αs
8π
GG̃θQCD

The presence of this phase leads to the appearance of the neutron dipole moment dn = −4 ×
10−3 × θ [e fm]. At the same time, the experimental bound on the neutral dipole moment is very strict:
|dn| < 3 × 10−13 [e fm] that gives θ < 10−10. Such a small number requires some explanation. And
it was found transforming the angle θ into the dynamic field a(x) = θ(x)fa whose vacuum mean value
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defines the CP-violating phase. This field interacts with gluons

L =
1

2
(∂µa)(∂µa)− αs

8πf2
a

GaµνG̃
µν
a a (9)

and develops a dynamical potential (see Fig.26). In the minimum of the potential it equals zero and

π π0

θ

V(θ)
generated by QCD
non-pertrubative dynamics
(instantons)

Fig. 26: The axion potential generated by QCD non-perturbative dynamics

then acquires a small value generated by non-perturbative dynamics. The axial symmetry related to this
field is broken spontaneously, which leads to the appearance of a goldstone boson that later obtains a
mass. This particle got the name of axion and the mechanism of dynamic suppression of θ was called
the Peccei-Quinn mechanism [32].

The axion is characterized by two free parameters, its mass ma and the interaction with gluons
1/fa. The search for axions has not given a result so far. The allowed regions in parameter space
are shown in Fig.27 [33]. One can see that the allowed masses are extremely small and the scale of
interaction fa is very high.

Later it became clear that coherent oscillations of the axion field ( remind that axion is a boson)
may produce condensate that can be the form of Dark Matter. Despite the small mass of the axion, the
axion Dark matter might be cold since it is not in the state of thermal equilibrium. Therefore, if the axion
exists, some amount of Dark Matter of the axion type is inevitable.

4.3 Neutrinos
We know now 3 generations of matter particles. At the moment, there is no theoretical answer to the
question of this fact. We have only the experimental data that can be interpreted as an indication of the
existence of three generations. They assume the presence of the quark-lepton symmetry since refer to
the number of light neutrinos and, due to this symmetry, to the number of generations.

The first fact is the measurement at the electron-positron collider LEP of the profile and width of
the Z-boson. The Z-boson can decay into quarks, leptons and neutrinos with the total mass less than its
own mass and measuring the width of the Z-boson, one can find out the number of light neutrinos. This
is not true for neutrinos with the mass bigger than 45 GeV. The fit to the data corresponds to the number
of neutrinos equal to Nν = 2.984± 0.008, i.e. 3 (see Fig.28 left) [34].

The same conclusion follows from the fit of the spectrum of thermal fluctuations of the cosmic
microwave background (CMB). The number of light neutrinos as well as the spectra of their masses
are reliably defined from the CMB shape (see Fig.28 right). The obtained number is: Nν =< 3.30 ±
0.27 [35], i.e. is also consistent with 3 but still leaves some space for an additional sterile neutrino.

The search for a sterile neutrino is on the way. Its existence may eliminate some tension in neutrino
oscillation data coming from the LSND and MiniBoone experiments due to an admixture of the fourth
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Fig. 27: The allowed regions for the mass and the coupling of the axion
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component, which gives additional contribution to neutrino transformation probabilities

Pνe→νe ≈ 1− 2|Ue4|2(1− |Ue4|2)
Pνµ→νµ ≈ 1− 2|Uµ4|2(1− |Uµ4|2)
Pνµ→νe ≈ 2|Ue4|2|Ue4|2

for 4πE/∆m2
41 << L << 4πE/∆m2

31. Nevertheless, a recent direct search for a sterile neutrino
gave negative results and imposed constraints on the mass and the mixing of the fourth neutrino (see
Fig.29 [36]).

At last, there are complimentary data on precision measurements of the probabilities of rare decays
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where hypothetical additional heavy quark generations might contribute. According to these data, the
fourth generation is excluded at the 90% confidence level [37].

A natural question arises: Why does dNature need 3 copies of quarks and leptons? All what we
see around us is made of protons, neutrons and electrons, i.e. of u and d quarks and electrons - particles
of the first generation. The particles made of the quarks of the next two generations and heavy leptons,
copies of the electron, quickly decay and are observed only in cosmic rays or accelerators. Why do we
need them?

Possibly, the answer to this question is concealed not in the SM but in the properties of the Uni-
verse. The point is that for the existence of baryon asymmetry of the Universe, which is the necessary
condition for the existence of a stable matter, one needs the CP-violation [38]. This requirement in its
turn is achieved in the SM due to the nonzero phase in the mixing matrices of quarks and leptons.The
nonzero phase appears only when the number of generations Ng ≥ 3.

With the discovery of neutrino oscillations neutrino physics has entered the new phase: the mass
differences of different neutrino types and the mixing angles were measured. At last, the answer to the
question of neutrino mass was obtained. Now we know that neutrinos are massive. This way, the lepton
sector of the SM took the form identical to the quark one and it was confirmed that the SM possesses
the quark-lepton symmetry. Nevertheless, the reason for such symmetry remains unclear, it might well
be that it is a consequence of the Grand unification of interactions. However, the answer to this question
lies beyond the SM.

At the same time, the neutrino sector of the SM is still not fully understood. First of all, this
concerns the mass spectrum. Neutrino oscillations allow one to determine only the squares of the mass
difference for various neutrinos. The obtained picture is shown in Fig.30 [39]. The color pattern shows
the fraction of various types of neutrino in mass eigenstates.

Besides the hierarchy problem (normal or inverted) there is also an unclear question of the absolute
scale of neutrino masses. One may hope to get an answer to this question in two ways. The first one is a
direct measurement of the electron neutrino mass in the β-decay experiment. According to the Troitsk-
Mainz experiment, the upper bound on the neutrino mass today is mνe < 2 eV [40]. The upcoming
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Fig. 30: Normal and inverse hierarchy of neutrino masses

experiment KATRIN [41] will be able to move this bound up to < 0.2 eV. However, this might not be
enough if one believes in astrophysical data. The determination of the sum of neutrino masses from
the spectrum of the cosmic microwave background is an indirect but rather an accurate way to find the
absolute mass scale. At the early stage of the Universe during the fast cooling process particles fell out
of the thermodynamic equilibrium at the temperature proportional to their masses and their abundance
“froze down" influencing the spectrum. Hence, fitting the spectrum of the CMB fluctuations one can
determine the number of neutrino species and the sum of their masses. The result of the latest space
mission PLANK [42] looks like

∑
mν < 0.23 eV. This number is still much bigger than the neutrino

mass difference shown in Fig.30. Thus, the absolute scale of neutrino masses is still an open question.

Another unsolved problem of the neutrino sector is the nature of neutrino: Is it a Majorana particle
or a Dirac one, is it an antiparticle to itself or not? Remind that particles with spin 1/2 are described by
the Dirac equation, the solutions being the bispinors. They can be divided into two parts corresponding
to the left or right polarization

νD =

(
νL
0

)
+

(
0
νR

)
, νL 6= ν∗R, mL = mR. (10)

Both parts have the same mass since this is just one particle with two polarization states. At the same
time, in the case of a neutral particle the Dirac bispinor can be split into two real parts

νD =

(
ξ1

ξ∗1

)
+

(
ξ2

ξ∗2

)
, mξ1 6= mξ2 . (11)

each of these parts is a Majorana spinor obeying the condition νM = ν∗M , i.e. if the neutrino is a Majorana
spinor, then it is an antiparticle to itself. These two Majorana spinors can have different masses. Hence,
if this possibility is realized in Nature, we have just discovered the light neutrino and the heavy ones can
have much bigger masses.

An argument in favour of the Majorana neutrino is the smallness of their masses. If one gets them
through the usual Brout-Englert-Higgs mechanism, the corresponding Yukawa couplings are extremely
small of an order of 10−12. In the case of the Majorana neutrino one can avoid it using the see-saw
mechanism [43]: The small masses of light neutrinos appear due to the heaviness of the Majorana mass

L R

Mν =
L
R

(
0 mD

mD M

)
, m1 =

m2
D

M
, m2 = M. (12)

Thus, the neutrino Yukawa coupling may have the usual lepton value and the Majorana massM might be
of the order of the Grand Unification scale. In this case, one also has the maximal mixing in the neutrino
sector.
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One can find out the nature of the neutrino studying the double β-decay. If the neutrinoless double
β-decay is possible, then the neutrino is a Majorana since for the Dirac neutrino it is forbidden. The
corresponding Feynman diagram is shown in Fig.31. It also shows the energy spectrum of electrons in
the case of the usual and neutrinoless β-decay [46]. As one can see, two types of spectrum are easily
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Fig. 31: Neutrinoless double β- decay (left) and the energy spectrum of electrons in the case of a usual and
neutrinoless decay of the isotope 76Ge (center). The experimentally measured spectrum of electrons is shown on
the right [46]

distinguishable. However, practical observation is rather cumbersome. The histogram shown in Fig.31
(right) is the experimentally measured electron spectrum of the double β-decay. The solid line shows
the expected position of the maximum in the spectrum of two electrons corresponding to the double
neutrinoless β-decay.

As a result, today there are no clear indications of the existence of the double neutrinoless β-
decay. The experiments are carried out on the isotopes 48Ca,76Ge,82 Se, 130Te,136Xe,150Nd. Modern
estimates of the lifetime are [45]

T1/22νββ(136Xe) × 1021 yr = 2.23± 0.017 stat± 0.22 sys,

T1/20νββ(136Xe) × 1025 yr > 1.6 (90% CL).

It is an interesting question whether it will be possible to find the neutrinoless double beta decay increas-
ing the accuracy of the observation in principle since the effective coupling might be very small. It so
happens that the answer to this question depends on the hierarchy of neutrino masses: for the inverse
hierarchy the situation is optimistic and there is a lower limit on effective mass while for the normal
hierarchy the lower limit is absent and the effective mass can be unlimitedly small. The situation is
illustrated in Fig.32 [47]. Thus, the nature of the neutrino remains an open problem of the SM.

4.4 Dark Matter
The existence of Dark Matter is known since the 30s of the last century. However, the situation has
changed when the energy balance of the Universe was obtained and became clear that there is 6 times as
much of Dark Matter than ordinary matter (see Fig.33, left) [48]. The existence of Dark Matter, which is
known so far due to its gravitational influence, is supported by the rotational curves of the stars, galaxies
and clusters of galaxies (see Fig.33 right), the gravitational lenses, and the large scale structure of the
Universe [49]. Therefore, the question appears: What is the dark matter made of, can it be some non-
shining macro objects like the extinct stars, molecular clouds, etc., or these are micro particles? In the
last case Dark Matter becomes the object of particle physics.

According to the last astronomical data, at least in our galaxy, there is no evidence of the existence
of macro objects, the so called MACHOs. At the same time, Dark Matter is required for a correct
description of the star rotation. Therefore, the hypothesis of the microscopic nature of the Dark matter is
the dominant one. In this case, in order to form the large scale structure of the Universe, Dark Matter has
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Fig. 33: The energy balance of the Universe (left) [50] and rotation curves of stars in the spiral galaxy (right) [51]

to be cold, i.e. nonrelativistic; hence, DM particles have to be heavy. According to the estimates, their
mass has to be above a few dozens of keV [52]. Besides, DM particles have to be stable or long-lived to
survive since the Big Bang. Thus, one needs a neutral, stable and relatively heavy particle.

If one looks at the SM, the only stable neutral particle is the neutrino. However, if the neutrino is
the Dirac particle, its mass is too small to form Dark Matter. Therefore, within the SM the only possibility
to describe Dark Matter is the existence of heavy Majorana neutrinos. Otherwise, one needs to assume
some new physics beyond the SM. The possible candidates are: neutralino, sneutrino and gravitino in the
case of supersymmetric extension of the SM [53], and also a new heavy neutrino [54], a heavy photon, a
sterile Higgs boson, etc. [55]. An alternative way to form Dark Matter is the axion field, the hypothetical
light strongly interacting particle [56]. In this case, Dark Matter differs by its properties.

The dominant hypothesis is that Dark Matter is made of weakly interacting massive particles -
WIMPs. This hypothesis is supported by the following fact: the concentration of Dark Matter after the
moment when a particle fell down from the thermal equilibrium is given by the Boltzmann equation [53]

dnχ
dt

+ 3Hnχ = − < σv > (n2
χ − n2

χ,eq), (13)

where H = Ṙ/R is the Hubble constant, nχ,eq is the concentration in the equilibrium, and σ is the
Dark matter annihilation cross-section.The relic density is expressed through the concentration nχ in the

29

BEYOND THE STANDARD MODEL

111



following way:

Ωχh
2 =

mχnχ
ρc

≈ 2 · 1027 cm3 sec−1

< σv >
. (14)

Having in mind that Ωχh
2 ≈ 0.113± 0.009 and v ∼ 300 km/sec, one gets for the cross-section

σ ≈ 10−34 cm2 = 100 pb, (15)

that is a typical cross-section for a weakly interacting particle with the mass of the order of the Z-boson
mass.

These particles presumably form an almost spherical galactic halo with the radius a few times
bigger than the size of the shining matter. The DM particles cannot leave the halo being gravitationally
bounded and cannot stop since they cannot drop down the energy emitting photons like the charged
particles. In the Milky Way, in the region of the Sun the density of Dark Matter should be∼ 0.3 GeV/sm3

in order to get the observed rotation velocity of the Sun around the center of the galaxy ∼ 220 km/sec.

The search for Dark Matter particles is based on three reactions the cross-sections of which are
related by the crossing symmetry (see Fig.34) [49].

Fig. 34: The search for Dark Matter in three cross related channels

This is, first of all, the annihilation of Dark Matter in the galactic halo that leads to the creation of
ordinary particles and should appear as the “knee" in the spectrum of the cosmic rays for diffused gamma
rays, antiprotons and positrons. Secondly, this is the scattering of DM on the target which should lead to
a recoil of the nucleus of the target when hit by a particle with the mass of the order of the Z-boson mass.
And, third, this is a direct creation of DM particles at the LHC which, due to their neutrality, should
manifest themselves in the form of missing energy and transverse momentum.

In all these directions there is an intensive search for a signal of the DM. The results of this search
for all three cases are shown in Figs.35, 36. As one can see from the cosmic ray data (Fig.35), in
the antiproton sector there is no any statistically significant excess above the background [57]. In the
positron data there exists some confirmed increase; however, its origin is usually connected not with the
DM annihilation but with the new astronomical source [58]. The spectrum of diffused gamma rays like
antiprotons is consistent with the background within the uncertainties.

As for the direct detection of Dark Matter, there is no any positive signal so far. The results of
the search are presented in the plane mass–cross-section. One can see from Fig.36 [61] that today the
cross-sections up to 10−45 sm2 are reached for the mass near 100 GeV. In the near future it is planned to
advance two orders of magnitude.
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Figure 1: IGRB spectrum and the contribution from all the different extragalactic source classes that have been detected
by Fermi. The golden band shows the sum of all the source populations. By summing all contributions it is apparent that
there is still room for other components at all energies within the uncertainties [Sanchez-Conde 2012]. See also [Stecker
and Venters 2011] for other theoretical estimates of the relative contributions of unresolved blazars and star-forming
galaxies to the IGRB.

2. FERMI-LAT MEASUREMENT OF THE
ANGULAR POWER SPECTRUM IN THE
IGRB

In [Ackermann et al. 2012] the first 22 months of
Fermi-LAT data were analyzed, dividing the energy
range between 1 GeV and 50 GeV in 4 energy bins.
The point sources in the first year catalogue [Abdo et al.
2010] have been masked, as well as the emission within
a band of 30 degrees above and below the Galactic plane
. The masking was done to cover the regions in the sky
where the emission is dominated by resolved sources and
by the Galactic foreground, and to restrict the analysis
only to where the IGRB is a significant component.
Two definitions for anisotropies were used in [Acker-

mann et al. 2012]:

• Intensity APS: An intensity map I(ψ) can be de-
composed in spherical harmonics,

I(ψ) =
�

lm

almYlm(ψ), (1)

where coefficients alm determine the APS which is

given by Cl =
�
|alm|2

�
. This definition is partic-

ularly useful because it gives us the dimensionful
size of intensity fluctuations and can be compared
with predictions for source classes whose collective
intensity is known or assumed.

• Fluctuation APS: can be derived from the in-
tensity APS, dividing by the average inten-
sity squared. The fluctuation APS is energy-
independent for a single source class, if all mem-

bers of the source class share the same observed
energy spectrum.

The Fermi-LAT collaboration reported detection of
angular power in all 4 energy bins considered, with a
signicance larger than 3σ in the energy bins from 1 GeV
to 10 GeV. The data have been compared with the APS
of a source model made of i) the point sources in [Abdo
et al. 2010], ii) a model for the interstellar diffuse emis-
sion and iii) an isotropic component at the level of the
IGRB in [Abdo et al. 2010]. The model angular power
at 155 ≤ l ≤ 504 is consistently below that measured in
the data.
Despite the mask applied along the Galactic plane,

some known Galactic emission can extend to high lat-
itudes. Therefore a model of the Galactic foregrounds
was subtracted from the data, and then the APS of the
residual maps was calculated. This measurement is re-
ferred to as the cleaned data in [Ackermann et al. 2012].
We use this second measurement in this work.

3. DARK MATTER PREDICTIONS

The APS of gamma rays from DM annihilations or
decays has been computed from the all-sky template
maps produced in [Fornasa et al. 2013]. The authors
of [Fornasa et al. 2013] used the Millennium-II N-body
simulation to model the abundance and the clustering
of extragalactic DM halos and subhalos. The technique
presented in [Zavala et al. 2010], based on the random
repetition of copies of the Millennium-II simulation box,
is implemented to probe the universe up to z = 2. The
emission from DM halos with a mass below the resolu-

eConf C121028

Fig. 35: Indirect search for Dark Matter: antiproton [57], positron [58], and diffuse γ ray [59] data

The results of the DM search at the LHC are also shown in the plane mass–cross-section [62].
Here the signal of the DM creation is also absent. As it follows from the plot, the achieved bound of
possible cross-sections at the LHC is worse than in the underground experiments for all mass regions
except for the small masses < 10 GeV where the accelerator is more efficient. Note, however, that the
interpretation of the LHC data as the registration of DM particles is ambiguous and definite conclusions
can be made only together with the data from the cosmic rays and direct detection of the scattering of
DM.

All available experimental data combined (LHC,LUX,Planck) are still consistent with even the
simplest versions of SUSY (cNMSSM, NUHM). The remaining parameter space is directly probed by
direct WIMP searches with tonne scale detectors: DEAP-3600, XENON1T, LUX/LZ. Complimentarity
with the LHC (cMSSM, NUHM are mostly out of reach of the 14 TeV run!)

The other possibility mentioned already is the dark photon. In the process of annihilation one may
produce the dark photon together with the ordinary one. It will decay later producing the pair of charged
particles which may be detected or invisible matter in the form of neutralino. The search for such decays
is running and new dedicated experiments are in progress. The results are presented in the plane of the
dark photon mass versus the mixing with ordinary photon (see Fig.37 [63]).

5 New Dimensions
The paradoxical idea of extra dimensions attracted considerable interest in recent years despite the ab-
sence of any experimental confirmation. This is mainly due to unusual possibilities and intriguing effects
even in classical physics (For review see, e.g. Refs. [64] ), and the requirement from the string theory
which allows for consistent formulation in the critical dimension equal to 26 for the bosonic and 10 for
the fermionic string [65]. This way the string theory stimulated the study of ED theories.

The natural question arises: why don’t we see these extra space dimensions? There are two
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didate is considered and is either a scalar, a vector or a
Majorana fermion. The Higgs–nucleon coupling is taken
as 0.33+0.30

−0.07 [65], the uncertainty of which is expressed
by the bands in the figure. Spin-independent results
from direct-search experiments are also shown [66–73].
These results do not depend on the assumptions of the
Higgs-portal scenario. Within the constraints of such
a scenario however, the results presented in this Letter
provide the strongest available limits for low-mass DM
candidates. There is no sensitivity to these models once
the mass of the DM candidate exceeds mH/2. A search
by the ATLAS experiment for DM in more generic mod-
els, also using the dilepton + large Emiss

T final state, is
presented in Ref. [74].

We thank CERN for the very successful operation of
the LHC, as well as the support staff from our insti-
tutions without whom ATLAS could not be operated
efficiently.

We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF and FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq
and FAPESP, Brazil; NSERC, NRC and CFI, Canada;
CERN; CONICYT, Chile; CAS, MOST and NSFC,
China; COLCIENCIAS, Colombia; MSMT CR, MPO
CR and VSC CR, Czech Republic; DNRF, DNSRC
and Lundbeck Foundation, Denmark; EPLANET, ERC
and NSRF, European Union; IN2P3-CNRS, CEA-
DSM/IRFU, France; GNSF, Georgia; BMBF, DFG,
HGF, MPG and AvH Foundation, Germany; GSRT and
NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo
Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; BRF
and RCN, Norway; MNiSW and NCN, Poland; GRICES
and FCT, Portugal; MNE/IFA, Romania; MES of Rus-
sia and ROSATOM, Russian Federation; JINR; MSTD,

DM Mass [GeV]
1 10 210 310

]2
N

uc
le

on
 c

ro
ss

 s
ec

tio
n 

[c
m

−
D

M

-5110
-5010
-4910
-4810
-4710
-4610
-4510
-4410
-4310
-4210
-4110
-4010
-3910
-3810
-3710

σDAMA/LIBRA 3 σCRESST 2
CDMS 95% CL CoGeNT
XENON10 XENON100
LUX ATLAS, scalar DM
ATLAS, vector DM ATLAS, fermion DM

ATLAS
 = 7 TeV,s ∫ -1Ldt=4.5 fb
 = 8 TeV,s ∫ -1Ldt=20.3 fb

ZH → ℓℓ + inv.

Higgs-portal Model

FIG. 4. Limits on the DM–nucleon scattering cross sec-
tion at 90% CL, extracted from the BR(H → inv.) limit
in a Higgs-portal scenario, compared to results from direct-
search experiments [66–73]. Cross-section limits and favored
regions correspond to a 90% CL, unless stated otherwise in
the legend. Favored regions for DAMA and CoGeNT are
based on Ref. [71]. The results from the direct-search exper-
iments do not depend on the assumptions of the Higgs-portal
scenario.

Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;
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Fig. 36: Direct search for the Dark matter at accelerators [60] and underground experiments [61]
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Fig. 37: The search for Dark photon

possibilities: compact ED of small radius and localization of observables on a 4-dimensional hyper
surface (brane) (see Fig.38).

5.1 Compact Extra Dimensions
The idea of compact extra dimensions goes back to the so-called Kaluza-Klein theories [66]. We do not
see ED because their radius is too small for the present energies, say, equal to the Planck length, 10−33

cm. The KK approach is based on the hypothesis that the space-time is a (4+d)-dimensional pseudo
Euclidean space [67]

E4+d = M4 ×Kd,

where M4 is the four-dimensional space-time and Kd is the d-dimensional compact space of characteris-
tic size (scale) R. In accordance with the direct product structure of the space-time, the metric is usually
chosen to be

ds2 = ĜMN (x̂)dx̂Mdx̂N = gµν(x)dxµdxν + γmn(x, y)dymdyn. (16)
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Fig. 38: Compact (left) and large (right) extra space dimensions

To interpret the theory as an effective four-dimensional one, the field φ̂(x, y) depending on both coordi-
nates is expanded in a Fourier series over the compact space

φ̂(x, y) =
∑

n

φ(n)(x)Yn(y), (17)

where Yn(y) are orthogonal normalized eigenfunctions of the Laplace operator ∆Kd on the internal space
Kd,

∆KdYn(y) =
λn
R2

Yn(y). (18)

The coefficients φ(n)(x) of the Fourier expansion (17) are called the Kaluza-Klein modes and play
the role of fields of the effective four-dimensional theory. Their masses are given by

m2
n = m2 +

λn
R2

, (19)

where R is the radius of the compact dimension.

The coupling constant g(4) of the 4-dimensional theory is related to the coupling constant g(4+d)

of the initial (4+d)-dimensional one by

g(4) =
g(4+d)

V(d)
, (20)

V(d) ∝ Rd being the volume of the space of extra dimensions.

Low scale gravity

Consider now the Einstein (4 + d)-dimensional gravity with the action

SE =

∫
d4+dx̂

√
−Ĝ 1

16πGN(4+d)
R(4+d)[ĜMN ],

where the scalar curvature R(4+d)[ĜMN ] is calculated using the metric ĜMN . Performing the mode
expansion and integrating over Kd, one arrives at the four-dimensional action

SE =

∫
d4x
√−g

{
1

16πGN(4)
R(4)[g

(0)
MN ] + non-zero KK modes

}
,

Similar to eq.(20), the relation between the 4-dimensional and (4+d)-dimensional gravitational (Newton)
constants is given by

GN(4) =
1

V(d)
GN(4+d). (21)
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One can rewrite this relation in terms of the 4-dimensional Planck mass MPl = (GN(4))
−1/2 = 1.2 ·

1019 GeV and a fundamental mass scale of the (4 + d)-dimensional theory M ≡ (GN(4+d))
− 1
d+2 . One

gets
M2
Pl = V(d)M

d+2. (22)

This formula is often referred to as the reduction formula.

The presence of ED leads to the modification of classical gravity. The Newton potential between
two test masses m1 and m2, separated by a distance r, is in this case equal to

V (r) = GN(4)m1m2

∑

n

1

r
e−mnr = GN(4)m1m2


1

r
+
∑

n6=0

1

r
e−|n|r/R


 .

The first term in the last bracket is the contribution of the usual massless graviton (zero mode) and the
second term is the contribution of the massive gravitons. For the sizeR large enough (i.e. for the spacing
between the modes small enough) this sum can be replaced by the integral and one gets [69]

V (r) = GN(4)
m1m2

r

[
1+Sd−1

∫ ∞

1
e−mr/Rmd−1dm

]
= GN(4)

m1m2

r

[
1+Sd−1

(
R

r

)d ∫ ∞

r/R
e−zzd−1dz

]
,

(23)
where Sd−1 is the area of the (d − 1)-dimensional sphere of the unit radius. This leads to the following
behaviour of the potential at short and long distances

V ≈





GN(4)
m1m2
r r � R,

GN(4)
m1m2
r Sd−1

(
R
r

)d
Γ(d) = GN(4+d)

m1m2

rd+1 Sd−1Γ(d) r � R,
(24)

The attempts to observe the modification of the Newton law did not come out with a positive result but
the accuracy was increased by two orders of magnitude. In Fig.39 [68] we show the allowed regions in
parameter space for the modified potential of the form V = −Gm1m2

r (1 + αe−r/λ).

Fig. 39: The allowed region in parameter space for the modified Newton potential

The ADD model

The ADD model was proposed by N. Arkani-Hamed, S. Dimopoulos and G. Dvali in Ref. [69].
The model includes the SM localized on a 3-brane embedded into the (4 + d)-dimensional space-time
with compact extra dimensions. The gravitational field is the only field which propagates in the bulk.

To analyze the field content of the effective (dimensionally reduced) four-dimensional model,
consider the field ĥMN (x, y) describing the linear deviation of the metric around the (4+d)-dimensional
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Minkowski background ηMN

ĜMN (x, y) = ηMN +
2

M1+d/2
ĥMN (x, y) (25)

Let us assume, for simplicity, that the space of extra dimensions is the d-dimensional torus. Performing
the KK mode expansion

ĥMN (x, y) =
∑

n

h
(n)
MN (x)

1√
V(d)

exp(−inmy
m

R
), (26)

where V(d) is the volume of the space of extra dimensions, we obtain the KK tower of states h(n)
MN (x)

with masses

mn =
1

R

√
n2

1 + n2
2 + . . .+ n2

d ≡
|n|
R
, (27)

so that the mass splitting is ∆m ∝ 1/R.

The interaction of the KK modes h(n)
MN (x) with fields on the brane is determined by the universal

minimal coupling of the (4 + d)-dimensional theory

Sint =

∫
d4+dx̂

√
−ĜT̂MN ĥ

MN (x, y),

where the energy-momentum tensor of the matter localized on the brane at y = 0 has the form

T̂MN (x, y) = δµMδ
ν
NTµν(x)δ(d)(y).

Using the reduction formula (22) and the KK expansion (26), one obtains that

Sint =

∫
d4xTµν

∑

n

1

M1+d/2
√
V(d)

h(n)µν(x) =
∑

n

∫
d4x

1

MPl
Tµν(x)h(n)

µν (x), (28)

which is the usual interaction of matter with gravity suppressed by MPl.

The degrees of freedom of the four-dimensional theory, which emerge from the multidimensional
metric, include [70, 71]

1. the massless graviton and the massive KK gravitons h(n)
µν (spin-2 fields) with masses given by

eq.(27);
2. (d− 1) KK towers of spin-1 fields which do not couple to Tµν ;
3. (d2 − d− 2)/2 KK towers of real scalar fields (for d ≥ 2), they do not couple to Tµν either;
4. a KK tower of scalar fields coupled to the trace of the energy-momentum tensor Tµµ , its zero mode

is called radion and describes fluctuations of the volume of extra dimensions.

Alternatively, one can consider the (4 + d)-dimensional theory with the (4 + d)-dimensional massless
graviton ĥMN (x, y) interacting with the SM fields with couplings ∼ 1/M1+d/2.

