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Abstract

The European School of High-Energy Physics is intended to give young physicists an introduction to the the-
oretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on
quantum field theory and the electroweak standard model, the theory of quantum chromodynamics, QCD under
extreme conditions, physics beyond the standard model, flavour physics and CP violation, neutrino physics,
cosmology and dark matter, and practical statistics for particle physicists.
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Preface

The twenty-sixth event in the series of the European School of High-Energy Physics took place in Maratea,
Italy, from 20 June to 3 July 2018. It was organized jointly by CERN, Geneva, Switzerland, and JINR, Dubna,
Russia, with support from INFN, in particular the Naples Unit, the University of Naples Federico II, in particular
the Department of Physics E. Pancini, the University of Basilicata and the Italian Physical Society (SIF). The
local organization team was chaired by Luca Lista (INFN Naples). The other members of the local committee
were: Maria Grazia Alviggi, Fabrizio Bianchi, Concezio Bozzi, Gianpaolo Carlino, Nicola Cavallo, Francesco
Cirotto, Antonia Di Crescenzo, Francesco Fabozzi, Orso Iorio, Mario Merola, Celeste Satriano and Stefania
Spagnolo.

A total of 96 students of 37 different nationalities attended the school, mainly from institutes in member
states of CERN and/or JINR, but also some from other regions. The participants were generally students in
experimental High-Energy Physics in the final years of work towards their PhDs.

The School was hosted at the Grand Hotel Pianeta Maratea, on the gulf of Policastro, south of Naples.
According to the tradition of the school, the students shared twin rooms mixing participants of different nation-
alities.

A total of 30 lectures were complemented by daily discussion sessions led by six discussion leaders. The
students displayed their own research work in the form of posters in an evening session in the first week, and
the posters stayed on display until the end of the School. The full scientific programme was arranged in the
on-site conference facilities. The School also included an element of outreach training, complementing the
main scientific programme. This consisted of a two-part course from the Inside Edge media training company.
Additionally, students had the opportunity to act out radio interviews under realistic conditions based on a
hypothetical scenario.

The students from each discussion group subsequently carried out a collaborative project, preparing a talk
on a physics-related topic at a level appropriate for a general audience. The talks were given by student repre-
sentatives of each group in an evening session in the second week of the School. A jury, chaired by Leonardo
Alfonsi (PsiQuadro), judged the presentations; other members of the jury were Andrea De Simone (SISSA),
and Fabio Maltoni (Louvain University). We are very grateful to all of these people for their help.

Our thanks go to the local-organization team and, in particular, to Luca Lista, for all of their work and
assistance in preparing the School, on both scientific and practical matters, and for their presence throughout
the event. Our thanks also go to the efficient and friendly hotel management and staff who assisted the School
organizers and the participants in many ways. Very great thanks are due to all of the lecturers and discussion
leaders for their active participation in the School and for making the scientific programme so stimulating.
The students, who in turn manifested their good spirits during two intense weeks, appreciated listening to and
discussing with the teaching staff of world renown.

We would like to express our strong appreciation to Fabiola Gianotti, Director General of CERN, and
Victor Matveev, Director of JINR, for their lectures on the scientific programmes of the two organizations and
for discussing with the School participants. We are also very happy that Nadia Pastrone, President of the INFN
National Scientific Committee on Particle Physics, was able to attend the School as one of the lecturers.

In addition to the rich academic programme, the participants enjoyed numerous sports, leisure and cultural
activities in and around Maratea. We were able to try local wines at a pre-dinner wine tasting, offered by the
Gioia Al Negro local vineyard. There was a half-day excursion to the local town of Sapri, followed by a visit to
the beautiful Villa Nitti for a buffet dinner. A boat trip along the scenic Cilento coast and the protected marine
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area of Infreschi was the main attraction of the full day excursion, with opportunities to visit beaches reachable
by boat only and a stop in the village of Scario. On the final Saturday afternoon, the students were able to make
use of the hotel facilities during free time finishing with a dinner organized by the hotel on the beach. The
excursions provided an excellent environment for informal interactions between staff and students.

We are very grateful to the School Administrators, Kate Ross (CERN) and Tatyana Donskova (JINR),
for their untiring efforts in the lengthy preparations for and the day-to-day operation of the School. Their
continuous care of the participants and their needs during the School was highly appreciated.

The success of the School was to a large extent due to the students themselves. Their poster session was very
well prepared and highly appreciated, their group projects were a big success, and throughout the School they
participated actively during the lectures, in the discussion sessions and in the different activities and excursions.

Nick Ellis
(On behalf of the Organizing Committee)
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Quantum field theory and the Electroweak Standard Model

A.V. Bednyakov
BLTP JINR, Dubna, Russia

Abstract
These lecture notes cover the basics of Quantum Field Theory (QFT) and
peculiarities in the construction of the Electroweak (EW) sector of the
Standard Model (SM). In addition, the present status, issues, and prospects of
the SM are discussed.

Keywords
Quantum field theory; standard model; electroweak; lectures.

1 Introduction
The Standard Model (SM) [1–3] was established in the mid-1970s. Its success is incredible: even after
almost half a century, no significant deviations from the SM predictions have been found.

But what is the SM?

After the discovery [4,5] of the Higgs boson at the LHC, it is fair to give the following short answer [6]:

The Absolutely Amazing Theory of Almost Everything.

There are many excellent lectures (e.g., [7–10]) and textbooks (e.g., [11, 12]) that can provide a lot of
convincing arguments for such a fancy name. In this course we are not able to cover all the aspects of the
SM, but just review some basic facts and underlying principles of the model emphasizing salient features
of the latter.

Let us start with a brief overview of the SM particle content (see Fig. 1). One usually distinguishes
fermions (half-integer spin) from bosons (integer spin). Traditionally, fermions are associated with “mat-
ter”, while bosons take the role of “force carriers” that mediate interactions between spin-1/2 particles.
In the SM, there are three generations involving two types of fermions - quarks and leptons. In total, we
have

– 6 quarks of different flavour (q = u, d, c, s, t, b),
– 3 charged (l = e, µ, τ ) and 3 neutral (νl = νe, νµ, ντ ) leptons.

All of them participate in the weak interactions. Both quarks q and charged leptons l take part in the
electromagnetic interactions. In addition, quarks carry a colour charge and are influenced by the strong
force. In the SM the above-mentioned interactions are mediated by the exchange of spin-1 (or vector)
bosons:

– 8 gluons are responsible for the strong force between quarks;
– 4 electroweak bosons mediate the electromagnetic (photon - γ) and weak (Z,W±) interactions.

There is also a famous spin-0 Higgs boson h, which plays an important role in the construction of the
SM. It turns out that only gluons and photons (γ) are assumed to be massless.1 All other elementary
particles are massive due to the Higgs mechanism.

1Initially neutrinos νl were assumed to be massless in the SM but experiments show that it is not the case.
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Fig. 1: Particle content of the Standard Model. Courtesy to Wikipedia.

In the SM the properties of the particle interactions can be read off the SM Lagrangian LSM . One
can find its compact version on the famous CERN T-shirt. However, there is a lot of structure behind the
short expression and it is Quantum Field Theory or QFT (see, e.g., textbooks [12–16]) that allows us to
derive the full Lagrangian and understand why the T-shirt Lagrangian is unique in a sense.

The form of LSM is restricted by various kinds of (postulated) symmetries. Moreover, the SM
is a renormalizable model. The latter fact allows us to use perturbation theory (PT) to provide high-
precision predictions for thousands and thousands observables and verify the model experimentally. All
these peculiarities will be discussed during the lectures, which have the following structure.

We begin by introducing quantum fields in Sec. 2 as the key objects of the relativistic quantum
theory of particles. Then we discuss (global) symmetries in Sec. 3 and emphasize the relation between
symmetries and particle properties. We switch from free to interacting fields in Sec. 4 and give a brief
overview of techniques used to perform calculations in QFT models. We introduce gauge (or local)
symmetries in Sec. 5 and discuss how they are realized in the SM (Sec. 6). The experimental status of
the SM can be found in Sec. 7. Final remarks and conclusions are provided in Sec. 8.

2 From particles to quantum fields
Before we begin our discussion of quantum fields let us set up our notation. We work in natural units
with the speed of light c = 1 and the (reduced) Planck constant ~ = 1. In this way, all the quantities in
particle physics are expressed in powers of electron-Volts (eV). To recover ordinary units, the following
conversion constants can be used:




 ~ ' 6.58 · 10−22 MeV · s, ~c ' 1.97 · 10−14 GeV · cm





 . (1)
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In High-Energy Physics (HEP) we routinely deal with particles traveling at speed v . c. As a conse-
quence, we require that our theory should respect Lorentz symmetry that leaves a scalar product2

px ≡ pµxµ = gµνpµxν = p0x0 − p · x, gµν = diag(1,−1,−1,−1) (2)

of any four-vectors, e.g., space-time coordinates xµ and energy-momenta pµ

xµ = {x0,x}, with time t ≡ x0,

pµ = {p0,p}, with energy E ≡ p0,

invariant under rotations and boosts parametrized by Λµν :

xµ → x′µ = Λµνxν , xµxµ = x′µx
′
µ ⇒ ΛµαΛµβ = gαβ (3)

It is this requirement that forces us to use QFT as a theory of relativistic particles. Relativistic
quantum mechanics (RQM) describing a fixed number of particles turns out to be inconsistent. Indeed,
from the energy-momentum relation for a free relativistic particle

E2 = p2 +m2 (instead of E =
p2

2m
in the non-relativistic case),

and the correspondence principle

E → i
∂

∂t
, p→ −i∇

one obtains a relativistic analog of the Shrödinger equation - the Klein-Gordon (KG) equation

(
∂2
t −∇2 +m2

)
φ(t,x) = 0 (instead of i∂tψ = −∇

2

2m
ψ) (4)

for a wave-function φ(t,x) ≡ 〈x|φ(t)〉. It has two plane-wave solutions for any three-dimensional p:

φp(t,x) = e−iEt+px, with E = ±ωp, ωp = +
√

p2 +m2. (5)

One can see that the spectrum (5) is not bounded from below. Another manifestation of this problem is
the fact that for a general wave-packet solution

φ(t,x) =
1

(2π)3/2

∫
dp√
2ωp

[
a(p)e−iωpt+ipx + b(p)e+iωpt−ipx] (6)

we are not able to introduce a positive-definite probability density ρ

ρ ≡ j0 = i (φ∗∂tφ− φ∂tφ∗)⇒ 2E for φ ∝ e−iEt, (7)

required to interpret φ as a wave-function of a single particle. Of course, one can try to impose the
positive-energy condition [b(p) ≡ 0] but it is not stable under interactions. A single-particle interpreta-
tion fails to account for the appearance of negative-energy modes and we need a new formalism to deal
with such situations. Moreover, in RQM space coordinates play a role of dynamical variables and are
represented by operators, while time is an evolution parameter. Obviously, a consistent relativistic theory
should treat space and time on equal footing.

In order to circumvent these difficulties, one can re-interpret φ(x, t) satisfying (4) as a quantum
field, i.e., an operator3 φ̂(x, t). The space coordinates x can be treated as a label for infinitely many

2Summation over repeated indices is implied.
3We use the Heisenberg picture, in which operators OH(t) depend on time, while in the Schrödinger picture it is the states

that evolve: 〈ψ(t)|OS |ψ(t)〉 = 〈ψ|OH(t)|ψ〉 with OS = OH(t = 0), |ψ〉 = |ψ(t = 0)〉.
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dynamical variables and we are free to choose a system of reference, in which we evolve these variables.
As a consequence, a single field can account for an infinite number of particles, which are treated as field
excitations. In the QFT notation the solution of the KG equation(p0 = ωp) can be rewritten

φ(x) =
1

(2π)3/2

∫
dp√
2ωp

[
a−p e

−ipx + b+p e
+ipx

]
(8)

as a linear combination of operators a±p and b±p obeying

a−pa
+
p′ − a+

p′a
−
p ≡

[
a−p , a

+
p′

]
= δ3(p− p′),

[
b−p , b

+
p′

]
= δ3(p− p′). (9)

All other commutators are zero, e.g.,
[
a±p , a

±
p′

]
= 0. The operators satisfy a±p = (a∓p )† and b±p = (b∓p )†,

and for a±p ≡ b±p the field is hermitian φ†(x) = φ(x).

The operator (8) needs some space to act on and in QFT we consider the Fock space. It consists of
a vacuum |0〉, which is annihilated by a−p (and b−p ) for every p

〈0|0〉 = 1, a−p |0〉 = 0, 〈0|a+
p = (a−p |0〉)† = 0,

and field excitations. The latter are created from the vacuum by acting with a+
k (and/or b+k ) , e.g.,

|f1〉 =

∫
dk · f1(k)a+

k |0〉, 1-particle state; (10)

|f2〉 =

∫
dk1dk2 · f2(k1,k2)a+

k1
a+
k2
|0〉 2-particle state, (11)

. . .

where fi(k, . . .) are supposed to be square-integrable, so that, e.g., 〈f1|f1〉 =
∫
|f1(k)|2dk < ∞. In

spite of the fact that it is more appropriate to deal with such normalizable states, in QFT we usually
consider (basis) states that have definite momentum p, i.e., we assume that f1(k) = δ(k− p).

The two set of operators a± and b± correspond to particles and antiparticles. From the commuta-
tion relations we deduce that a+

pa
+
k = a+

k a
+
p , so particles are not distinguishable by construction.

The commutation relations (10) should remind us about a bunch of independent quantum harmonic
oscillators. Indeed, the corresponding Hamiltonian

Ĥosc =
∑

j

1

2
(p̂2
j + ω2

j x̂
2
j ) =

∑

j

ωj
2

(
a+
j a
−
j + a−j a

+
j

)
=
∑

j

ωj

(
n̂j +

1

2

)
(12)

can be expressed in terms of ladder operators
√

2ωja
±
j = (ωj x̂j ∓ ip̂j) (no summation), which satisfy

[a−j , a
+
k ] = δjk similar to Eq.(10). For convenience we re-order operators entering into Ĥosc and intro-

duce n̂j = a+
j a
−
j that counts energy quanta n̂j |nj〉 = nj |nj〉. A direct consequence of the re-ordering

is the fact that the lowest possible state (vacuum |0〉) has non-zero energy, which is equal to the sum of
zero-point energies

∑
j ωj/2 of all oscillators.

We can make the analogy between a (free) field and harmonic oscillators more pronounced if we
put our field in a box of size L. In this case, the energy ωp and momentum p are quantized

p→ pj = (2π/L)j, ωp → ωj =
√

(2π/L)2j2 +m2, j = (j1, j2, j3), ji ∈ Z.

The corresponding Ĥosc (12) can be used to deduce the (QFT) Hamiltonian (by taking the limit L→∞):

Ĥpart = lim
L→∞



(

2π

L

)3∑

j




︸ ︷︷ ︸∫
dp

ωj

[ (
L

2π

) 3
2

a+
j

︸ ︷︷ ︸
a+p

(
L

2π

) 3
2

a−j
︸ ︷︷ ︸

a−p

+
1

2

(
L

2π

)3

︸ ︷︷ ︸
δ(0)

]
.
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Since our field (8) involves two kinds of ladder operators, we have

Ĥ = Ĥpart + Ĥantipart =

∫
dpωp [np + n̄p] +

∫
dpωpδ(0) (13)

with n̄p ≡ b+p b
−
p and np ≡ a+

pa
−
p . The interpretation of the first term is straightforward: (n̄p) np

counts (anti-)particles with definite momentum p and there is a sum over the corresponding energies.
The second term in Eq.(13) looks disturbing. It is associated with infinite vacuum (no particles) energy:

E0 = 〈0|Ĥ|0〉 =

∫
dpωpδ(0).

Actually, there are two kinds of infinities in E0:

– InfraRed (large distances, L→∞) due to L3 → (2π)3δ(0);
– UltraViolet (small distances, p, ωp →∞).

One usually “solves” this problem by introducing normal-ordered Hamiltonians, e.g.,

:Ĥosc:=
ωj
2

(
:a+
j a
−
j + a−j a

+
j :
)

= ωj :a+
j a
−
j := ωja

+
j a
−
j .

With :Ĥ: we measure all energies with respect to the vacuum Ĥ →:Ĥ:= Ĥ − 〈0|Ĥ|0〉 and ignore (non-
trivial) dynamics of the latter. In what follows we assume that operators are normal-ordered by default.

It is easy to check that [Ĥ, a±p ] = ±ωpa
±
p and [Ĥ, b±p ] = ±ωpb

±
p . As a consequence, single-

particle states with definite momentum p

|p〉 = a+
p |0〉, Ĥ|p〉 = ωp|p〉, |p̄〉 = b+p |0〉, Ĥ|p̄〉 = ωp|p̄〉 (14)

are eigenvectors of the Hamiltonian with positive energies and we avoid introduction of negative energies
in our formalism from the very beginning. One can generalize Eq. (12) and “construct” the momentum
P̂ and charge Q̂ operators4:

P̂ =

∫
dpp [np + n̄p] , P̂|0〉 = 0|0〉, P̂|p〉 = p|p〉 P̂|p〉 = p|p̄〉, (15)

Q̂ =

∫
dp [np − n̄p] , Q̂|0〉 = 0|0〉, Q̂|p〉 = +|p〉 Q̂|p̄〉 = −|p̄〉. (16)

The charge operator Q̂ distinguishes particles from anti-particles. One can show that the field φ† (φ)
increases (decreases) the charge of a state

[
Q̂, φ†(x)

]
= +φ†(x),

[
Q̂, φ(x)

]
= −φ(x)

and consider the following amplitudes:

t2 > t1 : 〈0|φ(x2)︸ ︷︷ ︸
a−

φ†(x1)︸ ︷︷ ︸
a+

|0〉 t1 > t2 : 〈0|φ†(x1)︸ ︷︷ ︸
b−

φ(x2)︸ ︷︷ ︸
b+

|0〉

Particle (charge +1) Antiparticle (charge −1)
propagates from x1 to x2 propagates from x2 to x1

4It is worth pointing here that by construction both Q̂ and P̂ do not depend on time and commute. In the next section, we
look at this fact from a different perspective and connect it to various symmetries.
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Both possibilities can be taken into account in one function:

〈0|T [φ(x2)φ†(x1)]|0〉︸ ︷︷ ︸
−iDc(x−y)

≡ θ(t2 − t1)〈0|φ(x2)φ†(x1)|0〉
+ θ(t1 − t2)〈0|φ†(x1)φ(x2)|0〉, (17)

with T being the time-ordering operation (θ(t) = 1 for t ≥ 0 and zero otherwise).

Equation (17) is nothing else but the famous Feynman propagator, which has the following mo-
mentum representation:

Dc(x− y) =
−1

(2π)4

∫
d4p

e−ip(x−y)

p2 −m2 + iε
. (18)

p0

𝜔p − i𝜖

−𝜔p + i𝜖

Fig. 2: Integration contours in p0 plane.

The iε-prescription (ε→ 0) picks up certain poles
in the complex p0 plane (see Fig. 2) and gives rise
to the time-ordered expression (17). The propaga-
tor plays a key role in the construction of pertur-
bation theory for interacting fields (see Sec. 4.1).

For the moment, let us mention a couple of
facts about Dc(x). It is a Green-function for the
KG equation, i.e.,

(
∂2
x +m2

)
Dc(x− y) = δ(x− y). (19)

This gives us an alternative way to find the ex-
pression (18). One can also see that Dc(x− y) is
a Lorentz and translational invariant function.

The propagator of particles can be con-
nected to the force between two classical static
sources Ji(x) = δ(x − xi) located at xi =
(x1,x2). The sources disturb the vacuum |0〉 →
|Ω〉, since the Hamiltonian of the system is modified H → H0 + J · φ. Assuming for simplicity that
φ = φ†, we can find the energy of the disturbed vacuum from

〈Ω|e−iHT |Ω〉 ≡ e−iE0(J)T ⇒ in the limit T →∞

= e
i2

2!

∫
dxdyJ(x)〈0|T (φ(x)φ(y))|0〉J(y) = e+ i

2

∫
dxdyJ(x)Dc(x−y)J(y)

Evaluating the integral for J(x) = J1(x) + J2(x) and neglecting “self-interactions“, we get the contri-
bution δE0 to E0(J) due to interactions between two sources

lim
T→∞

δE0T = −
∫
dxdyJ1(x)Dc(x− y)J2(y)

δE0 = −
∫

dp

(2π)3

e+ip(x1−x2)

p2 +m2
= − 1

4πr
e−mr, r = |x1 − x2|

This is nothing else but the Yukawa potential. It is attractive and falls off exponentially over the distance
scale 1/m. Obviously, for m = 0 we get a Coulomb-like potential.

3 Symmetries and fields
Let us switch to the discussion of symmetries and their role in QFT. A convenient way to deal with
quantum fields and the symmetries of the corresponding physical systems is to consider the following
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𝜑(x) 𝜑′(x)

x x + a

𝛿𝜑

Re 𝜑(x)

Im 𝜑(x)

𝜑(x)

𝜑′(x)

𝛼

φ′(x) = φ(x+ a) φ′(x) = eiαφ(x)

Fig. 3: Translations (left) and phase transformations (right).

Action functional5

A[φ(x)] =

∫
d4x L(φ(x), ∂µφ)︸ ︷︷ ︸

Lagrangian (density)

=

∫
d4x

(
∂µφ

†∂µφ−m2φ†φ
)

︸ ︷︷ ︸
φ†·K·φ

. (20)

To have an analogy with a mechanical system, one can rewrite A[φ] as

A[φ(x)] =

∫
dtL(t), L = T − U, H = T + U

T =

∫
dx|∂tφ|2, U =

∫
dx(|∂xφ|2 +m2|φ|2)

with T and U being kinetic and potential energy of a system of coupled oscillators (a “mattress”).

Given a Lagrangian L, one can derive the equations of motions (EOM) via the Action Principle.
For this we consider variation of the action

A[φ′(x)]−A[φ(x)]

︸ ︷︷ ︸
δA[φ(x)]=0

=

∫
d4x

[(
∂µ

∂L
∂∂µφ

− ∂L
∂φ

)

︸ ︷︷ ︸
(∂2µ+m2)φ=0

δφ+ ∂µ

(
∂L
∂∂µφ

δφ

)

︸ ︷︷ ︸
surface term=0

]
. (21)

due to tiny (infinitesimal) shifts in the field φ′(x) = φ(x) + δφ(x). If we require that δA[φ(x)] = 0 for
any variation δφ(x) of some φ(x), we will immediately deduce that this can be achieved only for specific
φ(x) that satisfy EOM. These particular fields are usually called “on-mass-shell”. From the Lagrangian
for our free scalar field (20) we derive the KG equation. It is related in a straightforward way to the
quadratic form K in Eq.(20). Having in mind Eq.(19), one can see that the (Feynman) propagator can
also be obtained by inverting K. This statement is easily generalized to the case of other fields.

The Action functional for a physical system allows one to study Symmetries. The latter are inti-
mately connected with transformations, which leave something invariant. The transformations can be
discrete, such as

Parity : φ′(x, t) = Pφ(x, t) = φ(−x, t),
Time-reversal : φ′(x, t) = Tφ(x, t) = φ(x,−t),

Charge-conjugation : φ′(x, t) = Cφ(x, t) = φ†(x, t),

5Contrary to ordinary functions that produce numbers from numbers, a functional takes a function and produces a number.
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or depend on continuous parameters. One distinguishes space-time from internal transformations. Lorentz
boosts, rotations, and translations are typical examples of the former, while phase transformations be-
long to the latter (see Fig. 3). At the moment, we only consider global symmetries with parameters
independent of space-time coordinates and postpone the discussion of x-dependent or local (gauge)
transformations to Sec. 5.

GivenA[φ], one can find its symmetries, which can be defined as particular infinitesimal variations
δφ(x) that for any φ(x) leave A[φ] invariant up to a surface term (cf. the Action Principle)

A[φ′(x)]−A[φ(x)] =

∫
d4x ∂µKµ, φ′(x) ≡ φ(x) + δφ(x).

If we compare this with the general expression

A[φ′(x)]−A[φ(x)] =

∫
d4x

[(
∂µ

∂L
∂∂µφ

− ∂L
∂φ

)
δφ+ ∂µ

(
∂L
∂∂µφ

δφ

)]
.

and require in addition that φ satisfy EOM6, we get a local conservation law

∂µJµ = 0, Jµ ≡ Kµ −
∂L
∂∂µφ

δφ. (22)

The integration of Eq. (22) over space leads to conserved charge:

d

dt
Q = 0, Q =

∫
dxJ0. (23)

If δφ = ρiδiφ depends on parameters ρi, we have a conservation law for every ρi. This is the essence of
the first Noether theorem [17].

A careful reader might notice that we somehow forgot about the quantum nature of our fields and
in our discussion of symmetries treat them as classical objects. Let us comment on this fact. In Classical
Physics symmetries allow one to find

– new solutions to EOM from the given one, keeping some features of the solutions (invariants)
intact;

– how a solution in one coordinate system (as seen by one observer) looks in other coordinates (as
seen by another observer).

In a quantum world a symmetry S guarantees that transition probabilitiesP between states do not change
upon transformation:

|Ai〉 S→ |A′i〉, P(Ai → Aj) = P(A′i → A′j), |〈Ai|Aj〉|2 = |〈A′i|A′j〉|2. (24)

One can see that symmetries can be represented by unitary7 operators U :

|A′i〉 = U |Aj〉, 〈A′i|A′j〉 = 〈Ai|U †U︸︷︷︸
1

|Aj〉. (25)

In QFT one usually reformulates a symmetry transformation of states as a change of operators Ok via

〈Ai|Ok(x)|Aj〉 S→ 〈A′i|Ok(x)|A′j〉 = 〈Ai|O′k(x)|Aj〉, O′k(x) ≡ U †Ok(x)U. (26)

6This requirement is crucial.
7or anti-unitary (e.g., in the case of time reversal).
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For example, translational invariance leads to a relation between matrix elements of quantum fields, e.g.,

〈Ai|φ(x)|Aj〉 = 〈Ai|φ′(x+ a)|Aj〉 = 〈Ai|U †(a)φ(x+ a)U(a)|Aj〉 (27)

for any states. As a consequence, any quantum field in a translational invariant theory should satisfy

φ(x+ a) = U(a)φ(x)U †(a). (28)

One can also find similar constraints on quantum operators due to other symmetries.

By means of the Noether theorem we can get almost at no cost the expressions for energy-
momentum Pµ = (H,P) and charge Q, which we used in Sec. 2. For example, Pµ is nothing else
but the conserved “charges”, which correspond to space-time translations. Indeed, the Noether current
in this case is just the energy-momentum tensor Tµν

φ′(x+ a) = φ(x), expand in a⇒ δφ(x) = −aν∂νφ(x), (29)

δL(φ(x), ∂µφ(x)) = ∂ν (−aνL)⇒ Jµ = −aµL+ aν
∂L
∂∂µφ

∂νφ = aνTµν . (30)

According to Eq. (23), for every aµ we have Pν =
∫
dxT0ν , i.e., conserved total energy-momentum. In

the same way, we can apply the Noether theorem to phase transformations of our complex field and get

φ′(x) = eiαφ(x), δφ(x) = iαφ(x), Jµ = i(φ†∂µφ− φ∂µφ†), Q =

∫
dxJ0. (31)

The corresponding quantum operators, i.e., Ĥ (12) or Q̂ (16), are obtained8 (modulo ordering
issues) from these (classical) expressions by plugging in quantum field φ̂ from Eq.(8). It turns out that
the charges act as generators of symmetries, e.g., for space-time translations the unitary operator from
Eq.(28) is given by

U(a) = exp
(
iP̂µaµ

)
, φ̂(x+ a) = U(a)φ̂(x)U †(a). (32)

In addition, conserved quantities can be used to define a convenient basis of states, e.g., we characterize
our particle states by eigenvalues of Pµ, and Q:

|p〉 ≡ |p,+1〉, |p̄〉 ≡ |p,−1〉 ⇒ Q̂|p, q〉 = q|p, q〉, P̂|p, q〉 = p|p, q〉. (33)

It is worth mentioning that some symmetries can mix fields, e.g.,

φ′i(x
′) = Sij(a)φj(x)⇒ φi(x

′) = Sij(a)U(a)φj(x)U †(a), x′ = x′(x, a). (34)

Typical examples are fields with non-zero spin: they have several components, which also change un-
der coordinate rotations (more generally, under Lorentz transformations). Moreover, it is the Lorentz
symmetry that allows us to classify fields as different representations of the corresponding group.

Let us discuss this in more detail. We can describe fields involving several degrees of freedom
(per space point) by adding more (and more) indices φ(x) → Φi

α(x). One can split the indices into
two groups: space-time (α) and internal (i). The former are associated with space-time transformations,
while the latter with transformations in the “internal” space:

Lorentz transform Λ : Φ
′i
α(Λx) = Sαβ(Λ)Φi

β(x), (35)

Internal transform a : Φ
′i
α(x) = U ij(a)Φj

α(x). (36)

8We leave this as an exercise.
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A quantum field in this case can be represented as

Φi
α(x) =

1

(2π)3/2

∑

s

∫
dp√
2ωp

[
usα(p) (a−p )is e

−ipx + v∗sα (p)(b+p )is e
+ipx

]
. (37)

Here the factors e±ipx with p0 = ωp (plane waves) guarantee that every component of Φi
α satisfies the

KG equation. The sum in Eq.(37) is over all polarization states, which are characterized by polarization
“vectors” for particles usα(p) annihilated by (a−p )is, and anti-particles v∗sα (p) created by (b+p )is . The
conjugated field (Φi

α)† involves (conjugated) polarization vectors for (anti) particles that are (annihilated)
created. Let us give a couple of examples:

– Quarks are coloured fermions Ψi
α and, e.g., (a−p )bs annihilates the “blue” quark in a spin state s.

The latter is characterized by a spinor usα(p);
– There are eight vector gluonsGaµ. So (a−p )as annihilates a gluon a in spin state s having polarization
usα(p)→ εsµ(p).

Since Lorentz symmetry plays a key role in QFT, we elaborate on some of its non-trivial representations
and consider vector and fermion fields in more detail.

3.1 Massive vector fields
A charged Vector Field (e.g., a W -boson) can be written as

Wµ(x) =
1

(2π)3/2

3∑

λ=1

∫
dp√
2ωp

[(
ελµ(p)a−λ (p)e−ipx + ε∗λµ (p)b+λ (p) e+ipx

)]
. (38)

A massive spin-1 particle has 3 independent polarization vectors, which satisfy

pµε
λ
µ(p) = 0, ελµ(p)ε∗λ

′
µ (p) = −δλλ′ ,

3∑

λ=1

ελµε
∗λ
ν = −

(
gµν −

pµpν
m2

)
[p0 = ωp].

The Feynman propagator can be found by considering time-ordered product of two fields

〈0|T (Wµ(x)W †ν (y))|0〉 =
1

(2π)4

∫
d4pe−ip(x−y)

[
−i
(
gµν − pµpν

m2

)

p2 −m2 + iε

]
[p0 − arbitrary] (39)

or by inverting the quadratic form of the (free) Lagrangian

L = −1

2
W †µνWµν +m2W †µWµ, Wµν ≡ ∂µWν − ∂νWµ.

One can show that one of the polarization vectors εLµ ' pµ/m+O(m) and diverges in the limit pµ →∞
(m→ 0). This indicates that one should be careful when constructing models with massive vector fields.
We will return to this issue later.

3.2 Massless vector fields
Massless (say photon) vectors are usually represented by

Aµ(x) =
1

(2π)3/2

3∑

λ=0

∫
dp√
2ωp

[
ελµ(p)a−λ (p)e−ipx + h.c.

]
. (40)
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with

ελµ(p)ε∗λ
′

µ (p) = gλλ
′
, ελµ(p)ε∗λν (p) = gµν , [a−λ (p), a+

λ′(p
′)] = −gλλ′δp,p′ .

The corresponding Feynman propagator can be given by

〈0|T (Aµ(x)Aν(y))|0〉 =
1

(2π)4

∫
d4pe−ip(x−y)

[ −igµν
p2 + iε

.

]

In spite of the fact that we sum over four polarizations in Eq.(40) only two of them are physical! This
reflects the fact that the vector-field Lagrangian in the massless case m = 0

L = −1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ

is invariant under Aµ → Aµ + ∂µα(x) for arbitrary α(x) (gauge symmetry). Additional conditions
(gauge-fixing) are needed to get rid of unphysical states.

3.3 Fermion fields
Spin-1/2 fermion fields (e.g., leptons) are given by9

ψα(x) =
1

(2π)3/2

∫
dp√
2ωp

∑

s=1,2

[
uαs (p)a−s (p)e−ipx + vαs (p)b+s (p)e+ipx

]
,

where we explicitly write the spinor (Dirac) index α for us, vs and the quantum operator ψ. The former
satisfy the 4× 4 matrix (Dirac) equations

(p̂−m)us(p) = 0, (p̂+m)vs(p) = 0, p̂ ≡ γµpµ, p0 ≡ ωp (41)

and correspond to particles (us) or antiparticles (vs). In Eq.(41) we use gamma-matrices

γµγν + γνγµ ≡ [γµ, γν ]+ = 2gµν1 ⇒ γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1

to account for two spin states (s = 1, 2) of particles and antiparticles. Fermion fields transform under the
Lorentz group x′ = Λx as (cf. Eq.(35))

ψ′(x′) = SΛψ(x), ψ′(x′)† = ψ(x)S†Λ. (42)

It turns out that the 4× 4 matrix S†Λ 6= S−1
Λ but S−1 = γ0S†γ0. Due to this, it is convenient to introduce

a Dirac-conjugated spinor ψ̄(x) ≡ ψ†γ0. The latter enters into

ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x), Lorentz scalar;

ψ̄′(x′)γµψ′(x′) = Λµνψ̄(x)γνψ(x), Lorentz vector.

This allows us to convince ourselves that the Dirac Lagrangian

L = ψ̄
(
i∂̂ −m

)
ψ

is also a Lorentz scalar, i.e., respects Lorentz symmetry. Dirac-conjugated spinors can be used to impose
Lorentz-invariant normalization on u and v:

ūs(p)ur(p) = 2mδrs, v̄s(p)vr(p) = −2mδrs,

9There exists a charge-conjugation matrix C = iγ2, which relates spinors for particles u and antiparticles v, e.g., v = Cu∗.
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An important fact about quantum fermion fields it that, contrary to the case of scalar or vector
(boson) fields, the creation/annihilation operators for fermions a±s,p and antifermions b±s,p anticommute:

[
a−r,p, a

+
s,p′

]
+

=
[
b−r,p, b

+
s,p′

]
+

= δsrδ(p− p′)
[
a±r,p, a

±
s,p′

]
+

=
[
b±r,p, b

±
s,p′

]
+

=
[
a±r,p, b

±
s,p′

]
+

= 0.

Due to this, fermions obey the Pauli principle, e.g., a+
r,pa

+
r,p = 0. Moreover, one can explicitly show

that quantization of bosons (integer spin) with anticommutators or fermions (half-integer spin) with
commutators leads to inconsistencies (violates the Spin-Statistics theorem).

Let us continue our discussion of free fermions by emphasizing the difference between the no-
tions of Chirality and Helicity. Two independent solutions for massive fermions (u1,2) can be chosen to
correspond to two different helicities — projections of spin vector s onto direction of p:

H = s · n, n = p/|p|.
Left-Handed Right-Handed

p

s

p

s

(43)

In free motion it is conserved and serves as a good quantum number. However, it is not a Lorentz-
invariant quantity. Indeed, we can flip the sign of particle momentum by moving with speed faster than
v = |p|/p0. As a consequence, n→ −n and H → −H. However, helicity for a massless particle is the
same for all inertial observers and coincides with chirality, which is a Lorentz-invariant concept.

By definition Left (ψL) and Right (ψR) chiral spinors are eigenvectors of

γ5 = iγ0γ1γ2γ3 ⇒ [γµ, γ5]+ = 0, γ2
5 = 1, γ†5 = γ5, (44)

where
γ5ψL = −ψL, γ5ψR = +ψR. (45)

Any spinor ψ can be decomposed as

ψ = ψL + ψR, ψL/R = PL/Rψ, PL/R =
1∓ γ5

2
. (46)

Rewriting the Dirac Lagrangian it terms of chiral components

L = i(ψ̄L∂̂ψL + ψ̄R∂̂ψR︸ ︷︷ ︸
conserve chirality

)−m(ψ̄LψR + ψ̄RψL︸ ︷︷ ︸
break chirality

), (47)

we see that, indeed, it is the mass term that mixes two chiralities. Due to this, it violates chiral symmetry
corresponding to the independent rotation of left and right components

ψ → eiγ5αψ. (48)

Consequently, if we drop the mass term, the symmetry of the Lagrangian is enhanced.

Up to now we were discussing the so-called Dirac mass term. For neutral fermions (e.g., neutrino)
there is another possibility — a Majorana mass. Since charge-conjugation applied to fermion fields,
ψ → ψc, flips chirality, we can use ψcL in place of ψR to write

L =
1

2
(iψ̄L∂̂ψL −mψ̄LψcL). (49)

As a consequence, to describe Majorana particles, we need only two components instead of four since
antiparticles coincide with particles in this case. At the moment, the nature of neutrinos is unclear and
we refer to [18] for more details.
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4 From free to interacting fields
Let us summarize what we have learned so far. If we have a Lagrangian L at hand, we can

– Derive EOM (via the Action Principle);
– Find the Symmetries of the Action A =

∫
d4xL;

– Find Conserved quantities (via the Noether Theorem).

However, we usually start building our models by postulating symmetries. Indeed, we assume that a
general QFT Lagrangian L is

– a Lorentz (Poincare) invariant (i.e., a sum of Lorentz scalars),
– Local (involves a finite number of partial derivatives),
– Real (hermitian) (respects unitarity=conservation of probability)

In addition, one can impose other symmetries and get further restrictions on the model. Having all this
in mind, we can proceed further and discuss particle interactions.

In HEP, a typical collision/scattering experiment deals with “free” initial and final states and
considers transitions between these states. To account for this in a quantum theory, one introduces the
S-matrix with matrix elements

M = 〈β|S|α〉, M = δαβ + (2π)4δ4(pα − pβ)iMαβ (50)

giving amplitudes for possible transitions between in |α〉 and out |β〉 states:

|α〉 = ã+
p1
...ã+

pr |0〉, |β〉 = ã+
k1
...ã+

ks
|0〉, ã+

p = (2π)3/2
√

2ωpa
+
p , (51)

where for convenience10 (see also Eq.(62)) we rescale our creation/annihilation operators. Given the
matrix element Mαβ , one can calculate the differential probability (per unit volume per unit time) to
evolve from |α〉 to |β〉:

dw =
n1...nr

(2ωp1)...(2ωpr)
|Mαβ|2dΦs, (52)

where ni correspond to initial-state particle densities, and an element of phase space is given by

dΦs = (2π)4δ4 (pin − kout)
dk1

(2π)3(2ωk1)
...

dki
(2π)3(2ωki)

(53)

with pin =
∑
pi and kout =

∑
ki. Since we are usually interested in processes involving one or two

particles in the initial state, it is more convenient to consider the differential decay width dΓ in the rest
frame of a particle with mass m, or cross-section dσ of a process 2→ s:

dΓ = ΦΓ|M1→s|2dΦs, ΦΓ =
1

2m
, (54)

dσ = Φσ|M |2dΦs, Φσ =
1

4
√

(p1p2)2 − p2
1p

2
2

. (55)

In Eq.(55) the factor Φσ is Lorentz-invariant and is expressed in terms of four-momenta of initial particles
p1 and p2. The total width Γ and total cross-section σ can be obtained by integration over the momenta
of final particles restricted by energy-momentum conservation due to the four-dimensional δ-function in
Eq.(53).

In QFT, the S-matrix is given by the time-ordered exponent

S = Te−i
∫
d4xHI(x) = Tei

∫
d4xLI(x). (56)

10The states created by ã+ are normalized in the relativistic-invariant way.

13

QUANTUM FIELD THEORY AND THE ELECTROWEAK STANDARD MODEL

13



x y
⇒

Fig. 4: The Wick theorem at work: one of the contributions.

involving the interaction HamiltonianHI (Lagrangian LI ).
The interaction Lagrangian LI = Lfull − L0 is a sum of Lorentz-invariant terms having more

than two fields and more ∂µ than in the quadratic part L0, which corresponds to free particles. It is
worth noting that in Eq.(56) we treat LI (HI ) as an operator built from free11 quantum fields (i.e., certain
combinations of a± and b±).

The time-ordering operation, which was used to define particle propagators, is generalized in
Eq.(56) to account for more than two fields originating from LI

TΦ1(x1)...Φn(xn) = (−1)kΦi1(xi1)...Φin(xin), x0
i1 > ... > x0

in . (57)

Here the factor (−1)k appears due to k possible permutations of fermion fields.

As it was mentioned earlier, (interaction) Lagrangians should be hermitian. Any scalar combina-
tion of quantum fields can, in principle, be included in LI , e.g.,

LI : gφ3(x), λφ4(x), yψ̄(x)ψ(x)φ(x)

eψ̄(x)γµψ(x)Aµ(x), G
[
(ψ̄1γµψ2) (ψ̄3γµψ4) + h.c.

]

The parameters (couplings) g, λ, e , y, and G set the strength of the interactions. An important charac-
teristic of any coupling in the QFT model is its dimension, which can be deduced from the fact that La-
grangian has dimension [L] = 4. One can notice that all the couplings (hidden) in the T-shirt Lagrangian
are dimensionless. This fact has crucial consequences for the self-consistency of the SM model.

4.1 Perturbation theory
In an interacting theory it is very hard, if not impossible, to calculate the S-matrix (56) exactly. Usually,
we assume that the couplings in LI are small allowing us to treat the terms in LI as perturbations to L0.
As a consequence, we expand the T-exponent and restrict ourselves to a finite number of terms. In the
simplest case of LI = −λφ4/4! we have at the nth order

in

n!

[
λ

4!

]n
〈0|ã−k1

...ã−ks

∫
dx1...dxnT

[
φ(x1)4...φ(xn)4

]
ã+
p1
...ã+

pr |0〉. (58)

To proceed, one uses the Wick theorem:

TΦ1...Φn =
∑

(−1)σ〈0|T (Φi1Φi2)|0〉...〈0|T (Φim−1Φim)|0〉 :Φim+1 ...Φin :, (59)

where the sum goes over all possible ways to pair the fields. The Wick theorem (59) expresses time-
ordered products of fields in terms of normal-ordered ones and propagators. The normal-ordered opera-
tion puts all annihilation operators originating from different Φs to the right. It also cares about fermions,
e.g.,

:a−1 a
+
2 a
−
3 a
−
4 a

+
5 a
−
6 := (−1)σa+

2 a
+
5 a
−
1 a
−
3 a
−
4 a
−
6 , (60)

11More precisely, operators in the interaction picture.
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Table 1: Feynman rules for external states.

incoming scalar 1
p

incoming fermion us(p)

p

outgoing scalar 1
p

outgoing fermion ūs(p)

p

incoming vector ελµ(p)
𝜇

p

incoming antifermion v̄s(p)

p

outgoing vector ε∗λµ (p)
𝜇

p

outgoing antifermion vs(p)

p

where σ correspond to the number of fermion permutations (cf. Eq.(57)). In Fig. 4 a cartoon, which
illustrates Eq.(59) for one of the contributions to T [LI(x)LI(y)], is provided.

After application of the Wick theorem we have to calculate

〈0|ã−k1
...ã−ks :Φim+1 ...Φin : ã+

p1
...ã+

pr |0〉. (61)

To get a non-zero matrix element, all a−(a+) in the normal product of fields from the Lagrangian have
to be “killed” by (commuted with) a+(a−) from the initial (final) states.

For our generalized field (37) we have

[
Φi
α(x), (a+

p )is
]

=
e−ipx

(2π)3/2
√

2ωp︸ ︷︷ ︸
common to all fields

usα(p), initial state polarization (particle);

[
(b−p )is,Φ

i
α(x)

]
=

e+ipx

(2π)3/2
√

2ωp
v∗sα (p), final state polarization (antiparticle). (62)

and one clearly sees that the factors in the denominators Eq.(62) are avoided when the rescaled ã± (or
b̃±) operators (51) are used.

All this machinery can be implemented in a set of Feynman rules, which are used to draw (and
evaluate) Feynman diagrams. Every Feynman diagram involves interaction vertices, external and in-
ternal lines. Internal lines connect two vertices and correspond to propagators. The expression for
propagators can be derived from L0, e.g.,

〈0|T (φ(x)φ†(y)|0〉

〈0|T (ψ(x)ψ̄(y)|0〉

〈0|T (Wµ(x)W †ν (y)|0〉





=

∫
d4p

(2π)4

ie−ip(x−y)

p2 −m2 + iε





1
p

φ;

p̂+m

p

ψ;

−gµν + pµpν/m
2

𝜇 𝜈
p

Wµ.

(63)

One can notice that all the dependence on xi of the integrand in Eq.(58) comes from either Eq.(62) or
Eq.(63). As a consequence, it is possible to carry out the integration for every xi

∫
d4xie

−ixi(p1+...+pn) = (2π)4δ4(p1 + ...+ pn) (64)

and obtain a δ-function reflecting energy-momentum conservation at the corresponding vertex.

Depending on the direction of momenta, the external lines represent incoming or outgoing parti-
cles (see Table 1). Again, the corresponding factors (=polarization vectors) are derived from L0. No-
tice that we explicitly write the Lorentz indices for vector particles and suppress the Dirac indices for
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fermions. To keep track of the index contractions in the latter case, one uses arrows on the fermion
lines.12

Let us turn to interaction vertices. The corresponding Feynman rules can be derived from AI =∫
d4LI . It is convenient to do this by carrying out a Fourier transform to “convert” coordinate derivatives

to momenta and considering variations of the action. In the case of LI = −λφ4/4! we have (all momenta
are assumed to be incoming)

i
δ4AI [φ]

δφ(p1)δφ(p2)δφ(p3)δφ(p4)

∣∣∣∣
φ=0

⇒ (2π)4δ4(p1 + p2 + p3 + p4)︸ ︷︷ ︸
conservation of energy-momentum

×[−iλ]. (65)

In a typical diagram all (2π)4δ(...) factors (but one13) reflecting the energy-momentum conservation at
each vertex, are removed by the momentum integration originating from propagators, Eq.(63). Due to
this, we also omit these factors (see, Table 2 for examples).

Given Feynman rules, we can draw all possible diagrams that contribute to a process and evaluate
the amplitude. We do not provide the precise prescription here (see textbooks [12–16] for details) but
just mention the fact that one should keep in mind various symmetry factors and relative signs that can
appear in real calculations.

In order to get probabilities, we have to square matrix elements, e.g.,

|M |2 = MM † ⇒ (66)

Sometimes we do not care about polarization states of initial or final particles, so we have to sum over
final polarization and average over initial ones. That is where spin-sum formulas,e.g.,

∑

s

us(p1)ūs(p1) = p̂1 +m,
∑

s

vs(p2)v̄s(p2) = p̂2 −m (67)

become handy

MM † →
∑

s,r

(ūsAvr)(v̄rA
†us) = Tr

[
(p̂1 +m)A(p̂2 −m)A†

]
. (68)

As a consequence, one can utilize the well-known machinery for gamma-matrix traces to evaluate prob-
abilities in an efficient way.

Let us continue by mentioning that only in tree graphs, such as

p1

p2

p3

p5

p4

p6

q ⇒ (2π)4δ4
(∑3

i=1 pi −
∑6

i=4 pi

)
[−iλ]2 i

q2−m2+iε
,

all the integrations (due to propagators) are “killed” by vertex δ-functions. However, nothing forbids us
from forming loops. In this case, we have integrals over unconstrained momenta, e.g., in the φ4-theory

q

k − q

: I2(k) ≡
∫

d4q

[q2 + iε][(k − q)2 + iε]
∼
∫ ∞ |q|3d|q|

|q|4 ∼ ln∞,

12There are subtleties when interactions involve Majorana fermions.
13We factor it out in the definition of Mαβ , see Eq.(50).
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Table 2: Vertex Feynman rules. Derivatives in LI correspond to particle momenta.

LI = −yψ̄ψφ LI = eψ̄γµψAµ LI = ieAµ
(
φ†∂µφ− φ∂µφ†

)

𝜓

𝜓

𝜑

𝜓

𝜓

A𝜇

𝜑†

𝜑

A𝜇

p1

p2

−iy ieγµ ie(p1 + p2)µ

which can lead to divergent (meaningless?) results. This is again a manifestation of UV divergences due
to large momenta (“small distances”).

A natural question arises: Do we have to abandon QFT? Since we still use it, there are reasons not
to do this. Indeed, we actually do not know physics up to infinitely small scales and our extrapolation
can not be adequate in this case. To make sense of the integrals, we can regularize them, e.g., introduce
a “cut-off” |q| < Λ,

IΛ
2 (k) = iπ2

[
ln

Λ2

k2
+ 1

]
+O

(
k2

Λ2

)
= iπ2

[
ln

Λ2

µ2
− ln

k2

µ2
+ 1

]
+O

(
k2

Λ2

)
(69)

or use another convenient possibility — dimensional regularization, when d = 4 space-time is formally
continued to d = 4− 2ε dimensions:

I4−2ε
2 (k) = µ2ε

∫
d4−2εq

q2(k − q)2
= iπ2

(
1

ε
− ln

k2

µ2
+ 2

)
+O(ε). (70)

Both the regularized integrals are now convergent14 and share the same logarithmic dependence
on external momentum k. One can also notice a (one-to-one) correspondence between a logarithmically
divergent contribution log Λ2/µ2 in Eq.(69) and the pole term 1/ε in Eq.(70). However, the constant
terms are different. How do we make sense of this ambiguity?

The crucial observation here is that the divergent pieces, which blow up when we try to remove
the regulators (Λ → ∞ or ε → 0), are local, i.e., depend polynomially on external kinematical param-
eters. This fact allows us to cancel them by the so-called counterterm (CT) vertices. The latter can be
interpreted as new terms in LI . Moreover, in a renormalizable QFT model additional (divergent) con-
tributions have the same form as the initial Lagrangian and thus can be “absorbed’ into redefinition of
fields and parameters.

One can revert the reasoning and assume that the initial Lagrangian is written in terms of the
so-called bare (unobservable) quantities. The predictions of the model are finite since the explicit depen-
dence of Feynman integrals on the cut-off Λ (or ε) is actually compensated by the implicit dependence
of bare fields and parameters. In some sense these quantities represent our ignorance of dynamics at tiny
scales. Physical fields and parameters are always “dressed” by clouds of virtual particles.

It is obvious that working with bare quantities is not very convenient. One usually makes the
dependence on Λ (or ε) explicit by introduction of divergent Z-factors for bare fields (φB), masses
(m2

B), and couplings (λB), e.g.,

Lfull =
1

2
(∂φB)2 − m2

B

2
φ2
B +

λBφ
4
B

4!
=
Z2

2
(∂φ)2 − Zmm

2

2
Z2φ

2 +
Zλλ

4!
(Z2φ

2)2 (71)

14We do not discuss the issue of possible IR divergences here.
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Physics
depends
on curve

Fig. 5: Solutions of RGE for different boundary conditions.

=
(∂φ)2

2
− m2φ2

2
+
λφ4

4!
+

(Z2 − 1)

2
(∂φ)2 − (ZmZ2 − 1)m2

2
φ2 + (Z4Z

2
2 − 1)

λφ4

4!︸ ︷︷ ︸
counterterms

. (72)

Here φ, m and λ denote renormalized (finite) quantities. Since we can always subtract something finite
from infinity, there is a certain freedom15 in this procedure. So we have to impose additional conditions
on Zs, i.e., define a renormalization scheme. For example, in the minimal (MS) schemes we subtract
only the divergent terms, e.g., only poles in ε, while in the so-called momentum-subtraction (MOM)
schemes we require amplitudes (more generally Green functions) to have a certain value at some fixed
kinematics.

As an illustration, let us consider a scattering amplitude 2 → 2 in the φ4 model calculated in
perturbation theory:

= + + permutations + more loops (73)

= λB(Λ)− λB(Λ)2

2(16π2)

(
ln

Λ2

µ2
− ln

k2

µ2
+ . . .

)
+ . . . (74)

=

[
λ(µ) +

3

2

λ2(µ)

16π2
ln

Λ2

µ2

]
− λ(µ)2

2(16π2)

(
ln

Λ2

µ2
− ln

k2

µ2
+ . . .

)
+ . . . (75)

= λ(µ) +
λ(µ)2

2(16π2)

(
ln
k2

µ2
+ . . .

)
+ . . . . (76)

In Eq.(73) the tree-level and one-loop diagrams contributing to the matrix element are shown. The cor-
responding expression in terms of the bare coupling λB(Λ) that implicitly depends on the regularization
parameter Λ is given in Eq.(74). We introduce a renormalized16 coupling λ(µ) in Eq.(75) to make the
dependence explicit:

λB(Λ) = λ(µ)Zλ = λ(µ)

(
1 +

3

2

λ(µ)

16π2
ln

Λ2

µ2
+ ...

)
. (77)

15Different constant terms in Eq.(69) and Eq.(70) are one manifestation of this fact.
16We use minimal subtractions here and the factor of three comes from the fact that all three one-loop graphs (s, t and u)

give rise to the same divergent term.
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QCD αs(Mz) = 0.1181 ± 0.0011
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Fig. 6: The scale dependence of the strong coupling αs.

The final result (76) is finite (when Λ→∞) and can be confronted with experiment. It seems to depend
on an auxiliary scale µ, which inevitably appears in any renormalization scheme. The crucial point here
is that observables (if all orders of PT are taken into account) actually do not depend on µ. Changing µ
corresponds to a certain reshuffling of the PT series: some terms from loop corrections are absorbed into
the rescaled (running) couplings. This allows one to improve the “convergence”17 of the series.

The scale-dependence of the running couplings is governed by renormalization-group equations
(RGE). In the considered case we have

λ(µ0)→ λ(µ),
d

d lnµ
λ = βλ(λ), βλ =

3

2

λ2

16π2
+ ... (78)

The beta-function βλ can be calculated order-by-order in PT. However, the (initial) value λ(µ0) needed
to solve Eq.(78) is not predicted and has to be extracted from experiment.

It is worth pointing out here that two different numerical values of the renormalized self-coupling,
λ1 and λ2, do not necessarily correspond to different Physics. Indeed, if they are fitted from measure-
ments at different scales, e.g., µ0 and µ, and are related by means of RGE, they represent the same
Physics (see Fig. 5). A prominent example is the running of the strong coupling in Quantum chromody-
namics (QCD) described by (see [19])

βαs = −α
2
s

4π

(
11− 2

3
nf

)
+ ...+O(α7

s), nf − number of flavours. (79)

In Fig. 6 one can see a remarkable consistency between different measurements of αs(µ) and the scale
dependence predicted by perturbative QCD.

4.2 Renormalizable or non-renormalizable?
Let us stress again that the model is called renormalizable if all the divergences that appear in loop
integrals can be canceled by local counterterms due to renormalization of bare parameters and couplings
fromLfull. But what happens if there is a divergent amplitude but the structure of the required subtraction
does not have a counter-part in our initial Lagrangian, i.e., we do not have a coupling to absorb the
infinity? Obviously, we can modify Lfull and add the required term (and the coupling).

17Actually, the PT series are asymptotic (divergent) and we speak about the behavior of a limited number of first terms here.
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Fig. 7: One-loop correction to higgs self-interaction.

An example of such a situation can be found in the model with a scalar φ (e.g., Higgs) coupled to
a fermion ψ (e.g., top quark) via the Yukawa interaction characterized by the coupling y

LI 3 δLY = −y · ψ̄ψφ. (80)

Let us assume for the moment that we set the self-coupling to zero λ = 0 and want to calculate the
Higgs-scattering amplitude due to top quarks (see, Fig. 7). We immediately realize that the contribution
is divergent and without δL4 = −λφ4/4! we are not able to cancel it. Due to this, we are forced to
consider the φ4 term in a consistent theory.

Since we modified Lfull, we have to re-calculate all the amplitudes. In principle, new terms in
LI will generate new diagrams, which can require new interactions to be added to LI . Will this process
terminate? In the case of renormalizable models the answer is positive. We just need to make sure
that LI include all possible terms with dimensionless couplings18, or, equivalently, local dimension-4
operators built from quantum fields and their derivatives.

On the contrary, if one has to add more and more terms toLI , this is a signal of a non-renormalizable
model. It looks like that we have to abandon such models since we need to measure an infinite number of
couplings to predict something in this situation! However, it should be stressed that non-renormalizable
models, contrary to renormalizable ones, involve couplings Gi with negative mass dimension [Gi] < 0!
Due to this, not all of them are important at low energies, such as

GiE
−[Gi] � 1. (81)

This explains the success of the Fermi model involving the dimension-6 four-fermion operator

− LI = GΨ̄pγρΨn · Ψ̄eγρΨν + h.c. (82)

in the description of the β-decay n → p + e− + ν̄e. Since the model turns out to be a harbinger of the
modern electroweak theory, let us consider it in more detail and discuss its features, which eventually
lead to the construction of the SM.

In 1957 R. Marshak and G.Sudarshan, R. Feynman and M. Gell-Mann modified the original Fermi
theory of beta-decay to incorporate 100 % violation of Parity discovered by C.S. Wu in 1956:

− LFermi =
GF

2
√

2
(J+
µ J
−
µ + h.c.). (83)

Here the current

J−ρ = (V −A)nucleons
ρ + Ψeγρ (1− γ5) Ψνe + Ψµγρ (1− γ5) Ψνµ + ... (84)

18Remember the T-shirt Lagrangian?

20

A.V. BEDNYAKOV

20



e− 𝜈e

𝜈e e−

W+

Fig. 8: A contribution to νe-scattering due to charged W -boson

is the difference between Vector (V ) and Axial (A) parts. This kind of current-current interactions can
describe not only the proton beta-decay but also the muon decay µ → eνµν̄e or the process of νee -
scattering. Since the Fermi constant GF ' 10−5 GeV−1, from simple dimensional grounds we have

σ(νee→ νee) ∝ G2
F s, s = (pe + pν)2. (85)

With such a dependence on energy we eventually violate unitarity. This is another manifestation of the
fact that non-renormalizable interactions are not self-consistent.

However, a modern view on the Fermi model treats it as an effective field theory [20] with certain
limits of applicability. It perfectly describes low-energy experiments and one can fit the value of GF
very precisely (see [21]). The magnitude of GF tells us something about a more fundamental theory (the
SM in our case): around G−1/2

F ∼ 102 − 103 GeV there should be some “New Physics” (NP) to cure
the above-mentioned shortcomings. Indeed, by analogy with (renormalizable) QED we can introduce
mediators of the weak interactions – electrically charged vector fields W±µ (see, e.g., Fig. 8):

LFermi = − GF

2
√

2
(J+
µ J
−
µ + h.c.)→ LI =

g

2
√

2
(W+

µ J
−
µ + h.c.) (86)

with a dimensionless coupling g. Since we know that weak interactions are short-range, the W-bosons
should be massive. Given LI we can calculate the tree-level scattering amplitude due to the exchange of
W± between two fermionic currents:

T = i(2π)4 g
2

8
J+
α

[
gαβ − pαpβ/M2

W

p2 −M2
W

]
J−β . (87)

In the limit |p| � MW , Eq.(87) reproduces the prediction of the effective theory (Fermi model) if we
identify (“match”)

(effective theory)
GF√

2
=

g2

8MW
2 (more fundamental theory). (88)

However, one can see that in the UV region (|p| � MW ) the amplitude (87) still has bad behavior,
leading to all the above-mentioned problems. To deal with the issue, we utilize gauge symmetry, which
will be discussed in the next section.

5 Gauge symmetries
We are seeking for a model of weak interactions that has good UV-properties. Let us revise how the
gauge principle is implemented in QED. First of all, consider

L0 = ψ̄
(
i∂̂ −m

)
ψ (89)
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Fig. 9: U(1) transformations commute with each other.

and make the global U(1)-symmetry of L0

ψ → ψ′ = eieωψ (90)

local, i.e., ω → ω(x). In this case, the Lagrangian ceases to be invariant19:

δL0 = ∂µω · Jµ, Jµ = −eψ̄γµψ, (91)

To compensate this term, we add the interaction of the current Jµ with the photon field Aµ:

L0 → L = L0 +AµJµ = ψ̄
[
i(∂̂ + ieÂ)−m

]
ψ, Aµ → A′µ = Aµ−∂µω. (92)

The photon Aµ is an example of gauge field. To get the full QED Lagrangian, we should also add a
kinetic term for the photon:

LQED = ψ̄
(
iD̂ −m

)
ψ − 1

4
F 2
µν (93)

Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ. (94)

Here we introduce a covariant derivative Dµ and a field-strength tensor Fµν . One can check that Eq.(93)
is invariant under

ψ → ψ′ = eieω(x)ψ

Aµ → A′µ = Aµ − ∂µω
Dµψ → D′µψ

′ = eieω(x)Dµψ.

The second Noether theorem [17] states that theories possessing gauge symmetries are redundant,
i.e., some degrees of freedom are not physical. This makes quantization non-trivial. To deal with this
problem in QED, one adds a gauge-fixing term to the free vector-field Lagrangian:

L0(A) = −1

4
F 2
µν −

1

2ξ
(∂µAµ)2 ≡ −1

2
AµKµνAν . (95)

This term allows one to obtain the photon propagator by inverting20 Kµν :

〈0|TAµ(x)Aν(y)|0〉 =

∫
d4p

(2π)4

−i
[
gµν − (1− ξ)pµpν/p2

]

p2 + iε
e−ip(x−y) (96)

19Note that one can use this fact to get an expression for the Noether current Jµ.
20If we omit the gauge-fixing term, we will not be able to invert the quadratic form.
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The propagator now involves an auxiliary parameter ξ. It controls the propagation of unphysical longi-
tudinal polarization εLµ ∝ pµ. The polarization turns out to be harmless in QED since the corresponding
terms drop out of physical quantities, e.g., due to current conservation

eLµJµ ∝ pµJµ = 0 [we have no source for unphysical γ]. (97)

One can see that the propagator has good UV behaviour and falls down as 1/p2 for large p. The gauge
symmetry of QED is U(1). It is Abelian since the order of two transformations is irrelevant (see Fig. 9).
However, if we want to apply the gauge principle to the case of EW interactions, we have to general-
ize U(1) to the Non-Abelian case. Let us consider the SU(n) group, i.e., unitary n × n matrices Uij
depending on n2 − 1 parameters ωa and having detU = 1:

ψi → ψ′i = Uij(ω)ψj , U(ω) = eigt
aωa . (98)

In general, different transformations do not commute in the non-Abelian case. This fact is reflected in
commutation relations for the group generators ta, which obey the su(n)-algebra:

[ta, tb] = ifabctc, fabc − structure constants . (99)

For constant ωa the transformation (98) is a symmetry of the Lagrangian

L0 = ψ̄i

(
i∂̂ −m

)
ψi, i = 1, ..., n (100)

describing n free fermions in the fundamental representation of SU(n).

In order to make the symmetry local, we introduce a (matrix) covariant derivative depending on
n2 − 1 gauge fields W a

µ :
(Dµ)ij = ∂µδij − igtaijW a

µ . (101)

The transformation properties ofW a
µ should guarantee that for space-time dependent ωa(x) the covariant

derivative of ψ transforms in the same way as the field itself:

D′µψ
′ = U(ω)(Dµψ), U(ω) = eigt

aωa . (102)

One can find that

W a
µ →W

′a
µ = W a

µ + ∂µω
a + gfabcW b

µω
c (103)

= W a
µ + (Dµ)abωb, (Dµ)ab ≡ ∂µδab − ig(−ifabc)W c

µ, (104)

where we introduce the covariant derivative (101) Dab
µ with generators (tc)ab = −if cab in the adjoint

representation. The field-strength tensor for each component of W a
µ is given by the commutator

[Dµ, Dν ] = −igtaFaµν , Faµν = ∂µW
a
ν − ∂µW a

ν + gfabcW a
µW

b
ν . (105)

Contrary to the U(1) case, Faµν contains an additional term quadratic in W a
µ . Due to this, the gauge

symmetry predicts not only interactions between fermions ψ (or fields in the fundamental representation
of the gauge group) and W a

µ but also self-interactions of the latter (the gauge fields are “charged” under
the group).

Combining all the ingredients, we can write down the following Lagrangian for an SU(n) gauge
(Yang-Mills) theory :

L = ψ̄
(
iD̂ −m

)
ψ − 1

4
FaµνFaµν = L0 + LI , (106)

L0 = ψ̄
(
i∂̂ −m

)
− 1

4
F aµνF

a
µν , F aµν = ∂µW

a
ν − ∂νW a

µ , (107)
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Fig. 10: Gauge symmetry at work: tree-level amplitudes with unphysical polarization (L) vanish.
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Fig. 11: Ghosts cancel contributions due to virtual unphysical states.

LI = gψ̄iαγ
µ
αβt

a
ijψ

j
βW

a
µ −

g

2
fabcW b

µW
c
νF

a
µν −

g2

4
fabcfadeW a

µW
b
νW

d
µW

e
ν . (108)

For illustration purposes we explicitly specify all the indices in the first term of interaction Lagrangian
LI : the Greek ones correspond to Dirac (α, β) and Lorentz (µ) indices, while the Latin ones belong to
different representations of SU(n): i, j – fundamental, a – adjoint. One can also see that the strength of
all interactions in LI is governed by the single dimensionless coupling g.

To quantize a Yang-Mills theory, we generalize the QED gauge-fixing term and write, e.g.,

Lgf = − 1

2ξ
(F a)2 , F a = ∂µW

a
µ (109)

with F a being a gauge-fixing function. This again introduces unphysical states in the W a
µ propagator.

However, contrary to the case of QED, the fermionic current Jaµ = gψ̄taγµψ is not conserved and can
produce longitudinal W a

µ . Nevertheless, the structure of vector-boson self-interactions guarantees that at
tree level amplitudes involving unphysical polarizations for external W a

µ vanish (see, e.g., Fig. 10).

Unfortunately, this is not sufficient to get rid of unphysical states in loops. To deal with the problem
in a covariant way, one introduces the so-called Fadeev-Popov ghosts c̄a and ca. They are anticommuting
“scalars” and precisely cancel the annoying contribution. The Lagrangian for the fictitious particles is
related to the gauge-fixing function Fa(Wµ) = ∂µW

a
µ via

Lghosts = −c̄a∂Fa(W
ω)

∂ωb
cb = −c̄a∂µDab

µ c
b

= −c̄a∂2ca − gfabc(∂µc̄a)cbAbµ. (110)

The ghosts are charged under SU(n) and interact with gauge fields in the same way as the unphysical
modes. However, there is an additional minus sign for the loops involving anticommuting ghosts (see,
e.g., Fig. 11) that leads to the above-mentioned cancellations.

6 Gauge theory of electroweak interactions
6.1 Fermion couplings to gauge bosons
In the SM we use the gauge principle to introduce EW interactions. Indeed, we utilize

SU(2)L ⊗ U(1)Y (111)

gauge group that has four generators or, equivalently, four gauge bosons. Three of them, Wµ, belong to
weak-isospin SU(2)L, while the photon-like Bµ mediates weak-hypercharge U(1)Y interactions. The
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SM fermions are charged under the group (111). To account for the (V − A) pattern only left fermions
interact with Wµ and form SU(2)L doublets:

L =

(
νl
l−

)

L

, Q =

(
qu
qd

)

L

, qu = u, c, t; qd = d, s, b; l = e, µ, τ. (112)

Since the generators of SU(2) are just the Pauli matrices, we immediately write the following
expression for the corresponding covariant derivative

DL
µ =


∂µ −

i
2

(
gW 3

µ + g′Y f
LBµ

)
−i g√

2
W+
µ

−i g√
2
W−µ ∂µ + i

2

(
gW 3

µ − g′Y f
LBµ

)

 . (113)

The right fermions21 are SU(2)L singlets and do not couple to Wµ:

DR
µ = ∂µ − ig′

Y f
R

2
Bµ. (114)

The covariant derivatives involve two gauge couplings g, g′ corresponding to SU(2)L and U(1)Y , re-
spectively. Different Y f

L/R denote weak hypercharges of the fermions and up to now the values are not

fixed. Let us put some constraints on Y f
L/R. The first restriction comes from the SU(2)L symmetry, i.e.,

Y u
L = Y d

L ≡ Y
Q
L , and Y ν

L = Y e
L ≡ Y L

l .

One can see that the EW interaction Lagrangian

LW = LNC + LCC , (115)

in addition to the charged-current interactions of the form

LlCC =
g√
2
ν̄eLγµW

+
µ eL + h.c. =

g

2
√

2
ν̄eγµW

+
µ (1− γ5) e+ h.c. (116)

also involves neutral-current interactions

LlNC = ν̄eLγµ

(
1

2
gW 3

µ +
Y l
L

2
g′Bµ

)
νeL + ēLγµ

(
−1

2
gW 3

µ +
Y l
L

2
g′Bµ

)
eL + g′ēRγµ

Y e
R

2
BµeR. (117)

It is obvious that we have to account for QED in the SM and should predict a photon field that couples to
fermions with the correct values of the electric charges. Since both W 3

µ and Bµ are electrically neutral,
they can mix

W 3
µ = Zµ cos θW +Aµ sin θW

Bµ = −Zµ sin θW +Aµcos θW . (118)

Here we introduce the Weinberg angle θW . One can try to fix sin θW and various Y f
L/R from the re-

quirement that, e.g., Aµ has the same interactions as the photon in QED. Indeed, given fermion electric
charges Qf (see Fig. 1) in the units of the elementary charge e , one can derive the following relations:

gsin θW = e(Qν −Qe) = e(Qu −Qd),
g′Y l

Lcos θW = e(Qν +Qe) = −e,

g′Y Q
L cos θW = e(Qu +Qd) =

1

3
e,

21In what follows we do not consider right-handed neutrino and refer again to Ref. [18].
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g′Y f
R cos θW = 2eQf , f = e, u, d. (119)

As a consequence, e = g sin θW and, e.g.,, e = 3g′Y Q
L cos θW , so that

Y l
L = −3Y Q

L , Y e
R = −6Y Q

L , Y u
R = 4Y Q

L , Y d
R = −2Y Q

L (120)

are fixed in terms of one (arbitrary chosen) Y Q
L . It is convenient to normalize the U(1)Y coupling g′ so

that e = g′ cos θW , so Y Q
L = 1/3. As a consequence, the photon field couples to the electric charge Qf

of a fermion f . The latter is related to the weak hypercharge and the third component of weak isospin
T f3 via the Gell-Mann–Nishijima formula:

LNC 3 f̄
[(

gT f3 sin θW + g′
Y L
f

2
cos θW

)
PL +

(
g′
Y R
f

2
cos θW

)
PR

]
γµfAµ (121)

= ef̄

(
T3 +

Y

2

)
γµfAµ = eQf f̄γµfAµ, (122)

where in Eq.(122) we assume that T3 and Y are operators, which give T f3 and Y f
L , when acting on left

components, and T3 = 0 and Y f
R = 2Qf for right fermions.

The relations (120) allow one to rewrite the neutral-current Lagrangian as

LNC = eJAµ A
µ +

g

cos θW
JZµ Zµ, (123)

where the photon Aµ and a new Z-boson couple to the currents of the form

JAµ =
∑

f

Qf f̄γµf, JZµ =
1

4

∑

f

f̄γµ (vf − afγ5) f, (124)

vf = 2T f3 − 4Qf sin2 θW , af = 2T f3 , (125)

where T f3 = ±1
2 for left up-type/down-type fermions. For example, in the case of u-quarks, Qu = 2/3,

T u3 = 1/2, so

vu = 1− 8

3
sin2 θW , au = 1. (126)

For completeness, let us give the expression for the charged-current interactions in the EW model

LCC =
g√
2

(
J+
µW

+µ + J−µW
−µ) , J+

µ =
1

2

∑

f

f̄uγµ (1− γ5) fd, (127)

where fu(fd) is the up-type (down-type) component of an SU(2)L doublet f . The corresponding in-
teraction vertices are given in Fig. 12. It is worth emphasizing that in the SM the couplings between
fermions and gauge bosons exhibit Universality.

It turns out that it was a prediction of the electroweak SM that there should be an additional neutral
gauge boson Zµ. Contrary to the photon, the Z-boson also interacts with neutrinos. This crucial property
was used in the experiment called Gargamelle at CERN, where in 1973 the discovery was presented
(Fig. 8). About ten years later both W and Z were directly produced at Super Proton Synchrotron (SPS)
at CERN. Finally, in the early 90s a comprehensive analysis of the e+e− → ff̄ process, which was
carried out at the Large Electron Proton (LEP) Collier (CERN) and at the Standford Linear Collider
(SLAC) confirmed the SM predictions for the Z couplings to fermions (125).

It is also worth mentioning the fact that the (hyper)-charge assignment (120) satisfies very non-
trivial constraints related to cancellation of gauge anomalies. Anomalies correspond to situations when
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Fig. 12: Gauge-boson–quark vertices. Leptons interact with the EW bosons in the same way.

Fig. 13: The chamber of Gargamelle at CERN (left), νµ scattering due to Z-boson (right). From Wikipedia.

a symmetry of the classical Lagrangian is violated at the quantum level. A well-known example is Axial
or Chiral or Adler–Bell–Jackiw(ABJ) anomaly when the classical conservation law for the axial current
JAµ is modified due to quantum effects:

JAµ = Ψ̄γµγ5Ψ, ∂µJ
A
µ = 2imΨγ5Ψ +

α

2π
FµνF̃µν

︸ ︷︷ ︸
anomaly

, F̃µν = 1/2εµνρσFρσ. (128)

The FF̃ -term appears due to loop diagrams presented in Fig. 14.

a

b

c

a

b

c

Fig. 14: Diagrams contributing to the anomaly of an axial current (crossed vertex).

There is nothing wrong when the anomalous current JAµ corresponds to a global symmetry and
does not enter into L. It just implies that a classically forbidden processes may actually occur in the
quantum theory. For example, it is the anomaly in the global axial flavour symmetry that is responsible
for the decay π → γγ. On the contrary, if an axial current couples to a gauge field, anomalies break
gauge invariance, thus rendering the corresponding QFT inconsistent. In the SM left and right fermions
(eigenvectors of γ5) have different SU(2)L × U(1)Y quantum numbers, leaving space for potential
anomalies. However, since we have to take into account all fermions which couple to a gauge field, there
is a possibility that contributions from different species cancel each other due to a special assignment of
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Fig. 15: Gauge-boson self-interaction vertices.

fermion charges. Indeed, in the case of chiral theories22, anomalies are proportional to (γ5 = PR − PL)

Anom ∝ Tr[ta, {tb, tc}]L − Tr[ta, {tb, tc}]R, (129)

where ta are generators of the considered symmetries and the traces are over left (L) or right (R) fields.
In the SM the requirement that all anomalies should be zero imposes the following conditions on fermion
hypercharges:

0 = 2Y Q
L − Y u

R − Y d
R, U(1)Y − SU(3)c − SU(3)c, (130a)

0 = NcY
Q
L + Y l

L, U(1)Y − SU(2)L − SU(2)L, (130b)

0 = Nc

[
2(Y Q

L )3 − (Y u
R )3 − (Y d

R)3
]

+
[
2(Y l

L)3 − (Y e
R)3
]
, U(1)Y − U(1)Y − U(1)Y , (130c)

0 = Nc

[
2Y Q

L − Y u
R − Y d

R

]
+
[
2Y l

L − Y e
R

]
, U(1)Y − grav.− grav., (130d)

where, in addition to the EW gauge group, we also consider strong interactions of quarks that haveNc =
3 colours23. While the first three conditions come from the SM interactions, the last one (130d) is due to
the coupling to gravity. Other anomalies are trivially zero. One can see that the hypercharges introduced
in Eq.(120) do satisfy the equations. It is interesting to note that contributions due to colour quarks
miraculously cancel those of leptons and the cancellation works within a single generation. This put a
rather strong restriction on possible new fermions that can couple to the SM gauge bosons: new particles
should appear in a complete generation (quarks + leptons) in order not to spoil anomaly cancellation
within the SM. Moreover, the anomaly cancellation condition can select viable models that go beyond
the SM (BSM).

6.2 Properties of the EW gauge bosons
Due to the non-Abelian nature of the SU(2)L group, the gauge fields Wi have triple and quartic self-
interactions (see Eq.(108)). Since W3 is a linear combination of the Z-boson and photon, the same is
true for Z and γ. In Fig. 15, self-interaction vertices for the EW gauge bosons are depicted.

The triple vertices WWγ and WWZ predicted by the SM were tested at LEP2 in the e+e− →
W+W− process (Fig. 16) and agreement with the SM predictions was found. Subsequent studies at
hadron colliders (Tevatron and LHC) aimed at both quartic and triple gauge couplings (QGC and TGC,
respectively) also show consistency with the SM and put limits on possible deviations (so-called anoma-
lous TGC and QGC).

Since we do not observe Z-bosons flying around like photons, Zµ should have a non-zero mass
MZ and similar to W± give rise to Fermi-like interactions between neutral currents JµZ at low energies.
The relative strength of the charged and neutral current-current interactions (JZµ J

µ
Z)/(J+µJ+

µ ) can be

22Chiral theories distinguish left and right fermions.
23In the SM coloured quarks belong to the fundamental representation of the corresponding gauge group SU(3)c.
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Fig. 16: e+e− →W+W−.

measured by the parameter ρ:

ρ ≡ M2
W

M2
Z cos2 θW

. (131)

Up to now, we do not specify any relations between MZ and MW . Due to this, the value of ρ can, in
principle, be arbitrary. However, it is a prediction of the full SM that ρ ' 1 (see below).

The fact that both W and Z should be massive poses a serious problem for theoretical description
of the EW interactions. First of all, the naive introduction of the corresponding mass terms breaks the
gauge symmetry (111). For example, m2

WW
+
µ W

−
µ is forbidden due to Wµ → Wµ + ∂µω + .... One

can also mention an issue with unitarity, which arises in the scattering of longitudinal EW bosons due to
gauge self-interactions in Fig. 15.

In addition, the symmetry also forbids explicit mass terms for fermions, since e.g., mµ(µ̄LµR +
h.c.), which accounts for muon mass, mixes left and right fields that transform differently under the
electroweak group (111). In the next section, we discuss how these problems can be solved by coupling
the SM fermions and gauge bosons to the scalar (Higgs) sector (see also [22]).

6.3 Spontaneous symmetry breaking and gauge-boson masses
We need to generate masses for W±µ and Zµ (but not for Aµ) without explicit breaking of the gauge
symmetry. Let us consider for simplicity scalar electrodynamics:

L = ∂µφ
†∂µφ− V (φ†φ)− 1

4
F 2
µν + ie

(
φ†∂µφ− φ∂µφ†

)
Aµ + e2AµAµφ

†φ ≡ L1, (132)

which is invariant under U(1)

φ→ eieω(x)φ, Aµ → Aµ + ∂µω. (133)

In Eq.(132) a complex scalar φ interacts with the photon Aµ. We can use polar coordinates to rewrite the
Lagrangian in terms of new variables

L =
1

2
(∂µρ)2 +

e2ρ2

2

(
Aµ −

1

e
∂µθ

)(
Aµ −

1

e
∂µθ

)
− V (ρ2/2)− 1

4
F 2
µν , (134)
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Fig. 17: A symmetric vacuum (left) and degenerate vacua (right).

=
1

2
(∂µρ)2 +

e2ρ2

2
BµBµ − V (ρ2/2)− 1

4
F 2
µν(B), (135)

where ρ is gauge invariant, while the U(1) transformation (133) gives rise to a shift in θ:

φ =
1√
2
ρ(x)eiθ(x), ρ→ ρ, θ → θ + eω. (136)

One can also notice that Bµ ≡ Aµ− 1
e ∂µθ is also invariant! Moreover, since Fµν(A) = Fµν(B), we can

completely get rid of θ. As a consequence, the gauge symmetry becomes “hidden” when the system is
described by the variables Bµ(x) and ρ(x).

If in Eq.(132) we replace our dynamical field ρ(x) by a constant ρ→ v = const, we get the mass
term for Bµ. This can be achieved by considering the potential V (φ) of the form (written in terms of
initial variables)

V = µ2φ†φ+ λ(φ†φ)2. (137)

One can distinguish two different situations (see Fig. 17):

– µ2 > 0 — a single minimum with φ = 0;
– µ2 < 0 — a valley of degenerate minima with φ 6= 0.

In both cases we solve EOM for the homogeneous (in space and time) field. When µ2 > 0 the solution
is unique and symmetric, i.e., it does not transform under U(1). In the second case, in which we are
interested here, the potential has non-trivial minima

∂V

∂φ†

∣∣∣∣
φ=φ0

= 0⇒ φ†0φ0 = −µ
2

2λ
=
v2

2
> 0⇒ φ0 =

v√
2
eiβ, (138)

which are related by global U(1) transformations (133) that change β → β+ eω. So, in spite of the fact
that we do not break the symmetry explicitly, it is spontaneously broken (SSB) due to a particular choice
of our solution (β).

In QFT we interpret φ0 as a characteristic of our vacuum state, i.e., as a vacuum expectation value
(vev) or condensate of the quantum field:

φ0 = 〈0|φ(x)|0〉 β=0
=

v√
2
. (139)

Since we want to introduce particles as excitations above the vacuum, we have to shift the field:

φ(x) =
v + h(x)√

2
eiζ(x)/v, 〈0|h(x)|0〉 = 0, 〈0|ζ(x)|0〉 = 0. (140)
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As a consequence, Eq.(135) can be rewritten as

L =
1

2
(∂µh)2 +

e2v2

2

(
1 +

h

v

)2

BµBµ − V (h)− 1

4
F 2
µν(B) ≡ L2, (141)

V (h) = −|µ|
2

2
(v + h)2 +

λ

4
(v + h)4 =

2λv2

2
h2 + λvh3 +

λ

4
h4 − λ

4
v4. (142)

One can see that the Lagrangian (142) describes a massive vector fieldBµ withm2
B = e2v2 and a massive

scalar h with m2
h = 2λv2. We do not break the symmetry explicitly. It is again hidden in the relations

between couplings and masses. This is the essence of the Brout-Englert-Higgs-Hagen-Guralnik-Kibble
mechanism [23–25].

The Lagrangians L1 (132) and L2 (142) describe the same Physics but written in terms of different
quantities (variables). Expression (132) involves a complex scalar φ with 2 (real) degrees of freedom
(DOFs) and a massless gauge field (Aµ) also having 2 DOFs. It is manifestly gauge invariant but not
suitable for perturbative expansion (φ has imaginary mass).

On the contrary, in L2 the gauge symmetry is hidden24 and it is written in terms of physical DOFs,
i.e., a real scalar h (1 DOF) and a massive vectorBµ (3 DOFs). In a sense, one scalar DOF (ζ) is “eaten”
by the gauge field to become massive. It is important to note that the postulated gauge symmetry allows
us to avoid the consequences of the Goldstone theorem, which states that if the vacuum breaks a global
continuous symmetry there is a massless boson (Nambu-Goldstone) in the spectrum25. This boson is
associated with ‘oscillations” along the valley, i.e., in the broken direction (see Fig. 17). However, due to
the local character of symmetry, χ is not physical anymore, its disappearance (or appearance, see below)
reflects the redundancy, which was mentioned above.

In Sec. 4.2, we demonstrated that the massive-vector propagator has rather bad UV behavior and is
not very convenient for doing calculations in PT. It looks like we gain nothing from the gauge principle.
But it is not true. We can write the model Lagrangian in the Cartesian coordinates φ = 1√

2
(v + η + iχ):

L3 = −1

4
FµνFµν +

e2v2

2
AµAµ +

1

2
∂µχ∂µχ− evAµ∂µχ+

1

2
∂µη ∂µη −

2v2λ

2
η2 +

v4λ

4
(143)

+ eAµχ∂µη − eAµη∂µχ− vλη(η2 + χ2)− λ

4
(η2 + χ2)2 +

e2

2
AµAµ(2vη + η2 + χ2). (144)

The “free” part (143) of L3 seems to describe 5 real DOFs: a massive scalar η, a massless (would-be
Nambu-Goldstone) boson χ and a massive Aµ. However, there is a mixing between the longitudinal
component of Aµ and χ that spoils this naive counting (unphysical χ is “partially eaten” by Aµ) .

In spite of this subtlety, L3 is more convenient for calculations in PT. To quantize the model, one
can utilize the gauge-fixing freedom and add the following expression to L3

δLg.f. = − 1

2ξ
(∂µAµ + evξχ)2 = − 1

2ξ
(∂µAµ)2 − evχ∂µAµ −

e2v2ξ

2
χ2. (145)

It removes the mixing from Eq.(143) and introduces a mass for χ, m2
χ = (e2v2)ξ. In addition, the

vector-boson propagator in this case looks like

〈0|TAµ(x)Aν(y)|0〉 =

∫
d4p

(2π)4

−i
[
gµν − (1− ξ) pµpν

p2−ξm2
A

]

p2 −m2
A + iε

e−ip(x−y), mA = ev. (146)

One can see that for ξ → ∞ we reproduce Eq.(39), while for finite ξ the propagator behaves like 1/p2

as p→∞, thus making it convenient for PT calculations.
24One can also say that L2 corresponds to the unitary gauge, i.e., no unphysical “states” in the particle spectrum.
25Any non-derivative interactions violate the shift symmetry ζ → ζ + evω for ω = const.
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It should be mentioned that contrary to L2 the full Lagrangian corresponding to L3 involves also
unphysical ghosts, which do not decouple in the considered case. Nevertheless, it is a relatively small
price to pay for the ability to perform high-order calculations required to obtain high-precision predic-
tions.

Let us switch back to the SM. We have three gauge bosons that should become massive. As a
consequence, three symmetries should be broken by the SM vacuum to feed hungry W±µ and Zµ with
(would-be) Goldstone bosons

SU(2)L × U(1)Y → U(1)em. (147)

The photon should remain massless and correspond to the unbroken electromagnetic U(1)em. This can
be achieved by considering an SU(2)L doublet of scalar fields:

Φ =
1√
2

exp

(
i
ζj(x)σj

2v

)(
0

v + h(x)

)
, Φ0 ≡ 〈0|Φ|0〉 =

1√
2

(
0
v

)
, (148)

where we decompose Φ(x) in terms of three (would-be) Goldstone bosons ζj and a Higgs h. The Pauli
matrices σj represent broken generators of SU(2)L. Let Φ also be charged under U(1)Y :

Φ→ exp

(
ig
σi

2
ωa + ig′

YH
2
ω′
)

Φ. (149)

We do not want to break U(1)em spontaneously so the vacuum characterized by the vev Φ0 should be
invariant under U(1)em, i.e., has no electric charge Q

eieQθΦ0 = Φ0 → QΦ0 = 0. (150)

The operatorQ is a linear combination of diagonal generators of SU(2)L×U(1)Y , T3 = σ3/2 and Y/2:

QΦ0 =

(
T3 +

Y

2

)
Φ0 =

1

2

(
1 + YH 0

0 −1 + YH

)(
0
v√
2

)
?
= 0. (151)

As a consequence, to keep U(1)em unbroken, we should set YH = 1. Since Φ transforms under the EW
group, we have to introduce gauge interactions for the Higgs doublet to make sure that the scalar sector
respects the corresponding local symmetry:

LΦ = (DµΦ)†(DµΦ)− V (Φ), with V (Φ) = m2
ΦΦ†Φ + λ(Φ†Φ)2. (152)

For m2
Φ < 0 the symmetry is spontaneously broken. In the unitary gauge (Goldstone bosons are gauged

away: in Eq.(148) we put ζj = 0) the first term in Eq.(152) can be cast into

|DµΦ|2 =
1

2
(∂µh)2 +

g2

8
(v + h)2|W 1

µ + iW 2
µ |2 +

1

8
(v + h)2(gW 3

µ − g′YHBµ)2 (153)

=
1

2
(∂µh)2 +

g2

4
(v + h)2W+W−

[√
2W± = W 1

µ ∓ iW 2
µ

]

+
1

8
(v + h)2

[
Zµ(g cos θW + g′ sin θW ) +Aµ(g sin θW − g′ cos θW )

]2 (154)

=
1

2
(∂µh)2 +M2

W

(
1 +

h

v

)2

W+W− +
M2
Z

2

(
1 +

h

v

)2

ZµZµ, (155)

where we require the photon to be massless after SSB, i.e.,

gsin θW − g′cos θW = 0 ⇒ sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

(156)
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Fig. 18: Gauge-boson–Higgs interactions.

and, consequently,

g cos θW + g′ sin θW =
√
g2 + g′2, e = g sin θW = g′ cos θW =

gg′√
g2 + g′2

. (157)

The masses of the Z and W -bosons are proportional to the EW gauge couplings

M2
W =

g2v2

4
, M2

Z =
(g2 + g′2)v2

4
. (158)

One can see that the Higgs-gauge boson vertices (Fig. 18) are related to the masses MW and MZ .

An important consequence of the SM gauge symmetry and the existence of the Higgs boson is the
unitarization of massive vector-boson scattering. By means of simple power counting, one can easily
convince oneself that the amplitude for (longitudinal) W -boson scattering originating from the quartic
vertex in Fig. 15 scales with energy asE4/M4

W . This kind of dependence will eventually violate unitarity
for E � MW . However, in the SM, thanks to gauge symmetry, QGC and TGC are related. This results
inE2/M2

W behavior whenZ/γ exchange is taken into account. Moreover, since the gauge bosons couple
also to Higgs, we need to include the corresponding contribution to the total amplitude. It turns out that it
is this contribution that cancels the E2 terms and saves unitarity in the WW -scattering. Obviously, this
pattern is a consequence of the EW symmetry breaking in the SM and can be modified by the presence of
New Physics. Due to this, experimental studies of vector boson scattering (VBS) play a role in proving
overall consistency of the SM.

Z 0, 𝛾
Z 0, 𝛾 M∝ g2 E2

M2
W
,

h
h M∝ −g2 E2

M2
W

Fig. 19: WW-scattering and Unitarity.

Having in mind Eq.(88), one can derive the relation

GF =
1√
2v2
⇒ v ' 246 GeV, (159)
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which gives a numerical estimate of v. One can also see that due to (158) we have (at the tree level)

ρ =
M2
W

M2
Z cos2 θW

= 1. (160)

Let us emphasize that it is a consequence of the fact that the SM Higgs is a weak doublet with unit
hypercharge. Due to this, ρ ' 1 imposes important constraints on possible extensions of the SM Higgs
sector. For example, we can generalize expression (160) to account for n scalar (2Ii + 1)-plets (i =
1, ..., n) that transform under SU(2)L and have hypercharges Yi. In case they acquire vevs vi, which
break the EW group, we have

ρ =

∑
i(Ii(Ii + 1)− Y 2

i )v2
i∑

i 2Y 2
i v

2
i

. (161)

Consequently, any non-doublet (with total weak isospin Ii 6= 1/2) vev leads to a deviation from ρ = 1.

6.4 Fermion-higgs interactions and masses of quarks and leptons
Since we fixed all the gauge quantum numbers of the SM fields, it is possible to construct the following
gauge-invariant Lagrangian:

LY = −ye( L̄
+1

Φ
+1

) eR
−2

− yd( Q̄
− 1

3

Φ
+1

) dR
− 2

3

− yu( Q̄
− 1

3

Φc

−1

) uR
4
3

+ h.c., (162)

which involves dimensionless Yukawa couplings yf . It describes interactions between the Higgs field
Φ, left fermion doublets (112) and right singlets. In Eq.(162) we also indicate weak hypercharges of
the corresponding fields. One can see that combinations of two doublets, (Q̄Φ) etc., are invariant under
SUL(2) but have a non-zero charge under U(1)Y . The latter is compensated by hypercharges of right
fermions. In addition, U(1)Y symmetry forces us to use a charge-conjugated Higgs doublet Φc = iσ2Φ∗

with Y = −1 to account for Yukawa interactions involving uR.

In the spontaneously broken phase with non-zero Higgs vev, the Lagrangian LY can be written in
the following simple form:

−LY =
∑

f

yfv√
2

(
1 +

h

v

)
f̄f =

∑

f

mf

(
1 +

h

v

)
f̄f, f = u, d, e, (163)

where unitary gauge is utilized. One can see that SSB generates fermion masses mf and, similarly to
Eq.(155), relates them to the corresponding couplings of the Higgs boson h (see Fig.20a).

h

ui , di , li

ui , di , li
(a) (b)

Fig. 20: Higgs–fermion couplings (a) and self-interactions of the Higgs boson (b).

It is worth noting that Eq.(162) is not the most general renormalizable Lagrangian involving the
SM scalars and fermions. One can introduce flavour indices and non-diagonal complex Yukawa matrices
yijf to account for a possible mixing between the SM fermions, i.e.,

LYukawa = −yijl (L̄iΦ)ljR − yijd (Q̄iΦ)djR − yiju (Q̄iΦ
c)ujR + h.c.. (164)
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Substituting Φ → Φ0 we derive the expression for fermion mass matrices mij
f = yijf

v√
2
, which can

be diagonalized by suitable unitary rotations of left and right fields. In the SM the Yukawa matri-
ces (164) are also diagonalized by the same transformations. This leads again (in the unitary gauge)
to Eq.(163) but with the fields corresponding to the mass eigenstates. The latter do not coincide with
weak states, which enter into LW (115). However, one can rewrite LW in terms of mass eigenstates. Due
to large flavour symmetry of weak interactions26 , this introduces a single mixing matrix (the Cabibbo–
Kobayashi–Maskawa matrix, or CKM), which manifests itself in the charged-current interactions LCC .
A remarkable fact is that three generations are required to have CP violation in the quark sector. More-
over, a single CKM with only four physical parameters (angles and one phase) proves to be very success-
ful in accounting for plethora of phenomena involving transitions between different flavours. We will
not discuss further details but refer to the dedicated lectures on Flavor Physics [26].

7 The SM: theory vs. experiment
Let us summarize and write down the full SM Lagrangian as

LSM = LGauge(gs, g, g
′) + LYukawa(yu, yd, yl) + LHiggs(λ,m

2
Φ) + LGauge-fixing + LGhosts. (165)

The Yukawa part LYukawa is given in Eq.(164), while LHiggs = −V (Φ) is the Higgs potential from
Eq.(152). After SSB the corresponding terms give rise to the Higgs couplings to the SM fermions
(Fig.20a) and Higgs self-interactions (Fig.20b). The former are diagonal in the mass basis. The kinetic
term for the Higgs field is included in

LGauge = −1

4
GaµνG

a
µν︸ ︷︷ ︸

SU(3)c

−1

4
W i
µνW

i
µν︸ ︷︷ ︸

SU(2)L

−1

4
BµνBµν︸ ︷︷ ︸
U(1)Y

+(DµΦ)†(DµΦ) (166)

+ L̄i iD̂ Li + Q̄i iD̂ Qi︸ ︷︷ ︸
SU(2)L doublets

+ l̄Ri iD̂ lRi + ūRi iD̂uRi + d̄Ri iD̂ dRi︸ ︷︷ ︸
SU(2)L singlets

, (167)

where for completeness we also add the colour group SU(3)c responsible for the strong force. The first
three terms in Eq.(166) introduce gauge bosons for the SM gauge groups and in the non-Abelian case
account for self-interactions of the latter (Fig. 15). The fourth term in (166) written in the form (155)
accounts for gauge interactions of the Higgs field (Fig. 18). Finally, Eq.(167) gives rise to interactions
between gauge bosons and the SM fermions (see, e.g., Fig. 12).

The SM Lagrangian Eq.(165) depends on 18 physical27 parameters — 17 dimensionless couplings
(gauge, Yukawa, and scalar self-interactions) and only 1 mass parameter m2

Φ (see Table. 3). It is worth
emphasizing here that there is certain freedom in the definition of input parameters. In principle, one
can write down the SM predictions for a set of 18 observables (e.g., physical particle masses or cross-
sections at fixed kinematics) that can be measured in experiments. With the account of loop corrections
the predictions become non-trivial functions of all the Lagrangian parameters. By means of PT it is
possible to invert these relations and express these primary parameters in terms of the chosen measured
quantities. This allows us to predict other observables in terms of a finite set of measured observables28.

However, it is not always practical to strictly follow this procedure. For example, due to confine-
ment we are not able to directly probe the strong coupling gs and usually treat it as a scale-dependent
parameter (4π)αs = g2

s defined in the modified minimal-subtraction (MS) scheme. It is customary to
use the value of α(5)

s (MZ) = 0.1181± 0.011 at the Z-mass scale as an input for theoretical predictions.
A convenient choice of other input parameters is presented in Table.3. It is mostly dictated by the fact

26In the SM the symmetry is U(3)5 and corresponds to flavour rotations of left doublets, Q and L, and right singlets, uR, dR
and lR. Neutrinos are assumed to be massless.

27We do not count unphysical gauge-fixing parameters entering into LGauge-fixing and LGhosts.
28One can even avoid the introduction of renormalizable parameters and use bare quantities at the intermediate step.
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Table 3: Parameters of the SM.

18= 1 1 1 1 1 9 4
primary: gs g g′ λ m2

Φ yf yij
practical: αs M2

Z α M2
H GF mf VCKM

that the parameters from the “practical” set are measured with better precision than the others.

At the tree level one can write

αs = g2s
4π , (4π)α = g2g′2/(g2 + g′2), M2

Z = (g2+g′2)v2

4 ,

GF = 1√
2v2
, M2

h = 2λv2 = 2|mΦ|2, mf = yfv/
√

2.
(168)

The relations are modified at higher orders in PT and perturbative corrections turn out to be mandatory
if one wants to confront theory predictions [27–29] with high-precision experiments. A simple example
to demonstrate this fact comes from the tree-level “prediction” for the W -mass MW . From Eq.(158) and
Eq.(168) we can derive

GF√
2

=
πα

2M2
W (1−M2

W /M
2
Z)
. (169)

Plugging recent PDG [21] values

α−1 = 137.035999139(31), MZ = 91.1876(21) GeV, GF = 1.1663787(6)× 10−5 GeV−2, (170)

in Eq.(169), one can predict

M tree
W = 80.9387(25) GeV, (171)

where only uncertainties due to the input parameters (170) are taken into account. Comparing M tree
W

𝜇−

𝜈𝜇

𝜈e

e−

W− b

t

Fig. 21: An example of loop corrections to the muon decay, which give rise to the modification of the tree-level
relation in Eq.(169).

with the measured value M exp
W = 80.379(12) GeV, one can see that our naive prediction is off by about

47σ! Of course, this is not the reason to abandon the SM. We just need to take radiative corrections into
account (see, e.g., Fig.21). Among other things the latter allows one to connect phenomena at different
scales in the context of a single model.

A modern way to obtain the values of the SM parameters is to perform a global fit to confront
state-of-the-art SM predictions with high-precision experimental data. Due to quantum effects, we can
even probe New Physics that can contribute to the SM processes at low energies via virtual states. In-
deed, LEP precision measurements interpreted in the context of the SM were used in a multidimensional
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around the curve shows the theoretical uncertainty. Exclusion regions due to LEP and LHC are also presented.

parameter fits to predict the mass of the top quarkMt (”New Physics”), prior to its discovery at the Teva-
tron. After Mt was measured it was included in the fit as an additional constraint, and the same approach
led to the prediction of a light Higgs boson. In Fig.22, the famous blue-band plot by the LEP Elec-
troweak Working Group (LEPEWWG [30]) is presented. It was prepared a couple of months before the
official announcement of the Higgs-boson discovery. One can see that the best-fit value corresponding
to ∆χ2

min = 0 lies just about 1σ below the region not excluded by LEP and LHC.

Obviously, at the moment the global EW fit is overconstrained and can be used to test over-
all consistency of the SM. In Fig. 23 we present the comparison between measurements of different
(pseudo)observables Omeas and the SM predictions Ofit corresponding to the best-fit values of fitted
parameters. Although there are several quantities where pulls, i.e., deviations between the theory and
experiment, reach more than two standard deviations, the average situation should be considered as ex-
tremely good. A similar conclusion can be drawn from the recent Figs. 24 and 25, in which experimental
results for various cross-sections measured by ATLAS and CMS are compared with the SM predictions.
In case one is interested in the behavior of the SM at ultra-high energies, it is more convenient to get back
to the primary parameters and use the renormalization group to estimate how they change with scale. In
Fig. 26, the scale dependence of the SM parameters is presented. One can see that the gauge couplings
tend to converge to a single value at about 1013−15 GeV, thus providing a hint for Grand Unification.
Another important consequence of this kind of studies is related to the EW vacuum (meta)stability (see,
e.g., [33]). In Fig. 26, it manifests itself at the scale µ ' 1010 GeV, at which the self-coupling λ becomes
negative, making the tree-level potential unbounded from below.

8 Conclusions
Let us summarize and discuss briefly the pros and cons of the SM. The Standard Model has many nice
features:

– it is based on Symmetry principles: Lorentz + SU(3)C × SU(2)L × U(1)Y gauge symmetry;
– it is renormalizable and unitary;
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Fig. 23: Pulls of various (pseudo)observables due to (a) LEPEWWG [30] and (b) Gfitter [31].

– the structure of all interactions is fixed (but not all couplings are tested experimentally);
– it is an anomaly-free theory;
– it can account for rich Flavour Physics (see [26]);
– three generations allow CP-violation (see [26]);
– it can be extended to incorporate neutrino masses and mixing (see [18]);
– it allows making systematic predictions for a wide range of phenomena at different scales;
– all predicted particles have been discovered experimentally;
– it survives stringent experimental tests.

Due to this, the SM is enormously successful (Absolutely Amazing Theory of Almost Everything). Since
it works so well, any New Physics should reproduce it in the low-energy limit. Unfortunately, contrary
to the Fermi-like non-renormalizable theories, the values of the SM parameters do not give us obvious
hints for a New Physics scale. But why do we need New Physics if the model is so perfect? It turns out
that we do not understand, why the SM works so well. For example, one needs to clarify the following:

– What explains the pattern behind Flavour Physics (hierarchy in masses and mixing, 3 generations)?
– Is there a symmetry behind the SM (electric) charge assignment?
– What is the origin of the Higgs potential?
– What is the origin of accidental Baryon and Lepton number symmetries?
– Why is there no CP-violation in the strong interactions (strong CP problem)29?
– Why is the Higgs-boson mass so low? (Hierarchy/Naturalness problem, see [22])
– Is it possible to unify all the interactions, including gravity?

In addition, there are phenomenological problems that are waiting for solutions and probably require
introduction of some New Physics:

29The SM Gauge group allows such a term in the SM Lagrangian, L 3 θCP
1

16π2F
a
µν F̃

a
µν . But it turns out that θCP = 0.

38

A.V. BEDNYAKOV

38



Fig. 24: ATLAS results of the SM cross-section measurements.
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Fig. 25: SM processes at CMS.

– Origin of neutrino masses (see [18]);
– Baryon asymmetry (see [34]);
– Dark matter, Dark energy, Inflation (see [34]);
– Tension in (g − 2)µ, b→ sµµ, b→ clν;
– Possible problems with Lepton Universality of EW interactions (see [26, 35]).

In view of the above-mentioned issues we believe that the SM is not an ultimate theory (see [35])
and enormous work is ongoing to prove the existence of some New Physics. In the absence of a direct
signal a key role is played by precision measurements, which can reveal tiny, yet significant, deviations
from the SM predictions. The latter should be accurate enough (see, e.g., Ref. [36]) to compete with
modern and future experimental precision [37].
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Fig. 26: Scale dependence of the SM parameters obtained by means of mr package [32].

To conclude, one of the most important tasks in modern high-energy physics is to find the scale at
which the SM breaks down. There is a big chance that some new physical phenomena will eventually
manifest themselves in the ongoing or future experiments, thus allowing us to single out viable model(s)
in the enormous pool of existing NP scenarios.
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Abstract
Following a phenomenological guiding principle, in these notes I present a
selection of old and recent developments in perturbative QCD and collider
physics.

Keywords
Quantum Chromodynamics; lectures; gauge theory; hadrons; parton shower.

1 Basics and e+e− annihilation into hadrons

Protons, neutrons and hadrons mainly interact via the so called strong force. The strong force has a higher
level of symmetry than weak and electromagnetic interactions, since it conserves parity and isospin
(almost). Unlikely the case of QED, there is no evidence of a low energy small parameter which controls
the interaction strength. On the contrary, the strong interaction is characterized by a dimensional scale
of about 200 ∼ 300 MeV, corresponding to the typical lifetime of its excitations that is about 10−24 s.
As can be seen in Fig.(1), taken from the Review of Particle Physics [1], the typical hadron-hadron cross
section is of the order of 10 mb, that again corresponds to about (300 MeV)2, so it’s very much harder

Fig. 1: Measurements of the total proton-proton cross sections as function of the beam energy.

then EW interactions and furthermore we don’t really see the vertices.

Proceedings of the 2018 European School of High-Energy Physics, Maratea, Italy, 20 June–3 July 2018
Edited by M. Mulders and C. Duhr, CERN-2019-006 (CERN, Geneva, 2019)

0531-4283 – c© CERN, 2019. Published under the Creative Common Attribution CC BY 4.0 Licence.
http://doi.org/10.23730/CYRSP-2019-006.43

43

http://doi.org/10.23730/CYRSP-2019-006.43


1.1 Motivations for QCD

First of all, the whole hadron spectrum can be classified by assuming that the hadrons are made up
of quarks carring different flavours (see Fig.(2) [1]), that each quark q with flavour f comes in three

Fig. 2: Quark flavours and their properties.

different colours (qif with index i = 1, 2, 3) and that observable hadrons are colour singlets under the
SU(3)C colour group. Singlets under the SU(3)C are easily built for a quark-antiquark (meson) or a
three quark system (baryon). In Fig.(3) [1], for example, there are the lowest mass multiplets classified as
representation of favour SU(4)F . There is a nice symmetry in each group and mass differences are well

Fig. 3: Classification of the light mesons and baryons spectra according to the multiplets of the SU(4)F flavour
group.

explained by quark masses. The relatively low number of multiplets and their composition is difficult to
explain without colour constraint. For example, consider the ∆++ state, that is composed of three up
quarks with their spin aligned. For the Pauli principle this state would not be possible without assuming
total antisymmetry of its colour wave function. One could in principle assume an antisymmetric space
wave function, but this would naturally require to this state to have a mass larger than the others in the
same multiplet that have a different flavour content so that for them a symmetric wave function is natural;
on the contrary they are all close by. It’s remarkable that the Ξ++

cc , the last missing state in the proton
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multiplet to be discovered, has been found only in 2017 by the LHCb experiment [2]. However, the
simple vision of just qq̄ and qqq states does not represent the whole story. There is now evidence of
states that do not fit the spectrum dictated by these two combinations only, both for the meson and the
baryon sector. The new states found involve the presence of both heavy (c or b) or light (u, d or s) quarks,
so that there are light-light, heavy-light and heavy-heavy new resonances. For example, in the light-light
sector, there is observation of ππ resonances with isospin 2 while quarks have only isospin 1/2, and for
the hidden charm and beauty sectors (resonances containing a cc̄ or a bb̄ pair), there is evidence of many
states that for their masses, decay modes and decay widths do not fit at all the spectrum of heavy qq̄
resonances (quarkonium). All such states have to be necessarily multi-quark (more than three) systems!
However, the only necessary condition to build a colour singlet is that:

nq − nq̄ = multiple of 3 (1)

which also implies the absence of hadrons with fractional charge although quarks have fractional charges.
At the same time Eq.(1) predicts the existence of multi-quark colourless states. So far, indeed, QCD has
more then one solution to the problem! See the Fig.(4). The new states could resemble nuclei, being

Fig. 4: Two QCD allowed solutions for a multi-quark state: a “molecule” made of regular hadrons binded together
by the nuclear force (left) and new exotic tetra-quark (right).

molecules of color singlet states kept together by kind of nuclear forces: that would explain the fact
that these states have masses typically close to the respective thresholds. Or they could also be made of
colored parts confined by long-range color forces, similarly to what happens in normal mesons, making
tetraquarks (or pentaquarks, hexaquarks...) as indicated by the spectrum of the X(3872) (a 1++ meson
decaying into J/ψ π+ π−) measured by CMS, that is much harder than the (rescaled) deuteron and
tritium spectrum measured in Pb-Pb collisions, see Fig.(5) [3]. We refrain here to discuss this aspects
further, nevertheless we stress that such studies might indeed provide new clues to the understanding of
QCD in the fully non-perturbative regime.

The second pillar in favour of QCD is the phenomenon of scaling in lepton-hadron Deep Inelas-
tic Scattering (DIS). By this, we mean the fact that, for inclusive inelastic large angle scattering, the
differential cross section, as expressed in terms of dimensionless variables, “scales” with energy:

dσ

dxdy
∼ 1

s
(s = E2

CM ) (2)

As we will discuss further, this is a prediction of the parton model of QCD. So, the strong interaction at
high energy resembles a weakly interacting theory with dimensionless coupling!

Last but not the least, there has been the theoretical discovery of asymptotically free theories.
Non abelian gauge theories are weakly coupled at high energies (short distances) while they can become
strongly approaching a characteristic low energy scale. In the latter highly non perturbative regime, the
strong interacting fields may lead to a spectrum of asymptotic binding states, “confining” the high energy
degrees of freedom. So far colour has been used to justify the spectrum that is a static property of the
theory, nevertheless assuming that the outcome of every strong interaction are only colourless particles

3

INTRODUCTION TO PERTURBATIVE QCD

45



Fig. 5: Comparison of the measureed transverse momentum spectrum of X(3872) in p-p collision (CMS) with the
one of deuteron and tritium in Pb-Pb collisions (ALICE). The huge discrepancy disfavors the interpretation of the
new state X(3872) as a molecule.

we are implicitly also giving to colour a dynamical role. For all these reasons, non abelian gauge theories
(SU(3)C in our case) are good candidates to be the theory of strong interactions. One has to assume that
the strong interaction group is completely independent from the weak interaction group (commute) to
guarantee that parity violating terms remain of order αe/M2

W , but still one has same type of theory for
weak, strong and electromagnetic interactions! The basic aspects of QCD are discussed in excellent
books like for eample [4] and [5].

1.2 QCD Lagrangian and Feynman rules

The QCD Lagrangian is given by:

L = −1

4
FAµνFµνA +

Nf∑

f=1

q̄if (iγµ∂µδij − gsγµtAijAAµ −mfδij)q
j
f . (3)

For Nc = 3 colours we have i, j = 1, 2, 3 and A,B,C = 1, 2, ..., 8. The field strength is

FAµν = ∂µA
A
ν − ∂νAAµ − gsfABCABµACµ . (4)

The eight SU(3) generators fulfill the commutation rules:

[tA, tB] = ifABCt
C (5)

where fABC are numbers specific of the SU(3) group named the structure constants of the group. The
terms in the gluon field strength generate 3-gluon and 4-gluon couplings. Then, unlike the neutral single
photon in the case of QED, the eight gluons carry colour charge. Furthermore, gluon radiation from a
quark or a gluon changes its colour charge generating a colour flow. The explicit colour matrices are not
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important for most practical purposes. It is customary to normalise them according to

Tr(tAtB) = TRδ
AB TR =

1

2
(6)

and use tA = 1
2λ

A, where λA are the Gell-Mann matrices:

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0


 λ3 = ... (7)

From this Lagrangian one finds the Feynman rules given in Fig.(6). Before using them for the computa-

Fig. 6: List of the Feynman rules corresponding to the QCD Lagrangian in Eq. 3.

tion of amplitudes in perturbation theory, one has to specify the gluon polarization tensor dµν(k) which
appears in the Feynman rule for the gluon propagator. Several choices are possible, for example:

dµν(k) =
∑

λ

εµλ(k)εν∗λ (k) =





−gµν + (1− ρ) k
µkν

k2+iε
covariant

−gµν +
nµkν+kµnν

n·k − (n2−ρk2)kµkν

(n·k)2
axial

(8)

With ρ and n a free parameter and fixed four vector respectively, and the property that physical results
have to be independent from them. The easiest and most natural choice seems to be the covariant gauge

5

INTRODUCTION TO PERTURBATIVE QCD

47



with ρ = 1. However, it propagates also unphysical (non transverse) degrees of freedom, as a con-
sequence of the non-abelian nature of the theory. This spurious degrees of freedom have to be ruled
out in the calculation of physical quantities. The simplest way to implement this cancellation is via the
on purpose introduction of other non physical degrees of freedom named ghosts. So, if one adopts the
covariant gauge, the Feynman rules have to be extended including the complementary ones shown in
Fig.(7). To meet the purpose, ghosts are coloured scalars with a fermionic property: a (-1) factor for each

Fig. 7: Feynman rules involving ghost particles in covariant gauge.

ghost loop has to be included as, indeed, for the fermion loop. The axial gauges, instead, propagates
only the physical degrees of freedom, and so ghosts are not required, to the price of a more complicated
expression in the propagator. Let us focus on a specific example. Suppose you want to compute the
scattering amplitude for the process qq̄ → gg that is one of the subprocesses at work to create two jets
at an hadron collider. The corresponding Feynman diagrams, which involve only the physical degrees of
freedom, are the ones in Fig.(8). The cross section is proportional to the squared amplitude, and one can

Fig. 8: Lowest order Feynman diagrams contribution to the scattering amplitude for qq̄ → gg.

compute it according to the formula:

σ = AµνA
∗
µ′ν′d

µµ′dνν
′

(9)

generically written in terms of the polarization tensors for the two gluons. If you decide to use the gluon
polarization tensor as given in the axial guage there is nothing more to add. The point is that if one
uses naively the simple covariant expression, i.e. dαβ = −gαβ , to compute the squared amplitude in
Eq.(9), will end up with a wrong result. The correct one is recovered after adding also the ghost contri-
bution shown in Fig.(9). What is done in several automated programs designed to calculate scattering

Fig. 9: Ghost contribution to the matrix element for the qq̄ → gg scattering process in a covariant gauge

amplitudes is to compute the helicity amplitudes, that is the collection of amplitudes each with a specific
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choice for the helicities of the external particles. In this case one considers ab initio only physically
meaningful helicity states. Then the square is obtained using the formula:

σ =
∑

helicity
configurations

|Ah.c.|2 (10)

Numerically, this procedure is very efficient. Beyond Dirac algebra we also need to compute the colour
factors associated to the colour structure of the QCD vertices. The most relevant ones are related to
the computations showed in Fig.(10). As we see from the second and third line in Fig.(10), the gluon

Fig. 10: Examples of fundamental colour structures and associated colour factors.

radiative correction to the fermion propagator receives a factor CF = 4/3 while the correction to the
gluon propagator receives a factor CA = 3. From this difference, we argue that gluons radiate more then
fermions, their coupling is effectively almost twice as much as the one of the fermions. Another colour
identity that is very useful in practice is the Fierz transformation:

tAijt
A
kl =

1

2
δkjδil −

1

2Nc
δijδkl (11)

which allows one to deal with colour flowing from one line to another as in Fig.(11).

In principle, starting from the Feynman diagrams, one has that a helicity amplitude can be written
as a combination of the colour tensor structures (Ci), that are just strings of colour matrices, and fully
contracted Lorentz structures (complex numbers Kij) for each colour structure (i) and external helicity
configurations (j)

Aj =
∑

i

Ci ·Ki,j . (12)

The same numerical construction can be generalized also for diagrams containing one closed loop. In-
deed, we can factorize one loop diagrams into kinematical factors and integrals over the unconstrained
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Fig. 11: Diagrammatic colour flow in a quark-quark scattering.

loop momentum. Note that possible one loop integrals (there is finite number of them) are all known
analytically so that, beyond Dirac algebra, what is needed to build the “interference” among tree level
and one loop diagrams, that is part of the Next-to-Leading Order (NLO) correction, is just the colour
matrix built by interfering (contracting) all the colour structures present in both. Full automation of
tree level and one loop amplitude computation has been reached in recent years. We talk of the “NLO
revolution” to express the fact that, based on a large number of optimizations in the computation of the
kinematical factors (Ki,j) and the availability of faster computers and larger memories with respect to the
past, nowadays it is possible to generate full codes for very complicated processes with up to hundreds
of thousands of Feynman diagrams just pushing a button and waiting (only once) an amount of time that
is much lower then the running time needed to make simulations with that code with sufficient numerical
precision. Although, as we will see in another section, the NLO revolution has a prequel.

1.3 QCD Phenomenology in e+e− collisions

We now start the phenomenological exploration of QCD. It will be clearer in the following that we have
to distinguish among different regimes: at low energy QCD studies address hadron spectrum as a con-
sequence of the symmetries, the properties of finite temperature hadronic matter and lattice calculations.
We will instead focus on the high energy phenomenology: in particular on perturbation theory with
quarks and gluons, although only hadrons appear in the initial and final states of the scattering processes.
The assumption here is that the processes of quark extraction from an initial hadron and that of hadron
formation do not spoil the predictions that one can perform working with quarks and gluons. This has
implications on the definition of observables that can be predicted in perturbation theory. Other funda-
mental applications of QCD are connected with the effective field theories. They cover several aspects
and topics which play a very important role both to validate QCD and to establish QCD effects on pro-
cesses that are beyond the Standard Model. This is a field that is relevant at all energies, nevertheless we
will not treat it here as it would require more dedicated lectures.
Let’s start from the easiest situation that is represented by the hadron production in electron-positron
collisions, namely the process e+e− → γ∗ → hadrons. For energies below the Z pole, the prediction of
QCD at the lowest order in the strong coupling constant, i.e. α0

s = (g2
s/(4π))0, for the ratio among the

cross sections for hadrons and muon pair creation is:

R =
σ(γ∗ → hadrons)

σ(γ∗ → µ+µ−)
= Nc

∑

i

q2
i = 3 ·

(
4

9
+

1

9
+

1

9
+

4

9
+

1

9
+ ...

)
(13)

that is obtained squaring the diagram in Fig.(12) and the rational numbers in parenthesis are the squared
charges of u, d, s, c, b ... quarks (qi). At the next order in QCD, i.e. at order αs, one has to compute all
the diagrams shown in Fig.(13), corresponding to the emission of a virutal or real gluon off the external
quarks. They are indeed the same as if the corrections would have been induced by a QED photon, but
for a colour factor of CF = 4/3 (in QED the correction is 3αe/4). At order α2

s , instead, we encounter a
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Fig. 12: Lowest order diagram to the process e+e− → hadrons. An electron-positron pair annihilates into a photon
or a Z boson which converts into quark anti-quark pair.

Fig. 13: At Next-to-Leading Order in the QCD interaction, the scattering amplitude receives contributions from
both virtual and real emission of an extra gluon off the external quark lines. After squaring the amplitude and
integrating it, the correction amount to the leading order cross section σ0 times αs

π .

problem. Once we add all the diagrams we get:

σ = σ0

{
1 +

αs
π

+

[
c+ πb0 log

M2

Q2

]
α2
s

π2

}
(14)

with
c = 1.986− 0.115nf b0 =

33− 2nf
12π

(15)

In this formula for the total cross section we have indeed a logarithmic ultraviolet divergence that we
have regulated by introducing the ultraviolet cutoff energy scale M , while Q is the invariant mass of the
system, i.e. the “hard” scale of the process, and nf is the total number of quark flavours that can enter in
the loops. More in general, one can show that for any physical quantity G computed as a power series in
the coupling constant:

G = G0α
n
s + (...)αn+1

s + ... (16)

the expansion has the form:

G = G0α
n
s +

(
G1 + nG0 b0 log

M2

Q2

)
αn+1
s + ... (17)

Indeed, for the e+e− cross section into hadrons up to second order Eq.(14) gives:

σ

σ0
− 1 =

1

π
αs +

(
c

π2
+

1

π
b0 log

(
M2

Q2

))
α2
s (18)
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where we can easily make the identifications: n = 1, G0 = 1/π and G1 = c/π2. Now we define:

α̃s(µ) = αs + b0 log

(
M2

µ2

)
α2
s (19)

introducing a new fictitious scale µ. So that in terms of α̃s(µ), neglecting terms of order αn+2
S and higher,

we find that any physical quantity gets the form:

G = G0α̃
n
s (µ) +

(
G1 + nb0 log

(
µ2

Q2

))
α̃n+1
s (µ) + ... (20)

where all the dependence on the cutoff regulator M has been adsorbed, and it is now contained, in the
redefinition of the coupling constant. This is what is called renormalization.
More formally, we have that for any physical quantity G(αs,M, ...) depending on the strong coupling,
an ultraviolet cutoff, and physical variables like masses and momenta, we can always define a charge
containing the whole dependence on the UV cutoff M :

α̃s(µ,M,αs) = αs + c1(µ,M)α2
s + ... (21)

in such a way that the physical quantity has a finite expression in terms of α̃, µ and the physical variables:

G (αs,M, ...) = G′ (α̃s(µ,M,αs), µ, ...) . (22)

Even if the definition of the coupling contains divergences, they are of ultraviolet origin and we might
think that other dynamical effects may solve the problem at high energies while for the moment, at the
energies we are probing the theory, we can assume the coupling to be finite, measure it in one process and
use it to make predictions for another process! Before doing this, let us look more carefully to Eq.(22).
Taking derivative on both sides wrt log(µ2) we have (note that G in the left hand side of Eq.(22) has no
µ dependence):

0 =
∂G′ (α̃s, µ, ...)

∂α̃s

∂α̃s
∂ log(µ2)

+
∂G′ (α̃s, µ, ...)
∂ log(µ2)

(23)

or, equivalently:

∂α̃s
∂ log(µ2)

= −
∂G′(α̃s,µ,...)
∂ log(µ2)

∂G′(α̃s,µ,...)
∂α̃s

= β (α̃s, µ) (24)

But β is dimensionless, so if it does not depend explicitly on M it cannot depend explicitly on µ, so that:

β ≡ β (α̃s) =
∂α̃s

∂ log(µ2)
(25)

Then, from e+e− cross section into hadrons we have:

α̃s(µ) = αs + b0 log

(
M2

µ2

)
α2
s ⇒ ∂α̃s

∂ logµ2
= −b0α̃2

s +O
(
α̃3
s

)
(26)

In summary, any physical quantity can be given as an expansion in α̃s:

G′ (α̃s, µ, ...) =
∑

i

Gi(µ, ...)α̃
i
s (27)

and if we change µ and α̃s in such a way that:

δα̃s = β(α̃s)δ log(µ2) (28)
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Fig. 14: One loop contributions to the beta function in QCD and QED for the running of the coupling constant.
While the fermionic loops gives raise to the same contribution in both cases (apart for the constant factor CF =

4/3), the gluon bubble insertion in the QCD case turns the sign of the b0 coefficient from negative to positive.

the prediction of physical quantities does not change. The last property goes under the name of Renor-
malization Group Invariance. After renormalization, the e+e− cross section into hadrons has become
(dropping the tilde from now on):

σ = σ0

{
1 +

αs(µ)

π
+

[
c+ πb0 log

(
µ2

Q2

)]
α2
s(µ)

π2

}
(29)

It will be better to choose µ ∼ Q otherwise the second order may become larger then the first (and
subsequent orders even larger!). Remarkably, choosing µ = Q (or taking the two in a fixed ratio), the
energy dependence of the cross section is entirely described by the scale dependence (running) of αs and
so it is of fundamental importance to solve the equation on the right hand side of Eq.(26). This equation
can be recast in the following form:

∂

∂ logµ2

1

αs
= b0 (30)

with the obvious solution:
1

αs
= b0 logµ2 + constant (31)

and the integration constant can be used to get the expression:

αs(µ) =
1

b0 log µ2

Λ2

(32)

The parameter Λ, or ΛQCD, has nothing to do with a scale value where the coupling diverges. It is just a
smart way to rewrite the integration constant. Furthermore, for scales where the coupling becomes large,
one must include higher order corrections to the β function in Eq.(26) leading to a different structure of
the solution. The logarithmic ultraviolet divergences come mainly from the bubble graphs in Fig.(14)
and the main difference with the QED case is due to the gluon bubble that brings an opposite sign with
respect to the contribution of the fermionic bubbles. In QCD, Λ has to be in the range of the typical
hadronic scale we have mentioned above, the scale at which the hadronic systems become strongly
coupled. Assuming Λ in the range 100 ÷ 500 MeV, Eq.(32) gives αs(MZ) = 0.1 ÷ 0.13 (±13%) and
αs(107GeV) = 0.040 ÷ 0.044 (±5%), i.e. going up with energy, the logarithmic dependence nicely
narrows the relative uncertainty. The current status of the computation of e+e− annihilation into hadron
is given by the formula:

σ

σ0
= 1 +

αs
π

(
1 + 0.448αs − 1.30α2

s − 2.59α3
s

)
+ ... (33)

where the last term has been computed in [6]. The numerical coefficients are obtained for the case nf = 5

(the general expression is very complicated) and αs ≡ αMS
s (Q), with MS reflecting the details of the

renormalization prescription used to define the coupling constant. Corrections are well behaved and
amount to about 5% at the second order, 2% at the third order and 4o/oo at the fourth order. In principle
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one could think to use this formula to determine αs with an accuracy better then 1%, although the e+e−

cross section is not an observable very sensitive to QCD effects since the perturbative expansion only
starts at order α0

s . As for the β function, the situation is as follows:

dαs
d logµ2

= −b0α2
s − b1α3

s − b2α4
s − b3α5

s − b4α6
s (34)

where the last coefficient has been computed by three groups [7–9]. The first coefficients are:

b0 =
33− 2nf

12π
, b1 =

153− 19nf
24π2

, b2 =
2857− 5033nf

18 +
325n2

f

54

(4π)4
(35)

In an actual computation at a given order in perturbation theory, the usual prescription is to use the
running of the coupling constant at one higher order. Therefore, since there are not so many very higher
order computations, what is used in general is the second order running:

αs(µ) =
1

b0 log µ2

Λ2

(
1− b1 log log µ2

Λ2

b20 log µ2

Λ2

)
(36)

Measurements of αs have been done combining large data sets as the one reported in Fig.(15). The curvi-

Fig. 15: A compilation of R ratio measurements at different energies used for the extraction of αs.

linear behaviour in the prediction is given by a threshold velocity term to take into account that quarks
are not massless. NLO corrections are clearly demanded for the fit. Combining results of experiments
from 20 up to 65GeV, the value αs(35GeV) = 0.146 ± 0.030 is found, that after evolution implies:
αs(MZ) = 0.124± 0.021. Other ways to determine αs is through the measurement of the total hadronic
decay width at the Z pole at LEP, which gives αs(MZ) = 0.122 ± 0.009, or comparing hadronic and
leptonic tau decays. In this case one has that QCD corrections displaces the value of the ratio from 3,
that is a factor entirely due to colour. It is found αs(Mτ ) = 0.36 ± 0.05 that after evolution implies:
αs(MZ) = 0.122± 0.005.