In the 4-dimensional picture the coupling of each individual graviton (both massless and massive)
to the SM fields is small ∼ 1/MPl. However, the smallness of the coupling constant is compensated
by the high multiplicity of states with the same mass. Indeed, the number dN (|n|) of modes with the
modulus |n| of the quantum number being in the interval (|n|, |n|+ d|n|) is equal to

dN (|n|) = Sd−1|n|d−1d|n| = Sd−1R
dmd−1dm ∼ Sd−1

MPl

Md+2
md−1dm, (29)
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where we used the mass formula m = |n|/R and the reduction formula (22). The number of KK
gravitons h(n) with masses mn ≤ E < M is equal to

N (E) ∼
∫ ER

0
dN (|n|) ∼ Sd−1

M2
Pl

Md+2

∫ E

0
md−1dm =

Sd−1

d

M2
Pl

Md+2
Ed ∼ RdEd.

One can see that for E � R−1 the multiplicity of states which can be produced is large. Hence, despite
the fact that due to eq.(28) the amplitude of emission of the mode n is A ∼ 1/MPl, the total combined
rate of emission of the KK gravitons with masses mn ≤ E is

∼ 1

M2
Pl

N (E) ∼ Ed

Md+2
. (30)

We can see that there is a considerable enhancement of the effective coupling due to the large phase
space of KK modes or due to the large volume of the space of extra dimensions. Because of this en-
hancement the cross-sections of processes involving the production of KK gravitons may turn out to be
quite noticeable at future colliders.

HEP phenomenology

There are two types of processes at high energies in which the effect of the KK modes of the
graviton can be observed in running or planned experiments. These are the graviton emission and virtual
graviton exchange processes [70]- [74].

We start with the graviton emission, i.e., the reactions where the KK gravitons are created as
final state particles. These particles escape from the detector so that a characteristic signature of such
processes is missing energy. Though the rate of production of each individual mode is suppressed by
the Planck mass, due to the high multiplicity of KK states the magnitude of the total rate of production
is determined by the TeV scale (see eq.(30)). Taking eq.(29) into account, the relevant differential cross
section [70] is

d2σ

dtdm
∼ Sd−1

M2
Pl

Md+2
md−1dσm

dt
∼ 1

Md+2
, (31)

where dσm/dt is the differential cross section of the production of a single KK mode with mass m.

At e+e− colliders the main contribution comes from the e+e− → γh(n) process. The main
background comes from the process e+e− → νν̄γ and can be effectively suppressed by using polarized
beams. Figure 40 shows the total cross section of the graviton production in electron-positron collisions
[74]. To the right is the same cross section as a function of M for

√
s = 800 GeV [75].

Effects due to gravitons can also be observed at hadron colliders. A characteristic process at
the LHC would be pp → (jet + missing E). The subprocess that gives the largest contribution is the
quark-gluon collision qg → qh(n). Other subprocesses are qq̄ → gh(n) and gg → gh(n).

Processes of another type, in which the effects of extra dimensions can be observed, are exchanges
of virtual KK modes, in particular, the virtual graviton exchanges. Contributions to the cross section from
these additional channels lead to deviation from the behaviour expected in the 4-dimensional model. An
example is e+e− → ff̄ with h(n) being the intermediate state (see Fig.41). Moreover, gravitons can
mediate processes absent in the SM at the tree-level, for example, e+e− → HH , e+e− → gg. Detection
of such events with large cross sections may serve as an indication of the existence of extra dimensions.

The s-channel amplitude of a graviton-mediated scattering process is given by

A =
1

M2
Pl

∑

n

{
Tµν

PµνP ρσ

s−m2
n

Tρσ +

√
3(d− 1)

d+ 2

Tµµ T νν
s−m2

n

}
, (32)

where Pµν is the polarization factor coming from the propagator of the massive graviton and Tµν is the
energy-momentum tensor [70]. It contains a kinematic factor

S =
1

M2
Pl

∑

n

1

s−m2
n

≈ 1

M2
Pl

Sd−1
M2
Pl

Md+2

∫ Λ md−1dm

s−m2
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Fig. 41: The Feynman diagram for the virtual graviton exchange (left) and deviation from the expectations of the
SM (histogram) for the Bhabha scattering at a 500 GeV e+e− collider for the Left-Right polarization asymmetry
as a function of z = cos θ for M = 1.5 TeV and the integrated luminosity L = 75 fb−1 (right) [73].

=
Sd−1

2M4



iπ

( s

M2

)d/2−1
+

[(d−1)/2]∑

k=1

ck

( s

M2

)k−1
(

Λ

M

)d−2k


 . (33)

Since the integrals are divergent for d ≥ 2, the cutoff Λ was introduced. It sets the limit of applicability
of the effective theory. Because of the cutoff,the amplitude cannot be calculated explicitly without the
knowledge of a full fundamental theory. Usually, in the literature it is assumed that the amplitude is
dominated by the lowest-dimensional local operator (see [70]).

The characteristic feature of expression (33) different from the 4-dimensional model is the increase
of the cross section with energy. This is a consequence of the exchange of the infinite tower of the KK
modes. Note, however, that this result is based on a tree-level amplitude, while the radiative corrections
in this case are power-like and may well change this behaviour.

Typical processes, in which the virtual exchange via massive gravitons can be observed, are: (a)
e+e− → γγ; (b) e+e− → ff̄ , for example the Bhabha scattering e+e− → e+e− or Möller scattering
e−e− → e−e−; (c) graviton exchange contribution to the Drell-Yang production. A signal of the KK
graviton mediated processes is the deviation in the number of events and in the left-right polarization
asymmetry from those predicted by the SM (see Figs. 41) [73].
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5.2 Large Extra Dimensions
The alternative to compact ED are the large ones which we do not see for the reason that observables are
localized on a 4-dimensional hyper surface called brane. The particles can be pressed to the brane by
some force, and to leave the brane, they have to gain high energy.

The Randal-Sundrum model [76] is a model of Einstein gravity in the five-dimensional Anti-de
Sitter space-time with extra dimension being compactified to the orbifold S1/Z2. There are two 3-branes
in the model located at the fixed points y = 0 and y = πR of the orbifold, where R is the radius of the
circle S1. The brane at y = 0 is usually referred to as A Planck brane, whereas the brane at y = πR
is called A TeV brane (see Fig.42). The SM fields are constrained to the TeV brane, while gravity
propagates in additional dimension.

Fig. 42: The Randall-Sundrum construction of the extra-dimensional space

The action of the model is given by

S =

∫
d4x

∫ πR

−πR
dy

√
−Ĝ

{
2M3R(5)

[
ĜMN

]
+ Λ

}

+

∫

B1

d4x

√
−g(1) (L1 − τ1) +

∫

B2

d4x

√
−g(2) (L2 − τ2) , (34)

where R(5) is the five-dimensional scalar curvature, M is the mass scale (the five-dimensional "Planck
mass") and Λ is the cosmological constant; Lj is a matter Lagrangian and τj is a constant vacuum energy
on brane j (j = 1, 2).

The RS solution describes the space-time with nonfactorizable geometry with the metric given by

ds2 = e−2σ(y)ηµνdx
µdxν + dy2. (35)

The additional coordinate changes inside the interval −πR < y ≤ πR and the function σ(y) in the warp
factor exp(−2σ) is equal to

σ(y) = k|y|, (k > 0). (36)

For the solution to exist the parameters must be fine-tuned to satisfy the relations

τ1 = −τ2 = 24M3k, Λ = 24M3k2.

Here k is a dimensional parameter which was introduced for convenience. This fine-tuning is equivalent
to the usual cosmological constant problem. If k > 0, then the tension on brane 1 is positive, whereas
the tension τ2 on brane 2 is negative.
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For a certain choice of the gauge the most general perturbed metric is given by

ds2 = e−2k|y|
(
ηµν + h̃µν(x, y)

)
dxµdxν + (1 + φ(x))dy2.

and describes the graviton field h̃µν(x, y) and the radion field φ(x) [77].

As the next step, the field hµν(x, y) is decomposed over an appropriate system of orthogonal and
normalized functions:

hµν(x, y) =

∞∑

n=0

h(n)
µν (x)

χn(y)

R
. (37)

The particles localized on the branes are:

Brane 1 (Planck):

– massless graviton h(0)
µν (x),

– massive KK gravitons h
(n)
µν (x) with

masses mn = βnke
−πkR, where

βn = 3.83, 7.02, 10.17, 13.32, . . . are
the roots of the Bessel function,

– massless radion φ(x).

Brane 2 (TeV):

– massless graviton h(0)
µν (x),

– massive KK gravitons h
(n)
µν (x) with

masses mn = βnk,
– massless radion φ(x).

The brane 2 is most interesting from the point of view of high energy physics phenomenology.
Because of the nontrivial warp factor e−2σ(πR), the Planck mass here is related to the fundamental 5-
dimensional scale M by

M2
Pl = e2kπR

∫ πR

−πR
dye−2k|y| =

M3

k

(
e2kπR − 1

)
. (38)

This way one obtains the solution of the hierarchy problem. The large value of the 4-dimensional Planck
mass is explained by an exponential wrap factor of geometrical origin, while the scale M stays small.

The general form of the interaction of the fields, emerging from the five-dimensional metric, with
the matter localized on the branes is given by the expression:

1

2M3/2

∫

B1

d4x hµν(x, 0)T (1)
µν +

1

2M3/2

∫

B2

d4x hµν(x, 0)T (2)
µν

√
−det γµν(πR)

Decomposing the field hµν(x, y) according to (37) we can write the interaction Lagrangian as

1

2

∫

B2

d4z

[
1

MPl
h(0)
µν (z)T (2)µν −

∞∑

n=1

wn
Λπ

h(n)
µν T

(2)µν − 1

Λπ
√

3
T (2)µ
µ

]
, (39)

where Λπ = MPle
−kπR ≈

√
M3/k and MPl is given by eq.(38) .

The massless graviton, as in the standard gravity, interacts with matter with the couplingM−1
Pl . The

interaction of the massive gravitons and radion is considerably stronger: their couplings are ∝ Λ−1
π ∼

1 TeV−1. If the first few massive KK gravitons have masses Mn ∼ 1TeV, then this leads to new effects
which in principle can be seen at future colliders. To have this situation, the fundamental mass scale M
and the parameter k are taken to be M ∼ k ∼ 1TeV.

HEP phenomenology

With the mass of the first KK mode M1 ∼ 1 TeV direct searches for the first KK graviton h(1) in
the resonance production at future colliders become quite possible. Signals of the graviton detection can
be [78]
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• an excess in the Drell-Yan processes qq̄ → h(1) → l+l−,
gg → h(1) → l+l−

• an excess in the dijet channel qq̄, gg → h(1) → qq̄, gg.

The plots of the exclusion regions for the LHC [78] are presented in Fig. 43.

Fig. 43: Exclusion region for resonance production of the first KK graviton excitation in the Drell-Yan (corre-
sponding to the diagonal lines) and dijet (represented by the bumpy curves) channels at the LHC. The dashed and
solid curves correspond to 10, 100 fb−1 of integrated luminosity, respectively (left). Drell-Yan production of the
KK graviton for the LHC (right) for M1 = 1500GeV and its subsequent tower states (right)

They show the exclusion region for resonance production of the first KK graviton excitation in the
Drell-Yan and dijet channels. The excluded region lies above and to the left of the curves.

The next plots present the behaviour of the cross-section of the Drell-Yan process as a function
of the invariant mass of the final leptons. It is shown for two values of M1 = 1500 GeV for the LHC
in Fig. 43 [78]. One can see the characteristic peaks in the cross section for one or a series of massive
graviton modes.

The possibility to detect the resonance production of the first massive graviton in the proton -
proton collisions pp → h(1) → e+e− at the LHC depends on the cross section. The main background
processes are pp → Z/γ∗ → e+e−. The estimated cross section of the process h(1) → e+e− as a
function of M1 in the RS model is shown in Fig. 44 [79]. One can see that the detection might be
possible if M1 ≤ 2080 GeV .

To be able to conclude that the observed resonance is a graviton and not, for example, a spin-1
Z ′ resonance or a similar particle, it is necessary to check that it is produced by a spin-2 intermediate
state. The spin of the intermediate state can be determined from the analysis of the angular distribution
function f(θ) of the process, where θ is the angle between the initial and final beams. This function is

Spin 0 => f(θ) = 1,

Spin 1 => f(θ) = 1 + cos2 θ,

Spin 2 =>

{
qq̄ → h(1) → e+e− f(θ) = 1− 3 cos2 θ + 4 cos4 θ,

gg → h(1) → e+e− f(θ) = 1− cos4 θ.

The analysis, carried out in Ref. [79], shows that angular distributions allow one to determine the spin of
the intermediate state with 90% C.L. for M1 ≤ 1720 GeV.

As the next step, it would be important to check the universality of the coupling of the first massive
graviton h(1) by studying various processes, e.g. pp → h(1) → l+l−, jets, γγ,W+W−, HH , etc. If it
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Fig. 44: The cross-section times branching ratio, σ · B, for h(1) → e+e− in the RS model and the smallest
detectable cross-section times the branching ratio, (σ · B)min [79] (left) and the summary of experimental and
theoretical constraints on the parameters M1 and η = (k/MPl)e

kπR (right) [78]. The allowed region lies as
indicated. The LHC sensitivity to graviton resonances in the Drell-Yan channel is represented by diagonal dashed
and solid curves, corresponding to 10 and 100 fb−1 of integrated luminosity, respectively

is kinematically feasible to produce higher KK modes, measuring the spacings of the spectrum will be
another strong indication in favour of the RS model.

The conclusion is [78] that with the integrated luminosity L = 100 fb−1 the LHC will be able to
cover the natural region of parameters (M1, η = (k/MPl)e

kπR) and, therefore, discover or exclude the
RS model. This is illustrated in the r.h.s. of Fig. 44.

We finish with a short summary of the main features of the ADD and RS models.

ADD Model.

1. The ADD model removes the MEW /MPl hierarchy, but replaces it by the hierarchy R−1

M ∼(
M
MPl

)2/d
∼ 10−

30
d . For d = 2 this relation gives R−1/M ∼ 10−15. This hierarchy is of a

different type and might be easier to understand or explain, perhaps with no need for SUSY;
2. The model predicts the modification of the Newton law at short distances, which may be checked

in precision experiments;
3. For M small enough high-energy physics effects, predicted by the model, can be discovered at

future collider experiments.

RS model

1. The model solves the MEW /MPl hierarchy problem without generating a new hierarchy.
2. A large part of the allowed range of parameters of the RS model will be studied in future collider

experiments, which will either discover new phenomena or exclude the most "natural" region of
its parameter space.

3. With a mechanism of radion stabilization added the model is quite viable. In this case, cosmolog-
ical scenarios, based on the RS model, are consistent without additional fine-tuning of parameters
(except the cosmological constant problem) [80].
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6 New Paradigm
The most radical way out of the SM is the change of the paradigm of local quantum field theory and
transition to non-local theories. And the first attempt of this kind is the string theory - the theory of
one-dimensional extended objects [65]. The natural development of this idea is the consideration of the
objects of an arbitrary dimension which are called branes (from membrane - two-dimensional surface).
The theory of these objects is in progress but some qualitative features are widely discussed.

6.1 String Theory
The string theory describes one-dimensional extended objects which in their motion swap a two-dimensional
world surface. The action for such objects is the straightforward generalization of the action for a point-

Fig. 45: From a point-like particle to a one-dimensional string

like particle

S = −m
∫

dτ

√
−dX

µ

dτ

dXν

dτ
ηµν ⇒ S = − 1

2πl2S

∫
d2σ

√
−det

(
dXµ

dσα
dXν

dσβ
ηµν

)
. (40)

The strings may be open and closed. The spectrum of string excitations

l2SM =
∑

n

Nn(+N̄n) ∈ Z, Nn = αµ−nα
µ
n, (41)

contains zero modes associated with observed particles and heavy massive modes. The lowest string
states are:

open string αµ−1|0 >→ Aµ →
∫
dDx
√−g tr(FµνFµν) this state is associated with photon

closed string αµ−1ᾱ
ν
−1|0 >→ gµν , ...→

∫
dDx
√−g R+ ... this state is associated with graviton

The spectrum of open strings contains spin 0, 1/2 and 1 states associated with gauge and matter fields,
the spectrum of closed strings contains spin 2 state associated with gravity. Besides the vibrational
modes, strings contain also the modes connected with the winding of the world line on a string. All
together these modes define the full spectrum of a string. Thus, for a string on a circle with radius R
one has the momentum states with M2 = m2/R2, the winding states with M2 = ω2R2/l4S and the full
spectrum M2 = m2/R2 + ω2R2/l4S . The string is characterized by a minimal size called the string
length lS =

√
α′. It is assumed that this size is close to the Planck length.

Quantum theory of strings is formulated in critical dimension of space-time where it is free from
conformal anomalies. For the bosonic string this critical dimension is equal to 26 and for the fermion
string to 10. Besides, the string spectrum may contain taxions, particles with negative mass squared. To
get rid of these states, one considers a supersymmetric fermion string which is free from taxions. Its
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spectrum starts from zero modes which are usually associated with point-like particles of local quantum
field theory.

To get from the string theory the effective 4-dimensional low energy theory containing massless
modes, one needs to perform compactification of extra dimensions. The properties of the compact 6-
dimensional manifold define the properties of the obtained low energy theory. Thus, the degeneracy of
the compact manifold in size and shape manifested in the existence of the scalar fields called moduli,
defines the values of the couplings, and different topologies define the symmetry group and the field
content of the 4-dimensional theory. The gravity action defined in D dimensions and the matter field
action defined on a p-brane

SD =
1

lD−2
S

∫
dDx
√−g R+ · · ·+ 1

lp−3
S

∫
dp+1x

√−γ tr(FαβFαβ) + · · · (42)

being compactified to 4-dimensions take the form

S4 =
V

lD−2
S︸ ︷︷ ︸

∫
d4x
√−g4 R4 + · · ·+ v

lp−3
S︸︷︷︸

∫
d4x
√−g4 tr(FµνF

µν) + · · · (43)

1
16πGN

1
16πg2YM

The existing multiple possibilities of multidimensional theories do not allow one at the moment to
choose the preferable scheme and to make definite predictions.

Phenomenologically, the most acceptable is the so-called heterotic string. In this case, one has the
unification of the gauge and the Higgs fields that allows in particular to predict the coupling constants
and get the top-quark mass of the order of 170 GeV. In this theory one also gets the cancellation of
anomalies which is possible for a fixed gauge group of associated GUT: SO(32) or E8 × E8. This
theory possesses the right-handed neutrino and the Majorana mass term, permits the proton decay. The
effective low energy theory gives the desired unification with gravity and contains the mechanism of
spontaneous supersymmetry breaking via effects of supergravity in the hidden sector.

The string theory contains not only strings but other extended objects of various dimensions. The
emerging picture of the world consists of branes, the open strings end up on the branes and the open
strings propagate in the bulk.

6.2 M-theory and the Theory of Everything
There are five types of consistent string theories free from conformal and gauge anomalies and of taxions
(type IIA, type IIB, type I, and two Heterotic) [81]. All five string theories are only consistent in 10
space-time dimensions, all five have world-sheet supersymmetry and lead to space-time-supersymmetry
in 10 dimensions. They are believed to be different vacua of a single unified "theory" called M −
theory. However, there is no adequate formulation of this theory. The other vacuum of M-theory is
11-dimensional supergravity (see Fig.46 [82]) It is assumed that the ultimate unified theory will be the
"theory of everything", i.e. will describe on a fundamental level all laws of Nature. The form of this
theory, however, is still unknown. It is not clear which degrees of freedom are fundamental. Moreover, is
is quite possible that there are different, dual to each other, descriptions of the same reality. The example
of such a duality is the so-called AdS/CFT correspondence when some characteristics of a theory can be
described as in the framework of the 4-dimensional conformal field theory and also in the framework of
classical gravity in the 5-dimensional de Sitter space [83]. Here we are still far from detailed predictions
which allow experimental tests.

7 Conclusion. The priority tasks of high energy physics
The successes of the Standard Model and the enormous efforts for its tests and search for new physics
at accelerators as well as in non-accelerator experiments define the future of high energy physics in the
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Fig. 46: The string landscape andM theory

coming years. The experiments at the Large Hadron Collider are at the edge of modern knowledge. The
success of these experiments is the success of all high energy physics. However, the peculiarity of the
modern situation is that there is no field where we may expect the guaranteed discovery. We make the
first steps into the unknown land and try to unveil the mystery. We have to be persistent and patient.
There are many theoretical models which suggest new physics at different scales. Which of these models
happens to be correct and adequate to Nature we have to find experimentally. Today we may talk about
priority tasks. They are:

– Investigation of the Higgs sector;
– Search for particles of Dark Matter;
– Study of the neutrino properties in non-accelerator experiments;
– Search for new physics (supersymmetry);
– The areas that were left behind come to the front: confinement, exotic hadrons, dense hadron

matter

Further development of high energy physics crucially depends on the results of these searches.
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Electroweak symmetry breaking after the Higgs discovery

S. Dawson
Brookhaven National Laboratory, Upton, New York, USA

Abstract
I give a pedagogical introduction to the physics of electroweak symmetry
breaking. Higgs boson production and decay at the LHC and the consistency of
the Higgs measurements with triviality arguments, vacuum stability, and pre-
cision electroweak measurements are discussed. Effective Lagrangian tech-
niques are used to understand potential deviations from the Standard Model
(SM) predictions.

Keywords
Lectures; Higgs boson; Oblique parameters; Triviality; Effective Field Theory

1 Introduction
The experimental discovery of the Higgs boson [1, 2] implies that the Weinberg Salam Standard Model
(SM) is a valid low energy theory at the weak scale. All current measurements are consistent with
this statement and physics in the electroweak symmetry breaking (EWSB) sector beyond that predicted
by the SM is highly constrained by current experimental results, both at the LHC and from precision
electroweak measurements. These lectures summarize the underlying theoretical framework of the SM
and its experimental predictions and discuss possible high scale extensions of the theory in terms of an
effective field theory.

Section 2 contains an introduction to the SM and Section 3 discusses theoretical restrictions on
the EWSB sector. Section 4 presents the basics of Higgs production and decay, along with a summary
of experimental results. Pedagogical discussions of the gluon fusion production rate at leading order
and the determination of the Higgs width are also found in Section 4. Extensions of the SM in terms
of an effective field theory are presented in Section 5 and Section 6 contains some conclusions. There
are many excellent reviews of Higgs physics and the reader is referred to them for additional details and
further references [3–9].

2 Weinberg-Salam Model
The Weinberg- Salam model is an SU(2)L×U(1)Y gauge theory containing three SU(2)L gauge bosons,
W I
µ , I = 1, 2, 3, and one U(1)Y gauge boson, Bµ, with kinetic energy terms,

LKE = −1

4
W I
µνW

µνI − 1

4
BµνB

µν , (1)

where the index I is summed over and,

W I
µν = ∂νW

I
µ − ∂µW I

ν + gεIJKW J
µW

K
ν ,

Bµν = ∂νBµ − ∂µBν . (2)

The SU(2)L and U(1)Y coupling constants are g and g′, respectively. Coupled to the gauge fields is a
complex scalar SU(2) doublet, Φ,

Φ =

(
φ+

φ0

)
. (3)
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The scalar potential is given by,

V (Φ) = µ2 | Φ†Φ | +λ
(
| Φ†Φ |

)2

, (4)

where λ > 0.

The state of minimum energy for µ2 < 0 is not at φ0 = 0 and the scalar field develops a VEV1.
The direction of the minimum in SU(2)L space is not determined, since the potential depends only on
the combination Φ†Φ and we arbitrarily choose

〈Φ〉 ≡ 1√
2

(
0
v

)
. (5)

With this choice, the electromagnetic charge is,2

Q =
(τ3 + Y )

2
, (6)

where we assign hypercharge Y = 1 to Φ.

Therefore,
Q〈Φ〉 = 0 (7)

and electromagnetism is unbroken by the scalar VEV. The VEV of Equation (5) yields the desired
symmetry breaking pattern,

SU(2)L × U(1)Y → U(1)EM . (8)

The scalar contribution to the Lagrangian is,

Ls = (DµΦ)†(DµΦ)− V (Φ) , (9)

where3

Dµ = ∂µ + i
g

2
τ ·Wµ + i

g′

2
BµY. (10)

In unitary gauge there are no Goldstone bosons and only the physical Higgs scalar remains in the spec-
trum after spontaneous symmetry breaking. In unitary gauge,

Φ =
1√
2

(
0

v + h

)
, (11)

which gives the contribution to the gauge boson masses from the scalar kinetic energy term of Equa-
tion (9),

M2 ∼ 1

2
(0, v)

(
1

2
gτ ·Wµ +

1

2
g′Bµ

)2(
0
v

)
. (12)

The physical gauge fields are two charged fields, W±, and two neutral gauge bosons, Z and γ.

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ)

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′ 2

≡ − sin θWBµ + cos θWW
3
µ

1There is no mechanism or motivation for determining the sign(µ2) in the SM.
2The τI are the Pauli matrices with Tr(τIτJ) = 2δIJ .
3Different choices for the gauge kinetic energy and the covariant derivative depend on whether g and g′ are chosen positive

or negative. There are no physical consequences of this choice.
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Aµ =
gBµ + g′W 3

µ√
g2 + g′ 2

≡ cos θWBµ + sin θWW
3
µ . (13)

Equation (13) defines a mixing angle,

sin θW ≡
g′√

g2 + g′ 2
. (14)

Since the massless photon must couple with electromagnetic strength, e, the coupling constants define
the weak mixing angle θW ,

e = g sin θW ≡ gsW
e = g′ cos θW ≡ g′cW . (15)

The gauge bosons obtain masses from the Higgs mechanism, as demonstrated in Equation (12):

M2
W =

1

4
g2v2, M2

Z =
1

4
(g2 + g′ 2)v2, MA = 0 . (16)

If we go to a gauge other than unitary gauge, there are Goldstone bosons in the spectrum and the
scalar field can be parameterized,

Φ =
1√
2
ei
ω·τ
2v

(
0

v + h

)
. (17)

In the Standard Model, there are three Goldstone bosons, ~ω = (ω±, z), with masses MW and MZ in the
Feynman gauge.

Fermions can easily be included in the theory. We write the fermions in terms of their left- and
right-handed projections,

ψL,R =
1

2
(1∓ γ5)ψ . (18)

From the four-Fermi theory of weak interactions [9], we know experimentally that the W -boson couples
only to left-handed fermions and so we construct the SU(2)L doublet,

LL =

(
νL
eL

)
. (19)

From Equation (6), the hypercharge of the lepton doublet must be YL = −1. In the limit where the
neutrino is massless, it can have only one helicity state which is taken to be νL. Including neutrino
masses requires interactions beyond the standard construction of the Weinberg-Salam model4. The SM
is therefore constructed with no right-handed neutrinos. Further, we assume that right-handed fields do
not interact with the W boson, and so the right-handed electron, eR, must be an SU(2)L singlet with
YeR = −2. Using these hypercharge assignments, the leptons can be coupled in a gauge invariant manner
to the SU(2)L × U(1)Y gauge fields,

Llepton = ieRγ
µ

(
∂µ + i

g′

2
YeBµ

)
eR + iLLγ

µ

(
∂µ + i

g

2
τ ·Wµ + i

g′

2
YLBµ

)
LL . (20)

All of the known fermions can be accommodated in the Standard Model in this fashion. The SU(2)L
and U(1)Y charge assignments of the first generation of fermions are given in Table 1. The quantum
numbers of the 2nd and 3rd generation are identical to those of first generation.

4A pedagogical introduction to ν masses can be found in Ref. [10].
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Field SU(3) SU(2)L U(1)Y

QL =

(
uL

dL

)
3 2 1

3

uR 3 1 4
3

dR 3 1 − 2
3

LL =

(
νL

eL

)
1 2 − 1

eR 1 1 − 2

Φ =

(
φ+

φ0

)
1 2 1

Table 1: Quantum numbers of the SM fermions.

A fermion mass term takes the form

Lmass = −mψψ = −m
(
ψLψR + ψRψL

)
. (21)

As is obvious from Table 1, the left-and right-handed fermions transform differently under SU(2)L and
U(1)Y gauge transformations and so gauge invariance forbids a term like Equation (21). The Higgs
boson, however, can couple in a gauge invariant fashion to the down quarks,

Ld = −YdQLΦdR + h.c. , (22)

After the Higgs obtains a VEV, we have the effective coupling,

−Yd
1√
2

(uL, dL)

(
0

v + h

)
dR + h.c. (23)

which can be seen to yield a mass term for the down quark,

Yd =
md

√
2

v
. (24)

In order to generate a mass term for the up-type quarks we use the fact that

Φ̃ ≡ iτ2Φ∗ =

(
φ0

−φ−
)

(25)

is an SU(2)L doublet, and write the SU(2)L invariant coupling

Lu = −YuQLΦ̃uR + h.c. (26)

which generates a mass term for the up quark. Similar couplings can be used to generate mass terms for
the charged leptons. Since the neutrino has no right handed partner in the SM, it remains massless.