1.4 How to compute more features of the final state

The nice agreement of the coupling constants extracted from total cross sections and decay rates men-
tioned at the end of the previous section is certainly an indication of the goodness of the theory, but how
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to go further and prove the validity of the theory also at differential level? Indeed, to compute e+e− anni-
hilation into hadrons at the first order in the strong coupling, we have combined diagrams for producing
two quarks and two quarks and a gluon, all particles that btw have never been observed. Furthermore, the
final state partons bring colour quantum number that has never been observed neither. It is clear that we
have to find the conditions that allow for the description of the final state in terms of an evolution from
the elementary processes (among quark and gluons) to the hadrons that are observed. In doing that we
will also gain the possibility to make differential predictions with QCD. We will again use the radiative
corrections for e+e− to hadrons to give an idea of such a procedure. As we have seen in Fig.(13), the
first perturbative correction to e+e− annihilation into hadrons (NLO QCD) is computed adding real and
virtual emission diagrams. The technical difficulty is that the contributions live in different phase spaces.
We start with the computation of the diagrams for the real emission in Fig.(16).

Fig. 16: Diagrammatic representation of the square amplitude for the real gluon emission process e+e− → qqg.

To present the result of the computation we introduce the energy fractions:

xi =
2 pi ·Q
Q2

=
2Ei
Q

(c.m. frame) → xi > 0. (37)

Energy conservation implies:

x1 + x2 + x3 =
2
∑

i pi ·Q
Q2

= 2. (38)

Furthermore, neglecting the mass of the quarks, we have that:

2 p1 · p3 = (p1 + p3)2 = (Q− p2)2 = Q2 − 2 p2 ·Q (39)

that can also be written as:
2E1E3(1− cos θ13) = Q2(1− x2). (40)

This tells that xi < 1 and that x2 → 1 in the limit θ13 → 0 with θ13 the angle between the three momenta
of the outgoing quark with momentum p1 and the gluon with momentum p3. Including the phase space
factors, in terms of the energy fractions, the real emission contribution to the cross section is given by:

σR =

∫ 1

0
dx1dx2dx3δ(2− x1 − x2 − x3)|MR(x1, x2, x3)|2 (41)

and from the diagrams in Fig.(16) we have:

|MR(x1, x2, x3)|2 = σ0CF
αS
2π

x2
1 + x2

2

(1− x1)(1− x2)
(42)

So we see that, from the mathematical point of view, there are non-integrable divergences. This of course
implies that the diagrams with the virtual emission will diverge in exactly the same way so to cancel the
divergence of the real in the inclusive result. The collection of the divergences in Eqs.(41,42) is shown
pictorially in Fig.(17).
Actually, from the running of the strong coupling and the experimental evidence, we already know that
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Fig. 17: Singular limits of the real matrix element squared and their representation in the 3-body Dalitz plot
x1x2. For massless partons, the available phase space is given by the upper right triangle. The singular limits
corresponds to: the up (x1 = 1) and right (x2 = 1) edges, respectively corresponding to the configuration with the
gluon becoming collinear to the quark and the anti-quark, and to the vertex (1,1) corresponding to a zero energy
gluon (soft gluon limit).

there is a physical cut-off for the energy fraction, let’s call it ε, given by the ratio of the typical hadron
mass Mhad and the hard scale of the process Q. Physically, here is indeed a change of regime for:

ε ∼ Mhad

Q
∼ ΛQCD

Q
(43)

Note that, however, even if the infinite might not be there, expressing the logarithmic dependence in term
of the strong coupling, mathematically one has that:

∞ = αs(Q)

∫ 1

0

dx

1− x ⇒ αs(Q)

∫ 1−ε

0

dx

1− x ∼ αs(Q) log
1

ε
∼ αs(Q)

1

αs(Q)

from which one has (including more and more orders does not improve the situation):

σ ∼ σ0

(
1 + αs(Q)

1

αs(Q)
+ ...

)
∼ σ0(1 + 1 + 1 + ...). (44)

Ultimately, then, the divergences that show up in the computation are intimately connected with the non
perturbative regime of the theory and they are a characteristic feature of long distance (small ε limit)
phenomena. It is useful to rewrite the real matrix element in Eq.(42) as:

x2
1 + x2

2

(1− x1)(1− x2)
=

1 + (1− x3)2

(1− x1)(1− x2)
− 2 (45)

and then use the relation:

1

(1− x1)(1− x2)
=

1

x3

(
1

1− x1
+

1

1− x2

)
(46)

so that the real matrix element, and in particular its most divergent part, gets the form:

dσR = σ0dW13 + σ0dW23 + finite terms (47)

(and similarly for dW13) with:

dW23 =
dx1

1− x1
dx3Pqg(x3) =

d cos θ23

1− cos θ23
dx3Pqg(x3) (48)

and

Pqg(x3) = CF
αs
2π

1 + (1− x3)2

x3
. (49)
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The function Pqg(x) is called splitting function and it is easy to show that

θ23→0

E3→0

dW23 −−−−−−−−−→ dθ2
23

θ2
23

dE3

E3

. (50)

In Eq.(48) we exploited the relation:

x2x3(1− cos θ23) = 2(1− x1) =⇒ x1 = 1− x2x3

2
(1− cos θ23). (51)

Then, after performing the change of variable from x1 to cos θ23, the integration over the δ-function in
Eq.(41) yields:

∫
dx1

1− x1
dx2dx3δ(2− x1 − x2 − x3)

=

∫
d cos θ23

1− cos θ23
dx2dx3δ

[
1−

(
1− x3

2
(1− cos θ23)

)
x2 − x3

]

=

∫ 1

−1

cos θ23

1− cos θ23

∫ 1

0
dx3

1

1− x3
2 (1− cos θ23)

Now, it turns out that it is possible to combine the real and the virtual contribution together paying
attention to the fact that the two contributions leave on different phase spaces. The result is as follows:

σR + σV = σ0

∫ +1

−1

d cos θ23

1− cos θ23

∫ 1

0
dx3Pqg(x3)

[
1

1− x3(1−cos θ23)
2

− 1

]

+ (2→ 1) + finite terms (52)

The first term in the squared bracket comes entirely from the real contribution, while the −1 is the
contribution of the divergent part of the virtual term. Actually, knowing that the total is finite we could
have predicted it. In the small x3 (soft) and small θ23 (collinear) limits the whole squared parenthesis
goes like x3θ

2
23, so regularizing the divergences of the other factors (see Eq. (50)). The finiteness of

the inclusive result that we have seen in the previous section is however a property of the theory related
directly to the unitarity that force the conservation of probabilities. In summary, the total of the virtual
and the real contribution has to be finite (and their inclusive sum is just σ0αs/π), but now we know
something more: first, the virtual is divergent in every point of its (Born) phase space, second, the
limiting configurations in which the real becomes divergent (extra radiated parton soft or collinear to
another parton) are the ones in which the real and the virtual become indistinguishable, third, the two
divergences cancels locally, ie for any and irrespective of the Born level partonic configuration. With
these properties we can think to implement the local cancellation of the divergences and make predictions
at differential level including the first order radiative corrections. This will have an impact on the kind
of variables we can define in perturbation theory. Let’s state it more carefully. In every computation that
is not just the total cross section, the differential cross section is convoluted with a phase space function
(F ) that defines the physical quantity we want to compute (including experimental cuts):

σB =

∫

m
dσB dσB = dφ(m)|M tree

m |2F (m)(pi) (53)

going at Next-to-Leading Order (NLO) we have:

dσV = dφ(m)|M loop
m |2F (m)(pi) (54)

dσR = dφ(m+1)|M tree
m+1|2F (m+1)(pi) (55)
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so that:
σNLO − σB =

∫

m
dσV +

∫

m+1
dσR (56)

In order for the InfraRed (IR) and Collinear (C) cancellation to take place also at differential level it
is necessary and sufficient that the value of the observable we consider, F in the formulas above, is
insensitive to a soft emission or to the situation in which the emitted parton is collinear to another parton.
In formulas, one must have that for:

pi → 0 or pi ‖ pj (57)

the function F is such that:

Fm+1(..., pi, ..., pj , ...) ' Fm(..., pi + pj , ...) (58)

This condition guarantees the local cancellation of the singularities. As expected of course, the computed
quantity cannot resolve long distance phenomena, but having cancelled the logarithmic enhancements
from real and virtual, non perturbative physics will be power suppressed! The power of the suppression
will depend on the physical observable. The implementation of the formula in Eq.(56) is however a
highly non trivial task, but thanks to another fundamental property of QCD amplitudes this task has
been strongly simplified. In the divergent limits in Eq.(57), the amplitudes factorize, in the sense that
they can be approximated by the product of the (process dependent) amplitude with a final state parton
less times a universal factor that represents the emission of the extra parton. Apart from colour and spin
correlation factors (computable algorithmically), the amplitude with a parton less is just the leading order
amplitude. The universality of the radiation factors can be exploited to write an auxiliary cross section
to be subtracted from the real matrix element and so cancelling its divergences. One builds such a cross
section combining the Born matrix element and the radiation factors, which bring the dependence on
the radiation variables. To not alter the physical cross section one has to add back this subtraction and
one can do so after having integrated the auxiliary cross section over the radiation degrees of freedom,
obtaining a function that depends only on the Born phase space variables, as for the virtual contribution.
So that, combining the two, one can also check the explicit cancellation of the divergences in the virtual
matrix element. In formula, what is done in practice is to build two separately finite and integrable
integrands as follows [10]:

σNLO − σB =

∫

m

[
dσV +

∫

1
dσAux

]
F (m)(pi) +

∫

m+1

[
dσRF

(m+1)(pi)− dσAuxF (m)(pi)
]

(59)

In the formula above we have made explicit the function that represents the measurement constraint,
F . Note that the auxiliary cross section is in general a function of the whole real phase space variable.
Nevertheless, it multiplies the observable function for the leading order kinematics F (m). Indeed, this
must be the case in order not to alter the distributions at the differential level. In the language of Monte
Carlo integration, we call a phase space point an event and we assign a weight to it accordingly to the
integrand function. In particular, for the real events, the weight must be given by the real cross section
dσRF

(m+1)(pi) only. The idea underlying Eq.(59) is that in correspondence of each real event we build
a “counter-event” in the leading order phase space whose weight is given by the auxiliary cross section
dσAF

(m)(pi). In the singular limits, event and counter-event coincide leading to the local cancellation
of divergences and making the real integration finite. On the other hand, the extra weights in the leading
order phase space due to the counter-events are exactly balanced by the integrated auxiliary cross section
over the radiation degrees of freedom. This means that the procedure is effectively based on a mapping
of the real phase space variables into the ones of the Born cross section plus (three) radiation variables,
which allows one to pick a counter-event for each real event. Moreover, these radiation variables are those
we integrate over to build the second piece in the first integrand in Eq.(59). Thanks to the universality
of the factorization property and the possibility to write general mappings, the main ingredients of this
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construction can be built once and for all and the auxiliary cross sections can be built algorithmically.
Various subtraction formalisms have been proposed [11, 12] and they can be considered the prequel of
the so called NLO revolution.

The emerging underlying theoretical picture of an high energy event is then as follows. Perturba-
tion theory can be used to describe the hard process, ie the scattering process with the highest momentum
transfer of the whole event. We learned from the running of the strong coupling that at very high en-
ergy scales it gets smaller and smaller, so that one can truncate the perturbative expansion at a given
finite order to get a fully differential prediction for any InfraRed and Collinear safe observable. Then,
perturbation theory can still be used to approximate the large number of subsequent emissions (almost
soft and collinear) at lower and lower energies. Finally, when the original energy has been degraded
and the emissions happen at energies close to the scale of the breakdown of the perturbation theory a
new non-perturbative regime starts in which the interaction is really strong and binds quarks and gluons
into hadrons. This last hadronization process, in which a multitude or shower of partons is packed into
well separated and colourless hadrons, cannot certainly be described by perturbation theory and has to
be modelled. This means that the hadronization process can be based on theoretically well motivated
assumptions, but it also contains many parameters and ultimately no justification for their values. Never-
theless, in QCD the scaling of hadron multiplicity with the total energy of the e+e− annihilation can be
computed with the only assumptions that hadron formation happens at low scale, of the order of 1GeV,
and that perturbation theory is valid up to slightly above that scale. Relating hadron multiplicity to the
average number of partons at the end of the parton shower cascade one can predict:

〈n〉 =

√
96π

β
√
αs(Q2)

+

(
1

4
+ 10

nf
27β

)
logαs(Q

2) +O(1). (60)

Such a dependence on the collision energy of the number of charged particles produced, is in good
agreement with data, as shown in Fig.(18).

Fig. 18: Data-theory comparison for the average hadron multiplicity in a e+e− collision as function of the collider
energy.
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1.5 QCD phenomenology at differential level

1.5.1 Shape variables

The first example of an InfraRed and Collinear safe variable for e+e− annihilation into hadrons is the
Thrust distribution. It is defined by the formula:

T = max
n

∑
i |pi · n|∑
i |pi|

(61)

where the pi are the three momenta of the outgoing hadrons. Event by event, the value of the variable
T is computed searching for the direction that maximize the ratio in Eq.(61). It is easy to convince
yourself that a two jet like event, i.e. an event with just two hadrons or just two well collimated back
to back sprays of hadrons, has T = 1, while an isotropic event ends up with T = 1/2. In turn, the
value of this variable reflects the shape of the distribution of the hadrons in the final state. From this the
name of shape variable for the Thrust. It is also easy to check that a soft or a collinear emission cannot
alter significantly the Thrust value. Going at very high energy the strong coupling becomes smaller and
smaller and so does the radiative correction to the average Thrust. The average Thrust is then predicted
to tend to 1, approaching the leading order back-to-back configuration. This behaviour can be seen in
Fig.(19) also in comparison with the experiments. In the fit reported in Figure(19) also power corrections

Fig. 19: Collection of average Thrust measurements in e+e− collisions at different collider energies. Actually,
they are reported in terms of the variable t = 1 − T . As predicted by the QCD, the Thrust variable approaches 1
for increasing energies (so, correspondingly t tend to vanish). The solid line represents a fit which includes power
correction of order Λ/Q to be compared to the dashed line fit (which does not include them).

to the (soft) hadronization process of order Λ/Q, are taken into account. Indeed, the emission of a pion
with few hundred MeV transverse momentum, involving the strong coupling at such small scales, has
probability 1. Using Eq.(61) the effect on the average Thrust measurement at LEP energies induced
by such emission can be easily estimated to be of about 8%. This effect is parametrised fitting many
data with different hadronization models. Going more differentially, perturbative QCD also predicts that
the Thrust distribution must become more and more peaked in 1 with increasing energies as it is well
verified experimentally (see Fig.(20), where the variable t = 1 − T is represented). Thrust distribution
can be used to measure the strong coupling constant. The fit range is the result of a balance among: size
of the perturbative corrections, quality of data and size of the hadronization corrections that are usually
estimated comparing predictions obtained using different Monte Carlo programs. A typical choice at
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Fig. 20: Measurements of normalized Thrust distributions wrt to the variable t = 1 − T for collisions at several
energies. As predicted by QCD, the shape of the distribution becomes more peaked towards small values of t as
the energy is increased.

LEP is shown in Fig.(21). The Thrust variable is only one example of a number of shape variables, more
or less sensitive to the radiative corrections and so to the strong coupling constant. We will not discuss
them further here and just point out that for the InfraRed and Collinear safety of the shape variables, it is
the linearity wrt the particle momenta to play the main role, as in Eq.(61).

1.5.2 Jet cross sections

Experimentally, high energy e+e− collisions into hadrons produce for the large part two jet-like events,
with two collimated back-to-back sprays of high energy hadrons, see Fig.(22). Then there is a lower
number of events with three jets of particles, a much lower number of events where four jet structures
can be identified and so on. This is in line with the expectations of perturbative QCD: we can imagine
that the jet structures we see are in a one to one correspondence, and so they are the evolution, of the high
energy partons that took part to the primary hard scattering. At high energy the coupling is relatively
small and so the lower rate measured for increasing number of jets reflects the exponent of the coupling
constant in the matrix elements squared for the production of such multi-parton final states. This is
an heuristic argument, but for quantitative studies, one needs of a precise definition of a jet, which in
turn is a prescription for grouping particles together. In particular, to the aim of comparing perturbative
QCD predictions in terms of “partons” to measurements of collimated sprays of “paticles” we need a
prescription that can be applied to both. Furthermore, for the theory prediction to be meaningful, one
must be sure that the definition of a jet is inclusive enough wrt to the low energy particles in such way not
to spoil the cancellation of long distance logarithmic divergences. In general, a jet algorithm must fulfill
the following requirements: InfraRed (IR) and Collinear (C) safety, they should be simple to implement
in both experimental analyses and theory predictions, and they should require small hadronization (non-
perturbative) corrections. A way to proceed is to define:

1. a distance between particles, dij ;
2. a merging scheme to merge particles;

Then, one has to compute all the distances between particles (protojets) and merge the ones with mini-
mum distance. This procedure is iterated until a fixed minimum distance among all protojets is reached.
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Fig. 21: DELPHI dataset of measurements of the Thrust distribution to extract the strong coupling constant. The
fit range is selected to minimize the impact of the detector and hadronization corrections.

Fig. 22: Sketch of a two-jets event in e+e− annihilation.

Such a procedure is called an iterative clustering algorithm and unambiguously assigns particles to jets.
As for IR and C safety, what matters is that the distance definition goes to zero ifEi → 0 or θij → 0. The
number of jets will have, of course, a predicted dependence on the value of the fixed minumin distance
(resolution) value.
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The original JADE algorithm [13], for example, starts from a distance defined as dij = 2EiEi(1−
cos θij) that for massless i, j particles represents the invariant mass squared of the pair. This is a dimen-
sional variable, one can normalize it to the total energy of the event squared (Q2) building the variable
yij = dij/Q

2 and fix the resolution variable to some relatively small value ycut so that the algorithm
will proceed up to the situation in which yij > ycut for every pair of protojets i and j. Note, however,
that with this algorithm soft particles turn out to be strongly correlated so that, even if they are at large
angle, they are merged in the same jet and eventually can unnaturally produce a sort of sparse jet. With
the kT algorithm [14], the distance measure is instead set to dij = 2 Min{E2

i , E
2
j }(1 − cos θij) that, in

the small angle limit, tends to represent the transverse momentum of one particle wrt the direction of the
other. Note that with this definition the distance dij is diagonal wrt particle energy. Soft particles are
merged with the hard particle closest in angle (soft fragments are likely to be merged with their parent)
avoiding unnatural assignments with creation of soft and wide angle jets. As for the merging scheme,
sensible choices are simply to add the four momenta of the protojets (E-scheme) or first add and then
rescale the space component of the sum to make again the new protojet massless (E0-scheme). Finally,
once finished the assignment of all the particles to each jet one has to choose the way to assign the mo-
mentum to the final jets. A typical choice is to take the sum of the four momenta of the particles entering
each jet. QCD predictions for jets rates, like their dependence on the algorithm and for each algorithm
the increase of multijet rates by increasing the jet resolution (ycut → 0), have been nicely confirmed at
LEP, for example. Furthermore, using a shower Monte Carlo it is possible to compare parton vs hadron
jet rates to provide an estimation of non perturbative corrections. This, for example, motivates the in-
troduction of the E0-scheme over the E-scheme, as fairly shown in the left panel of Fig.(23). In this
figure the continuous line represents results at hadron level that reproduce well the data. Hadronization
corrections turn out to be smaller for the kT algorithm (named D-scheme in the right panel Fig.(23)).
Indeed, the kT algorithm is theoretically favoured also because the logarithmic unbalanced corrections
that appear for small ycut, can be resummed to all orders in perturbation theory. We conclude this section

Fig. 23: Studies on jets reconstruction algorithms at LEP. Jets are reconstructed both at parton level (dots on left,
dashed line on the right) and at hadron level (solid line). In the left panel, the E-scheme and the E0-scheme are
compared: the latter has clearly better performances wrt to the hadronization corrections. In the right panel, the
results for the kT algorithm.

showing in Fig.(24) [1] the nice combination of inclusive and differential measurements that prove the
running of the strong coupling constant. In this figure there are also measurements extracted from deep
inelastic lepton-hadron and hadron-hadron scattering, that will be the subject of the next sections, and
the agreement of all of them with the predicted running is extremely good.

2 Hadrons in the initial state

The presence of hadrons in the initial state of a collision greatly complicates the picture. Nevertheless,
for scattering processes characterized by a large momentum transfer, a description in terms of the parton
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Fig. 24: Compilation of measurements of the strong coupling constant in a wide range of energies and for different
physical processes. The solid lines represent the perturvative QCD prediction with its uncertainty bands.

model formulas is possible. Here “large” has to be understood as much larger than the characteristic
hadronic binding energy. In this regime, it can be effectively thought that a single parton (quarks and
gluons), and not the whole hadron, is taking part to the scattering process. Translating in a time-picture:
if the scattering occurs on a time scale much smaller than the characteristic time of the processes that
regulate the hadron dynamics, the system cannot respond to the interaction in a coherent way and a single
parton is struck while the rest is frozen. So that, one assumes in general that a flux of composed particles
(like atoms, nuclei or positronium bound states) is equivalent to a flux of their constituents carring just
a fraction of the total moment with a distribution dictated by the intensity of the interaction among the
constituents. Boosting the bound state particles along one direction produces a spread of the longitudinal
component of the momentum while the transverse component remains the same as for the particle at
rest (negligible after the boost). According to this picture, the parton formulas are convolutions of parton
density functions (pdf’s) and partonic scattering cross sections (with hat to distinguish them from particle
cross sections). In case of hadron-hadron collision it reads:

σH1H2(p1, p2) =
∑

i,j

∫
dx1dx2f

H1
i (x1)fH2

j (x2)σ̂ij(x1p1, x2p2) (62)

while for lepton-hadron collision one has:

σH(p, γ∗) =
∑

i

∫
dxfHi (x)σ̂iγ∗(xp). (63)

In summary, x in the formulas above is the fraction of the total momentum carried by the constituent
partons and the variance of the fraction depends on the interaction strength. This scheme will work as
far as we have large scattering angles (at small angle partons could scatter coherently) or, simply, as
far as we can neglect the transverse momentum of the partons. With these formulas it is possible to
make predictions at leading order for any scattering process involving hadrons in the initial state once
the parton densities have been extracted from some measurement.

2.1 Naive parton model and Deep Inelastic Scattering

Let’s start considering electron-hadron Deep Inelastic Scattering (DIS), namely the process

e−(k) + P (p)→ e−(k′) +X
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where we label with X any possible hadronic final state resulting from the fragmentation of the incom-
ing proton as shown Fig.(25). Indeed, in a typical DIS experiment, one mainly measures the scattered
leptons, inclusively wrt to the possible hadronic final states. The kinematics of the DIS scattering is

Fig. 25: Kinematics of electron-proton DIS scattering.

usually described in terms of the following variables: the square of the total energy in the CoM frame
S = (k+ p)2 = 2k · p+M2

P ' 2k · p (neglecting the proton mass MP wrt to the energy of the incoming
electron), the time-like momentum transfer q = k− k′, its virtuality taken with opposite sign to have the
positive quantity Q2 = −q2 > 0, and the invariant scalar product ν = p · q. In terms of these variables,
it is customary to introduce the dimensionless fractions:

x =
Q2

2ν
and y =

q · p
k · p =

2 ν

S
(64)

which are related to the energy transfer and the scattering angle of the outgoing electron in the lab frame.
Then, one has that the invariant mass of the recoiling system X is given by:

M2
X = (p+ q)2 = Q2 1− x

x
. (65)

Note that, measuring the scattering angle and the energy of the outgoing electron, all the invariants
defined above can be computed. What is observed in nature is that in the limit of large Q2 and finite x
the differential cross section scales with energy as:

dσ

dxdy
∼ 1

Q2
f(x, y) (66)

with no hadronic scale involved!
Going to the parton language, one has to consider the elementary scattering process of a virtual photon
off a massless quark as represented in Fig.(26). Again, we will use the hat to indicate partonic momenta,

Fig. 26: Lowest order partonic elementary process contributing to the electron-proton DIS.
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kinematic invariants and cross sections. The partonic variables are now:

ŝ = (k + p̂)2 = 2 k · p̂ ŷ =
q · p̂
k · p̂ (67)

and we impose the massless condition for the final state quark, (q + p̂)2 = 2 q · p̂−Q2 = 0. It is easy to
show that the partonic cross section is then:

dσ̂i
dŷ

= q2
i

ŝ

Q4
2πα2

em

[
1 + (1 + ŷ)2

]
(68)

where qi are the partonic electric charge in units of the electron charge. Now, neglecting parton transverse
momentum and assuming that the proton is a beam of partons carring each a certain fraction x̃ of the total
hadron momentum, we have p̂ = x̃ p, ŷ = y. From the massless quark condition (2 x̃ p · q − Q2 = 0)
we find that the particle level and measurable x = Q2/2p · q variable, coincides with the fraction of
momentum x̃ carried by the scattered parton, so that we write:

dσ

dxdy
=
∑

i

fHi (x)
dσ̂i
dŷ

(69)

that inserting the expression for the partonic cross section gives:

dσ

dydx
=

2π α2
e S x

Q4

[
1 + (1 + y)2

]∑

i

q2
i f

H
i (x). (70)

The expression above predicts the mentioned scaling behaviour and also the full y dependence. It also
shows that, of course, deep inelastic scattering is a good place to extract the parton densities fHi (x), that
are hadron specific. Indeed, the measured quantity is:

FH2 (x) = x
∑

i

q2
i f

H
i (x) (71)

Assuming isospin symmetry, i.e. that a neutron (n) is like a proton (p) with up and down quarks ex-
changed, we can combine data for electron scattering off protons and neutrons (deuterons) to extract
u(x) and d(x):

F p2 (x) =x

(
4

9
up(x) +

1

9
dp(x)

)
(72)

Fn2 (x) =x

(
4

9
un(x) +

1

9
dn(x)

)
= x

(
4

9
dp(x) +

1

9
up(x)

)
. (73)

Note, however that now the interaction can create also quark pairs inside the hadron (very different from
a non relativistic bound state like an hydrogen atom), so that indeed we are measuring u(x) + ū(x) and
d(x)+ d̄(x), because the photon cannot distinguish the sign of the charge. Furthermore, each distribution
can also diverge for very low momentum fraction, but still one has that sum rules related for example to
the fermion number conservation:

∫ 1

0
dx (up(x)− ūp(x)) = 2

∫ 1

0
dx (dp(x)− d̄p(x)) = 1. (74)

must hold. To get the difference among u and ū we measure the structure functions related to charged
current electroweak interactions like for neutrino DIS or W± production in hadronic collisions. As a
result of this exercise to extract u, ū, d and d̄ parton densities, one can look at the total momentum of the
proton obtained summing over all the fractions:

P =
∑

i

∫ 1

0
dxx pi pi = u, ū, d, d̄. (75)
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This sum turns out to be smaller then 1 and it amounts to about 1/2. We deduce once more that in the
proton there are not only quarks but also something else that must interact rarely with photons (eventually
indirectly), i.e. the gluons. To properly quantify the impact of the gluons in the description of the content
of the proton probed at high momentum transfer we have to include radiative corrections.

2.2 Radiative corrections

The inclusion of the radiative corrections changes the parton model formulas given above. This is the
reason why the formulas above are said the naive parton model formulas, while after including radiative
corrections we have the so called improved parton model formulas. For hadron-hadron collisions for
example we have:

σH1H2(p1, p2) =
∑

i,j

∫
dx1dx2f

H1
i (x1, µ)fH2

j (x2, µ)σ̂ij(x1p1, x2p2, µ). (76)

This formula has a similar form wrt the naive parton model formula, but the various factors have a
different meaning. First of all, we introduce an arbitrary scale µ, which enters in all the factors in the
rhs. In principle, we could distinguish among two different arbitary scales: the renormalization scale and
another arbitrary scale to be called the factorization scale. However, as we will see in the following, in
general it will be better to set them close to each other and in the range of the hard scale of the process,
so we will use just one scale for the moment. The partonic cross section now has to be interpreted as a
short distance cross section calculable in perturbation theory:

σ̂ij(x1p1, x2p2, µ) =
∑

l

σ̂lij(x1p1, x2p2, µ)(αs(µ))l. (77)

Furthermore, the dependence of the pdfs, fHi (x, µ), upon µ is mild and calculable with the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

d

d logµ2
fHi (x, µ) =

∫ 1

x

dz

z

∑

j

Pij(αs(µ), z)fHj (x/z, µ) (78)

where the integral kernels Pij are the Altarelli-Parisi splitting functions, also calculable in perturbation
theory with a series expansion of the form:

Pij(αs(µ), z) =
αs(µ)

2π
P 0
ij(z) +

(
αs(µ)

2π

)2

P 1
ij(z) + ... (79)

Finally, for small variations, the µ dependence in the pdfs and in the short distance cross section compen-
sate. As stated above, the scale µ has to be chosen close to the hard scale of the process, this avoids the
presence of large logarithmic corrections in the short distance cross section σ̂ij (similarly to the renormal-
isation logarithm in e+e− annihilation). There will be, of course, divergences associated with radiation.
We expect that soft and collinear divergences associated to gluon radiation off the final state will cancel
(among the real and virtual contributions) as for e+e− annihilation into hadrons. For the initial state the
situation is different: the collinear divergences of the real and virtual parts are associated to different
kinematical configurations, in particular to final states with different invariant masses, and eventually do
not cancel each other! This is a very different situation with respect to e+e− annihilation. Let’s extract
the most divergent part of the amplitude squared related to the initial emission as represented in Fig.(27).

We start from the kinematics. Imagine that the initial parton with momentum p̂ is travelling along the z
axis, then, to parametrize the divergences, we decompose the momenta as follows:

l = (1− x)p̂+ l⊥ + ξη (80)
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Fig. 27: Gluon radiation off an incoming quark line in a generic scattering process involving partons. In the strictly
collinear limit, the amplitude exactly factorizes in a universal factor associated to the gluon emission process times
the amplitude corresponding to the process without the radiation of the extra gluon.

with:
p̂ = (p0, 0⊥, p0), η = (p0, 0⊥,−p0), l⊥ = (0,~l⊥, 0). (81)

From the condition l2 = 0 one has:

ξ =
~l 2
⊥

2 p̂ · η (1− x)
(82)

and for the vanishing denominator of the propagator one has:

(p̂− l)2 = −2 p̂ · l = −2 p̂ · η ξ = −
~l 2
⊥

1− x. (83)

For the phase space factor one has:

d3l

2 l0 (2π)3
=

d2l⊥
2 (2π)3

dx

1− x. (84)

The whole amplitude for the scattering process, that we generically indicate with A, is:

A = M
/̂p− /l

(p̂− l)2 /εu(p̂). (85)

In the above formula, we have stripped out the colour matrix tA which will contribute with the colour
factor CF and we have denoted with M all the remaining part of the amplitude attached to the incoming
quark line where the gluon emission occurs (which corresponds to the red blob and the other external legs
in Fig.(27)). In the strict collinear limit l⊥ → 0 , the squared of the momentum p̂− l in the denominator
is vanishing, exposing a singularity at the level of the amplitude squared which we would naively expect
to behave as d2~l⊥/~l4⊥. However, this is not the case because when l becomes parallel to p also the scalar
product of p and the gluon polarisation vector ε (that as we have seen is transverse for any physical gauge)
vanishes. Indeed, the conservation of angular momentum provides a more general argument: there is no
helicity flip in the gluon emission in a quark-quark-gluon vertex, so that the vectorial nature of the gluon
provides suppression. With a bit of Dirac algebra one can show that:

(/̂p− /l)/εu(p̂) ' −2 ε · l⊥
1− x u(p̂) + /ε/l⊥u(p̂) = O(l⊥). (86)

The net effect is to make milder the behavior of the singularity which is actually logarithmic. Then,
taking all together, the divergent part of the amplitude squared, the flux factor, the phase space factor, the
colour factor, and integrating over the phase space, one has (from now on l⊥ will denote the modulus of
the bidimensional momentum ~l⊥) :

σ
(1)
R = CF

αs
2π

∫
σ(0)(xp̂)

1 + x2

1− x
dl2⊥
l2⊥

dx. (87)
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In this formula σ(0) represents the amplitude squared of the process after the initial gluon emission
(|M |2) with the momentum of the entering parton p̂ reduced by a factor x by the emission, so that also
the (invariant) center of mass energy of the collision is of course reduced by the same amount. This result
actually is a consequence of the more general factorization property of the amplitudes in a gauge theory,
which we mentioned in a previous section. The divergent part of the virtual correction can be recast in a
similar form and all together the real and the virtual add to:

σ(1) = CF
αs
2π

∫ (
σ(0)(xp̂)− σ(0)(p̂)

) 1 + x2

1− x
dl2⊥
l2⊥

dx. (88)

So, we see that the soft divergence (x → 1) cancels, while the collinear one (l⊥ → 0) does not! Once
again we can imagine that a lower cutoff scale λ of about 1 GeV regulates this divergence and that below
that energy scale we enter another regime of the strong interaction. However, even in that case, our
ability to make predictions in the perturbative regime is challenged because this construction implies a
strong sensitivity to this IR cutoff λ. Note, that higher order corrections worsen the situation because the
effective expansion parameter will be of order 1. Think of multiple (n) radiations over large l⊥ gap, they
will contribute to the event probability with a factor:

[
αs(Q

2)

∫ Q2

λ2

dl2⊥
l2⊥

]n
(89)

where Q represents the hard scale of the process and each factor in the square parenthesis evaluates to:

αs(Q
2)

∫ Q2

λ2

dl2⊥
l2⊥

= αs(Q
2) log

Q2

λ2
' αs(Q2)

1

αs(Q2)
= O(1). (90)

Regularisation of the collinear divergence will definitely not be enough, we will need of the resummation
of the leading remaining effects. The problem is, indeed, solved with a renormalisation, similarly to
the way we did the ultraviolet renormalisation for e+e− and it will work at the same time for all the
observables receiving QCD corrections in hadron initiated collisions. In summary, the collinear not
cancelled divergence is related to the vanishing of a denominator representing a massless propagator that
is going on-shell. Furthermore the amplitude exactly factorises in the collinear limit into two amplitudes,
one with the initial radiation and another one with the hard collision. The vanishing propagator implies
the presence of a long distance physics phenomenon in the problem. Indeed, the collinear emission might
well happen quite far from the hard interaction and it can be considered as another process among the
ones that regulates the life of the hadron. This makes a big difference with respect to the naive parton
model because, due to radiative corrections, the transverse momentum of the partons inside an hadron
is not limited to Λ and in principle can be very large. We will now adsorb this collinear divergence into
the definition of the parton distribution functions that make up the hadron. First, we rewrite Eq.(88)
introducing an infrared cutoff λ to regulate the low l⊥ emissions and we adopt the plus notation for the
soft singularity getting a more compact form. Indeed, we observe that in Eq.(88), the function with a
non-integrable singularity:

1 + x2

1− x (91)

multiplies the difference among a regular function of the variable x and the same function evaluated in
x = 1, in a such a way that the non integrable singularity is regularized. In analogy, a plus distribution
version of the function in Eq.(91) is defined by the action on a generic function f as follows:

∫ 1

0

(
1 + x2

1− x

)

+

f(x)dx =

∫ 1

0

1 + x2

1− x (f(x)− f(1)) (92)
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so that we can recast Eq.(88) in the form:

σ(1) =
αs
2π

log
Q2

λ2

∫
σ(0)(xp̂)P 0

qq(x)dx. (93)

The introduction of the plus distribution is useful also because the initial splitting functions are always
the same for every process with any number of final state particles, in other words they are universal.
In Eq.(93) we have also collected the colour factor and the plus distribution into the function P 0

qq. No
surprise, this is once again the splitting function we have introduced in Eq.(49), while we were talking
about e+e− into hadrons. Here there are two small differences: in Eq.(93) the x variable is the fraction of
the original quark momentum carried by the quark after the splitting, while in Eq.(49) the fraction refers
to the outgoing gluon and in fact to go from one expression to the other we have to exchange x→ 1−x,
then the presence of the plus prescription that comes from the inclusion of the virtual correction. Note
also that we have changed notation for the subscript, talking about the initial state we call Pab the splitting
probability to produce a parton of kind a from the decay of a parton of kind b, or even, to find a parton a
inside a parton b, with fraction x of the momentum of parton b. Now we insert into the game the other
(arbitrary) scale µ, that we mentioned at the beginning of the section, to split the logarithm. Neglecting
terms of order α2

s , we can write:

σ(0)(p̂) + σ(1)(p̂) =

∫
dx

(
δ(1− x) +

αs
2π

log
µ2

λ2
P 0
qq(x)

)
σ̂(xp̂, µ2) (94)

with:

σ̂(xp̂, µ2) = σ̂0(xp̂) +
αS
2π

log
Q2

µ2

∫
dzP 0

qq(z)σ
(0)(zxp̂) (95)

plus other finite terms. The scale µ is the factorisation scale and again, as we argue from Eq.(95), it will
be better to choose it of the same order as Q to avoid large logarithmic corrections in σ̂(xp̂, µ2). Now
we convolute the corrected short distance cross section with the parton density getting:

σ(p) =

∫
dydxfq(y)

(
δ(1− x) +

αS
2π

log
µ2

λ2
P 0
qq(x)

)
σ̂(xyp, µ2). (96)

Finally, we make the last manipulation introducing a delta function to get:

σ(p) =

∫
dzf̃q(z, µ

2)σ̂(zp, µ2) (97)

with:

f̃q(z, µ
2) =

∫
dydxfq(y)

(
δ(1− x) +

αS
2π

log
µ2

λ2
P 0
qq(x).

)
δ(z − xy) (98)

The last step has been the adsorption of the large logarithmic correction into a redefinition of the parton
density. From the universality of the splitting probabilities, it can be shown that this parton density
redefinition does not depend upon the specific hard process, and so it’s universal! Furthermore, there
is a variety of arguments showing that the above construction holds to all orders in perturbation theory
(factorisation theorem). In turn, we have to consider a parton as having a structure that depends upon the
scale at which we are probing it (µ ∼ Q).
Nevertheless, we are now left with these large corrections that depend upon unknown low scale dynamics.
The key observation here is that although low scale dynamics of parton density functions can only be
measured, their scale dependence is predictable in perturbation theory. Indeed, neglecting terms of order
α2
S we have that:

d

d logµ2
f̃q(z, µ

2) =
αS
2π

∫
dydxf̃q(y, µ

2)P 0
qq(x)δ(z − xy) +O(α2

S) (99)
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that is the Altarelli-Parisi, or Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation [15]. Once the pdf’s
are measured in a certain set of measurements performed at a given energy scale, they can be used as the
initial conditions for the Altarelli-Parisi equations. Then, the solution to these equations, corresponding
to the effective resummation of the logarithms associated to multiple collinear emissions, provides the
pdf’s to all other scales that can be used to make predictions for processes at different energy scales.

2.3 Altarelli-Parisi splitting probabilities and evolution equations

Indeed, the program outlined at the end of the last section needs of the knowledge of the splitting func-
tions for all the possible elementary processes and of the solution of the following system of integro-
differential equations:

d

d logµ2
fq(x, µ

2) = Pqq ⊗ fq + Pqq̄ ⊗ fq̄ + Pqg ⊗ fg
d

d logµ2
fg(x, µ

2) = Pgq ⊗ fq + Pgq̄ ⊗ fq̄ + Pgg ⊗ fg (100)

where we have used the ⊗ symbol to represent the convolution integral:

f ⊗ g ≡
∫
dydzf(y)g(z)δ(x− yx) =

∫ 1

x

dz

z
f
(x
z

)
g(z). (101)

The computation of the lowest order splitting functions is not difficult and can be done following the steps
of the previous paragraph also for the other splitting processes. The results are given in Fig.(28). These

Fig. 28: Lowest order Altarelli-Parisi splitting kernels.

functions fulfil a number of properties: first, Pqq and Pgg exhibit the soft singularity at z = 1, while of
course Pgq has it for z = 0, all of them are positive definite for z < 1, the real parts are connected by
final state parton exchange, it’s easy to prove also the crossing symmetry z → 1/z keeping into proper
account the number of states while building the colour/spin averages. Furthermore, the evolution does
not spoil the sum rules of course. Considering the proton, we report again the flavour sum rules:

∫ 1

0

[
fu(x, µ2)− fū(x, µ2)

]
= 2 (102)

∫ 1

0

[
fd(x, µ

2)− fd̄(x, µ2)
]

= 1. (103)
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further, from momentum conservation we now must have:

∑

a

∫ 1

0
dxx fa(x, µ

2) = 1. (104)

Differentiating with respect to the scale µ one obtains the following conditions respectively:
∫ 1

0
[Pqa(x)− Pq̄a(x)] = 0 ∀ a (105)

∑

a

∫ 1

0
dxxPab(x) = 0 ∀ b (106)

and the splitting probability functions quoted in Fig.(28) satisfy them. As a power series in the strong
coupling, the splitting functions are known up tp Next-to-Next to Leading Order (NNLO). They con-
tain terms proportional to logµ2 but also to log 1/x and log(1 − x). The leading order DGLAP evo-
lution equation sums up the (αS logµ2)n contributions, the Next to Leading order (NLO) sums the
αS(αS logµ2)n−1 terms and so on. Small x resummation has also been performed predicting a power
low behaviour for the pdf’s. In general the precision of the experimental data demands that at least NLO
(and preferably NNLO) DGLAP evolution has to be used in comparisons between theory and experiment.

Finding a stable solution of the system of Eq’s(100) is a non trivial numerical task that is usually
addressed with the Runge-Kutta method. Nevertheless, for extreme situations we can predict the leading
behaviour of the evolution. Let’s consider the large x limit first, x → 1. In this case the dominant
splittings are Pqq and Pgg so that the equations decouple and the leading terms in these two splitting
functions are the two plus distributions that can be both represented as:

Paa '
2Ca

(1− z)+
(107)

with Ca equal to CF (CA) for the quark q(gluon g). This is the limit of soft gluon radiation. Starting from
the known pdf’s at the scale Q0, the evolution takes the form:

fa(x,Q
2) ' fa(x,Q2

0) exp

{∫ 1

x
dz

2Ca
(1− z)+

∫ Q2

Q2
0

dq2

q2

αS(q2)

2π

}
. (108)

From the definition of the plus distribution one has that:
∫ 2

x
dz

1

(1− z)+
= −

∫ x

0

dz

1− z = log(1− x) (109)

and inserting the running coupling we find:

fa(x,Q
2) ' fa(x,Q2

0)(1− x)pa with pa =
Ca
π b0

log
αS(Q2

0)

αS(Q2)
. (110)

Then, we see that in the large x limit, the pdf’s with our approximations vanish with a power-law be-
havior. Increasing the scale the exponent slightly increases, so that the higher is the scale the flatter is
the behaviour of the distribution. In the small x limit instead, only the second term in Pgg matters. The
inclusion of the splitting described by Pgq does not catch the leading singularity because it cannot give
rise to a chain of all enhanced contributions. This is the limit driven by multiple soft gluon exchange so
that only the equation for the gluons is relevant, with:

Pgg '
2CA
z

. (111)
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In this case the solution takes the form:

xfg(x,Q
2) ' xfg(x,Q2

0) + exp

{√
2Ca
π b0

log
αS(Q2

0)

αS(Q2)
log

1

x

}
. (112)

Inspecting the exponent and knowing the running coupling, this expression predicts a steepness increas-
ing with Q2 at small x.

To compare with phenomenology, we go back to the proton F2 structure function and now we
move from the naive parton model prediction:

F2(x) = x
∑

i

q2
i fi(x) (113)

to the one including the leading radiative corrections (with µ2 = Q2) resumed in the pdf evolution and
get:

F2(x,Q2) = x
∑

i

q2
i fi(x,Q

2). (114)

Fig. 29: Fit of the proton F2 structure function as function of x for two different scale Q2 = 6.5 GeV2 and
Q2 = 90 GeV2. As predicted by the DGLAP evolution, with increasing energy, the pfds become steeper at small
x and flatter at large x.

In Fig.(29) [1] we can see the effects of the scale evolution mentioned above: the faster descent at high x
and the greater steepness at low x. The scaling violations together with the QCD analysis is also shown in
Fig.(30). The best fit of the pdf’s is performed combining a large amount of data for all kind of available
collisions and at very different energies. In Fig.(31) a sketch of the kinematic domain of the available
data used in pdf fits is shown, while in Fig.(32) a solution obtained by the NNPDF [16] collaboration
is shown for two scale values, similar results are obtained from other collaborations (see for example
ABM [17], JR [18], MSTW [19], MMHT [20] and other collaborations).

3 Hadronic collisions and jets

3.1 Minimum bias

Proton-proton and proton-antiproton colliders are mainly discovery machines, see Fig.(33). In these

31

INTRODUCTION TO PERTURBATIVE QCD

73



Fig. 30: Fits of the proton F2 structure function as a function of the momentum transfer Q2 for different values of
the momentum fraction x. The simple scaling low with Q2 at fixed x predicted by the parton model breaks down
due to radiative corrections that well explain the measured scaling violation.

Fig. 31: Available data sets for the pdf fit in the plane x−Q2.

experiments, QCD is ubiquitous, and this situation of course allows one to make many tests of the theory.
Furthermore, a good knowledge of QCD effects is of course essential to establish signal and background
rates. The variables used to describe hadron production in hadron-hadron collisions are represented in
Fig.(34). The transverse plane is the plane orthogonal to the beams and the azimuthal angle is the azimuth
around the beam direction. The transverse momentum is the projection of momentum on the transverse
plane, k⊥ = k| sin θ| and the transverse energy is the quantity ET = E| sin θ|. Sometimes the transverse
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Fig. 32: Examples of pdf fits including DGLAP evolution at NNLO by the NNPDF collaborations. On the left,
the pdfs at a scale Q2 = 10 GeV2 while on the right Q2 = 104 GeV2.

Fig. 33: Summary of the main discoveries achieved at the proton-antiproton (SppS and Tevraton) and proton-
proton colliders (LHC).

Fig. 34: Representation of the kinematical variables used in hadron-hadron collisions.

mass mT =
√
k⊥ +m2 is also used. The rapidity is defined by the formula:

y =
1

2
log

k0 + k‖
k0 − k‖

(115)

where k0 is the energy of the detected particle. Under a boost in the beam direction it gets an additive
contribution related to the boost velocity, so that rapidity differences are invariant under such boosts.
This is particularly useful for the description of hadron-hadron collisions where there is always a boost
among the hadronic and partonic cms. For massless particles the rapidity reduces to:

y =
1

2
log

1 + cos θ

1− cos θ
= − log tan

θ

2
. (116)
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Fig. 35: Study of the angular correlations among hadrons in the Minimum Bias (main cuts: k⊥ > 100 MeV and
|η| < 2.5) by the ATLAS collaboration. The data distribution (on the left) is compared to a simulated sample using
the PYTHIA events generator (on the right). As stated in the main text, the simulation programs do not reproduce
well the peculiar features of the data.

This variable refers directly to the scattering angle in hadronic cms frame and, as such, can be defined also
for massive particles. In this case it is called pseudorapidity (η). Note however that η differences are not
anymore boost invariant so that it is not immediate (as for the case of rapidity) to compare pseudorapidity
distributions, for example among the results of hadron collisions in fixed target experiment with collider
results, and to this aim one has to reinsert back the mass of the measured particles. As we have seen in
the first section, the cross section for hadronic collisions reflects the presence of a typical hadronic scale:

σ ' 1

(Few hundred MeV)2
(117)

and it increases very slowly with the center of mass energy. These features are not computable in QCD
although this behaviour is consistent with QCD. Consider quark-quark scattering down to a minimum
exchanged virtuality Q2, one has that:

dσ

dQ2
∼ 1

Q4
=⇒

∫ Q2
max

Q2
min

dσ

dQ2
dQ2 ∼ 1

Q2
min

(118)

so that, the typical scale of the non perturbative phenomena, naturally appears and QCD is in line with the
fact that these kind of low energy interactions dominate. The bulk of the scattering events is then soft and
rarely we assist to a collision characterized by a relatively large momentum transfer. We collectively call
the soft collisions Minimum Bias (MB). A typical collision event at the LHC produces on average 80 ∼
100 charged particles with huge fluctuations. This number grows only (a bit more then) logarithmically
with the cms energy of the colliding protons. The transverse momentum distribution for a species of

hadron with mass m has an exponential descent behavior (∼ exp
(
−a
√
m2 + k2

⊥

)
with an average

value of 〈k⊥〉 ∼ 600 MeV which, again, grows slowly with energy. As for rapidity distributions, they
are rather flat with a total of 5 ∼ 6 particles per unit of central rapidity. Keep in mind that for a particle
of mass ∼ 1 GeV produced at ECM = 13 TeV the maximum absolute rapidity is about 9. Again, all
these features are non computable in QCD, but are compatible with QCD. To understand this one can
just start from heavy quark pair production with a mass m � Λ. Reducing the value of the mass,
one gets a broadening of the rapidity distribution and the result that the typical transverse momentum
is of the order of the mass of the produced object. The features of the minimum bias constitute the
first study performed at hadron colliders, which starts considering the angular correlation among the
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produced hadrons in a sufficiently large number of collisions, collecting particles up to very low values
of the transverse momentum. In Fig.(35) [21], the left panel shows the result of a study by the ATLAS
collaboration obtained collecting hadrons with k⊥ > 100 MeV and |η| < 2.5 (plus some other less
relevant cuts). We can clearly see: 1. the emergence of a jet like structure at ∆η = ∆φ = 0, 2. the
emergence of the recoil of one particle against the other as a back to back jet like structure at ∆η = π
for all ∆φ and the 3. decay of resonances or other colour structures at ∆η of about 2 and for all ∆φ.
Nevertheless, these three features are not well reproduced by simulation programs (see for example the
right panel in Fig.(35)) and more investigation is ongoing on this point.

3.2 Jets

For jets there is now a very different situation with respect to e+e− annihilations, where almost all events
are back to back. From high energy partonic collisions we expect something similar, although now the
higher the energy of the jets, the smaller the fraction of events. To identify jets something has to be
done to distinguish them from the fluctuations of the minimum bias. Indeed, trigger is crucial to make
discoveries! Think about the discovery of the Z boson at the UA2 experiment with proton-antiproton
collisions at 630 GeV cm energy. In that case one has:

σ(Z)

σTOT
·Br(Z → l+l−) ∼

1
3

(
1

300GeV

)2
(

1
300MeV

)2 · 0.1 ≈
1

3
10−7. (119)

Considering that one year has about 3 · 107 seconds, to have 1 Z boson decaying to charged leptons per
year, you need 1 proton collision per second, while to claim the discovery you need more, O(1000)! This
means that you need to register events at a rate of the order of few thousands per second. This is not a
problem today, with the modern systems of data acquisition, thirty or forty years ago it was different.
Furthermore, as stated in the previous section, most of the collisions involved an overwhelming rate of
soft QCD reactions and particles which we are not interested in and that can represent a real challenge
for the acquisition electronics in terms of memory resources and time response. Then, what is needed is
an efficient system to choose the events to store (the trigger). As a general guideline, one stores events
with a final state characterized by particles with large transverse momentum, that is for sure the signal
of a short distance interaction. One could think to trigger events on the base of the presence of very
high energetic particles in an event, but that is not a very good idea because minimum bias events can
have very high energetic particles at small angles. It is better to use a “transverse energy trigger” (energy
suppressed by the angle):

ET =
∑

i

Ei| sin θi| (120)

But still, minimum bias events at UA2 counted ∼ 25 charged as well neutral hadrons, so having an
average transverse energy 〈ET 〉 ≈ 50 · 500 MeV ≈ 25 GeV. To stay away from minimum bias events
the experiment considered events with ET > 70 GeV finding that all events are as in Fig.(36), i.e. jet-
like! Most of the events have two jets, firmly establishing that jets in hadronic collisions are a property
of nature. From the definitions of rapidity and transverse momentum it is easy to show that measuring
y1, y2 and p⊥ we fix the values of the fractions x1 and x2. We can make theory predictions using the
improved parton model formula for two jet differential cross section:

d3σ

dy1dy2dp2
⊥

=
1

16πS2

∑

i,j,k,l

fi(x1, µ)

x1

fj(x2, µ)

x2

∑̄
|Mi,j,k,l|2

1

1 + δkl
. (121)

and parton densities extracted from DIS measurements. The formula above predicts that jets are back
to back in azimuth and it also predicts the jets angular distribution in the cm frame of the two jets (or
equivalently the p⊥ dependence of the jets). This differential prediction is nicely verified experimentally,
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Fig. 36: Two jets event at UA2 experiment as emerging after imposing the hard cut on the transverse energy
ET > 70 GeV to separate the hard scattering events from the minimum bias.

Fig. 37: Measurement of the jets scattering angle in the jets cm frame by the UA1 experiment. The solid line is
the QCD prediction given by the improved parton model formula.

as it can be seen in Fig.(37). Furthermore, note that as a good first approximation, the partonic scattering
cross sections stay with colour factors dictated as shown in Fig.(38). So that, the two jet cross section
can be written in terms of a generalized structure function F as:

d3σ

dx1dx2d cos θ
=
F (x1)

x1

F (x2)

x2

dσ̂gg→gg
d cos θ

(122)

with:
F (x) = fg(x) +

4

9

∑

q

[fq(x) + fq̄(x)] . (123)
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Fig. 38: Main (lowest order) partonic subprocesses contributing to the jets production at hadron collision and their
corresponding colour structure.

In Fig.(39), we can see the comparison among theory and experiment. Note the necessity to include the
gluon pdf to get agreement.

Fig. 39: Measurement of the jet generalized structure fuction F (x) as function of the momentum fraction x by the
UA91 experiment and comparison with the theory prediction. The dashed line corresponds to the QCD excluding
the gluon contribution. The inclusion of the gluon pdf (solid line) is required to have agreement with the data.

3.3 Jets algorithms

By the way, it is only when we go to higher orders in perturbation theory that we start getting more
solid predictions for the normalization of the cross sections with a reduced dependence from the un-
avoidable but unphysical scales (renormalization and factorization scales). Such predictions allow to
perform more reliable tests of QCD comparing theory and experimental measurements of jet differen-
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tial distributions [22]. However, not all the measurements that can be done at an hadron collider can
be compared to QCD perturbation theory. QCD can provide perturbative predictions only for InfraRed
and Collinear safe variables. For jet physics, as we will see in a moment, this means that care must be
given for theoretically viable jet definitions. At very high energies like at the Tevatron or the LHC, for
the large part of the interesting events the situation is not as clear as the one in Fig.(36). Looking at
the η, φ plane, one often has a situation more like the one in Fig.(40). with the energies of the particles

Fig. 40: Distribution of the reconstructed particles in the η, φ plane for a typical collision event at the Tevatron or
the LHC. There are sparse groups of particles and the assignment particle-jets is not unambiguously clear.

(or small groups of particles in a calorimeter cell) that are very different from each other. The basic
idea is always that, in very high energy collisions, jets can be reconducted to the original partons that
came out from the hard scattering. Whenever shower and (non perturbative) hadronization corrections
are expected to be small, the same algorithm can be logically applied to both partonic and particle level
data. It could happen that for experimentally well motivated jet definitions, through which it is possible
to make very good measurements, it is not possible to make higher order predictions of jet observables
to compare with, without introducing sensitivity to long distance phenomena. This is indeed the case
for several cone algorithms. A cone algorithm is one in which a cone is drawn around the jet axis and
the particles contained in that cone are collected and assigned to the jet. The crucial point is how to fix
the jet axis. Consider for example for the so-called highest-ET -seed algorithm. Once you fix the cone
radius R, this works as follows: 1. select the highest ET particle as the jet axis, 2. build the cone and
remove the particles in it, 3. restart from 1. One can perform measurements of the jet activity in hadron-
hadron collisions using this algorithm, but it is not hard to see that the jet number is a Collinear unsafe
observable and so the perturbative prediction will get at each order logarithmic enhanced corrections that
depend on the low energy dynamic. The problem can be visualized thinking to a system of three partons
with transverse energies such that ET1 > ET2 > ET3 and ET1 < 2ET2. Furthermore, assume that
the distances are such that d21, d31 < R. This configuration gives rise to a single jet formed with the
three partons, see the left panel in Fig.(41). Now you can think that the virtual corrections, with the three
partons in the final state, will again fall into the same jet bin of the Born level process. When computing
the real part, however, one has to consider the possibility of a collinear splitting that transforms parton 1
into two partons with lower energies. In this case, the algorithm will form two jets as shown in the right
part of the Fig.(41). This is a phenomenon that a “good” jet algorithm should avoid in order to allow
for theory-experiment comparisons beyond the leading order accuracy. One can modify the algorithm
as follows: 1. all particles above a certain threshold are seeds, 2. combine all the particles in a cone to
define a new proto-jet axis with

φc =

∑
i∈cETiφi∑
j∈cETj

ηc =

∑
i∈cETiηi∑
j∈cETj

(124)
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Fig. 41: A three partons configuration which is identified as a mono-jet event according to jet highest-ET -seed
algorithm (left panel). Collinear real emission from the parton 1 may lead to the production of two partons with
lower energies such that, now, the algorithm identifies two distinct jets (right panel). The two collinear particles
are separated in the two jets, spoiling the cancellation of the collinear singularity among the real and the virtual
contribution which produces a mono-jet configuration as the leading order one.

and check the particles in the new cone: if they are the same, then a proto-jet has been formed (stable
cone), 3. if proto-jets have small (large) overlap split (merge) them in some way introducing some
technical parameters. In this way, jets number is now Collinear safe but unfortunately it is an InfraRed
unsafe observable, that is a soft emissions change the number of jets as can be argued inspecting Fig.(42).
An alternative to this problem could be the insertion of extra seeds at the mid-point of the stable cones, but

Fig. 42: First variant of the highest-ET -seed algorithm described in the main text: the jets number is Collinear
but non Infrared safe. Consider a leading order two-jets configuration as given in the left panel. Then, a soft real
emission which occurs around the mid-point between the original two partons leads to the identification of a single
jet (right panel). Indeed, there is now a large overlap between the two stable cones and they are merged into a
single jet.

this is not a solution that turns out to be valid for higher order computations. A jet identification algorithm
based on a cone definition that is fully InfraRed and Collinear safe is the seedless cone algorithm that
works as follows: 1. consider a subset of particles, 2. combine momenta and search for a stable cone, 3.
make it for all the subsets, 4. use split-merge as before. Nevertheless, it might become quite unpractical
for very high multiplicity. Furthermore, it could happen that single particles with sufficiently high energy
are not assigned to any jet (dark towers). Another solution is represented by the clustering algorithms that
implement a sequential recombination along the line of the algorithms discussed for e+e− annihilation
into hadrons. For the case of hadron collisions, the clustering algorithm requires the definition of two
distances, that among each pair of proto-jets, dij , and the distance of each of them from the beams, diB .
The algorithm works as follows: 1. for each pair compute dij and for each proto-jet compute diB , 2. if
the smaller distance is one of the dij combine their momenta to form a new proto-jet (pij = pi + pj)
while, if the smalled is one of the diB , the proto-jet i is promoted to a jet, 3. restart from point 1. This
kind of algorithm is fully exhaustive and unambiguous (no need of split-merge procedures), it’s also fast
and does not generate dark towers. Introducing the quantities (caloremeter distances):

R2
ij = (ηi − ηj)2 + (φi − φj)2 (125)
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the distances are defined in terms of an exponent p and another real parameter R, that acts as the radius
of the cone algorithm, as:

diB = (qTi)
p dij = Min {(qTi)p, (qTi)p}

R2
ij

R2
. (126)

The choice of the value for the parameter p has an impact on the jet contours and the sensitivity to the
detailed structure of the soft component of the event. For these reasons the preferred value (the standard)
at the LHC experiments is p = −1 that define the anti-kt algorithm [23], other possible choices are
the original kt algorithm [24] with p = 1 and the Cambridge/Aachen algorithm [25] with p = 0. The
relevance of the second distance introduced, the one from the beams, appears when we analyse InfraRed
and Collinear safety of the jet definition. Collienar safety is guaranteed by the fact that Rij → 0 in the
collinear limit, while for InfraRed safety the point is that soft real radiation is either assigned to a jet or
forms a jet by itself. In the latter case, the “soft” jet, being below any measurable threshold, is combined
with the virtual counterpart, without spoiling the cancellation between real and virtual contributions. We
conclude this section by observing, once again also for hadron collisions, that even if we are able to build
InfraRed and Collinear safe algorithms for jet identification, the number of jets we identify and how they
are distributed depends upon how we search for them, i.e. the algorithm we use (and its parameters).
Anyway, this does not prevent us to test the perturbative regime of QCD probing the theory in high
energy scattering processes among the elementary constituents.