For the multi-family case, the Yukawa couplings, Yd and Yu, become NF ×NF matrices (where
NF is the number of families). Since the fermion mass matrices and Yukawa matrices are proportional,
the interactions of the Higgs boson with the fermion mass eigenstates are flavor diagonal and the Higgs
boson does not mediate flavor changing interactions. This is an important prediction of the SM.
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The parameter v can be found from the charged current for µ decay, µ → eνeνµ, which is mea-
sured very accurately to be GF = 1.16638 × 10−5 GeV −2. Since the momentum carried by the W
boson is of order mµ it can be neglected in comparison with MW and we make the identification,

GF√
2

=
g2

8M2
W

=
1

2v2
, (27)

which gives the result
v = (

√
2GF )−1/2 = 246 GeV . (28)

One of the most important points about the Higgs mechanism is that all of the couplings of the
Higgs boson to fermions and gauge bosons are completely determined in terms of coupling constants and
fermion masses. A complete set of Feynman rules can be found in Ref. [5]. The potential of Equation
(4) had two free parameters, µ and λ, which can be traded for,

v2 = −µ
2

2λ
m2
h = 2v2λ . (29)

The scalar potential is now,

V =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
. (30)

The self-interactions of the Higgs boson are determined in terms of the Higgs mass. There are no remain-
ing adjustable parameters and so Higgs production and decay processes can be computed unambiguously
in terms of the Higgs mass.

3 Theoretical Constraints
3.1 Bounds from Precision Measurements
The Higgs boson enters into one loop radiative corrections in the Standard Model and precision elec-
troweak measurements test the consistency of the theory5 . In the electroweak sector of the SM, there are
four fundamental parameters, the SU(2)L × U(1)Y gauge coupling constants, g and g′, as well as the
two parameters of the Higgs potential, which are usually taken to be the vacuum expectation value of the
Higgs boson, v, and the Higgs mass, mh. Once these parameters are fixed, all other physical quantities
can be derived in terms of them (and of course the fermion masses and CKM mixing parameters, along
with the strong coupling constant αs). Equivalently, the muon decay constant, Gµ, the Z-boson mass,
MZ , and the fine structure constant, α, can be used as input parameters. Experimentally, the measured
values for these input parameters are [11, 12],

Gµ = 1.16638(1)× 10−5 GeV −2

MZ = 91.1876(21) GeV

α−1 = 137.035999679(94)

mh = 125.09± .21(stat)± .11(syst) GeV . (31)

The W boson mass is thus a prediction of the theory and is defined through muon decay,

M2
W =

πα√
2Gµ(1−M2

W /M
2
Z)

M2
W =

M2
Z

2

{
1 +

√
1− 4πα√

2GµM2
Z

}
. (32)

5An introductory review of precision measurements in the SM can be found in Ref. [13].
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At tree level, the SM prediction from Equation (32) is,

MW (tree) = 79.829 GeV , (33)

in slight disagreement with the measured value [11],

MW (experiment) = 80.379± 0.012 GeV . (34)

In order to obtain good agreement between theory and the experimental data, it is crucial to include
radiative corrections. The prediction for MW can be written as [14],

M2
W =

πα√
2Gµs2

W

[
1 + ∆rSM

]
, (35)

where ∆rSM summarizes the radiative corrections. The dependence on the top quark mass, mt, is
particularly significant as ∆rSM depends on mt quadratically,

∆rtSM = −Gµ√
2

Nc

8π2

(
c2
W

s2
W

)
m2
t + log(mt) terms , (36)

where Nc = 3 is the number of colors. The dependence on mh is logarithmic,

∆rhSM ∼ α

πs2
W

11

48
log

(
m2
h

M2
Z

)
+O

(
m2
h

M2
Z

,
v4

Λ4

)
. (37)

The top quark does not decouple from the theory even at energies far above the top quark mass. This is
because the top quark coupling to the Higgs boson is proportional to mt.

The agreement between the radiatively corrected prediction for the W mass given by Equation
(35) with the measured value is a strong test of the theory. In a similar fashion, the full set of electroweak
data can be used to test the self consistency of the theory, as demonstrated in Figure 1 [15]. Similar
studies have been performed by the GFITTER collaboration [16]. (The most restrictive data points are
the measurements of the Zbb coupling and the W boson mass.) When the experimental values of MW ,
mt, and mh are omitted, the fit is in good agreement with the directly measured values of the masses.
Note that the fit excludes a large (∼ 100′s of GeV ) value of mh and so even before the Higgs boson was
discovered, we knew that if there were no new physics contributions to the predictions for electroweak
quantities such as MW , the Higgs boson could not be too heavy.

3.2 Oblique Parameters
Extensions of the SM with modified Higgs sectors are significantly restricted by the requirement of
consistency with the electroweak measurements. A simple way to examine whether a theory with a
complicated Higgs sector is consistent with electroweak experiments is to use the oblique parameters.
Using the oblique parameters to obtain limits on BSM physics assumes that the dominant contributions
resulting from the expanded theory are to the gauge boson 2-point functions [17, 18]. Combinations of
the 2− point functions define S, T and U . New physics effects are determined by subtracting the SM
contribution, e.g. ∆S ≡ SBSM − SSM .

A simple example is a model with a a real scalar singlet, S, added to the SM. After imposing a Z2

symmetry under which S → −S, the most general scalar potential is [19]

V = −µ2 Φ†Φ−m2S2 + λ(Φ†Φ)2 +
a2

2
Φ†ΦS2 +

b4
4
S4. (38)

After spontaneous symmetry breaking, both Φ and S obtain VEVs and the mass eigenstates h and H are
a mixture of S and Φ (s ≡ 〈S〉),

(
h
H

)
=

(
cosα − sinα
sinα cosα

)( √
2φ0 − v
S − s

)
, (39)
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Fig. 1: Experimental limits on MW and mt from precision electroweak measurements. The straight bands are the
direct measurements of MW and mt [15].

with physical masses, mh and MH . The singlet cannot couple directly to fermions or gauge bosons, so
the only physical effect on single Higgs production is through the mixing of Equation (39). The mixing
affects the SM-like Higgs couplings to both fermions and gauge bosons in an identical fashion and all
SM couplings are suppressed by the factor cosα. This model is particularly simple since it can be studied
in terms of MH and the mixing angle α. For mh,MH >> MW ,MZ , the contributions to the oblique
parameters are,

∆S =
1

12π
sin2 α log

(
M2
H

m2
h

)

∆T = − 3

16πc2
W

sin2 α log

(
M2
H

mh
2

)

∆U = 0 . (40)

and for any given value of MH , an upper limit on sinα can be determined [20]. Limits from the oblique
parameters are an important tool in understanding what BSM models are allowed experimentally and in
restricting the parameters of the models.

3.3 Restrictions from Triviality
Theoretical bounds on the Higgs boson mass can be deduced on the grounds of triviality, which can be
summarized as the requirement that the Higgs quartic coupling remain finite at high energy scales. If the
quartic coupling becomes infinite, the theory is no longer perturbative, while if the quartic coupling goes
to zero, the theory is non-interacting. The Higgs quartic coupling, λ, changes with the effective energy
scale, Λ, due to the self interactions of the scalar field:

dλ

dt
=

3λ2

4π2
, (41)
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Fig. 2: Dependence of the Higgs quartic coupling on the renormalization scale [21].

where t ≡ log(Λ2/v2). In the SM, however, there are also contributions due to gauge boson and fermion
loops6. Including the top quark contribution, Equation (42) becomes,

dλ

dt
=

3

4π2

{
λ2 − Y 2

t λ− Y 4
t

}
, (42)

where Yt = mt/v. For small λ ( small mh), the Y 4
t term dominates and the quartic coupling decreases

with energy,

λ(Λ) ∼ λ(v)− 3Y 4
t

4π2
log

(
Λ2

v2

)
. (43)

The scaling of λ has been performed to 2− loops [21], including contributions from gauge and Yukawa
couplings and the result is shown in Figure 2. The quartic coupling becomes negative at a high scale that
is quite sensitive to mt and αs, suggesting that at this scale some new physics is required to force λ to be
positive which is need in order for the potential to be bounded from below.

4 Higgs Production and Decay
In this section we review the SM rates for Higgs production and decay. Numerical values, including the
most precisely known higher order calculations, have been tabulated by the LHC Higgs cross section
working group [22].

4.1 Higgs Decays
Expressions for the SM Higgs decay widths at leading order can be found in Ref. [5], and the QCD cor-
rected rates, with references to the original literature, are given in Refs. [4, 8]. The QCD NLO corrected
decay rates can be found using the public code, HDECAY [23].

6We neglect the gauge contributions here.
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4.1.1 h → ff

The Higgs couplings to fermions are proportional to fermion mass and the lowest order width for the
Higgs decay to fermions of mass mf is,

Γ(h→ ff) =
GFm

2
fNci

4
√

2π
mhβ

3
F , (44)

where βF ≡
√

1− 4m2
f/m

2
h is the velocity of the final state fermions and Nci = 1(3) for charged

leptons (fermions). The largest fermion decay channel is h→ bb, which receives large QCD corrections.
A significant portion of the QCD corrections can be accounted for by expressing the decay width in terms
of a running quark mass, mf (µ), evaluated at the scale µ = mh. The QCD corrected decay width can
then be approximated as [24, 25],

Γ(h→ qq) =
3GF

4
√

2π
m2
q(m

2
h)mhβ

3
q

(
1 + 5.67

αs(m
2
h)

π
+ · · ·

)
, (45)

where αs(m2
h) is defined in the MS scheme with 5 flavors. In leading log QCD, the running of the b

quark mass is,

mb(µ
2) = m

[
αs(m

2)

αs(µ2)

](−12/23){
1 +O(α2

s)

}
, (46)

where mb(m
2) ≡ m implies that the running mass at the position of the propagator pole is equal to the

location of the pole. For mb(m
2
b) = 4.18 GeV , this yields an effective value mb(mh = 125 GeV ) |LL=

2.8 GeV (at NLL, mb(mh = 125 GeV ) |NLL= 2.7 GeV ). Inserting the QCD corrected mass into the
expression for the width thus leads to a suppression of the width by ∼ .4. Using the running b mass
absorbs the large logarithms of the form log(m2

h/m
2
b) and is important for numerical accuracy. The

electroweak radiative corrections to h→ ff amount to only a few percent correction [26].

4.1.2 h → WW,ZZ

The Higgs boson can also decay to gauge boson pairs. At tree level, the decays h → WW ∗ and h →
ZZ∗ are possible (with one of the gauge bosons off-shell), while at one-loop the decays h → gg, γγ,
and γZ occur.

The decay width for the off-shell decay, h→ ZZ∗ → f1(p1)f2(p2)Z(p3), is,

Γ =

∫ (mh−MZ)2

0
dq2

∫
dm2

23

| A |2
256π3m3

h

, (47)

where mij = (pi + pj)
2, m2

12 ≡ q2, and m2
12 + m2

23 + m2
13 = m2

h + M2
Z , λ(m2

h,M
2
Z , q

2) ≡ q4 −
2q2(m2

h+M2
Z) + (m2

h−M2
Z)2, and m2

23 |max,min≡ 1
2

(
m2
h+M2

Z − q2±
√
λ

)
. The amplitude-squared

is,

| A(h→ Zff) |2 = 32 (g 2
L + g2

R)G2
F M

4
Z

·
[

2M2
Zq

2 −m2
13q

2 −m2
hM

2
Z +m2

13M
2
Z +m2

13m
2
h −m4

13

(q2 −M2
Z)2 + Γ2

ZM
2
Z

]
, (48)

with gLf = T3f −Qfs2
W , gRf = −Qfs2

W , and T3 = ±1
2 . We see that the amplitude is peaked at low q2.

Integrating over dm2
23,

dΓ

dq2
(h→ Zff) = (g 2

L + g2
R)G2

F

√
λ(m2

h,M
2
Z , q

2)
M4
Z

48π3m3
h
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·
[

(12M2
Zq

2 + λ(m2
h,M

2
Z , q

2))

(q2 −M2
Z)2 + Γ2

ZM
2
Z

]
. (49)

The result for h → Wff ′ can be found by making the appropriate redefinitions of the fermion - gauge
boson couplings.

Performing the q2 integral and summing over the final state fermions [27],

Γ(h→WW ∗) =
g4mh

512π3
F

(
MW

mh

)

Γ(h→ ZZ∗) =
g4mh

2048 cos4
W π3

(
7− 40

3
s2
W +

160

9
s4
W

)
F

(
MZ

mh

)
, (50)

where

F (x) = | 1− x2 |
(

47

2
x2 − 13

2
+

1

x2

)

+3(1− 6x2 + 4x4) | lnx | +3(1− 8x2 + 20x4)√
4x2 − 1

cos−1

(
3x2 − 1

2x3

)
. (51)

The NLO QCD and electroweak corrections to the off-shell decays, h → V ∗V ∗ →4-fermions , V =
(W,Z), are implemented in the public code, PROPHECY4f [28].

4.1.3 h → gg

The decay of the Higgs boson to gluons only arises through fermion loops in the SM and is sensitive to
new colored particles that interact with the Higgs,

Γ(h→ gg) =
GFα

2
sm

3
h

64
√

2π3
|
∑

q

F1/2(τq) |2 , (52)

where τq ≡ 4m2
q/m

2
h and F1/2(τq) is defined to be,

F1/2(τq) ≡ −2τq

[
1 + (1− τq)f(τq)

]
. (53)

The function f(τq) is given by,

f(τq) =





[
sin−1

(√
1/τq

)]2

, if τq ≥ 1

−1
4

[
log

(
x+
x−

)
− iπ

]2

, if τq < 1,

(54)

with
x± = 1±

√
1− τq. (55)

In the limit in which the quark mass is much less than the Higgs boson mass,

F1/2 →
2m2

q

m2
h

log2

(
mq

mh

)
. (56)

On the other hand, for a heavy quark, τq →∞, and F1/2(τq) approaches a constant,

F1/2 → −
4

3
. (57)

Equations (56) and (57) make it clear that the top quark loop is the dominant contribution. QCD correc-
tions to the decay h→ gg are known at NLO for a finite top quark mass and increase the rate by roughly
60% [29].
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Fig. 3: SM Higgs Branching ratios (LHS) and total width for a SM-like Higgs boson of arbitrary mass (RHS) [22].
In this figure, H is the SM Higgs boson.

4.1.4 h → γγ

The decay h→ γγ arises from fermion and W loops and is an important mode for Higgs measurements
at the LHC, despite the smallness of the branching ratio. At lowest order the width is, [5]

Γ(h→ γγ) =
α2GF

128
√

2π3
m3
h |
∑

i

NciQ
2
iFi(τi) |2 , (58)

where the sum is over fermions and W± bosons with F1/2(τq) given in Equation (53), and

FW (τW ) = 2 + 3τW [1 + (2− τW )f(τW )] , (59)

with τW = 4M2
W /m

2
h, Nci = 1(3) for leptons (quarks), and Qi is the electric charge in units of e. In the

(unphysical) limit τW →∞, FW → 7 and we see that the top quark and W contributions have opposite
signs. The decay h → γγ is therefore sensitive to the sign of the top quark Yukawa coupling through
the interference of the W and t loops. Similarly, the rate for h → Zγ receives contributions from both
fermions and the W boson. The analytic formula is given in [5] and the Zγ width is quite small.

The Higgs branching ratios are shown in Figure 3 for a SM Higgs boson of arbitrary mass [22]. The
width of the curves is an estimate of the theoretical uncertainties on the branching ratios. The branching
ratios assume SM couplings and no new decay channels and include all known radiative corrections [22].
Also shown in Figure 3 is the Higgs total decay width as a function of Higgs mass. For mh = 125 GeV ,
the total width is very narrow, Γh = 4 MeV .

4.2 Higgs Production in Hadronic Collisions
At the LHC, the dominant production mechanisms are gluon fusion, followed by vector boson fusion,
shown in Figure 4. The associated production mechanisms of the Higgs with vector bosons or top
quarks have smaller rates, but these channels are theoretically important and are shown in Figure 5.
It is immediately apparent that gluon fusion and tth production are sensitive to the top quark Yukawa
coupling, while vector boson fusion and associated hV , V = (W,Z), production probe the gauge-Higgs
couplings.

The total rates for Higgs production in various channels are shown on the LHS of Figure 6 for
arbitrary Higgs mass at 13 TeV (LHS) and as a function of center-of-mass energy (RHS) for the physics
Higgs mass. The curves include the most up-to-date theoretical calculations, and the width of the curves
represents an estimate of the uncertainties [30]. We will discuss each production channel in turn in this
section.
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Fig. 6: Total Higgs production cross sections [30]. In this figure, H is the SM Higgs boson.

4.2.1 gg → h

The primary production mechanism for a Higgs boson in hadronic collisions is through the couplings to
heavy fermions, gg → h, which is shown on the LHS of Figure 4. This process is dominated by the top
quark loop and the loop with a bottom quark contributes roughly −5% to the SM cross section.

The lowest order (LO) amplitude for gA,µ(p) + gB,ν(q)→ h from a quark of mass mq in the loop
is,

Aµν(gAgB → h) =
αs

4πv
δAB

(
gµν

m2
h

2
− pνqµ

)
F1/2(τq)εµ(p)εν(q)
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→ − αs
3πv

δAB

(
gµν

m2
h

2
− pνqµ

)
εµ(p)εν(q) if mq >> mh . (60)

The partonic cross section can be found from the general resonance formula,

σ̂(gg → h) =
16π2

mh
(2J + 1)

1

64
· 1

4
· 2Γ(h→ gg)δ(s−m2

h) , (61)

where the factors of 1
64 and 1

4 are the color and spin averages, J = 0 is the Higgs spin, s is the gg partonic
sub-energy, and the factor of 2 undoes the identical particle factor of 1

2 in the decay width Γ(h → gg).
The lowest order partonic cross section for gg → h is,

σ̂(gg → h) =
α2
s

1024πv2
|
∑

q

F1/2(τq) |2 δ
(

1− s

m2
h

)

≡ σ̂0(gg → h)δ

(
1− s

m2
h

)
. (62)

In the heavy quark limit, the cross section is independent of the top quark mass and becomes a constant,

σ̂0(gg → h) ∼ α2
s

576πv2
. (63)

The heavy fermions do not decouple at high energy and the gluon fusion rate essentially counts the
number of SM-like chiral quarks.

The Higgs boson production cross section at a hadron collider can be found by integrating the
partonic cross section, σ0(pp→ h), with the gluon parton distribution functions, g(x, µ),

σ(pp→ h) = σ̂0z

∫ 1

z

dx

x
g(x, µ)g

(
z

x
, µ

)
, (64)

where σ0 is given in Equation (62), z ≡ m2
h/S, µ is the factorization scale and S is the hadronic center

of mass energy. It is particularly interesting to consider the theoretical accuracy at N3LO [31],

σ(pp→ h)[13 TeV] = 48.58+4.6%
−6.7%(theory)± 3.2%(PDF + αs) , (65)

where the theory uncertainty arises predominantly from the scale choice and the PDF+αs uncertainty is
the PDF and correlated uncertainty on αs.

The measured Higgs rate immediately rules out the possibility of a 4th generation of SM chiral
fermions. Imagine that there are heavy fermions, T and B, with identical quantum numbers as the SM
top and bottom quarks . The new fermions would contribute to Higgs production from gluon fusion as
on the LHS of Figure 4. From Equation (63), we would have,

σ̂0(gg → h) → α2
s

576πv2

[
1 + 1 + 1

]2

→ 9σ̂0(SM) , (66)

where the factors in the square bracket represent the contributions of the SM t, T and B. This is obviously
excluded by the measured rate for gluon fusion Higgs production, which is in good agreement with the
SM prediction.

The tensor structure of Equation (60) is exactly that required for the production of a spin-0 particle
from 2-gluons with momentum, g(k1) and g(k2). Starting from a GµνGµν term in the Lagrangian and
considering only the Abelian contributions for now,

GµνG
µν → (∂µGν − ∂νGµ)(∂µGν − ∂νGµ) . (67)
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Fig. 7: QCD corrected rate for gluon fusion as a function of the factorization and renormalization scale [31].

Making the replacement ∂µ → ikµ,

GµνG
µν → −(k1µG1ν − k1νG1µ)(kµ2G

ν
2 − kν2Gµ2 )

= −2

(
k1 · k2G1 ·G2 − k1 ·G2k2 ·G1

)

= −2k1 · k2G1µG2ν

[
gµν − kν1k

µ
2

k1 · k2

]
. (68)

Comparing Equations (60) and (68)7 suggests that the heavy quark limit for the gluon fusion production
of a Higgs boson can be obtained from the effective dimension-5 Lagrangian

LEFT =
αs

12π

h

v
GAµνG

µνA . (69)

The effective Lagrangian of Equation (69) has been used to calculate the QCD corrections to
gluon fusion to NLO, NNLO, and N3LO [31]. The result is shown in Figure 7. Note that there is a large
correction (approximately a factor of 2) going from LO to NLO. The corrections at each order remain
sizable and the dependence on the factorization scale, µ is reduced at higher order.

4.2.2 pT distribution of Higgs Bosons
At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs is first generated
by the process, gg → gh, which is an NLO contribution to the gluon fusion process [32]. As pT → 0,
the partonic cross section for Higgs plus jet production diverges as 1/p2

T ,

dσ̂

dt
(gg → gh) = σ̂0

3αs
2π

{
1

p2
T

[(
1− m2

h

s

)4

+ 1 +

(
m2
h

s

)4]

−4

s

(
1− m2

h

s

)2

+
2p2
T

s

}
, (70)

where σ̂0 is the LO gg → h cross section given in Equation (62), and s, t and u are the partonic
Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Figure 8, where the
contributions from the gg and qg, qg initial states are shown separately. Also shown is the mt → ∞
limit of the spectrum that is derived from the effective Lagrangian of Equation (69) . The effective
Lagrangian approximation fails around pT ∼ 2mt. In this process, there are several distinct momentum
scales (pT ,mh,mt), as opposed to gluon fusion where there is only a single scale (mh/mt) at LO. The

7The extra factor of 1
2

comes from the neglected color factor, Tr(TATB) = 1
2
δAB .
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expansion in mh
mt

for gg → gh receives corrections of O( s
m2
t
,
p2T
m2
t
) and for pT >∼ 2mt, the EFT large top

quark mass expansion cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been calculated
[33–36] using the mt →∞ approximation. The lowest order result of Equation (70) is then reweighted
by a K factor derived in the mt → ∞ limit for each kinematic bin. The effects of the higher order
corrections are significant and increase the rate by a factor of around 1.8 as shown in Figure 9. The
singularity of the LO result at pT = 0 is clearly visible in Figure 9 and we note that after the inclusion
of the NLO corrections, the pT spectrum no longer diverges as pT → 0.

The terms which are singular as pT → 0 can be isolated and the integrals performed explicitly.
Considering only the gg initial state [37],

dσ

dp2
Tdy

(pp→ gh) |p2T→0∼ σ̂0
3αs
2π

1

p2
T

[
6 log

(
m2
h

p2
T

)
− 2β0

]
g(zey)g(ze−y) + ... (71)

where z ≡ m2
h/S, β0 = (33 − 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly when

pT << mh, the terms containing the logarithms resulting from soft gluon emission can give a large
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Fig. 11: Contributions to gg → ZZ → 4l. The dominant contributions to the triangle and box diagrams are from
the top quark.

numerical contribution. The logarithms of the form αns logm(m2
h/p

2
T ) can be resummed [37, 38] to

improve the theoretical accuracy in the regime pT → 0 [39].

4.2.3 Measuring the Higgs width with gg → h → ZZ

Gluon fusion with the subsequent Higgs decay to ZZ → 4 leptons or γγ were the Higgs discovery
channels. The h → ZZ → 4 lepton signals at 13 TeV are shown in Figure 10 [40, 41] and the Higgs
resonance is clearly visible. Making a direct measurement of the Higgs width by fitting a Breit-Wigner
function to the resonance shape is not possible since the detector resolution is O(1 − 2) GeV , much
larger than the Higgs width, Γh ∼ 4 MeV .

A clever idea uses the properties of the longitudinal Z polarizations [42,43]. Consider the process
gg → ZZ → 4l shown in Figure 11. The Higgs contribution is shown on the LHS of Figure 11 and the
partonic cross section from the Higgs contribution alone is generically given by,

σ̂(gg → h→ ZZ) ∼
∫
ds
| A(gg → h) |2| A(h→ ZZ) |2

(s−m2
h)2 + Γ2

hm
2
h

. (72)

We allow the effective gg → h and h→ ZZ → couplings to be scaled from the SM values by arbitrary
factors κg(s) and κZ(s), where we explicitly note that the κ factors can in principle depend on scale,

| A(gg → h) |2| A(h→ ZZ) |2∼ κ2
g(s)κ

2
Z(s) | εZ1 · εZ2 |2 , (73)

where εµZi are the Z polarization vectors.

The interesting observation is that Equation (72) behaves very differently above the Higgs reso-
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nance and near the resonance. Above the resonance, s >> m2
h, Equation (72) becomes,

σ̂(gg → h→ ZZ)above ∼
∫
ds
κ2
g(s)κ

2
Z(s) | εZ1 · εZ2 |2

s2
. (74)

For transverse polarizations, nothing particularly interesting happens, but because of the electroweak
symmetry breaking the longitudinally polarized Z bosons have a novel feature. Defining the momenta
of the outgoing Z bosons as pZ1 and pZ2 and remembering that the longitudinal polarization is approxi-
mately given by,

εµL(pZ) ∼ pµZ
MZ

+O
(
M2
Z

s

)
, (75)

we observe that εL · εL ∼ pZ1·pZ2

M2
Z
∼ s

M2
Z

. Equation (74) has the approximate form for s >> m2
h,

σ̂(gg → h→ ZLZL)above ∼
∫
ds
κ2
g(s)κ

2
Z(s)

M4
Z

. (76)

We note that Equation (76) exhibits no dependence on the Higgs width.

Near the Higgs resonance, we can use the narrow width approximation, which amounts to the
replacement,

1

(s−m2
h)2 + (mhΓh)2

→ π

mhΓh
δ(s−m2

h) (77)

and Equation (72) is approximately,

σ̂(gg → h→ ZZ)on ∼
κ2
g(m

2
h)κ2

Z(m2
h)

mhΓh
. (78)

The idea is that by measuring the gg → h → ZZ rate above and on the resonance, information
can be extracted about the Higgs width. Assuming the κ factors do not depend on scale,

Γh ∼
σ̂above

σ̂on
. (79)

At 8 TeV , approximately 15% of the cross section has m4l > 140 GeV , so this is a promising
idea. If the κ factors have an energy dependence, they do not cancel in Equation (79) and the interpre-
tation of the measurement becomes more complicated.

Of course, a real calculation needs to include both the diagrams of Figure 11, along with the
interference, and this has been done by several groups with results shown in Figure 12. The importance
of including the interference terms is apparent, but the long tail at high m4l (shown in red) is clear.
ATLAS and CMS have used this technique to place limits on the Higgs width [44, 45],

Γh <∼ (4− 5)ΓSMh . (80)

There are some big assumptions in this extraction of the Higgs width, the most obvious of which
is the assumption that the κ factors are the same on and off the Higgs resonance peak. This is clearly a
false assumption, since in a quantum field theory all couplings run. If there are anomalous hZZ (or hgg)
couplings, than the running could be changed significantly [46, 47]. For example, a contribution to the
EFT of the form,

L ∼ cZ
Λ2

h

v
ZµνZ

µν (81)
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Fig. 12: Contributions to gg → ZZ → 4l at 8 TeV . The Higgs contributions are shown in red, while the total rate
from gluon fusion including interference is given in magenta [49].

would give contributions of O
(

s
Λ2

)
and would cause m4l to grow above the peak, and would invalidate

the extraction of Γh. Additional colored particles in the ggh loop would also change the interpretation
of the gg → ZZ → 4 lepton result as a measurement of the Higgs width [48].

It is worth noting that an e+e− collider with an energy of
√
s = 500 GeV can make a 5%

measurement of Γh with an integrated luminosity of 500 GeV [50]. First the measurement of e+e− →
Zh is made by tagging the Zh events where the recoil mass is consistent with a Higgs boson. This is
done using conservation of momenta and determines σ(Zh). Next we can measure the h → ZZ rate to
determine BR(h→ ZZ). The Higgs width is then determined in a model independent fashion,

Γh = Γ(h→ ZZ)BR(h→ ZZ)

∼ σ(Zh)

BR(h→ ZZ)
. (82)

4.2.4 Vector Boson Scattering
The vector boson scattering (VBS) process is shown on the RHS of Figure 4. It can be thought of as
2 incoming quarks each radiating a W or Z boson, which then form a Higgs. Vector boson fusion
also offers the opportunity to observe the 2 → 2 scattering process, V V → V V , (V = Z,W ), which
is extremely sensitive to new physics in the electroweak sector. The V V → V V sub-process plays a
special role in Higgs physics since the Higgs exchange contributions unitarize the scattering amplitude.