3.4 Jets phenomenology

Let’s start by considering the inclusive jet cross section at the LHC. In perturbation theory it is computed
through the formula:

d2σ

dydp2
⊥

=
∑

i,j,k

∫
dx1dx2fi(x1, µ)fj(x2, µ)

d2σ̂ij→kX
dydp2

⊥
. (127)

While integrating each matrix element (and each subtraction counterterm needed order by order in per-
turbation theory) over the proper phase space, the event kinematics is passed through a jet reconstruction
algorithm, i.e. there is a convolution with one of the jet finder functions described in the previous sec-
tion, then the experimental constraints of the measurements (cuts) are applied. The error associated to
the perturbative part of the prediction can be estimated from the variations of the unphysical scales plus
the error related to pdf’s and strong coupling determination. One then can estimate non perturbative
corrections using Monte Carlo generators, first evaluating the ratio (bin-by-bin) of the Monte Carlo cross
sections with and without hadronisation, and then multiplying by this ratio the NLO parton-level cross
sections. The uncertainty related to this procedure is estimated as the maximum spread of the correction
factors obtained using different Monte Carlo programs. In Fig.(43), the excellent agreement is shown
among theory [26] and experiment [27] for the doubly differential distribution of the inclusive jet cross
section. Left and right panels refer to different choices for the R parameter characterizing the size of the
jet in the anti-kt algorithm, and also within this variation the agreement is excellent over many orders
of magnitude! Recently, the Next-to-Next to leading order computation for two jet production at hadron
colliders has been performed in the leading color approximation [28] that amounts to selectively com-
pute all the terms that are enhanced by colour factors and for this reason are supposed to dominate. In
Fig.(44) it is shown the excellent agreement among theory and experiment over almost seven orders of
magnitude for the invariant mass distribution of the dijet pair in different rapidity bins, at the LHC.
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Fig. 43: Data-theory comparison of the double-differential inclusive jets cross section (in pT , y) by the ATLAS
collaboration. The jets are reconstructed according to the anti-kt algorithm setting R = 0.4 (left panel) and
R = 0.6 (right panel).

Fig. 44: Comparison between data and the state of the art NNLO prediction (in the leading colour approxima-
tion, using the NNLOJET code) for the double-differential inclusive jet cross section (in mjj , y) by the ATLAS
collaboration. The agreement is excellent over seven orders of magnitude.

4 QCD at higher and all orders

The purpose of this section is the introduction to those methods to treat QCD radiation in the perturbative
regime that allow to reach the highest accuracy in testing this theory at colliders. Very few technical
details are provided. The emphasis is more on the ideas underlying these methods, with the aim to give
an orientation on what can be expected from their use and what cannot.

4.1 Higher order corrections for LHC processes

The exact computation of a hard scattering cross section including all the contributions up to a given
order in the coupling constant goes under the name of fixed order computation. Although the problem
has been solved at NLO, the complications that show up going at higher orders is formidable and we are
still quite far from automation at NNLO. This is the frontier from the computational point of view. These
computations are revealing new mathematical structures and a big effort is currently required also to the
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mathematicians, so that the situation is evolving fast. Note also that, in our knowledge, there is no higher
order computation performed so far that has not become relevant for a comparison among theory and
experiment. Indeed, we can say that every time a new higher order computation has been performed a
new phenomenological challenge for the Standard Model is ready. Recently, an N3LO QCD calculation
has been also completed. It is the cross section for the Higgs boson production in gluon fusion at the
LHC [29, 30], see Fig.(45) for representative diagrams up to the NLO. In the Standard Model there is

Fig. 45: Selection of diagrams contributing to the production of a Higgs boson in the gluon fusion channel up to
NLO in the strong coupling. The interaction between the gluons and the Higgs is given by the effective vertex
obtained pinching the dominant one-loop diagram given by the top quark triangle (large mt approximation).

not a vertex coupling directly the Higgs boson to gluons. This coupling in the SM proceeds, with very
good approximation, via a loop of top quarks. From such top loop diagrams, where both gluons and a
Higgs boson are attached, it is possible to deduce an effective theory including the Hgg vertex shown
in Fig.(45). Going to NNLO, one has to include three new cathegories of diagrams: the ones with two
radiated partons (double real), the ones with one radiated and one virtual (real-virtual one loop diagrams)
and the ones with two virtual diagrams (double virtual or two loops). Needless to say that going to N3LO
the categories increase and they range from three radiated real partons up to three virtual partons. For
the time being this computation in [29,30] has been performed at the inclusive level only, that is only the
total cross section has been predicted at N3LO. The experiments at CERN on the other hand measure the
cross section (even differentially) but only in a certain fiducial volume. Therefore, the comparison among
theory and experiment requires an extrapolation of the measured result over the unexplored region, that
is done with Monte Carlo tools. In Fig.(46) [29], the result of the N3LO computation as a function of the
common choices for the renormalization and factorization scales is shown. Here one can appreciate the
flattening of the scale dependence going from one order to the next. We usually say that scale variations
provide the uncertainty from the lack of knowledge of missing higher orders. Nevertheless, there is not
a unique prescription on how to do it. This is a point debated since long. Given that these scales are
fictitious and the full theory does not depend on them, what is obvious is that the scale dependence of a
prediction at a certain order must exactly match the scale dependence of the collection of all the higher
order contributions up to infinity with the opposite sign. For this reason, one can reasonably think that
scale variations provide a taste of the size of the missing higher orders. At the differential level, NNLO
computations in hadronic collisions are available for some time for the Higgs boson and single gauge
boson production and more recently also for every pair of bosons and for top anti-top production. These
computations allow to make very precise tests of the Standard Model at the LHC and at the same time,
of course, set the scene to disentangle any possible new physics signal at this machine.

4.2 Resummation

At the differential level, fixed-order predictions might be affected by logarithmic enhancements which
show up when a particular restricted region of the space space is considered. Such logarithmic enhance-
ments can make meaningless the fixed order prediction in that phase space region so that apparently we
assist to a break down of the perturbation theory. For a reliable comparison with experiments, whenever
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Fig. 46: Comparison of predictions with increasing accuracy up to N3LO for the Higgs production cross section
in the gluon fusion channel as a function of the scale µ = µF = µR. The inclusion of higher order corrections
not only improves the estimate of the total rate but nicely reduces the scale variation. At N3LO, the dependence is
almost flat in a wide range of scales, giving a solid confirmation of the reliability of this result.

possible, a consistent procedure of “resummation” of the logarithmic enhancements to all orders is re-
quired. We have already encountered the UV log and the Renormalisation Group Equation that allows
to effectively resum this log producing the observed running coupling. Indeed, the resummed expression
for the running coupling has to be used in order to connect, for example, the phenomenon of hadronic
decay of the τ lepton and the hadronic decay of the Z boson. Starting from αs(mτ ) ∼ 0.36 the running
nicely predicts:

αs(MZ) =
αs(mτ )

1 + b0 αs(mτ ) log
m2
Z

m2
τ

∼ 0.12 (128)

which is in good agreement with measurements. The reduction of αs by factor of 3 implies, roughly
speaking, that:

b0 αs(mτ ) log
m2
Z

m2
τ

∼ 2 (129)

and proves that:

αs(MZ) 6= αs(Mτ )

(
1− b0 αs(mτ ) log

m2
Z

m2
τ

)
< 0. (130)

The expansion of the running coupling to the first order, given by the expression in rhs in the above
formula, is even negative, a completely non sense result! So that the resummation of the log is mandatory.
Then we have encoutered the collinear log in collisions with an hadron in the initial state that is effectively
resummed by the Altarelli-Parisi equations. The common feature in the above examples is that they are
both multiscale problems, with two (or more) scales, far apart each other. In the first case, they are
given by mτ and MZ , while in the second case the scale of the hard processQ and the scale of the strong
coupling regime of QCD. In these situations, multiple emission processes connecting the two scales spoil
the convergence of the perturbative expansion and cannot be neglected. From another perspective, large
logarithmic contributions can remain in the computation, despite the fact that more inclusive quantities
(as the total accepted signal) are still finite, if the experimental cuts produce an unbalanced cancellation
of real and virtual contributions, with a suppression or emphasis of the real contribution. Think for
example once again to the jet cross section in e+e− annihilation into hadrons at NLO. Inclusively, the
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real and the virtual contributions together give a finite result, but if we restrict too much the value of the
jet resolution parameter ycut, the three jet cross section fraction increases more and more becoming grater
then 1, while at the same time the two jet fraction becomes negative! This situation is of course untenable
and it signals the unbalance we meant above. Fixed order perturbation theory has to be used only far
from these kinematical regions. But, what to do if experimentally one can perform good measurements
also assuming such small values of the resolution parameter? This problem, on the theory side, can
happen for every observable which is sensitive to soft and/or collinear radiation and the situation does not
improve that much including only a finite number of higher orders contributions. Consider for example
the computation of the transverse momentum distribution of a vector boson produced in hadron-hadron
collisions. Illustrative diagrams of this process are shown in Fig.(47).
The scale of the process is of course the mass of the vector boson (M ). The schematic behaviour of the
perturbative expansion for the pT distribution of the boson is shown in Fig.(48). At leading order (α0

S),
this distribution is just a δ function selecting zero pT . Experimentally the measurement will have a certain
resolution and the result will be given as an histogram as for the theory prediction. At Next-to-Leading
order (αS), the logarithm (L) of the ratio M2/p2

T shows up with a positive diverging behaviour in the
low pT limit. Note as well the presence of a characteristic feature of the fixed-order computation. Since
the area under the histogram represents the total cross section (which is a Collinear and InfraRed safe
observable), the first bin is negative and if we restrict the bin it tends to become divergent to compensate
the divergent positive behaviour of the integral of the rest of the distribution. At the next order (α2

S) the
distribution tend to minus infinity approaching low pT and up to two more powers of the same log are
present. Once again, the first bin is large and positive and compensates to produce a finite total rate.
One can show that at order n all powers m of the log with 0 < m < 2n − 1 manifest. This situation
repeats also for other measurements that are very well defined experimentally like the small mass limit
of a jet in e+e− annihilation, the small jet radius in hadron collisions or the large transverse momentum
distribution of massive quarks produced at high energy and so on. Predictions for all these observables
need resummation of large logs (L) in the kinematical region where indeed αsL2 ∼ 1. The contributions
have a well defined structure and can be schematically organized as shown in Fig.(49).
We do not resum the whole series, just classes of contributions. The sum of all the terms in the first
column in Fig.(49) is called the Leading Log (LL) resummation, the second column the Next-to-Leading
Log (NLL) resummation and so on. This time the next term in the series, the next column, will provide a
relatively lower contribution because it will be suppressed by one power of Lwith respect to the previous
one. Note that resummed results can be combined with the fixed order “horizontal” contributions via a
so called matching procedure that removes double counting of the logarithmic contributions. However,
whether the series converges or not (and if it has an exponential form) depends on the quantity being
measured. For examples, the log(ycut) contribution in e+e− annihilation does not exponentiate for the
JADE algorithm but it does for the kT algorithm! In general, for the computation of the coefficients of the
series, it is not needed to compute the whole correction at a given order, it is enough to select and compute
those contributions that catch the soft and collinear behaviour up to the desired order. Furthermore, it is
not needed to compute explicitly all the coefficient in a certain column, from a subset of coefficients it
is possible to deduce the all order expansion. Resummation for basic variables measurable at the LHC,
such as for example the transverse momentum of the Higgs boson and vector gauge bosons, have been

Fig. 47: Illustrative diagrams contributing to the production of a vector boson in hadron-hadron collisions.
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Fig. 48: Fixed-order predictions including an increasing content of radiative corrections for the differential pT
distribution of the vector boson. A logarithm L = logM2/p2T shows up at NLO, its square at NNLO and so on.
The predicted behavior in the small-pT limit is divergent and so completely unphysical.

Fig. 49: Structure of the logarithms which occurs at each order in perturbation theory.

performed recently including up to N3LL+NNLO corrections [31]. The result for the Higgs boson is
shown in Fig.(50).
While the fixed order results have no physical meaning in the small pT region, the resummed one has an
acceptable behaviour in agreement with the experimental results (not shown in the figure) that present
a maximum and then goes down at lower pT . Note also the strong reduction of the scale variation that
is a typical benefit of the procedure for that part of distributions that are pathological for the fixed order
computation.

4.3 Parton shower

As we have seen in the previous section, the resummation of higher order logarithmic enhancements
contributing to single variable distributions has reached an high level of accuracy for the cases studied.
There is another possible strategy which allows to resum only the leading soft and collinear logarithmic
enhancements but, on the other hand, is fully differential. This means that it is not limited to the single
inclusive distribution and can be used for all the observables for a given process. Starting from a hard 2
to 2 process, it is possible to build an approximation for all the diagrams in which subsequent multiple
emissions have distributed the available energy to a shower of partons. To give an idea about how this
works we will consider again e+e− annihilation into hadrons. In QCD we aim at a description as given
in Fig.(51).
We start from the qq̄ pair produced at high energy. It happens at a certain fixed starting hard scale Q.
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Fig. 50: Comparison between the NNLO fixed-order prediction and the N3LL+NNLO one for the differential pT
distribution of the Higgs boson in gluon fusion channel. As expected, at high pT there is an excellent agreement,
while in the small pT region, the resummed prediction gives a reliable and physical result, while the fixed order
prediction is divergent. Moreover, resummation nicely reduces the scale variation, especially in the small pT limit.

Fig. 51: Sketch of the QCD evolution from the hard scattering to the final state hadrons in the simple case of e+e−

collisions. The main behaviour of the shower of partons can be captured by an approximate perturbative QCD
description, which is implemented in the so-called Parton Shower programs.

Then we look for an iterative formula to approximately describe the sequence of parton splittings starting
from the real contribution. What we are going to build is an effective description of the shower process
in terms of splitting functions and propagators and not the full matrix element squared for every possible
history, which is a task still beyond the possibilities of any available computer. Nevertheless, it can be
shown that such construction catches the main features of the QCD evolution of the external partons that
took part to a given hard process, from the hard scale of the process down to scales a bit above 1 GeV.
To start with, we know that collinear emission from each leg is enhanced and we can use Eq.(47) and
Eq.(48) to describe the emission probability as:

dσR ∼ σ0

∑

i

dθ2

θ2
dxPij(x). (131)

Of course, this probability still diverges. We observe that to describe the collinear limit we could have
used also other variables that are good as well. Indeed, we get the same limiting behaviour if the new
variable is proportional to θ2. Consider for example the invariant mass of the internal propagator q2 in
a splitting, whose expression in the collinear limit is q2 = x(1 − x)θ2E2, or the transverse momentum
associated to the emission, k2

⊥ = x2(1− x)2θ2E2. We would get identical results for the collinear limit,
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but different extrapolations away from it. Let us consider the virtuality of the internal line so that we
have:

dσR ∼ σ0

∑

i

dq2

q2
dxPij(x). (132)

Still, of course, the probability for a given emission path, which is obtained by reiterating (i.e. exponen-
tiating) this formula, can well exceed 1! While we want that the sum of the probabilities of all shower
configurations must yield 1. Indeed, approaching the strict collinear limit, the fixed order theory predic-
tion is challenged and the enhancement, phenomenologically, are not really there as such. In turn, we
need to damp this emission probability with a factor that has to restore unitarity keeping into account the
missing virtual corrections and, at the same time, resumming the logarithmic enhancement. To address
this point, while discussing the basic idea, we make a further simplification by assuming that we have
just one kind of parton (the gluon for example) and so one kind of splitting Pgg. At some point of the
shower the number of gluons will certainly prevail on the number of quarks, nevertheless our simplifying
assumption will obviously not be a good approximation for quark initiated processes, and it has to be
considered just as an illustrative example. The reader interested in the details of the most general case
can go through excellent reviews of the subject [32, 33]. To restore unitarity we normalise the emis-
sion probability involving an internal propagator with virtuality q2 given in Eq.(132) multiplying by the
inclusive probability of no emission of radiation implying and internal propagator virtuality from the
maximum available virtuality Q2 down to the virtuality q2:

dσfirst emission = Pgg(z)dz
dq2

q2
∆g(Q

2, q2). (133)

In the formula above, we do not include the leading order cross section σ0 because we are now consid-
ering emission from a single final state parton (gluon in our simplified exercise), so that we are building
the iterative factor that describes the emission probability from each leg in a Markov chain like pro-
cess. The factor ∆g is called a Sudakov form factor. Of course, this “no emission” probability has to
be related to the emission probability, it has to be a function of it. Given that for smaller and smaller q2

the emission probability diverges, in this limit the inclusive “no emission” probability has to go to zero
rapidly, so regularising the divergence. Now, let us compute ∆ (here comes the resummation!). In the
dominant collinear limit, the probability of emission implying an internal propagator virtuality among q2

and q2 + dq2 is given by:

dWg =
dq2

q2

∫ zmax

zmin

dz Pgg(z) (134)

so that, for such an infinitesimal range of virtuality dq2 the “no emission” probability is given by the
unitary condition:

dP (no emission) = 1− dWg = 1− dq2

q2

∫ zmax

zmin

dz Pgg(z). (135)

Now, to get the (resummed) “no emission” probability over the finite range from q2 up to Q2, we do
not integrate this expression, but instead we take the product over “all” the infinitesimal paths, which we
consider as independent events. In doing so, the probability of “no multiple emission” of every number
of gluons turns out to be:

∆g(Q
2, q2) =

∏
dP (no emission) = exp

{
−
∫ Q2

q2

dk2

k2

∫ zmax

zmin

dxPgg(z)

}
. (136)

Note that in the limit of small virtualities we know that all order emissions are relevant and that fac-
torization holds. This product has an exponential form and produces the damping behaviour we were
looking for. Indeed, it damps the emission probability at low virtualities and it does not count much at
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Fig. 52: Characteristic behaviour of the Sudakov form factor or “no emission” probability. It rapidly vanishes in
the q → 0 limit, while saturates to 1 at high virtualities.

large virtuality. A typical form is shown in Fig.(52). In our simplified QCD model, the parton shower is
then produced iteratively generating radiation according to the probability distribution:

dσfirst emission = Pji(z)dz
dq2

q2
exp

{
−
∫ Q2

q2

dk2

k2

∫ zmax

zmin

dzPji(z)

}
. (137)

At each iteration of this formula one updates the upper Q2 scale to the extracted q2 of the previous
step, until the virtuality of the internal line reaches the cut-off scale. We stress that by construction
unitarity is restored, so that the event simulation will not alter the value of the original cross section
at the starting point (σ0 at the origin). A number of observations have to be done. In real life event
generators, the qualitative reasoning to describe the iterative procedure implemented in a parton shower
given above are supplemented by a large number of technicalities we have not discussed. They go from
the implementation of the momentum reshuffling after each emission to the management of multiple
splitting processes. Another complication is related to the treatment of hadrons in the initial state. In
that case one has to take into account the structure of the colliding hadrons, but the shower is worked out
with the same logic (in that case one speaks of backword evolution and space-like shower). Furthermore,
for a parton shower implementation there is also a number of choices to do, like: the evolution variable
(that we have set to the the virtuality of the internal propagator), the scale to be used in the strong
coupling, the cut-off scale. As for the evolution variable, it has a relevant impact. Indeed, note that
the iterative multiple emission description obtained starting from the collinear approximation discussed
above cannot represent adequately multiple soft emissions. It is true that damping the virtuality of the
internal propagator or the tranverse momemtum of the emission also the soft radiation goes out, but
we also know that the divergent behaviour of soft radiation has a universal different factorized form.
From direct computation of QCD amplitudes, it turns out that for soft radiation there is a coherent effect
such that, if one chooses as evolution variable the angle or the transverse momentum, the procedure
automatically catches also the leading logarithmic enhancement associated to the soft radiation. This
is a very good news because, if also soft radiation has to be more and more collinear, we can imagine
that, although in principle it has a long range, in QCD it stays relatively close, so that the hadronization
can be considered and modelled as a local process. An important application of a parton shower at the
LHC is the study of the jet shape. Such a study requires of course the resummation of large soft and
collinear logarithmic enhancements. A relevant variable in this case is the fraction of the jet transverse
momentum contained within a ring of tickness ∆r around the jet core, ρ(r) (averaged over an ensamble
of jets), with:

ri =
√

(∆i,jety)2 + (∆i,jetφ)2 (138)

ra = r −∆r/2 rb = r + ∆r/2 (139)
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ρ =
1

N

∑

jets

1

∆r

∑
ra<ri<rb

pT i∑
ri≤R pT i

. (140)

In Fig.(53), we can see the general agreement among the measurement of ρ(r) distribution and parton
shower Monte Carlo programs. Another intersting variable is the fraction of the jet transverse momentum

Fig. 53: MC/data comparison for the jet shape variable ρ representing the fraction of the jet transverse momentum
in a ring of tickness ∆r = 0.1, measured by the CMS collaboration.

contained within a circle of radius r around the jet core, Ψ(r). In Fig.(54) the ATLAS measurement for
1−Ψ(0.3) is shown. In this case, we see that in principle this variable could be used to distinguish jets

Fig. 54: MC/data comparison for the jet shape variable 1 − Ψ(r) with Ψ(r) representing the fraction of the jet
transverse momentum in a circle of radius r (for the tipical value r = 0.3), measured by the ATLAS collaboration.
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initiated by a gluon or a quark.

4.4 Merging, matching and both

Shower Monte Carlo programs effectively handle and resum the multiple collinear and soft QCD emis-
sions and they provide the full event simulation, including the conversion from partons to hadrons. For
this reason they are an essential tool to study the sensitivity of the experiments in high energy physics.
On the other hand, they are able to generate cross sections for the requested hard process that are correct
only at leading order. Furthermore, the soft and collinear approximations underlying the parton shower
(PS) evolution may fail to reproduce the full pattern of hard wide-angle emissions at higher orders. One
would like to include in a parton shower simulation all relevant hard processes while taking advantage
of available higher order corrections. We are indeed on this path. The first step forward has been the
merging of multi-jet final states preserving LO+LL accuracy, done combining together all the LO matrix
elements with up to n partons in the final state. The problem is how to regularize the divergent cross
sections in the soft and collinear limits of the corresponding matrix elements (for x > 2, x being the
number of partons in the finale state) and to generate hard multijet configurations in a way that is not
very sensitive to the regularization prescription. Here we will not give any proofs, but we will just outline
the basic idea about how it works in practice. To this aim, let us consider again, for the sake of simplic-
ity, the case of e+e− annihilation at a cm energy Q. There have been more then one proposal on how
to reach this goal [34, 35], here we limit to show how the Catani, Krauss, Kuhn and Webber (CKKW)
algorithm [34] works. The first step is the introduction of a merging scale, so: 1. choose a scaleQ1 which
fixes the kT algorithm resolution parameter ycut = Q2

1/Q
2. This parameter acts as a cut-off regulator

for the computation of the m-jet cross section using the exact tree level matrix element with m partons
in the final state. This means that any m-partons configuration that would be clustered into a number of
jets lower than m is given zero weight. Repeat the procedure for every m from 2 to n (typically n = 5 or
6), so that for each multiplicity m and partonic subprocess i (for each multiplicity there is finite number
of them increasing with multiplicity) you now have a corresponding finite numerical value of the cross
section σ(0)

m,i, where the (0) apex refers to the fact that we are considering leading order cross sections.
2. Select a jet multiplicity and a partonic subprocess with probability:

P (m, i) =
σ

(0)
m,i∑k=n

kj σ
(0)
k,j

. (141)

3. Generate an event with probability given by the corresponding exact matrix element. 4. Reconstruct
the PS probability of this event first using the kT algorithm backward, recombining partons until only 2
remain, and then building an event weight combining Sudakov form factors (as propagators) and splitting
probabilities (as vertices) with the strong coupling evaluated at the scale of the branching process for
each branch. 5. Accept or reject the event according to the combined PS weight. If the event is accepted,
assign it a color configuration and start the shower from each leg of them partons event. The initial scale
of the shower should be set to the scale value of the node at which that parton was created. Furthermore,
during the shower one has to veto radiation with transverse momentum larger then Q1. If the event
is rejected go back to point 3. Using the steps listed above, it has been proved that the results do not
depend on the cutoff scale Q1. Of course, the algorithm needs modifications when there are hadrons in
the initial state, but the logic is the same: the idea is again to regularize the matrix elements separating
the phase space into hard (ME domain) and soft (PS domain) and then to reject or accept an event,
and eventually start the shower, according to the PS weight of the event. In Fig.(55) and (56), we can
appreciate the adequate description given by the shower Monte Carlo programs for both inclusive and
differential multijet cross sections at the LHC. However, one has not to expect too much from such a PS
description. Note, for example, that a 5% uncertainty on the strong coupling induces a 35% uncertainty
on the 6 jets production rate, on top of which one has to consider scale variations (both renormalization

50

F. TRAMONTANO

92



Fig. 55: Measurements of the total cross section for different inclusive jet multiplicities by the ATLAS collabora-
tion compared to different MC generators.

and factorisation) and hadronization effects. So, in turn, the description of multijets final states with
merging shower MC programs might be considered more as an exercise to tune those tools than a test for
perturbative QCD.

The matching of NLO computation with PS LL resummation has been a big progress of the recent
years. The first proposals have been the MC@NLO [36] and POWHEG [37] methods. Let us take for
example the POWHEG method. The acronym stands for positive weight hardest emission generator.
The technical problem to solve was how to avoid the double counting of radiation described by the NLO
computation and the shower process. In particular, we want to keep the description of the hard and wide
angle radiation as given by the NLO computation and exploit the resummation performed by the shower
Monte Carlo program for the soft and collinear radiation. In this way, the full differential description
offered by the PS programs will gain the normalization and a formal accuracy, for sufficiently inclusive
observables, driven by the NLO calculation. The interested reader can look into the original reference
for the proofs [37], here we just give a sketch of the construction in practice. We start considering the
first emission in a parton shower approach:

dσfirst emission = σ0 dz
dk2
⊥

k2
⊥
Pij(z)∆j(Q

2, q2). (142)

To have NLO accuracy on inclusive variables, we start generating the “underlying” Born kinematic
configuration with probability given by the parton level NLO computation. So we promote σ0 to:

B̄(ΦB) = B(ΦB) + V (ΦB) +

∫
dΦrad[R(ΦB,Φrad)− C(ΦB,Φrad)] (143)

In this formula, B and R are the Born and the Real matrix element squared, C is the counter-term
that makes finite the Real cross section and V is the combination of the Virtual matrix element and
the integrated counterterm, along the lines of the discussion in the first section. Actually, one should
partition the Real matrix element into pieces that are each singular in just one kinematical radiation
region and build as many of the last piece in the formula above as singular regions. Their simultaneous
treatment is addressed with Monte Carlo techniques and it does not pose a problem. For ease of notation,
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Fig. 56: Measurements of the pT distribution of the leading jet (a), of 2nd leading jet (b), of 3rd leading jet (c), of
4th leading jet (d) by the ATLAS collaboration compared to different MC generators.

here we leave just one of them. Furthermore, with Φ we indicate the phase space variables for a Born
configuration (ΦB), a Real one (ΦB,Φrad) or just the radiation variables (Φrad). To match the Leading
Logarithmic resummation performed by the parton shower, while at the same time avoiding double
counting, one has to generate the first radiation using the formula

dσ = B̄(ΦB)dΦB dΦrad
R(ΦB,Φrad)

B(ΦB)
exp

{∫
R(ΦB,Φ

′
rad)

B(ΦB)
θ(k′T − kT )dΦ′rad

}
, (144)

then assign a color configuration and shower the event vetoing emissions harder then the first one. We
see that the damping Sudakov form factor is built upon the ratio of Real and Born matrix elements and
not just by its divergent limit represented by the splitting functions. On the other hand the exponential
resummation is certainly valid in such limits so that for the method to work properly one has to ensure
that soft and collinear configurations are the only sources of enhancement for the ratio R/B. In the first
method proposed for the NLO+PS matching (MC@NLO), the procedure is a bit different. In that case,
the mapping used in the NLO calculation to connect a Real configuration to a Born one plus the radiation
variables is chosen to be the one implemented in the Parton Shower program to describe the emission.
Then the PS weight associated to the configuration of the real event (called Hard in the MC@NLO frame-
work) is subtracted from the value computed with the exact Real matrix element and added back to the
weight of the corresponding (mapped) Born configuration (called Soft). Note however that, being all the
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contributions finite, it is always possible to built unweighted event samples before showering. The two
procedures MC@NLO and POWHEG are then different in the way they treat subleading contributions
and, in general, an estimate of the size of the uncertainty related to the matching procedure can be rep-
resented by the differences among the results found simulating the same process with the two tools. As
an example of the results obtained at NLO+PS accuracy, we show the case of top anti-top production in
proton proton collisions at 14 TeV [38]. As shown in Fig.(57), the MC@NLO generator reproduces very
well the NLO distributions that are inclusive over extra QCD radiation as the rapidity and the transverse
momentum of the top quark. In the case of variables that are sensitive to radiation attached to the Born

Fig. 57: The NLO+PS(MC@NLO) prediction for the single inclusive observables y(t) (left) and p(t)T (right) (ra-
pidity and transverse momentum of the top) in top-antitop production at LHC14 is compared with the PS(Herwig)
and the NLO fixed-order predictions. Here, a very good agreement is found among all the prediction.

process, as the transverse momentum of the top anti-top pair in Fig.(58), we observe a complementary
behaviour of the NLO and MC approaches regardless of the cuts on the rapidities and transverse mo-
menta of the top quark. In the tail of the transverse momentum distribution of the top pairs, the NLO

Fig. 58: The NLO+PS(MC@NLO) prediction for the transverse momentum of the top pair, p(tt)T , in top anti-top
production at LHC14 with (right) and without (left) cuts on the top quarks, is compared with the PS(HERWIG)
and the NLO fixed-order predictions. As expected, in the hight-pT tail there is agreement between the NLO+PS
and the NLO, while the PS prediction fails in this pT region. On the other hand, at small pT values the NLO+PS
shows up the characteristic LL resummed result as given by the PS prediction.

cross section is much larger than the MC one, simply because hard emissions are correctly treated only
in the former. For small transverse momentum of the top pair, the difference between the two histograms
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shows the effect of all-order resummation, clearly, no meaningful comparison between NLO and data
can be attempted in this region. In turn, we assist to a smooth interpolation performed by MC@NLO.
For their precision, flexibility and availability the NLO+PS generators are the standard at the LHC.

A step further has been the combination of the two improvements mentioned above, having the
merging and the matching at the same time. There have been several proposals on how to merge NLO
computations with different jets in the final state. In general, one can think that there is always the need
of a merging scale as the Q1 we introduced discussing the CKKW algorithm. Nevertheless, for the class
of processes with only one parton in the final state at the leading order (as H/W/Z+1jet) which, of course,
presents divergences when this radiation becomes unresolved, it is possible to have finite results (even
including the NLO corrections) just by multiplying the event weights by an extra Sudakov form factor
that suppresses the divergences. It has been shown that such a Sudakov form factor can be chosen in
such a way that the formal accuracy of the inclusive generation is again at Next-to-Leading Order [39].
This method is called MiNLO, that stands for Multi-scale improved NLO computation, and has the nice
feature that it does not require a merging scale. As an example of application, we show the result for the
associated production of an Higgs and a Vector boson at the LHC (VH with V=W or Z) [40]. In Fig.(59),
the total cross section for proton proton collisions at 8 TeV is shown for both VH (in black) and VH plus
one jet (VHJ) with MINLO (in red). When the usual scale variation bands are considered, we see that
there is a good overlap of the two results.

Fig. 59: Total cross section for associated Higgs production in proton-proton collision at LHC8. HV (V=W,Z)
refers to the standard NLO computation, HVJ-MiNLO refers to the process with an extra jet treated with the
MiNLO method.

In Fig.(60), we show the distribution of the transverse momentum of the WH system. For the high en-
ergy part of the distribution the two results obtained with WH and WHJ generators nicely overlap telling
that the NLO correction provides only a small effect. In the low energy part of the distribution, instead,
the two differ. The WHJ prediction, that contains the exact radiative correction for the first radiation,
provides the most accurate result.

We conclude this section mentioning that reweighing a MiNLO NLO+PS generator for a process
that has exactly one parton in the final state at the leading order (like H/W/Z+1jet, and in principle ev-
ery process producing a colourless final state plus 1 jet) with a parton level NNLO computation for the
fully exclusive production of such a colourless final state, one obtains an NNLO+PS matching! [41]. In
Fig.(61), the Higgs boson transverse momentum distribution from gluon fusion at the LHC8 is shown.
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Fig. 60: Comparison between the HW and HWJ predictions for the pT distribution of the HW system. In both case,
generated events have been showered with PYTHIA. In the hight-pT tail (upper panels), there is a good agreement
while for small pT s, the HWJ-MiNLO predicts a slightly softer spectrum.

We remind that the fixed order result for this distribution (obtained with the program HNNLO [42] also

Fig. 61: Comparison between the NNLO+PS prediction and the resummed one for the pT distribution of a Higgs
boson produced in the gluon fusion channel at LHC8.

used to perform the reweight) is divergent in the low pT region. The result obtained binning an event
sample obtained with the NNLOPS generator is compared here to the result of the program HqT [43,44]
that implements the resummation of the logarithmic enhancement discussed in a previous section. A
reasonable agreement is found among the two when the scale variations are taken into account. Inter-
estingly, the extension of the MiNLO and the NNLOPS techniques to the case with more partons in the
final state is doable in principle, although it requires further non trivial analytic computations to build the
appropriate Sudakov suppression factor, that are still missing.
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Abstract
We present an informal discussion of some aspects of strong interactions under
extreme conditions of temperature and density at an elementary level. This
summarizes lectures delivered at the 2018 European School of High-Energy
Physics and previously at CERN Physics Schools in Latin-America, and is
aimed at students working in experimental high-energy physics.
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1 Introduction and motivation: why, where and how
Quantum Chromodynamics (QCD) is an extremely successful theory of strong interactions that has
passed numerous tests in particle accelerators over more than 40 years [1]. This corresponds to the
behavior of hadrons in the vacuum, including not only the spectrum but also all sorts of dynamical pro-
cesses. More recently strong interactions, and therefore QCD, has also started being probed in a medium,
under conditions that become more and more extreme [2]. Although quite involved theoretically, this is
not just an academic problem. In order to make it clear, one should consider three very basic questions,
that should always be asked in the beginning: why? where? how?

1.1 Why?
It was realized since the very beginning that strong interactions exhibit two remarkable features that are
related but represent properties of complementary sectors of the energy scale. The first one is asymptotic
freedom [3], which can be perturbatively demonstrated by an explicit computation of the beta function
to a give loop order in QCD [4]. The second, which is consistent with the first but should be seen as
totally independent, since it is a property of the nonperturbative vacuum of strong interactions, is color
confinement [5]. Even though reality constantly shows that confinement is a property of strong interac-
tions, and therefore should somehow be built in QCD, this proof remains a theoretical open problem so
far. Even for the pure Yang-Mills theory, where the bound states correspond to glueballs, the existence
of a mass gap is still to be shown after more than half a century of the original paper on nonabelian gauge
theories [6]. For this reason, confinement is ranked in the Clay Mathematics Institute list of unsolved
Millennium problems [7].

Much more than a cute (and very tough) mathematical problem, this is certainly among the most
important theoretical and phenomenological problems in particle physics, since hidden there is the real
origin of mass, as we feel in our everyday lives and experience with ordinary (and not so ordinary) matter.
Although the Higgs mechanism provides a way to give mass to elementary particles in the Standard
Model [8], most of what constitutes the masses of hadrons come from interactions. For instance, more
than 90% of the proton mass originates in quark and gluon condensates [9]. So, in spite of the fantastic
success of the Standard Model [8], we do not understand a few essential mechanisms.

Extremely high temperatures and densities bring us to an energy scale that facilitates deconfine-
ment, and matter under such extreme conditions can behave in unexpected ways due to collective effects.
This is, of course, a way to study the mechanism of confinement (by perturbing or modifying this state of
matter). This leads us also to a deeper yet childish motivation, that of understanding what happens if we
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keep making things hotter and hotter, or keep squeezing things harder and harder [10]. These questions
can be reformulated in a more technical fashion as ’what is the inner structure of matter and the nature
of strong interactions under extreme conditions of temperature and density?’. In experiments, one needs
to “squeeze”, “heat” and “break”. From the theoretical point of view, one needs a good formulation of
in-medium quantum field theory, using QCD or effective theories.

It is clear that the challenge is enormous. Although confinement seems to be a key feature of
hadrons, and manifests also in relevant scales such as fπ or ΛQCD, it only seems to be present in QCD.
So far, controlled lattice simulations show strong evidence of confinement in the pure gauge theory
[11]. As hinted previously, however, the theory is nonperturbative at the relevant scales, so that analytic
methods are very constrained. And, although lattice simulations have developed to provide solid results
in several scenarios, they are not perfect. And, more important, they are not Nature. To make progress
in understanding, or at least collecting important facts, one needs it all: experiments and observations,
lattice simulations, the full theory in specific (solvable to some extent) limits and effective models. And
also combinations, whenever possible, to diminish the drawbacks of each approach.

Plasma

Quark-Gluon

Hadrons

µ
N

neutron stars
nuclei

Color

Superconductivity

early universe

RHIC

µ

T

Tc

cm  / 3

Fig. 1: Cartoon of a phase diagram for strong interactions. Extracted from Ref. [12]

Whichever the framework chosen, collective phenomena will play a major role. Although some-
what put aside in the so-called microscopic “fundamental” particle physics, collective effects can affect
dramatically the behavior of elementary particles in a medium under certain conditions. Besides the
well-known examples of BCS and BEC phases in condensed matter systems [13], and also in dense
quark matter [14], it was recently found that photons can form a Bose-Einstein condensate [15]. In fact,
the textbook case of water and its different phases is quite illustrative of the richness that comes from col-
lective phenomena that would hardly be guessed from the case of very few or non-interacting elementary
particles.

In terms of the thermodynamics, or many-body problem, the basic idea is to perturb the (confined)
vacuum to study confinement by heating (temperature), squeezing or unbalancing species (chemical
potentials for baryon number, isospin, strangeness, etc) and using classical external fields (magnetic,
electric, etc), so that the system is taken away from the confined phase and back. One can also relate
(or not) confinement to other key properties of strong interactions, such as chiral symmetry. And, from
the theorist standpoint, draw all possible phase diagrams of QCD and its “cousin theories” (realizations
of QCD with parameters, such as the number of colors or flavors, or the values of masses, that are not
realized in Nature) to learn basic facts. There are several examples, one well-known being the ‘Columbia
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plot’, where one studies the nature of the phase transitions and critical lines on the (mu = md,ms)
plane. Nevertheless, if one draws a cartoon of the phase diagram in the temperature vs. quark chemical
potential, for instance Fig. 1, and compares it to computations from effective models, lattice simulations
and freeze-out points extracted from high-energy heavy ion collision data, one sees that the points still
scatter in a large area [16]. So, there is still a long way ahead.

1.2 Where?
According to the Big Bang picture and the current description of the evolution of the early universe [17],
we expect that at about 10−5s after the Big Bang a soup of quark-gluon plasma (in the presence of
electrons, photons, etc) has undergone a phase transition to confined hadrons. This was, of course, the
first realization of a QCD transition. This process was thermally driven and happened at very low baryon
chemical potential.

It is quite remarkable that the scales of strong interactions allow for the experimental reproduction
of analogous conditions in high-energy ultra-relativistic heavy ion collisions in the laboratory [18]. In
a picture by T. D. Lee, these collisions are seen as heavy bulls that collide and generate new states of
matter [19]. Such experiments are under way at BNL-RHIC [20] and CERN-LHC [21], and will be part
of the future heavy ion programs at FAIR-GSI [22] and NICA [23].

For obvious reasons, it is common to refer to such experiments as “Little Bangs”. However, one
should be cautious with this point. In spite of the fact that the typical energy scales involved need to
be the same, as well as the state of matter created, the so-called quark-gluon plasma [24], the relevant
space-time scales differ by several orders of magnitude. Using a simple approximation for the equation
of state,

3p ≈ ε ≈ π2

30
N(T )T 4 , (1)

where p is the pressure, ε the energy density and N(T ) the number of relevant degrees of freedom, we
can easily estimate the typical sizes involved. The radius of the universe at the QCD phase transition
epoch, as given by the particle horizon in a Robertson-Walker space-time [25], where the scale factor
grows as a(t) ∼ tn, is given by (n = 1/2 and N(T ) ∼ 50 at this time for QCD)

Luniv(T ) ≈ 1

4π

(
1

1− n

)(
45

πN(T )

)1/2 MPl

T 2
=

1.45× 1018

(T/GeV)2
√
N(T )

fm . (2)

Here MPl is the Planck mass, and it is clear that the system is essentially in the thermodynamic limit.

Fig. 2: Cartoon representing non-central heavy ion collisions and how they affect the size of the system.

On the other hand, in heavy ion collisions the typical length scale of the system is LQGP .
10− 15 fm, so that the system can be very small, especially if one considers non-central collisions [26]
(see Fig. 2). One can develop analogous arguments for the time scales given by the expansion rates,
finding that the whole process in the early universe happens adiabatically, whereas in heavy ions it is
not even clear whether the system can achieve thermal equilibrium, given the explosive nature of the
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evolution in this case. So, there are certainly large differences (in time and length scales) between Big
and Little Bangs...

Keeping this caveat in mind, heavy ion experiments have been investigating new phases of matter
at very high energies for more than a decade, producing an awesome amount of interesting data and a
richer picture of strong interactions (see Ref. [27] for a review).

In the realization of the Big and Little Bangs one is always in the high temperature and low
density (small baryon chemical potential) sector of the phase diagram of strong interactions. However,
high densities (at very low temperatures) can also probe new states of hadronic matter, and that is what
is expected to be found in the core of compact stars [28]. There, new phases, condensates and even color
superconductivity may be present. In particular, the deconfinement and chiral transitions might affect
significantly the explosion mechanism in supernovae [28] via modifications in the equation of state.

After a neutron (or hybrid) star is formed, densities in its core can in principle reach several times
the nuclear saturation density n0 = 0.16 fm−3 = 3× 1014g/cm3, which corresponds to squeezing ∼ 2
solar masses into a sphere of ∼ 10 km of radius. To describe these objects, one needs General Relativity
besides in-medium quantum field theory.

1.3 How?
The reader is hopefully already convinced that, in order to describe the phenomenology of the phase
structure and dynamics of strong interactions under extreme conditions, one needs all possibilities at
disposal: theory, effective modeling, etc. We do not have one problem ahead, but a myriad of different
problems. So, one has to make a choice. Our focus here will be the equation of state, of which we will
discuss a few aspects.

At this point, we are lead again to the “why” question. And the answer is because, besides carry-
ing all the thermodynamic equilibrium information we may be interested in, it is also the basic crucial
ingredient for dynamics, structure, etc. In fact, the phase diagram topology is determined in every detail
by the full knowledge of the pressure p(T, µ,B, . . . ). This will determine all phases present as we dial
different knobs, or control parameters, such as temperature or chemical potentials.

The structure of a compact star, for instance, is given by the solution of the Tolman-Oppenheimer-
Volkov (TOV) equations [28], which encode Einstein’s General Relativity field equations in hydrostatic
equilibrium for a spherical geometry:

dp

dr
= − GM(r)ε(r)

r2
[
1− 2GM(r)

r

]
[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

M(r)

]
, (3)

dM
dr

= 4πr2ε(r) ; M(R) = M . (4)

Given the equation of state p = p(ε), one can integrate the TOV equations from the origin until the
pressure vanishes, p(R) = 0. Different equations of state define different types of stars (white dwarfs,
neutron stars, strange stars, quark stars, etc) and curves on the mass-radius diagram for the families of
stars.

Furthermore, to describe the evolution of the hot plasma created in high-energy heavy ion colli-
sions, one need to make use of hydrodynamics, whose fundamental equations encode the conservation
of energy-momentum (∂µTµν = 0) and of baryon number (or different charges) (∂µnBvµ = 0, with
vµvµ = 1). These represent only five equations for six unknown functions, the additional constraint
provided by the equation of state. Hence, it is clear that we really need the equation of state to make any
progress.

In principle, we have all the building blocks to compute the equation of state. The Lagrangian of
QCD is given, so one would have “simply” to compute the thermodynamic potential, from which one can
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Equation of state - naïve field map�

Fig. 3: Cartoon of the naïve field map for the equation of state for strong interactions.

extract all relevant thermodynamic functions. The fact that the vacuum of QCD is highly nonperturbative,
as discussed previously, makes it way more complicated from the outset. As we know, QCD matter
becomes simpler at very high temperatures and densities, T and µ playing the role of the momentum
scale in a plasma, but very complicated in the opposite limit. On top of that, T and µ are, unfortunately,
not high enough in the interesting cases, so that the physically relevant region is way before asymptotic
freedom really kicks in. Perturbative calculations are still an option, but then one has to recall that finite-
temperature perturbative QCD is very sick in the infrared, and its naïve formulation breaks down at a
scale given by g2T [29]. This is known as Linde’s problem: at this scale, for a (`+ 1)-loop diagram for
the pressure, for ` > 3 all loops contribute to the term of order g6 even for weak coupling [29].

The situation does not look very promising, as illustrated by the cartoon of Fig. 3 which shows
that there is no appropriate formalism to tackle with the problem in the physically relevant region for the
phase structure, namely the critical regions. However, there are several ways out. Some popular examples
being: very intelligent and sophisticated “brute force” (lattice QCD), intensive use of symmetries (ef-
fective field theory models), redefining degrees of freedom (quasiparticle models), “moving down” from
very high-energy perturbative QCD, “moving up” from hadronic low-energy (nuclear) models. And we
can and should also combine these possibilities, as discussed previously.

2 Symmetries of QCD and effective model building
2.1 The simplest approach: the bag model
Before discussing the building of effective models based on the symmetries, or rather approximate sym-
metries, of QCD, let us consider a very simple description: the MIT bag model [29] applied to describe
the thermodynamics of strong interactions.

The model incorporates two basic ingredients, asymptotic freedom and confinement, in the sim-
plest and crudest fashion: bubbles (bags) of perturbative vacuum in a confining medium, including even-
tual O(αs) corrections. Asymptotic freedom is implemented by considering free quarks and gluons
inside color singlet bags, whereas confinement is realized by imposing that the vector current vanishes
on the boundary.

Then, confinement is achieved by assuming a constant energy density for the vacuum (negative
pressure), encoded in the so-called bag constant B, a phenomenological parameter extracted from fits
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to hadron masses. B can also be viewed as the difference in energy density between the QCD and the
perturbative vacua. A hadron energy (for a spherical bag) receives contributions from the vacuum and
the kinetic energy, so that its minimum yields

Emin
h =

16

3
πR3

hB , (5)

and the hadron pressure (at equilibrium)

ph =
∂Eh
∂V

= −B +
const

4πR4
= 0 . (6)

Assuming the existence of a deconfining transition, the pressure in the quark-gluon plasma phase
within this model is given by

pQGP =

(
νb +

7

4
νf

)
π2T 4

90
−B , (7)

whereas the pressure in the hadronic phase (taking, for simplicity, a pion gas) is given by

pπ = νπ
π2T 4

90
, (8)

neglecting masses. Here, we have the following numbers of degrees of freedom: νπ = 3, νb = 2(N2
c −1)

and νf = 2NcNf for pions, gluons and quarks, respectively.

For instance, for Nc = 3 , Nf = 2 and B1/4 = 200 MeV, we obtain the following critical
temperature:

Tc =

(
45B

17π2

)
≈ 144 MeV (9)

and a first-order phase transition as is clear from Fig. 4. The value of the critical temperature is actually
very good as compared to recent lattice simulations [30], considering that this is a very crude model. On
the other hand the nature of the transition, a crossover, is almost by construction missed in this approach.
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Fig. 4: Pressures in the bag model description.
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2.2 Basics of effective model building in QCD
To go beyond in the study of the phases of QCD, one needs to know its symmetries, and how they are
broken spontaneously or explicitly. But QCD is very involved. First, it is a non-abelian SU(Nc) gauge
theory, with gluons living in the adjoint representation. Then, there are Nf dynamical quarks who live in
the fundamental representation. On top of that, these quarks have masses which are all different, which
is very annoying from the point of view of symmetries. So, in studying the phases of QCD, we should
do it by parts, and consider many “cousin theories” which are very similar to QCD but simpler (more
symmetric). In so doing, we can also study the dependence of physics on parameters which are fixed in
Nature.

Fig. 5 illustrates the step-by-step process one can follow in assembling the symmetry features
present in QCD and learning from simpler theories, as well as cousin theories. Notice that the full
theory, whose parameters are given by comparison to the experimental measurements, has essentially no
symmetry left. Yet, some symmetries are mildly broken so that a “memory” of them remains. This fact
allows us to use “approximate order parameters”, for instance, a concept that is very useful in practice to
characterize the chiral and deconfinement transitions.

Fig. 5: Basic hierarchy in the step-by-step approach to QCD.

2.3 SU(Nc), Z(Nc) and the Polyakov loop
In the QCD Lagrangian with massless quarks,

L =
1

2
TrFµνF

µν + q̄iγµDµq , (10)

Dµ ≡ (∂µ − igAµ) , (11)

Fµν =
i

g
[Dµ(A), Dν(A)] , (12)

we have invariance under local SU(Nc). In particular, we have invariance under elements of the center
group Z(Nc) (for a review, see Ref. [31])

Ωc = ei
2nπ
Nc 1 . (13)
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At finite temperature, one has also to impose the following boundary conditions:

Aµ(~x, β) = +Aµ(~x, 0) , (14)

q(~x, β) = −q(~x, 0) . (15)

Any gauge transformation that is periodic in τ will do it. However, ‘t Hooft noticed that the class of
possible transformations is more general. They are such that

Ω(~x, β) = Ωc , Ω(~x, 0) = 1 , (16)

keeping the gauge fields invariant but not the quarks.

For pure glue this Z(Nc) symmetry is exact and we can define an order parameter - the Polyakov
loop:

L(~x) =
1

Nc
Tr P exp

[
ig

∫ β

0
dτ τaAa0(~x, τ)

]
, (17)

with L transforming as

L(~x) 7→ Ωc L(~x) 1 = ei
2nπ
Nc L(~x) . (18)

At very high temperatures, g ∼ 0, and β 7→ 0, so that

〈`〉 = ei
2nπ
Nc `0 , `0 ∼ 1 , (19)

and we have a N -fold degenerate vacuum, signaling spontaneous symmetry breaking of global Z(Nc).
At T = 0, confinement implies that `0 = 0. Then, `0 = 0 can be used as an order parameter for the
deconfining transition:

`0 = 0 , T < Tc ; `0 > 0 , T > Tc . (20)

Usually the Polyakov loop is related to the free energy of an infinitely heavy test quark via (confinement:
no free quark)

〈`〉 = e−Ftest/T . (21)

See, however, the critical discussion in Ref. [31].

The analysis above is valid only for pure glue, i.e. with no dynamical quarks. However, we can still
ask whetherZ(3) is an approximate symmetry in QCD. On the lattice, in full QCD, one sees a remarkable
variation of ` around Tc, so that it plays the role of an approximate order parameter [33]. Notice, however,
that Z(3) is broken at high, not low T , just the opposite of what is found in the analogous description of
spin systems, such as Ising, Potts, etc [13]. The effective potential for the Polyakov loop is illustrated in
Fig. 6.

2.4 Adding quarks: chiral symmetry
In the limit of massless quarks, QCD is invariant under global chiral rotations U(Nf )L×U(Nf )R of the
quark fields. One can rewrite this symmetry in terms of vector (V = R + L) and axial (A = R − L)
rotations

U(Nf )L × U(Nf )R ∼ U(Nf )V × U(Nf )A . (22)

As U(N) ∼ SU(N)× U(1), one finds

U(Nf )L × U(Nf )R ∼ SU(Nf )L × SU(Nf )R × U(1)V × U(1)A , (23)
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Fig. 6: Effective potential for the Polyakov loop for T < Tc (upper) and T > Tc (lower). Extracted from Ref. [32].

where we see the U(1)V from quark number conservation and the U(1)A broken by instantons.

In QCD, the remaining SU(Nf )L×SU(Nf )R is explicitly broken by a nonzero mass term. Take,
for simplicity, Nf = 2. Then,

L =
1

4
F aµνF

aµν + ψLγ
µDµψL + ψRγ

µDµψR −mu(uLuR + uRuL)−md(dLdR + dRdL) , (24)

so that, for non-vanishing mu = md, the only symmetry that remains is the vector isospin SU(2)V .
In the light quark sector of QCD, chiral symmetry is just approximate. Then, for massless QCD, one
should find parity doublets in the vacuum, which is not confirmed in the hadronic spectrum. Thus, chiral
symmetry must be broken in the vacuum by the presence of a quark chiral condensate, so that

SU(Nf )L × SU(Nf )R 7→ SU(Nf )V , (25)

and the broken generators allow for the existence of pions, kaons, etc.

Hence, for massless QCD, we can define an order parameter for the spontaneous breaking of chiral
symmetry in the vacuum - the chiral condensate:

〈0|ψψ|0〉 = 〈0|ψLψR|0〉+ 〈0|ψRψL|0〉 , (26)

so that this vacuum expectation value couples together the L andR sectors, unless in the case it vanishes.
For very high temperatures or densities (low αs), one expects to restore chiral symmetry, melting the
condensate that is a function of T and quark masses and plays the role of an order parameter for the
chiral transition in QCD.

Again, the analysis above is valid only for massless quarks. However, we can still ask whether
QCD is approximately chiral in the light quark sector. On the lattice (full massive QCD), one sees a
remarkable variation of the chiral condensate around Tc, so that the condensate plays the role of an
approximate order parameter [33].

In summary, there are two relevant phase transitions in QCD, associated with spontaneous symme-
try breaking mechanisms for different symmetries of the action: (i) an approximate Z(Nc) symmetry and
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deconfinement, which is exact for pure gauge SU(Nc) with an order parameter given by the Polyakov
loop; (ii) an approximate chiral symmetry and chiral transition, which is exact for massless quarks, with
an order parameter given by the chiral condensate.

One can try to investigate these phase transitions by building effective models based on such
symmetries of the QCD action. Then, the basic rules would be: (i) keeping all relevant symmetries
of the action; (ii) trying to include in the effective action all terms allowed by the chosen symmetries;
(iii) developing a mimic of QCD at low energy using a simpler field theory; (iv) providing, whenever
possible, analytic results at least for estimates and qualitative behavior. Well-known examples are the
linear sigma model, the Nambu-Jona-Lasinio model, Polyakov loop models and so on [24]. Although
they represent just part of the story, combined with lattice QCD they may provide good insight.

3 A final comment
Instead of conclusions, just a final comment on a point we have already made in the discussion above.
To make progress in understanding, or at least in collecting facts about, (de)confinement and chiral sym-
metry, we need it all: experiments and observations, lattice simulations, theory developments, effective
models, and also combinations whenever possible. In that vein, it is absolutely crucial to have theorists
and experimentalists working and discussing together.
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Abstract
We cover some current topics in Beyond the Standard Model phenomenol-
ogy, with an emphasis on collider (particularly Large Hadron Collider) phe-
nomenology. We begin with a review of the Standard Model and some un-
resolved mysteries that it leaves. Then, we shall heuristically introduce su-
persymmetry, grand unified theories and extra dimensions as paradigms for
expanding the Standard Model. The collider phenomenology of such models
is too rich and complex to review, but we give some key examples of how
the new states associated with the models might be inferred in Large Hadron
Collider events1. Before concluding, we finish with a brief description of a
quantum field theory approximation that can be used in some cases to reduce
model dependence: effective field theory.

Keywords
Supersymmetry; extra dimensions; Large Hadron Collider; effective field the-
ories; gauge unification; lectures.

1 Introduction
We must remember that the Standard Model of particle physics is a remarkably successful physical
theory. It has been tested in literally thousands of different and diverse ways. Some of its predictions
(for example the anomalous electron magnetic moment) have been verified to one part in 1010, whereas
some of them (particularly the ones involving low energies and the strong interactions) have only been
tested at the 10% level. However, there is to date no unambiguous direct collider measurement which
rules it out. The more precise predictions are sensitive to higher loops of Standard Model particles (and
in principle could be affected by loops involving beyond the Standard Model particles). Going beyond
the Standard Model successfully then should not upset any of these successful predictions, and so any
extension is likely to only be a small perturbation, at least at the energy scales currently being probed.
Let us now turn to the fundamentals that The Standard Model is built upon.

1.1 A basic theory: quantum field theory
Microscopically we have quantum mechanics and special relativity as two fundamental theories. A
consistent framework incorporating these two theories is quantum field theory (QFT). In this theory
the fundamental entities are quantum fields. Their excitations correspond to the physically observable
elementary particles which are the basic constituents of matter as well as the mediators of all the known
interactions. Therefore, fields have a particle-like character. Particles can be classified in two general
classes: bosons (spin s = n ∈ Z) and fermions (s = n + 1

2∀n ∈ Z). Bosons and fermions have very
different physical behaviour. The main difference is that fermions can be shown to satisfy the Pauli
“exclusion principle”, which states that two identical fermions cannot occupy the same quantum state,
and therefore explaining the vast diversity of atoms.

1A large portion of these notes is based on Prof. Fernando Quevedo’s excellent Cambridge Part III “Supersymmetry and
extra dimensions” course [1], with his permission.
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All apparently elementary matter particles are fermions, for example the leptons (including elec-
trons and neutrinos) and quarks (that make protons, neutrons and all other hadrons). Bosons on the
other hand include the photon (particle of light and mediator of electromagnetic interaction), and the
mediators of all the other interactions. They are not constrained by the Pauli principle. As we shall see,
supersymmetry is a symmetry that unifies bosons and fermions despite all their differences.

1.2 Basic principle: symmetry
If QFT is the basic framework to study elementary processes, one tool to learn about these processes is
the concept of symmetry.

A symmetry is a transformation that can be made to a physical system leaving the physical ob-
servables unchanged. Throughout the history of science symmetry has played a very important role in
better understanding nature.

1.3 Classes of symmetries
For elementary particles, we can define two general classes of symmetries:

– Space-time symmetries: These symmetries correspond to transformations on a field theory acting
explicitly on the space-time coordinates,

xµ 7→ x′µ (xν)∀{µ, ν} = {0, 1, 2, 3}. (1)

Some examples are rotations, translations and, more generally, Lorentz- and Poincaré transforma-
tions defining special relativity as well as general coordinate transformations that define general
relativity.

– Internal symmetries: These are symmetries that correspond to transformations of the different
fields in a field theory,

Φa(x) 7→Ma
b Φb(x). (2)

Roman indices a, b label the corresponding fields2. If Ma
b is constant then the symmetry is a

global symmetry; in case of space-time dependent Ma
b(x) the symmetry is called a local symme-

try or a gauge symmetry.

1.4 Importance of symmetries
Symmetry is important for various reasons:

– Labelling and classifying particles: Symmetries label and classify particles according to the differ-
ent conserved quantum numbers identified by the space-time and internal symmetries (mass, spin,
charge, colour, etc.). In this regard symmetries actually “define” an elementary particle according
to the behaviour of the corresponding field with respect to the different symmetries.

– Symmetries determine the interactions among particles, by means of the gauge principle, for in-
stance. It is important that most QFTs of vector bosons are sick: they are non-renormalisable
in a way that makes them lose predictivity. The counter example to this is gauge theory, where
vector bosons are necessarily in the adjoint representation of the gauge group. As an illustration,
consider the Lagrangian

L = ∂µφ∂
µφ∗ − V (φ, φ∗) (3)

which is invariant under rotations in the complex plane

φ 7→ exp(iα)φ, (4)
2Unless otherwise noted, we follow the convention that repeated indices are summed over.

2

B.C. ALLANACH

114



as long as α is a constant (this corresponds to a global symmetry). If α = α(x), the kinetic term
is no longer invariant:

∂µφ 7→ exp(iα)
(
∂µφ + i(∂µα)φ

)
. (5)

However, the covariant derivative Dµ, defined as

Dµφ = ∂µφ+ iAµ φ, (6)

transforms like φ itself, if the gauge - potential Aµ transforms to Aµ − ∂µα:

Dµφ 7→ exp(iα)
(
∂µφ + i(∂µα)φ+ i(Aµ − ∂µα)φ

)

= exp(iα)Dµφ,

so we rewrite the Lagrangian to ensure gauge invariance:

L = Dµφ (Dµφ)∗ − V (φ, φ∗) . (7)

The scalar field φ couples to the gauge field Aµ via AµφAµφ, similarly, the Dirac Lagrangian

L = Ψ γµDµΨ (8)

contains an interaction term ΨAµΨ. This interaction provides the three point vertex that describes
interactions of electrons and photons, illustrating how photons mediate the electromagnetic inter-
actions.

– Symmetries can hide or be spontaneously broken: Consider the potential V (φ, φ∗) in the scalar
field Lagrangian above.

Fig. 1: The Mexican hat potential for V =
(
a− b |φ|2

)2
with a, b ≥ 0. From Ref. [1].

If V (φ, φ∗) = V (|φ|2), then it is symmetric for φ 7→ exp(iα)φ. If the potential is of the type

V = a |φ|2 + b |φ|4∀a, b ≥ 0, (9)

then the minimum is at 〈φ〉 = 0 (here 〈φ〉 ≡ 〈0|φ|0〉 denotes the vacuum expectation value (VEV)
of the field φ). The vacuum state is then also symmetric under the symmetry since the origin is
invariant. However if the potential is of the form

V =
(
a− b |φ|2

)2
∀a, b ≥ 0, (10)

the symmetry of V is lost in the ground state 〈φ〉 6= 0. The existence of hidden symmetries is
important for at least two reasons:
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(i) This is a natural way to introduce an energy scale in the system, determined by the non
vanishing VEV. In particular, in the Standard Model, the electroweak scale Mew ∼ 102 GeV
defines the basic scale of mass for the particles of the standard model, the electroweak gauge
bosons and the matter fields, through their Yukawa couplings, obtain their mass from the
VEV.

(ii) The existence of hidden symmetries implies that the fundamental symmetries of nature may
be larger than is apparent. This is because the only manifest symmetries we can observe are
the symmetries of the vacuum we live in and not those of the full underlying theory. This
opens-up an essentially unlimited resource to consider physical theories with an indefinite
number of symmetries even though they are not explicitly realised in nature. The standard
model is one typical example and supersymmetry and theories of extra dimensions are further
examples.

1.4.1 The Standard Model
The Standard Model is well defined and currently well confirmed by experiments. It is based on the two
classes of symmetry:

– space-time symmetry: Poincaré symmetry in 4 dimensions.
– internal symmetry: gauged GSM=SU(3)c×SU(2)L×U(1)Y symmetry, where SU(3)c defines the

strong interactions. SU(2)L×U(1)Y is spontaneously broken by the Higgs mechanism to U(1)em.
The gauge fields are spin-1 bosons, for example the photon Aµ, or gluons Ga=1,...,8. Matter fields
(quarks and leptons) have spin 1/2~ and come in three ‘families’ (successively heavier copies).
The Higgs boson (a particle has been discovered at the LHC whose properties are consistent
with the Standard Model Higgs boson) is the spin zero particle that spontaneously breaks the
SU(2)L×U(1)Y . The W± and Z0 bosons get a mass via the Higgs mechanism and therefore the
weak interactions are short range. This is also the source of masses for all quarks and leptons.
The sub-index L in SU(2)L refers to the fact that the Standard Model does not preserve parity
and differentiates between left-handed and right-handed particles. In the Standard Model only
left-handed fermions (and right-handed anti-fermions) transform non-trivially under SU(2)L. The
gauge particles have all spin s = 1~ and mediate each of the three forces: photons (γ) for U(1)
electromagnetism, gluons for SU(3)C of strong interactions, and the massive W± and Z0 bosons
for the weak interactions.

1.5 Problems of the Standard Model
The Standard Model is one of the cornerstones of all science and one of the great triumphs of the past
century. It has been carefully experimentally verified in many ways, especially during the past 20 years.
However, there are still some unresolved issues or mysteries:

– The hierarchy problem. The Higgs mass is mh ≈ 125 GeV, whereas the gravitational scale is
MPlanck ∼

√
G ∼ 1019 GeV. The ‘hierarchy problem’ is: why is mh/MPlanck ∼ 10−17 so

much smaller than 1? In a fundamental theory, one might expect them to be the same order. In
QFT, one sees that quantum corrections (loops) to mh are expected to be of order of the heaviest
scale in the theory divided by 4π. The question of why the hierarchy is stable with respect to the
quantum corrections is called the technical hierarchy problem, and is arguably the main motivation
for weak-scale supersymmetry.

– The cosmological constant (Λ) problem: probably the biggest unsolved problem in fundamental
physics. Λ is the energy density of free space time. The cosmological constant problem is: Why
is (Λ/MPlanck)

4 ∼ 10−120 � 1?
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– The Standard Model has around 20 parameters, which must be measured then set ‘by hand’. Many
consider that a more satisfying fundamental theory would relate all of these parameters to less (or
ideally one) fundamental parameter.

– What particle constitutes the inferred cold dark matter in the universe? It is not contained in the
Standard Model. Planck and large scale structure data favour a cosmological constant-cold dark
matter model, where approximately 22% of the universe’s energy budget lies in dark matter, only
4% in ordinary matter, and some 74% in mysterious dark energy3. Neutrinos constitute a hot
component of dark matter (since they are relativistic when they decouple from the thermal plasma
i.e. they smooth density perturbations in the early universe on smaller scales), so they are not good
candidates.

Fig. 2: For time t → (i.e. time increasing toward the right), this describes annihilation: once the particle physics
model is set, a calculation tells us how much is thermally produced in the early universe. This also is a diagram for
dark matter indirect detection, for example by dark matter collecting in the core of the sun and annihilating into
neutrinos which could be detected by the IceCube experiment. For t ←, the diagram depicts collider production
at (e.g.) the LHC, whereas for t ↑, it’s direct detection, where dark matter colliding with heavy nuclei may produce
measurable nuclear recoils.

– The anomalous magnetic moment of the muon: This is a particular interaction between the photon
and the muon: the Dirac equation predicts a muon magnetic moment

~M = gµ
e

2mµ

~S, (11)

and at tree level, gµ = 2. However, it can be measured very precisely by storing muons in a ring
with magnetic fields, then measuring the precession frequency of their spins. The ‘anomalous’ part
comes from loops involving various particles. Defining aµ ≡ gµ−2

2 [2],

aexp
µ = 11659209.1(5.4)(3.3)× 10−10, aSM

µ = 11659180.3(4.2)(2.6)× 10−10,

⇒ ∆aµ = aexp
µ − aSM

µ = 28.8(6.3)(4.9)× 10−10, (12)

3A tiny negative energy density of space-time, Λ ∼ O(10−3 eV)4.

Fig. 3: Some SM contributions to the anomalous magnetic moment of the muon. From Ref. [2].
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where the first number in brackets labels the statistical error and the second the systematic error.
The measurement of (g − 2)µ thus differs with the SM prediction at around the ∼ 3.6σ level (and
has done for some 20 years). There should be a new more accurate measurement from the Muon
g−2 experiment at the Fermilab collider in 2017. If one adds new particles to the SM, it is possible
that they could travel in loops in diagrams similar to those in Fig. 3, and introduce a non-standard
contribution to explain the discrepancy between the SM prediction and the SM measurement.

We wish to find extensions that could solve some or all of the problems mentioned above in order to
generalise the Standard Model. Experiments are a traditional way of making progress in science. We
need experiments to explore energies above the currently attainable scales and discover new particles and
underlying principles that generalise the Standard Model. This approach is of course being followed at
the LHC. The LHC will explore physics at the TeV scale, an interesting and important régime for new
physics beyond the Standard Model. Notice that directly exploring energies closer to the Planck scale
MPlanck ≈ 1019 GeV is out of the reach for many years to come.

1.5.1 The technical hierarchy problem
The Planck mass Mpl ≈ 1019 GeV is an energy scale associated with gravity and the electroweak scale
Mew ≈ 102 GeV is an energy scale associated with the electroweak symmetry breaking scale of the
Standard Model. The hierarchy problem involves these two scales being so different in magnitude.
Actually the problem can be formulated in two parts:

(i) Why is Mew � Mpl at tree level? This question is known as ‘the hierarchy problem’. There are
many solutions, once the SM is extended.

(ii) Once we have solved (i), we ask why is the hierarchy stable under quantum corrections? This
is the ‘technical hierarchy problem’ and does not have many full/effective solutions, aside from
supersymmetry (SUSY).

Let us now think some more about the technical hierarchy problem. In the Standard Model we know
that:

– Vector bosons are massless due to gauge invariance, that means, a direct mass term for the gauge
particles M2AµA

µ is not allowed by gauge invariance (Aµ → Aµ + ∂µα for a U(1) field, for
example).

– Chiral fermion masses mψ̄LψR are also forbidden for all quarks and leptons by gauge invariance
(because, for example, ψL and ψR have different hypercharges). Recall that these particles receive
a mass only through the Yukawa couplings to the Higgs (e.g. Hψ̄LψR giving a Dirac mass to ψ
after H gets a non-zero value4).

– The Higgs boson is the only fundamental scalar particle in the Standard Model. There is no
symmetry banning its mass term m2

hH
†H in the Standard Model Lagrangian. If the heaviest state

in the theory has a mass squared of Λ2, loops give corrections of order Λ2/(16π2) to the scalar
mass squared. The corrections come from both bosons and fermions running in loops, for example:

∼ − aλ2

16π2

∫
dnk

k2 −m2
F

+ . . ., (13)

where a is some dimensionless O(1) constant. The quantum correction to the Higgs mass from
this diagram are:

mphys
h

2
= (125 GeV/c2)2 = mtree

h
2

+O(m2
F /(16π2)). (14)

4With R−parity conservation (see below), the minimal supersymmetric standard model does not give neutrinos mass. Thus
one must augment the model in some way: one can do this by adding right-handed neutrinos to the model.
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Experimentally, the Higgs mass is measured to be mh ≈ 125 GeV. The Standard Model is consid-
ered to be unnatural since the loop corrections are typically much larger: the largest are expected
to be5 ∼ O(1017) GeV. Therefore even if we start with a tree-level Higgs mass of order the elec-
troweak scale, loop corrections would bring it up to almost the highest scale in the theory: Λ/(4π),
since we expect mF ∼ O(Λ). This would ruin the hierarchy between large and small scales. It
is possible to adjust or “fine tune” the loop corrections such as to keep the Higgs light, but this
would require cancellations between the apparently unrelated tree-level and loop contributions to
some 15 significant figures. This fine tuning is considered unnatural and an explanation of why
the Higgs mass (and the whole electroweak scale) can be naturally maintained to be hierarchically
smaller than the Planck scale or any other large cutoff scale Λ is required.

1.5.2 Modifications of the Standard Model
In order to go beyond the Standard Model we can follow several avenues, for example:

– Add new particles and/or interactions (e.g. a dark matter particle).
– More symmetries. For example,

(i) Internal symmetries, for example grand unified theories (GUTs) in which the symmetries of the
Standard Model are themselves the result of the breaking of a yet larger symmetry group:

GGUT
M≈1016GeV−→ GSM

M≈102GeV−→ SU(3)c × U(1)Y , (15)

Let’s take one of the simplest examples, GGUT = SU(5):

5 =




d
d
d
e+

ν̄e



R

, 10 =




0 ū −ū −u −d
0 ū −u d

0 −u d
0 e+

0



L

. (16)

(The 10 is an anti-symmetric matrix; we have omitted the lower left-hand half of it because the
entries are simply related to those above the diagonal). Thus, we see how quarks and leptons
become unified within multiplets of GGUT.
The GUT proposal is very elegant because it unifies, in one single symmetry, the three gauge
interactions of the Standard Model. It leaves unanswered most of the open questions above, except
for the fact that it reduces the number of independent parameters due to the fact that there is only
one gauge coupling at large energies. This is expected to “run” at low energies and give rise
to the three different couplings of the Standard Model (one corresponding to each group factor).
Unfortunately, with our present precision understanding of the gauge couplings and spectrum of
the Standard Model, the running of the three gauge couplings does not unify at a single coupling
at higher energies but they cross each other at different energies: see Fig. 4. Because leptons and
quarks are unified within GUT multiplets, they predict e.g. me(MGUT ) = md(MGUT ), which
also doesn’t work, and in practice further model building is required.
GUTs have heavy X and Y gauge boson particles of order the gauge unification scale, which arise
from a GUT Higgs mechanism (in a completely analogous way to the way in which theW± andZ0

bosons acquire their mass).They predict proton decay, which isn’t observed at super-Kamiokande.
The current constraint from super-Kamiokande is that the proton lifetime τp→e+π0 > 1034 years.
However, estimating MGUT ∼ 1015 GeV from Fig. 4, we predict, for ordinary GUTs, a proton
lifetime of

τ ≈ M4
GUT

α2m5
p

= 4.5× 1029±1.7 years, (17)

5This does rely on quantum gravity yielding an effective quantum field theory that acts in the usual way.
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Fig. 4: Gauge unification doesn’t work in the Standard Model: the three gauge couplings α1, α2, α3 should all
unify at a single renormalisation scale Q. One needs to add some additional particles of mass below 1014 GeV
in order to make this work. Experiments (LEP and LHC experiments, for example) fix the gauge couplings at the
left-hand side of the figure, and renormalisation within QFT is used to evolve them to the right. From Ref. [2].

Fig. 5: Example p→ e+π0 process from GUTs. From Ref. [2].
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which easily is in contravention of the Super Kamiokande bound.
(ii) Supersymmetry. For a phenomenological review of supserymmetry, see Ref. [3]. Supersymmetry

is an external, or space-time, symmetry. Supersymmetry solves the technical hierarchy problem
due to cancellations between the contributions of bosons and fermions to the electroweak scale,
defined by the Higgs mass. Combined with the GUT idea, it also solves the unification of the three
gauge couplings at one single point at larger energies. Supersymmetry also provides the most
studied example for dark matter candidates. Moreover, it provides well defined QFTs in which the
régime of strong coupling can be better studied than in non-supersymmetric models.

(iii) Extra spatial dimensions. More general space-time symmetries open up many more interesting
avenues for investigation. These can be of two types. First we can add more dimensions to
space-time, extending the Poincaré symmetries of the Standard Model and the general coordi-
nate transformations of general relativity. This is the well known Kaluza Klein theory in which
our observation of a 4 dimensional universe is only due to the fact that we have limitations about
“seeing” other dimensions of space-time that may be hidden to our observations. In recent years
this has been extended to the brane world scenario in which our 4 dimensional universe is only a
brane or surface inside a higher dimensional universe. These ideas lead to a different perspective
on the hierarchy problem and also may help unify internal and space-time symmetries.

– Beyond QFT: A QFT with Supersymmetry and extra dimensions does not address the problem of
quantising gravity. For this purpose, the current best hope is string theory which goes beyond the
basic framework of QFT. It so happens that for its consistency, string theory requires supersym-
metry and extra dimensions.

1.6 Supersymmetry algebra
1.6.1 History of supersymmetry

– In the 1960’s, the study of strong interactions lead to the discovery of many hadrons. These were
successfully organised into multiplets of SU(3)f , the f referring to flavour. This procedure was
known as the eight fold way of Gell-Mann and Neeman. Questions arose about bigger multiplets
including particles of different spins.

– In a famous No-go theorem (Coleman, Mandula 1967) said that the most general symmetry of the
S - matrix (which still has non-trivial scattering) is Poincaré × internal. The implication is that
there is no symmetry that mixes up the internal and external symmetries in a non-trivial way, or
that mixes particles of different spin, and still has scattering.

– Golfand and Licktman (1971) extended the Poincaré algebra to include spinor generators Qα,
where α = 1, 2.

– Ramond, Neveu-Schwarz, Gervais, Sakita (1971) derived supersymmetry in 2 dimensions (from
string theory).

– Wess and Zumino (1974) wrote down supersymmetric field theories in 4 dimensions. They opened
the way for many other contributions to the field. This is often seen as the actual starting point for
the systematic study of supersymmetry.

– Haag, Lopuszanski, Sohnius (1975): generalised the Coleman Mandula theorem to show that the
only non-trivial quantum field theories have a symmetry group of super Poincaré group in a direct
product with internal symmetries.

1.6.2 Graded algebra
The Poincaré algebra consists of commutation relations between 4-momentum operators Pµ (generat-
ing translations in space and time) and Mµν , generating Lorentz boosts and rotations. Particles of the
Standard Model are all irreducible representations of the Poincaré group.
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To implement supersymmetry, we extend the Poincaré algebra non-trivially. The Coleman Man-
dula theorem stated that in 3+1 dimensions, one cannot do this in a non-trivial way and still have non-
zero scattering amplitudes. In other words, there is no non-trivial mix of Poincaré and internal symme-
tries with non-zero scattering except for the direct product

Poincaré × internal.

However (as usual with no-go theorems) there was a loop-hole because of an implicit axiom: the proof
only considered “bosonic generators”.

We wish to turn bosons into fermions, thus we need to introduce a fermionic generator Q. Heuristically:

Q|boson〉 ∝ |fermion〉, Q|fermion〉 ∝ |boson〉.

For this, we require a graded algebra - a generalisation of Lie algebra. If Oa is an operator of an algebra
(such as a group generator), a graded algebra is

OaOb − (−1)ηaηbObOa = iCeabOe, (18)

where ηa = 0 if Oa is a bosonic generator, and ηa = 1 if Oa is a fermionic generator.

For supersymmetry, the bosonic generators are the Poincaré generators Pµ, Mµν and the fermionic
generators are QAα , Q̄Aα̇ , where A = 1, . . . , N . In case N = 1 we speak of a simple supersymmetry
(SUSY), in the case N > 1, of an extended SUSY. Here, we will only discuss the more immediately
phenomenologically relevant case of N = 1.

2 Introducing the minimal supersymmetric standard model (MSSM)
The MSSM is based on SU(3)C × SU(2)L × U(1)Y × (N = 1 SUSY). We must fit all of the ex-
perimentally discovered field states into N = 1 ‘super multiplets’: just as quarks are 3 dimensional
representations of SU(3) (i.e. one has a red, blue and green quark all within one multiplet), the MSSM
fits all of its particles into super multiplets, whose types are:

– Chiral super multiplets: These contain a chiral left-handed fermion and a complex scalar.
– Vector super multiplets: These contain a spin 1~ vector boson and a spin 1/2~ Majorana fermion.

Super multiplets are formally built up from the algebra (we omit such technical details from these lec-
tures). Since the symmetry group is a direct product between SUSY and the SM gauge symmetries, one
can perform a SUSY transformation without changing the gauge quantum numbers of the super multi-
plet. Spin 1~ vector bosons (e.g. the gluon) must be in the adjoint representation (for SU(3) this has
eight colour states) in order to make a renormalisable QFT, therefore the vector super multiplets must be
in the adjoint representation. Thus, the spin 1/2~ copy must also be in the adjoint representation (thus,
from our example, we predict eight colour states of spin 1/2~ fermions: the ‘gluinos’). Supersymmetry
imposes that the two partners f̃L,R and F of the super multiplet should couple with the same strengths
as each other to other particles, and it also imposes that they should have the same mass as each other.
Since

m2
f̃L,R

= m2
F , (19)

and the scalars f̃L,R and the fermion F couple to the Higgs field h with the same strength coupling λ:

+
∼ O

(
m2
h log(MZ/mF )

16π2

)
. (20)
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Even if F is a very heavy field associated with the highest scale of new physics, Eq. 20 does not
present a huge correction tom2

h: it is a usual loop-level correction, adding a few percent. The really huge
corrections from Eq. 14 ∝ m2

F have been cancelled between the two diagrams6 in Eq. 20. This is how
supersymmetry solves the technical hierarchy problem.

Eq. 19 is not realised in nature (no one has seen a scalar version of the electron with the same
mass as it, for example) and so we must bear in mind that supersymmetry must eventually be broken.
However, we only wish to break it in a way that preserves it as a solution to the technical hierarchy
problem: in specific models of supersymmetry breaking this can be done, but the coupling relations (that
superpartners couple to other fields with the same strength as their SM partners) remain valid even after
SUSY breaking. In particular, Eqs. 19 and 20 become

m2
f̃L,R

= m2
F + ∆m2, (21)

whilst the scalars f̃L,R and the fermion F still couple to the Higgs field hwith the same strength coupling
λ:

+
∼ O

(
m2
h log(MZ/mF ) + ∆m2

16π2

)
.

(22)

Thus, as long as the splitting between the particles in a super multiplet is small, and as long as
certain SUSY relations are preserved (such as the coupling of the Higgs field to the scalar and fermionic
components of a super multiplet being equal), one still obtains only reasonable corrections to the Higgs
mass squared, even if the fields F and f̃L,R are very heavy. The fact that we require ∆m2/(16π2) to be
not much larger than m2

h = (125 GeV)2 ⇒ ∆m2 < O(1 TeV2). This is then the main argument for
why supersymmetric partners of SM particles should not be much heavier than the TeV scale, because
otherwise its correction to the Higgs mass would be too large. Given that the LHC currently operators
at a centre of mass energy of 13 TeV, this implies that there ought to be enough energy to pair produce
such sparticles.

2.1 Particles
First of all, we have vector superfields containing the Standard Model gauge bosons. We write their
representations under (SU(3)C , SU(2)L, U(1)Y ) as (pre-Higgs mechanism):

– gluons/gluinos
G = (8, 1, 0)

– W bosons/winos
W = (1, 3, 0)

– B bosons/gauginos
B = (1, 1, 0),

which contains the gauge boson of U(1)Y .

Secondly, there are chiral superfields containing Standard Model matter and Higgs fields. Since chiral su-
perfields only contain left-handed fermions, we place charge conjugated, i.e. anti right handed fermionic
fields (which are actually left-handed), denoted by c ({i, j, k} ∈ {1, 2, 3} are family indices):

6Recall that loops of fermions acquire a minus sign in the sum as compared to scalars.
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– (s)quarks: lepton number L = 0, whereas baryon number B = 1/3 for a (s)quark, B = −1/3 for
an anti-quark.

Qi =
(
3, 2, 1

6

)
︸ ︷︷ ︸

left-handed

, uci =
(
3̄, 1,−2

3

)
, dci =

(
3̄, 1, 1

3

)
︸ ︷︷ ︸

anti (right-handed)

– (s)leptons L = 1 for a lepton, L = −1 for an anti-lepton. B = 0.

Li =
(
1, 2,−1

2

)
︸ ︷︷ ︸

left-handed

, eci = (1, 1,+1)︸ ︷︷ ︸
anti (right-handed)

– Higgs bosons/higgsinos: B = L = 0.

H2 =
(
1, 2, 1

2

)
, H1 =

(
1, 2, −1

2

)

the second of which is a new Higgs doublet not present in the Standard Model. Thus, the MSSM is
a two Higgs doublet model. The extra Higgs doublet is needed in order to avoid a gauge anomaly,
and to give masses to down-type quarks and leptons.

Note that after the breaking of electroweak symmetry (see the Standard Model course), the electric charge
generator is Q = T

SU(2)L
3 + Y/2. Baryon and lepton number correspond to multiplicative discrete

perturbative symmetries in the SM, and are thus conserved, perturbatively.

Chiral fermions may generate an anomaly in the theory, as shown by Fig. 6. This is where a symmetry
that is present in the tree-level Lagrangian is broken by quantum corrections. Here, the symmetry is
U(1)Y : all chiral fermions in the theory travel in the loop, and yield a logarithmic divergence propor-
tional to

A ≡
∑

LH fi

Y 3
i −

∑

RH fi

Y 3
i (23)

multiplied by some kinematic factor which is the same for each fermion. If A is non-zero, one must
renormalise the diagram away by adding a BµBνBρ counter term in the Lagrangian. But this breaks
U(1)Y , meaning that U(1)Y would not be a consistent symmetry at the quantum level. Fortunately,

f

f

f
Bµ

Bν

Bρ

+

f

f

f
Bµ

Bν

Bρ

Fig. 6: Anomalous Feynman diagrams proportional to Tr{Y 3}. The sum of them must vanish for U(1)Y to
be a valid symmetry at the quantum level. Hyper-charged chiral fermions f travel in the loop contributing to a
three-hypercharge gauge boson B vertex. From Ref. [1].

A = 0 for each fermion family in the Standard Model. Contributions are from (the factors of 3 are from
the different colours of the quarks, whereas the factors of 2 come from the different SU(2)L degrees of
freedom):

3× 2× (
1

6
)3

︸ ︷︷ ︸
QL

+ 3× (−2

3
)3

︸ ︷︷ ︸
ucR

+ 3× (
1

3
)3

︸ ︷︷ ︸
dcR

+ 2× (−1

2
))3

︸ ︷︷ ︸
LL

+ 13
︸︷︷︸
ecR

= 0.
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Fig. 7: Example Feynman diagrams leading to renormalisation of the strong coupling constant g3. The left-hand
diagram renormalises the QCD gauge coupling in the Standard Model, whereas in the MSSM, we have additional
contributions from supersymmetric particles such as the one on the right-hand side with gluinos in the loop. There
are other contributing diagrams, some involving loops of quarks and squarks, for instance.

In SUSY, we add the Higgsino doublet H̃1, which yields a non-zero contribution to A. This must be
cancelled by another Higgsino doublet with opposite Y : H̃2.

There is another special super multiplet sometimes considered to be part of the MSSM with B =
L = 0. This is the gravity super multiplet, with the spin 2~ graviton and a spin 3/2~ gravitino. Usually,
after SUSY breaking (see later), the only component of the gravitino that couples with non-negligible
strength is its spin 1/2~ component.

G = (1, 1, 1)

2.2 Interactions
– Gauge couplings are renormalised, which ends up giving them renormalisation scale dependence,

which matches onto dependence upon the energy scale at which one is probing them:

µ
dga(µ)

dµ
= βag

3
a(µ),⇒ g−2

a (µ) = g−2
a (µ0)− 2βa ln

µ

µ0
(24)

where βa is a constant determined by which particles travel in the loop in the theory. For ordinary
QCD it is β3 = −7/(16π2) whereas for the MSSM, it is β3 = −3/(16π2) because of additional
contributions from squarks and gluinos to the loops, as in Fig. 7.
Eq. 24 is used to extrapolate gauge couplings measured at some energy scale µ0 (often taken to be
MZ , from LEP constraints) to some other scale µ. With the SUSY contributions in the MSSM, the
gauge couplings almost meet at a renormalisation scale E ≈ 2 × 1016 GeV (see Fig. 8), whereas
with just the Standard Model contributions, they do not meet each other at all: see Fig. 4. The
meeting of the gauge couplings is a necessary condition for a Grand Unified Theory, which only
has one gauge coupling (above MGUT ≈ 2 × 1016 GeV). α1(MZ) and α2(MZ) are both known
with high accuracy from the LEP experiments, so we can use them to predict MGUT ∼ 1016 GeV
and αs(MZ) = 0.129 ± 0.002. The experimental determination7 of αs(MZ) = 0.119 ± 0.002,
so the naive prediction is some 5σ out. However, this small difference is easily explained by GUT
threshold corrections (for example because the X or Y bosons are a factor of a few lighter than
MGUT and change the running near the GUT scale) in explicit GUT models.
Gauge couplings are renormalised, which ends up giving them renormalisation scale dependence,
which matches onto dependence upon the energy scale at which one is probing them (one achieves
a worse approximation in a truncated perturbation series by picking the renormalisation scale to
be vastly different to the energy scales probed in some process): integrating both sides,

µ
dga(µ)

dµ
= βag

3
a(µ),⇒ g−2

a (µ) = g−2
a (µ0)− 2βa ln

µ

µ0
(25)

7We quote SM gauge couplings in the MS scheme.
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Fig. 8: Gauge unification in the MSSM: the thickness of the lines corresponds to the 2σ error bars. The right-hand
panel shows a zoom of the unification region near Q ∼ 1016 GeV.

where βa is a constant determined by which particles travel in the loop in the theory. For ordinary
QCD it is β3 = −7/(16π2) whereas for the MSSM, it is β3 = −3/(16π2) because of additional
contributions from squarks and gluinos to the loops.

– A ‘superpotential’ is like a Lagrangian energy density for SUSY theories: it encodes some of the
interactions between the chiral superfields in a way that preserves SUSY. A superpotential term
W = λΦ3 for a chiral superfield Φ = (ϕ, ψ) encodes both a Yukawa interaction L = −λϕψψ
and a scalar interaction L = −|λ|2|ϕ|4, for example.
We write down a superpotential containing all terms which are renormalisable and consistent with
our symmetries. If one does this, one obtains two classes of terms, W = WRp + WRPV . The
terms in WRp all conserve baryon number B and lepton number L, whereas those in WRPV break
either B or L:

WRp = (YU )ij QiH2 u
c
j + (YD)ij QiH1 d

c
j + YE LiH1 e

c
j + µH1H2 (26)

WRPV = λijk Li Lj e
c
k + λ′ijk LiQj d

c
k + λ′′ijk u

c
i d

c
j d

c
k + κi LiH2, (27)

where we have suppressed gauge indices. Since superfields commute in W ,

Ha
1H

b
1εab =

1

2
(Ha

1H
b
1 +Hb

1H
a
1 )εab =

1

2
Ha

1H
b
1(εab + εba) = 0 (28)

The first three terms in WRp correspond to standard Yukawa couplings and give masses to up
quarks, down quarks and leptons, as we shall see. Writing x = 1, 2, 3 as a fundamental SU(3)
index, a, b = 1, 2 as fundamental SU(2) indices, the first term in WRp becomes

(YU )ijQ
xa
i H

b
2u

c
jxεab = (YU )ij [u

x
LH

0
2u

c
jx − dxLH+

2 u
c
jx]. (29)

Once the neutral Higgs component develops a vacuum expectation value,H0
2 ≡ (v2 +h0

2)/
√

2, the
first term becomes (YU )ijv2/

√
2uxLiu

c
jx + . . ., yielding a Dirac mass matrix mu ≡ (YU )ijv2/

√
2

for the up quarks. The down quark and lepton masses proceed in an analogous manner. The fourth
term is a mass term for the two Higgs(ino) fields.
If all of the terms in WRPV are present, the interaction shown in Fig. 9 would allow proton decay
p→ e+ + π0 within seconds because

Γ(p→ e+π0) ≈ λ′211kλ
′′2

11k

16π2m̃4
dk

M5
p , (30)
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whereas experiments say that it should be > 1034 years. Alternatively, we could make the RPV
couplings very small to make the proton long-lived, by imposing the implied bound on Γ(p →
e+π0):

λ′11k · λ′′11k < 10−27

(
m̃dk

100 GeV

)2

. (31)

In order to forbid proton decay an extra symmetry should be imposed. One symmetry that works

Fig. 9: Proton decay p→ e+π0 due to baryon- and lepton number violating interactions. Both B and L violating
terms must be present for the proton to decay. The matrix element is proportional to λ′′1j1

∗ × λ′11j∗.

is a discrete multiplicative symmetry R parity defined as

R ≡ (−1)3(B−L)+2S =
{

+1 : Standard Model particles, − 1 : superpartners . (32)

It forbids all of the terms in WRPV , but there exist other examples which only ban some subset.

R parity would have important physical implications:

– The lightest superpartner (LSP) is stable, because it is R−parity odd.
– Cosmological constraints then say that a stable LSP must be electrically and colour-neutral (hig-

gsino, photino, zino). It is then a good candidate for cold weakly interacting dark matter.
– In colliders, the initial state is Rp = +1, implying that superparticles are produced in pairs. When

a superparticle decays, it must decay to another (lighter) superparticle plus some standard model
particles.

– One ends up with LSPs at the end of the decays. These do not interact with the detector, and hence
appear as unbalanced or ‘missing’ momentum.

Note that the terms in WRPV can lead to Majorana fermion structure8. For instance, W =
λ′′112u

c
1d
c
1d
c
2: we take the F− terms as usual in order to find the Lagrangian in terms of components:

L =
1

2

(
λ′′112ũ

∗
1d1
†
RCd2

∗
R − (λ′′112)∗ũ1d1

T
RC
∗d2R

)

plus supersymmetric copies, where C is the charge conjugation matrix and T denotes transpose.

RPV has several potential motivations and characteristics:
8This is a familiar structure for people extending the Standard Model to include neutrino masses.
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Fig. 10: RPV generation of neutrino masses and mixings. Here, the dots show the L violating RPV couplings.

– It has many additional search possibilities9

– Dark matter changes character: one loses the usual neutralino dark matter candidate. However,
the SUSY breaking sector always contains other fields that may be used instead, for example the
gravitino or hidden sector fields. Either of these two candidates is so weakly coupled that direct or
indirect dark matter detection becomes extremely unlikely, although inference of its production at
colliders is still possible.

– Neutrino masses and mixings are generated by the L violating couplings in diagrams like those
in Fig. 10, and the mechanism of their generation is potentially testable at the LHC (unlike, for
example, the seesaw mechanism of producing neutrino masses).

2.3 Supersymmetry breaking in the MSSM
An operator called the supertrace treats bosonic and fermionic parts of a super multiplet differently. It is
defined as

STr
{
M2
}
≡
∑

j

(−1)2j+1 (2j + 1)m2
j = 0, (33)

where j represents the ‘spin’ of the particles in some super multiplet. This is generic for tree level
directly broken SUSY. Thus, we cannot break supersymmetry directly in the MSSM, since it preserves
STr

{
M2
}

= 0. Applying this to the photon, say: −3m2
γ + 2m2

γ̃ = 0, which would predict a massless
photino that hasn’t been observed. Applying it to up quarks: 2m2

u−m2
ũL
−m2

ũR
= 0, thus one up squark

must be lighter than the up quark, again this hasn’t been observed. We introduce a hidden sector, which
breaks SUSY and has its own fields (which do not directly interact with MSSM fields) and interactions,
and an additional messenger sector to communicate the SUSY breaking to the observable sector fields:

(
observable

sector, MSSM

)
←→

(
messenger -

sector

)
←→

(
hidden
sector

)
.

This gets around the supertrace rule. There is typically an overall gauge group
(
SU(3)× SU(2)× U(1)

)
×G���SUSY ≡ GSM ×G���SUSY,

where the MSSM fields are singlets of G���SUSY and the hidden sector fields are singlets of GSM .

We have already seen several examples of SUSY breaking theories. One popular SUSY-breaking
sector in the MSSM context is that of gaugino condensation: here, some asymptotically free gauge
coupling g becomes large at some energy scale Λ. g will renormalise like Eq. 24 with some beta function
coefficient. Solving the equation, with g−2(Λ) → 0, we obtain Λ = M exp[g−2(M)/β]. M could be
some large scale such as the string scale, ∼ 5 × 1017 GeV. It is easy to arrange for Λ � M because

9This leads us to a conjecture: any experimental excess can be explained by RPV SUSY. We have not found any counter-
examples to this yet. This in turn leads to Butterworth’s corollary: RPV is the last refuge of the ambulance chasing scoundrel..
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of the exponential suppression. When the gauge coupling becomes large, and the theory becomes non-
perturbative, one can obtain 〈g̃g̃〉 ∼ O(Λ3), breaking SUSY dynamically10.

The SUSY breaking fields have couplings with the messenger sector, which in turn have couplings
with the MSSM fields, and carry the SUSY breaking over to them. There are several possibilities for the
messenger sector fields, which may determine the explicit form of SUSY breaking terms in the MSSM,
including (note here that M���SUSY is the SUSY breaking in the hidden sector, whereas ∆m is the SUSY
breaking that ends up in the MSSM fields):

– gravity mediated���SUSY
If the mediating field couples with gravitational strength to the standard model, the couplings are
suppressed by the inverse Planck mass Mpl, the natural scale of gravity. The SUSY breaking mass
splitting between MSSM particles and superparticles, ∆m, becomes

∆m =
M2
���SUSY
Mpl

. (34)

We want ∆m ≈ 1TeV and we know that Mpl ≈ 1019GeV, so

M���SUSY =
√

∆m ·Mpl ≈ 1011GeV. (35)

The gravitino gets a mass m 3
2

of ∆m order TeV from the ‘super Higgs mechanism’.

log scale

M

g

m Λ SUSYM~∆

Fig. 11: Gaugino condensation and supergravity mediated SUSY breaking. From Ref. [1].

– gauge mediated���SUSY
Messenger fields are charged under both GSM and G���SUSY. Gauge loops transmit SUSY breaking
to the MSSM fields. Thus, ∆m ∼ M���SUSY/(16π2) is required to be of order TeV. In this case, the

gravitino mass m 3
2
∼ M2��SUSY

Mpl
∼ eV and the gravitino is the LSP.

– anomaly mediated���SUSY
In this case, the auxiliary fields of supergravity get a vacuum expectation value. The effects are
always present, but suppressed by loop factors. They may be dominant if the tree-level contribution
is suppressed for some reason.

Each of these scenarios has phenomenological advantages and disadvantages and solving their problems
is an active field of research. In all scenarios, the Lagrangian for the observable sector has contributions

L = LSUSY + L���SUSY. (36)
10Here, g̃ is the gaugino of the hidden sector gauge group, and β is the hidden gauge group beta function coefficient.
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In the second term, we write down all renormalisable symmetry invariant terms which do not reintroduce
the hierarchy problem. They are of the form (where i and j label different fields):

L���SUSY = m2
ij ϕ
∗
i ϕj +m′2ij(ϕiϕj + h.c.)

︸ ︷︷ ︸
scalar masses

+




1

2
Mλ λλ
︸ ︷︷ ︸

gaugino masses

+ Aijk ϕiϕjϕk︸ ︷︷ ︸
trilinear couplings

+h.c.


 . (37)

Mλ,m
′2
ij ,m

2
ij , Aijk are called soft SUSY breaking terms: they do not reintroduce quadratic divergences

into the theory. Particular forms of SUSY breaking mediation can give relations between the different
soft SUSY breaking terms. They determine the amount by which supersymmetry is expected to be
broken in the observable sector, and the masses of the superparticles for which the LHC is searching.
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Fig. 12: An example of renormalisation in the MSSM using the program SOFTSUSY [4] to calculate the renormali-
sation. A particular high energy theory is assumed, which has GUT symmetry and implies that the gauginos are all
mass degenerate at the GUT scale. The scalars (e.g the right-handed electron Er and the left-handed squarks Ql)
are also mass-degenerate at the GUT scale. Below the GUT scale though, the masses split and renormalise sepa-
rately. When we are scattering at energies ∼ O(100) GeV, it is a good approximation to use the masses evaluated
at that renormalisation scale µ ≈ E. We see that one of the Higgs mass squared parameters, µ2 +M2

Hu, becomes
negative at the electroweak scale, triggering electroweak symmetry breaking.

Explicitly, we parameterise all of the terms that softly break SUSY in the Rp preserving MSSM,
suppressing gauge indices:

L���SUSY
Rp = (AU )ijQ̃LiH2ũ

∗
Rj + (AD)ijQ̃LiH1d̃

∗
Rj + (AE)ijL̃LiH1ẽ

∗
Rj +

Q̃∗Li(m
2
Q̃

)ijQ̃Lj + L̃∗i (m
2
L̃

)ijL̃j + ũRi(m
2
Ũ

)ij ũ
∗
Rj + d̃Ri(m

2
D̃

)ij d̃
∗
Rj + ẽRi(m

2
Ẽ

)ij ẽ
∗
Rj +

(m2
3H1H2 + h.c.) +m2

1|H2
1 |+m2

2|H2|2 +
1

2
M3g̃g̃ +

1

2
M2W̃W̃ +

1

2
M1B̃B̃.

Sometimes,m2
3 is written as µB. Often, specific high scale models provide relations between these many

parameters. For instance, the Constrained MSSM (which may come from some particular string theory
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or other field theory) specifies the constraints

M1 = M2 = M3 =: M1/2

m2
Q̃

= m2
L̃

= m2
Ũ

= m2
D̃

= m2
Ẽ
≡ m2

0I3

m2
1 = m2

2 = m2
0

AU = A0YU , AD = A0YD, AE = A0YE

where I3 is the 3 by 3 identity matrix. Thus in the ‘CMSSM’, we reduce the large number of free SUSY
breaking parameters down to11 3: M1/2, m0 and A0. These relations hold at the GUT scale, and receive
large quantum corrections, as Fig. 12 shows.

2.4 States after electroweak symmetry breaking
With two complex Higgs doublets, we count 8 real degrees of freedom. 3 of these are ‘eaten’ by the
longitudinal components of the W± and Z0 bosons, leaving a total of five physical Higgs fields: two
CP−even (in mass order) h0, H0, one CP−odd A0 and two charged Higgs’ H±. The other SUSY par-
ticles that have identical quantum numbers under QED×QCD mix after electroweak symmetry breaking:
for example the bino, wino, and two neutral Higgsinos mix. Their mass eigenstates are called neutrali-
nos, conventionally written in order of their masses χ0

1,2,3,4. χ0
1 typically has a special status in that is

a good candidate for dark matter if it is the lightest supersymmetric particle and Rp is conserved. The
scalar partner of the left-handed top (called the ‘left-handed stop’) mixes with the right-handed stop to
form two mass eigenstates: t̃1,2. This analogously occurs for the sbottoms and staus as well. The charged
Higgsinos mix with the winos to form mass eigenstates called ‘charginos’: χ±1,2.

2.5 The Neutral Higgs Potential
Both Higgs’ of the MSSM acquire vacuum expectation values:

(
H0

1

H−1

)
→
(
v1

0

) (
H+

2

H0
2

)
→
(

0
v2

)
(38)

and to get the value ofMW to match with experimental data, we require vSM = 246 GeV. In a two-Higgs
doublet model, this leads to the following construction:

tanβ = v2
v1

.

tanβ is a parameter which changes the phenomenology of the model because the third family Yukawa
couplings depend upon it, and they are comparatively large dimensionless couplings. The Yukawa terms
from the MSSM superpotential are:

L = htt̄LH
0
2 tR + hbb̄LH

0
1bR + hτ τ̄LH

0
1τR + H.c. + . . . (39)

⇒ mt

sinβ
=

htvSM√
2

,
mb,τ

cosβ
=
hb,τvSM√

2
, (40)

after electroweak symmetry breaking and the neutral components of Higgs’ are replaced by their vacuum
expectation values: H0

i = (v0
i +H0

i )/
√

2.

11One should really include tanβ = v2/v1 as well, the ratio of the two Higgs vacuum expectation values.
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Fig. 13: Example one-loop diagram of sparticles contributing to (g − 2)µ.

Picking out only the terms involving the neutral Higgs fields H0
1 and H0

2 , we have the neutral
Higgs potential

V = (|µ|2 +m2
H2

)|H0
2 |2 + (|µ|2 +m2

H1
)|H0

1 |2)−µB(H0
2H

0
1 + H.c.)+

1

8
(g2 + g′2)(|H0

2 |2 − |H0
1 |2)2.

(41)
The vacuum minimises this potential with respect to both of the neutral components:

∂V

∂H0
2

=
∂V

∂H0
1

= 0⇒ µB =
sin 2β

2
(m̄2

H1
+ m̄2

H2
+ 2µ2),µ2 =

m̄2
H1
− m̄2

H2
tan2 β

tan2 β − 1
− M2

Z

2
. (42)

These two conditions should be used to eliminate two of the MSSM’s free parameters: often, |µ| and B
(although note that the sign of µ is physical and not determined by Eq. 42).

2.6 Pros and Cons of the MSSM
We start with a list of unattractive features of the MSSM:

– There are ∼ 100 extra free parameters in the SUSY breaking sector, making for a complicated
parameter space.

– Nearly all of this parameter space is ruled out by flavour physics constraints: SUSY particles could
heavily mix in general, then this mixing could appear in loops and make the quarks mix in a flavour
changing neutral current, upon which there are very strong experimental bounds. It could be that
this clue is merely telling us that there is more structure to the MSSM parameter space, though
(like in the CMSSM).

– The µ problem. µ in WRp must be < O(1) TeV, since it contributes at tree-level to mh. Why
should this be, when in principle we could put it to be ∼ O(MPl), because it does not break any
SM symmetries? (Note though that once it is set to be small at tree-level, SUSY protects it from
large quantum corrections).

– As lower limits on sparticle masses increase, the extent to which SUSY solves the hierarchy prob-
lem decreases.

These SUSY problems can be solved with further model building.

We close with an ordered list of weak-scale SUSY’s successes:

– SUSY solves the technical hierarchy problem.
– Gauge unification works.
– The MSSM contains a viable dark matter candidate, if Rp is conserved.
– Electroweak symmetry breaks radiatively.
– A one-loop diagram involving sneutrinos and charginos (and one involving smuons and neutrali-

nos: see Fig. 13) contribute to the anomalous magnetic moment of the muon, and may solve the
discrepancy between SM predictions and experimental measurements in Eq. 12.
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Fig. 14: Picture of the production of sparticles at a 14 TeV LHC.

2.7 LHC Production of SUSY Particles
One turns the energy of the LHC beams into mass via E = mc2, hoping to produce pairs (if Rp is
conserved) of SUSY particles that were too heavy to have been previously produced in lower energy
machines. We show a schematic in Fig. 14: occasionally, high energy constituents of the proton (called
‘partons’: quarks or gluons) will collide, as in the figure. The idea is that these are most likely to make
strongly interacting particles, all other things being equal (in the figure, we have the example of squark
production). The rest of the broken protons typically will be boosted along the beam-line. The sparticles
undergo subsequent decay (in the example in the figure, into a quark - which will form a jet of hadrons
and a dark matter particle: the lightest neutralino). Since we have assumed Rp to be conserved, the
χ0

1 is stable but since it is weakly interacting, it passes through the rest of the detector without any
interactions, stealing momentum from the collision. The decays of the initial pair of sparticles may be
much more complex, going through cascade decays where at each stage there is a lighter sparticle and
a SM particle produced. Rp conserving SUSY provides an example of how any dark matter candidate
that is light enough and that (perhaps indirectly) couples to protons can be produced in LHC collisions.
Jets and missing transverse momentum ~pmiss

T (sometimes this is known under the misnomer ‘missing
energy’) form a classic SUSY search, but also jets plus varying numbers of leptons (from sparticle
cascade decays) plus missing transverse momentum form another well-studied class. There is a SUSY
monojet signature [5], although sparticles would likely be found in one of the other production channels
first because the monojet signature is due to a strong times an electroweak matrix element. In the case
of gauge mediated SUSY breaking models, the lightest neutralino may decay into a gravitino plus a
photon, or a Z0, and so for instance di-photon plus missing transverse momentum searches form another
class. Since one obtains additional jets from showering off the initial state at the LHC, searches are often
inclusive, meaning that one only selects a minimum number of hard jets.

Often, searches are interpreted in terms of ‘simplified models’: for instance, one studies gluino
pair production, then assumes that each decays into 2 jets and missing transverse momentum: see Fig. 15.
However, current bounds based on simplified models [7] often give much stronger bounds than in a more
general MSSM set-up [8]. This is because simplified models tend to only assume a single decay mode of
one sparticle (or a few decay modes of particular sparticles), whereas in full models there can be literally
thousands of active decay chains, diluting the signal between many different search channels such that
no one shows an excess. There are also cases of somewhat ‘compressed spectra’: when sparticles in
decay chains are similar in mass, energy-momentum conservation means that they tend to produce fairly
soft SM particles, which often fail analysis cuts. Because they are not dependent on the many MSSM
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Fig. 15: Examples of interpretation of search limits: the left-hand panel shows simplified model exclusions from
2.3fb−1 of 13 TeV LHC analyses for di-gluino production and is from Ref. [6]. On the right-hand side, we see
a more complete description in terms of the MSSM interpreting 3.2 fb−1 of integrated luminosity and is from
Ref. [9]. The simplified model exclusion on the left hand panel is that gluinos up to 1750 GeV are excluded (for
zero neutralino mass) whereas on the right-hand panel, we see that models exist where gluinos of 800 GeV are
allowed: these pass a list of negative searches for SUSY at 13 TeV in ATLAS. The ‘fraction of models excluded’
starts from a list of models in MSSM parameter space that had good dark matter properties, and otherwise passed
the constraints from Run I. If there are any points with the masses listed on the axis, the fraction of models excluded
is less than 1.

parameters, simplified searches are very convenient for searches, being less model dependent. However,
exclusion limits from simplified models are not easy to interpret in more realistic models, and tend to be
far too restrictive unless one interprets them with care. In Fig. 15, we see this in action: for massless
neutralinos, gluinos up to 1750 GeV are ruled out in the simplified model, whereas in a (more realistic)
phenomenological MSSM approximation, we see that gluinos of 800 GeV are still allowed for some
points.

3 Extra Dimensions
For a review of extra dimensions and their phenomenology, see Ref. [10]. As mentioned above, extra
dimensions correspond to an expansion of the Poincaré symmetry: there are additional generators asso-
ciated with translation invariance in each extra spatial dimension. Superstring theory also requires them
in addition to supersymmetry for internal consistency, but any theory incorporating them must explain
why we only observe 3+1 (i.e.three space-like and one time-like). There are a couple of possibilities to
‘hide’ the extra dimensions from our perception:

– We are stuck on a brane: meaning that the bulk of space-time has more than 3+1 dimensions,
but SM fields are stuck on a 3+1 dimensional hypersurface: a ‘brane’. Gravity travels wherever
space-time is, so that it must feel the effect of the additional dimensions. That’s because gravity
is a described by a quantum fluctuation of the metric, and the bulk metric is defined in the bulk
space-time.

– The extra dimensions are curled up on themselves: each point in our 3+1 dimensional space time
has a circle, or some other compact manifold, where one can travel – albeit periodically – in the
extra dimensions, which are in an orthogonal direction to all of the other dimensions. If such
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Fig. 16: Picture of different extra-dimensional set-ups: the brane (on the left), where in string theory SM states
appear as open strings whose ends end upon the brane but gravitons appear as close string states in the bulk,
or compactification (on the right), in this example we have taken the example of a circle S1 times ordinary 4-
dimensional Minkowski space M4.

manifolds are not too large (less than a millimeter, certainly), then current experimental bounds
upon gravitational forces acting at relatively small distances may still not rule the model out.

We illustrate the two cases in Fig. 16. In the figure, we have taken the example of string theory to
illustrate the brane case, but it is essentially valid in the field theory limit as well: SM fields may be
confined to a hypersurface of the bulk space-time, whereas gravity travels everywhere.

3.1 Compactification and a Scalar Field in 5 Dimensions
Taking compactified extra dimensions as an example, consider a massless five dimensional (5D) scalar
field (i.e. a scalar field living in a 5-dimensional bulk space-time) ϕ(xM ),M = 0, 1, . . . , 4 with action

S5D =

∫
d5x∂Mϕ∂Mϕ. (43)

We single the extra dimension out by calling it x4 = y. y defines a circle of radius r with y ≡ y + 2πr.
Our space time is now M4 × S1. Periodicity in the y direction implies that we may perform a discrete
Fourier expansion

ϕ(xµ, y) =

∞∑

n=−∞
ϕn(xµ) exp

(
iny

r

)
. (44)

Notice that the Fourier coefficients are functions of the standard 4D coordinates and therefore are (an
infinite number of) 4D scalar fields. The equations of motion for the Fourier modes are the (in general
massive) Klein-Gordon wave equations

∂M∂Mϕ = 0⇒
∞∑

n=−∞

(
∂µ∂µ −

n2

r2

)
ϕn(xµ) exp

(
iny

r

)
= 0

=⇒ ∂µ∂µϕn(xµ)− n2

r2
ϕn(xµ) = 0. (45)
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These are then an infinite number of Klein Gordon equations for massive 4D fields. This means that each
Fourier mode ϕn is a 4D particle with mass m2

n = n2

r2
. Only the zero mode (n = 0) is massless. One can

visualise the states as an infinite tower of massive states (with increasing mass proportional to n). This is
called a Kaluza Klein tower and the massive states (n 6= 0) are called Kaluza Klein-states or momentum
states, since they come from the momentum in the extra dimension:

0

1/r

2/r

Fig. 17: The Kaluza Klein tower of massive states due to an extra S1 dimension. Masses mn = |n|/r grow
linearly with the fifth dimension’s wave number n ∈ Z.

In order to obtain the effective action in 4D for all these particles, let us plug the mode expansion of ϕ
Eq. 44 into the original 5D action Eq. 43:

S5D =

∫
d4x

∫
dy

∞∑

n=−∞

(
∂µϕn(xµ) ∂µϕn(xµ)∗ − n2

r2
|ϕn|2

)

= 2π r

∫
d4x
(
∂µϕ0(xµ) ∂µϕ0(xµ)∗ + . . .

)
= 2πrS4D + . . .

This means that the 5D action reduces to one 4D action for a massless scalar field plus an infinite sum
of massive scalar actions in 4D. If we are only interested in energies smaller than the 1

r scale, we may
concentrate only on the action of the massless mode.

3.2 Compactification of a Vector Field in 5 Dimensions
Vector fields are decomposed in a completely analogous way: {AM} = {Aµ, A4 = φ}. Consider the
action

S5D =

∫
d5x

1

g2
5D

FMN F
MN (46)

with a field strength
FMN = ∂MAN − ∂NAM (47)

implying
∂M∂MAN − ∂M∂NAM = 0. (48)

If we now choose a gauge, e.g. the transverse gauge:

∂MAM = 0, A0 = 0⇒ ∂M∂MAN = 0, (49)

then this obviously becomes equivalent to the scalar field case (for each component AM ) indicating an
infinite tower of massive states for each massless state in 5D. In order to find the 4D effective action we
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once again plug this into the 5D action:

S5D 7→ S4D

=

∫
d4x

(
2πr

g2
5D

F(0)
µν F(0)µν +

2πr

g2
5D

∂µρ0 ∂
µρ0 + . . .

)
.

Therefore we end up with a 4D theory of a massless gauge particle Fµν(0) , a massless scalar ρ0 from the
massless Kaluza-Klein state of φ and infinite towers of massive vector and scalar fields. Notice that the
gauge couplings of 4- and 5 dimensional actions (coefficients of FMNF

MN and FµνFµν) are related by

1

g2
4

=
2πr

g2
5

. (50)

In D space time dimensions, this generalises to

1

g2
4

=
VD−4

g2
D

(51)

where Vn is the volume of the n dimensional compact space (e.g. an n sphere of radius r).

3.2.1 The electric (and gravitational) potential
We apply Gauss’ law for the electric field ~E and the potential Φ of a point charge Q:

∮

S2

~E · d~S = Q⇒ ‖ ~E‖ ∝ 1

R2
,Φ ∝ 1

R
: 4D

∮

S3

~E · d~S = Q⇒ ‖ ~E‖ ∝ 1

R3
,Φ ∝ 1

R2
: 5D

Thus, the apparent behaviour of the force depends upon whether we are sensitive to the extra dimension
or not: if we test the force at distances smaller than its size (i.e. at energies high enough to probe such
small distance scales), it falls off as 1/R3: the field lines have an extra dimension to travel in. If we test
the force at larger distances than the size of the extra dimension, we obtain the usual 1/R2 law.

In D space time dimensions

‖ ~E‖ ∝ 1

RD−2
,Φ ∝ 1

RD−3
. (52)

If one dimension is compactified (radius r) like in M4 × S1, then we have two limits

‖ ~E‖ ∝





1

R3
: R < r

1

R2
: R� r

. (53)

Analogous arguments hold for gravitational fields and their potentials, but we shall not detail them here,
preferring instead to sketch the resulting field content.

3.2.2 Sketch of Compactified Gravitation
The spin 2~ graviton GMN becomes the 4D graviton gµν , some gravivectors Gµn and some graviscalars
Gmn (where m,n = 4, . . . , D − 1), along with their infinite Kaluza-Klein towers. The Planck mass
squared M2

Pl = MD−2
D VD−4 ∼MD−2

D rD−4 is a derived quantity. Fixing D, we can fix MD and r to get
the correct result forMPl ∼ 1019 GeV. So far, we requireMD > 1 TeV and r < 10−16cm from Standard
Model measurements since no significant confirmed signature of extra dimensions has been seen at the
time of writing.
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Fig. 18: Force field lines feel the effect of the extra dimensions. Here we show a 3+1 dimensional brane, where
gravity spreads into the extra dimension and feels its effect.

3.3 Brane Worlds
In the brane world scenario, we are trapped on a 3+1 surface in aD+1 dimensional bulk space-time (see
Fig. 18). There are two cases here: large extra dimensions and warped space-times. Since gravity itself
is so weak, the constraints on brane world scenarios are quite weak: the extra dimension is constrained to
be of a size r < 0.1 mm or so, potentially much larger than the 10−16 cm of the Standard Model, hence
the name large extra dimensions.

3.3.1 Large extra dimensions
There is the possibility to try to solve the hierarchy problem with the large extra dimensions scenario if
we put MD ∼ 1 TeV. The idea is that this is the fundamental scale: there is no high scale associated with
MPl fundamentally - it is an illusion caused by the presence of the extra dimensions. In 5D for example,
MPl2 = MD−2

D VD−4 ⇒ r ∼ 108 km, clearly ruled out by observations. Already in 6D though, r = 0.1
mm - consistent with experiments that measure the gravitational force on small distance scales. This
rephrases the hierarchy problem to the question “why are the extra dimensions so large compared with
10−16 cm?”

Graviton phenomenology: each Kaluza-Klein mode couples weakly ∝ 1/MPl, but there are so
many modes that after summing over them, you end up with 1/MD suppression only! One can approxi-
mate them by a continuum of modes with a cut-off. The graviton tower propagates into the bulk and takes
away missing momentum leading to a pp → j + ~pmiss

T signature (for example) by the process shown in
Fig. 19.

3.3.2 Warped (or ‘Randall-Sundrum’ space-times
Warped space-times are where the metric exponentially warps along the extra dimension y:

ds2 = e−|ky|ηµνdxµdxν + dy2. (54)

The metric changes from y = 0 to y = πr via ηµν 7→ e−kπrηµν . Here, we set MD = MPl, but this gets
warped down to the weak brane:

Λπ ∼MPle
−kπr ∼ O(TeV), (55)

if r ∼ 10/k. Here, k is of order MPl and so we have a small extra dimension, but the warping explains
the smallness of the weak scale. Note that we still have to stabilise the separation between the branes,
which can involve extra tuning unless extra structure is added to the model.
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Fig. 19: Example production of ~pmiss
T at a 14 TeV LHC through production of a Kaluza-Klein tower of graviton

states that propagate off into the bulk. The left-hand panel shows a heuristic picture: the red hypersurface repre-
senting the brane, and the graviton tower being emitted into the bulk. In the right-hand panel, it is shown how the
cross-section varies with the transverse momentum of the jet (EminT,jet) for the SM background, and the case of d
extra dimensions. The lines a (b) are constructed by integrating the cross-section over ŝ < M2

D (all ŝ), respectively.
Both the diagram and the plot are from Ref. [11].

Fig. 20: Picture of the Randall-Sundrum I set-up. On the left-hand side at y = 0 we have the Planck brane, which
is warped down to the weak brane at the right hand side (y = πR). The idea is that the Higgs boson (and some
other fields) are localised on the weak brane.
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Fig. 21: Production of an RS graviton and subsequent decay into e+e−: both figures are taken from Ref. [12]. On
the right-hand side, the angular distribution of the electron with respect to the beam line in the rest-frame (θ∗) of
Gµν is shown for a 1.5 TeV graviton. The different shaded colours show the contribution from qq̄ collisions, from
gg and from other SM processes. This is contrasted against a straw-man spin 1~ distribution in the green line. The
typical expected size of statistical uncertainties resulting from 100 fb−1 of integrated luminosity at a 14 TeV LHC
is shown on the points. This would be enough to discriminate against the spin 1~ hypothesis, which is much more
forward than the spin 2~ hypothesis.

The interaction Lagrangian is
LI = −GµνTµν/Λπ, (56)

where Tµν is the stress energy tensor, containing products of the other Standard Model fields. Λπ ∼
O(TeV), so the interaction leads to electroweak-strength cross sections, not gravitationally suppressed
ones. Thus, the LHC can produce the resonance: one will tend to produce the lightest one most often, as
it is less suppressed by parton distribution functions. The ratios of masses of higher modes are given by
zeros of Bessell functions, so they are not as regular as they are in large extra dimensions.

Randall-Sundrum phenomenology: one looks for the TeV scale first resonances, which are weakly
coupled to Standard Model states. If only gravity travels in the extra dimensions, then the resonance is the
‘Randall-Sundrum graviton’: it has universal coupling to all particles via Eq. 56 and so it can decay into
qq̄,WW , ZZ, γγ, gg, l+l− or h0h0 with branching ratios that are of a similar order of magnitude to each
other. Flavour considerations imply that this isn’t the end of the story: one requires additional flavour
structure, otherwise the model violates flavour bounds from experiment. One common way of adding
flavour structure is to allow the other particles into the bulk, but have different profiles of fermions in the
bulk, leading to different overlaps with the weak brane, where the Higgs field is localised (the overlap
would be proportional to the particle in question’s Yukawa coupling). In this case, one could look for the
first Kaluza Klein modes of gauge bosons and fermions, too.

Kaluza Klein modes that have masses that are heavier than the centre of mass energy of the beams
may also be looked for via their virtual effects. Searching for particles that mediate interactions that are
occurring at collisions with less energy than their mass has been historically very important (particularly
in terms of the weak interactions which were indirectly observed before the discovery of the W± and
Z0 bosons). Such a kinematic situation can be approximated by effective field theories, which in turn
reduces model dependence. We now sketch effective field theories, along with caveats pertinent to their
use.
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4 Effective Field Theories
At low momenta pµ, we can model the effects of particles with a much heavier mass M2 � p2 and a
small width Γ�M with effective field theory. This squeezes a propagator down to a point:

limp2/M2→0,Γ/M→0
1

p2 −M2 + iMΓ
≈ − 1

M2
, (57)

in a fairly model independent way. Thus, for example W boson couplings like

L = − g

2
√

2
ēγρ(1− γ5)Wρνe −

g

2
√

2
ν̄µγ

ρ(1− γ5)Wρµ (58)

become
L ≈ −GF√

2
(ēγρ(1− γ5)νe) (ν̄µγ

ρ(1− γ5)µ) , (59)

where GF =
√

2g2/(8M2
W ). One has to be careful at the LHC with the range of validity of the effective

field theory, however, because the LHC has a large centre of mass energy. If some of the collisions
have p2 ≥ M2, then for those collisions the effective field theory is a bad approximation: there, one
becomes sensitive to the full structure of the propagator. Effective field theory methods can be useful
for parameterising searches for new physics at low momentum: these four-fermion operators are often
called contact operators, e.g. for some fermionic dark matter particle χ,

L =
λ2

M2
(q̄γµq)(χγµχ) (60)

for some coupling strength λ [18]. However, for dark matter production at the LHC (e.g. in the monojet
channel), the energies are often higher than the messenger mass and so a more precise (simplified?)
model is needed [19]. Such a move to more specified models increases model dependence, but may be
necessary if one requires a large régime of validity for one’s description of high energy collisions.

5 Conclusion
At the time of writing, 13 TeV collisions at the LHC have yet to yield direct, unambiguous and confirmed
discoveries of new physics. In some channels, around 36 fb−1 of integrated luminosity has been analysed
in each general purpose experiment. However, there is plenty of room for new physics to be hiding: in
more data or in other analyses. I personally and perhaps naively expect some signal to show up in the
first 100 fb−1 of Run II data. Certainly it seems unlikely that if there are no excesses at all in that amount
of data (in some channel), there is unlikely to be a 5σ discovery at Run II in the same channel. If CERN
increases the beam energy, for example from 13 TeV to 14 TeV, the search sensitivity gains a sudden
boost, and indeed this will be interesting in Run III or beyond. There is a plan (the ‘high-energy’ LHC,
or HE-LHC) to increase the beam energy to around 27 TeV with new magnets. This would lead to a
large increase in sensitivity.