VBS production of a Higgs occurs through the purely electroweak process qq′ → qq′h which has
a distinctive experimental signature and vanishes in the limit v = 0. The outgoing jets are peaked in
the forward and backward regions and can be used to tag the VBF event. This can easily be seen by
considering the top leg of the RHS of Figure 4:

q(p)→ q′(p′)V (k) . (83)

In the lab frame,

p ≡ E(1, 0, 0, 1)

p′ ≡ E′(1, 0, sin θ, cos θ) . (84)

The integral over the final state phase space for the VBS scattering cross section has a generic contribu-
tion,

σ ∼
∫

(Phase Space)

[(p− p′ 2)2 −M2
V ]2
∼
∫

θdθ

[2EE′(1− cos θ)−M2
V ]2
∼
∫

θdθ

[θ2 −M2
V /EE

′)2
(85)
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which is enhanced in the θ → 0 region for E,E′ >> M2
V . In addition, these forward tagging jets have

a large invariant mass and small pT . Typical cuts on the jets are,

pTj > 20 GeV, | yj |< 5 , | yj1 − yj2 |> 3 ,Mjj > 130 GeV . (86)

The decay products from the intermediate V V scattering are mostly contained in the central rapidity
region. These characteristics can be used to separate VBS scattering from QCD gluon initiated events
and the non-VBS contributions can be suppressed to ∼ 1 − 2% [51]. The ability to separate the Higgs
signal into gluon initiated events and VBF events is crucial for the extraction of Higgs coupling constants.

4.2.5 Associated Production
At the LHC the process qq → V h offers the hope of being able to tag the Higgs boson by the V boson
decay products [52], although as shown in Figure 6 the rate is significantly smaller than the dominant
gg → h production mechanism. The cross section for Wh production is,

σ̂(qiqj →W±h) =
G2
FM

6
W | Vij |2

6πs2(1−M2
W /s)

2
λ

1/2
Wh

[
1 +

sλWh

12M2
W

]
, (87)

where λWh = 1 − 2(M2
W + m2

h)/s + (M2
W −m2

h)2/s2 and Vij is the CKM angle associated with the
qiqjW vertex. The rate for Zh is about a factor of 3 smaller than that for Wh and analytic results can be
found in Ref. [4]. The NNLO QCD and NLO electroweak corrections are known, so there is relatively
little uncertainty on the prediction [53, 54].

The V h associated channel has recently been used to observe the decay h → bb [55, 56], using
the jet substructure techniques first proposed in Ref. [57]. The idea is that by going to high transverse
momentum for the Higgs, the backgrounds can be significantly reduced. Jet substructure techniques are
discussed in the lectures of Schwartz at this school [58].

4.2.6 tth Production
The top quark Yukawa coupling, Yt, can be directly measured in the tth process shown on the RHS
of Figure 5. Recall that the gluon fusion production of the Higgs is also proportional to the top quark
Yukawa, but in addition it can receive enhanced contributions from the bottom quark Yukawa interactions
in some BSM scenarios, along with contributions from new colored scalars. The NLO QCD [59–62] and
electroweak corrections [63, 64] for tth production are known and contribute to very precise predictions
[30]:

√
S = 8 TeV σtth = .133 pb+4%

−9%(scale)± 4.3%(PDF + αs)√
S = 13 TeV σtth = .507 pb+5.8%(scale)−9.2% ± 3.6%(PDF + αs) . (88)

Although numerically small, electroweak corrections spoil the direct proportionality of the lowest order
cross section to Y 2

t .

This process has large backgrounds from ttbb and ttjj. In order to suppress the backgrounds,
many tth searches are done in the boosted regime, where the electroweak Sudakov logarithms become
relevant. A definitive measurement of this channel has not yet been made, and will be one of the impor-
tant milestones of the coming LHC run.

The associated production of bbh is not relevant in the SM, but can be important in models with
enhanced b Yukawa couplings.
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Fig. 13: Contributions to gg → hh in the SM. The dominant contribution to the triangle and box diagrams are
from the top quark. In this figure, H is the SM Higgs boson.

4.2.7 Double Higgs Production
Finally, we need to measure the parameters of the Higgs potential, Equation (30), to determine if elec-
troweak symmetry breaking really proceeds as in the SM. In the SM, the Higgs potential is,

V =
m2
h

2
h2 + λ3h

3 + λ4h
4 , (89)

where λSM3 = m2
h/(2v) and λSM4 = h2/(8v2). It is apparent that the Higgs self- couplings are weak,

λSM3 = .13v, λSM4 = .03 . (90)

The only way to directly probe the h3 coupling is by double Higgs production and the dominant produc-
tion mechanism is gluon fusion as shown in Figure 16. The result is sensitive to new colored particles
running in the loops, along with modifications to the Higgs tri-linear self-coupling and the top quark
Yukawa coupling (Equations (89) and (26)).

The large mt limit has been used to compute QCD corrections to NLO [65] and NNLO [66]. In
this approach, a K factor is computed:

K ≡ dσNNLO
dσLO

, (91)

where the distributions in Equation (91) are computed in the mt →∞ limit and are then used to rescale
the lowest order distributions computed with finite mt

8 [67–70]. The exact NLO result for double Higgs
production including all top mass effects is now known and can be used to obtain distributions [71, 72].
The effects of including the top quark mass exactly at NLO are significant and reduce the total cross
section by ∼ 14% at 14 TeV from the B.i. NLO HEFT limit. Including the top quark mass effects also
has significant effects on distributions, as demonstrated in Figure 15.

The dependence of hh production on λ3 from various production mechanisms is shown in Figure
16 [73] as a function of δ3 ≡ λ3

λSM3
. 9

The best current limits from the 8 TeV data on double Higgs production are,

σ(pp→ hh)

σ(pp→ hh) |SM
< 29 ATLAS ,

σ(pp→ hh)

σ(pp→ hh) |SM
< 19 CMS , (92)

which still leaves a way to go before we get to an interesting regime. The ATLAS limit is from the bbbb
final state [74], while the CMS limit is from the bbγγ final state [75]. ATLAS estimates that a luminosity
of 3 ab−1 will be sensitive to δ3 > 8.7 and δ3 < −1.3 [76]. This is clearly not the precision measurement
we desire and the need to measure the Higgs tri-linear coupling is one of the major motivations for a
100 TeV collider.

8This is termed the B.i. NLO HEFT in Figure 15.
9The curve labelled EFT loop-improved is identical to the B.i. NLO HEFT approximation.
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The fact that the SM rate for double Higgs production is quite small makes it an ideal place to
search for new physics. Many models (singlet, 2HDM, MSSM, NMSSM, etc) [77–81] contain heavy
neutral scalars that can decay into 2 SM Higgs bosons with a significant (∼ 30%) branching ratio.
In these models, there is an s− channel resonance from the heavy Higgs particle, and there will be
interference between this new scalar and the SM Higgs giving the classic dip structure shown in Figure
17 for the example of the singlet model. Limits on resonant decays in the generic BSM process, gg →
X → hh for various final states are shown in Figure 18, where for heavy resonances, the most important
search channel is the 4b final state.

It has been proposed that indirect limits on λ3 may be extracted from the dependence of elec-
troweak radiative corrections to single Higgs production on the Higgs tri-linear coupling. This coupling
enters the rate for gg → h at 2− loops and contributes to the tth, V h, and VBS processes at 1− loop.
Of course λ3 is not a free parameter in the SM, and some care must be taken with the renormalization
prescription. Ref. [82] obtains the allowed 2σ region from a fit to single Higgs production,

−9.4 < δ3 < 16 . (93)

Similar allowed regions are obtained in Refs. [83–85]. The allowed parameter space from current fits to
single Higgs production are not significantly different from the expected limits on λ3 with 3 ab−1 at the
LHC.
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5 Effective Field Theory and the Higgs Boson
5.1 Higgs Boson Coupling measurements
The production of the Higgs boson in Run-I at the LHC produced results which basically agree with the
SM predictions at the 10 − 20% level [86]. Preliminary Higgs coupling results at 13 TeV [56, 87–91],
are also in reasonable agreement with expectations. The rates are as predicted, and there are no non-SM
like light (EW scale) particles observed.

What we need is a way to quantify small deviations from the SM predictions. The simplest way is
to introduce an arbitrary scaling into the SM interactions,

Lκ = Σfκf
mf

v
ffh+ κW gMWW

+µW−µ h+ κZg
MZ

cW
ZµZµh . (94)

In the SM, all κ parameters are 1, so a deviation would indicate some physics not contained in the SM.
Of course, Equation (94) is not SU(2)L × U(1)Y gauge invariant, but it serves as a starting point for
study.

For a given production and decay channel, i→ h→ j,

κ2
i =

σ(i→ h)

σ(i→ h)SM

κ2
j =

Γ(h→ j)

Γ(h→ j)SM
. (95)

The κ formalism also rescales the total width,

κh ≡ Γh
ΓSMh

Γh = ΣXκ
2
XΓ(h→ XX) + Γ(h→ invisible) , (96)

where Γ(h → invisible) is any unobserved decay. This approach assumes that there are no new light
resonances, no new tensor structures in the Higgs interactions beyond those of the SM, that the narrow
width approximation for Higgs decays is valid, and is based on rescaling total rates (that is, no new
dynamics is included).

A combined CMS/ATLAS fit is shown in Figure 19. This particular fit does not allow for new
physics in the gg → h and h → γγ channels, but instead parameterizes the effective couplings in terms
of the SM interactions of the Higgs with the top and bottom (κg) and with the W and top (κγ) as,

κ2
g ∼ 1.06κ2

t + .01κ2
b − .07κtκb

κ2
γ ∼ 1.59κ2

W + .07κ2
t − .66κWκt . (97)

Similar results are shown in Figure 20, and again the results are in general agreement with the SM pre-
dictions. With the addition of 13 TeV data, the Higgs couplings should become even more constrained.
In particular, the tth and bbh coupling measurements have been significantly updated from Figure 20.

ATLAS and CMS have various types of fits. In some fits, they separate Higgs bosons from different
production and decay channels. Other fits allow for unobserved decay channels, or new contributions to
gluon fusion or the decay to γγ. None of the fits show any significant deviation from the SM predictions.

Finally, a fit to all Higgs production and decay channels yields the combined ATLAS/CMS result
[86],

µ ≡ σh
σh(SM)

= 1.0± 0.07(stat)± 0.04(syst)± 0.03(theory) . (98)

From Equation (98), it is clear that the accuracy of the theoretical predictions will soon be the limiting
factor in the interpretation of Higgs measurements.

To improve on the fits to total rates, we need to construct an effective field theory, which is the
topic of the next section.
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5.2 Effective Field Theory Basics
The effective field theory (EFT) Lagrangian we use assumes that there are no new light degrees of
freedom and is constructed by writing an SU(2)L × U(1)Y invariant Lagrangian as an expansion in
powers of v/Λ, where Λ is some high scale where we envision that there is a UV complete theory
[94, 103],

LEFT = LSM + Σi
c5
i

Λ
O5
i + Σi

c6
i

Λ2
O6
i + ..... (99)

and Oni is a dimension-n operator constructed from SM fields. The EFT allows for a systematic study of
BSM physics effects in a gauge invariant fashion and radiative corrections can be implemented order by
order in v

Λ .

The only possible dimension-5 operator violates lepton number conservation and is typically ne-
glected in studies of Higgs physics. There are many possible bases for constructing the dimension-6
operators, of which the most well-known are the Warsaw [95], HISZ [96], and SILH [97] bases. By
using the equations of motion, there is a mapping from one basis to the next [98,99]. Note that the HISZ
basis does not contain fermion interactions.
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There are several approaches to using the dimension-6 truncation of the EFT of Equation (99).

One could calculate an amplitude to O
(
v2

Λ2

)
,

A ∼ ASM +
A6
EFT

Λ2
. (100)

Squaring the amplitude,

| A |2∼| ASM +
A6
EFT

Λ2
|2 , (101)

we obtain results that are guaranteed to be positive-definite. The problem is that Equation (101) contains
terms∼ (A6

EFT )2

Λ4 that are of the same order in v2/Λ2 as the neglected dimension-8 terms. The expansion
only makes sense if

| A6
EFT |2<<| A∗SMA8

EFT | , (102)

which can be arranged in some BSM models [100] .

We begin by considering a simple EFT with just 2 non-SM terms,

L ∼ LSM +
αs
4π

cg
Λ2

(Φ†Φ)GAµνG
µνA +

(
ctYt
Λ2

qLΦ̃qR(Φ†Φ) + h.c.

)
. (103)

After spontaneous symmetry breaking, the top mass is shifted,

mt =
Ytv√

2

(
1− v2ct

2Λ2

)
. (104)

The Higgs coupling to the top quark is no longer proportional to mt and Equation (103) becomes

L→ αs
4π

cg
Λ2
hGAµνG

µνA −mttt

[
1 +

h

v

(
1− v2ct

Λ2

)]
+ ... (105)

When flavor indices are included in the fermion interactions, Equation (103) can generate flavor violation
in the Higgs sector [101].

Both cg and ct contribute to gg → h,10

σ(gg → h) = σ(gg → h)SM

(
1 + 2

v2

Λ2
(3cg − ct)

)
+O

(
m2
h

m2
t

,
v4

Λ2

)
, (106)

and so gluon fusion cannot distinguish between cg and ct [102–107]. The tth process is independent
of cg at leading order and can be used to obtain a measurement of ct. Once radiative corrections (both
QCD and electroweak) are included, however, the situation becomes murkier and the tth rate is no longer
directly proportional to ct.

We turn now to a discussion of the effects of dimension-6 operators in the electroweak sector. As
an example, we consider the SILH basis relevant for gauge-Higgs interactions [97],

LSILH =
cH
2Λ2

(
∂µ | Φ |2

)2

+
cT

2Λ2

(
Φ†
←→
D µΦ

)2

+

(
cfyf
Λ2
| Φ |2 fLΦfR + hc

)
− c6λ

Λ2
| φ |6

+
igcW
2Λ2

(
Φ†σI

←→
D µΦ

)(
DνW I

µν

)
+
ig′cB
2Λ2

(
Φ†
←→
D µΦ

)(
DνBµν

)

10Caveat emptor: Practically every EFT paper uses different normalization and sign conventions for the EFT operators. The
only way to check results like Equation (106) is to start from the definition of the operators in the Lagrangian.
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+
igcHW
16π2Λ2

(
DµΦ

)†
σi
(
DνΦ

)
W i
µν +

ig′cHB
16π2Λ2

(
DµΦ

)†(
DνΦ

)
Bµν

+
cγg
′ 2g2

16π2Λ2
| Φ |2 BµνBµν +

cgg
2
s

16π2Λ2
| Φ |2 GAµνGA,µν . (107)

Note that the normalization of the operators is arbitrary and merely reflects a prejudice about the origins
of the new physics, I = 1, 2, 3 are SU(2) indices and we have not written terms involving only fermions,
or terms that do not contain a Higgs field. Many of the operators of Equation (107) introduce momentum
dependence into the Higgs couplings to SM fermions and so the kinematic distributions of the Higgs will
be affected.

We briefly discuss some of the phenomenological effects of Equation (107). Three of the co-
efficients are strongly limited by precision electroweak measurements as parameterized by the oblique
parameters,

∆T =
v2

Λ2
cT

∆S =
M2
W

Λ2
(cW + cB) . (108)

Using the fit from Ref. [15], | cT | <∼ O(.03) and | cW + cW | <∼ O(.1) for Λ ∼ 1 TeV .

The coefficient cH modifies the Higgs boson kinetic energy. The physical Higgs field needs to be
rescaled,

h→ h

(
1− cHv

2

2Λ2

)
, (109)

in order to have canonically normalized kinetic energy. This shift introduces a dependence on cH into all
of the Higgs decay widths. The tree level Higgs decay widths to O( v

2

Λ2 ) in the SILH formalism are,

Γ(h→WW∗)
Γ(h→WW ∗) |SM

= 1− v2

Λ2

[
cH − g2

(
cW +

cHW
16π2

)]

Γ(h→ ZZ∗)
Γ(h→ ZZ∗) |SM

= 1− v2

Λ2

[
cH − g2

(
cW + tan2 θW cB +

cHW + tan2 θ2cHB
16π2

)]

Γ(h→ ff)

Γ(h→ ff) |SM
= 1− v2

Λ2
(cH + 2cf ) .

(110)

The loop processes, gg → h and h → γγ, also receive corrections from the EFT operators. The
expressions for Higgs decays in the SILH Lagrangian have been implemented into an update of the
HDECAY program, EDECAY [108]. In the Warsaw basis, they can be obtained using the SMEFTsim
code [109]. Fits to the EFT coefficients can be performed using total Higgs rates (as is done in the κ
formalism) or including information from distributions [83, 110]. The kinematic information provides a
significant improvement to the fits from using only the total rates.

Some of the operators of Equation (107) not only affect Higgs production, but they also change
theWWZ andWWγ vertices. Assuming CP conservation, the most general Lorentz invariant 3−gauge
boson couplings can be written as [111, 112]

LV = −igWWV

[
gV1
(
W+
µνW

−µV ν −W−µνW+µV ν
)

+ κVW+
µ W

−
ν V

µν

+
λV

M2
W

W+
ρµW

−µ
νV

νρ

]
, (111)
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where V = (Z, γ), gWWγ = e, and gWWZ = gcW . In the SM, gZ1 = gγ1 = κZ = κγ = 1, λZ = λγ = 0
and SU(2) gauge invariance implies,

λγ = λZ

gZ1 = κZ +
s2
W

c2
W

(κγ − 1) . (112)

The fields in Equation (111) are the canonically normalized mass eigenstate fields. These coeffi-
cients can be mapped to EFT coefficients in a straightforward manner and a subset of the dimension-6
coefficients contribute both to gauge boson pair production and Higgs production [110, 113, 114].

A consistent fit must include not only Higgs data, but also fits to anomalous gauge couplings. In
Figure 21, we show fits to 3 of the EFT couplings that contribute to both W+W− and Higgs production,
including only LEP data on W+W− pair production, only LHC data on W+W− and Higgs production,
and the resulting fit combining the two. The LHC results have now surpassed the LEP results in terms
of precision [110]. This figure includes the full set of dimension-6 squared contributions. In terms of the
parameters of Equation (111),

fW =
2Λ2

M2
Z

(gZ1 − 1)

fB =
2Λ2

M2
W

[
(κγ − 1)− c2

W (gZ1 − 1)

]

fWWW =
4Λ2

3g2M2
W

λγ . (113)

Global fits to EFT coefficients in the SILH basis can be found in Ref. [83,115] and in the Warsaw
basis in Ref. [113]. Many of the EFT coefficients are only weakly constrained. These results illustrate,
however, that fits performed to only a single operator typically significantly overestimate the sensitivity.
As of this writing, the experimental collaborations have not performed such global EFT fits.

Finally, it is interesting to ask what the target precision is for measuring EFT coefficients. In any
given UV complete model, these coefficients can be calculated, and the scale Λ will be of the same order
of magnitude as the mass of the new particles. This suggests that as direct searches for new particles get
more and more precise, it is necessary to measure the EFT coefficients more and more precisely. In a
specific UV complete model, not all coefficients will be generated, and the pattern of non-zero coeffi-
cients will be a guide to the underlying model. The EFT coefficients for numerous models with heavy
scalars [116–120] and heavy vector-like quarks [121, 122] are known and suggest that measurements of
O(2− 3%) will be necessary to probe models with new particles at the 2− 3 TeV scale.

6 Outlook
The discovery of a SM-like Higgs boson opened a new era in particle physics. We do not yet know if
we have discovered a Higgs boson or the Higgs boson. To make this determination, the measurements
of Higgs interactions need to be improved to the few % level and the Higgs self-interactions need to be
observed. These precision measurements will begin during the high luminosity run of the LHC, but will
require a future high energy hadron collider or e+e− collider to reach the desired accuracy. A limiting
factor will be the precision of theoretical predictions–predictions accurate at the few % level will require
a dedicated effort in the coming years and improvement of our knowledge of PDFs. I have not discussed
models with extra scalar particles other than the singlet model. One of the most important efforts of
the Higgs program in the next few years will be the search for additional Higgs-like particles. The
observation of another scalar would be the cleanest possible indication of new BSM physics in the scalar
sector.
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Fig. 21: Fits to LEP data, LHC data and the combination of both [110].
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Neutrino Physics

S. Davidson
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Abstract
This is summary of three lectures on neutrino physics at the CERN school in
Evora, Portugal, for experimental PhD students. There is a brief review of
neutrino interactions in the Standard Model, Majorana and Dirac mass terms,
oscillations in vaccuum and matter for 2 generations, the leptonic unitarity
triangle and 3 generation mixing, and bounds on the the absolute neutrino
mass scale. Follows a few topics going beyond the physics of three light active
neutrinos: an introduction to a few seesaw models for Majorana masses, and
leptogenesis in the type I seesaw.

Keywords
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1 Introduction
Neutrinos are shy particles in the laboratory, but make several relevant contributions in cosmology and
astrophysics. They could be responsable for the observed matter excess of the Universe [1], and possi-
bly also the dark matter [2]. We know that there were three species of relativistic neutrinos in thermal
equilibrium in the plasma when the Univers was a few minutes old at the moment of Big Band Nuceosyn-
thesis [3], because the observed primordial ratios of light elements depend on the energy density at the
time. Additional constraints on the summed-mass, and number of light neutrinos in equilibrium are ob-
tained from the observed anisotropies in the Cosmic Microwave Background (CMB) [4]. In the following
1010 years of the life of our Universe, stars were born, radiated photons and neutrinos, and died — the
massive ones in supernova explosions [5] (whose explosion probably required assistance from neutri-
nos), thereby spreading heavy elements through the Universe and making our life possible. Humanity
became acquainted with neutrinos only in the previous century, and in the last decades, they have given
us laboratory evidence [14, 15] of New Physics beyond the Standard Model (SM). This has generated
significant interest in the community — so many excellent review articles are available. Some review
articles that I have read (much more complete than this introduction), can be found in reference [6], and
useful websites in reference [8].

1.1 Notation
I use chiral (2-component) spinors, but 4-component spinor notation, where a 4-component spinor χ has
4 degrees of freedom labelled by {±E,±s}, and can be written in the chiral decomposition

χ =

(
ψL
ψR

)
, {γα} =

{[
0 I
I 0

]
,

[
0 σi
−σi 0

]}
, {σi} =

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]

(1)
where ψL = PL χ, ψR = PR χ with PL = (1−γ5)

2 . Recall that chirality is not an observable, but
becomes helicity (the projection of spin along the direction of motion ±ŝ · k̂ = ±1/2) in the relativistic
limit, and is simpler to calculate with than helicity.

In later sections of these notes, the chiral subscript on the fermions may suppressed (for instance,
in the leptogenesis section, I write N for NR).

The Higgs vev v = 174 GeV.
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2 Neutrino interactions
2.1 Weak neutrino Interactions in the Standard Model
The Standard Model (SM) contains 3 generations of lepton doublets, and charged singlets:

`αL ∈
{(

νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
eαR ∈ {eR, µR, τR}

which here are listed in the charged lepton mass eigenstate basis, to which a greek index is commonly
attributed. I do not include a νR in the SM because data did not require mν when the SM was written
down, and because νR has no gauge interactions, so a νR is not required in each generation for anomaly
cancellation. However, some authors consider that the SM can be defined including three νR and neutrino
Dirac masses, in which case they do not count neutrino masses as evidence for “New Physics”.

A Lagrangian which reproduces all the observed interactions of neutrinos and charged leptons is:

L = i`Lαγ
µDµ `Lα + ieRαγ

µDµ eRα −
[
(ναL, eαL)yα

(
−H+

H0∗

)
eαR + h.c.

]
(2)

where α ∈ {e, µ, τ} is a sum over generations, L is in the charged lepton mass basis, the covariant
derivatives are

Dµ = ∂µ + i
g

2
σaW a

µ + ig′Y (`L)Bµ , Dµ = ∂µ + ig′Y (eR)Bµ , (3)

Bµ is the hypercharge gauge boson, the fermion hypercharge is Y (f) = T3 + Qem, and H̃T =(
−H+, H0∗) gives masses mα = yα〈H0〉 to the charged leptons.

The first term of eqn (2) , `L
T
α γ

µDµ`Lα gives:

(
νL eL

)
γµ

(
g

2 cos θW
Zµ

g√
2
W+
µ

g√
2
W−µ eAµ − ...Zµ

)(
νL
eL

)
(4)

where sW = sin θW , tan θW = g′/g, and the photon and Z fields are defined as Aµ ≡ cW Bµ +
sWW

3
µ , Zµ ≡ −sW Bµ + cWW

3
µ . This gives the familiar Feynman rules illustrated in figure 1. These

Fig. 1: W,Z Feynman rules in the SM with massless neutrinos

Feynman rules illustrate that, in the SM, there is no flavour change in the lepton sector — lepton flavour
is conserved.

The Lagrangian of eqn (2) does not only reproduce all lepton interactions (except neutrino oscilla-
tions); it is also the most general renormalisable, SU(2)× U(1)-invariant L for those particles. In order
to see that, one has to show how to get rid of flavour-changing kinetic or Yukawa terms such as:

(
νeL, eL

)
D/

(
νµL
µL

)
,
(
νeL, eL

)
H̃τR .
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Since such terms are gauge invariant, the most general Lagrangian can be written as

i`L
b′
Zbcγ

µDµ`
c′
L + ieR

fZ
(e)
fg γ

µDµe
g
R − `

′b
L [Ỹe]bdH̃e

d
R + h.c. (5)

and the next few paragraphs aim to show that eqn (5) can be transformed into the canonical version give
in eqn (2).

The first step is to diagonalise Z, which must be hermitian because L should be real. It can
therefore be diagonalised as V ZV † =DZ where V is unitary andDZ diagonal, as

`
′b
LZbcD/ `

′c
L = `

′b
L [V †ZDZVZ ]bcD/ `

′c
L = `b

′′
L DZbbD/ `

b′′
L = `L

b
D/ `bL

where at the last equality, the eigenvalues of Z were absorbed into the definition of the fields. This is
allowed, because the magnitude of a fermion field cannot be measured.

The basis transformation and field rescaling that removed the Z matrix affect the definition of the
Yukawa matrix. Defining Ye = D

−1/2
Z VZỸe (and implicitly performing similar operations to remove

Z(e)) , the Lagrangian now can be written

L = i `bL
T
D/ `bL + i eaRD/ e

a
R − { (`bL [Ye]bcH̃)ecR + h.c.}

where [Ye] is in principle an arbitrary 3 × 3 matrix. A diagonal charged-lepton mass matrix can be
obtained by different unitary transformations on left and right:

VL[Ye]V †R = De .

(Notice that the Yukawa index order is LR in these notes). The matrices VL, VR can be obtained by
diagonalising the hermitian matrices [Ye][Ye]† = V †LD

2
eVL and [Ye]†[Ye] = V †RD

2
eVR.

2.2 Gravitational interactions
Neutrinos also have gravitational interactions, as is expected form the equivalence principle, since they
carry 4-momentum. We know this because light elements (such as H , D, 4He, and 7Li) were produced
in the first few minutes of the life of the Universe (“Big Bang Nucleosynthesis” [3]), and their primordial
abundances can be infered from observation. They depend on the age of the Universe at the time, which
depends on the energy density (dominated at the time by relativistic species), and allows to conclude that
three or four species of neutrino were in thermal equilibrium in the Universe at that time. Current Cosmic
Microwave Background data can constrain neutrino parameters [4], which also confirms that neutrinos
have gravitational interactions.

2.3 Historical problems
Since a long time, neutrinos have disappeared... The solar neutrino problem is the most long-standing:
the sun produces energy by a network of nuclear reactions, which should produce νe, which escape the
sun without interacting. The photons diffuse slowly to the surface. However, the observed νe flux from
the sun is ∼ .3→ .5 that expected from the solar energy output. This problem was resolved by the SNO
experiment [14], who showed that the flux in all flavours was as expected from the photon output, and as
predicted by solar models.

There was also an “atmospheric neutrino problem”, which was a deficit in the neutrinos produced
in cosmic ray interactions in the earth atmosphere: such interactions produce many pions, who generi-
cally decay (π− → µν̄µ → eν̄eνµν̄µ) to twice as many νµ + ν̄µ as νe + ν̄e. However, there was a deficit
of νµ + ν̄µ, and the community became convinced that neutrinos had mass, when the SuperKamiokande
Collaboration [15] showed that there was a deficit of νµ, ν̄µ from below, that could nicely be fit by
νµ → ντ oscillations.
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3 Neutrino masses
Before discussing oscillations and the kinematics of mν , let us first think about how to write a mass
term for neutrinos in L. Since it is known from cosmology that neutrino masses <∼ eV, we start in the
effective QED and QCD invariant theory that is relevant below mW , and neglect the SU(2) invariance of
the Lagrangian. Then the only constraint on the neutrino mass is that it must be a Lorentz-scalar. The
only possibility that can be constructed with two chiral fermion fields is

mψψ = mψL ψR +mψR ψL (6)

3.1 Dirac masses
The first way to construct such a mass term for an active νL of the SM, is to introduce a chiral gauge
singlet fermion νR for each SM generation. Then one can construct a fermion number conserving mass
term, as for other SM fermions: mνL νR +mνR νL. In the full SU(2)-invariant SM, this can be written
as :

λ(νL, eL)

(
H0

H−

)
νR + h.c ≡ λ(`H)νR + hc→ m = λ〈H0〉

In three generations, the neutrino Yukawa coupling λ generalises to an arbitrary 3×3 matrix [λ]σI ,
which can be diagonalised like other Yukawa matrices with different unitary transformations on left and
right: U [λ]U †Rν = Dν . If this diagonalisation is performed in the charged lepton mass eigenstate basis,
the matrix U is the leptonic version of CKM sometimes called the PMNS matrix (Pontecorvo, Maki,
Nakagawa and Sakata).