On the other hand, there are several interesting excesses in B physics measurements as compared
to SM measurements, which we have not explicitly discussed in these Beyond the Standard Model lec-
tures. Probably the theoretically cleanest of these are those ofRK(∗) as shown in Table 1. from the LHCb
experiment [13, 14]. Large theoretical uncertainties associated with mesonic physics cancel well in such
a ratio, particularly when one is probing final states involving leptons. In the SM, RK is a firm pre-
diction from diagrams like Fig. 22, and so the measurements in Table 1 indicate non-SM lepton flavour
non-universality at the 4σ level. In fact, a fit to this and other data indicates that a new physics effective
field theory operator on top of the SM

L = C
(µ)
9 (s̄Lγ

µbL)(µ̄LγµµL) + . . . (61)
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Fig. 22: Example Feynman diagram contributing to B meson decays that form the variable RK .

q2/GeV2 SM LHCb 3 fb σ

RK [1, 6] 1.00± 0.01 0.745+0.090
−0.074 2.6

RK∗ [0.045, 1.1] 0.91± 0.03 0.66+0.11
−0.07 2.2

RK∗ [1.1, 6] 1.00± 0.01 0.69+0.11
−0.07 2.5

Table 1: Predictions and measurements of RK(∗) ≡ BR(B±→K(∗)±µ+µ−)

BR(B±→K(∗)±e+e−)
[13] in different bins of momentum

transfer squared. The uncertainty on the SM prediction includes estimated theoretical uncertainties.

Fig. 23: Feynman diagrams showing different possibilities for BSM particles of mass M � mB which lead to
the effective operator in Eq. 61 at tree-level. The additional particles lead to a change in C(µ)

9 proportional to
−λ1λ2/M2, where λ1,2 are dimensionless couplings of the respective particles. This combination of couplings
and masses are then fixed to predict the central value of the experimental measurements of B−data.

is preferred to be non-zero at the 4.3σ level [15–17]. A BSM operator proportional to (s̄Lγ
µbL)(µ̄γµµ)

(i.e. a vector-like coupling to muons, rather than a left-handed coupling to them) also works approxi-
mately as well. At the tree-level, these operators can be caused by a couple of different BSM particles:
leptoquarks or flavourful Z ′s, as depicted in Fig. 23.

The leptoquark can either be a scalar triplet S3 of SU(2)L or a vector particle: either an SU(2)L
triplet, or singlet. Leptoquarks couple (by definition) to a lepton and a quark: in order to preserve QCD
they must therefore be coloured. Hadron collider and other searches then focus on pair production of
them, e.g. by the process gg → S3S̄3 → (µ+b) (µ−s̄), where the bracketed particles should form a
resonance and have a bump in their invariant mass spectra. In the case of Z ′ particles, the diagram in
Fig. 23 leads to resonant production of Z ′, since the initial b quark can be obtained from an initial proton
from a gluon splitting into a bb̄ pair.

We show the projected sensitivity of a future 100 TeV pp collider to such particles that explain
the errant B decays in Fig. 24. In the left-hand plot, we see that a 27 TeV energy upgraded LHC option
covers a small portion of the Z ′ parameter space, whereas the 100 TeV option can essentially cover all
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Fig. 24: 100 TeV Future Circular Collider (FCC) reach for flavourful Z ′s (left panel) and leptoquarks that explain
the RK(∗) data (right panel). The red area in the left-hand plot is excluded by measurements of Bs − B̄s mixing,
whereas the blue area is the 95% confidence level (CL) projected sensitivity. The grey area shows wideZ ′ particles,
where perturbativity is being lost. In the right-hand panel, the region above each curve is covered at 95%, whereas
the production cross-section is shown by the dotted curve. Figures from Ref. [20].

of the allowed perturbative parameter space. In the right-hand plot, we deduce that leptoquarks with
a mass up to 12 TeV can be covered by a FCC pair-production search. Leptoquarks up to 40 TeV in
mass can explain theB−data whilst still satisfying other constraints12. However, since it is the particular
combination λ1λ2/M

2 is fixed by the B−data, M and λ1,2 can all be much smaller. Searches at the
LHC, HL-LHC and HE-LHC are therefore of high priority (this also goes for Z ′s). LHCb is expected
to announce further measurements of the quantities in Table 1 in 2019, with a roughly similar-size and
independent data set.

We close with a quote from William Blake13 from The Marriage of Heaven and Hell:

“The road of excess leads to the palace of wisdom”.
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Introduction to cosmology and dark matter

A. De Simone
SISSA and INFN Sezione di Trieste, Trieste, Italy

Abstract
These are the lectures notes for the course on Introduction to Cosmology and
Dark Matter given at the CERN European School for High Energy Physics
(ESHEP) 2018. The audience consists of graduate students with particle physics
background.

Keywords
Cosmology; universe dynamics; expansion; dark matter; lectures.

1 Introduction
1.1 Motivations and Outline
These lectures are addressed to an audience of graduate students in experimental particle physics. So the
first question usually is:

“Why should a particle physicist care about Cosmology”?

There are at least three main reasons to attend an introductory course on cosmology such as this one.

1. Cosmology provides insights on particle physics at energy scales which are impossible to probe
on Earth. In the very early moments after the Big Bang the universe had a temperature (or energy)
which would never be reachable again. So the by-products of the early universe dynamics we can
measure today give us information about the physics at incredibly high energies.

2. Cosmology provides alternative (sometimes competitive) constraints on particle physics properties
(e.g. neutrino physics, dark matter, etc.)

3. Cosmology provides motivations for (or completions of) particle physics models beyond the Stan-
dard Model. The need to solve cosmological issues like inflation, baryogenesis, dark matter calls
for new particle physics which is able to model them and make predictions.

In these lectures I will give an overview of the Standard Model of Cosmology, its main successes and its
drawbacks, with particular focus on the particle physics side.

In Lecture 1, I will describe the universe around us, its dynamics, the energy budget (Section 2),
and provide introductory information about the 3 pillars constituting the Standard Model of Cosmology:
Expansion, Big Bang Nucleosynthesis, Cosmic Microwave Background (Sections 2, 3, 4).

In Lecture 2, I will discuss the problem of Dark Matter (Section 5).

In Lecture 3, the main pitfalls of Standard Big Bang Cosmology and their possible resolution with
the inflationary paradigm are described in Section 6, and then I conclude the course by mentioning the
problem of the Baryon Asymmetry of the universe and some models of Baryogenesis in Section 7.

1.2 Warm-up
Throughout the course we will adopt the so-called “natural units”, where the dimensions of basic physical
quantities are related as

[Energy] = [Mass] = [Temperature] = [Length]−1 = [Time]−1 , (1)
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Fig. 1: Expansion of physical distances.

and the main physical constants are set as

~ = c = kB = 1 , (2)

from which it follows that

1 = ~ · c ' 197.33 MeV · fm = 1.9733× 10−14 GeV · cm , (3)

so
1 GeV−1 = 1.9733× 10−14 cm = 1.9733× 10−14 cm

c
= 6.5822× 10−25 s (4)

The fundamental mass scale of gravitational interactions is the Planck mass MP = 1.22 × 1019 GeV,
while astronomical distances often appear in units of 1 pc = 3.08× 1018 cm.

2 The universe around us
2.1 Kinematics of the universe
2.1.1 Expansion
From observations of the universe around us we can draw the conclusion that the universe is expanding. If
you look at any two points in space, their relative distance was smaller in the past. In fact, the observation
of red-shifted spectra of distant galaxies firmly supports the idea that the universe is expanding.

In an expanding universe, the physical distances between two points get larger and larger. They
are proportional to a factor measuring the expansion of the universe: the scale factor a(t) (Fig. 1). The
velocity v at which a galaxy at distance d is going away from us is governed by the Hubble law

v = H0d , (5)

where the velocity v is related to the wavelengths of the photon emitted and observed

v =
λobservation − λemission

λemission
≡ z , (6)

with z being the redshift of the emission time te with respect to the present time t0

1 + z ≡ λobservation

λemission
=
a(t0)

a(te)
, (7)

measuring how much the universe has expanded since the emission of that photon. By Taylor-expanding
the ratio of scale factors around the present time t0

a(t)

a(t0)
= 1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 + · · · (8)
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where the local expansion rate today (‘Hubble constant’) is

H0 ≡
ȧ

a

∣∣∣∣
t0

. (9)

The linear term in Eq. (8) gives the Hubble law Eq. (5), while the quadratic term depends on the decel-
eration parameter q

q0 ≡ −
ä

aH2
0

∣∣∣∣
t0

= − äa

ȧ2

∣∣∣∣
t0

, (10)

and it encodes the deviations from the Hubble law. The latest measurement [1] give

1/H0 ' 1.4× 1010 yrs ' 4.3 Gpc ' 1.3× 1026 m , (11)

for the ‘Hubble time’, or ‘Hubble length’, and it is customary to define

h ≡ H0

100 km s−1 Mpc−1 ' 0.67 . (12)

When observed on very large scales (> 100 Mpc), the universe around us appears to be

– homogenous: the distribution of matter in the universe has a roughly constant density, or in other
words the 2-point function of galaxies and galaxy clusters is much smaller than the Hubble length
1/H0;

– isotropic: if the expansion of the universe were not isotropic, we would observe large temperature
anisotropies in the Cosmic Microwave Background.

The invariance under rotations is around any point of the Unvierse, so it is isotropic.

These observations lead us to consider that no observer is special and there are no preferred direc-
tions, so the universe is homogenous and isotropic (Cosmological Principle).

2.1.2 Friedmann-Robertson-Walker metric
We now want to build a metric describing a homogeneous and isotropic universe. The Friedmann-
Robertson Walker metric is

ds2 = dt2 − a(t)2

[
dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
, (13)

where the parameter k can take three values

k =





+1 positive spatial curvature
0 zero spatial curvature
-1 negative spatial curvature

(14)

The scalar curvature of 3-dimensional spatial slices is

|3R| = 6|k|
a2 ≡

6

R2
curv

, (15)

where Rcurv is a sort of curvature radius of the universe.
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2.2 Dynamics of the universe
2.2.1 Einstein equations
The laws of gravity are the Einstein Equations, where the spacetime metric gµν and its correspond-
ing Ricci tensor Rµν and Ricci scalar R are related to energy content expressed through the energy-
momentum tensor Tµν

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν , (16)

where GN is the Newton constant and we also included the cosmological constant term Λ.

The energy-momentum tensor for a perfect fluid with pressure p, energy density ρ and 4-velocity
uµ is

Tµν = (p+ ρ)uµuν − pgµν , (17)

which assumes a diagonal form in the reference frame of the fluid (comoving frame) where uµ =
(1, 0, 0, 0)

Tµν =




ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 . (18)

The energy-momentum conservation law is simply expressed as the vanishing of the covariant derivative
of the energy-momentum tensor:

∇µTµν = 0 , (19)

whose ν = 0 component in an expanding universe reads

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (20)

which is also known as “continuity equation”. Alternatively, from the first law of thermodynamics dU +
pdV = TdS, together with entropy conservation dS = 0, one gets

dU + pdV = 0 =⇒ d(a3ρ) + pd(a3) = 0 , (21)

which is the same as Eq. (20).

2.2.2 Fluids
The perfect fluids are characterized by a proportionality relation between energy density and pressure

p = wρ (22)

where w is constant in time. In this case, the continuity equation in Eq. (20) becomes
ρ̇

ρ
= −3(1 + w)

ȧ

a
=⇒ ρ ∝ a−3(1+w) . (23)

This means that the energy density of different kinds of fluids scales down with the expansion of the
universe with different powers of the scale factor:

radiation: w = 1/3 =⇒ ρ ∝ a−4

dust: w = 0 =⇒ ρ ∝ a−3

vacuum energy: w = −1 =⇒ ρ ∝ const.

The phases of the universe where the radiation/matter/vacuum energy are the dominant components are
called radiation domination (RD), matter domination (MD) and vacuum energy domination, respectively.

Another argument to reach the same conclusions is to consider that the rest-mass energy must be
a constant quantity unaffected by the expansion; the volume scales like a3 in the expanding universe. So
the energy density (energy per unit volume) of matter should scale like a−3. For radiation, the energy
density has a further 1/a factor due to the redshift, so a−4.
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2.2.3 Friedmann Equation
The (00) component of the Einstein equations for the FRW metric with parameter k gives the Friedmann
Equation

H2 =
8πGN

3
ρ− k

a2 +
Λ

3
, (24)

where the Hubble parameter H ≡ ȧ/a is not a constant. The (ii) component of the Einstein equations

ä

a
= −4πGN

3
(ρ+ 3p) +

Λ

3
(25)

does not add anything new with respect to the combination of the Friedmann Equation (24) and the
conservation law (20).

So, the system of equations

H2 =
8πGN

3
ρtot −

k

a2 , (26)

ρ̇+ 3H(ρ+ p) = 0 , (27)

where
ρΛ ≡

Λ

8πGN
, (28)

is the cosmological constant energy density and

ρtot ≡ ρ+ ρΛ , (29)

is the total energy density, encodes the evolution of the universe and its constituents. The so-called
“curvature energy density”, encoded in the term proportional to k is also sometimes indicated as ρk =
−3k/(8πGNa

2).

2.2.4 Cosmological Dynamics
Let us first introduce a notation which is often used in cosmology. The “critical” energy density is defined
as

ρc ≡
3H2

8πGN
, (30)

which today is ρc ' 1.88×10−29h2g cm−3 or ρc ' 1.05×10−5h2 GeV cm−3. The energy density today
of each component is normalized to the critical density to provide the corresponding “Omega parameter”
for matter, radiation, curvature and cosmological constant

Ωm ≡ ρm
ρc

, (31)

Ωr ≡
ρr
ρc
, (32)

Ωk ≡ ρk
ρc

= − k

a2H2 , (33)

ΩΛ ≡ ρΛ

ρc
=

Λ

3H2 . (34)

In terms of the Omega parameters, the Friedmann equation (26) can be simply written as a sum rule

Ωm + Ωr + ΩΛ + Ωk = 1 . (35)
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Now we have all the tools to study the time evolution of the scale factor of the universe. Let us carry out
the case where the universe is filled by a single fluid, either matter dust (w = 0), radiation (w = 1/3) or
vacuum energy (w = −1). The Friedmann Equation can be written as

(
ȧ

a

)2

= H2
0

(
ȧ

a0

)−3(1+w)

, (36)

where 0 subscripts indicate present-time quantities. By introducing the new variable y ≡ a/a0, a simple
manipulation gives

ẏ = H0y
1− 3(1+w)

2 =⇒ y
1
2

+ 3
2
wdy = H0dt , (37)

which in turns leads to

a(t) ∝ t
2

3(1+w) (w 6= −1) , (38)

a(t) ∝ eH0t (w = −1) , (39)

So in a vacuum-dominated universe the scale factor expands exponentially, while in a radiation-dominated
(RD) or matter-dominated (MD) phase the expansion is power-law, with exponents

a(t) ∝ t2/3 (w = 0,MD) , (40)

a(t) ∝ t1/2 (w = 1/3,RD) . (41)

From the Friedmann equation it follows that the total energy density of the universe equals the critical
energy density if and only if the FRW parameter k = 0, which means the universe is flat

ρtot = ρc ⇐⇒ k = 0⇐⇒ Flat universe . (42)

2.2.5 Energy Budget
The picture emerging from Cosmic Microwave Background (CMB) measurements performed by PLANCK
in 2018 [1] is

h = 0.6736± 0.0054 (43)

Ωmh
2 = 0.1430± 0.0011

{
Ωbh

2 = 0.02237± 0.00015

ΩCDMh
2 = 0.1200± 0.0012

(44)

Ωkh
2 = 0.0007± 0.0019 (45)

ΩΛ = 0.6847± 0.0073 (46)

So the curvature term is consistent with 0% of the energy budget (our Unvierse is flat!), while non-
relativistic matter contributes to about 32% of the budget (split into 5% of ordinary baryonic matter and
27% of unknown dark matter), while the remaining 68% of the energy density of the present universe
is in the form of unknown vacuum energy. In summary, we only know the nature of the 5% of what
surrounds us.

2.2.6 Age of the universe
Very early (uncertain) times give an almost irrelevant contribution to the age of the universe, so we can
compute the age of the universe form when it started RD or MD eras. Start with the definition of the
Hubble parameter

da
dt

= Ha , (47)
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and the Friedmann equations written in terms of Ω’s

H(a)2 = H2
0

[
Ωr

(a0

a

)4
+ Ωm

(a0

a

)3
+ Ωk

(a0

a

)2
+ ΩΛ

]
. (48)

From the two equations above it follows that

dt =
da
aH0

1
[
Ωr

(a0
a

)4
+ Ωm

(a0
a

)3
+ Ωk

(a0
a

)2
+ ΩΛ

]1/2
. (49)

The estimate of the age of the universe is t ' 13 Gyrs = 1.3× 1010 yrs.

In an MD universe (Ωr = Ωk = ΩΛ = 0,Ωm = 1) Eq. (49) gives

t0 =
2

3

1

H0
' 9× 109 yrs , (50)

which is too young. By allowing a 70% contribution from vacuum energy, as suggested by Eq. (46):
Ωr = Ωk = 0,Ωm = 1− ΩΛ = 0.3, Eq. (49) can be integrated as

t =
2

3

1

H0

√
ΩΛ

sinh−1

√
ΩΛ

1− ΩΛ

(
a

a0

)3

, (51)

so the present age of the universe would be

t0 =
2

3

1

H0

√
ΩΛ

sinh−1

√
ΩΛ

1− ΩΛ
' 1.3× 1010 yrs , (52)

in perfect agreement with the estimate. The contribution of Λ makes the universe older.

2.2.7 Distance-Redshift Relation
The light rays travel along geodesics defined by ds = 0, so in the FRW metric (13) with k = 0 the
trajectory of light rays is θ =const., φ =const. and dr = dt/a. Using dt from the definition of H =
(1/a)da/dt, we get

dr =
da

a2H
, (53)

which combined with Eq. (48) gives

r(a) =
1

H0

∫ a0

a

da′

a′2
[
Ωr

(
a0
a
′

)4
+ Ωm

(
a0
a
′

)3
+ Ωk

(
a0
a
′

)2
+ ΩΛ

]1/2
. (54)

This equation is immediately rewritten in terms of the redshift 1 + z = a0/a, to get the distance-redshift
relation

r(z) =
1

H0

∫ z

0

dz′
[
Ωr

(
1 + z′

)4
+ Ωm

(
1 + z′

)3
+ Ωk

(
1 + z′

)2
+ ΩΛ

]1/2
, (55)

which allows to infer the distance of an object of known redshift z, depending on the energy content of
the universe.

It is convenient also to introduce the luminosity distance dL of an object of given luminosity, from
the definition of the flux of photons received from the object

Flux =
Luminosity

4πr(z)2(1 + z)2 ≡
Luminosity

4πd2
L

(56)

so dL ≡ (1 + z)r(z), which again depends on the universe content. The two powers of (1 + z) in the
denominator are originated from the redshift of the energy and the relativistic dilation of time.
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dH(t) = a(t)

Z t

0

dt0

a(t0)

the boundary between the visible universe 
and the part of the universe from which 

light signals have not reached us

dH(t) =
a(t)

H0

Z a(t)

0

da0

a02
h
⌦0

r

�
a0

a

�4
+ ⌦0

m

�
a0

a

�3
+ ⌦0

k

�
a0

a

�2
+ ⌦0

⇤

i1/2

dH(t) =1dH(t) = 3t =
2

H(t)
/ a3/2 dH(t) = 2t =

1

H(t)
/ a2

measure the portion of the 
Universe in causal contact 

(no horizon!) 

x

today
t

vacuum energydust radiation

Fig. 2: Particle horizon.

2.2.8 Particle Horizon
A very important concept in cosmology is the notion of particle horizon. It is defined as the boundary
between the visible universe and the part of the universe from which light signals have not reached us

dH(t) = a(t)

∫ t

0

dt′

a(t′)
. (57)

So the particle horizon measures the portion of the universe in causal contact with us (see Fig. 2). Eq. (57)
can be re-written using dt = da/(aH) and the expression for H as in Eq. (48), so

dH(t) =
a(t)

H0

∫ a(t)

0

da′

a′2
[
Ωr

(
a0
a
′

)4
+ Ωm

(
a0
a
′

)3
+ Ωk

(
a0
a
′

)2
+ ΩΛ

]1/2
, (58)

The special cases of matter-, radiation- and vacuum-domination are particularly interesting

dH(t) = 3t =
2

H(t)
∝ a3/2 (MD) , (59)

dH(t) = 2t =
1

H(t)
∝ a2 (RD) , (60)

dH(t) = ∞ , (61)

so particle horizon is growing with powers of the scale factors in MD and RD universes while there is no
horizon in a universe dominated by vacuum energy.

2.2.9 Equilibrium Thermodynamics
It is useful for future developments to collect some formulae related to the equilibrium thermodynamics
of the universe. Let us consider a particle species A with gA degrees of freedom and chemical potential
µA, and characterized by a phase space distribution function fa(p) in momentum space, and energy
E(p). The distribution function of a species A takes the form

fA(p) =
1

e(E(p)−µA)/T ∓ 1
, E(p) =

√
|p|2 +m2

A (62)

with −(+) for Bose-Einstein (Fermi-Dirac) statistics, respectively. The equilibrium number density and
energy density are given by

neq
A =

gA

(2π)3

∫
f(p)d3p , (63)
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ρeq
A =

gA

(2π)3

∫
E(p)f(p)d3p . (64)

In extreme cases these integrals can be solved analytically.

For non-relativistic species (whose mass is much greater than the temperature T � mA), the
above expressions simplify to

neq
A = gA

(
mAT

2π

)3/2

e−(mA−µA)/T (65)

ρeq
A = neq

A ·mA . (66)

Notice that these quantities are exponentially suppressed by the large mass of the species.

In the opposite regime of ultra-relativistic species (T � mA, µA), the expressions depend on the
statistics. The number density (at equilibrium) is

neq
A =

ζ(3)

π2 gAT
3





1 (bosons)

3
4 (fermions)

. (67)

The Riemann zeta function of 3 is ζ(3) ≡∑∞n=1(1/n3) ' 1.20206. The energy density (at equililbrium)
is

ρeq
A =

π2

30
gAT

4





1 (bosons)

7
8 (fermions)

. (68)

Because of the suppression in the non-relativistic regime, the energy density at given temperatures is
exponentially dominated by the degrees of freedom which are ultra-relativistic at that temperature. For
a collection of several particle species in equilibrium where the species i has thermal distribution with
temperature Ti, to a very good approximation the total energy density is

ρtot =
π2

30
g∗(T )T 4 , (69)

where g∗(T ) is the total number of relativistic (massless) degrees of freedom at temperature T given by

g∗(T ) =
∑

b∈bosons

gb

(
Tb
T

)4

+
7

8

∑

f∈fermions

gf

(
Tf
T

)4

. (70)

The Hubble rate in the RD era (where a(t) ∝
√
t so H = 1/(2t)) can thus be written as

H2 =
8πGN

3
ρtot =

8πGN
3

π2

30
g∗(T )T 4 ' 1.66

√
g∗(T )

T 2

MP
, (71)

hence, we obtain the time-temperature relation

t ' 0.30√
g∗(T )

MP

T 2 '
2.41√
g∗(T )

(
MeV

T

)2

s . (72)

2.2.10 Temperature-Expansion Relation
The 1st law of thermodynamics relates the change in the energy dU to the change of entropy dS as

dU + pdV = TdS (73)
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The entropy density s is therefore

s(T ) ≡ S(V, T )

V
=
ρ(T ) + p(T )

T
=

4

3

ρ(T )

T
=

2π2

45
g∗,s(T )T 3 (74)

where we have used that p = 1/3ρ for RD and defined the quantity

g∗,s(T ) =
∑

b∈bosons

gb

(
Tb
T

)3

+
7

8

∑

f∈fermions

gf

(
Tf
T

)3

, (75)

which is similar to g∗(T ) in Eq. (70) but with the different temperature dependence. Since the energy
density scales like ρ(T ) ∝ T 4, the entropy density scales like

s(T ) ∝ g∗,sT 3 , (76)

and therefore the conservation of the entropy within a comoving volume V in thermal equilibrium gives

S(V, T ) = s(T )V = const. =⇒ g∗,sT
3a3 = const. =⇒ T ∝ 1

g1/3
∗,s a

. (77)

In periods where g∗,s is also a constant, the temperature simply scales as the inverse of the scale fatctor
T ∝ 1/a.

3 Big Bang Nucleosynthesis
Big Bang Nucleosynthesis (BBN) occurs at times 1 s . t . 103 s or equivalently at temperatures of
the universe 1 MeV & T & 10 keV. Before BBN, the photons have sufficiently high energy to prevent
the formation of nuclei by dissociating them. As the universe cools down, the nuclei of light elements
H, D, 3He, 4He, 7Li, get produced with predicted abundances in a remarkably good agreement with the
observed ones. All elements heavier than 7Li are produced later in the history of the universe by nuclear
reactions in stars or by other astrophysical processes like supernovae.

BBN is the earliest probe of the universe. Before BBN, we do not know anything about the
universe. We are not even sure that the universe existed with temperatures above the MeV.

BBN is one of the main successes of standard cosmology. This success has 3 important conse-
quences:

1. it confirms the theory of the early universe;
2. it provides a determination of the baryon-to-photon ratio η;
3. to avoid spoiling its success, particle physics theories beyond the Standard Model are constrained.

The predictions for abundances of light elements span 9 orders of magnitude and are all well fitted by
a single parameter: the baryon-to-photon ratio η ≡ nB/nγ (see Figure 3). This is one of the greatest
successes of Standard Cosmology.

The measurement of light element abundances implies a measurement of η and hence a measure-
ment for Ωb today. In fact, the energy density in baryons (non-relativistic particles with mass equal to
the nucleon mass mN ) can be written as

Ωbh
2 =

mNnB

ρc/h
2 = η

mNnγ

ρc/h
2 =

η

2.74× 10−8 . (78)

From BBN 0.019 ≤ Ωbh
2 ≤ 0.024, in good agreement with the independent measurement from CMB

(see Eq. (44)). These values are consistent with η ' 6× 10−10.

Therefore, together with the measurement of Ωm from CMB, BBN predicts that Ωb < Ωm, thus
providing a compelling argument for the existence of a non-baryonic matter component of the universe,
called Dark Matter (DM).
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> Big Bang Nucleosynthesis 

predictions for abundances (spanning 9 orders of 
magnitude) well fitted by a single parameter: 

FIG. 1. Primordial abundances of the light nuclides as a function of cosmic baryon content, as

predicted by SBBN (“Schramm plot”). These results assume N� = 3 and the current measurement

of the neutron lifetime ⇥n = 880.3± 1.1 s. Curve widths show 1� � errors.
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Fig. 3: BBN predictions for light elements abundances. (adapted from Ref. [2])

3.1 Helium fraction
As an example, let us see how much Helium-4 is produced during BBN. We will be deliberately oversim-
plifying the discussion, for simplicity. For a more general and complete treatment of the BBN dynamics
see e.g. the excellent textbooks in Refs. [3–5].

Observations of metal-poor stars and gas clouds provide an experimental determination of the
abundance of 4He nuclei with respect to the total number of baryons (protons + neutrons) as

Y ≡ 4nHe
nn + np

' 0.24 . (79)

So, in order to compute Y we need to compute nn/np and nHe/np.

At very early times (T � 1 MeV, t� 1 s), there are only protons and neutrons which are kept in
equilibrium by the reactions

n+ νe ↔ p+ e− (80)

n+ e+ ↔ p+ ν̄e (81)

n ↔ p+ e− + ν̄e (82)

so nn = np. When these reactions are in equilibrium, they enforce the balance of chemical potentials as

µn + µνe = µp + µe . (83)

Since the chemical potentials of electrons and neutrinos are negligibly small, we can conclude that µn =
µp. At MeV temperatures neutrons and protons are non-relativistic, and their mass difference starts to be
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important. So, recalling the equilibrium number densities for non-relativistic species Eq. (65) we obtain
the neutron-to-proton ratio (in equilibrium) as

neq
n

neq
p

=
gn
gp

(
mn

mp

)3/2

e−Q/T e(µn−µp)/T ' e−Q/T , (84)

where the neutron-proton mass difference is

Q = mn −mp ' 1.29 MeV . (85)

and we have used that mn ' mp, µn = µp and gn = gp = 2. The equilibrium is broken by expansion as
temperature goes down. The total scattering rate of the reactions involving neutrons and protons is

Γ = Γ(n+ νe ↔ p+ e−) + Γ(n+ e+ ↔ p+ ν̄e) ' 0.96

(
T

MeV

)5

s−1 , (86)

while the Hubble parameter during radiation domination at T . 1 MeV is

H ' 1.66
√

10.75
T 2

MP
' 0.68

(
T

MeV

)2

s−1 . (87)

Therefore, the comparison of the scattering rate with the expansion rate gives

Γ

H
'
(

T

0.8 MeV

)3

. (88)

So at T & 0.8 MeV, the neutron-to-proton ratio follows its equilibrium value, while at T . 0.8 MeV it
decouples and freezes out at a value

nn
np

(T . 0.8 MeV) =
neq
n

neq
p

(T = 0.8 MeV) = e−1.29/0.8 ' 0.2 (89)

and correspondingly the neutron fraction is

Xn(T . 0.8 MeV)|before decay ≡
nn

nn + np
=

nn
np

1 + nn
np

' e−1.29/0.8

1 + e−1.29/0.8
' 0.17 . (90)

After that time, some neutrons decay (τn ' 886 s) and at later time, at the onset of BBN, TD ' 70 keV
(the temperature at which deuterium production becomes thermodynamically favoured), there are slightly
fewer neutrons. The time-temperature relation in the temperature regime T < TD is obtained from
Eq. (72), with g∗ = 3.36 (after e± annihilations),

t(T ) ' 1.32

(
1 MeV

T

)2

s , (91)

and therefore the neutron fraction at late times is

Xn(T < TD) = Xn|before decay × e−t(TD)/τn ' 0.12 , (92)

leading to the neutron-to-proton ratio

nn
np

(T < TD) ' 0.14 . (93)

Next, we need the number density of Helium nuclei nHe. Helium-4 is not produced by direct synthesis
of 2n and 2p, as the corresponding reaction rates are highly suppressed in the dilute (high entropy) limit,
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but rather by burning of deterium 2H = D. So, in order to produce 4He one needs to “wait” until the
D is produced, which occurs relatively late, because of the small binding energy of D (the so-called
“deuterium bottleneck”). Only after D is formed, it can be burnt by the reactions

D +D → 3He+ n , (94)

D +D → 3H + p , (95)

and then provide the fuel for Helium-4 production

3He+D → 4He+ p , (96)
3H +D → 4He+ n . (97)

Deuterium is formed by the direct synthesis of one neutron and one proton in the reaction

p+ n→ D + γ . (98)

The D production becomes efficient at temperatures T . TD ' 70 keV, and nearly all free neutrons get
bound into Helium-4 nuclei, so

n4
He
' nn/2 , (99)

since each Helium-4 nucleus contains two neutrons. Now we have all the ingredients to estimate the 4He
abundance produced by BBN, by combining Eqs. (93) and (99)

Y =
4n4

He

nn + np
=

4nn/2

nn + np
=

2nn/np
1 + nn/np

' 0.24 , (100)

in very good agreement with the observed value.

4 Cosmic Microwave Background
In 1965 Arno Penzias and Robert Wilson published a paper where they admitted to have failed to elimi-
nate a background noise coming from all directions, corresponding to a residual photon background with
temperature of about 3 K. Ten years later they shared the Nobel prize in physics for the discovery of the
Cosmic Microwave Background (CMB) radiation!

What was that noise?

At temperatures above the electron mass me (T > me) the electrons/positrons and radiation were
in thermal equilibrium. When the temperature of the universe goes down to a fraction of the electron
mass (T . me), electrons and positrons become non-relativistic and their equilibrium number densities
become exponentially suppressed compared to the number density of photons, so the reaction

e+e− ←→ γγ (101)

goes out of equilibrium and chemical equilibrium is broken. However, matter (residual electrons) and
radiation are still in kinetic equilibrium, through the elastic reaction (Compton scattering)

e−γ ←→ e−γ , (102)

whose cross section for non-relativistic electrons reduces to the Thomson scattering cross section (in
classical electrodynamics)

σT '
8π

3

(
α

me

)2

' 6.7× 10−25 cm2 . (103)

Notice that the analogous Compton scattering of photons off protons pγ ↔ pγ is irrelevant since the
corresponding cross section is suppressed by (me/mp)

2 ∼ 10−6. The Compton scattering keeps the
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photons coupled to matter until a much later time (photon decoupling) than when T ' me. Until then,
kinetic equilibrium is attained and photons are continuously scattering off electrons. The universe was
filled with an almost perfect black-body radiation.

When Compton scatterings start becoming ineffective with respect to the expansion rate of the
universe, the photons “decouple” from matter and then propagate freely until today. They just cooled
with expansion down to a temperature T0 = 2.7 K = 2.3 × 10−4 eV. This radiation is the residual
electromagnetic radiation from the Big Bang, observed as a highly isotropic “noise”. The CMB can
therefore be interpreted as a snapshot of the universe when it was very young (about 300,000 yrs old, as
we will see later). The CMB provides a huge deal of information about our universe, and it is the most
powerful cosmological probe available today.

4.1 Photon energy density
The energy distribution of thermal photons follows the Planck distribution (let us restore the units of
c, ~, kB in this subsection)

n(ω, T )dω =
1

c3

1

e~ω/(kBT ) − 1

2d3ω

(2π)3 =
1

π2c3

ω2dω

e~ω/(kBT ) − 1
(104)

the differential energy spectrum

u(ω, T )dω = (~ω)n(ω, T )dω =
~

π2c3

ω3dω

e~ω/(kBT ) − 1
(105)

is the usual one for a black body. Therefore the total energy density in radiation is given by the integral

ργ =

∫ ∞

0
u(ω, T )dω =

~
π2c3

(
kBT

~

)4 ∫ ∞

0

ξ3dξ

eξ − 1
=

π2k4
B

15~3c3T
4 ≡ σT 4 (106)

with σ = 4.72 × 10−3 eV cm−3K−4 being the Stefan-Boltzmann constant. This energy density today
(T=2.7 K) is ργ ' 0.26 eV cm−3, which translates into

Ωrh
2 =

ργ

ρc/h
2 ' 4× 10−5 , (107)

so the present radiation energy density is neglible.

4.2 Photon decoupling
Let us compute the time when the CMB formed (or equivalently the redshift of photon decoupling zdec).
We will work under the simplifying approximation that the plasma is in chemical and thermal equilibrium
among all its components, aiming at providing the reader with the basic elements. For more exhaustive
discussions please refer e.g. to Refs. [4, 5].

The goal is to estimate the time of photon decoupling, namely when the photons stop interacting
with matter and propagate through the universe along geodesics. We first need to find the number density
of free electons, or equivalently the free electron fraction (or ionization fraction)

Xe ≡
ne

np + nH
. (108)

Free electrons get bound to protons to form neutral H atoms through the capture reaction

p+ e− ←→ H + γ , (109)
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and the binding energy of H is

BH ≡ me +mp −mH = 13.6 eV . (110)

When T � me, electrons, protons and Hydrogen atoms are non-relativistic and their equilibrium number
densities are given by Eq. (65)

neq
i = gi

(
miT

2π

)3/2

e−(mi−µi)/T , (i = e, p,H), (111)

and recall that gp = ge = 2. The first type of Hydrogen involved in the electron capture in Eq. (109)
is H1s, i.e. the ground state (with 2 hyperfine states, one with spin 0 and one with spin 1, so gH1s

=
1 + 3 = 4). By adding to the 3 conditions for neq

i the 3 relations following from the equilirium reaction
in Eq. (109)





µp + µe = µH (chemical equilibrium)
ne = np (charge neutrality)

np + nH = 0.76nB = 0.76 ηnγ (tot. number of baryons without He)
(112)

(recall that after BBN about 24% of the baryons consists of 4He) we have 6 equations for the 6 unknowns
np,e,H , µp,e,H . We can then compute, in the equilibrium approximation, the quantity

X2
e

1−Xe

∣∣∣∣∣
eq

=
neq
e + neq

H

neq
H

neq
e n

eq
p

(neq
e + neq

H )2 =
neq
e n

eq
p

neq
H (neq

e + neq
H )

=
1

0.76 · ηnγ
neq
e n

eq
p

neq
H

=
1

0.76 · ηnγ
gegp
gH

(
meT

2π

)3/2

e(µe+µp−µH)/T e−(me+mp−mH)/T

=
1

0.76 · ηnγ

(
meT

2π

)3/2

e−BH/T . (113)

Inserting neq
γ = (2/π2)ζ(3)T 3, we get the Saha equation for the equilibrium ionization fraction of

electrons
X2
e

1−Xe

∣∣∣∣∣
eq

=

√
π

0.76 · 4
√

2ζ(3)

1

η

(me

T

)3/2
e−BH/T . (114)

The latter equation can be solved in the two temperature regimes

T & BH =⇒ X2
e

1−Xe

∣∣∣∣∣
eq

' 109
(me

T

)3/2
' 105 =⇒ Xe ' 1 (all H ionized) (115)

T < BH =⇒ Xeq
e � 1 =⇒ Xeq

e (T ) '
[ √

π

0.76 · 4
√

2ζ(3)

1

η

(me

T

)3/2
e−BH/T

]1/2

. (116)

Now that we have an expression for the free electron fraction at late times, we can proceed to compute
the time of photon decoupling.

Photon decoupling occurs when the rate of photon-electron (Compton) scattering is less than the
expansion rate: Γe ' neσT . H . Assume for simplicity a matter-dominated universe with Ωm = 1 (but
generalizations are straightforward), so

H(T ) ' H0a
−3/2 = H0

(
T

T0

)3/2

. (117)

15

INTRODUCTION TO COSMOLOGY AND DARK MATTER

159



Then

ne = XenB , (118)

nB =
Ωbρc
mp

(a0

a

)3
=

Ωbρc
mp

(
T

T0

)3

' 2.2× 10−7 cm−3

(
T

T0

)3

, (119)

from which it follows that the rate for electron Compton scatterings is

Γe(T ) = neσT ' Xe 1.5× 10−31 cm−1

(
T

T0

)3

. (120)

Then compare Γe with H from Eq. (117), to get the temperature Tdec at which they are equal (recall
H−1

0 = 9.3× 1027 · h−1 cm, h ' 0.7)

Γe(Tdec) = H(Tdec) =⇒
(
Tdec

T0

)3/2

' 1

2× 10−3Xe(Tdec)
, (121)

and then solve numerically the implicit equation for Tdec, where Xe(T ) is given by the Saha equation in
Eq. (116), arriving at

Tdec ' 1000T0 ' 0.2 eV =⇒ 1 + zdec =
Tdec

T0
' 1000

=⇒ tdec =
2

3H0(1 + zdec)
3/2
' 300 000 yrs. (122)

This is the time of photon decoupling (last scattering), when the CMB is formed. Before photon decou-
pling the plasma is opaque, because of photons scattering off free electrons. After decoupling, photons
do not scatter anymore and the universe becomes transparent to radiation.

If instead of the Hubble parameter given by Eq. (117) for Ωm = 1 one considers a more realistic
ΛCDM model where Ωm = 0.27,ΩΛ = 1− Ωm, one gets zdec ' 1089, so Tdec ' 0.26 eV.

4.3 Concluding remarks
The CMB is actually not perfectly isotropic. There are temperature anisotropies of the order of

∆T

T
∼ 10−5 . (123)

Indeed, these anisotropies carry a great deal of cosmological information. For example, the two-point
correlation functions of the temperature maps crucially depend on the cosmological paramters like
H0,Ωb,Ωtot etc. By a careful analysis of these anisotropies, satellite experiments like COBE, WMAP
and lately PLANCK were able to determine the cosmological parameters with greater and greater accu-
racy. The CMB anisotropies in the CMB are well described by acoustic oscillations in the photon-baryon
plasma. Both ordinary baryonic and dark matter interact gravitationally with radiation, but only ordinary
matter interacts also electromagnetically. So baryonic and dark matter affect the CMB differently. From
the peaks of the CMB it is possible to determine the density of baryonic and dark matter. The resulting
best-fit ‘concordance’ cosmological model is known as ΛCDM (cosmological constant plus cold dark
matter), where roughly

Ωtot ∼ 1.0 , Ωmatter ∼ 0.3 , Ωradiation ∼ 0.0 , ΩΛ ∼ 0.7 (124)

The accurate determination of the energy content of the universe was another great triumph of standard
cosmology!

So, although standard cosmology is very successful at providing a picture of the universe from
BBN to today, there are several questions still lacking an answer, for instance: what is the dark matter
made of? why there is a matter-antimatter asymmetry? what happened in the first three minutes of the
universe (before BBN)? We will discuss some possible answers to these (and other) questions in the
remainder of the course.
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5 Dark Matter
5.1 Evidences for dark matter
We already discussed that both BBN and CMB observations (see Section 2.2.5) provide compelling ar-
guments in favour of the existence of an unknown component of the universe consisting of non-baryonic
matter, dubbed Dark Matter (DM). The existence of DM is by now firmly established also by other types
of observational evidences.

5.1.1 Galaxy clusters
– Coma cluster. In 1933, F. Zwicky measured the proper motion of galaxies in the Coma galaxy

cluster (a group of ∼ 1000 galaxies, within a radius of ∼ 1 Mpc).
The mass M and the size R of the cluster of N galaxies can be related to the velocity dispersion
of galaxies (the velocities are projected along the line of sight) according to the virial theorem:

〈V 〉+ 2〈K〉 = 0 ,

〈V 〉 = −N
2

2
GN
〈m2〉
R

(average pot energy due to N2/2 pairs of galaxies) ,

〈K〉 = N
〈mv2〉

2
(average kin energy due to N galaxies) . (125)

The total mass M is

M = N〈m〉 ∼ 2R〈v2〉
GN

, (126)

from which it was computed the mass-to-luminosity ratio to be much larger than the one for an
average star like the Sun

M

L
∼ 300h

M�
L�

. (127)

So the value obtained is about 300 times greater than expected from their luminosity, which means
that most of the matter is not luminous, so it is dark.

– X-ray observations. The gravitational potential (and hence the total mass) of galaxy clusters can
also be measured by X-ray observations. In fact, most of the ordinary mass in cluster is in the form
of hot gas, emitting X-ray frequencies. The X-rays are produced by electrons.
It is possible to measure the spatial distributions of the electron number density ne(r) and of the
electron temperature Te(r). The number density of baryons nb(r) will be proportional to ne up to
a factor µ depending on the chemical composition: nb(r) = µne(r). The pressure is mostly due
to electrons, so P (r) = ne(r)Te(r).
The hydrostatic equilibrium relates the pressure P to the radius R through the mass m which in
turn depends on the energy density in baryons ρb

dP = −dm
acceleration

Area
= −ρb(R)

dV
Area

GNM(R)

R2 = −ρb(R)
GNM(R)

R2 dR , (128)

where the total mass enclosed in a sphere of radius R is

M(R) = 4π

∫ R

0
ρ(r)r2dr . (129)

This leads to
dP
dR

= −nb(r)mb
GNM(R)

R2 . (130)

In this equation, the left-hand side is measured from temperature maps from X-ray spectra, the
term nb(r) is obtained from X-ray luminosity and spatial distributions of electrons, so only M(R)
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Fig. 4: The gravitational lensing from Abell NGC2218.

Fig. 5: The “Bullet cluster” 1E0657-558. The image shows two colliding clusters of galaxies. The green lines
show the gravitational equipotential surfaces, measured by gravitational lensing. Brighter regions are the hot
baryonic gas, observed in X-ray by Chandra. Figure taken from Ref. [6].

is uknown and can be determined. The result for M is again that M should be more than the
contribution of just visible (baryonic) matter Mb.

– Gravitational lensing. Gravitational lensing techniques use the gravitational distortion of images
of distant galaxies due to a gravitational mass (e.g. a cluster) along the line of sight (see Fig. 4).
This way, it is possible to reconstruct the gravitational potential, and hence the total mass dis-
tribution of the cluster. The result is that more matter than the visible one is required, and also
differently distributed.

– Bullet cluster. The so-called “bullet cluster” (see Fig. 5) is a recent merging of galaxy clusters.
The gravitational potential is not produced by baryons, but by DM. In the collision, the hot gas is
collisional and loses energy, so it slows down and lags behind DM; the DM clusters are collision-
less and passed through each other.

5.1.2 Galaxies
The dependence of the velocity v(R) of stars in a galaxy, as a function of the distanceR from the galactic
center (rotation curves), is given by Newton’s law (assuming circular motion)

v(R) =

√
GNM(R)

R
, M(R) = 4π

∫ R

0
ρ(r)r2dr , (131)

wnere ρ(r) is the mass density. The contribution to ρ from luminous matter would lead to v(r) ∝ R−1/2

at large R. But observationally, one has v(R) ' constant, see Fig. 6. Explaining the observed rotation
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Fig. 6: The rotation curve of galaxy NGC 6503. The different curves show the contribution of the three major
components of matter to the gravitational potential (from top to bottom): halo, disk, gas. Figure taken from
Ref. [7].

curves requires more matter abundance, and differently distributed, than the visible one: a constant
rotation curve requires MDM ∝ R, which is attained for a DM density distribution ρDM(r) ∝ 1/r2.

There exists several other dynamical constraints from studying the motion of stars in the Milky
Way. They are then compared to a mass model for the galaxy and allow a determination of the local DM
density (at the location of the Sun)

ρ(r�) ' 0.01M� pc−3 ' 0.4 GeVcm−3 (132)

(recall 1 pc = 3.08× 1018 cm, and 1M� = 1.12× 1057 GeV).

5.1.3 Large-scale structures
Without DM, density perturbations would start to grow only after recombination, so today there would
not be structures yet. Different DM types lead to different scenarios for the formation of structures: in
the so-called Hot Dark Matter scenario large structures are formed first and then fragment into smaller
pieces (“top-down”), while in the Cold Dark Matter scenario smaller objects merge into bigger structures
hierarchically (“bottom-up”). Cosmological observations and numerical simulations exclude the Hot DM
case.

5.2 Key Properties of Particle DM
A particle candidate for DM must satisfy at least the following fundamental properties:

1. stable, or at least with a lifetime longer than the age of the universe;
2. no electric charge, no color charge;
3. non-collisional, or at least much less collisional than baryons: self-annihilation cross sections must

be smaller than QCD σDM DM � 1/m2
p, and weak cross sections σDM DM � 1/m2

Z ;
4. not “hot”, as it would be excluded by large-scale structure formation;
5. in the fluid limit, not in the form of a collection of discrete compact objects. We have not seen any

discreteness effects in DM halos. Granularities would affect the stability of astrophysical systems.
MAssive Compact Halo Objects (MACHOs) are astrophysical objects with macroscopic mass,
such as large planets or small dead stars. Searches for MACHOs (EROS+MACHO results) exclude
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the range
10−7M� .M . 10M� , (133)

using gravitational microlensing. Several other constraints also apply, due to e.g. non-observation
of lensing effects in the direction of Gamma-Ray Bursts (GRBs) or towards compact radio sources.
However, it is natural to expect these objects to be baryonic and created in the late universe. So this
would upset predictions for BBN and CMB and they are excluded. A small window for primordial
black holes (PBH) is actually still open;

6. non-relativistic (classical) today, in order to be confined on galactic scales (1 kpc or so), for densi-
ties ∼ GeV cm−3, and velocities ∼ 100 km s−1. This leads to lower limits on its mass, depending
on whether DM is made out of bosons or fermions.

– For bosons, the De Broglie wavelength λ = h/p (h is the Planck’s constant, restored in this
section) must be less than 1 kpc, so

m & h

1kpc · v ' 10−22eV , (134)

where v ' 100 km/s has been used.
– For fermions, because of Pauli exclusion principle, the DM quantum occupation number must

be smaller than one, so

ρ(r�) . m

λ3 =⇒ m &
[
h3ρ(r�)

v3

]1/4

' 1 keV , (135)

where ρ(r�) = 0.4 GeV cm−3 ' (0.04 eV)4 has been used (Gunn-Tremaine bound)

None of the SM particles satisfies the above requirements. Therefore the quest for a viable particle
candidate for DM needs to be carried out in the realm of physics beyond the SM.

5.3 Weakly Interacting Massive Particles
There is a really wide landscape of DM models, where the DM mass spans several orders of magnitude,
from ultra-light scalars at about 10−22 eV to primordial black holes at 1020 kg. There is no a priori
preferred mass scale, so we are not sure where to look for DM.

Among the many possible categorizations of the DM models, one that is particularly useful is to
divide the DM candidates into whether or not they are Weakly Interacting Massive Particles (WIMPs).
The advantage is that all WIMPs share pretty much the same production mechanism in the early universe,
through the so-called thermal freeze-out, which we will describe later, while each of the other non-WIMP
DM candidates are produced in peculiar ways to be studied case-by-case.

Just to mention a few out of the many realizations of each category, the WIMPs can be the su-
persymmetric neutralino, minimal DM, Higgs-portal scalar, heavy neutrino, inert Higgs doublet, lightest
Kaluza-Klein particle, etc. Some notable non-WIMP candidates are axions, sterile neutrinos, gravitinos,
asymmetric DM, techni-baryons, Q-balls, primordial black holes, dark photons, topogical defects, etc.

For simplificy, from now on we will only focus on WIMPs. The basic ingredients for a WIMP
model are:

– a massive particle in the ∼ 1 GeV – ∼ 100 TeV range;
– weak interactions with the SM;
– production via thermal freeze-out in the early universe.
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5.4 Freeze-out of Thermal Relics
In this section we want to compute the thermal relic abundance of a particle whose interactions “freeze-
out” in the early universe. We will first do a simple estimate, in order to highlight the important quantities
into play, then we will describe a more formal calculation using the Boltzmann equations.

Let us start by assuming the Standard Model of particle physics is augmented with the inclusion
of a particle χ (the DM) of mass mχ such that

– χ is a stable;
– χ is coupled to lighter SM species;
– χ is in thermal equilibrium in the early universe at temperature T � mχ.

The DM particle χ is kept in equilibrium by number-changing annihilation processes of the kind

χ χ↔ SM SM , (136)

where SM is any SM particle. This follows from the assumptions 1. and 2. above.

At temperatures much bigger than mχ, these processes are fast and the DM is in equilibrium with
the rest of the plasma. But as the unvierse expands, the rate for the processes (136) becomes slower than
the expansion rate of the universe, and such reactions go out of equilibrium. This happens when the
annihilation rate Γ . H . From this point on, the DM decouples from the plasma and its number density
does not change anymore, it “freezes out”.

Let us find the freeze-out temperature Tf , defined by the condition

neq
χ (Tf )σ = H(Tf ) . (137)

Let us assume for simplicity here that the annihilation cross section of the process (136) does not depend
on the relative velocity: σ = σ0 (the so-called s-wave annihilation). Now, during radiation domination:

H(Tf ) =
√

(4π3/45)g∗(Tf )T 2
f /MP . The equilibrium number density, for mχ � Tf is

neq
χ (Tf ) = gχ

(
mχTf

2π

)3/2

e−mχ/Tf . (138)

Eq. (137) can be then manipulated to arrive at an implicit equation for Tf which does not admit closed-
form solution, but it can be solved iteratively, giving at leading order

Tf '
mχ

lnK
, (139)

where

K ≡ 3
√

5

4
√

2π3

gχ√
g∗
σ0mXMP . (140)

For reference values mX = 100 GeV, gX = 2, g∗ = 100 and σ0 = 1 pb = 10−36 cm2 ' 2.6 ×
10−9 GeV−2, we get

K = 2.4× 1010
(gχ

2

)(100

g∗

)1/2( σ0

1 pb

)( mX

100 GeV

)
(141)

so lnK ' 24, and therefore typically Tf ∼ mχ/20÷mχ/30.

Then it follows that the number density of χ at freeze-out is

nχ(Tf ) =
H(Tf )

σ0
=

√
4π3

45
g∗(Tf )

T 2
f

MP
(142)
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which is roughly constant until today, up to a redhift dilution of non-relativistic matter

nχ(T0) =

(
T0

Tf

)3

nχ(Tf ) ∝ 1

Tf
∝ 1

mχ
. (143)

So the energy density today of χ particles is ρχ(T0) = nχ(T0)mχ does not depend on mχ! Actually,
there is still a mild (logarithmic) residual dependence on mχ in K.

Ωχh
2 =

ρχ(T0)

ρc/h
2 =

nχ(T0)mχ

ρc/h
2 ' 0.1

3× 10−26cm3/ sec

σ0
' 0.1

1 pb
σ0

(144)

The present relic abundance of χ is mostly driven by its cross section. Notice that a pb cross section is
the typical cross section of weak interactions.

Recall from Eq. (44) that the present energy density of DM is observed to be ΩDMh
2 ' 0.12.

Therefore, the relic density today of a cold relic produced by the freeze-out mechanism in the early
universe can explain the observed value of the DM energy density, as shown by Eq. (144). If σ0 is bigger
than about 10−26 cm3/s, the relic abundance is too big and would overclose the universe.

A cold relic with weak-scale interactions is a DM candidate. A typical annihilation cross section
for a particle with couplings g is σ ∼ g4/M2, so a pb cross section is realized by

M/g2 ∼ TeV (145)

so the weak scale! A particle of weak-scale mass and couplings gives rise to a relic abundance in the
right ballpark of the observed DM abundance. This remarkable coincidence is also known as the “WIMP
miracle”.

So there are several reasons why the WIMPs are so appealing as as DM candidates:

– the WIMP “miracle” (which may just be a numerical coincidence);
– a common production mechanism (freeze-out);
– the link with beyond-the-SM physics at the weak scale, possible related to the solution of the

hierarchy problem (e.g. Supersymmetry)
– the possibility to perform multi-sided searches: the three pillars of WIMP searches are the so-

called direct detection, indirect detection and collider searches; they may be interpreted as the
searches for signatures due to three different realizations of the same WIMP-quark interactions:
WIMP-quark scattering, WIMP self-annihilations and WIMP pair production from quarks. In the
next subsections we will discuss each of them.

5.5 Direct Detection
Direct Detection (DD) of DM consists of looking for the scatterings of galactic halo DM on heavy nuclei
in underground laboratories. Suppose a halo particle χ with mass mχ and velocity v scatters from a
target nucleus at rest of atomic mass number A and mass MA with an angle θ (in the c.o.m. frame). The
c.o.m. recoil momentum, or momentum transfer, is

|~q|2 = 2µ2
χAv

2(1− cos θ) , µχA = mχMA/(mχ +MA) . (146)

The recoil energy imprinted on the nucleus is then

ER =
|~q|2

2MA
. (147)
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which is maximum for θ = π (|~qmax| = 2µv), so

Emax
R = 2v2 m2

χMA

(mχ +MA)2 = 2
µ2
χAv

2

MA
. (148)

Such a recoil energy of the scattered nucelus can be measured and can signal the occurrence of a DM
particle scattering by.

As an examples to get an idea of the orders of magnitude involved: for a DM particle with mass
mχ = 100 GeV scattering off a 131Xe nucleus, we get

Emax
R = 2

( v

200 km/s

)2
(

2

3
10−3

)2 1002 · 131

2312 106 keV ' 22 keV
( v

200 km/s

)2
(149)

so the recoil energies are typically in theO(1÷10) keV range. The experiments are able to tag the event
and measure ER by directly observing one or two of the following 3 end-products: 1) heat; 2) ionization;
3) scintillation.

Let us make a back-of-the-envelope estimate of the expected number of events per unit of time.
Consider a detector consisting of NT nuclei with mass number A and mass MA ' A ·mp ' A GeV.
The total target mass of the detector is MT = NTMA (alternatively, the number density of target nuclei
is NT = NAvogadro/A ). Let σχA be the nucleus-DM cross section, so

# events
time

= (# targets)× (WIMP flux on Earth)× (cross section) = NT

(
ρ⊕
Mχ

v

)
σχA

' 1 event
yr

× MT /A

kg
× σ

10−39cm2 ×
ρ⊕

0.3 GeVcm−3 ×
v

200 km/s
× 100 GeV

mχ
.

More precisely, the spectrum of events per recoil energies is given by

dR
dER

= NT

∫

|~v|>vmin

|~v|dσχA
dER

dnDM = NT
ρ⊕
mχ

∫

|~v|>vmin

d3v|~v|f(~v, t)
dσχA
dER

(150)

where we inserted the differential particle density

dnDM =
ρ⊕
mχ

f(v)d3v (151)

with f(v) being the velocity distribution and vmin =
√
MAE

th
R /(2µ

2
χA) is the minimal DM velocity

needed to transfer a threshold kinetic energy Eth
R to the nucleus.

The most recent results for SI cross sections are from Xenon1T experiment [8] (about 2 tons of
liquid Xe) are shown in Fig. 7. The SD cross section is much less constrained, a few orders of magnitude
weaker bound than SI.

The characteristic shapes of the bounds can be understood as follows. The total event rate turns out
to be proportional to R ∝ σµ2

χA/mχ < Robserved. Therefore a bound on the total number of observed
events translates into a limit on the coupling

σ < σbound ∝
mχ

µ2
χA

∼
{
m−1
χ (mχ � mA)
mχ (mχ � mA)

(152)

This dependence explains the typical exclusion curves shown by the experimental collaborations, and
have a dip (maximal exclusion) around mχ ' mA where the reduced mass is maximal.

The vector interactions mediated by Z exchange would typically lead to a spin-independent cross
section σ ∼ α2

Wm
2
p/M

4
Z ≈ 10−39 cm2, which is already excluded by orders of magnitude.
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Fig. 7: 90% confidence level upper limit on spin-indepdenent WIMP-nucleon cross section from Xenon1T. A
comparison with previous Xenon results, LUX and PandaX experiments is also shown. Figure from Ref. [8]

5.6 Indirect Detection
The indirect searches for DM are based on identifying excesses in fluxes of gamma rays/cosmic rays
with respect to their presumed astrophysical backgrounds. These stable Standard Model particles may
be the end product of the annihilation (or decay) of DM in the galactic halo or in the Sun. The schematic
chain of processes leading from DM self-annihilations to observable fluxes at Earth is

χχ→ SM SM
hadron./decay−→ stable species

astrophys. prop.−→ fluxes at Earth . (153)

Promising sources of DM annihilations are generically the regions where DM is expected to be the
densest, such as the galactic center, the inner halo of our Galaxy, nearby galaxies dominated by DM,
the center of the Sun, the center of the Earth. However, in some of these regions it is usually very
complicated to understand the underlying astrophysics. So the best detection opportunities might come
from selecting targets which are not necessarily the richest in DM but with well-identified backgrounds
(favourable signal/background ratio). This also depends on which species of cosmic ray one is looking
for.

The first step of the chain (153) DM annihilations into primary channels (like qq̄, `+`−,W+W−,
etc.) is controlled by the DM model lagrangian describing the elementary interactions of the DM particle
with the SM. Once the primary products of annihilations are produced, they will undergo standard SM
evolution, like decay, radiation, hadronization, controlled by QED, EW and QCD interactions. The end-
product of this step is to have stable particle species (e.g. e±, γ, ν, p etc.). Such stable particles are then
travelling through the galaxy from their production point to the Earth, and they are subject to a number
of astrophysical processes. Finally, the result of the astrophysical propagation of stable particles is the
fluxes at detection (Earth) which is what can be measured.

This chain has to be reversed in order to extract information on the original DM model from
observations of the fluxes. As it is clear, in this inversion process a lot of uncertainties come into play,
especially those from the astrophysical propagation mechanisms.

The SM particles giving best information are photons, neutrinos and stable anti-particles: e.g.
positrons and anti-protons (also, maybe, anti-deuteron, anti-helium). Why anti-matter? Because there is
little anti-matter from early universe and (possibly) little anti-matter in primary cosmic rays. Observa-
tions provide a positron fraction of the order e+/(e+ + e−) ∼ 0.1 and a antiproton-to-proton ratio of the
order p̄/p ∼ 10−4. Each stable species has advantages and disadvantages to be used as a DM indirect
detection probe:

– Photons. They freely propagate, in the galactic environment. However DM is electrically neutral,
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Fig. 8: DM upper limits on DM self-annihilation cross section from Fermi-LAT observations of the Galactic Center,
as a function of the DM mass, for annihilations into bb̄ (left panel) and τ+τ− (right panel). The results are shown
at the 95% confidence level assuming the generalized NFW (black) and NFW (red) DM profiles. The upper limits
from the recent analysis of 15 dwarf spheroidal galaxies using 6 years of Fermi-LAT data are shown in blue. The
dotted line indicates the thermal relic cross section. Figures taken from Ref. [9].

so that photons can be produced only via some subdominant mechanism (e.g. loops) or as sec-
ondary radiation (synchrotron, bremsstrahlung). The spectrum is suppressed, and the astrophysical
background difficult.

– Positrons. They diffuse in the galactic magnetic fields with energy losses due to: synchrotron
emission, Coulomb scattering, ionization, bremsstrahlung and inverse Compton. The DM contri-
bution is dominated by the nearby regions of the galaxy. Below a few GeV, the effect of solar
activity is important.

– Anti-protons. They diffuse in the galactic magnetic fields with negligible energy losses, until they
scatter on matter. Therefore even far-away regions of the Galaxy can contribute to the flux col-
lected on Earth and, as a consequence, its normalization has significant astrophysical uncertainties.
Below a few GeV, the effect of solar activity is important.

– Neutrinos. TeV-scale neutrinos propagate freely in the Galaxy and can also propagate through
the dense matter of the Sun and the Earth. Neutrinos are difficult to detect, they are measured
indirectly via the detection of charged particles (e.g. muons) produced by a neutrino interaction
in the rock or water surrounding a neutrino telescope. The incoming neutrino energy can only be
partially reconstructed.

As an example, in Fig. 8 we show the upper limits on the self-annihilation cross section of DM from
gamma-ray observations, in two different annihilation channels: bb̄ and τ+τ−. The thermal relic cross
section sets the reference to exclude models giving lower cross section (that would lead to too much
DM abundance today), so one can exclude (e.g. using 6-year data on dwarf spheroidal galaxies) DM
annihilating into bb̄ or τ+τ− with masses mχ . 100 GeV.

5.7 Collider Searches
How does DM (a WIMP) show up in a collider, such as the LHC? A WIMP must be stable (over collider
scales) and very weakly interacting. So, even if a WIMP is produced in a high-energy collision, it escapes
the detectors with no interaction, thus leaving no visible tracks. The DM behaves exacly like a neutrino,
for collider purposes, so its unavoidable signal is just “missing energy”. This implies that the irreducible
background of the DM searches (and very often the dominant background) is due to Z → νν̄ (e.g. with
Z produced via Drell-Yan process).

If the DM is stabilized by an exact Z2 symmetry under which it is odd, while the SM is even, then
DM must be produced in pairs.
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Since the missing energy alone is a rather poor signal, one needs something else as a handle to
select events involving DM production. The identification of the most suitable extra handle, is a model-
dependent issue. It may be jets or other objects from initial state radiation, accompanying particles,
displaced vertices, etc.