3.2 Majorana masses
There is a second way to write a Lorentz-invariant mass term for νL, in our low-energy not-SU(2)-
invariant theory. This is called a Majorana mass term. It uses the fact that the charge conjugate of νL is
right-handed: charge conjugation on a Dirac fermion is defined as

ψc = −iγ0γ2ψ̄
T = −iγ0γ2γ0ψ

∗ = iγ∗2ψ
∗ =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0







(
ψ∗L

)

(
ψ∗R

)




so applied to the νL, this gives

(νL)c =




(
0
0

)

[
0 −1
1 0

](
ν∗L
)


 =




(
0
)

(
−iσ2ν

∗
L

)


 (7)

This allows to write a mass term with only νL (no new fields are required):
m

2
[νL(νL)c + (νL)cνL] =

m

2
[(νL)†γ0(νL)c + ((νL)c)†γ0νL]

= −im
2

[ν†Lσ2ν
∗
L + νTLσ2νL] ≡ m

2
νLνL + h.c.

(where the second line is in 2 component notation for fermions, reviewed in appendix 12, which has the
attraction of being less cluttered).

Notice that the mass term involves either the field twice1, or its complex conjugate×charge conju-
gate, so this mass violates fermion number by two units, and cannot be written in this way for a fermion

1 The factor of 1
2

in L is to avoid 2s in Feynman rules and physical parameters, because I work in conventions where νc and
ν are considered identical. Recall that Feynman rules are obtained as δnL/δνn, so δ(νcν)/δν = 2ν.
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with gauge interactions (= with a conserved charge). So the simplest way to write this mass term in the
full SU(2) invariant SM is to write the dimension five operator (often called Weinberg operator)

L = ...+
K

2Λ
(`H)(`cH) + h.c.→ m

2
νLν

c
L + h.c. , m =

K

Λ
〈H0〉2 (8)

Since this operator is non-renormalisable, we assume it is induced by heavy new particles at the scale
M , whose interactions with active neutrinos are parametrised in K.

With multiple generations, the Majorana mass matrix 1
2νL

α[m]αβ(νL)cβ is symmetric2, so can be
diagonalised as:

UTmU = Dm . (9)

If the eigenvalues of m are non-degenerate, the matrix U can be obtained by diagonalising U †m†mU =
D2
m.

The diagonalisation recipe of eqn (9) implies that the eigenvector equation for Majorana matrices
is modified with respect to the familiar case of a hermitian matrix H with eigenvalues hi and eigenvectors
~vi: H~vi = hi~vi. In the Majorana case, eqn (9) implies mU = U∗Dm, or m~ui = mi~u

∗
i , where the

eigenvectors ~ui are the colomns of U .

3.3 U
The leptonic mixing matrix, which lives in 3 generation space and rotates from the charged lepton mass
basis (index α) to the neutrino mass basis (index i), has three angles and at least one phase:

Uαi =




1 0 0
0 c23 s23

0 −s23 c23






c13 s13e
−iδ

0 1 0
−s13e

iδ 0 c13






c12 s12 0
−s12 c12 0

0 0 1


P

=




c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s23s12 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23


P (10)

where P is a diagonal matrix discussed in section 3.3.1, two of the angles are large, and the CP-violating
phase δ is placed on the smallest one:

θ23 ' π/4 θ12 ' π/6 θ13 ' 0.15, 8o δ ∼ 1.4π

The current experimental determinations of the angles can, for instance, be found in [10, 11]. For com-
paraison, the magnitudes of off-diagonal CKM matrix elements [11] are much smaller

Vcb ' 0.04 Vus ' 0.225 Vub ' 0.004

One of the reasons that the PDG quotes ranges for CKM matrix elements, and for leptonic mixing angles,
is that CKM matrix elements are probed in meson decays, whereas the dynamics of neutrino oscillations
makes it convenient to measure the angles of the leptonic mixing matrix.

3.3.1 Majorana phases
The diagonal matrix of phases P is the identity for Dirac neutrinos, and diag{e−iφ1/2, e−iφ2/2, 1} for
Majorana. The origin of these phases can be understood as follows:

1. suppose that all parameters in L that can be complex (U and mνi), are complex
2Fermion operators anti-commute, but the spinor contraction for the Majorana mass is also antisymmetric. This is easiest

seen in 2-component spinor notation: ν̂ρLiερσ ν̂
σ
Lj = −ν̂σLjερσ ν̂ρLi = ν̂σLjεσρν̂

ρ
Li, where α, ρ are spinor indices, and ν̂j is the

operator for mass eigenstare j.

5
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2. There are 3 angles and 6 phases in a generic unitary matrix U (There are 18 real parameters in an
arbitrary 3× 3 complex matrix; then the Unitarity condition UU † = 1 reduces this to 9.)

3. There are five relative phases between the fields eL, µL, τL, ν1, ν2, ν3 ...so they can chosen to
remove all but one phase in the mixing matrix.

4. now check that the masses can be made real: for dirac masses, the phase of the mass can be
absorbed with νRI . If νL3 has a Majorana mass, between itself and anti-self, the absolute phase
of νL3 can be chosen to make the mass real. This fixes all LH fermion phases, so the phases from
mν1,mν2 cannot be removed. They contribute extra CP Violation in processes where Majorana
masses appear linearly (not as mm∗, so not in kinematics = not in oscillations). These phases can
be left on the masses, or rotated into the diagonal P given in eqn (10).

3.3.2 Where do mixing matrices appear?
As in the quark sector, the mixing matrix will appear at W vertices. This can be seen by writing the
{eαR}, and {νIR} in the mass eigenstate basis (means URν is unphysical), and the `a in the mass basis of
charged leptons:

`eL ≡
(
Ueiν

i
L

eL

)
, `µL ≡

(
Uµjν

j
L

µL

)
, `τL ≡

(
Uτkν

k
L

τL

)

so the Lagrangian becomes

i (U∗ejν
j
L eL) γµDµ

(
Uekν

k
L

eL

)
+ i (U∗µjν

j
L µL) γµDµ

(
Uµkν

k
L

µL

)
+ ...

The 3× 3 mixing matrix Uα,i appears at W± vertices

→ − i
gU∗ej√

2
νjLγ

µW+
µ eL + ...

while the Z vertex remains flavour-diagonal:

∝
∑

α

−i g
2
U∗αjν

j
Lγ

µZ+
µ Uαkν

k
L = δjk

g

2
νjLγ

µZ+
µ ν

k
L .

3.4 Dirac vs Majorana
There is a discrete difference in the number of light degrees of freedom required for Dirac or Majorana
masses: a νL with a Majorana (Dirac) mass requires one(two) light chiral fermions. However this distinc-
tion is not currently observable. There is also a continuous difference, that Majorana masses are Lepton
Number Violating(LNV) so give rise to ∆L = 2 processes e.g. 0ν2β. There is also more CP violation
in the Majorana case (all but one of the Majorana ν masses are complex), but this is only detectable in
LNV processes.

In the community, it is common to present Majorana vs Dirac as a “either–or” question. Which
it is, as a “model discrimination” question: are there three light majorana ν with LNV masses, or three
light dirac ν with LN conserving masses. However, if its neither of those models, it seems to the author
that the question is continous, not discrete, because the phenomenological question is the LNV rate (one
can’t measure number of light chiral fermions). For instance, if ones adds an undetectably small LNV
mass to a Dirac mass matrix; does that make the neutrinos Majorana? (There would be 6 chiral fermions
as for Dirac, and no observed LNV. This case has been studied recently in [16].)
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4 Two generation vaccuum oscillations
This section gives three derivations of the 2-neutrino oscillation probability in vaccuum. The first is
a relativistic quantum mechanics version, which in my opinion gives the right intuition and physics,
but contains several twiddles so the normalisation of the result is doubtful. The second is a quantum
mechanical derivation using the Schrodinger equation, which is easy to rederive and gives the correct
answer, but is a doubtable formalism for studying neutrinos (One can wonder if the Schrodinger equation
is appropriate for relativistic neutrinos, whether the ν propagates with fixed ~k and variable energy, and
whether the notion of neutrino flavour eigenstate is useful, since we usually quantise mass eigenstates.).
The last is a quantum field theory justification for the Schrodinger equation version, whose purpose is to
justify the Schrodinger approach used for matter oscillations in a later section.

An insightful discussion clarifying many questions about neutrino oscillations can be found in
[17].

4.1 Relativistic Quantum Mechanics
We are interested in a physical process, where a muon decays at the production point, then later a muon
is produced in the detector. We do not know what happened between these two events, so we should sum
all the possibilities at the amplitude level.

We suppose a relativistic neutrino is produced in muon decay at t = 0. We know how to quantise
and do perturbation theory with mass eigenstate particles, so we suppose that neutrinos propagate as
mass eigenstates. The amplitude to produce a mass eigenstate i is

∝ Uµi .

The propagator for a scalar particle of mass mi to travel a distance L in time t to the detector is

G[(0, 0); (L, t)] ∝
∫

d3p

(2π)3
ei(Et−pL)θ(t)

This position-space formula (which can be found in chapter 6 of Bjorken and Drell volume II) looks
unfamiliar, because propagators are usually given in momentum space. I suppose that including spin
would be a straightforward complication. The amplitude to produce a charged lepton eα at detector is
then:

Aµα ∝
∑

j

Uµj × e−i(Ejt−kjL) × U∗αj .

In the relativistic limit where mj � E, p, one can take L ' t so −i(Ejt − pjL) ' −i(Ej − pj)L

=−iE
2
j−p2j

Ej+pj
L ' −im

2
j

2EL which gives

Pµα = |Aµα|2 = |
∑

j

Uµje
−im2

jL/(2E)U∗αj |2

In the 2 generation case, where the mixing matrix U is

U =

[
cos θ sin θ
− sin θ cos θ

]

one obtains

Pµ→τ (t) =
∣∣∣sin θ cos θ

(
e−im

2
2L/2E − e−im2

3L/2E
)∣∣∣

2
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= sin2(2θ) sin2

(
L

∆2
32

4E

)
∆2

32 ≡ m2
3 −m2

2 (11)

Pµ→µ(τ) = 1− sin2(2θ) sin2

(
L

∆2

4E

)
=1− sin2(2θ) sin2

(
1.27

L

km

∆2

eV2

GeV

4E

)
(12)

where E is the ν energy and L is the source-detector distance (for atmospheric νs: E ∼ 10 GeV and
L : 20km → 10000km. For reactor neutrinos, E ∼ MeV and L ∼ km). The probability for a muon
to decay in production and reappear in the detector (sometimes called the νµ survival probability) is
illustrated in figure 4.1.

L (km)
10 210

3
10 410

)
µ

­>
µ

 P
( 

0.5

0.6

0.7

0.8

0.9

1

, E = GeV
atm

2 m∆ = 45,  θ), 2 µ­>µ2 generation survival probability P( 

4.2 neutrino oscillations in quantum mechanics(easy to rederive)
A relativistic neutrino, with momentum ~k, is produced in muon decay at t = 0 (at Tokai/edge atmo-
sphere). It can be described as a quantum mechanical state: |ν(t = 0)〉 = |νµ〉. After it travels a distance
L in time t to the detector, it can be written |ν(t)〉. We wish to calculate the probability with which it
produces an µ in CC scattering at the detector:

Pµ→µ(t) = |〈νµ|ν(t)〉|2 = ?

For two generations of massive neutrinos the flavour and mass eigenstates are related as να = Uαiνi:
(
νµ
ντ

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(
ν2

ν3

)
.

If time evolution in the mass basis is described by a Schrodinger-like equation

i
d

dt

(
ν2

ν3

)
=

[
E2 0
0 E3

](
ν2

ν3

)
, E2

i = k2 +m2
i

then one obtains
|ν(t)〉 =

∑

j

Uµj |νj(t)〉 =
∑

j

Uµje
−iEjt|νj〉

so the amplitude for the neutrino to produce a charged lepton α in CC scattering in detector after time t
is:

|〈να|ν(t)〉| =

∣∣∣∣∣∣
∑

j

Uµje
−iEjtU∗αj

∣∣∣∣∣∣

8

S. DAVIDSON

174



So in the 2 generation case, using t = L,E3−E2 ' m2
3−m2

2
2E ≡ ∆2

32
2E , one obtains the probabilities already

given in equations (12) and (11).

One can anticipate that if the neutrino propagates distances L� E/∆2, some sort of decoherence
should occur, and one should sum the probabilities to propagate the various mass eigenstates. Issues of
quantum coherence and decoherence have been discussed in [17]. Here are just some simple estimates
about the overlaps of wavepackets:

1. at production, the neutrino energy and momentum are not perfectly known (otherwise one could
compute the masses as

√
E2 − p2), so one should sum the amplitudes for a given ν2 and ν3 to

have various energies and momenta: this gives two wavepackets of masses m2, m3.

2. The group velocity of the packets is vi = ∂E
∂p = p

E ' 1 − m2
i

2E2 , so after a distance L, the packets
have separated by

(v2 − v3)L ' m2
3 −m2

2

E2
L ' L

`osc

1

E

3. one could expect the packets to not interfere, if they are separated by more than their size, which
by the uncertainty principle should by ∼ 1/(δ|p|), where δ|p| ∼ δE ∼ the energy uncertainty of
the packet. So one expects the oscillating sin2(∆2L/4E) to average to 1/2 when

L

`osc
>∼
E

δE
.

4.3 A skeletal QFT derivation of oscillations
One can think that since neutrinos are relativistic, one should do oscillations in Quantum Field Theory.
The aim of this skeletal derivation, is to show that QFT is equivalent to the Schrodinger equation of the
previous subsection.

In second quantised field theory, in the Heisenberg representation where operators are time-
dependent, the equations of motion for the number operator n̂ are

d

dt
n̂ = +i[Ĥ, n̂] (13)

where the Hamiltonian Ĥ for vaccuum oscillations can be taken as free = Ĥ0 ∼
∑
ωn̂ω. Recall the

free hamiltonian is the sum over all states of the number of particles × their energy. It is the integral of
hamiltonian density, with which it should not be confused (the dimensions are different).

In second quantised formalism, in the conventions of Peskin and Schroeder, the neutrino field can
be written:

ψ̂I(x) =
∑

s=+,−

∫
d3p

(2π)3

1√
2E

(
e−ip·xâIs(~p)us(p) + eip·xb̂I†s (~p)vs(p)

)

where s is helicity, I is generation, â† creates particles, et b̂† creates anti-particules. The cre-
ation/annihilation operators â are defined here for energy= mass eigenstates, but the formalism is co-
variant.

We want to know the time/space evolution of a beam neutrinos (no ν), of positive helicity, and, to
simplify the notation, the momentum is fixed to ~p. The number operator for such modes is

n̂IJsr (~p) = âI†+ (~p)âJ+(~p)

which is covariant in generation space (indices I, J).
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The equation of motion for the number operator n̂ is given in (13), where

H0 =
∑

I

∫
d3p

(2π)3
ωII(|~p|)

(
n̂II++(~p) + n̂II−−(~p)

)
, ωII =

√
~p2 +m2

I .

The commutator can then be calculated as

d

dt
n̂IJ++(~p) = i

∫
d3k

(2π)3

(
ω2(~k)â2†

+ (~k)â2
+(~k) + ω1(~k)â1†

+ (~k)â1
+(~k)

)
âI†+ (~p)âJ+(~p)

−âI†+ (~p)âJ+(~p)
(
ω2(~k)â2†

+ (~k)â2
+(~k) + ω1(~k)â1†

+ (~k)â1
+(~k)

)

= i
〈[ 0 (ω1 − ω2)â1†

+ (~p)â2
+(~p)

(ω2 − ω1)â2†
+ (~p)â1

+(~p) 0

]〉
(14)

which turns out to be the equation one would obtain for the neutrino density matrix in the quantum
mechanical formulation.

To see this connection, identify the vacuum-expectation value 〈n̂II++(~p)〉 ≡ [f++]IJ(~p) with the
density matrix for the 2-state neutrino system. The QM density matrix for |ν(t)〉 = s|ν1(t)〉 + c|ν2(t)〉
can also be constructed as

[f++] =

[
s2|ν1(t)〉〈ν1(t)| sc|ν1(t)〉〈ν2(t)|
sc|ν2(t)〉〈ν1(t)| c2|ν2(t)〉〈ν2(t)|

]

One can then check that the evolution of [f++] given by eqn (14) and by QM Hamiltonian
[
−m2

2−m2
1

4ω 0

0
m2

2−m2
1

4ω

]

is identical.

5 Two generation matter oscillations
Neutrinos have weak cross sections which are very small:σ ∼ G2

FE
2
ν . Nonetheless, when the propagate

in matter, they have an amplitude to notice the matter, which is ∝ GF and can contribute an effective
mass. This effect is described by coherent forward scattering of ν in matter, as illustrated in figure
2, which will give an extra contribution to the Hamiltonian. This effect can be relevant for neutrinos
propagating in the earth, the sun or supernovae, here only the sun is discussed.

Fig. 2: Forward scattering interactions(the neutrino momentum is unchanged) of neutrinos with matter. The Z
exchange diagram affects all neutrinos in the same way, so gives a contribution to the Hamiltonian ∝ identity.
Therefore it does not induce phase differences between the propagation amplitudes of different νi, and can be
neglected from oscillation studies.
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To see how forward scattering on matter can give rise to an effective mass, one can use the Hamil-
tonian Hmat = H0 +Hint in the QFT derivation of oscillations, with

Hint ' 2
√

2GF

∫
d4x(ν̂e(x)γαPLν̂e)(êγαPLê(x)) (15)

evaluated in a medium with electrons. Only the charged current interaction of νe with e need be included,
because the NC interaction is the same for all the νL, so could only induce a universal a contribution to
H proportional to the unit matrix. One can show that

〈medium|êγαPLê(x)|medium〉 → δα0
ne
2
,

so that Hmat in the flavour basis (νe, (ντ − νµ)/
√

2), is

Hmat = ...+

[
cos θ − sin θ
sin θ cos θ

][
0 0
0 ∆2/(2E)

][
cos θ sin θ
− sin θ cos θ

]
+

[
Ve 0
0 0

]

= ...+

[
−∆2

4E cos 2θ + V ∆2

4E sin 2θ
∆2

4E sin 2θ ∆2

4E cos 2θ

]

where Ve =
√

2GFne.

This matter hamiltonian can be diagonalised by a rotation through the angle θmat, where

tan(2θmat) =
∆2 sin(2θ12)

2EVe −∆2 cos(2θ12)
(16)

∆2
mat =

√
(∆2c2θ − 2EV )2 + (∆2s2θ)2

so we see that for Ve � ∆2

2E cos(2θ12), matter effects are negligeable. However the matter mixing angle
becomes maximal (θmat → π/4) when Ve ' ∆2

2E cos(2θ12), corresponding to the MSW resonance. And
for V � ∆2

2E cos(2θ12), νe propagates as a mass eigenstate. A useful expression for Ve, which allows to
estimate where matter is relevant for which energy neutrinos, is

Ve =
√

2GFne ' 8 eV
ρYe

1014g/cm3

Ye =
ne

nn + np
, ρ =





10g/cm3 earth
100g/cm3 sun
1014g/cm3 supernova

(17)

Finally, it is important to notice that Ve is of opposite sign3 for ν̄, which allows to determine the sign of
the vaccuum mass difference ∆2

12. In particular, since matter effects are observed in solar neutrinos, one
concludes that m2

2 > m2
1.

5.1 matter of varying density
In order to understand the effect of solar matter on the neutrinos exiting the sun, one should consider
matter of varying density. For varying ρ(r), the matter Hamiltonian becomes time-dependent:

[
−∆2

4E cos 2θ + Ve(t)
∆2

4E sin 2θ
∆2

4E sin 2θ ∆2

4E cos 2θ

]

3 The sign arises because the interaction Hamiltonian of eqn (15) contains ¯̂νγ0ν̂ ⊃ â†â, b̂b̂†. The negative sign arises in
anti-commuting the b̂b̂†, in order to annihilate the incident ν̄ before creating the outgoing one.
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Fig. 3: On the right, solar neutrino fluxes and sensitivities of various experiments. On the left, the effective neutrino
mass2 as a function of density, normalised to 2m2

sol. Figures from hep-ph/0606054.

so the mixing angle θmat becomes time dependent. This is simple to account for in the adiabatic limit,
where the time variation θ̇mat can be neglected compared to the oscillation timescale. Then one can
imagine that if oscillations occur, they are between the instantaneous mass eigenstates. In the case of the
sun, the adiabatic condition is satisfied, and it turns out that the matter effect can suppress oscillations.

The core of the sun produces νe in various nuclear reactions, with energies from 0.4 to 10 MeV (see
[13] for a review). The principle fluxes, as well as the sensitivities of different detectors, are illustrated
in figure 3.

1. From equations (16) and (17), one sees that Ve > ∆2
21/2E for the E ∼ 8MeV Boron neutrinos,

observed in SNO and SK. So these νes are mass eigenstates when they are produced, and remain
mass eigenstates as they exit the sun, despite that their mass is adiabatically changing. They have
no amplitude to be any other state, so there no oscillations, and they exit the sun as the heavier
mass eigenstate ν2. This is illustrated in the left in figure 3 : the neutrino just tracks the mass
eigenstate (upper line). The probability to produce an electron in a detector on earth is therefore
|Ue2|2:

Pee ' sin2 θ12

2. On the other hand, the matter potential Ve is negligeable for the νe with energies ∼ MeV, who
therefore oscillate as in vaccuum. However the vacuum oscillation length ∼ E

∆2 � Rsun, so the
oscillations decohere (sin2 ∆2L

E → 1/2) and the probability of producing an electron in a detector
on earth is

Pee = 1− 1

2
sin2 2θ12

This explains why the νe survival probability was higher at the Davis experiment [12], than in the water
cherenkov detectors [14].

6 Three generations
It is well-known that the SM has three generations. Nonetheless, in neutrino oscillations, some observ-
ables can be approximately calculated in the much simpler 2-generation formalism, because the dynamics
of oscillations selects a particular mass difference and allows to measure a particular angle 4. This is the
first topic of this section.

4So in neutrino physics, one quotes experimental constraints on the angles θij , rather than the matrix elements as is quark
flavour physics.
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Secondly, the CP-violating part of the 3-generation oscillation probability is introduced, and the
current preference of T2K for δ ∼ −π/2 is discussed.

6.1 The drunken Unitarity triangle
The unitarity triangle is less discussed in lepton flavour physics than in quark flavour. This is perhaps
because one discusses the angles rather than the matrix elements in the lepton sector, however, I use it
here to illustrate why 2-flavour oscillations can be a good approximation to some observables.

The amplitude to oscillate from flavour α to β over distance L is:

Aαβ(L) = Uα1U
∗
β1 + Uα2U

∗
β2e
−i(m2

2−m2
1)L/(2E) + Uα3U

∗
β3e
−i(m2

3−m2
1)L/(2E) . (18)

At L = 0, this is just the unitarity relations Aαβ = 1 for α = β, Aαβ = 0 for α 6= β, which just say the
rows of U are orthonormal. The three terms (complex numbers) can be represented as vectors adding to
zero in the complex plane, as in figure 4. At L = t 6= 0, eqn (18) implies that two of the vectors rotate in

Fig. 4: Example unitarity triangles: for α = µ, β = e the triangle is flattened, because Ue3 ∼ sin θ13 ∼ 0.015 is
small. For α = µ, β = τ , the triangle is more equilateral.

the complex plane, with frequencies (m2
j −m2

1)/2E, so oscillations can be visualised as time-dependent
non-unitarity.

As a first example of why the two-flavour approximation works, consider the amplitude to oscillate
from e to e at an energy and baseline combination such that 4E/L ' m2

2 −m2
1. This corresponds, for

instance, to reactor anti-neutrinos travelling to the Kamland detector. The amplitude is

Aee(L) = Ue1U
∗
e1 + Ue2U

∗
e2e
−i(m2

2−m2
1)L/(2E) + Ue3U

∗
e3e
−i(m2

3−m2
1)L/(2E) (19)

and is illustrated on the right in figure 4. At L ∼ (m2
2 −m2

1)/2E, vector 2 rotates, at a frequency (m2
2 −

m2
1)/2E, whereas vector 3 spins rapidly at a frequency (m2

3−m2
1)/2E. The two-flavour approximation

works because Ue3 = sinθ13 is small, so the rapid spinning of vector 3 can be neglected.

As a second example, consider the determination of θ13 at reactors. The amplitude is again given
in eqn (19), and the diagram is again on the right in figure (4).

However, in this case, the energy-baseline is chosen such that 4E/L ∼ (m2
3 −m2

1), so only the
third vector rotates. The first and second are stationary, and Ue3 ∼ θ13 is obtained by measuring the
small νe disappearance, corresponding to the decreased length of the vector in figure 4, resulting from
the rotation of the short vector “3”.

6.2 What is left?
Adding three generations of massive neutrinos to the SM introduces new parameters: 3 masses and a
mixing matrix containing three angles and at least one phase. The three angles are measured, as are
two mass-squared differences: (m2

2 −m2
1), |m2

3 −m2
j |. From matter effects in the sun, it is also known

that (m2
2 − m2

1) is positive. Remaining to be determined are the sign of (m2
3 − m2

j ) (refered to as the
“hierarchy”: m3 > m2 > m1 is the normal hierarchy,m2

>∼ m1 > m3 is inverse hierarchy), the absolute
mass scale, and the phase.
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6.3 The phase δ
The CP-violating phase δ would be absent in 2 generations, so all three generations must contribute to
the oscillation amplitude, in order to have sensitivity to δ.

To compactify the να → νβ oscillation amplitude (eqn (18)), it is convenient to define5 xji ≡ (m2
j −

m2
i )L/(2E), and the mixing matrix combination 6 λi = UαiU

∗
βi. Then

Pαβ(L) = |λ1 + λ2 + λ3|2 − λ1λ
∗
2 − λ∗1λ2 − λ1λ

∗
3 − λ∗1λ3 − λ3λ

∗
2 − λ∗3λ2

+λ1λ
∗
2e

+ix21 + λ∗1λ2e
−ix21 + λ1λ

∗
3e

+ix31 + λ∗1λ3e
−ix31

+λ2λ
∗
3e

+ix32 + λ∗2λ3e
−ix32

= δαβ − 4
∑

i<j

Re{UαiU∗βiU∗αjUβj} sin2 xji
2

+ 2
∑

i<j

Im{UαiU∗βiU∗αjUβj} sinxji (20)

To make a first acquaintance with the real part of this formula, one can take the 2 generation limit
(α = µ, β = τ , i = 2, j = 3) and see that the formula (11) is recovered:

Pµτ (L) = 0− 4Re{− cos θ sin θ sin θ cos θ} sin2 x32

2
+ 0

= sin2(2θ) sin2 (m2
3 −m2

2)L

4E

The imaginary part of the three-flavour oscillation probability (the last sum in eqn (20)) represents
CP Violation, and it will give a dependence on the phase δ. To see that this term is CP Violating, one can
check that it has opposite sign in the transition probabilities for να → νβ vs να → νβ . The amplitude
A(να → νβ) was obtained in section 4.1; following the same steps, but using that the Feynman rule for
eα → νi is ∼ U∗αi, one sees that the Imagainary term in eqn (20) is of opposite sign in the two cases.

It can be checked that {UαiU∗βiU∗αjUβj} is invariant under changes in the choices of phases of
fields. made in order to remove phases from U . Recall that in section 3.3.1, the 5 relative phases of
{eα, νj} were chosen in order to remove 5 phases from U . If the field phases were chosen differently, for
instance eα → e−iφα , νj → νje

−iφj , then Uαj → e−iφαUαjeiφj , but the combination {UαiU∗βiU∗αjUβj}
is invariant, because e±iφα cancels between Uαi and U∗αj , etc.

Indeed, the combination {UαiU∗βiUαjU∗βj} is proportional to the area of the unitarity triangle area,
and to the Jarlskog invariant. Suppose the phases are chosen such that the base = Uµ1U

∗
τ1 of the central

triangle in figure (4) is real. Then base × height ∝ Im{Uµ1U
∗
τ1U

∗
µjUτj} for both j = 2 and j = 3

(its less simple to demonstrate that the third term of the imaginary sum is also ∝ the triangle area). To
compactify the notation, it is convenient to define

J̃ = 8c2
13s13c23s23c12s12 (21)

where the area of the triangle and the Jarlskog invariant computed from the neutrino and charged lepton
mass matrices are propotional to J̃ sin δ.

6.3.1 θ13, δ at T2K
The current T2K data [19] has some sensitivity to the CP violating phase δ, and favours a maximal value
δ ∼ −3π/2. The aim of this section is to understand this preference.

5From the review [7].
6The dependence on the indices α, β is suppressed because they are fixed by the physical process under consideration.
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At JPARC, a beam of muons, [or anti-muons], hits a target, and produces neutrinos of energy' 0.6
GeV, which travel 295 km underground to SuperK. In order to be sensitive to θ13 and δ, SuperK then
searches for electrons, [or positrons]. The baseline and energy are chosen to maximise the appearance
probability of electrons via the angle sin θ13. So at leading order, the vaccuum probability is

Pµe ' sin2(θ23) sin2(2θ13) sin2(
x31

2
) x31 =

(m2
3 −m2

1)L

2E
(22)

However, s2
13 ∼ ∆2

21/∆
2
31, so the x21 oscillations could give some detectable contribution, in which case

a dependence on δ becomes possible in the three generation oscillation probability. But if CP violation
from the mixing matrix is allowed in the calculation, matter effects should also be included, because, like
the Imaginary term in the oscillation probability of eqn (20), they are of opposite sign for neutrinos and
anti-neutrinos.

So in principle, the relevant amplitude is

Aµe = Ũµ1Ũ
∗
e1 + Ũµ2Ũ

∗
e2e
−ix̃21 + Ũµ3Ũ

∗
e3e
−ix̃31

where x̃ = ∆2
matL/2E, and Ũ are the mass differences and mixing matrix in matter.

Matter effects in three generations are discussed, for instance, in [18]; here, the small matter effects
are only included in the leading two-generation mixing term, following the discussion of section 5, so
eqn (22) becomes

Pµe ' sin2(θ23) sin2(2θ̃13) sin2(
x̃31

2
) (23)

where 2EVe/∆
2
31

<∼ .1, and the mass difference and mixing angles in matter are given in eqn (16).

Then the three-generation mixing term that depends on δ can be included in perturbation theory
by writing e−ix21 ' 1− i∆2

21L/2E:

Pµe ' sin2(θ23) sin2(2θ̃13) sin2(
x̃31

2
) + J̃

∆2
21L

2E
sin(x̃31) cos(±δ +

x31

2
)

where J̃ is defined in eqn (21).

The current T2K data contains a larger ratio of νe to νe (electrons to positrons) than expected for
any value of δ. So there is a preference for δ that flips the sign of the second term. Since T2K is on the
oscillation peak x31 ' π/2, this suggests that δ ' 3π/2.

If this observation is confirmed with more data, it is doubly interesting: first because it indicates
that CP violation is generic, and not just a property of the CKM matrix. Secondly, leptogenesis scenarios
require CP violation in the leptonic sector, so its presence supports them.

7 Mass pattern/hierarchy
Two possible mass patterns, or hierarchies, are consistent with current oscillation data:
normal hierarchy: m1 < m2 � m3

inverted hierarchy: m3 � m1
<∼ m2

It is known that m2
2 > m2

1 because there are matter effects for Boron neutrinos exiting from the sun.

The sign of the big mass difference m2
3 −m2

j appears in oscillation probability:

1. when ν and ν travel through matter, because the matter contribution to the Hamiltonian is of
opposite sign for ν and ν...

2. in 3-neutrino oscillations, where interference between ∆2
21 and ∆2

31 occurs, suppressed by sin2 θ13

So there are proposals [20] to determine the hierarchy by studying atmospheric νe and νe in high
statistics detectors such as PINGU or ORCA [21]. Determining the hierarchy is also among the aims of
the DUNE experiment [22].
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8 mass scale
8.1 cosmology —a probe of the neutrino mass scale
The mass of neutrinos can have effects on the growth of Large Scale Structure, and also on the Cosmic
Microwave Background (principally its evolution from recombination until today).

The participation of neutrinos in Structure formation is intuitive: they are “hot dark matter”, that
is, in the early Universe after matter-radiation equality, neutrinos still have non-trivial velocities. They
can therefore free-stream out of over-densities, rather than collapsing with the overdensity as cold dark
matter would do. However, since the neutrinos progressively slow down due to the expansion of the
Universe, they only succeed in escaping from small overdensities, which suppresses the power spectrum
of Large Scale Structure on small scales. The scale below which the power spectrum is suppressed allows
to identify the neutrino mass. However, if neutrino masses are small, the suppression factor is small.

The effect of neutrino masses on the CMB is more subtle, because neutrinos become non-
relativistic after recombination (= the moment when the CMB is born), so their masses affect the propa-
gation of CMB photons from recombination until today. This is pedagogically explained in [4]. One of
the subtleties of the CMB dependence on neutrino parameters, is that other physical processes, encoded
in other parameters of the cosmological ΛCDM model, can have some of the same effects. This was
explored in [23], who obtained bounds on the sum of neutrino masses Σ ≡∑imνi [23]

Σ <∼ 0.1→ .6 eV now : PLANCK,+LSS/Lyα (in ΛCDM)
<∼ 0.6→ 1 eV now : PLANCK + ... (in 12 param ΛCDM)

→ <∼ 2matm cosmo.indep. (Planck + EUCLID...)

∼ matm ΛCDM

8.2 Beta decay
β decay provides a direct kinematic probe of the neutrino mass, because m2

ν distorts the e spectrum in
n→ p+ e+ ν̄. The KATRIN experiment [24], which is running now, uses Tritium, so consider Tritium
β decay:

3H →3He+ e+ ν̄e , Q = Ee + Eν = 18.6eV

where the high-energy tail of the electron distribution turns down due to the neutrino mass Ee = Q −
Eν ≤ Q− “meν“. The endpoint of e spectrum can be described as :

dNe

dEe
∝
∑

i

|Uei|2
√

(18.6 keV − Ee)2 −m2
νi (24)

The current β-decay bound is mνe
<∼ 2 eV; the Katrin sensitivity [24] is expected to be ∼ 0.3 eV.

8.2.1 ν-capture and the Cosmic Neutrino Background
It is known that in the early Universe at the moment of of Nucleosynthesis (BBN), there was a thermal
density of SM neutrinos, comparable to the density of photons. So today there should be a Cosmic
Neutrino Background, comparable to the CMB, consisting of ∼ 100ν/cm3 [25]. Detecting these non-
relativistic neutrinos would be interesting, and also difficult since their energy ∼ mν .

A not unpromising detection possibility [26] could be neutrino capture βdecay: n+νCNB → p+e.
One can compare the ν capture rate on a nucleus N , to the usual β decay rate as the ratio of the incident
CNB number density to the outgoing phase space density in β decay:

nνCNB
ν phase space

' T 3
CNB

π2

1

Q3
∼
(

10−4eV

20keV

)3

∼ 10−24
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However, in the capture case, the electron energy is Ee = Q + mν , so is 2mν larger than the upper
bound of the β decay spectrum. So with improved resolution, perhaps the CNB could be measured by
observing electrons beyond the end-point of the β decay spectrum.

8.3 Neutrinoless double beta decay
Neutrinoless double beta decay (0ν2β) is a Lepton Number Violating (LNV) process, to which Majorana
neutrino masses can contribute. Other lepton number violating scenarios (such as sparticles in R-parity
violating supersymmetry) can also contribute, but here only the Majorana mass contribution will be
discussed.

For some nuclei, single β decay is kinematically forbidden: for instance, 76
32Ge is lighter than

76
33As, so 76

32Ge has a double beta decay to 76
34Se+ eeν̄eν̄e, with a lifetime∼ 1021 yrs. The lifetime is long

because the matrix element is suppressed by ∼ G2
F (two W are exchanged), as illustrated on the left in

figure 5. In the presence of Majorana masses, double beta decay can be neutrinoless, as illustrated on

Fig. 5: Double beta decay (left) and neutrinoless double beta decay(right)

the right in figure 5. This diagram can only occur for Majorana neutrino masses, which violate lepton
number, because two units of lepton number disappear into the mass insertion x on the neutrino line. As
a result, the electrons emerge back-to-back, with opposite momenta and half the available energy each.
So the signature of 0ν2β is a line just beyond the end of the electron spectrum of 2ν double beta decay.

8.3.1 The 0ν2β matrix element
The matrix element for 0ν2β can schematically be written

|M|2 =

∣∣∣∣∣∣

nuclear
matrix
element

∣∣∣∣∣∣

2

×
∣∣∣
∑

i

U2
eimi

∣∣∣
2

for mν � Q ∼ 100 MeV (the mass of heavier Majorana neutrinos would appear downstairs in the
propagator). The calculation of the nuclear matrix elements is involved; experts obtain results in different
models that can differ by factors of a few [27, 28].

It is interesting to focus on the neutrino part of |M|2:

|M|2 ∝
∣∣∣c2

13c
2
12e
−iφ1m1 + c2

13s
2
12e
−iφ2m2 + s2

13e
−i2δm3

∣∣∣
2

where the majorana masses appear linearly, so accompagnied by their phases (or equivalently, by the
Majorana phases from P of eqn (10). So this Lepton Number Violating process is sensitive to the
Majorana phases.
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Fig. 6: |M| for 0ν2β mediated by majorana neutrino masses, plotted as a function of the lightest neutrino mass.
The green region is allowed for the inverse hierarchy, and the red region corresponds to the normal hierarchy.. The
plot is taken from 1601.07512 by Dell’Oro etal [28].

8.4 What can we learn/confirm?
Suppose that the only source of lepton number violation is the majorana masses of the SM neutrinos, the
largest of which is ∼

√
|m2

3 −m2
2|. Then the rate is larger for the Inverse Hierarchy m1 ∼ m2 > m3 :

|M|2 ∝ |3
4
e−i2φm1 +

1

4
e−i2φ

′
m2 + s2

13e
−i2δm3|2

→ m2
atm|3 + e−i2(φ′−φ)|2

For this hierarchy, which corresponds to the green band in figure 6, either 0ν2β is observed, or neutrino
masses are Dirac.

On the other hand, in the case of the Normal Hierarchy, ( m1 < m2 < m3), the contribution of
the atmospheric mass is suppressed by s2

13:

|M|2 → |3
4
e−i2φm1 +

1

4
e−i2φ

′
msol + (.15)2e−i3πmatm|2

' m2
sol|

3m1

msol
+ e−i2(φ−φ′)|2

so the rate is lower, and for m1 ∼ m2/3 and suitably chosen Majorana phases, the matrix element can
vanish, despite that the neutrinos are Majorana. This case corresponds to the red region of figure 6.

8.4.1 A curious example of EFT
From an Effective Field Theory point of view, it may seem curious to set restrictive bounds on the
coefficient of of the dimension 5 operator K

ΛNP
¯̀H`cH , from upper bound on coefficients of dimension

9 or 11 operators such as

(ūγµPRd)(ūγµPRd)(¯̀H)(`cH) (q̄τiγ
µPLq)(q̄τjγµPLq)(¯̀τiH)(`cτjH)

dim9 (ūγµPRd)(ūγµPRd)eec
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because New Physics is expected to appear in lower dimensional operators (those of higher dimension
would be suppressed by additional powers of 1/ΛNP ).

However, the naive expectation does not take into account the matching of the SMEFT onto a
QED×QCD invariant EFT at mW , where the Higgs gets a vev. Factors of GF and v can change operator
dimensions in this process, for instance the coefficient of the dimension 11 operator is only suppressed
by one power of ΛNP :

∼ K

v4Λ
(ūγµPRd)(ūγµPRd)(¯̀H)(`cH)

Furthermore, Avogadro’s number( ' 6× 1023) is large, allowing a great sensitivity to rare decays
of otherwise stable particles: 0ν2β may occur 10−16 times in the age of the Universe, but it still be
observed by watching a tonne of material for a year.

9 Mechanisms and models for small neutrino masses
This section outlines a few models involving heavy New Particles, that are renormalisable and can gener-
ate Majorana masses for the SM neutrinos at tree level. They are refered to as “seesaw models”, because
the light SM neutrino masses are obtained as the ratio of larger scales. These models are attractive
because they involve a minimal number of new particles and couplings.

There are three models that generate the Majorana mass operator

K

2Λ
[`H][`cH]→ ννc

K〈H0〉2
2Λ

by tree-level exchange of at most one new particle per generation. The new particle can be an SU(2)
singlet fermion (the Type I seesaw [29]), an SU(2) triplet fermion(the Type III seesaw [32]), or a scalar
triplet (the Type II seesaw [30, 31]).

9.1 The Type I seesaw, one generation
Consider the type I seesaw [29] in one generation, where a singlet fermion NR, with all its allowed
renormalisable interactions, is added to the SM Lagrangian. It is allowed a Yukawa coupling with the
doublet lepton and the Higgs, and a Majorana mass, which is not bounded above by the weak scale
because the mass of N is not generated by the Higgs vev. The leptonic Lagrangian, written in terms of
chiral fermions, is then:

LY uklep = he(νL, eL)

(
−H+

H0∗

)
eR + λ(νL, eL)

(
H0

H−

)
NR +

M

2
N c
RNR + h.c.

meeLeR +mDνLNR +
M

2
N c
RNR + h.c.

where the second line gives the masses after the Higgs gets a vev. The neutrino mass matrix can be
written (in notation where νcL ≡ (νL)c)

(
νL N c

R

) [ 0 mD

mD M

](
νcL
NR

)

Unlike a Dirac mass matrix, where different fields appear on either side, in this “Majorana” mass matrix,
the same chiral degrees of freedom appear on either side: to the left are all the chiral fermions in barred-
left-handed form, and to the right, the same fermions appear in unbarred right-handed form.

The eigenvectors/values are approximately νL with mν ∼ m2
D
M and NR with mass ∼M .
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9.1.1 Factors of 2 in the seesaw
A Majorana mass mν appears in the low-energy L as mν

2 ν
c
LνL + h.c.. The previous section showed

that in the low-energy effective theory after electroweak symmetry breaking, the type-1 seesaw gives
mν = m2

D/M . Here we want to check that the same result is obtained with the SU(2) invariant model
and operator.

The SU(2)-invariant Majorana mass operator is of dimension 5, and can be written

L ⊃ K

2Λ
(`cH)(`H) + h.c. =

K

2Λ
(`cnδ

nNHN )(`mδ
mMHM ) + h.c.

where n,m,N,M are SU(2) indices that run from 1 to 2. In the high energy SM, with dynamical Higgs,
this interaction has Feynman rule:

i
δ4L

δ ¯̀
iδ`cjδHIδHJ

= i
K

2Λ

δ4L
δ ¯̀
iδHIδHJ

((`H)δjNH
N + δjMH

M (`H)) (25)

= i
K

2Λ

δ4L
δHIδHJ

(δiNδjM + δjNδiM )HNHM

= −iK
Λ

(δiIδjJ + δjIδiJ) (26)

Now to match this operator onto the seesaw model, in the seesaw model there is an s and a t channel

Fig. 7: Seesaw diagrams matching onto the Feynman rule for the one-generation neutrino mass operator, given in
eqn (26). i, j, I, J are SU(2) doublet indices that run over 1,2.

diagram, as illustrated in figure 7, so one obtains K
Λ = λ2

M in agreement with the result from diagonalising
the mass matrix.

9.2 The type I seesaw in three generations
Add 3 singlet NRs to the SM (the chiral projection subscript will be dropped in the following to stream-
line the notation). One can always choose to work in the mass eigenstate basis of the charged leptons
and NRs, where the Lagrangian can be written

L = LSM + λαJ`α ·HNJ −
1

2
NJMJN

c
J + h.c. (27)

The three generation type 1 seesaw adds 18 parameters to the Lagrangian: three (real) singlet masses, and
18 real parameters in the Yukawa matrix λ, from which three phases can be removed by phase choices
on the doublets `α.

In the presence of electroweak symmetry breaking, for M � mD = λv, the mass matrix for SM
neutrinos is

[mν ] = λM−1λT v2 , v = 〈H0〉 .
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In the effective low-energy Lagrangian, where the SM neutrinos have this Majorana mass matrix, there
are nine new parameters in the Lagrangian: the three neutrino masses m1,m2,m3 , and the 3 angles and
3 phases of UMNS . There are therefore 9 free parameters of the high-scale model which are inaccessible
at low energy, so in a later section of these lectures, it will not come as a surprise that they can be chosen
to reproduce the Baryon Asymmetry of the Universe.

An attractive feature of the seesaw, is that one can easily obtain the observed neutrino masses for
reasonable choices of the singlet masses M and Yukawas λ. For instance, if the neutrino Yukawa matrix
ressembles that of the up-type quarks, with λ ∼ ht, then mν ∼ .1 eV is obtained for M ∼ 1015 GeV.
Or if one prefers an electroweak scale M ∼ TeV, then λ ∼ 10−6 (∼ the electron Yukawa coupling)
generates mν ∼ .1 eV.

However, a disadvantage of the type I seesaw, is that even if the singlets are kinematically ac-
cessible at the LHC, their only coupling to the SM is their Yukawa, which is small and suppresses the
production rate.

Another drawback of the non-supersymmetric seesaw is that the neutrino loop contributions to the
Higgs mass can be uncomfortably large. A one-loop diagram is illustrated in figure 8. The loop is finite

Fig. 8: Loop contribution to the Higgs mass in the seesaw model .

and calculable [33]:

δm2
H ' −

∑

I

[λ†λ]II
8π2

M2
I ∼

mνM
3
I

8π2v4
v2 (28)

so for M >∼ 107 GeV, this loop gives a larger contribution to the Higgs mass-squared than its observed
value. Of course, the Higgs mass sitting in the Lagrangian is unknown, so a cancellation is possible
but requires a “tuning” for which no justification is known. Alternatively, the loop contribution can be
cancelled by another loop contribution, as arises in, for instance, supersymmetric models.

9.3 A low-scale tree model detectable at the LHC: the inverse seesaw
The “inverse seesaw” [34] is a model that gives Majorana masses of the observed magnitude to the SM
neutrinos, and contains heavy singlets that could be found at the LHC. There are more new particles than
in the type 1 seesaw.

For each generation, add two gauge-singlet, chiral fermions N,S, which share a ∼ TeV-scale
Dirac mass. In the one generation case:

L = LSM + λN` ·H −NMS − 1

2
SµSc (29)

where N is the usual “right-handed neutrino” who interacts with the SM doublet leptons via the Yukawa
coupling, and N and S share a TeV-scale Dirac mass M . Then a small (∼ keV) Majorana mass µ is
added for S. In the limit µ = 0, lepton number conserved, and L=1 for `,N, Sc. However mν = 0 in
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this limit, as can by writing the 1 generation mass matrix in Majorana form

(
νL N c S

)



0 mD 0
mD 0 M
0 M µ






νcL
N
Sc


 .

For µ = 0 the determinant vanishes, but S and N share a Dirac mass M , so νL must be massless. For
µ 6= 0, the determinant is µm2

D, so for M > mD � µ, the three masses are M,M,m2
Dµ/M

2. It is
straightforward to check that for λ ∼ 0.1 , M ∼ TeV, and µ ∼ 0.1 keV, mν ∼ .1eV is obtained. So as
advertised, this model gives naturally small mν , and singlets with TeV masses and with O(1) yukawa
couplings.

The three generation light neutrino mass matrix in this model:

[mν ] = [λ][M ]−1[µ][M ]−1[λ]T v2 ∼ .05 eV

(in square brackets are matrices) can be obtained diagrammatically from figure 9, where one distributes
the various mass insertions upstairs in the fraction if they are small, and downstairs if they are large.

Fig. 9: Diagram for the SM neutrino mass in the inverse seesaw model

10 Leptogenesis
Leptogenesis [1, 41] is a class of recipes, that use majorana neutrino mass models to generate the mat-
ter excess of the Universe. The model generates a lepton asymmetry (before the Electroweak Phase
Transition), and the non-perturbative SM B+L violation reprocesses it to a baryon excess.

10.1 The Matter Excess of the Universe
If you step out the door in the countryside at night, the sky is decorated with stars. Like us, they are all
made of matter, and the puzzle is to understand the origin of this excess of matter over anti-matter in our
Universe.

Stars are mostly made of Hydrogen, containing a proton(baryon) and an electron. So the matter
excess is equivalent to an excess of baryons over anti-baryons. Leptons are neglected in this discussion,
because (despite that every Hydrogen contains an electron), there should be a Cosmic Background of
Neutrinos whose density is far higher than that of electrons, which could contain a significant (and
difficult-to-observable) lepton asymmetry today.

We define the nucleons that we are made of to be baryons (as opposed to anti-baryons), then by
touching objects around us, we observe that they are also made of baryons (as opposed to anti-baryons)
because matter combined with anti-matter becomes a puff of photons. This argument can be extended
to the solar system (bathed in the solar wind), and to the scale of galaxy clusters, because if a cluster
of matter brushing against a cluster of anti-matter, photons would be produced by proton-antiproton
annihilation, and these are not observed in the cosmological spectrum. So we assume that all the Universe
we see is made of matter (dark matter, of course, can be matter-antimatter symmetric).
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The matter density of the Universe (∼ 5% of the energy budget today) can be quantified [35] as

YB ≡
nB − nB̄

s

∣∣∣∣
0

= 3.86× 10−9ΩBh
2 ' (8.53± 0.11)× 10−11

where s is the entropy density (conserved during most the Universe history) whose value today s0 is
about 7× the number density of CMB photons, and nB, (nB̄) is the number density of (anti)baryons. So
in practise, there are 6 baryons for every 1010 photons in our Universe today.

A first question about the baryon asymmetry, is “where did it come from?”

1. For instance, maybe the Universe is matter-anti-matter symmetric, but composed of islands of
matter and anti-matter? The islands would need to be larger than galaxy clusters, in order to agree
with the photon background, and it appears more difficult to make a model that spatially separates
baryons from anti-baryons than to make a model that generates an asymmetry. So this idea is not
pursued.

2. Putting the baryon excess as an initial condition at the birth of the Universe does not work to well
either, because a period of inflation is required to explain the large-scale coherent temperature
fluctuations in the CMB. After “60 e-folds” of inflation, the volume of the Universe has grown
by ∼ (1030)3, so any pre-existing density of baryons is decreased by ∼ 10−90...and the energy
density that drives inflation usually appears as entropy after inflation, so it seems difficult to obtain
YB ∼ 10−10 this way.

So it seems that the baryon asymmetry needs to be generated in the early Universe after inflation.

10.2 Required Ingredients
There are many recipes for making the baryon asymmetry, but they all share three required ingredients,
initially given by Sakharov [36] and sometimes called Sakharov conditions:

1. Baryon number violation : if the Universe starts in a state of nB − nB̄ = 0, then B� is required to
evolve to nB − nB̄ 6= 0.

2. C and CP violation : it is clear that particles need to behave differently from anti-particles. Other-
wise the particles would make a baryon asymmetry, the anti-particles would make an anti-baryon
asymmetry of the same magnitude, and no net asymmetry would be created.
C is maximally violated in the SM, and CP violation is present in the SM quarks, observed in
Kaons and Bs, and current neutrino oscillation data favours a non-zero phase in the leptonic mixing
matrix.

3. departure from thermal equilibrium: the generation of the baryon asymmetry is a dynamical pro-
cess, so cannot occur in thermal equilibrium, which is static. An alternate way to see this, is
that there are no asymmetries in un-conserved quantum numbers in equilibrium (and B is not
conserved, by condition 1).
In the standard cosmological model, departures from equilibrium can be obtained by interactions
that occur on timescales of order or longer than the age of the Universe, or at phase transitions.

10.2.1 B non-conservation in the SM
The second and third Sakharov conditions are realised in the Standard Model (of particle physics and
cosmology). And contrary to superficial expectations, it turns out that B+L violation is also present in
the SM, and rapid at temperatures above mW .

B and L are global symmetries of the SM Lagrangian, in which appear terms of the form

LSM ⊃ qD/ q , `D/ ` , `He , qH̃u , qHd
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where q, ` are the quark and lepton SU(2) doublets, e, u, and d are the SU(2) singlets. So it is clear that
there are symmetries under phase rotations of all the leptons, or all the quarks, or equivalently, that all
the Feynman rules conserve B and L. This is reassuring, because the lower bound on the proton lifetime,
for decays such as p→ e+π0 is >∼ 1033 years (to be compared with the age of the Universe >∼ 1010 yrs).

Nonetheless, the SM does not conserve B + L. This is a consequence of the axial anomaly [37]
in QFT, which says that axial currents (containing a γ5, which count the number of left minus right
fermions) which appear conserved at the classical level, are not conserved at one loop.

We are interested in B + L. This is not a pure axial current (left - right), but it is classically
conserved and has an axial component because the SM is a chiral theory. As a result of the anomaly, one
obtains for one generation(α is colour )

∑

SU(2)
singlets

∂µ(ψγµψ) + ∂µ(`γµ`) + ∂µ(qαγµqα) ∝ 1

64π2
WA
µνW̃

µνA.

where integrating the RHS over space-time counts the “winding number” of the SU(2) gauge field con-
figuration. As a result, W field configurations of non-zero winding number are sources of a doublet
lepton and three (for colour) doublet quarks for each generation (no singlets because they do not have
SU(2) interactions). These field configurations therefore change baryon and lepton number by three units
(one for each generation).

It is curious that this (non-perturbative) effect does not appear in the Feynman rules. Some intu-
ition for what is happening can be obtained in the Dirac sea picture of the fermion vacuum, illustrated in
the following figure(for which I think V Rubakov). At t → −∞, on the left of the figure, is a vacuum.
Then at t = 0, is a W field configuration of finite winding number — for each doublet field of the SM,
one of the negative energy states from the sea becomes a positive energy state.

E

t

Left-handed fermions

For baryogenesis, it is important to know the rate for this SM non-perturbative B+L violation. At
zero temperature, it is tunneling process (from a vaccuum with one winding number to the next), and
exponentially suppressed [38] Γ ∝ e−8π/g2(this is usually negligeable). At finite temperature, 0 < T <
mW , the fields can climb over the barrier and the rate is only Boltzmann suppressed [39]: ΓB+L�� ∼
e−mW /T , and finally most interestingly, ΓB+L�� ∼ α5T for T > mW so SM B+L�� is “in equilibrium
(=fast) for mW < T < 1012 GeV. This SM B+L�� is sometimes called “sphalerons”, and in the presence
of a lepton asymmetry, they partially transform it to a baryon asymmetry.

10.2.2 Summary of preliminaries:
There are three required ingredients to generate the Baryon asymmetry of the Universe :B� , CP�� , and
TE�� . They are all present in the Standard Models of particle physics and cosmology, but to my knowledge
noone has succeeded7 to combine them so as to obtain a big enough asymmetry YB . So the baryon
asymmetry is usually taken to be evidence for New Physics from Beyond the Standard Model. However,

7The cold electroweak baryogenesis mechanism of Tranberg etal [40] is interesting.
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since there is only one number to fit, and NP models have many parameters, it is motivated to try to make
the baryon asymmetry in models that are introduced for some other reason... such as the type 1 seesaw,
which can fit the observed neutrino masses and mixings, and will be discussed next.

10.3 Leptogenesis in the type I seesaw
This section sketches how leptogenesis occurs in seesaw models with mediators of mass M >∼,� TeV.
To be concrete, the type 1 seesaw is discussed ; the details are different in the type 2 and 3 seesaws, but
the general picture is similar.

The type one seesaw Lagrangian is given in eqn (27). Recall first that for λ ∼ 1, the singlets should
have masses <∼ 1015 GeV. So here, suppose that the lightest singlet, N1, has a mass M1 ∼ 109 GeV, and
that the reheat temperature of the Universe after inflation Treheat >∼ M1. Different mass spectra for the
singlets will be discussed afterwards. Recall also that the 3 generation type-1 seesaw has 18 parameters
in the high-scale Lagrangian, to be compared with the 3 masses, 3 mixing angles and 3 phases of the low-
energy majorana mass matrix for SM neutrinos. This implies that there are numerous parameters in the
high-energy Lagrangian that can be ajusted to obtain the correct baryon asymmetry, without observable
consequences. Leptogenesis in the type 1 seesaw (originally proposed by [41]) with heavy singlets is
therefore something of a fairy tale for physicists, and its as a fairy tale that it is presented here.

10.3.1 The Fairy Tale
Once upon a time, a Universe was born. So all the fairies came to the christening of the Universe...

... and gave to the Universe the Standard Model and the Seesaw (heavy sterile Nj with L� masses
and CP�� interactions).

The adventure begins after inflationary expansion of the Universe:

1. If its hot enough, a population of Ns appear(they like heat).
2. The temperature drops below M , and the N population decays away.
3. In the CP�� and L� interactions of the N , an asymmetry in SM leptons is created.
4. If this asymmetry can escape the big bad wolf of thermal equilibrium...
5. ...the lepton asym gets partially reprocessed to a baryon asymmetry by non-perturbative B + L

-violating SM processes (“sphalerons”).

And the Universe lived happily ever after, containing many photons. And for every 1010 photons,
there were 6 extra baryons (wrt anti-baryons).
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10.3.2 To calculate something?
There are a very large number of bayogenesis scenarios, and in some cases the state of the art in cal-
culating the dynamics is advanced (quantum field theory of oscillations at finite temperature in curved
space-time). The aim here is simpler: given a baryogenesis scenario at the “fairy tale” level, how does
one estimate whether it could work? For this, it is helpful to focus on the Sakharov conditions, calculate
a suppression factor for each Sakharov condition, then multiply them together to get YB:

nB − nB̄
s

∼ 1

3g∗
εη ∼ 10−3εη (want 10−10) (30)

where the entropy density in the early Universe at temperature T is s ∼ g∗nγ (g∗ counts the number of
light modes, the definition can be found in table A.1 of [1]), ε is the lepton asymmetry generated in the
CP and L violating interactions, and η is some measure of the departure from thermal equilibrium.