At this point, an important caveat is in order: the LHC cannot discover the DM. It may only
discover a weakly interacting particle with lifetime larger than the size of the detecting, but there is not
way to test the stability of the escaping particles on cosmological scales.

So far, there has been no signal for DM at LHC. There may be three reasons for that:

1. DM may not interact with ordinary matter: indeed, we are only sure that DM has gravitational
interactions;

2. DM physics may not be accessible by LHC: e.g. DM may be too light/heavy or interacting too
weakly with ordinary matter;

3. we may not have explored all the possibilities: DM may be buried under large backgrounds or
hiding behind unusual/unexplored signatures.

The simplest handle to correlate with missing transverse energy (MET) is to consider the Initial State
Radiation (ISR) of some SM particle X , where X may be a quark/gluon (producing a jet in the final
state), a photon, a W/Z, or even a Higgs. This class of signatures are called mono-X searches. However,
the mono-jet is what provides the strongest limits in most situations.

Mono-X+MET searches have the virtue of being rather general, the backgrounds are relatively
well-known and they provide complementary/competitive results with direct detection. The main draw-
backs are that some background is irreducible, there is a small signal-to-background ratio and the
searches are limited by systematics.

Whether or not one chooses to explore DM at LHC using the mono-X signal, one very important
question to ask is: which DM model to test? The interaction between quarks and DM can be modelled
in many different ways. One can nonetheless divide the infinite-dimensional space of DM and Beyond-
the-Standard-Model (BSM) theories into three broad categories:

1. Complete models. These are models of BSM physics like Supersymmetry, Composite Higgs, etc.
which provide a valid description of elementary particles up to very high energies (ultraviolet
complete), typically including also a solution of the hierarchy problem.
Pros: they are ultraviolet (UV) complete, motivated by BSM issues (like the hierarchy problem).
Cons: they have many parameters, and typically include sources of fine tuning.

2. Effective operators. They are coming from integrating out whatever heavy physics is responsible
for mediating the SM-DM interactions, e.g. the heavy mediator. This approach has been often
considered as “model-independent”, but it is not, since one needs to specify up the energy cutoff
up to which the Effective Field Theory (EFT) is valid. This depends on the UV completion.
Pros: it is an economical approach (no need to specify mediators) and provide a common language
to compare results from different experiments, e.g. direct/indirect detection. Cons: they are less
complete than complete models; EFT is not always applicable, especially at very high energies
involved in LHC processes.

3. Simplified models. They are a sort of mid-way between the two extremes described above. A
heavy mediator particle, mediating the interactions between SM and DM, is exchanged in the s-
or t-channel (for a review, see e.g. Ref [10]).
If the DM sector is more complicated than just an extra particle coupled to the SM, the heavy medi-
ator approach is however a simple and good enough representation of what is going on. Simplified
models are therefore simple versions of more complicated theories but with only the minimum
amount of degrees of freedom which are necessary to model the physical process of interest.
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Fig. 9: Regions in a DM mass-mediator mass plane excluded at 95% CL by a selection of ATLAS dark matter
searches, for vector mediator (left panel) and an axial-vector mediator (right panel) mediating the interactions
between the SM and DM. Figures taken from ATLAS summary plots.

Pros: they provide a good representation of more complicated situations with minimum number of
degrees of freedom; they are theoretically consistent. Cons: they require extra propagating degrees
of freedom, beyond just the DM particle, so more parameters than EFTs; with a single simplified
model it is hard to catch all phenomenological possibilites of complete models.

The great advantage of simplified models is that one can combine the search for the DM with the search
for the mediator itself, e.g. looking for it as a di-jet resonance (see Fig. 9). As it is clear from Fig. 9, the
di-jet searches for the mediators are actually setting stronger limits than the mono-X + MET searches.

The limits in the DM mass-mediator mass plane can be recast into constraints on WIMP-nucleon
scattering cross sections, to be compared with those from direct detection experiments. The main result
is that for spin-independent couplings, the direct detection experiments set the most stringent limits (for
mχ & 5 GeV), but for spin-dependent couplings (for which direct detection is weaker) the LHC bounds
are actually stronger.

Is this the whole story? The negative results of DM searches are calling for new efforts towards
developing other tools and methodologies to increase the power of the searches. A couple of topics along
this direction which are worth mentioning are: exploring less conventional, unexplored phenomenologi-
cal signatures for DM; use data-driven approaches (e.g. machine learning) to get new and deeper views
into the available and upcoming data.

6 Inflation
Inflation [11–13] is one of the basic ideas of modern cosmology and has become a paradigm for the
physics of the early universe. In addition to solving the shortcomings of the standard Big Bang theory,
inflation has received a great deal of experimental support, for example it provided successful predic-
tions for observables like the mass density of the universe and the fluctuations of the cosmic microwave
background radiation. Before discussing inflation in more detail, let us first review some background
material about standard cosmology, which serves also to introduce the notation, and outline its major
shortcomings.

6.1 Shortcomings of Big Bang Cosmology
Flatness problem. Recall from Eq. (45) that curvature parameter Ωk is of the order of 0.1% (10−3)
today, which means that to a very good approximation we live in a flat universe. Let us define the total
Omega parameter as

Ω ≡ ρtot

ρc
= Ωm + Ωr + ΩΛ . (154)
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From the sum rule of Omega parameters in Eq. (35) we get that

Ω− 1 =
k

a2H2 . (155)

The parameter |Ω−1| grows with time during radiation- and matter-dominated eras. In particular, during
radiation domination H2 ∝ ρradiation ∝ a−4, so

|Ω− 1| ∝ 1

a2H2 ∝
1

a2a−4 ∝ a
2 . (156)

Let us extrapolate this value back in time until the Planck time tP ∼ 10−43 s

|Ω− 1|T=TP

|Ω− 1|T=T0

≈
(
a(tP )

a(t0)

)2

≈
(
T0

TP

)2

≈ 10−64 . (157)

Since we observe today that the energy density of the universe is very close to the critical density (i.e. a
very small Ωk) the Ω parameter must have been close to unity to an extremely high accuracy (of about
one part in 1064 if we start the radiation-dominated era at the Planck time. Therefore, an extreme degree
of fine tuning is necessary to arrange such a precise initial value of the density parameter of the universe.
This is the flatness (or fine-tuning) problem.

Entropy problem. The flatness problem is also connected to the entropy problem, which is understand-
ing why the total entropy of the visible universe is incredibly large. In fact, recall that the entropy in
a comoving volume of radius a and temperature T is S ' (aT )3 = which is constant, and today the
entropy within the horizon is

S0 ∼ H−3
0 s0 ∼ H−3

0 T 3
0 ∼ 1090 , (158)

which is huge with respect to that in the early universe. During radiation domination the Hubble param-
eter is H ∼ T 2/MP , where the Planck mass is MP ≡ G−1/2 = 1.22 × 1019 GeV, so Eq. (155) can be
re-written as

|Ω− 1| ∝ 1a2H2 ∝ 1

a2T 4 ∝
1

T 2S2/3
. (159)

This relation tells us that Ω at early times is so close to 1 because the total entropy of the universe is
enormous. For example, at the Planck scale, the entropy of 1090 corresponds to Ω− 1 ∼ 10−60.

Horizon problem. As already mentioned in Section 4.3, the CMB has an amazingly high degree of
homogeneity, about one part in 105. But this poses a serious problem for cosmology. Recall from
Section 2.2.8 that the particle horizon is the distance travelled by photons. Let us consider our current
particle horizon d0 and track it back in time to the time of photon decoupling (last scattering), when
CMB formed Tdec ∼ 0.3 eV. The CMB temperature today is T0 ' 2.3× 10−4 eV, so particle horizon at
dec

λH |dec = d0
adec

a0
= d0

T0

Tdec
. (160)

From the Friedmann equation we know that during matter domination (from photon decoupling to today)
the Hubble radius, i.e. the size of the observable universe, redshifts as a−3/2 ∼ T 3/2. Therefore

(
λH |dec

H−1
dec

)3

=

(
Tdec

T0

)3/2

≈ 105 . (161)

So this result is telling us that when CMB formed, the lenght λH corresponding to our unvierse today
was much larger (by a factor 105) than the size of the causally connected universe at that time (H−1

dec). So
at photon decoupling there were 105 causally disconnected regions that now correspond to our horizon!
In other words, the photons received today were emitted from regions that were causally disconnected
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at the time of photon decoupling, because they were out of the particle horizon. Why regions that were
not in causal contact share the same temperature to a very high precision? This is the so-called horizon
problem.

Monopole problem. Lastly, another issue that was plaguing the Standard Big Bang Cosmology in
the context of Grand Unified Theories (GUTs) is the overproduction of magnetic monopoles. Indeed,
magnetic monopoles are a generic prediction of GUTs and they are produced at a phase transition at
T = Tc, after which they behave as non-relativistic matter. To estimate the number density of monopoles,
we consider the simple argument of expecting approximately 1 monopole per correlation volume `3cor,
where the correlation length is bounded by the horizon at the critical temperature `cor . H(Tc)

−1.
Therefore, the number density of monopoles is roughly given by

nM ' `−3
cor & H(Tc)

3 '
(

1.66
√
g∗(Tc)

)3 T 6
c

M3
P

=⇒ nM
s
∼
√
g∗(Tc)

(
Tc
MP

)3

(162)

their number density behaves like nM (t) ∝ a−3(t) ∝ s(t), and therefore using (162) we can estimate
the abundance of magnetic monopoles today as

ρM (T0) = mMnM (T0) = mM
nM (Tc)

s(Tc)
s(T0) ∼ mM

√
g∗(Tc)

(
Tc
MP

)3

g∗(T0)T 3
0

∼ 1012

(
mM

1016 GeV

)(
Tc

1016 GeV

)3
√
g∗(Tc)

102 GeV cm−3 (163)

while the critical density is ρc ' 10−5 GeV cm−3, so

ρM
ρc
∼ 1017 , (164)

for monopoles with GUT-scale mass (∼ 1016 GeV). This overabundance of magnetic monopoles is
the so-called monopole problem. Therefore, one should suppose either that the universe was never at
temperatures as high as Tc ∼ 1016 GeV, or that Grand Unification is not there. The monopole problem
was the primary motivation behind the idea of inflation.

6.2 The inflationary solution
Inflation elegantly solves at once the problems associated with the standard Big Bang cosmology. The
inflationary era is defined as the epoch in the early history of the universe when it underwent a period of
accelerated expansion

ä > 0 . (165)

According to Eq. (25), this condition is equivalent to ρ+ 3p < 0 (for negligible cosmological constant).
For the sake of simplicity, we shall only consider here a more stringent condition for inflation, p = −ρ
(negative pressure!). This condition is also known as de Sitter phase, and corresponds to constant energy
density and Hubble parameter HI , and thus the scale factor grows exponentially in time

a(t) ∝ eHI t . (166)

Inflation delivers a flat universe, thus providing an explanation for the initial condition that Ω is close
to 1 to a high precision. In fact, during inflation, the Hubble rate is nearly constant and the curvature
parameter Ω− 1 is proportional to 1/a2 (see Eq. (155)), thus its final value at the end of inflation t = tf
is related to the primordial initial value at t = ti by

|Ω− 1|final

|Ω− 1|initial
=

(
a(ti)

a(tf )

)2

= e−HI(tf−ti) . (167)
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If inflation lasts for long enough, the Ω parameter will be exponentially driven to unity. Therefore, the
universe emerging at the end of inflation is spatially flat to a very high accuracy.

Furthermore, the large amount of entropy produced during the non-adiabatic phase transition from
the end of inflation and the beginning of the radiation-dominated era also produces a huge entropy

Sf
Si
∼
(
a(tf )

a(ti)

)3(Tf
Ti

)3

∼ e3HI(tf−ti)
(
Tf
Ti

)3

. (168)

Therefore, a period of exponential expantion can easily account for a large amount of entropy and it can
greatly dilute all magnetic monopoles down to an unobservable level.

If the universe underwent a period when the physical scales evolve faster than the horizon scale,
it is possible to make the CMB photons in causal contact at some primordial time before the photon
decoupling. The physical size of a perturbation grows as the scale factor: λ ∼ a, while the horizon scale
is H−1 = a/ȧ. If a period exists in the early history of the universe when

d

dt

λ

H−1 = ä > 0 , (169)

the CMB photons may have been in causal contact at that time, thus explaining the high level of homo-
geneity and isotropy observed in the CMB today. Such an epoch of accelerated expansion is precisely
the inflationary stage.

The mechanism of inflation can be simply realized by means of a scalar field φ, called the inflaton,
whose energy is dominant in the universe and with potential energy V (φ) much larger than the kinetic
energy. The generic lagrangian for the inflaton is

L =
1

2
∂µφ∂

µφ− V (φ) , (170)

while the energy-momentum tensor is

Tµν = ∂µφ∂νφ− gµνL . (171)

Neglecting the spatial gradients, the 00 and ii components of the energy-momentum tensor, correspond-
ing to the energy density and the pressure of the inflaton respectively, are given by

T 00 = ρφ =
φ̇2

2
+ V (φ) , (172)

T ii = pφ =
φ̇2

2
− V (φ) . (173)

If the kinetic energy is negligible with respect to the potential energy

V (φ)� φ̇2 , (174)

and if the energy density of the inflaton dominates over other forms of energy density (such as matter or
radiation), then we would have a de Sitter stage pφ = −ρφ and the Friedmann equation would read

H2 ' 8πGN
3

V (φ) . (175)

Thus, inflation is driven by the vacuum energy of the inflaton field.

The equation of motion of the inflaton field in an expanding universe is

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (176)
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where the prime refers to the derivative with respect to φ. When V (φ) � φ̇2 and φ̈ � 3Hφ̇, the scalar
field “slowly rolls” down its potential. Under the slow-roll conditions, the equation of motion reduces to

3Hφ̇ ' −V ′(φ) . (177)

It is straightforward to derive some important relations from the two equations in Eqs. (175) and (177)
and the slow-roll condition in Eq. (174). From Eqs. (175) and (177) one can show that

Ḣ = −4πGN φ̇ , (178)

while using Eqs. (174) and (177) one obtains

(V ′)2

V
� H2 , (179)

and finally using Eqs. (174), (175), (177) and (178) we arrive at

V ′′ � H2 . (180)

It is customary to define the “slow-roll parameters” ε, η as

ε ≡ 1

16πGN

(
V ′

V

)2

, (181)

η ≡ 1

8πGN

(
V ′′

V

)2

. (182)

in such a way that the conditions Eqs. (179)-(180) derived by the slow-roll regime can be simply recast
into ε � 1, |η| � 1. Furthermore, from the Friedmann equation (175) and Eq. (178), one can rewrite
the ε parameter as

ε = − Ḣ

H2 (183)

which allows one to express the second derivative of the scale factor in terms of ε

ä

a
= Ḣ +H2 = (1− ε)H2 > 0⇐⇒ ε < 1 . (184)

So the condition defining inflation ä > 0 is equivalent to ε < 1, and inflation ends when ε ' 1.

6.3 Consequences of inflation
Spectral Parameters. As the inflaton rolls down its potential energy, it undergoes two kind of fluctua-
tions: a classical one and a quantum one. During a Hubble time H−1, these fluctuations behave as

(δφ)cl ∼ φ̇H−1 , (185)

(δφ)qu ∼ H/(2π) . (186)

The so-called power spectrum of scalar pertubations is given by the ratio of these two kinds of fluctua-
tions at a momentum scale k equal to the horizon scale aH

P(k) =

[
(δφ)qu

(δφ)cl

]2

=

(
H

φ̇

)2(H
2π

)2
∣∣∣∣∣
k=aH

, (187)

and after some manipulations we arrive at the expression in terms of the slow-roll parameter ε

P(k) =
8G2

N

3

V

ε

∣∣∣∣∣
k=aH

(188)
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The spectral index ns is defined as

ns − 1 ≡ d lnP(k)

d ln k
(189)

which can be interpreted as the exponent of the k-dependence of the power spectrum P(k) ∝ kns−1. It
is easy to show that

d
d ln k

= − 1

8πGN

V ′

V

d
dφ

(190)

from which it follows that
dε

d ln k
= −2εη + 4ε2 (191)

and finally the spectral index in terms of the slow-roll parameters is

ns = 1− 6ε+ 4η . (192)

So, in slow-roll inflation where ε, |η| � 1, the spectral index is very close to 1, meaning that the spectrum
of scalar perturbations is nearly scale-independent.

Other kinds of perturbations are the so-scalled tensor perturbations (or gravity waves), whose
power spectrum turns out to be

Pg =
128πG2

N

3
V

∣∣∣∣∣
k=aH

, (193)

from which one can derive the important tensor-to-scalar ratio r

r =
Pg
P = 16ε� 1 , (194)

which is also predicted as very small in slow-roll inflation.

Evolution of Perturbations. The Fourier expansion of inflaton field fluctuations in k-modes can be
written as

δφ(x, t) =

∫
d3k

(2π)3 e
ik·xδφk(t) , (195)

and the k-modes obey the equation of motion

δφ̈k + 3Hδφ̇k +
k2

a2 δφk = 0 . (196)

This can be studied more easily in two extreme regimes, according to whether the modes are inside or
outside the horizong. The modes inside the horizon are characterized by a length scale λ ∝ (a/k) �
H−1, which is equivalent to the condition k � aH , so the equation of motion reads

δφ̈k +
k2

a2 δφk = 0 . (197)

This is a simple harmonic oscillator with δφk ∝ λ−1, so fluctuations are stretched during inflation.

The modes outside the horizon are characterized by a length scale λ ∝ (a/k) � H−1, which is
equivalent to k � aH , so the equation of motion reads

δφ̈k + 3Hδφ̇k = 0 . (198)

This is an oscillator with friction, and the corresponding fluctuations are constant (“frozen”).

So the fluctuations of the inflaton field grow exponentially during inflation, until their wavelength
exits the horizon; then fluctuations get frozen outside the horizon; after inflation ends, fluctuations re-
enter the horizon (see Figure 10 for a pictorial representation).
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Fig. 10: Evolution of the length scales (λ ∝ a) during and after inflation, in red. For comparison, in green it
is shown the evolution of the Hubble scale H−1, during inflation and after inflation (in the radiation-dominated
epoch).

CMB and Large-scale structures. Inflation can also be responsible for the physical processes giving
rise to the CMB anisotropies and the matter structures we observe in the universe today. In fact, pri-
mordial small quantum fluctuations of the energy density are excited during inflation and stretched to
cosmological scales; then they exit the horizon and get frozen; when they re-enter the horizon at some
matter- or radiation-dominated epoch, these fluctuations will start growing giving rise to the formation
of all the structures we observe.

Physically, the mechanism works because the fluctuations are connected to the metric perturba-
tions (gravity) via Einstein’s equations and gravity acts as a messenger: once a given wavelength re-enters
the horizon, gravity communicates the perturbations to baryons and photons. Therefore, the primordial
quantum fluctuations of the inflaton field during inflation provide the seeds of the CMB temperature
fluctuations and the large-scale strucutres observed today.

7 Baryogenesis
Our universe has a matter-antimatter asymmetry. We observe our universe to consist of matter, and
not antimatter in appreciable quantities. More precisely, the difference between the number density of
baryons and that of anti-baryons is expressed in terms of the baryon-to-photon ratio today

η ≡ nB − nB̄
nγ

∣∣∣∣
0

, (199)

(recall that the photon number density is nγ = 2ζ(3)T 3/π2). The accurate measurement of the matter-
antimatter asymmetry has been mainly provided by two independent and solid types of experiments.

– Big Bang Nucleosynthesis. We have already discussed in Section 3 that the simultaneous fit to
primordial element abundances in terms of the single free parameter η is a remarkable success of
standard cosmology and provides

5.2× 10−10 < η < 6.6× 10−10 (95% CL) . (200)

– Cosmic Microwave Background. The position and height of acoustic peaks in the power spectrum
of CMB temperature anisotropies, probing the baryon/photon fluid at the last scattering surface,
allow us to constrain the baryon energy density and therefore η [1]:

η = (6.13± 0.04)× 10−10 , (201)

The agreement of these two independent measurements is evident. Within the standard cosmological
model η is not predicted, it is a free parameter whose value is fixed by observations. Explaining this
number is challenging, and a definitive answer is still missing.
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If there was an era of cosmological inflation, any initial asymmetry would have been diluted by
the enormous entropy increase during such epoch; hence, at the end of inflation the universe looks
perfectly symmetric. Therefore, explaining the origin of the tiny (but non-zero) asymmetry we observe
today requires that some post-inflationary mechanism is at work. The mechanism by which a baryon
asymmetry is dynamically produced in the early universe is generically called baryogenesis.

In 1967 Sakharov pointed out three necessary conditions for a baryon asymmetry to be produced
in the early universe and observed today:

I. Baryon number violation.
This condition is quite obvious. Let us suppose to start from a baryon symmetric universeB(t0) =
0, at a certain t0. The quantum mechanical evolution of the operator B is B(t) ∝

∫ t
t0

[B,H]dt′,
where H is the hamiltonian of the system. If B is conserved, [B,H] = 0 and then B(t) = 0 at all
times.

II. C and CP violation.
If C were an exact symmetry, the probability of the process i → f would be equal to the one of
the conjugated process ī→ f̄ . Therefore the same amount of f and f̄ would be present in the final
state. But B is odd under C, so B(f̄) = −B(f) and so the net baryon number B would vanish.
Due to the CPT theorem, CP invariance is equivalent to T invariance and this implies that the
probability of the process i(ri,pi, si)→ f(rj ,pj , sj) is equal to that of the time-reversed process
f(rj ,−pj ,−sj)→ i(ri,−pi,−si), where ri,pi, si denote coordinate, momentum and spin of the
i-th particle, respectively. After performing an integration over all momenta and summation over
all spins, the total baryon asymmetry vanishes.

III. Departure from thermal equilibrium.
Let us consider a species ψ carrying baryon number and being in thermal equilibrium, and distin-
guish the situations when it does or does not have a chemical potential.
If ψ has zero chemical potential, the CPT invariance implies that particles and anti-particles have
the same mass and therefore nψ = nψ̄, which implies B ∝ nψ − nψ̄ = 0.
If ψ has chemical potential µψ and is in chemical and thermal equilibrium and takes part in the
B-violating process ψψ → ψ̄ψ̄ (first Sakharov condition), then the relation µψ = µψ̄ must hold.
But on the other hand it must be that µψ̄ = −µψ, implying that µψ must vanish and the previous
argument applies.

Are these conditions met in the Standard Model (SM)? No.

1. In the SM the baryon number symmetry is anomalous soB-violation is present at a quantum level.
The baryon (B) and lepton (L) numbers are exactly conserved at a classical level. But at a quantum
level, these symmetries fail to be exact, they are anomalous.

2. The only source of CP -violation within the SM is provided by the complex phase of the CKM
matrix. But it is too small to explain the observed baryon asymmetry because it is suppressed by
small quark masses.

3. The departure from thermal equilibrium could be attained during the electroweak phase transition.
Unfortunately, for the phase transition being strong enough to assure departure from equilibrium
the Higgs mass should be mh . 60 GeV, excluded by experimental data.

Therefore the baryon asymmetry is somehow linked to new physics beyond the SM, which is why it is
so interesting. Any successful model of baryogenesis needs some new ingredient to be added to the SM.
Because of our ignorance about what there is at energy scales well above TeV, one has to postulate some
physics at those scales, check that the three Sakharov conditions are fulfilled and compute the generated
baryon asymmetry.

Many models of baryogenesis have been proposed so far. Some of the most interesting and most
popular ones are
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– Out-of-equilibrium decay.
The out-of-equilibrium decay of a heavy boson provides a viable mechanism for successful baryo-
gensis. Such a heavy boson may be embedded in a Grand Unified Theory (GUT). Let us suppose
that a heavy scalar particle X of mass MX couples to the SM fermions f and has B-violating
decay modes.
At high temperatures T � MX , all particles are in thermal equilibrium and follow their equilib-
rium number densities. The reactions X(X̄) ↔ ff̄ are in equilibrium. The number density of
X, X̄ track the equilibrium number density, nX,X̄ = neq

X , so B = 0.
When the temperature lowers to T . MX , the lifetime of X is of the order of the age of the
universe Γ−1

X ∼ H−1, and the interactions mantaining the number densities of X, X̄ at their
equilibrium value are not so effective anymore, provided that the X is sufficiently heavy. So the
decays and inverse decays of X(X̄) ↔ ff̄ slow down and the X particles become overabundant
with respect to their equilibrium distribution; this is the departure from thermal equlibrium needed
for baryogenesis.
If the X decay violates baryon number B, a net baryon number is produced for each decay, which
would be erased by the opposite baryon asymmetry generated by the decay of X̄ . So we need
the condition that C, CP are violated in the decays, i.e. BR(X → ff̄) 6= BR(X̄ → ff̄). These
conditions ensure that a net baryon asymmetry is produced for each decay of X, X̄ .

– Baryogensis via Leptogenesis.
A lepton asymmetry is produced in the early universe by out-of-equilibrium decay of heavy right-
handed neutrinos. Such asymmetry is then reprocessed at the electroweak scale into a baryon
asymmetry (by sphalerons). The mechanism of producing a net lepton asymmetry is similar to the
one described for the out-of-equilibrium decay scenario. The appeal of leptogenesis is that it is
built in see-saw models motivated by explaining the light neutrino masses.

– Electroweak Baryogenesis.
It is a rather complex mechanism aiming at realizing baryogenesis at the electroweak phase transi-
tion, by adding new physics at the electroweak scauple that would allow the phase transition to be
“strong” enough to provide enough baryon asymmetry. The SM needs to be extended by new extra
bosonic degrees of freedom. The generic prediction is the presence of new CP-violating phases in
the theory, which may be probed by experiments looking for electron and neutron electric dipole
moments.

In conclusion, the cosmology/particle physics interplay has been and currently is a very successful and
fascinating liaison, which may hold for us even more exciting surprises in the near future.
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Abstract
We give a brief introduction to flavour physics. The first part covers the flavour
structure of the Standard Model, how the Kobayashi-Maskawa mechanisem is
tested and provides examples of searches for new physics using flavour ob-
servables, such as meson mixing and rare decays. In the second part we give a
brief overview of the recent flavour anomalies and how the Higgs can act as a
new flavour probe.

Keywords
Flavour physics; heavy quarks;B physics; meson mixing; new physics; Higgs;
lectures.

1 Introduction
The term “flavour” was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch,
while sitting at a Baskin-Robbins ice-cream store in Pasadena, CA [1]. Just as ice-cream has both colour
and flavour so do quarks. “Flavour” is now used slightly more generally to denote the species of any
Standard Model (SM) fermion, both quarks and leptons. “Flavour physics” thus has little to do with
one’s adventures in kitchen, but rather is a research area that deals with properties of quarks and leptons.

Grouped according to their QCD and QED quantum numbers, SU(3)×U(1)em, the SM fermions
are,

32/3 : up type quarks; u, c, t,

3−1/3 : down type quarks; d, s, b,

1−1 : charged leptons; e, µ, τ,
10 : neutrinos; νe, νµ, ντ .

(1)

Each fermion type comes in three copies, i.e., the SM fermions group into three generations.

In this brief introduction to flavour physics we will cover some of the classic topics on the subject:
the flavour structure of the Standard Model (SM), how the Kobayashi-Maskawa mechanism is tested, as
well as the constraints on the New Physics (NP) due to flavour observables such as the meson mixing and
decays. We will also touch on the more recent developments: the B physics anomalies and the Higgs
as a new probe of flavour. Along the way we will address two major questions currently facing particle
physics. The first question is why do the SM fermions exhibit such a hierarchical structure, shown in
Fig. 1? This is commonly referred to as the SM flavour puzzle. The other question is what lies above the
electroweak scale? Here flavour physics offers a way to probe well above the electroweak scale.

Other excellent introductions to flavour physics the reader may want to consult include Refs. [2–7].
Ref. [2] in particular is chock full of physics insights without too much burdensome formalism. Section
2 borrows liberaly from [5], which, while slightly outdated, is still a masterful introduction to the basic
topics in flavour physics. For a reader that is seeking much more depth a good starting point can be
Refs. [8–11].

2 The flavour of the Standard Model
2.1 The SM symmetry structure
A renormalizable particle physics model is defined by specifying (i) the gauge group and (ii) the particle
field content. The next step is to write down the most general renormalizable Lagrangian. The SM gauge
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Fig. 1: The distribution of masses of the elementary particles, along with some of the relevant energy scales. The
absolute values of neutrino masses are not known - their placement on the graph is indicative of the upper bound.

group is
GSM = SU(3)c × SU(2)L × U(1)Y . (2)

Here SU(3)c is the gauge group of strong interactions, Quantum Chromodynamics (QCD), the SU(2)L
is the gauge group of weak isospin, and U(1)Y the gauge group of hypercharge. The field content of the
SM consists of a single scalar, EW doublet

H ∼ (1, 2)1/2, (3)

and a set of fermion fields,

QLi ∼ (3, 2)+1/6, uRi ∼ (3, 1)+2/3, dRi ∼ (3, 1)−1/3,

LLi ∼ (1, 2)−1/2, `Ri ∼ (1, 1)−1.
(4)

Each of the fields comes in three copies (three generations), i = 1, 2, 3. To simplify the discussion we
will set neutrino masses to zero. The modifications due to nonzero neutrino masses are given in appendix
A. The GSM is spontaneously broken by the Higgs vacuum expectation value, 〈H〉 = (0, v/

√
2), v = 246

GeV, down to
GSM → SU(3)× U(1)em. (5)

After the electroweak symmetry breaking the field content in (4) splits into up and down quarks, charged
leptons and neutrinos as listed in Eq. (1).

2.2 The SM Lagrangian
The SM Lagrangian is the most general renormalizable Lagrangian that is consistent with the gauge
group GSM and the field content (3), (4)

LSM = Lkin + LYukawa + LHiggs. (6)

The kinetic terms in the Lagrangian are determined by the gauge structure through the covariant deriva-
tive

Dµψ = (∂µ + igsG
a
µt
a + igW i

µτ
i + ig′BµY )ψ. (7)

The strong interaction term is a product of the strong coupling, gs, the eight gluon fields, Gaµ, and the
generators ta of SU(3)c. For color triplet ψ these are ta = λa/2, with λa the eight 3 × 3 Gell-Mann
matrices, while for color singlet ψ, ta = 0. The SU(2)L term is a product of the weak coupling, g, the
three weak gauge bosons, W i

µ, and the generators of SU(2)L, τ i (equal to τ i = σi/2 for ψ that is a
doublet, with σi the Pauli matrices, while for singlets τ i = 0). The last term is due to the hypercharge
U(1)Y .
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The covariant derivatives are flavour blind, i.e., generation independent. For instance, for QiL the
kinetic term is

Lkin

∣∣
QL

= iQ̄iL
(
∂µ + igsG

a
µ

1
2λ

a + igW i
µ

1
2σ

i + i1
6g
′Bµ
)
δijQjL, (8)

for up quarks it is
Lkin

∣∣
uR

= iūiR
(
∂µ + igsG

a
µ

1
2λ

a + i2
3g
′Bµ
)
δijujR, (9)

and similarly for the other fields. Each of the kinetic terms is invariant under the global U(3) = SU(3)×
U(1) transformations. Thus Lkin has a global flavour symmetry

Gflavour = U(3)3
q × U(3)2

lep, (10)

where

U(3)3
q = U(3)Q × U(3)u × U(3)d, (11)

U(3)2
lep = U(3)L × U(3)`. (12)

That is, each of the five different types of fermions in Eq. (4) can be separately rotated in flavour space,
ψi → U ijψ

j , where U ij is a unitary 3× 3 matrix, without changing Lkin.

However, Gflavour cannot be an exact symmetry of the whole Lagrangian. We know from obser-
vations that, e.g., the top quark differs from the up quark due to their differing masses. The part of the
Lagrangian that breaks Gflavour is

LYukawa = −Y ij
d Q̄

i
LHd

j
R − Y ij

u Q̄
i
LH

cujR − Y
ij
` L̄

i
LH`

j
R + h.c.. (13)

The above Yukawa interactions break

Gflavour → U(1)B × U(1)e × U(1)µ × U(1)τ × U(1)Y , (14)

where U(1)B is the baryon number, and U(1)` are the separate lepton numbers. That LYukawa breaks
the flavour symmetry is not surprising, since it is the origin of fermion masses, once the Higgs obtains
the vacuum expectation value (vev), 〈H〉 = (0, v/

√
2), with v = 246 GeV.

2.3 A Standard Model vs. the Standard Model
Before we proceed further in understanding the breaking pattern in Eq. (14), let us make a small detour
and elaborate on the difference between a Standard Model and the Standard Model. A Standard Model
denotes any model with the SM gauge group (2) and the SM field content (3), (4), but with some arbitrary
values for the coupling constants in the most general renormalizable Lagrangian. The Standard Model is
a Standard Model with exactly the values of coupling constants observed in nature. A Standard Model
has the exact accidental symmetry U(1)B × U(1)e × U(1)µ × U(1)τ . This accidental symmetry is
present for any values of the parameters in the renormalizable SM Lagrangian (but can be broken by
non-renormalizable terms). It is accidental, since we did not explicitly ask for it – it is simply present
because we cannot write down renormalizable terms that break it, given the field and gauge content
in Eqs. (2)-(4). For the Standard Model, because of the actual values of the parameters, there can be
additional approximate symmetries.

Isospin is an example of such an approximate symmetry. In QCD interactions one can replace u
and d quarks without affecting appreciably the results. For instance, the neutron and proton masses are
very close to each other even though, p ∼ uud, while n ∼ udd. The reason is not that up and down
quark masses would be equal to each other but rather that they are both small, cf. Fig. 1,

|mu −md|
Λstrong

� 1. (15)

Here Λstrong ∼ O(1GeV) is the typical scale at which QCD becomes nonperturbative and generates the
bulk of the mass for proton and neutron.
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2.4 Counting physical parameters
The next question we need to address is how one counts the physical parameters. The SM has 19
physical parameters: 3 gauge couplings, 3 lepton masses, 6 quark masses, 4 parameters in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, 2 parameters in the Higgs sector (the Higgs mass and the strength
of the self interaction), and the QCD θ parameter. Physical parameters are parameters that cannot be
rotated away by performing phase transformations or flavour rotations.

Let us understand this on the case of charged lepton masses. The charged lepton Yukawa

LYukawa ⊃ −Y ij
` L̄

i
LH`

j
R + h.c., (16)

can always be made diagonal and real positive through a bi-unitary transformation, LL → VLLL, `R →
V``R, which gives

Y` → V †LY`V` = diag(ye, yµ, yτ ). (17)

How many physical parameters are there? The starting point, Y`, is described by 9 real and 9 imaginary
numbers. The unitary matrices VL, V` have in total 2 × (3 real + 6 im.) numbers. When we rotate LiL
and `iR by the same phase there is no change in y`i . That means that 3 phases (im. numbers) have no
effect. Thus we have 9− 2× 3 = 3 real, and 9− (2× 6− 3) = 0 imaginary physical parameters. The
three real physical parameters are the charged lepton masses, while there are no physical phases.

Extrapolating from this exercise we can postulate the general rule on how to count the physical
parameters [2]

# physical parameters = # parameters−# broken symmetry generators. (18)

Let us check this with a simple example: the spin 1/2 in a magnetic field. If there is no magnetic field
the system has an SO(3) symmetry (3 generators), since the spin can be oriented in an arbitrary direction
without changing the energy. The system also has two degenerate eigenstates corresponding to spin up
and spin down. In the magnetic field the Zeeman effect splits the two states. The splitting depends on
the strength of the magnetic field, B. There is thus one physical parameter that controls the splitting.
However, the magnetic field in general has three components, and is thus described by 3 parameters,
~B = Bxx̂+ Byŷ + Bz ẑ. One can use the rotation around x and y axes to align ~B along the z axis, i.e.,
set Bx = By = 0. After this is done, making any further rotations around x and y axes would change
the ~B component: there are 2 broken symmetry generators. Using the general rule (18) gives that there
is 3− 2 = 1 physical parameter, as expected.

We can now apply (18) to count the physical parameters in the quark sector of the SM. Using the
unitary transformations

QL → VQQL, uR → VuuR, dR → VddR, (19)

one can bring the Yukawa couplings to the form

Yd = diag(yd, ys, yb), Yu = V †CKM diag(yu, yc, yt), (20)

with VCKM a unitary 3× 3 CKM matrix [12,13]. How many entries in VCKM are physical? The starting
point, the Yu, Yd matrices, have 2× (9 real + 9 im.) parameters. The three unitary matrices, VQ, Vu, Vd
have in total 3×(3 real+6 im.) parameters. Finally, there is one global phase corresponding to common
phase change QL → exp(iφ)QL, uR → exp(iφ)uR, dR → exp(iφ)dR, which has no effect. That is,
there is one unbroken symmetry generator – the baryon number, while all the other symmetry generators
are broken. Using (18) we see that there are 2×9−3×3 = 9 real parameters and 2×9−(3×6−1) = 1
imaginary physical parameter. These are the 6 quark masses, as well as the 3 mixing angles and one phase
describing the CKM matrix.
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qi

qi

γ, Z

qi

qi

g

qi

qi

h

dj

ui

W

Vij

Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3× 3 matrices
are visual representations of couplings in the generation space, with couplings to γ, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings toW flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13





c12 s12 0
−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 ,

(21)

where cij ≡ cos θij , sij ≡ sin θij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the θ13 rotation. Experimentally, we observe that θ12 � θ23 � θ13,
while δ ∼ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6∝ 1: U(3)L×U(3)` → U(1)e×U(1)µ×U(1)τ , i.e., the charged lepton family numbers,
– since Yu 6∝ 1: U(3)Q × U(3)u → U(1)u × U(1)c × U(1)t, i.e., the up-quark family numbers,
– since Yd 6∝ 1: U(3)Q × U(3)d → U(1)d × U(1)s × U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6

q → U(1)B , i.e., the above quark U(1)’s further break to a global baryon
number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ×
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y × U(1)B × U(1)L × U(1)PQ × U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and diR, `

i
R have opposite charges, all others zero), while under U(1)`R only `iR is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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SM would have had a very large flavour symmetry Gflavour, Eq. (10). In general, the flavor breaking can
be parametrized as in Eq. (20), by 6 diagonal Yukawa couplings, and the elements of the CKM matrix,
VCKM.

After Higgs obtains the vev, the Yukawa terms give the quark and charge lepton masses,

Mf = Yf
(v + h)√

2
. (22)

With a field redefinition for the left-handed up quark fields

QL →
(
V †uL
dL

)
, (23)

we can move the flavour changing interactions to the kinetic term. This gives the SM Lagrangian for the
quarks in the mass basis

LSM ⊃ (q̄i /DNCqi) +
g√
2
ūiL /W

+
V ij

CKMd
j
L +mui ū

i
Lu

i
R

(
1 +

h

v

)
+mdi d̄

i
Ld

i
R

(
1 +

h

v

)
+ h.c.. (24)

The covariant derivative DNC contains flavour (generation) universal couplings of photon, gluon and the
Z. The Higgs has flavour diagonal, yet non-universal, couplings that are proportional to quark masses,
while the flavour changing transitions reside in charged currents, with the strength encoded in the CKM
matrix, see Fig. 2.

2.6 Charged currents vs. neutral currents
In the SM there is a very important distinction between flavour changing neutral and charged currents.
Flavour Changing Neutral Currents (FCNCs) are processes in which the quark flavour changes, while
the quark charge stays the same. The charged currents change both the flavour and the charge of the
quark. A glimpse at the PDG booklet [15] reveals that the probabilities for the two types of processes are
strikingly different. The charged currents lead to the dominant weak decays, while the FCNC induced
decays are extremely suppressed. Rounding the experimental results, and not showing the errors, a few
representative decays are

charged currents: neutral currents:

s→ uµ−ν̄µ : Br(K+ → µ+ν) = 64%, s→ dµ+µ− : Br(KL → µ+µ−) = 7× 10−9,

b→ c`−ν̄` : Br(B− → D0`ν̄) = 2.3%, b→ dµ+µ− : Br(B− → K∗−`+`−) = 5× 10−7,

c→ sµ+νµ : Br(D± → K0µ±ν) = 9%, c→ u`+`− : Br(D0 → π0`+`−) < 1.8× 10−4,

The reason for such a striking difference is that in the SM the charged currents occur at tree level,
while FCNCs are forbidden at tree level and only arise at one loop, see Fig. 3. Furthermore, the FCNCs
come suppressed by the difference of the masses of the quarks running in the loop, m2

j −m2
i . This so

called Glashow-Iliopoulos-Maiani (GIM) mechanism [16] is a result of the fact that there is no flavour
violation, if all the quark masses are the same.

2.7 The CKM matrix
The Cabibbo-Kobayashi-Maskawa (CKM) matrix is very hierarchical in the SM,

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 ∼




1 0.2 0.004
0.2 1 0.04

0.008 0.04 1


 . (25)
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di

uj

W

ν̄ ℓ−

di dj

u, t, c

W

ℓ+

ℓ−

Fig. 3: Representative tree level charged current diagram (left) and a loop induced FCNC diagram (right).

In fact, for processes at colliders in many cases the CKM matrix can even be approximated as

VCKM ∼




1 0 0
0 1 0
0 0 1


 , [collider physicist] (26)

i.e., for many processes at high pT to a good enough precision the generation number is conserved.

We, on the other hand, are interested precisely in the off-diagonal entries in VCKM. These entries
roughly obey a power scaling in λ ≡ |Vus| ' 0.22, giving the Wolfenstein parametrization of the CKM
matrix [17],

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O

(
λ4
)
. (27)

This parametrization also encodes that the CKM matrix is unitary, V †CKMVCKM = VCKMV
†

CKM = 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase δ. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters λ, A, ρ, and one imaginary parameter, η, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), λ = 0.2251(3), ρ̄ = 0.160(7), η̄ = 0.350(6), (28)

where the modified ρ, η parameters were introduced as ρ̄ + iη̄ = −VudV ∗ub/(VcdV ∗cb), valid to all orders
in λ. To O(λ4) we have ρ̄ = ρ(1 − λ2/2) and η̄ = η(1 − λ2/2). Note that numerically ρ̄, η̄ are maybe
closer to ρ̄, η̄ ∼ O(λ) than ρ̄, η̄ ∼ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).

2.8 Origin of CP violation in the SM
The SM Lagrangian is invariant under the discrete CP symmetry, apart from the Yukawa terms.1 These
transform as (writing explicitly also the hermitian conjugate terms)

Yijψ̄
i
LHψ

j
R + Y ∗ijψ̄

j
RH
†ψiL

CP−→ Yijψ̄
j
RH
†ψiL + Y ∗ijψ̄

i
LHψ

j
R. (29)

The CP is conserved, if Yukawa couplings are real,

Y ∗ij = Yij . (30)

Since there is only one physical phase in the CKM, in the SM the CP violation (CPV) is controlled by
one parameter, the “CKM phase”, which in the Wolfenstein parametrization is the parameter η. CP is

1There is another CP violating parameter, the strong CP phase multiplying the QCD anomaly term, g2/(32π2)θGaµνG̃aµν .
It is bounded experimentally to be small, θ . 10−10 and, even if eventually found to be nonzero, is negligible for all the
processes discussed in these lectures.
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Fig. 4: The standard CKM unitarity triangle (from [15]).

thus violated only, if η 6= 0. This origin of the observed CPV is called the Kobayashi-Maskawa (KM)
mechanism [13]. Furthermore, CPT is conserved in any Lorentz invariant Quantum Field Theory, and
therefore also in the SM. This means that CPV is equivalent to having T violation – the time reversal is
also violated in the SM.

For the existence of CPV in the SM it is crucial that there are at least 3 generations of quarks.
Repeating the counting of physical parameters from Sec. 2.4 we can easily convince ourselves that it
is possible in the case of 2 generations to make CKM real through field redefinitions. Furthermore, if
Yu and Yd are “aligned”, meaning that they are diagonalized with the same left-handed rotation, then
VCKM = 1. This means that in the SM, if there is no flavour violation, there is also no CP violation
(ignoring the flavour universal, but numerically negligible θ term).

The above insights can be encoded in a measure of CP violation, the Jarlskog invariant [20]

JY ≡ Im
(

det
[
YdY

†
d , YuY

†
u

])
. (31)

The JY is invariant under flavour transformations, GF , Eq. (10), and is thus basis independent. The CP
is conserved, if JY = 0. We can also write JY as

JY = JCP

∏

i>j

m2
i −m2

j

v2/2
' O(10−22), (32)

where the invariant measure of CP violation is

JCP = Im
[
VusVcbV

∗
ubV

∗
cs

]
= c12c23c

2
13s12s23s13 sin δKM ' λ6A2η ' O(10−5). (33)

The product of masses is

∏

i>j

m2
i −m2

j

v2/2
=

(m2
t −m2

c)

v2/2

(m2
t −m2

u)

v2/2

(m2
c −m2

u)

v2/2

(m2
b −m2

s)

v2/2

(m2
b −m2

d)

v2/2

(m2
s −m2

d)

v2/2
. (34)

It would vanish, if any of the two pairs of masses were equal, in which case CP would have been con-
served.

3 Tests of the CKM structure
3.1 The standard CKM unitarity triangle
All flavour transitions in the SM depend on only 4 fundamental parameters, λ, A, ρ, and η. We can test
the Kobayashi-Maskawa mechanism by making many measurements, over-constraining the system. One
way to visualize a subset of experimental constraints is through the standard CKM unitarity triangle,
which tests one out of nine unitarity equations, VCKMV

†
CKM = 1. The standard CKM unitarity triangle

is obtained from a product of the first and the third column of the CKM matrix

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (35)
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Fig. 5: The evolution of the constraints in the standard CKM unitarity triangle plane from 1995 (left), to just after
the start of B factories (middle), to the present (right). Taken from the ckmfitter website [18].
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V ∗
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b
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s

u
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D̄0

K−B−
ūū

Fig. 6: Some of the main CKM constrains and the respective SM diagrams.

which we can rewrite as
VudV

∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0. (36)

In terms of the Wolfenstein parameters this sum rule is

−
(
ρ̄+ iη̄

)
+ 1 +

(
− 1 + ρ̄+ iη̄

)
= 0. (37)

The relation (36) can be interpreted as a sum of three complex numbers that are the sides of a triangle,
shown in Fig. 4. There are two common notations for the angles of the standard CKM unitarity triangle:
either α, β, γ or φ1, φ2, φ3, used by the two B-factories, BaBar and Belle, respectively. The Belle
experiment (1999-2010) at KEK, Japan produced about∼ 1.5×109 B mesons, while BaBar experiment
1999-2008) at SLAC, USA collected about ∼ 0.9 × 109 B mesons. The two experiments established
that the KM mechanism is the main source of CP violation in the SM. The progression of constraints in
the CKM unitarity triangle plane is shown in Fig. 5. We see that there was a big qualitative jump after
the start of the B factories, and a very impressive set of improvements in the constraints since then.

The constraints on the standard CKM unitarity triangle are coming from several different meson
systems, the B0

d , B
+ mesons from measurements at Belle, BaBar and LHCb, the Bs meson and Λb
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Fig. 7: Evolving constraints in the ρ̄ − η̄ plane from LHCb measurements and improvements in lattice QCD
calculations, alone, with current inputs (2018), and the anticipated improvements from the data accumulated by
2035 (300 fb−1 of integrated luminosity). More information on the fits may be found in [11, 21].

baryon from measurements at LHCb, and the kaon physics experiments. Different constraints in the
standard CKM unitarity triangle plane are shown in Fig. 6, together with the relevant SM diagrams. The
upshot of these results is that the KM mechanism is the dominant origin of CPV. The measurements
point to a consistent picture of flavour violation, described by four parameters, A, λ, ρ̄, η̄, with the values
given in Eq. (28). Since ρ̄ . η̄ the CKM phase is large, O(1). It is given by

γ = arctan
(
η̄/ρ̄
)

= arg(V ∗ub), (38)

where in the last equality we used the common parametrization of the CKM matrix, where the weak
phase is moved to the Vub and Vts CKM elements, (27). Experimentally [18],

γ = (65.4± 1.1)◦, (39)

so that the weak phase is indeed O(1) when measured in radians.

The field is undergoing a big upgrade in available statistics. The successor to the Belle experiment,
called Belle II, is ramping up right now, with the first physics run expected in early 2019 [10]. Belle II
aims to collect about∼ 8×1010 B mesons by about 2025, roughly 50×more than Belle did. The LHCb
experiment also has ambitious upgrade plans [21]. After the end of Upgrade II in 2035 it may have the
statistics that corresponds to roughly ∼ 1011 or more useful B’s (because of hadronic environment this
number fluctuates from channel to channel), as well as Bs mesons and heavy baryons, which are also
produced in the pp collisions. The constraints on the elements of the CKM matrix are thus set to become
much more precise in the future. Fig. 7 (right) shows the improvements that can be achieved by using just
the LHCb measurements alone at the end of the high luminosity LHC programme. A similar projection
for the improvements using Belle II measurements can be found in Ref. [22].

The constraints in the standard CKM unitarity triangle plot are of two types: the tree level transi-
tions, which are less likely to be affected by new physics, and the loop level transitions, which are more
likely to be affected by new physics. In the rest of this section we will choose an example transition for
each of the two types of transitions and look at it in detail. This will then lead us to the discussion of new
physics searches in Section 4. However, before we do that, we need to introduce several new concepts.

3.2 The meson mixing
The term mixing denotes that the flavour eigenstates do not equal mass eigenstates, i.e., that the eigen-
states of the SM Hamiltonian are composed of states with different flavour compositions. For instance,
B0 ∼ b̄d and B̄0 ∼ bd̄ are flavour eigenstates but are not mass eigenstates. The mass eigenstates are
admixtures of B0 and B̄0.
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Fig. 8: The SM diagrams leading to Bd (left) and Bs mixing (right).

The term oscillations denotes that the initial flavour eigenstate time evolves to a different flavour
eigenstate. The reason for this is that the flavour eigenstates are composed from two mass eigenstates,
each of which evolves slightly differently. The oscillation frequency is the energy splitting, ω = ∆E.
In the rest frame this equals the mass splitting, ∆E = ∆m, which means that the oscillations are an
excellent way to measure small mass splittings.

What kind of mixings between states are possible? A general rule that applies here is: what is not
explicitly forbidden is allowed [2]. Using this important rule let us look at two examples:

– Can B+ ∼ b̄u and B− ∼ bū mix? The answer is no, since the electric charge is conserved. That
is, the U(1)em gauge symmetry forbids such mixings to all orders in perturbation theory.

– Can B0 ∼ b̄d and B̄0 ∼ bd̄ mix? In this case the answer is yes, since nothing forbids it. That is,
there is no exact symmetry that forbids this mixing to all orders, so at some order in perturbation
theory the mixing will occur. Such FCNCs are forbidden at three level in the SM, but are allowed
at 1 loop.

A representative 1 loop weak interactions diagram that mixes B̄0 ∼ b̄d and B0 ∼ bd̄ in the SM ,
is shown in Fig. 8 (left). These diagrams contribute to the flavour off diagonal elements in the Hermitian
B̄0, B0 mass matrix, see e.g., [7],2

M =

(
M11 M12

M21 M22

)
, (40)

written in the flavour basis (
|B0〉
|B̄0〉

)
. (41)

The off-diagonal elements are much smaller than the diagonal ones, so that the mass matrix has the form,

M∝
(

1 ε
ε 1

)
. (42)

CPT guarantees M11 = M22. If CP is conserved, then also M12 = M21. Numerically, M11 = M22 '
mB , while M12,21 �M11. If CP is conserved, the mass eigenstates are

|BL,H〉 =
1√
2

(
|B0〉 ± |B̄0〉

)
, (43)

where we used the phase convention

CP |B0〉 = |B̄0〉, CP |B̄0〉 = |B0〉, (44)

such that
CP |BL,H〉 = ±|BL,H〉. (45)

2Note that our phase conventions differ from [7] by a sign. The results in [7] are obtained by replacing q → −q, |B̄0〉 →
−|B̄0〉.
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That is, the mass eigen-states are maximally mixed, exactly what we are used to for eigenstates of the
matrices of the form in Eq. (42).

For B0− B̄0 meson system the discussion deviates from the above results in two important ways.
The first complication is that the CP is violated (but CPT still conserved). Then M12 6= M21, while
M11 = M22, in which case the two mass eigenstates are

|BL,H〉 = p|B0〉 ± q|B̄0〉. (46)

For CP conserving case p = q = 1/
√

2.

The other complication is that B0 and B̄0 decay. We can describe this through a non-unitary
evolution of a two-state system, given by a non-hermitian Hamiltonian

H = M + iΓ, (47)

so that the time evolution of a two-state system is described by

i
d

dt

(
|B0(t)〉
|B̄0(t)〉

)
= H

(
|B0(t)〉
|B̄0(t)〉

)
=

(
M11 + iΓ11, M12 + iΓ12

M21 + iΓ21, M22 + iΓ22

)
·
(
|B0(t)〉
|B̄0(t)〉.

)
(48)

The Γ matrix encodes the effects of B0 and B̄0 decays on the time evolution. The non-unitary evolution
describes the “disappearance” of B0 and B̄0 states due to decays into final particles, i.e., outside of the
two-state system, |B0〉, |B̄0〉. The eigenstates of H are still given by Eq. (46), though now in general
|BL〉 and |BH〉 are no longer orthogonal.

3.3 Different ways of measuring the CP violation
CP violation is an inherently quantum mechanical effect. As we saw in Section 2.8 it is intimately tied
to the existence of a physical phase in the Lagrangian. In order to be sensitive to a phase an interference
is needed. Thus, CP violating observables necessarily require some kind of interference. Depending on
the type of interference there are three distinct categories of CP violating observables

1. CPV in the decay, also called direct CPV, occurs when there is interference between different
contributions to the decay amplitudes so that

|Af | 6= |Āf |. (49)

Here we used the short-hand notation

Af ≡ 〈f |H|B0〉, Āf ≡ 〈f |H|B̄0〉. (50)

2. CPV in mixing occurs when there is interference between M12 and Γ12 in the time evolution of the
two-state system. This arises when

|q/p| 6= 1, (51)

and corresponds to interference between different ways to oscillate between B0 and B̄0 states,
either through dispersive matrix elements or through absorptive ones.

3. CPV in interference between decays with and without mixing, arises when

Imλf 6= 0 (52)

where

λf ≡
q

p

Āf
Af

. (53)

Here the interference is between two different paths of B0 to decay to the final states f , see Fig.
9. The two paths are either through direct decay, proportional to Af , or by first oscillating to B̄0,
which then decays to f , giving a contribution proportional to (q/p)Āf .
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oscill.

Fig. 9: Left: The two different paths for a B0 meson to decay to a final sate f . Right: two interfering amplitudes
are required to have direct CPV.

In the next few subsections we will look at two examples: the CPV in the decay, essential to
measure the angle γ of the standard CKM unitarity triangle, and the determination of angle β, which
relies on the CPV in interference between decays with and without mixing for Bd mesons.

When discussing CPV, it is important to remember that not all of the phases are CP violating. An
elementary example is the double slit experiment, in which the interference pattern arises because there
is a phase difference between two waves due to different paths, eiδ = eik∆r. This phase difference is
not CP violating, since it does not depend on whether the double slit experiment is done with particles or
antiparticles.

We thus distinguish two different types of phases. The weak phases are the (physical) phases that
appear in the Lagrangian. The weak phases violate CP, just as the CKM phase in the weak interaction
part of the SM Lagrangian violates CP. The strong phase is the name used for CP conserving phases. An
example of such a strong phase is, for instance, the phase shift resulting from rescattering of particles
due to QCD/strong interactions. Imagine a thought experiment, in which we collide two pion beams
with the total center of mass energy close to the rho meson mass. The π+π0 → ρ+ → π+π0 and
π−π0 → ρ− → π−π0 scatterings both result in the same complex Breit-Wigner scattering amplitude

A ∝ 1

p2 −m2 + imΓ
. (54)

The imaginary term in the propagator is due to on-shell rescattering through decay products of ρ. These
are CP conserving processes, and so is the resulting phase, arg(A). This phase does not change sign,
when we exchange π+ ↔ π−.

3.4 CPV in the decay
We start with the CPV in the decay (or the so called direct CP violation). The CPV observable is the
decay asymmetry

Af ≡
Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
=

1− |Af/Āf |2
1− |Af/Āf |2

, (55)

where Af are defined in (50). In order to have non-vanishing CP asymmetry, Af 6= 0, the B → f decay
amplitude needs to receive contributions from (at least) two different terms with differing weak, φ1,2,
and strong phases, δ1,2, see also Fig. 9 (right)

Af = a1e
iφ1+iδ1 + a2e

iφ2+iδ2 , (56)

Āf = a1e
−iφ1+iδ1 + a2e

−iφ2+iδ2 . (57)

The weak phases are due to the CKM phase in the SM Lagrangian and change the sign under CP trans-
formation, while the strong phases are due to on-shell rescattering of particles (pions, etc) and are thus
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B−

AB

ABrBei(δB−γ)

D0K−

D̄0K−

AD

ADrDeiδD

f

Fig. 10: The two interfering amplitudes in theB− → D[→ f ]K− decays. The decay amplitudes for CP conjugate
decay B+ → D[→ f̄ ]K+ are obtained by exchanging {B−,K−, f} → {B+,K+, f̄}, D0 ↔ D̄0, and γ → −γ
in the above.

CP even, the same as QCD interactions. The CP asymmetry is, in the simplifying limit a2/a1 � 1,

Af =
a2

a1
sin(φ2 − φ1) sin(δ2 − δ1) +O(a2

2/a
2
1). (58)

The CP asymmetry vanishes in the limit where either (i) there is only one contribution to the amplitude,
a2 → 0, and/or (ii) if the weak phase difference vanishes, φ2 − φ1 → 0, and/or (iii) if the strong phase
difference vanishes, δ2 − δ1 → 0.

3.5 Measuring the CKM angle γ
The measurements of CKM unitarity triangle angle γ use the decays in which there is interference be-
tween b → cūs and b → uc̄s transitions [23–26]. This happens for instance in the B− → [D → f ]K−

decay chain. The B− → D0K− decay is due to the b→ cūs transition, while the B− → D̄0K− decay
is mediated by the b→ uc̄s transition, which is proportional to Vub ∝ e−iγ , see the top two diagrams in
Fig. 6. If the D0 and D̄0 decay to the same final state, such as f = π+π−, K+K−, KSπ

+π−, the two
decay amplitudes interfere, giving sensitivity to the phase δB − γ. Our notation is defined in Fig. 10,
with δB,D the strong phases, while γ is a weak phase and changes sign under CP conjugation.

In order to extract γ both the rates for B− → [D → f ]K− and its CP conjugated mode B+ →
[D → f̄ ]K+ need to be measured. The interference terms in the two rates are proportional to δB+δD−γ
and δB + δD + γ, respectively. The difference of the two thus gives the quantity we are after, γ, if the
hadronic parameters, AB,D, rB,D, δB,D are known. Note that the direct CPV asymmetries, Eq. (55),

Af ∝ rBrD sin(δB + δD) sin γ, (59)

are crucial. If Af vanish, so thus the sensitivity to γ. The measurement of γ requires both rB, rD and
the strong phases to be nonzero.

Amazingly, all the hadronic inputs can be measured experimentally. The AD and rD are ob-
tained from D∗+ → [D0 → f ]π+ decays where the charge of π+ tags the flavour of D0, i.e., D̄0

would be accompanied by a π−. Choosing Nf different final states leaves us with 4 + Nf unknowns:
γ,AB, rB, δB, δD. On the other hand, we can measure 2Nf decay branching ratios, B− → [D → f ]K−

and B+ → [D → f ]K+ (taking f not to be CP conjugate final state for simplicity, such as bins in
KSπ

+π− Dalitz plot). For Nf ≥ 4 there is enough information to extract all the unknowns. The sit-
uation is in fact even better, since δD can be measured at CLEO and BESS III from entangled decays
ψ(3770)→ D0D̄0, improving the precision with which γ is extracted.
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Γ(B0(t)→J/ψKS)

Γ(B̄0(t)→J/ψKS)

Fig. 11: Left: the time dependent B̄0(t)→ J/ψKS (orange) and B0(t)→ J/ψKS (blue) decay rates. Right: the
time dependent CP asymmetry (taken from [30]).

That all the hadronic uncertainties can be obtained experimentally makes this approach a very
powerful tool. It means that the angle γ can be extracted with basically no theory uncertainties. The
theoretical corrections arise only from one loop electroweak corrections, limiting the ultimate precision
with which γ can be extracted up to miniscule γth < 10−7 [27, 28]. The experimental error bars will be
larger than this for a long time. At present they are at δγ . 6◦ [29].

3.6 CPV in interference between decays with and without mixing
The state that is created at t = 0 as the B̄0 [or B0] time evolves according to

d

dt
Γ(B̄0(t)[B0(t)]→ fCP) ∝ e−Γt

[1

2

(
1 + |λf |2

)
± Sf sin(∆mt)∓ Cf cos(∆mt)

]
, (60)

with,

Sf ≡
2 Imλf

1 + |λf |2
, Cf ≡

1− |λf |2
1 + |λf |2

. (61)

Here we assumed for simplicity that the final state is a CP eigenstate, fCP , such as fCP = J/ψKS . We
also used that the mass splitting between the two mass eigenstates is much bigger than the difference
between the two decay widths, ∆Γ � ∆m, so that it can be neglected, setting |q/p| = 1. The time
evolution is plotted in Fig. 12 (left). The exponential decay is modulated by an oscillatory behaviour as
B0 converts to B̄0 and back (and vice versa), with the frequency of the oscillations given by the mass
splitting, ∆m.

The difference between the two decay rates is the time dependent CP asymmetry

AfCP (t) ≡
d
dtΓ[B̄0(t)→ fCP]− d

dtΓ[B0(t)→ fCP]
d
dtΓ[B̄0(t)→ fCP] + d

dtΓ[B0(t)→ fCP]
, (62)

and is described by a purely oscillatory behaviour, see Fig. 12 (right),

AfCP (t) = Sf sin(∆mt)− Cf cos(∆mt). (63)

The coefficient of cos(∆mt) is nonzero, if there is direct CPV, since Cf = −Af for |q/p| = 1. The
coefficient of sin(∆mt) is nonzero if there is CPV in interference between decays with and without
mixing, cf. Eqs. (52) and (61). We will see that Sf is an important observable in searches for New
Physics (NP). In the SM it is a measure of the CKM unitarity triangle angle β.
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3.7 The measurement of angle β
The q/p does not depend on the final state f , and is the property of the B0 − B̄0 system. In the SM it is
given by the ratio of one loop diagram in Fig. 8 and its complex conjugated version, so that

q

p
= e−iφB =

V ∗tbVtd
VtbV

∗
td

, (64)

with hadronic matrix elements cancelling in the ratio.