As an illustration, we estimate η and ε for the fairy tale. Suppose at T >∼ M1, an N1 density
∼ T 3 is produced. Later, at the temperature drops below M1 the N1 population starts to decay away. We
assume that a lepton asymmetry is always generated in these decays; however, it can only survive if it is
not washed out by inverse decays H` → N1. Or equivalently, the asymmetry can only survive after the
inverse decays go out of equilibrium

ΓID(H`→ N) ' Γ(N → H`)e−M1/T =
[λλ†]11M1

8π
e−M1/T < H ∼ 10T 2

mpl
(31)

where the out-of-equilibrium condition is that the rate is small compared to H, the expansion rate of the
Universe8.

Since the interactions of the Ns are in equilbrium, they should follow a thermal Boltzmann distri-
bution, so the fraction of N1 remaining at TID (=when the inverse decays turn off), is

nN
nγ

(TID) ' e−M1/Tα ' H
Γ(N → `αH)

≡ η (32)

where H is the Hubble expansion rate ∼ 10T 2/mpl. This is the density of N1 whose decays can con-
tribute to the baryon asymmetry of the Universe.

Now estimate ε, the CP asymmetry in decays. The constraints from unitarity and CPT and gen-
eral results of about CP violation are clearly presented in the Appendix of [42]. Recall that the CP
transformation is defined, in the S-matrix as

CP : 〈H`|S|N〉 → 〈H`|S|N〉 = 〈H`|S|N〉 (33)
8equivalently, one can say that the interaction timescale is long compared to the age of the Universe
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where overline means the CP-conjugate particle (anti-particle). N is its own anti-particle because it is
Majorana.

In leptogenesis, we are interested in the CP�� ,L� interactions of NI . In the fairy tale, we only
included decays, so consider the asymmetry:

εα1 =
Γ(N1 →H`α)− Γ(N̄1→ H̄ ¯̀

α)

Γ(N1 → H`) +Γ(N̄1 →H̄ ¯̀)
(recall N1 = N̄1) (34)

which represents the fraction of N1 decays producing excess leptons. It is labelled by lepton flavour,
because the flavour is relevant in detailed calculations, but from now on here, we sum on α and drop the
α index.

Fig. 10: Tree×loop diagrams generating a CP asymmetry ε in the decay of the heavy singlet N1.

The asymmetry ε1 can be calculated as the Imaginary part of the interference of tree × loop
diagrams illustrated in figure 10 [43]. The CP�� arises from complex coupling, and must be multiplied by
an imaginary part of the amplitude (sometimes refered to as a “strong phase”) arising from some particles
in the loop being on-shell. So in practise, it arises from the Imaginary part of the Feynman parameter
integration that one performs in evaluating a loop integral in dimensional regularisation. This is not very
intuitive, so lets try to estimate ε without doing a loop calculation. This is possible because some of the
loop particles need to be on-shell in order to give the strong phase.

The unitarity and CPT invariance of S-matrix elements can be used to calculate ε from tree ampli-
tudes. However, here we just estimate diagrammatically. Consider M1 �M2,3, so in the loop diagrams
contributing to ε, the internal NJ can be replaced by the SM neutrino mass matrix [K]αβ

Λ ≡ [mν ]αβ
v2

. This
works because the momentum in the loop is of orderM1 (so can be neglected compared toM2,3), andN1

on the internal line does not contribute because the coupling constant combination must be Imaginary.
Then can estimate

ε1 ∼
1

16π2

λ2K

λ2Λ
M1 <

3

8π

mmax
ν M1

v2
∼ 10−6 M1

109GeV

where in the first estimate, the 1/16π2 is for the loop (but for the Im part of the loop, one should really
take 1/8π), the |λ|2 downstairs is because ε is normalised to Γ, and the mass factor M1 is to make the
dimensions work. The second inequality is a∼ in our approach here, it gives an idea of the magnitude of
ε, assuming that the phases cooperate. However, in a more careful derivation, the inequality is an upper
bound, which combined with eqn (30):

nB − nB̄
s

∼ 10−3εη ∼ 10−3H
Γ

10−6 M1

109GeV

implies that one needsM1
>∼ 109 GeV to get a sufficient asymmetry YB ∼ 10−10 for hierarchical singlets

in the type 1 seesaw.
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10.3.3 Leptogenesis forM1 < 109 GeV?
Singlets with M >∼ 109 GeV have some undesirable features: they are not kinematically accessible at
upcoming colliders, and overcontribute to the Higgs mass (see eqn 28). The contribution to the Higgs
mass can be cancelled by considering the SUSY seesaw, but in some low-scale (< 10 TeV) SUSY
models, gravitinos are over-produced in the early Universe if the reheat temperature is above∼ 105 GeV
(so heavy supersymmetric Ns may have troubles too). Fortunately it is simple to do leptogenesis with
TeV < MK < 107 GeV: for MI ∼ MJ the second loop diagram of figure 10 resonantly enhances ε,
allowing to reach ε <∼ 1/8π.

In the leptogenesis scenario discussed here, where the asymmetry is produced in N decay, there is
a lower bound on the singlet mass from requiring that the asymmetry be produced before the Electroweak
Phase Transition (in order to profit from sphalerons):

ΓID ∼ e−M/TΓ(N → φ`) < H ⇒ M >∼ 10Tc

where Tc ∼ 100 GeV is the critical temperature of the electroweak phase transition (a cross-over in the
SM). So in summary, the fairy tale can work for NI with MI

>∼ TeV.

Leptogenesis can also work with lighter singlets (who decay after the electroweak phase transi-
tion), provided that the asymmetry is generated as the singlets are produced. The scenario outlined here
relies in oscillations among the singlets, so they must be sufficiently degenerate (mN2 ' mN3). This was
initially explored in [44], then revisited in the context of the νM(inimal)SM — see for instance [45, 46].
Here is presented only a superficial summary.

The singlets N are “light” (suppose 1 GeV), so the Yukawas λ are necessarily small: λ ∼√
mν∗GeV

v2
<∼ 10−7. The N2, N3 start being produced at temperatures T <∼ TeV, via their Yukawa in-

teractions. Then they oscillate, among themselves and can transform back to doublet leptons via the
Yukawa interactions. These three processes occur coherently, so CP violation in λ∆M2λT generates
lepton flavour asymmetries in the νLα (Notice that lepton number in `L + NR, defined as L|SM + he-
licity of N , is conserved in these processes.). The sphalerons only see the lepton number in the SM
doublets, and partially transform it to a baryon asymmetry. From the time oscillations start, until the
sphalerons turn off at the electroweak phase transition, the asymmetries in the νLα seed asymmetries
in the N which give larger asymmetries in the νLα. Recent calculations (see e.g. [47]) show that a
sufficiently large baryon asymmetry can be obtained.

11 The End
Most of the students at the school work at hadron colliders, where neutrinos are missing energy. However,
neutrino physics might by interesting for two reasons: the observed neutrino masses are evidence for
Beyond-the Standard Model Physics (and its encouraging to know that BSM exists somewhere, despite
being shy at the LHC), and secondly, the Standard Model neutrino lives in an SU(2) doublet, so there
should be BSM physics involving charged leptons — we just need to find it.
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12 Appendix: To convert from 4- to 2-component fermion notation
A 4-component fermion ψD can be written as two chiral 2-comp fermions (LeftHanded = χ, and
RightHanded = η̄):

ψD =

(
χα
η̄β̄

)

where usual dotted indices of the right-handed fermion are here written barred. The 2-comp indices α
and β̄ run from 1..2, and are contracted with the anti-symmetric epsilon tensor

εᾱβ̄ = εαβ =

(
0 1
−1 0

)
, εᾱβ̄ = εαβ = −εαβ

Notice the sign flip in going from dotted to undotted indices.

Undotted indices are always contracted up-down:
χρ = χαρα = εαβχβρα = −ραχα = ραχα

and dotted indices down-up, and the ε flips sign in getting bars (sign flip because of up-down vs down-up
summing conventions: ρ̄β̄ = ρ̄ᾱε

ᾱβ̄ , but ρ̄β̄ = (ρβ)∗ = (ραε
βα)∗. This perverse set of conventions is

so that one can copy Wess+Bagger(W+B) 2-component spinor results, and also Peskin and Schroeder.
W+B define

(ηρ)∗ = (ηρ)† = (εαβηαρβ)∗ = (−εᾱβ̄)ρ̄β̄ η̄ᾱ

= ρ̄ᾱη̄
ᾱ

So, eg

ψ̄D =
(
χ̄ᾱη

β
)( 0 δᾱρ̄

δωβ 0

)
=
(
ηω χ̄ρ̄

)
(35)

In practice, there is a -ve sign from interchanging fermion fields in an operator, but not when you take cc
of the op.
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Practical Statistics for High Energy Physics

E. Gross
Weizmann Institute of Science, Rehovot, Israel

Abstract
In these lecture notes the frequentist methods used in the Higgs search, discov-
ery and measurement are reviewed. The idea is that the reader will be able to
understand what lies beneath the surface of the results and the plots shown in
the experiments publications. Though the results shown are mainly from AT-
LAS and CMS, the methods and the lessons can be propagated to other fields
such as Astro-Particles and fixed target experiments.

Keywords
CERN report; ESHEP; Lectures; statistics; Look Elsewhere Effect; CLs; Asi-
mov; Data Analysis.

1 Introduction
These lecture notes are based on statistics lectures given in the European CERN school for High Energy
Physics, 2017. The frequentist approach used in the Higgs search, discovery and measurement are re-
viewed. Examples from real data analysis are given to clarify the methods. This is a revised version of
the proceedings of the same school from 2015 [1]

2 The Search for the Higgs Boson
From Wikipedia: On 4 July 2012, the discovery of a new particle with a mass between 125 and 127
GeV/c2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has
been shown to behave, interact, and decay in many of the ways predicted by the Standard Model.

High Energy Physicists (HEP) rely on a hypothesis: The Standard Model. This model relies on the
existence of the 2012 discovery of the Higgs Boson. The minimal content of the Standard Model includes
the Higgs Boson, the Quarks, the Leptons and the force mediating Bosons including the photons, gluons,
W and Z. However, the Standard Model suffers from some problems, e.g. the hierarchy and naturality
problems that are solved by various extensions of the Model and include other particles that are yet to be
discovered. The challenge of HEP is to generate tons of data and to develop powerful analyses to tell if
the data indeed contains evidence for new particles. Once the new particle, such as the 2012 scalar, has
been discovered, the next step would have been to measure its mass, and confirm that it has the expected
properties of the Higgs Boson (Spin, CP). Perhaps it is not the expected Standard Model Higgs Boson,
but a member of a family of Scalar Bosons, the rest, yet to be discovered.

The statistical challenge is obvious: to tell in the most powerful way, and to the best of our current
scientific knowledge, if, in our data, there is new physics, beyond what is already known. In that sense,
what is already known is the background. The complexity of the apparatus and the physics (both signal
and background) suffer from large systematic errors that should be taken care of in a correct statistical
way.

Though the Higgs Boson has been already discovered, in these lecture notes, for pedagogic rea-
sons, it is assumed, that, the so-called Standard Model, contains no Higgs Boson, serve as the background
to the signal, which is the Higgs Boson. The Higgs Boson cannot exist without the Standard Model, so
there are two nested hypotheses tested against each other. The Standard Model (denoted by b for back-
ground) and the Standard Model containing a Higgs Boson with a mass mH , i.e. the signal+background,
denoted by s(mH) + b.

Proceedings of the 2017 European School of High-Energy Physics, Evora, Portugal, 6–19 September 2017, edited by M. Mulders and
G. Zanderighi, CERN Yellow Reports: School Proceedings, Vol. 3/2018, CERN-2018-006-SP (CERN, Geneva, 2018)

2519-8041– c© CERN, 2018. Published by CERN under the Creative Common Attribution CC BY 4.0 Licence.
https://doi.org/10.23730/CYRSP-2018-003.199

199

https://doi.org/10.23730/CYRSP-2018-003.199


3 Essential Terminology
3.1 A Tale of Two Hypotheses
From Wikipedia: A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For
a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists
generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with
the available scientific theories.

The expected signal and background are determined by the corresponding cross sections, lumi-
nosity delivered by the accelerator and the detectors response (efficiency and geometrical acceptance).
s(mH) is given by

s(mH) = L · σSM (mH) · ε ·A. (1)

whereL is the luminosity delivered by the accelerator, σSM (mH) is the Standard Model (SM) production
cross section of the Higgs Boson, and ε and A are the efficiency and geometrical acceptance of the
detector. For simplicity, let’s assume a counting experiment and let n be the number of observed events,
then

n = µs(mH) + b. (2)

b is the expected background, and µ is the signal strength given by

µ =
σobs
σSM

. (3)

There are therefore two hypotheses. One is the background only (b), and the other is the µs(mH) + b
hypothesis, i.e., a Higgs Boson with a strength µ on top of the background. For a Standard Model Higgs
Boson, we expect to measure µ = 1.0. The background only hypothesis is denoted by H0 while Hµ is
the Higgs Boson hypothesis with H1 being the SM Higgs Boson hypothesis.

3.2 Testing an Hypothesis
From Wikipedia: A statistical hypothesis test is a method of statistical inference. Commonly, two statisti-
cal data sets are compared, or a data set obtained by sampling is compared against a synthetic data set
from an idealized model. A hypothesis is proposed for the statistical relationship between the two data
sets, and this is compared as an alternative to an idealized null hypothesis that proposes no relationship
between two data sets. The comparison is deemed statistically significant if the relationship between the
data sets would be an unlikely realization of the null hypothesis according to a threshold probability the
significance level. Hypothesis tests are used in determining what outcomes of a study would lead to a
rejection of the null hypothesis for a pre-specified level of significance.

The first step in any hypothesis testing is to identify and state the relevant null, Hnull and al-
ternative Halt hypotheses.The next step is to define a test statistic, q, under the null hypothesis (the
tested hypothesis). We then compute from the observations the observed value qobs of the test statistic
q. Finally, decide (based on qobs ) to either fail to reject the null hypothesis or reject it in favour of an
alternative hypothesis.

3.3 Discovery and Exclusion in a Nut Shell
To establish a discovery we define the null hypothesis as the background only hypothesis, Hnull = H0,
and test it. We either fail to reject it or manage to reject it in favour of the alternative hypothesis,
Halt = Hµ. Rejection of the null H0 hypothesis at the level of 5σ (see 3.5) is considered a discovery.
Defining the null hypothesis asHnull = Hµ enables the exclusion of the signal. For example, if we define
the null hypothesis as the Standard Model Higgs with a mass mH , Hnull = H1, testing and rejecting
this hypothesis at the 95% Confidnece Level (see 3.5) is considered an exclusion of the Standard Model
Higgs with a mass mH .
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3.4 A Test Statistic
As defined in Wikipedia: A hypothesis test is typically specified in terms of a test statistic, considered
as a numerical summary of a data-set that reduces the data to one value that can be used to perform
the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within
observed data, behaviours that would distinguish the null from the alternative hypothesis, where such
an alternative is prescribed, or that would characterise the null hypothesis if there is no explicitly stated
alternative hypothesis, which often occurs when performing a measurement.

One example for using a test statistic is the discovery of the Higgs, when the data of Billions
of Collisions is summarised in one number which determines if LHC rejected the background only
hypothesis in favour of the Higgs Boson with a mass mH or not.

There are many ways to define a test statistic based on the nature of the required test. Test statistics
for discovery or exclusion are commonly based on Likelihood ratios.

Note that the likelihood is a function of the data, i.e.

L(H0) = Prob(x|H0) (4)

where x is the data.

Before classifying the test statistics in a formal way, let us take a simplified approach. The two
most common test statistics in High Energy Physics are the Neyman-Pearson (NP) and Profile Likelihood
(PL). The NP test statistic given by

qNP = −2ln
L(H0)

L(H1)
. (5)

L(H0) and L(H1) are the likelihoods of the null (b) and alternative (s(mH) + b) hypotheses. Note that
inverting the roles of the null and alternative hypotheses, simply swap the sign of the NP test statistic. The
PL test statistic depends on the tested hypothesis and for a simple counting experiment (see Equation 2),
when testing the b-only hypothesis, H0, the test statistic is given by

q0 = −2ln
L(b)

L(µ̂s(mH) + b)
. (6)

µ̂ is the Maximul Likelihood Estimators (MLE) of µ. In this simplified example b is assumed to be
known. The probability distribution function (PDF) of both test statistics under the null f(qNP |b),f(q0|b)
and the alternative f(qNP |s(mH) + b),f(q0|s(mH) + b) hypotheses are shown in Figure 1.

3.5 What is the p-value
As defined in Wikipedia: An important property of a test statistic is that its sampling distribution under
the null hypothesis must be calculable, either exactly or approximately, which allows p-values to be
calculated.

The observed p − value is a measure of the compatibility of the data with the tested hypothesis.
It is the probability, under assumption of the null hypothesis Hnull, of finding data of equal or greater
incompatibility with the predictions ofHnull. This is clearly illustrated in Figure 1 for the PL test statistic
by the light blue area (right plot). Here H0 is the tested null hypothesis (b only) and the p − value is
given by

p =

∫ ∞

q0,obs

f(q0|b)dq0. (7)

One can regard the hypothesis as excluded if its p-value is observed below a specified threshold
(usually denoted by α).

Now, depending on the nature of the statistical test, one considers a one-sided or two-sided p-
value. When performing a measurement, any deviation above or below the mean is drawing our attention
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Fig. 1: The pdf of the Neyman-Pearson qNP (left) and PL (Profile-Likelihood), q0 (right) test statistics, under the
null (b) and alternative (s(mH) + b) hypotheses.

and might serve an indication of some anomaly or new physics. Here we consider a two sided p-value.
However, when trying to reject an hypothesis while performing searches, one usually considers only
one-sided tail probabilities. When the null hypothesis is the b-only hypothesis, downward fluctuations of
the background, are not considered as an evidence against the background. Likewise, when deriving a
limit, upward fluctuations of the hypothesised signal are not considered as an evidence against the signal.
In both cases only one-sided tail probabilities are considered.

In particle physics, when performing searches, one usually converts the p-value into an equivalent
significance, Z defined such that a Gaussian distributed variable, which is found Z standard deviations
above its mean, has an upper-tail probability equal to p (Figure 2). That is,

Z = Φ−1(1− p) , (8)

where Φ−1 is the quantile (inverse of the cumulative distribution) of the standard Gaussian. For a signal

Fig. 2: The relationship between a p-value and a significance of Z sigma.

process such as the Higgs boson, the particle physics community has a tendency to regard rejection of
the background hypothesis with a significance of at least Z = 5, as an appropriate level to constitute

4

E. GROSS

202



a discovery. This corresponds to p = 2.87 × 10−7. For purposes of excluding a signal hypothesis, a
threshold p-value of 0.05 (i.e., 95% confidence level) is often used, which corresponds to Z = 1.64.
This should not be confused with a 1.96σ fluctuation of a Gaussian variable that gives 0.05 for the
two-sided tail area.

Note that, for a sufficiently large data sample, one would obtain a p-value of 0.5 for data in perfect
agreement with the expected background. With the definition of Z given above, this gives Z = 0.

3.6 Expected Significance and the Asimov Data Set
As defined in Wikipedia: The use of a single representative individual to stand in for the entire population
can help in evaluating the sensitivity of a statistical method. Franchise, a science fiction short story by
Isaac Asimov, was cited as the inspiration of the term "Asimov data set", where an ensemble of simulated
experiments can be replaced by a single representative one.

It is often useful to quantify the sensitivity of an experiment by reporting the expected significance
one would obtain with a given measurement under the assumption of various hypotheses. For example,
the sensitivity to discovery of a given signal process H1 could be characterized by the expectation value,
under the assumption of H1, of the value of Z obtained from a test of H0. This would not be the same as
the Z obtained using Eq. (8) with the expectation of the p-value, however, because the relation between
Z and p is nonlinear. The median Z and p will, however, satisfy Eq. (8) because this is a monotonic
relation. Therefore we take the term ‘expected significance’ to refer to the median.

In the Standard Model there is only one Higgs Boson with well defined couplings. To find the
discovery sensitivity of an experiment, one needs to generate one ensemble of experiments containing
the Higgs Boson at the tested mass. However, if one goes beyond the Standard Model, e.g., supersym-
metric models, one faces a multi-dimensional parameter space where the Higgs Boson’s couplings, and
hence its production cross section and decay properties (both related to the signal strength) vary as a
function of the parameters. For each point in parameter space one needs to estimate the experiment’s
discovery sensitivity. One faces the need to generate an enormous number of ensembles of experiments
and evaluate the median sensitivity for each ensemble.

In [2] it was shown that one can replace each ensemble of the alternate-hypothesis experiments
with one data set that represents the typical experiment. This “Asimov” data set delivers the desired
median sensitivity. Hence, one is exempted from the need to perform an ensemble of experiments for
each set of parameters.

The Asimov data set is constructed such that when one uses it to evaluate the estimators for all
parameters, one obtains the true parameter values.

As intuitively used for years till proven at [2], the Asimov data set can trivially be constructed
from the true parameters values. For example, in a counting experiment (see Eq. 2) the Asimov data
set corresponding to the H1 hypothesis is nA = s + b. and the one correspond to the H0 hypothesis is
nA = b. As strange as it reads, the Asimov data set is not necessarily an integer.

3.7 Nuisance Parameters.
From Wikipedia: In statistics, a nuisance parameter is any parameter which is not of immediate interest
but which must be accounted for in the analysis of those parameters which are of interest.

A widely used procedure to establish discovery (or exclusion) in particle physics is based on a
frequentist significance test using a likelihood ratio as a test statistic. In addition to parameters of interest
such as the rate (cross section) of the signal process, the signal and background models will contain in
general nuisance parameters whose values are not taken as known a priori but rather must be fitted from
the data.

It is assumed that the parametric model is sufficiently flexible so that for some value of the param-
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eters it can be regarded as true. The additional flexibility introduced to parametrise systematic effects
results, as it should, in a loss in sensitivity. To the degree that the model is not able to reflect the truth
accurately, an additional systematic uncertainty will be present that is not quantified by the statistical
method presented here.

Here, nuisance parameters are denoted by θ.The likelihood is then a function of the parameter of
interest, say, µ. Then L = L(µ, θ). When testing Hµ, the Profile Likelihood test statistic in the presence
of nuisance parameters, become

qµ = −2ln
L(µ,

ˆ̂
θµ)

L(µ̂, θ̂)
. (9)

µ is the parameter of interest, θ represent the nuisance parameters (including b). A hat stands for the
MLE (Maximum Likelihood Estimator) while a double hat is the constrained MLE, i.e. the MLE of θ,
fixing µ. It is common to say that θ is profiled.

3.8 Confidence Interval, Confidence Level and Coverage.
From Wikipedia: A confidence interval (CI) is a type of interval estimate of a population parameter. It
is an observed interval (i.e., it is calculated from the observations), in principle different from sample
to sample, that frequently includes the value of an unobservable parameter of interest if the experiment
is repeated. How frequently the observed interval contains the (true) parameter is determined by the
confidence level... Whereas two-sided confidence limits form a confidence interval, their one-sided coun-
terparts are referred to as lower or upper confidence bounds.

Say, the result of a measurement is given by µ = 1.1± 0.3. This means that the Confidence Inter-
val, CI, is µ = [0.8, 1.4] at the 68% Confidence Level (CL). I.e., in an ensemble of repeated experiments,
each producing a CI, 68% of the Confidence Intervals contain the unknown true value of the parameter
of interest µ.

There are many ways to derive a CI at a given CL. If, the method produces a CI that contains the
true value of the parameter of interest (p.o.i) more than the CL (e.g. in our example, more than 68%), the
method is said to over-cover, and is considered conservative. If, however, the CI contains the true value
of the p.o.i. less than the claimed Confidence Level, the method is considered to under-cover, which
means, one cannot trust the CL, and the true CL might be lower than the claimed one.

3.9 Upper Limits and Confidence Levels.
If one deduces that the CI of µ contains µ = 0, i.e. µ = [0, µup] at the 95% CL, then one says that
µ < µup at the 95% CL.

If µ < 1 at the 95% CL, and µ is given by Eq. 3, i.e.

µ =
σobs(mH)

σSM (mH)
< 1 (10)

one concludes that σobs(mH) < σSM (mH), i.e. a SM Higgs with a mass mH is excluded at the 95%
CL.

3.10 The Neyman Pearson Lemma.
Wikipedia: In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson,
states that when performing a hypothesis test between two simple hypothesesHnull andHalt, the likelihood-
ratio test which rejects Hnull in favour of Halt is the most powerful test at (a given ) significance level...

When we reject the null hypothesis Hnull based on a very small p-value, we also take a risk. We
might be wrong (this is referred to as a type I error, see section 3.11). The null hypothesis can still be true
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and the p-value is a measure for this risk. The p-value can therefore be interpreted as the false-positive
rate and it satisfies

p ≤ Prob(reject Hnull|Hnull = TRUE) (11)

However, if while rejecting the null hypothesis, the probability for the alternative hypothesis to be true
is small.... the test statistic is probably not doing its job, i.e. it is not powerful. The power of a test is
therefore related to the probability that Halt = TRUE while rejecting Hnull, i.e.

POWER = Prob(rejectHnull|Halt = TRUE). (12)

Neyman and Pearson showed [4], that (in the absence of nuisance parameters) the most powerful test
statistic is the likelihood ratio defined in Eq. 5.

3.11 Type I & Type II Errors, the Modified Frequentist p-value, or, the CLs Technique.
Wikipedia: CLs (from Confidence Levels) is a statistical method for setting upper limits (also called
exclusion limits) on model parameters, a particular form of interval estimation used for parameters that
can take only non-negative values...... .....it differs from standard confidence intervals in that the stated
confidence level of the interval is not equal to its coverage probability. The reason for this deviation is
that standard upper limits based on a most powerful test necessarily produce empty intervals with some
fixed probability when the parameter value is zero, and this property is considered undesirable by most
physicists and statisticians.

For the sake of clarity let us define now type I and type II errors. Type I error is the probability to
reject the null hypothesis, when the null hypothesis is true. This is referred to as "False Positive". It is
usually denoted by α, i.e. α = Prob(rejectHnull|Hnull = TRUE). Type II error, referred to as "False
Negative", is when we accept the null hypothesis, when the alternative hypothesis is true. It is usually
denoted by β. β = Prob(AcceptHnull|Hnull = FALSE) = Prob(AcceptHnull|Halt = TRUE).
Quoting Birnbaum [5]: A concept of statistical evidence is not plausible unless it finds strong evidence
for Halt against Hnull, with small probability α when Hnull is true, and with much larger probability
(1− β) ) when Halt is true. 1− β = Prob(rejectHnull|Halt = TRUE) is defined as the power of the
statistical test. Since rejecting Hnull is accepting Halt by definition, we find

POWER = 1− β = Prob(acceptHalt|Halt = TRUE) = 1− Prob(rejectHalt|Halt = TRUE).
(13)

Let Hnull = Hs+b, i.e. the s + b hypothesis, then, given an observation, Hs+b is rejected if the p-
value= ps+b ≤ α. At the threshold we find

ps+b = Prob(reject Hs+b|Hs+b = TRUE). (14)

with a power ( Equation 13 ) of
Power = 1− pb. (15)

A situation occurs when the power is very small and the experiment has no sensitivity to reject with high
power the s+b hypothesis, because it almost rejects the b-only hypothesis as well, as seen in Figure 3. A
way out, was suggested by the CLs technique [6] which is based on Birnbaum [5]. Birnbaum suggested
in 1962 that the the {p − value}/{power} should be used as a measure of the strength of statistical
evidence provided by significance tests, rather than the p − value alone. This translates into using a
modified p− value

p′s+b =
ps+b

1− pb
(16)

Equation 16 can also be interpreted as a normalised p-value, where ps+b is normalised to the acceptance
probability of Hb. Obviously if, while rejecting Hs+b one does not accept Hb , one does not have a
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Fig. 3: An illustration showing the reasoning of the CLs method. In this situation a signal+background hypothesis
might be rejected though the experiment has no sensitivity to observe that particular signal.

sensitivity to exclude the s+ b hypothesis.

p′s+b =
Prob(reject Hs+b|Hs+b = TRUE)

Prob(accept Hb|Hb = TRUE)
(17)

The CLs method lacks a frequentist coverage. However, it lacks it in places where the experiment
is insensitive to the expected signal! And this is not necessarily a disadvantage from the physicists point
of view! Here is what happens: One uses the Neyman-Pearson likelihood ratio as a test statistics. When
the expected signal is very low the two pdf are almost overlapping (see Figure 3). The background might
fluctuate down resulting in a very small ps+b. As a result we are tempted to exclude the signal hypothesis.
However, it is not the signal hypothesis s, that is excluded, but the signal+background hypothesis s+ b.
It is the small expected signal s << s+ b that is leading to a false exclusion. To protect against such an
inference one uses the modified p − value (Eq. 16) as a criterion for taking a decision of rejecting the
signal hypothesis.

As a result, for heavy Higgses with low cross section, where the experiment lacks sensitivity,
the false exclusion rate is too low and the method over-covers. This is conservative because it avoids
excluding when there is no sensitivity. When the signal cross section is high (light mH ), the coverage is
close to full.

3.12 Feldman-Cousins: Ensuring Coverage by Neyman Construction.
Wikipedia: Neyman construction is a frequentist method to construct an interval at a confidence level
CL%, that if we repeat the experiment many times the interval will contain the true value a fraction
CL% of the time, this way, one guarantees full coverage by construction.

As said, the Neyman construction is a method of parameter estimation that ensures coverage. One
scans over all the possible true values of some parameter s and defines an acceptance interval for each
s, based on the known pdf, f(sm|s), of the measured sm given a possible true s (there is only ONE
unknown true s though). The (e.g.) 68% acceptance interval [sl, sh](s) is defined via the integration
[sl, sh](s) = {sm|

∫ sh
sl
f(sm|s)dsm = 68%} (Figure 4). Even in the simplest case where f is a Gaussian,
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there is an ambiguity in the choice of the integration boundaries, which will lead to two-sided intervals,
or one-sided integral bounded from below or above. To sort out the integration limits one needs to specify
an ordering rule (i.e. which measurements should be considered within the integration boundaries and
which should stay out). The construction of the acceptance intervals for all s forms a belt from which
one can easily get the corresponding (e.g.) 68% confidence interval [sd, su](so), given one measurement
so via inversion (Figure 4).

s

s

msl sh
sd

su

so

Fig. 4: An illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the mea-
sured parameter space sm for a given possible true s, [sl, sh](s). Given an observation so one can construct the
confidence interval [sd, su] via inversion, as indicated in the Figure.

3.12.1 The Feldman-Cousins Method
The full Neyman construction was introduced to HEP by Feldman and Cousins [7]. The test statistic
is the likelihood ratio q(s) = L(s+b)

L(ŝ+b) where ŝ is the MLE of s (in L(ŝ + b) ) under the constraint that
s is physically allowed (i.e. positive). To avoid negative signals, if ŝ < 0, one alters the test statistic
to q(s) = L(s+b)

L(b) . To construct a 68% acceptance interval in the number of observed events, [n1, n2],
one is using q as an ordering rule, i.e.

∑n2
n1
p(n|s, b) ≥ 68% where only terms with decreasing order of

q(n) are included in the sum, till the sum exceeds the 68% confidence (see Fig. 4). When no events are
observed, one is using this constructed Neyman belt to derive a confidence interval, which, depending on
the observation, might be a one-sided or a two-sided interval. This method is therefore called the unified
method, because it avoids a flip-flop of the inference (i.e. one decides to flip from a limit to an interval if
the result is significant enough...).

One can clearly see in Fig. 4 that depending on the observation, so, one gets either a one sided bound, or
a two sided interval.

A noted difficulty with this approach is that an experiment with higher expected background which ob-
serves no events might set a better upper limit than an experiment with lower or no expected background.
This would never occur with the CLs method.

Another difficulty is that this approach does not incorporate a treatment of nuisance parameters. How-
ever, it can either be plugged in "by hand", using the hybrid Cousins and Highland method [8] or in the
LHC way, i.e. using the Profile Likelihood [2] as described above.
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4 Classification of Test Statistics.
Depending on the nature of the test, one can classify the various test statistics, all based on Likelihood
ratios, where the nuisance parameters are profiled (e.g. Eq. 9). The classification is based on [2] and is
shown in Table 1. It is to be noted that t̃0 is equivalent to q0.

Table 1: Classification of Test Statistics

Test
Stat.

Purpose Expression LR

q0 discovery of
positive sig-
nal

q0 =

{−2 lnλ(0) µ̂ ≥ 0

0 µ̂ < 0
λ(0) = L(0,

ˆ̂
~θ)

L(µ̂,~̂θ)

tµ 2-sided mea-
surement

tµ = −2lnλ(µ) λ(µ) = L(µ,
ˆ̂
~θ)

L(µ̂,~̂θ)

t̃µ avoid neg-
ative signal
(Feldman-
Cousins)

t̃µ = −2lnλ̃(µ) λ̃(µ) =





L(µ,
ˆ̂
~θ(µ))

L(µ̂,~̂θ)
µ̂ ≥ 0

L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
~θ(0))

µ̂ < 0

qµ exclusion qµ =

{
−2 lnλ(µ) µ̂ ≤ µ
0 µ̂ > µ

q̃µ exclusion of
positive sig-
nal

q̃µ =





−2 ln L(µ,
ˆ̂
~θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0 ,

−2 ln L(µ,
ˆ̂
~θ(µ))

L(µ̂,~̂θ)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ

5 Wald and Wilks Asymptotic Approximation

Abraham Wald showed [10] that given the likelihood ratio λ(µ) =
L(µ,

ˆ̂
θµ)

L(µ̂,θ̂)
, the test statistic tµ =

−2lnλ(µ) satisfies

−2lnλ(µ) =
(µ− µ̂)2

σ2
µ̂

+O(1/
√
N) (18)

where µ̂ follows a Gaussian distribution with a mean µ′ and a standard deviation σµ̂, and N is the
sample size. Following this result, the statistics tµ distribution f(tµ|µ′), follows a non central Chi Square
distribution for one degree of freedom where the non-cenrality parameter Λ is, Λ = (µ−µ′)2

σ2 . In the
special case µ′ = µ, Λ = 0 and f(tµ|µ) follows a Chi Square Distribution with one degree of freedom,
a result attributed to Samuel Wilks [9]. Since the Asimov data set correspond to µ̂ = µ′, one finds that
Equation 18 becomes an identity and therefore

−2lnλA(µ) =
(µ− µ′)2

σ2
µ̂

. (19)

It follows that when testing Hµ for exclusion (with qµ, see Table 1), let < µ̂ >= µ′ = 0, one finds [2]

σµ̂ =
µ
√
qµ,A

. (20)
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6 Asymptotic Formulae
Wikipedia: In mathematics and statistics, an asymptotic distribution is a distribution that is in a sense
the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymp-
totic distribution is in providing approximations to the cumulative distribution functions of statistical
estimators.

The frequentist approach of statistics requires the knowledge of the probability distribution func-
tions (PDFs) of the test statistic under the null and alternative hypotheses. These PDFs are used to find
both the significance for a specific data set and the expected significance. However, obtaining these
PDFs, can involve Monte Carlo generations that are computationally expensive. Ref [2] developed the
asymptotic formulae based on results due to Wilks [9] and Wald [10] by which one can obtain both the
significance for given data as well as the full sampling distribution of the significance under the hypothe-
sis of different signal models, all without recourse to Monte Carlo. In this way one can find, for example,
the median significance and also a measure of how much one would expect this to vary as a result of
statistical fluctuations in the data. Obtaining the same things with Monte Carlo is sometimes impossible.
One LHC collision might take o(10mins) to generate, and one needs over 107 events to calculate a 5σ
tail of a PDF. Moreover, the test statistics involve heavy duty fits which also take time. Combining AT-
LAS and CMS results in over 4000 Nuisance Parameters. Repeated fits of that many parameters result
often in failure fits. Some we are not even aware of. It could be that the PDF generated by toys is subject
to unknown failure of fits and is not reliable for p − value calculations. In most cases, the number of
events involved is satisfying the condition for the asymptotic approximation to work.

All of the asymptotic approximations of the PDFs of the test statistics shown in Table 1 have been
calculated under the null and alternative hypotheses [2]. There is no point in reproducing them all here.
Three common uses are for exclusion, discovery and measurement.

6.1 Exclusion
For exclusion one can either use qµ or q̃µ (Table 1) as a test statistic. In numerical examples we have found
that the difference between the two tests is negligible, but use of qµ leads to important simplifications.
Furthermore, in the context of the asymptotic approximation, the two statistics are equivalent. That is,
assuming the approximations below, qµ can be expressed as a monotonic function of q̃µ and thus they
lead to the same results. We will therefore recommend the use of qµ for the derivation of exclusion.

Using the asymptoric formulae of [2] we find that f(qµ|µ) distributes as a half-chi-square:

f(qµ|µ) =
1

2
δ(qµ) +

1

2

1√
2π

1
√
qµ
e−qµ/2 . (21)

It is therefore recommended to verify that f(qµ|µ) ∼ χ2
1. This is usually the case, in particular when

combining channels.

The cumulative distribution is

F (qµ|µ) = Φ
(√

qµ

)
. (22)

6.1.1 The p − value

The p-value of the hypothesized µ is

pµ = 1− F (qµ|µ) = 1− Φ
(√

qµ

)
(23)

and therefore the corresponding significance is

11

PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICS

209



Zµ = Φ−1(1− pµ) =
√
qµ . (24)

If the p-value is found below a specified threshold α (often one takes α = 0.05), then the value of µ
is said to be excluded at a confidence level (CL) of 1 − α. The upper limit on µ is the largest µ with
pµ ≤ α. Here this can be obtained simply by setting pµ = α and solving for µ. One finds

µup = µ̂+ σΦ−1(1− α) . (25)

For example, α = 0.05 gives Φ−1(1− α) = 1.64. Any point µ0 satisfying µ0 ≤ µup is excluded at the
100(1 − α)% Confidence Level. (for α = 0.05 the 95% Confidence Interval does not contain µ = µ0).
Also as noted above, σ depends in general on the hypothesized µ. Thus in practice one may find the
upper limit numerically as the value of µ for which pµ = α.

6.1.2 Expected Limit and Error Bands
To find the expected limit, one should plug in the Asimov data which represents the alternative hypoth-
esis, which in this case is the expected background (with no fluctuations). The signal strength is set to
zero (in a simple counting experiment n = b). One then gets qµ,A and the corresponding µmedup is given
by solving qµmedup ,A = 1.642 (for α = 0.05). The error bands are given by

µup+N = σ(Φ−1(1− α) +N) (26)

with

σ2 =
µ2

qµ,A
(27)

following Equation (20). µ can be taken as µmedup in the calculation of σ.

6.2 Expected Limit and Error Bands a-la “(CLs)"
To avoid setting limits when the experiment is not sensitive to the signal, one might use the modified
p-value defined above, ”p′s+b”

p′s+b =
ps+b

1− pb
(28)

We find

p′µ =
1− Φ(

√
qµ)

Φ(
√
qµ,A −√qµ)

(29)

The median and expected error bands will therefore be

µup+N = σ(Φ−1(1− αΦ(N)) +N) (30)

with

σ2 =
µ2

qµ,A
(31)

To get the 95% expected upper limit, set α = 0.05. µ can be taken as µmedup in the calculation of σ..

Note that for N = 0 we find the median limit

µmedup = σΦ−1(1− 0.5α) (32)

The expected µ and the expectation for error band N is shown in Figure 5. one can clearly see the
shrinkage of the error band, µup+Nσ − µup+(N−1)σ, when N → −∞
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Fig. 5: µup+Nσ as a function of N (in units of σ). Red is based on ps+b blue is based on p′s+b (CLs).

6.3 Example from the Higgs Boson Search
Figure 6 taken from [11] shows µup as a function of mH at one of the stages of the Higgs search. The
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σ1 ±
σ2 ±

-1Ldt = 5.8-5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.6-4.8 fb∫ = 7 TeV:  s

ATLAS Preliminary 2011 + 2012 Data

CLs Limits

Fig. 6: The observed (full line) and expected (dashed line) 95% CL combined upper limits on the SM Higgs boson
signal strength (µup) in the full mass range mH considered in this analysis. The dashed curves show the median
expected limit in the absence of a signal and the green and yellow bands indicate the corresponding 68% and 95%
intervals.

mass range where µup(mH) ≤ 1 is where a SM Higgs Boson with a mass mH is excluded. Obviously
one cannot exclude the Higgs aroundmH = 125 GeV, where a real signal is being built up with luminos-
ity µup > 1. The median expected is given by the dashed line (following Equation 32 with α = 0.05).
The error bands are derived using Equation 30, with N = ±1 (Green) and N = ±2 (yellow).

Figure 7 taken from the same reference, shows p′s+b (labeled in the Figure as CLs), as a function
of mH . Mass regions where p′s+b ≤ 0.05 are excluded at, at least, the 95% CL.

6.4 Measurement
Let the statistic be tµ = −2 lnλ(µ) (Table 1) as the basis of the statistical test of a hypothesized value
of µ. This could be a test of µ = 0 for purposes of establishing existence of a signal process, or non-

13

PRACTICAL STATISTICS FOR HIGH ENERGY PHYSICS

211



 [GeV]Hm
100 200 300 400 500 600

C
Ls

-810

-710

-610

-510

-410

-310

-210

-110
1

10

210

310

410
Obs. 

Exp. 

95%
99%

-1Ldt = 5.8-5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.6-4.8 fb∫ = 7 TeV:  s

ATLAS Preliminary 2011 + 2012 Data

Fig. 7: The value of the combined CLs (p′s+b), testing the Standard Model Higgs boson hypothesis, as a function
of mH in the full mass range of this analysis. The expected CLs is shown in the dashed curves. The regions with
CLs < 0.05 are excluded at least at 95% CL. The 95% and 99% CL values are indicated as dashed horizontal
lines.

zero values of µ for purposes of obtaining a confidence interval. In the asymptotic regime the pdf of tµ
distributes like a χ2 with one degree of freedom, under the Hµ hypothesis.

f(tµ|µ) =
1√
2π

1√
tµ
e−tµ/2 . (33)

To measure µ, one scans the test statistics, finds µ̂ and σup, σlo by substituting tµ = 1. The 68%
Confidence Interval of µ is then estimated to be [µ̂ − σlo, µ̂ + σup]. If one wants to estimate with how
many standard deviations a specific value of µ, e.g. µ = 0. is unlikely, one calculates

√
t0.

To get the expcted µ one repeats the above procedure, calculating tµ with the Asimov data set, for which
µ̂ = µ.

A formulation of the asymptotic properties of tµ is given in [2].

6.5 Discovery
To establish a discovery one tries to reject the background only hypothesis. We use the qo test statistics
(Table 1). Since we do not want downward fluctuations of the background to serve as an evidence against
the background we define the test statistics such that q0 = 0 if µ̂ < 0. The test statistic is therefore given
by (Table 1):

q0 =




−2 ln L(0)

L(µ̂) µ̂ ≥ 0,

0 µ̂ < 0 ,
(34)

Under the background only hypothesis, H0, q0 is asymptotically distributed as half a chi squared with
one degree of freedom, i.e.

f(q0|0) =
1

2
δ(q0) +

1

2

1√
2π

1√
q0
e−q0/2 . (35)

The significance of the observation is given by
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Z0 = Φ−1(1− p0) =
√
q0 . (36)

The p0 value can easily be calculated using

p0 = 1− F (q0|0) , (37)

where

F (q0|0) = Φ
(√

q0

)
. (38)

A significance of 3σ is considered as an observation, while a significance exceeding 5σ is regarded as
a discovery. The reason for using such a large number to establish a discovery is because of the Look
Elsewhere Effect, discussed in section 8.

6.6 Discovery Example
In Figure 10 we show the p− value as a function of the mass, taken from the ATLAS discovery confer-
ence note [11]. Both, the p− value and its corresponding significance are indicated. One clearly sees an
upward fluctuation of the background (downward fluctuation in p − value) around a mass of 125 GeV.
The fluctuation is at the level of 5σ. For other masses the p − value fluctuates around 0.5, meaning a
significance of 0σ. The expected p − value is given by the dashed line. One can clearly see that only
aroundmH = 125 GeV, the expected and the observed p−value are similar, indicating a signal strength
µ ∼ 1, as can clearly be seen in Figure 11.

6.6.1 Significance in a nut-shell.
Many people use a thumbnail formula Z = s√

b
to estimated the significance of an apparent signal. s

represents here n− b, where b is the expected background, and n is the number of observed events.

Using the profile likelihood formalism we can get a much more accurate estimation for the appar-
ent observed significance [2].

If we regard b as known, the data consist only of n and thus the likelihood function is

L(µ) =
(µs+ b)n

n!
e−(µs+b) , (39)

The test statistic for discovery q0 can be written

q0 =




−2 ln L(0)

L(µ̂) µ̂ ≥ 0,

0 µ̂ < 0 ,
(40)

where µ̂ = n− b. For sufficiently large b we can use the asymptotic formula [2] to obtain

Z0 =
√
q0 =





√
2
(
n ln n

b + b− n
)

µ̂ ≥ 0,

0 µ̂ < 0.
(41)

To approximate the median significance assuming the nominal signal hypothesis (µ = 1) we
replace n by the Asimov value s+ b to obtain

med[Z0|1] =
√
q0,A =

√
2 ((s+ b) ln(1 + s/b)− s) . (42)

Expanding the logarithm in s/b one finds
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med[Z0|1] =
s√
b

(1 +O(s/b)) . (43)

Although Z0 ≈ s/
√
b has been widely used for cases where s + b is large, one sees here that this final

approximation is strictly valid only for s � b. We therefore recommend to use Eq. 42 to estimate a
significance in a nut shell. It is much more accurate.

7 Testing an hypothesis with boundaries.
In [7] Feldman and Cousins derive the test statistics with the physical condition, namely, the true value
of µ must be positive, i.e. µ > 0. In [2] the t̃µ test statistic is introduced (see Table 1) in order to avoid
a negative non-physical signal. As a result, depends on the observation, a two sided (measurement) or
one sided (limit) Confidence Interval is obtained. This is the equivalence of the Feldman-Cousins test
statistic with the advantage of taking care of the nuisance parameters. The original Feldman-Cousins
test statistic is not considering systematics. In [2] the asymptotic formula of t̃µ is derived. In a later
paper [12] the same authors improve the test statistic by taking into account two sided boundaries. This
is the case, for example when one wants to measure or set limits on the measurement of a Branching
Ratio, which must be 0 < BR < 1 by definition. The revised t̃µ is defined by

t̃µ =





−2 ln L(µ,
ˆ̂
θ(µ))

L(µ−,
ˆ̂
θ(µ−))

µ̂ ≤ µ−

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
µ− < µ̂ < µ+

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ+,
ˆ̂
θ(µ+))

µ̂ ≥ µ+ ,

(44)

ˆ̂
θ represent the nuisance parameters, ˆ̂

θ(µ) is the conditional maximum likelihood estimate of θ given µ.
µ− and µ+ are the physical boundaries. The Feldman-Cousins test statistic is retrieved for µ− = 0 and
no upper boundary, µ+. The asymptotic formulas are derived in [12].

7.1 Pull
The pull of a nuisance parameter θ, with an expectation θ0 is defined as:

pull(θ) =
θ̂ − θ0

σθ
(45)

the pull quantifies how far from its expected value we had to "pull" the parameter while finding the MLE.
A healthy situation is when the pull average is zero with a standard deviation close to 1, if this is not
the case, further investigation is required. The expected value of a nuisance parameter and its assumed
standard deviation will be based on an auxiliary measurement or MC studies.

7.2 Impact
the impact of a nuisance parameter is defined as:

impact(θ) = ∆µ± = ˆ̂µθ0±σθ − µ̂ (46)

where ˆ̂µθ0±σ is the MLE of µ when we profile every parameter except θ, and set the value of θ to its
expectation value plus or minus one standard deviation. The impact gives a measure of how much our
parameter of interest varies as we change the nuisance parameter. Obviously not all nuisance parameters
are equally important, so a nuisance parameter with low impact may be possibly discarded (or "pruned")
to simplify the fit procedure.
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7.3 Example of pull and impact
To illustrate the use of impact and pull, consider a simple counting experiment which measures n events,
with n = µ · s · A · ε + b, where s is the number of signal events, µ is the p.o.i and A (acceptance) ε
(efficiency) and b (background) are nuisance parameters with gaussian distributions.
The likelihood is given by:

L(µ,A, ε, b) =
(µsAε+ b)n

n!
exp (−(µsAε+ b)) ·

exp

(
−(b− bobs)2

σb

)
exp

(
−(A−Aobs)2

σA

)
exp

(
−(ε− εobs)2

σε

) (47)

For each nuisance parameter, there is an "observed" value which could come from some auxiliary mea-
surement. In this simplified case all nuisance parameters are measured by their MLEs, i.e. (θ̂ = θobs).
We assume the "true" value of the parameters are known to be θ0.
The pulls are calculated straightforward from equation 45. The impact is calculated with the test statistic

tµ(ε) = −2lnL(ˆ̂µ,
ˆ̂
A,ε,

ˆ̂
b)

L(µ̂,Â,ε̂,b̂)
(for the nuisance parameter ε), with double hat indicating that the fit is con-

strained to ε, as was described above. Table 2 shows the values of the parameters used in the toy
calculation. The measured value for n, was picked from a poisson distribution with expectation value
of nexp = µ · s · A · ε + b (the true, Asimov, values) and εobs Aobs and bobs were picked from gaussian
distributions.

Figure 8 shows a typical overlay plot of pull and impact (right plot for Asimov and left plot for some
toy data set). Note the different x-axis (top for the impact, bottom for the pull). Figure 9 shows in more
detail the calculation of the impact - it shows the scan of tµ(ε), ˆ̂µ(ε) and the procedure leading from
ε̂± σε points to the Impact range (right plot for Asimov and left plot for some toy data set).

Parameter Asimov Measured
s 90 -
n 131.5 132
µ 1 1.4
ε 0.5 0.465
σε 0.05 -
A 0.7 0.487
σA 0.2 -
b 100 103.21
σb 10 -

Table 2: Parameters for toy experiment

8 The Look Elsewhere Effect (LEE).
Wikipedia: The look-elsewhere effect is a phenomenon in the statistical analysis of scientific experiments,
particularly in complex particle physics experiments, where an apparently statistically significant obser-
vation may have actually arisen by chance because of the size of the parameter space to be searched.Once
the possibility of look-elsewhere error in an analysis is acknowledged, it can be compensated for by care-
ful application of standard mathematical techniques [3].

8.1 The LEE with one parameter (m) undefined under the null hypothesis.
When searching for a new resonance somewhere in a possible mass range, the significance of observing
a local excess of events must take into account the probability of observing such an excess anywhere in
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Fig. 8: Impact and pull for the three nuisance parameters (right plot for Asimov and left plot for some toy data set).
The yellow rectangles show the impact range (upper x-axis) and the coloured dots show the pull (lower x-axis)
with one σ error bars
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Fig. 9: Calculation of the impact of the nuisance parameter ε (right plot for Asimov and left plot for some toy data
set). The upper plot shows the MLE of µ when profiling all parameters except ε (the blue curve) and the red X’s
show the point where ˆ̂µ(ε) intersects with the ε̂± σε points (the dashed vertical lines), which marks the end points

of the impact. The bottom plot shows the scan of the test statistic tµ(ε) = −2lnL(
ˆ̂µ,

ˆ̂
A,ε,

ˆ̂
b)

L(µ̂,Â,ε̂,b̂)
and shows that the ε̂±σε

points correspond to min(tµ(ε))± 1
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the range. This is the so called “look elsewhere effect”. The effect can be quantified in terms of a trial
factor, which is the ratio between the probability of observing the excess at some fixed mass point (local
p− value), to the probability of observing it anywhere in the range (global p− value). The question we
try to answer with a p− value is What is the probability of observing an excess anywhere in the search
range". For years it was a common knowledge that in order to convert the local probability into a global
probability one has to apply a trial factor which is simply the number of possible independent search
regions, i.e. trial # =

pfloat
pfix

= search range
mass resolution . In [3] it was shown that an important factor was missing

from this rule of thumb estimation. The trial number is linearly dependent on the local significance. This
can be intuitively understood by the possibility of havung a look elsewhere effect within the independent
search range, where the number of possibilities peak can arrange itself is proportional to the significance.
The trial number is therefore asymptotically (for small p− values, i.e. large significance) given by

trial# ≈ 1 +

√
π

2
NZfix (48)

where N is the number of independent search regions.

The trial factor is thus asymptotically linear with both the effective number of independent regions,
and with the fixed-mass significance.

The number of independent search region is not a trivial quantity. The resolution might not be well
defined and is usually depending on the mass. We applied the formula obtained by Davies [13] for an
hypothesis testing when a nuisance parameter (the mass) is known only under the alternative hypothesis.
The mass is not defined under the null (background only) hypothesis.

Let q0(m, θ) be the discovery test statistics (following Equation 34). m is undefined under the null
hypothesis (µ = 0). Nevertheless, there is a dependence of q0 on the mass through the denominator.

q0(m) =




−2 ln L(0)

L(µ̂,m) µ̂ ≥ 0,

0 µ̂ < 0 ,
(49)

Given some data set, we scan q0(m) and find the maximal one (smallest p − value over all possible
masses). We define it as

q̂0 ≡ maxm[q0(m)] = q0(m̂) (50)

Since for any given m, q0(m̂ ≥ q0(m), the global p − value, pglobal ≥ plocal. Hence, the trial number
is always greater or equal to one, Trial# ≥ 1. We find that for high local significance (at the tail of the
pdf distributions), the following relation exists between the global and local p− value:

P (q0(m̂) > u) ≈ 1

2
P (χ2

1 > u) +NP (χ2
2 > u) (51)

where in the tail u → ∞. N is the number of independent search regions. To obtain this we find the
average number of upcrossings at a level u = Z2, nu, i.e. E[nu] = N e−u/2.

Since we are interested to know the global significance for high level , normally u = Z2 > 16, the
number of upcrossings is very small and one needs to generate expensive toys to estimate E[nu]. One
then renormalize the upcrossings level. Let us pick a low level u0 where the number of upcrossings is
relatively large and the statistical error on the estimation is therefore small (normally one picks u0 = 0
or u0 = 0.52). We find E(nu0) = N e−u0/2 and therefore

E(nu) = E(nu0)e
u0−u

2 (52)

Finally we find that the answer to the question: What is the probability to have a fluctuation with a
significance bigger than Z =

√
u all over a given mass range? is given by

Pglobal(u) ≈ plocal(u) + E(nu0)e
u0−u

2 (53)
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where u0 is some low reference level, where the estimation of the number of upcrossings E(nu0) is easy
and fast.

To illustrate it let us look at a real example from the Higgs Boson search and discovery. In the
following Figures we show the p0 (Figure 10) and the signal strength µ (Figure 11) as a function of the
Higgs mass. The plots are taken from the ATLAS discovery conference note [11]. Z = 0 corresponds
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Fig. 10: The local probability p0 for a background-only experiment to be more signal-like than the observation in
the full mass range of this analysis as a function of mH . The dashed curves show the median expected local p0
under the hypothesis of a Standard Model Higgs boson production signal at that mass. The horizontal dashed lines
indicate the p-values corresponding to significances of 1σ to 6σ.
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Fig. 11: The combined best-fit signal strength µ̂ as a function of the Higgs boson mass hypothesis in the full mass
range of this analysis

to either p0 = 0.5 or µ̂ = 0. Se we have to count the number of up-crossings at 0σ. We should have
performed a few Momte Carlo experiments and count the average number of up-crossings at u = 0. But
this seems to be not practical when we combine all the channels. Instead we could simply take the data
itself and count nu0 = 9±3. This accuracy is sufficient for the estimation of the trial number. Following
Equation 53, substituting u0 = 0 and u = 52 = 25, we find

pglobal = O(10−7) + 9× e−25/2 = 3.3× 10−5 (54)

The trial number is about trial# ≈ 10−5

10−7 ≈ 100 and it reduces the significance from 5σ to 4σ.
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8.2 The LEE with two parameters (m,Γ) undefined under the null hypothesis.
In cases where there are two parameters undefined under the null hypothesis, such as mass (m) and width
(Γ) the Look Elsewhere Effect is broader. Ref [14] solved the case for a multi-dimensional search.

Suppose we would like to estimate the global significance of some observed excess. When allow-
ing both the mass and the width float, we observe that the highest significance of Zσ occurs for some
specific mass and width. This observation corresponds to a local background fluctuation with a p-value
of plocal. However, any fluctuation at any mass and width in the 2D search plane of m and Γ would have
drawn our attention. The increased probability to observe a fluctuation of Zσ or more anywhere in the
mass-width plane A = (m,Γ) (LEE) is given by the global p-value, pglobal. The local p-value is based
on scanning the q0(m,Γ) test statistic, q0(m,Γ) given by

q0(m,Γ) = −2 log
L(0,m,Γ,

ˆ̂
θ)

L(µ̂, m̂, Γ̂, θ̂)
. (55)

The distribution of the maximum local significance u = Z2 = maxm,Γ q0(m,Γ) was studied in [14].
The global p-value is given by

pglobal ≈ E[φ(Au)] = plocal + e−u/2(N1 +
√
uN2) (56)

where N1 and N2 are coefficients that are estimated by calculating the average Euler characteristic of
the plane A. To solve for N1 and N2, it is convenient to set two reference levels u0 and u1, find the
Euler characteristics for each level, and solve the consequent system of two linear equations. In a 2D
manifold with closed islands, some with holes, each disconnected full island takes the value +1. Each
hole contributes −1. In that sense a full round shape has the Euler characteristic of +1. If you dig a hole
in it, its Euler characteristics becomes +1− 1 = 0 (Figure 12).

Fig. 12: Illustration of the Euler characteristic of some 2-dimensional manifold.

An example can be taken from the search for di-photon in ATLAS [15]. In Figure 13 one sees
the 2D (mX ,ΓX/mX ) plane. The manifold Au is obtained by slicing this plane at a level u = Z2. The
Euler characteristic is the number of "disconnected" islands in that slice.
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