The decay amplitudes Af , Āf do depend on the final state. However, a simplification occurs for
B0 → J/ψKS and other decays that are dominated by a single amplitude, in this case due to the tree
level b → cc̄s transition. In the ratio Āf/Af the hadronic matrix elements largely cancel. To a good
approximation it is given by the ratio of the CKM elements

ĀJ/ψKS
AJ/ψKS

= ηf
VcbV

∗
cs

V ∗cbVcs
+ · · · , (65)

with ηf = −1 the CP of J/ΨKS , and the ellipses the corrections due to penguin diagrams that depend
on a different product of CKM elements. Therefore,

λJ/ψKS = ηf
V ∗tbVtdVcbV

∗
cs

VtbV
∗
tdV
∗
cbVcs

= ηfe
−i2β, (66)

and thus
ImλJ/ψKS = sin 2β. (67)

The measurement of sin 2β was the flagship measurement of the B factories which showed that the CP
violating phase in the SM is large, cf. Fig. 5.

4 New Physics searches
So far we looked at the measurements of the SM parameters. We now turn to a different question: how
does one search for New Physics (NP)? Before we tackle this question let us first answer a seemingly
unrelated question: why is the weak force weak? The weak and strong interactions are similar in many
respects. They are both nonabelian gauge interactions, and at high energies, of a few 100 GeV, they even
have coupling constants that are not that different in size. However, at low energies they exhibit very
different strengths. The strong force gives rise to a strong binding potential, while the weak force results
only in a very weak short range potential. The decays that proceed through strong interactions such as
ρ+ → π+π0 occur at times scales ∼ 10−23 s, while the weak decays are much slower, from ∼ 10−12 s
for B decays to hundreds of seconds in the case of neutron beta decay.

The reason for this disparity is that the strength of the interaction is governed both by the size of
the couplings and the mass of the force carriers. The more massive the carrier the shorter the range of
the potential, and the weaker the interaction at low energies. The weak force is weak because the force
carriers, W and Z are heavy, with masses equal to 80.4 GeV and 91.2 GeV, respectively. The neutron
beta decay width is highly suppressed, because the available energy in the decay, ∼ (mp −mn) up to
corrections from electron mass, is much smaller than the mass of the force carrier, the W boson,

Γ(n→ peν̄e) ∝
(mp −mn)5

m4
W

∼ 10−20(mp −mn). (68)

This detour lead us to an important insight: through rare (or slowly occurring) processes we can
probe heavy mediators. Historically, the weak nuclear decays were the first sign of a new force with a
heavy mediator, the W boson. Other processes could, in a similar way, hint at new forces beyond the
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Fig. 12: The neutron beta decay proceeds through a tree level exchange of the W boson.

SM. We thus arrived at the recipe for indirect searches: identify processes that are rare in the SM and
then search for deviations from the SM predictions.

A good target are the Flavour Changing Neutral Current (FCNC) processes. In the SM there
are no FCNCs at tree level – the gluon, photon, Z, and Higgs tree level exchanges are strictly flavour
conserving, cf. Fig. 2. The FCNC processes, such as meson mixings, arise only at loop level and are
thus suppressed, see Section 2.6. The FCNC processes can be easily modified by NP, either through tree
level or loop level NP contributions. Taking Bs mixing as an example the tree level NP contributions
will have the form ∝ g2

sb/M
2
NP, where gsb is the NP coupling to b and s quarks, and MNP the mass of

the new mediator. The NP contributions thus vanish if the NP is very heavy, MNP →∞, or if the flavour
violating coupling constants are small, gsb → 0.

In the rest of this section we explore in more detail the two main ways of searching for beyond the
SM physics in flavour: by measuring the meson mixing amplitudes, and by measuring rare decays such
as b→ s`+`−.

4.1 New physics searches using meson mixings
There are four neutral meson systems that mix through weak interactions at 1 loop: K0−K̄0 (s̄d↔ sd̄),
D0 − D̄0 (cū↔ c̄u), B0 − B̄0 (b̄d↔ bd̄), and B0

s − B̄0
s (b̄s↔ bs̄). We will mainly focus on B0 − B̄0

and B0
s − B̄0

s systems, which are dominated by the W–top quark loop, Fig 8.

Since mt,W � mB the top and W can be integrated out, leading to the Bd − B̄d mixing effective
weak Hamiltonian [7]

Hdeff =
G2
F

16π2
m2
W ηBS0

(
V ∗tbVtd

)2(
b̄d
)
V−A

(
b̄d
)
V−A + h.c., (69)

where GF ' 1.166 · 10−5 GeV−2 is the Fermi constant, and ηBS0 ' 1.26 is the product of a properly
normalized loop function and the QCD correction factor. The effective weak Hamiltonian is local, i.e., it
corresponds to the potential that acts only at a point. This is a result of taking the weak mediators to be
infinitely heavy. Another way of writing the effective Hamiltonian is

Hdeff =
1

Λ2
MFV

(
V ∗tbVtd

)2(
b̄Lγ

µdL
)(
b̄LγµdL

)
+ h.c., (70)

where the dimensionful prefactor,

ΛMFV =
2π

GFmW
√
ηBS0

' 6.0 TeV, (71)

is significantly larger than the weak scale, mW ' 80.2 GeV, because we absorbed in it the loop factor,
1/16π2 (up to a factor of 4 that went into a redefinition of the operator). For Bs mixing the CKM factors
in the weak vertices change, cf. Fig. 8, so that one has instead

Hseff =
1

Λ2
MFV

(
V ∗tbVts

)2(
b̄Lγ

µsL
)(
b̄LγµsL

)
+ h.c.. (72)
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The top andW in the loop are much heavier than the available energy in the mixing – theB meson
mass. The top and W lines in the diagram are thus always off-shell, and so the dominant diagram only
contributes to the dispersive part of the mixing amplitude,

Md
12 =

1

2mB
〈B̄0

d |Hdeff |B0
d〉∗. (73)

The absorptive part of the mixing amplitude, Γ12, receives contributions from the subleading amplitudes
with c and u quarks running in the loop.

When NP is present, thenHqeff = HSM
eff,q +HNP

eff,q, and we can write

M q
12 = MSM

12,q +MNP
12,q = MSM

12,q

[
1 +

(
ANP
q /ASM

q

)
eiφ

NP
q

]
, q = d, s, (74)

for Bd and Bs systems, respectively. The above parametrization is completely general, as long as NP
is heavy, so that it does not appear in the decays of Bd,s mesons. There is no NP contribution, when
ANP
d,s = 0. If φNP

d,s 6= 0 this means that there are new CP violating phases in the NP contribution, beyond
the CKM one. At present ANP

d,s /A
SM
d,s of about 0.2 are still allowed, depending on the NP phase. With the

future measurements at Belle II and LHCb this will be drastically improved to less than about 0.05, see
Fig. 13.

What does this mean in terms of bounds on NP masses? Let us assume that NP has the same
(V −A)× (V −A) structure as the SM, so that the effective Hamiltonian is (q = d, s)

Heff =

((
V ∗tbVtq

)2

Λ2
MFV

+
CNP

Λ2
NP

)(
b̄Lγ

µqL
)(
b̄LγµqL

)
+ h.c.. (75)

For instance, the new physics contribution, CN/Λ
2
NP could be due to the Z ′ exchange. This would give

for the effective Hamiltonian

Heff = i(igZ′)
2
(
b̄LγµqL

) −igµν
q2 −m2

Z′

(
b̄LγνqL

)
→ g2

Z′

m2
Z′

(
b̄Lγ

µqL
)(
b̄LγµqL

)
, (76)

where gZ′ is the flavour violating Z ′ coupling to quarks, mZ′ the Z ′ mass, and in obtaining the last
expression we used that q2 � m2

Z′ . For the NP Wilson coefficient we thus have

CNP

Λ2
NP

=
g2
Z′

m2
Z′
. (77)

If gZ′ = 1, then ΛNP can be identified with mZ′ for CNP = 1.

In general NP will not have the V −A structure. However, the choice of possible operator structure
is still quite limited. The general dimension 6 operator basis for meson mixing contributions is [32]

HNP
eff =

∑

i

Ci
Λ2

NP,Bq

Qi,q, (78)

where

Q1,q = (b̄Lγ
µqL)(b̄Lγ

µqL),

Q2,q = (b̄RqL)(b̄RqL),

Q3,q = (b̄αRq
β
L)(b̄βRq

α
L)

Q4,q = (b̄RqL)(b̄LqR),

Q5,q = (b̄αRq
β
L)(b̄βLq

α
R),

(79)
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Fig. 13: Present (upper panels) and future (lower panels) constraints, at the end of Belle II, with 50 ab−1 of
integrated luminosity, and LHCb with 300 fb−1, on the NP contributions to the Bd (left) or Bs (right) mixing
amplitudes [31].

along with three other operators obtained from Qi,q, i = 1, 2, 3 by replacing L ↔ R (the bounds on
these parity related operators are the same as for Qi,q, i = 1, 2, 3, though). The operators for other
meson systems are obtained through trivial replacements of quark flavours. Taking |Ci| = 1, the present
bounds on the NP scale, ΛNP are shown with ligher colors in Fig. 14 (left). The future projections to the
end of LHCb Upgrade II are shown with darker colors. A jump in the mass reach is clearly visible even
on the logarithmic scale.

Different colours in Fig. 14 denote different meson systems: green bars denote the constraints
from K0− K̄0 mixing, yellow from D0− D̄0 mixing, in both cases assuming maximal new weak phase
relative to the SM; orange bar denotes constraints from B0− B̄0, marginalized over the weak phase; red
(blue) from B0

s − B̄0
s system assuming no (maximal) NP phase. Extraction of constraints from K − K̄

and D − D̄ mixing is more complicated than for Bq − B̄q, since in these two cases the long distance
contributions from light quarks running in the loop are important.

The bounds on ΛNP are strikingly different for the various meson systems. This is easy to under-
stand by considering the CKM suppression of the SM contributions, since the precision of experimental
measurements and theoretical predicitons is typically at a fraction of the SM amplitude. Demanding for
illustration that the contribution from NP is at most 20% of the short-distance SM this would give, for
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Fig. 14: Present constraints (lighter) and expected constraints at the end of LCHb upgrade II (darker) on the NP
scale, ΛNP, from the UTfit NP analysis for different meson systems. The right panel shows constraints assuming
NP is weakly coupled, has MFV structure of couplings, and enters observables only at one loop, see text for details
(from [11]).

the operator Q1,q

for NP=20% SM, K − K̄ : ( V ∗ts︸︷︷︸
λ2

Vtd︸︷︷︸
λ3

)2 ⇒ ΛNP & 4 · 104 TeV,

for NP=20% SM, Bd − B̄d : ( V ∗tb︸︷︷︸
1

Vtd︸︷︷︸
λ3

)2 ⇒ ΛNP & 1.5 · 103 TeV,

for NP=20% SM, Bs − B̄s : ( V ∗tb︸︷︷︸
1

Vts︸︷︷︸
λ2

)2 ⇒ ΛNP & 3 · 102 TeV.

(80)

roughly in agreement with the constraints shown in Fig. 14.

Note that the interpretation of the bounds in term of NP scale crucially depends on the assumed
flavour structure in the dimensionless Wilson coefficient, Ci. If the NP contribution also follows the SM
CKM suppression, this is referred to as Minimal Flavour Violation (MFV). Fig. 14 (right) shows the
bounds for the case of MFV type NP running in the loop, i.e., the Wilson coefficients were set to Ca =
(V ∗tiVtj)

2g4/16π2, with Vti, Vtj the appropriate SM CKM coefficients, and g the weak coupling constant.
We see that even for a weakly coupled NP that has the MFV flavour structure and only contributes at 1
loop, the bounds are in the few 100 GeV to few TeV range.

4.2 New physics searches using rare decays
We turn next to the other main pathway to searching for new physics - searching for deviations in rare
decays. Here the benefit is that there are many observables in flavour physics: the branching ratios,
asymmetries, distributions, ... There is also a choice of different parent particles as well as many possible
final states. The abundance of observables is clearly illustrated by opening the “bible” of particle physics,
the Particle Data Group (PDG) book [15]. Even the condensed version, the PDG booklet, clocks out at
more than 170 pages.

To shorten the discussion we will focus on the processes that are at present showing deviations
from the SM expectations. The present experimental situation can then succinctly be described in the
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Fig. 15: A representative SM diagram for b → sµ+µ− transition (left), and the representative loop level NP
contributions (middle and right).

following way. There are many different transitions that were measured, all of which agree with the SM
expectations within experimental and theoretical errors. There are only two sets of quark level transitions
that are showing ∼ 4σ deviations from the SM: the b→ cτν and b→ sµ+µ− transitions.3 The apparent
NP scale that explains the deviations is quite different in the two cases. For instance, if the NP is due to
the following V −A operator

LNP ⊃
1

Λ2
NP

(
Q̄iγ

µσAQj
)(
L̄kγµσ

ALl
)
, (81)

then ΛNP ∼ 3 TeV in order to explain the deviations in b→ cτν transitions, and ΛNP ∼ 30 TeV in order
to explain the b→ sµ+µ− anomalies. We discuss next the possible NP explanations for each of the two.

4.3 New physics searches in b → sµ+µ− transitions
The upshot of the observed b → sµ+µ− anomaly is: choosing only the theoretically clean observables
the excess is at the ∼ 4σ level. From the NP perspective the scale required to explain the anomaly
makes sense, since it is high enough to avoid many of the experimental constraints. The models that
explain the anomaly do, however, face I.I. Rabi’s question:“ Who ordered that?”, when the muon was
first discovered [36].

The FCNC b → s`+`− transitions are generated at 1-loop in the SM. A representative diagram
in the SM is shown in Fig. 15 (left). Integrating out the heavy degrees of freedom, W,Z, t, gives the
following effective Hamiltonian [37–39]

Heff = GFVtbV
∗
ts

α

4π

[
C9

(
s̄Lγ

µbL
)(

¯̀γµ`
)

+ C10

(
s̄Lγ

µbL
)(

¯̀γµγ5`
)]
, (82)

where in the SM CSM
9 ' −CSM

10 , i.e., the SM diagrams give to a good approximation a V − A structure
of the leptonic current.

Another prediction of the SM is that the rates for the b → se+e− and b → sµ+µ− transitions
should be equal to each other as soon as we are reasonably far above the muon production threshold so
that the effect of muon mass on the available phase space can be neglected. The SM prediction of Lepton
Flavour Universality (LFU) is deeply engrained in the structure of the theory, since it is a consequence
of the fact that the electroweak gauge group is the same for all three generations.

The prediction of LFU can be tested experimentally by forming theoretically clean observables
such as the ratios of b→ sµµ to b→ see rates,

RK(∗) =
Br(B → K(∗)µµ)

Br(B → K(∗)ee)
. (83)

3There are other interesting deviations, e.g., the ∼ 3σ deviation in ε′/ε, see, e.g., [33–35].
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In the ratios the uncertainties from hadronic inputs (the form facors) cancel to a very good approximation.
Above the muon threshold they are equal to 1 within a percent, and are also presicely predicted close
to the muon threshold [40–47]. Experimentally, on the other hand RK(∗) ∼ 0.7 [48–51], violating LFU
with a significance of 2.2 − 2.6σ in each of the three most precise measurements (the measurements
are at different dilepton invariant masses). A combined significance for the discrepancy with the SM is
∼ 4σ [52–57]. The most precise measurements are due to LHCb, which dominates the world averages
for RK(∗) .

LFU ratios is not the only experimental information about the b → s`` transitions. In princi-
ple there is much more information available, branching ratios for different choices of initial and fi-
nal state mesons, Br(B → K(∗)µµ), Br(Bs → φµµ), Br(B → Xsµµ), angular observables in
B0 → K∗0µµ,Bs → φµµ, etc. However, the interpretation of these is much more sensitive to hadronic
inputs. It requires form factor predictions (now coming from QCD sum rules), the estimate of charm
loops, nonfactorizable contributions, etc. Using the best available estimates for these inputs the favored
interpretation is that the NP is mostly in muons [52–57]. Furthermore, the picture obtained from such
global fits to data seems to be in agreement with the LFU only determination, see Fig. 16 for a simulta-
neous fit to NP contributions in C9,10.

If the anomaly is due to NP we thus already have a significant amount of information about it.
First of all, there are only four dimension 6 operators that can explain RK [58]

O(′)`
9 =

α

4π

(
s̄γµPL(R)b

)(
¯̀γµ`

)
, O(′)`

10 =
α

4π

(
s̄γµPL(R)b

)(
¯̀γµγ5`

)
. (84)

The other operators are either constrained by Bs → `` as is the case for scalar currents, or come from
further suppressed dimension 8 operators before electroweak symmetry is broken, as is the case for tensor
operators.

Since the K and K∗ in the final states differ in their spin-parity quantum numbers, one is pseu-
doscalar, the other vector meson, the ratios RK and RK∗ give complementary information. For instance,
for the central q2 bins we have [52]

RK ' 1 + 2
ReCBSM

bL+R(µ−e)L
CSM
bLµL

, RK∗ ' RK − 4p
ReCBSM

bR(µ−e)L
CSM
bLµL

, (85)

when expanded to linear order in the BSM contributions to the Wilson coefficients (here p ' 0.86 is
the polarization fraction of K∗). The resulting predictions for several choices of chirality in the NP
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Fig. 17: The predictions for the central q2 bins in RK and RK∗ for several NP scenarios, assuming NP is only in
muons (left) or only in electrons (right). The experimental values are given by the black error bars, the SM value
by a point (from [52]).

contributions to the Wilson coefficients are shown in Fig. 17. Using just the “clean” observables, RK
and RK∗ , NP can be either due to a deficit in muons or an increase in the electron channel. In both cases
the operators with (s̄γµb)L current can explain the anomaly, with significant freedom for the chirality
of the leptonic current. For electrons also the NP due to (s̄γµb)R(ēγµe)R is possible. In this case the
NP contribution enters only quadratically to a good approximation, since there is almost no interference
with the SM predominantly V − A leptonic current. The NP thus increases the rate for the electron
channel, reducing the RK(∗) ratios below 1. It is only once additional observables, such as the absolute
branching ratios, are taking into account that the possibility of NP right-handed currents is disfavored.
These additional observables do require theoretical inputs and are subject to hadronic uncertainties.

For the remainder of this section let us assume that there is NP in b → sµ+µ−. What kind of NP
can explain it? There is significant freedom in the NP interpretations, since the associated scale is quite
high. The Wilson coefficients shown in Fig. 16 are normalized to

VtbV
∗
ts

α

4πv2
CI =

CI
(36 TeV)2

. (86)

The NP scale of ∼ 30 TeV is high enough that the NP can enter either at tree level, or even only at one
loop level. The tree level NP models are of two distinct types. The mediator can be (i) a Z ′, either an
SU(2)L singlet or part of a triplet [59–61], or (ii) a leptoquark with either spin 0 or spin 1 [57, 62]. The
diagrams for the two types of mediators are shown in Fig. 18 middle and right, respectively.

There are 4 different possible charge assignments under the SM gauge group SU(3)c×SU(2)L×
U(1)Y for a scalar leptoquark, and 3 for a vector leptoquark [57]. However, only one scalar leptoquark,
S3 ∼ (3̄, 3, 1/3), and only two vector leptoquarks, V1 ∼ (3, 1, 2/3) and V3 ∼ (3, 3,−2/3), lead to
RK ' RK∗ < 1 in agreement with the data. All three predict Cµ9 = −Cµ10. At 1-loop the leptoquarks
contribute to Bs − B̄s mixing, correcting the mass splitting by ∆mBs ∝ (Y Y ∗)2/M2, where M is
the leptoquark mass, and Y the relevant couplings to the SM fermions. The corrections to RK(∗) , on
the other hand, scale as RK(∗) − 1 ∝ Y Y ∗/M2. This means that the value of Y required to explain
RK(∗) grows faster with leptoquark mass than does the value of Y still allowed by the Bs − B̄s mixing
constraints. In other words, the bound on allowed NP in Bs − B̄s mixing implies un upper bound on the
leptoquark mass, M . 40 TeV, 45 TeV, 20 TeV, for leptoquarks S3, V1, V3, respectively [57].

The bounds on allowed NP contributions to Bs mixing also imply a nontrivial constraint on the

23

INTRODUCTION TO FLAVOUR PHYSICS

203



b

c

τ−

ν̄τ

W

b

c(s)

τ−(µ−)

ν̄τ(µ
+)

H+,W ′(Z ′)

b

τ−(µ−)

c(s)

ν̄τ(µ
+)

LQ

Fig. 18: The SM diagrams for b → cτν transition (left), and the possible tree level NP contributions to b → cτν

or b→ sµµ transitions (middle and right).

models with Z ′, since this contributes at tree level, giving [59, 63]

gbsZ′

mZ′
. 0.01

2.5 TeV
. (87)

Thus a 2.5 TeV Z ′ has to have a relatively small, but not extremely small, flavour violating coupling,
gbsZ′ . 0.01 (comparable, for instance, with |Vts| ' 0.04). This also means that the Z ′ has to have size-
able couplings to muons. If the coupling is to left-handed muons, this implies nontrivial constraints
from neutrino trident production in neutrino scattering on nuclei, i.e., from bounds on the process
νN → νNµ+µ− mediated by a Z ′ [60, 64]. For couplings to left-handed muons the b → sµ+µ− is
also accompanied by a b → sν̄ν signal, giving stringent constraints on the parameter space. Another
important constraint are the Z ′ searches at the LHC.

To recap, the NP explanations of the b→ sµ+µ− anomaly should lead to new signals in a number
of observables. The present constraints give meaningful bounds on the models already, but they are not
too constraining. For instance, simply raising the mass of Z ′ avoids the high pT constraints at the LHC.
The bounds are more stringent for loop induced models [65–69], Fig. 15 (middle and right), since there
the NP particles need to be lighter, below about a TeV.

4.4 New physics searches in b → cτν transitions
The b → cτν flavour anomaly is similarly very clean theoretically [70], and the disagreement with the
SM predictions is also about ∼ 4σ. However, the NP effect is large, O(20%) of the SM tree level
contribution given in Fig. 18 (left). This means that the scale of NP needs to be low, and consequently
the NP interpretations are often in conflict with the other constraints.

The two main observables are

R(D(∗)) =
Γ(B̄ → D(∗)τ ν̄)

Γ(B̄ → D(∗)`ν̄)
, ` = µ, e, (88)

where B̄+ ∼ bū, D ∼ cū, etc. The SM predictions are shown in 19. Even though these are flavour
universality ratios, the SM predictions are well below 1, because the b → cτν decays have much
less final state phase space available due to the large τ mass. The thing to note is that the trend
R(D(∗))exp > R(D(∗))SM is seen in several experiments. Furthermore, the theoretical predicitons are
well under control. Another comment is that, since the neutrino is not seen in the expriments, it does not
need to be the SM neutrino. It could be a new state, possibly even of right-handed chirality [71–74].

What kind of NP could explain this anomaly? The most obvious candidates are ruled out. The-
oretical bias would have been that the new charged currents are either due to a charged Higgs, H+, or
a new vector boson, W ′, see Fig. 18 (middle). The charged Higgs option is in conflict with total Bc
lifetime [87], the b → cτν leptonic mass distributions, and searches in pp → τ+τ− [88]. The W ′ is
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Fig. 19: Left panel: the measurements of R(D) and R(D∗) by different experiments [75–82], with the world
average shown in red and the SM prediction in blue [83–86]. Right panel shows that the variation in the SM
predictions is small even when some of the theoretical constraints are relaxed (from [84]).

excluded by pp → τ+MET searches at the LHC [89], while in addition the pp → τ+τ− in conjunction
with B mixing constraints exclude the related Z ′.

There are several viable leptoquark solutions, both with SM neutrinos [90] and for right-handed
neutrinos [91]. The vector leptoquark V1 also allows to simultaneously explain the b → cτν and the
b → sµ+µ− anomalies [92]. A simultaneous explanation is also possible, if there are more than one
scalar leptoquarks contributing [93].

4.5 Other modes
Besides the two quark level transitions that are showing experimental discrepancies there are a number
of other rare decays that are important probes of NP. The useful rare decays are such that we can predict
them precisely and that NP contributions are possible or even likely. The modes with only one final state
hadron, K → πνν,B → K``,..., fall into this category. The hadronic matrix elements for these decays
are easier to predict than for the fully hadronic decays. Another example are inclusive decays, where
one sums over all hadronic final states, which are also easier to predict theoretically. We look at one
important example for each of these two categories.

The inclusive b → sγ decay is a classic example of a GIM suppressed loop induced SM process.
The loop contributions that do not depend on masses of the quarks running in the loop cancel due to CKM
unitarity, M ∝∑i V

∗
ibVis = 0. The first nonzero contribution is thus proportional to mass differences of

the quarks on the internal line in Fig. 20 (right). The SM contribution is finite, since it is described by
the effective Hamiltonian of dimension 5 [38]

Heff = −GF√
2
V ∗tsVtbC7γ(mb)

e

4π2
mb

(
s̄Lσ

µνbR
)
Fµν . (89)

In the renormalizable SM Lagrangian there is no such counter-term, thus the contribution needs to be
finite. The operator in (89) is chirality flipping. In the SM the chirality flip occurs on the external leg,
and is thus proportional to the b quark mass, mb. NP contributions, on the other hand, can have the
chirality flip on the internal line, leading to a relative enhancement of the NP contributions compared
to the SM. This happens for instance in the Minimal Supersymmetric Standard Model (MSSM) for the
gluino-squark diagram, or for the exchange of a charged Higgs in the loop. The measurements of b→ sγ
are therefore very sensitive to such NP contributions. A great theoretical effort has thus been devoted to
obtain a precise theoretical prediction for the SM b→ sγ rate [94].
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The decays K+ → π+νν̄ and KL → π0νν̄ stand out, since these are one of the few rare decays
in kaon sector that are the golden modes for NP searches. They are suppressed by a loop factor, CKM
factors, and the GIM mechanism. They are also extremely well predicted theoretically [95]

Br(K+ → π+νν̄) = (8.4± 1.0)× 10−11,

Br(KL → π0νν̄) = (3.4± 0.6)× 10−11,
(90)

because the hadronic matrix elements, 〈π|(s̄d)V−A|K〉, are known precisely – they are extracted from
data on K+ → π0e+ν using isospin symmetry. The largest uncertainties are from the CKM inputs, Vcb
and γ, which will be improved in the future.

The experimental challenge is that the two processes are very rare. They are set to be measured by
the NA62 experiment at CERN [96], and KOTO at J-PARC [97], respectively, even if the rates are at the
SM values. On the positive note, since these decays are so suppressed, the scales probed are very high,
∼ 103 TeV for Z ′ models with O(1) couplings. On top of this, KL → π0νν̄ is also CP violating.

4.6 The future of NP searches with rare decays
The NP searches with rare decays, as well as the tests of the CKM unitarity will receive a significant
boost with the upcoming Belle II and LHCb upgrades. Belle II expects to collect 50 times the Belle
dataset. First collisions were seen in May 2018, and the first B physics run is expected in March 2019.
LHCb after upgrade II aims for roughly 100 times the present data set with an upgraded detector. A
rule of thumb on the improved NP reach gives, for instance for Belle II, that the reach in ΛNP will be
improved by ∼ 4

√
50 = 2.7×. Similar if not larger increase applies to LHCb Upgrade II sensitivity

improvements. This is a similar jump in energy reach as going from 13TeV LHC to a 35TeV LHC!

Among other things this also means that, if the two anomalies discussed in Sections 4.3, 4.4 are not
mere statistical fluctuations, we should have available measurements with 5σ significance in a relatively
near future.

5 Higgs and flavour
In the SM all flavour structure is due to the Higgs Yukawa couplings, yf =

√
2mf/v. The very hierar-

chical values of fermion masses therefore imply similarly very hierarchical Yukawa couplings. How well
have we tested this? There are a number of tests that are experimentally accessible to different degrees
of accuracy [98]

1. proportionality: is yii ∝ mi?
2. factor of proportionality: is yii/mi =

√
2/v?

3. diagonality (flavour violation): is yij = 0 for i 6= j?
4. reality (CP violation): is Im(yij) = 0?

Each of these questions probes a slightly different set of NP models. The proportionality, yii ∝ mi, and
factor of proportionality, yii/mi =

√
2/v, are relatively well tested for 3rd generation fermions, i.e.,
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Fig. 22: Representative diagrams for τ → µγ induced by Higgs flavour violating couplings at 1 loop (left) and 2
loops (middle), as well as the tree level diagram leading to τ → 3µ (from [106]).

the Higgs couplings to top, bottom and tau. Experimentally much more difficult question is how Higgs
couples to the first two generations. This is difficult to address since the SM Yukawa couplings are so
small. A more modest question is: can we show that the couplings are hierarchical? The answer is already
now a positive one, though for quarks this is achieved with some assumptions. Experimentally [99–102],

Y exp
e(µ)

Y exp
τ

< 0.22(0.10),
Y exp
u(c)

Y exp
t

. 0.04,
Y exp
d(s)

Y exp
t

< 0.7(6), (91)

where the bounds for leptons come from direct measurements, on up quarks from a global fit, and on
down quarks from Higgs pT distributions (global fit).

Pushing these bounds to the SM values would be very challenging, if not impossible. The one
bright exception is the muon Yukawa, which will become accessible at the high-luminosity LHC as the
only one among the first two generations of fermions [103]. This is quite exciting, since it is easy to
imagine that part of the muon mass comes not from the SM Higgs vev, but from new small sources of
the electroweak breaking (see, e.g., [104]). The muon Yukawa could deviate significantly from the SM,
in the extreme case it could even be zero.

Another important NP test are searches for flavour violating Higgs couplings. In the SM Higgs
couplings are flavour diagonal (up to very small 1-loop corrections). Discovering flavour violating Higgs
couplings would thus immediately mean New Physics. For charged lepton final states these couplings
are accessible directly, by searching for h → τµ, τe decays [106, 107]. The resulting bounds are shown
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in Fig. 21. If the NP corrections come from dimension 6 operators then the Higgs Yukawa couplings are,

Yij =
mi

v
δij +

v2

√
2Λ2

λ̂ij . (92)

The present bounds give for the NP scale, Λµτ > 5.5 TeV, Λeτ > 4.4 TeV, taking λ̂ij = 1. The Higgs
decay measurements thus already probe interesting NP scales. There are also indirect bounds on flavour
violating Higgs Yukawas that come from charged lepton FCNC transition. The τ → µγ and τ → 3µ
are induced by the diagrams shown in Fig. 22. While these lead to less stringent constraints on flavour
violating couplings of the Higgs, see Fig. 21, this is not the case for h → µe decays, where the bounds
on µ→ eγ limits the branching ratio to Br(h→ µe) . 10−8, barring cancellations.

6 Conclusions
In the SM the flavour violation and CP violation are due to the Higgs couplings to the charged fermions.
Experimentally, we know that the CKM is the dominant source of flavour violation in Nature, with the
CKM phase responsible for the bulk of the CP violation in quark transitions. New physics contributions
at the level of O(20%) of the SM amplitude are still allowed, e.g., in the meson mixing.

Most of the measured flavoured transitions agree with the SM predictions, with the possible ex-
ception of two quark level transitions, b → sµ+µ− and b → cτν, which show ∼ 4σ discrepancies with
the SM predictions. If true, this would imply many new signals in both high pT processes measured by
CMS and ATLAS, as well as in precision flavour experiments LHCb, Belle II, NA62, KOTO, the muon
g − 2 experiment, etc.

There are many excellent reviews and books that go beyond the scope of these lectures, some of
which were mentioned in the Introduction. A good starting point for exploring the scope of future flavour
programmes at LHCb and Belle II can be found in [10,21], and for general flavour physics possibilities at
high-luminosity LHC in [11]. A good starting point for a study of new physics models that are bounded
by flavour physics measurements is the introductory book [108], or the somewhat more detailed, albeit
older Ref. [8].
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Appendices
A Nonzero neutrino masses
When the neutrino masses are included, the counting of physical parameters in the SM changes from
what was given in Section 2.4. We show this for (i) the case that the neutrinos are Majorana fermions
and (ii) the neutrinos are Dirac.

For the case of Dirac neutrinos we enlarge the SM field content, Eqs. (3), (4) by three right-handed
neutrinos that are complete singlets under the SM gauge group,

νR,i ∼ (1, 1)0. (A.1)

The Yukawa interaction Lagrangian is then enlarged by the

LYukawa ⊃ −Y ij
ν L̄

i
LH

cνjR + h.c., (A.2)

while we assume that the Majorana mass terms, mij ν̄
c
R,iνR,j , are forbidden by the conservation of total

lepton number which this term would violate by two units. The counting of the physical parameters for
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the leptons is now completely analogous to the counting we did for the quarks in Section 2.4. Using
unitary transformations

LL → VLLL, `R → V``R, νR → VννR, (A.3)

one can bring the lepton Yukawa couplings to the form

Y` = diag(ye, yµ, yτ ), Yν = V †PMNS diag(y1
ν , y

2
ν , y

3
ν). (A.4)

The 3× 3 unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [109, 110] is the analogue of the
CKM matrix for the quarks. It has three mixing angles and one physical phase. The remaining six real
parameters are the three charged lepton masses and the three neutrino masses.

This agrees with the counting of physical parameters that follows from the general rule in Eq. (18).
The Y`, Yν matrices have 2 × (9 real + 9 im.) parameters, while the three unitary matrices, VL, V`, Vν
have in total 3 × (3 real + 6 im.) parameters. Out of these one corresponds to an unbroken generator,
the lepton number, under which all the lepton fields change by the same phase, LL → exp(iφ)LL, `R →
exp(iφ)`R, νR → exp(iφ)νR. Using (18) there are 2 × 9 − 3 × 3 = 9 real parameters, the six leptonic
masses and three PMNS mixing angles, and 2× 9− (3× 6− 1) = 1 imaginary physical parameter, the
phase in the PMNS matrix, as anticipated.

If the neutrinos are Majorana, the field content is the same as for the SM with neutrino masses set
to zero, Eqs. (3), (4). In this case the neutrino masses come from dimension 5 Weinberg operator after
the Higgs obtains a vev. In two-component notation this is

Leff ⊃ −
cij
Λ

(Hc†Li)(Hc†Lj) + h.c.. (A.5)

The coefficient cij form a 3×3 symmetric complex matrix, which is described by 6 real and 6 imaginary
entries. In addition, there are the 9 real and 9 imaginary parameters that describe the charge lepton
Yukawa matrix, Y`, Eq. (16). The generators of unitary transformations LL → VLLL, `R → V``R
are now completely broken by the Weinberg operator in conjuction with the charged lepton Yukawa
couplings. This means that we have broken generators described by 2 × (3 real + 6 im.) parameters.
From the general rule (18) it then follows that we have 9+6−2×3 = 9 real and 9+6−2×6 = 3 imaginary
physical parameters. The nine real parameters are the three charged lepton masses, three neutrino masses,
and the three mixing angles of the PMNS matrix. The three physical phases are the phase in the PMNS
matrix, and the two Majorana phases in the Majorana mass matrix, Mν = diag(m1,m2e

iφ2 ,m3e
iφ3).

Other options for neutrino mass matrix are possible. There could be just one, two or more than
three sterile neutrinos, νR,i. For an introduction of phenomenological implications see, e.g., [111]. In the
case where there are only Dirac mass terms, these break the individual lepton flavour numbers U(1)e ×
U(1)µ × U(1)τ down to a total lepton number U(1)L. Majorana mass terms, such as the Weinberg
operator in (A.5), break also the U(1)L.
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Abstract
The discovery of neutrino oscillations just over 20 years ago has opened a new
page in particle physics. It implies that neutrinos have masses and mix and,
consequently, that the Standard Model of particle physics is incomplete. The
key question we need to answer is: what is the origin of neutrino masses and
of leptonic mixing? An impressive effort has being able to paint a precise
picture of neutrino mixing. The first hints of CP violation have been reported
and hunts for the nature of neutrinos are ongoing. This information guides us
in extending the Standard Model to a full theory, advocating new particles and
interactions. We will present a concise discussion of these issues, focusing
mainly on the theoretical and phenomenological aspects and we will briefly
discuss the role of neutrinos in the early Universe and in astrophysical objects.

Keywords
Neutrinos, neutrino oscillations, neutrino masses, leptonic mixing, see-saw
mechanism, leptogenesis, lectures.

1 Introduction
Neutrinos are all around us but they remain the most elusive of the known fermionic particles. Their
properties might hold the key to unveiling the physics beyond the Standard Model (SM) of particle
physics and indeed, together with dark matter, so far they are the only evidence we have that a new
theory is required.

We are not far away from the centenary of the idea itself of the neutrino, proposed in December
1930 by W. Pauli. In the 20’s physicists were puzzled by the continuous spectrum of β-decays. In this
process a nucleus transforms itself into another one with the emission of an electron

A
ZX → A

Z+1X
′ + e−(+...) . (1)

Only the parent and daughter nuclei and the electron could be seen. Based on these observations, accord-
ing to energy-momentum conservation, the electron should carry away an energy corresponding to the
difference in mass between parent and daughter nuclei. Therefore there should be a monochromatic line
in the β-spectrum, in disagreement with observations. It was Pauli who suggested a possible solution
to save the principle of energy-momentum conservation. In a famous open letter sent to the Gauverein
meeting in Tubingen, addressed to “Dear Radioactive Ladies and Gentlemen", Pauli suggests: “I have
hit upon a desperate remedy to save... the law of conservation of energy. Namely, the possibility that
there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin
1/2... The continuous beta spectrum would then become understandable by the assumption that in beta
decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron
and the electron is constant..." A copy of the letter with English translation is available at [1]. Soon
after, J. Chadwick discovered a new heavy neutral particle and named it also the neutron [2]. A new
name was needed for Pauli’s hypothetical particle, and E. Amaldi playfully called it the “neutrino" in
a conversation with E. Fermi, in contrast to his bigger synonymous, the neutrone1. E. Fermi adopted

1In Italian, the suffix -one indicates something big while -ino is a diminutive.
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the name at the Paris Solvay Conference in 1932 and later in 1933. Moreover, Fermi, taking seriously
Pauli’s idea, constructed the theory of β-decay [3] in 1934, explaining it in terms of a 4-fermion inter-
action n → pe−ν̄ with strength GF . This interaction would also predict the scattering of neutrinos off
matter, via the inverse β process ν̄p → ne+. In 1934 Bethe and Peierls were able to estimate the cross
section for this process [4], finding it smaller than 10−44 cm2 for a neutrino energy of 2 MeV. The dis-
couraging implication was that “it was absolutely impossible to observe processes of this kind". It was
B. Pontecorvo who suggested that indeed one could use the large neutrino fluxes becoming available [5]
due to the advances in nuclear energy at the time. After unfruitfully considering the use of a nuclear
explosion, F. Reines and C. L. Cowan devised a method to detect antineutrinos coming from a nuclear
reactor. This technique, still in use today, exploits the simultaneous emission of a neutron and a positron
in inverse beta decays to significantly reduce backgrounds. Indeed, in 1956 at the Savannah River Plant
in South Carolina, they were able to detect neutrinos [6] and soon wrote a telegram to Pauli to inform
him that they had “definitely detected neutrinos from fission fragments". Reines received the Nobel Prize
in Physics for this discovery in 1995.

Although it was assumed for a long time that parity was an obvious symmetry of nature, in the
50’s the idea that it is not conserved in weak interactions started to emerge, mainly thanks to the work of
T. D. Lee and C. N. Yang [7]. Soon after, in 1956, Madame Wu and collaborators were able to prove that
parity is violated in the β-decay of polarised 60Co [8] and in 1958 M. Goldhaber, L. Grodzins and A.
W. Sunyar [9] showed that neutrinos are polarised in the opposite direction to their motion, i.e. they are
left-handed. Landau [10], Lee and Yang [11] and Salam [12] proposed that neutrinos can be described
with a left-handed Weyl spinor. This property was embedded in the V − A theory of weak interactions
and ultimately in the Standard Model (SM) of particle physics by S. L. Glashow [13], S. Weinberg [14]
and A. Salam [15], spectacularly confirmed by the discovery of the W and Z bosons in 1983 and of the
Higgs boson in 2012.

The idea that neutrinos and antineutrinos could be indistinguishable was due to Majorana in 1937
[16]. This question turns out to be intrinsically linked to the conservation or not of lepton number. The
latter symmetry was first introduced by E. J. Konopinski and H. M. Mahmoud in 1953 to explain some
missing decay modes [17]. Leptons, i.e. the electron, muon and tau and the neutrinos are given lepton
number 1 and their antiparticles lepton number −1. The Reines and Cowan experiment preserves lepton
number while searches for solar electron antineutrinos, carried out by R. Davis soon after, did not lead
to any positive result. Indeed they break lepton number by two units. Davis will go on to detect electron
neutrinos from the sun with the Homestake experiment.

Another important chapter in the understanding of neutrinos concerns the concept of families or
generations. The muon was discovered in 1937 by J. C. Street and E. C. Stevenson [18] and by S.
H. Neddermeyer and C. D. Anderson [19]. Being a heavier version of the electron, it enters Fermi
interactions accompanied by a neutrino. The question was if this neutrino was the same as the one in
beta decays or a different type. Following a suggestion by Pontecorvo [20], in 1962 L. M. Lederman,
M. Schwartz and J. Steinberger et al. created the first accelerator neutrino beam, from pion decays
from a boosted proton beam hitting a target, and showed that the neutrinos produced in pion decays
associated with a muon do not lead to electrons in scatterings off matter [21]. Indeed, this is the proof
that there are two types of neutrinos, electron and muon neutrinos and that they participate separately in
weak interactions with their corresponding charged leptons. This result earned Lederman, Schwartz and
Steinberger the Nobel prize in 1988. The third type of neutrinos, the one associated with the τ lepton,
was finally discovered in 2000 by the DONUT experiment [22].

Once different neutrino families were established the question of whether there could be mixing
and transitions between them was open. The first idea of neutrino oscillations was put forward by B. Pon-
tecorvo in 1957 [23]. In 1962 Z. Maki, M. Nakagawa and S. Sakata introduced the concept of mixing
between mass and flavour states [24]. In 1967 Pontecorvo gave a first intuitive link between two neutrino
mixing and oscillations [25], subsequently completed by him with V. N. Gribov two years later [26]. In
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the subsequent decade the theory was fully developed [27]. On the experimental side, first indications
of a transition between flavours emerged in solar neutrino experiments. Since the 60’s the Homestake
experiment led by R. Davies detected solar neutrinos using a radiochemical technique with chlorine [28].
In 2002 R. Davies Jr. and M. Koshiba were awarded the Nobel prize in Physics “for pioneering contri-
butions to astrophysics, in particular for the detection of cosmic neutrinos". Davis’ experiment observed
a flux smaller than predicted by J. Bahcall and collaborators [29] in the solar neutrino model. Other
radiochemical experiments Gallex/GNO [30] and Sage [31] confirmed these results. These experiments
can measure neutrinos at low energies with a sub-MeV threshold but cannot reconstruct the energy or
the direction of the neutrinos. Water-Cherenkov detectors, starting with Kamiokande [32], could de-
tect solar neutrinos via elastic scattering νe e− → νe e

−. Their threshold is much higher making them
sensitive only to the 8B component of the flux but they can measure the energy and direction of the in-
coming neutrino. Super-Kamiokande was able to measure the flux deficit with great precision [33]. The
solar neutrino problem remained open for a long time: whether neutrinos oscillate into flavour which
cannot be detected in the experiments or the flux predictions were badly flawed. The definitive answer
came in 2001 thanks to the SNO experiment [61]. It exploited two interactions in addition to elastic
scattering: the charged current (CC) interaction νe + d → p + p + e− and the neutral current (NC)
one να + d → p + n + να, α = e, µ, τ . The latter is particularly important as it is sensitive to all
the three neutrino flavours. By comparing the νe and να fluxes deduced from the data, the SNO exper-
iment was able to demonstrate that νe constitute only roughly a third of the overall solar neutrino flux
at these energies and that the observed total flux is in good agreement with the theoretical predictions.
The parameters required to explain the solar neutrino transitions were confirmed by the reactor neutrino
experiment KamLAND soon after in 2002 [66].

Neutrino oscillations were observed also in atmospheric neutrinos. These are produced in the
atmosphere when cosmic rays interact with nuclei in the atmosphere sourcing pions and kaons, and
subsequently muons, which decay producing muon and electron neutrinos. Atmospheric neutrinos were
first detected in 1965 deep underground at the Kolar Gold Field Mine in India [36] and soon after in
the East Rand Proprietary Gold Mine in South Africa [37] looking for upgoing muon events signaling a
muon neutrino interaction. First indications of a deficit of muon neutrinos were reported by Kamiokande,
IMB, Soudan2, and by MACRO [38]. In 1998, the Super-Kamiokande experiment discovered neutrino
oscillations [39] showing that the muon neutrino depletion is L/E dependent in agreement with an
oscillatory behaviour. We now know that muon neutrinos oscillate into tau neutrinos, which cannot be
efficiently detected in the experiment. In 2015 T. Kajita for the Super-Kamiokande collaboration and
A. B. McDonald for the SNO collaboration received the Nobel Prize in Physics for “the discovery of
neutrino oscillations, which shows that neutrinos have a mass". As we will discuss later, this is the
first particle physics evidence that the SM is incomplete, see Sec. 6. Neutrino oscillations have been
studied since with great precision in solar, atmospheric, accelerator, reactor neutrino experiments and a
rich programme is planned for the future, see Sec. 3.3.

2 Neutrinos in the Standard Model of Particle Physics and beyond
The Standard Model of particle physics [13–15] is based on the gauge symmetry SU(3) × SU(2)L ×
U(1)Y and categorises all known fermions via the corresponding quantum numbers. They are given in
Table 1.

Neutrinos are singlets of SU(3) but belong to SU(2)L doublets together with their corresponding
charged leptons. They have hypercharge −1/2 and do not carry electric charge, as Q = T3 + Y . In the
SM, neutrinos are Weyl fermions with left chirality, ναL ≡ PLνα, α = e, µ, τ . The chiral projectors
are PL = (1 − γ5)/2 and PR = (1 + γ5)/2. For massless neutrinos, chirality and helicity match as the
chiral projectors and the projectors on helicity components are the same up to corrections of order m/E.
Left-handed neutrinos are accompanied by right-handed antineutrinos as required by the invariance of
the theory under CPT (charge conjugation, parity, time reversal). Parity, the transformation of left into
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Table 1: SM fermionic content and its irreducible representations with respect to the groups SU(3), SU(2)L and
U(1)Y . 3 indicates a triplet of SU(3), 2 a doublet of SU(2)L and 1 a singlet with respect to either group. Y is
the hypercharge of the fields.

Particles SU(3) SU(2)L U(1)Y
Leptons(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

1 2 −1/2

eR , µR , τR 1 1 −1

Quarks(
u
d

)

L

,

(
c
s

)

L

,

(
t
b

)

L

3 2 1/6

uR , cR , tR 3 1 2/3

dR , sR , bR 3 1 −1/3

right and viceversa, is maximally violated in the SM as there are no right-handed neutrinos.

Left-handed neutrinos interact via the weak force according to the charged current and neutral
current terms in the SM Lagrangian:

LSM = − g√
2

∑

α= e, µ, τ

ναLγ
µ`αLWµ −

g

2 cos θW

∑

α= e, µ, τ

ναLγ
µναLZµ + h.c. , (2)

where g is the SU(2)L coupling, θW is the Weinberg angle, and all other symbols have the common
meaning. We notice that the structure of the SM weak interaction is of the V −A type.

As discussed in the Introduction, neutrinos come in three families. A fourth active neutrino is
not allowed by the invisible width of the Z boson to which it would contribute as much as one active
neutrino, Z → ναν̄α. The invisible width has been measured with great accuracy at LEP and leads to the
following constraint on the active number of neutrinos [40]:

Nν =
Γinv
Γν̄ν

= 2.984± 0.008. (3)

Additional neutrinos could be present, as we will discuss later, but they need not partake in SM interac-
tions, and therefore are called sterile neutrinos.

2.1 Leptonic mixing
Since neutrinos have masses, there are two bases that can be used to describe them: the flavour basis,
να, α = e, µ, τ , depicted in Table 1, in which each neutrino is associated to the corresponding charged
lepton, and the mass basis, νi, i = 1, 2, 3, in which each neutrino has a definite mass. The two bases, as
required by probability conservation, are related by a unitary matrix U , the so-called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [23, 24]:

ναL =
3∑

i=1

Uαi νiL . (4)

The PMNS matrix then enters the CC Lagrangian when we express it in terms of mass fields (in the basis
in which the charged lepton mass matrix is diagonal):

LSM = − g√
2

∑

α, i

νiU
∗
αiγ

µPL`αWµ + h.c. , (5)
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with α = e, µ, τ and i = 1, 2, 323. From here it plays a role in neutrino oscillations as we will discuss
later.

In general, a 3× 3 unitary matrix can be parameterized in terms of 3 angles and 6 phases. Several
of the phases are unphysical. In fact, we have the freedom to phase-rotate the fields as ψ → eiφψ.
If we do so for the charged leptons, we can eliminate three phases from the PMNS matrix and these
disappear from the Lagrangian as they do not affect the kinetic terms, the NC one and the mass term for
the leptons as far as both left and right-handed component undergo the same rephasing. If neutrinos are
Dirac particles, as the charged leptons, the same rephasing can be applied to them as well, eliminating
two further phases. There remains only one physical phase, called the Dirac phase, as in the Cabibbo-
Kobayashi-Maskawa mixing matrix in the quark sector. If neutrinos are Majorana, such rephasing does
not eliminate two phases which will reappear in the Majorana condition and in the Majorana mass term.
Therefore, for Majorana neutrinos, there are three physical phases, two of which enter only in lepton
number violating processes. Since for antineutrinos we need to use the conjugate of U , any physical
phase represents a violation of the CP symmetry and will be called a CP violating (CPV) phase.

The PMNS matrix can be parameterized as [41, 42]

Uαi =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 · P , (6)

where we define cij ≡ cos θij and sij ≡ sin θij , with θij ∈ [0, 90◦]. In this notation, δ is the Dirac CPV
phase δ ∈ [0, 360◦] and P is a diagonal phase matrix P ≡ diag(1, ei

α21
2 , ei

α31
2 ) which embeds the two

Majorana CPV phases α21, α31.

It is interesting to express the CP-violating effects due to the Dirac phase in a rephasing-invariant
manner. This can be done using the Jarlskog invariant [43]

J ≡ =[Uµ3Ue2U
∗
µ2U

∗
e3] =

1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ . (7)

This formulation makes apparent that Dirac CP violation is a genuine 3-neutrino mixing effect whose
physical impact depends on all of the three mixing angles, including the relatively small θ13.

3 Neutrino oscillations
In presence of leptonic mixing and non-degenerate neutrino masses, the phenomenon of neutrino oscil-
lations takes place. This is a beautiful manifestation of quantum mechanics on macroscopic distances.
The basic picture is the following. In production and detection neutrinos are described by flavour states.
Let’s assume that a muon neutrino is produced. This is a coherent superposition of massive states which
have slightly different masses. The coherence is a key condition which needs to be satisfied to have
neutrino oscillations. It is satisfied thanks to the uncertainty in the neutrino momentum at production4.
The massive components of the initial state propagate over long distances with slightly different phases.
This amounts to a change in the state over distance. It is then possible that at detection, when projecting
the flavour components out, a different flavour is found compared to the initial one. In order for the
oscillatory behaviour to hold, coherence is needed also during propagation and this is possible because
of the very weakly interacting nature of neutrinos5.

2Unless otherwise indicated, we will use Greek indexes for flavour fields/states and Roman ones for mass fields/states.
3The flavour states are related to mass states as |να〉 =

∑
i U

∗
αi|νi〉.

4If the momentum uncertainty is small compared to the mass differences, for instance if there exists a very heavy nearly-
sterile neutrino, such coherence is lost and oscillations do not develop. At production in a specific event either the light states
will be produced coherently or the heavy one.

5Over astronomical distances the massive components of neutrinos can separate in the wave function due to the slightly
different velocities, effectively destroying coherence.
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3.1 Oscillation probability in vacuum
The oscillation probability can be derived in different ways but here we will limit the discussion to the
commonly used plane-wave approximation. This approximation does not capture the momentum uncer-
tainty necessary for coherence. We will assume by hand that the initial state is a coherent superposition
of massive states with a definite spatial momentum p ≡ |p|.

Let’s consider a να produced at t = 0 in a charged current interaction. We describe the initial state
as a superposition of mass eigenstates, which we take as plane waves with momentum p,

|ν, t = 0〉 = |να〉 =
∑

i

U∗αi|νi〉 . (8)

The mass states |νi〉 are eigenstates of the free Hamiltonian Ĥ with eigenvalues Ei =
√
p2 +m2

i . The

evolution of the neutrino state can be obtained by solving the evolution equation and is expressed as6

|ν, t〉 = exp(−iĤt)|νa〉 =
∑

i

U∗αi exp(−iEit)|νi〉 . (9)

The probability of transition from να to νβ at time t is obtained projecting the state |ν, t〉 in the νβ
direction as

P (να → νβ, t) = |〈νβ|ν, t〉|2 =

∣∣∣∣∣
∑

i

UβiU
∗
αi exp(−iEit)

∣∣∣∣∣

2

, (10)

where we have used the fact that 〈νj |νi〉 = δij .

In all experimentally relevant situations, neutrinos are highly relativistic and one can approximate,
for common momentum p,

Ei − Ej '
m2
i −m2

j

2p
, (11)

and moreover one can take L = t.

Finally, one obtains the general formula for neutrino oscillations in vacuum

P (να → νβ, t) = |〈νβ|ν, t〉|2 =

∣∣∣∣∣
∑

i

UβiU
∗
αi exp

(
−i∆m

2
i1t

2E

)∣∣∣∣∣

2

, (12)

where we have defined ∆m2
i1 ≡ m2

i −m2
1 and we have approximated E ' p. It is apparent from this

formula that oscillations between one flavour and another are possible only if there is leptonic mixing,
U 6= 1, and neutrinos have masses. This is the reason why the discovery of neutrino oscillations in 1998
has had such a groundbreaking effect in our understanding of neutrinos and more broadly of particle
physics.

We notice that neutrino oscillations conserve lepton number, i.e. if a neutrino is produced, the state
will continue being a neutrino, but does not respect leptonic flavour as the neutrino can change from one
to the other over distances. We furthermore notice that Majorana phases do not enter in the oscillation
formula as expected since this is a lepton number conserving process. Moreover, the overall mass scale
does not play a role in it.

The case α = β is usually referred to as a survival probability or disappearance channel, the
opposite one α 6= β is the transition probability or appearance channel. Conservation of probability is
satisfied as

∑
β P (να → νβ, t) = 1. For antineutrinos, one substitutes U with its complex conjugate U∗.

6We use natural units throughout: c = 1, ~ = 1.
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It is sometimes useful to separate the real and imaginary parts of the leptonic mixing terms as

P (να → νβ) = δαβ−4
∑

i>j

<[U∗αiUαjU
∗
βjUβi] sin2

(
∆m2

ijL

4E

)
+2
∑

i>j

=[U∗αiUαjU
∗
βjUβi] sin

(
∆m2

ijL

2E

)
.

(13)

The plane-wave derivation we have discussed above has the advantage of simplicity but cannot
account for the momentum uncertainty necessary for coherence and the spatial size of the neutrino wave
function resulting from the fact that production and detection are localised processes. A more precise
treatment of this problem has been achieved using wave packets so that the initial state is the superposi-
tion of the wave packets which describe each massive neutrino [44]. This derivation allows to incorporate
decoherence and momentum uncertainty effects. The approximation L = t is also problematic in the
plane-wave description as plane waves extend all over the space with the same amplitude. The wave
packets can describe localised particles and solve this apparent paradox as well. In all experimentally
relevant cases, it will result in the same formula as Eq. (12) as far as coherence is maintained and the
momentum uncertainty is sufficiently large. For further details about this derivation and a discussion of
neutrino oscillations in the context of QFT, see e.g. [45].

3.1.1 2-neutrino oscillations
We now study the probability in Eq. (12) more in detail [26, 27]. Let’s consider first the oscillation
probability in the two neutrino case. The massive basis ν1, ν2 is related to the flavour basis να, νβ as

(
να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
, (14)

where θ is the mixing angle in vacuum which parameterizes the 2× 2 mixing matrix.

The oscillation appearance probability is given by

P (να → νβ) = sin2 2θ sin2

(
∆m2L

4E

)
. (15)

We schematically show P (νµ → ντ ) in Fig. 1.

As expected, we see that this probability is different from zero only in presence of mixing and of
neutrino masses. Oscillations do not develop if the distance travelled by the neutrinos is too short and
they reach a maximum when ∆m2L

4E = π/2. For a given baseline, set by the distance between the source
and the detector, the energy of the first oscillation maximum is controlled by ∆m2. It is useful to express
the argument in terms of experimentally relevant units as

∆m2L

4E
= 1.27

∆m2

eV2

L

km

GeV

E
. (16)

The disappearance probability P (να → να) is simply 1 − P (να → νβ). We also notice that
CPT invariance guarantees that P (να → νβ) = P (νβ → να) and that the disappearance probability
is the same for neutrinos and antineutrinos P (να → να) = P (να → να). Moreover, we have that
the probability is invariant under a T and CP transformations, since P (να → νβ) = P (νβ → να) =
P (να → νβ). This implies that 2-neutrino oscillations in vacuum are not sensitive to leptonic CP
violation and therefore to hunt for the Dirac CPV phase it is necessary to exploit setups for which 3-
neutrino oscillation effects are relevant.

3.1.2 3-neutrino oscillations
In the case of 3-neutrino mixing, the probability of να → νβ oscillations in vacuum has a more complex
form in terms of the two mass squared differences ∆m2

21 and ∆m2
31 and of the mixing parameters. In

experimental situations, two limits are particularly interesting.
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Fig. 1: The transition probability P (νµ → ντ ) in the 2-neutrino mixing approximation as a function of L/E for
sin2 2θ = 1 and ∆m2 = 2.5× 10−3 eV2.

– Case A: ∆m2
21L

2E � 1. This is the case relevant for accelerator, atmospheric, and medium baseline
reactor neutrino experiments as far as subdominant 3-neutrino mixing effects can be neglected.
The oscillations due to ∆m2

21 do not develop and the probability reduces to:

P (να → νβ) ' 4|Uα3|2|Uβ3|2 sin2

(
∆m2

31L

4E

)
. (17)

This formula resembles the one for the 2-neutrino oscillation case and indeed has the same prop-
erties, in that it is not sensitive to CP-violating effects.
Accelerator neutrino experiments such as T2K and NOvA, and in the past MINOS, K2K, and
atmospheric neutrino experiments, specifically Super-Kamiokande, exploit a muon neutrino beam,
mainly from pion decays and can measure quite precisely its disappearance probability given by

P (νµ → νµ) ' 1−4|Uµ3|2(1−|Uµ3|2) sin2

(
∆m2

31L

4E

)
' 1−sin2 2θ23 sin2

(
∆m2

31L

4E

)
+O(s2

13) .

(18)
Consequently, they provide the dominant information on ∆m2

31 and on the θ23 angle. The current
generation experiments T2K and NOvA are also designed to detect electron neutrinos from the
νµ → νe oscillations at long distance. The probability at leading order is given by

P (νµ → νe) ' 4|Ue3|2|Uµ3|2 sin2

(
∆m2

31L

4E

)
' s2

23 sin2 2θ13 sin2

(
∆m2

31L

4E

)
. (19)

We note that this probability is suppressed by the small mixing angle θ13. Subdominant terms
arise due to matter effects, see Sec. 3.2, and Dirac CP violation. This is the channel of choice
to determine the mass ordering and discover CP violation in long baseline neutrino oscillation
experiments.
Finally, the probability which is relevant for medium baselines L ∼ 1 km in reactor neutrino
experiments is

P (νe → νe) ' 1− sin2 2θ13 sin2

(
∆m2

31L

4E

)
. (20)
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This probability is controlled again by θ13 and, thanks to this, the Daya Bay experiment [46], as
well as RENO [47] and Double CHOOZ [48], discovered θ13 6= 0 in 2012.

– Case B: ∆m2
31L

2E � 1. Long baseline reactor neutrino experiments such as KamLAND exploit this
approximation. In this case, the oscillations controlled by ∆m2

31 are effectively averaged out. The
probability can be well approximated by

P (νe → νe) ' c2
13

[
1− sin2 2θ12 sin2

(
∆m2

21L

4E

)]
+ s2

13 . (21)

It follows that KamLAND can measure very precisely the value of ∆m2
21 and is sensitive to θ12

and at some level also to θ13 [49].

If 3-neutrino mixing effects are at play, the neutrino probability becomes sensitive to Dirac CP
violation. This can be seen computing the CP asymmetry A(να → νβ) ≡ P (να → νβ)− P (να → νβ).
Using Eq. (13) it follows that

A(να → νβ) = 4s12c12s13c
2
13s23c23 sin δ

[
sin

(
∆m2

21L

4E

)
+ sin

(
∆m2

13L

4E

)
+ sin

(
∆m2

32L

4E

)]
.

(22)
We notice that CPV effects can be parameterised in terms of the Jarlskog invariant and depend on the
Dirac CPV phase. Moreover, they are different from zero only in presence of 3-neutrino oscillation
effects, i.e. if ∆m2

21 can be neglected A(να → νβ) goes to zero. This implies that CPV effects are
suppressed by the small mass squared difference ∆m2

21 and are controlled by the small mixing angle
θ13 making their search challenging. Current long baseline neutrino oscillation experiments have started
being sensitive to these effects which are the main focus of next generation experiments.

3.2 Matter effects in neutrino oscillations
Neutrinos are affected by the medium in which they travel. They can incoherently scatter off its compo-
nents, e.g. electrons, neutrons, protons, but typically these interactions can be neglected. Using dimen-
sional arguments, a crude estimate of the interaction cross section for a neutrino of energy E is

σν ∼ G2
FEM ∼ 10−38 cm2 EM

GeV2 ,

where we have used a mass M for the target in the medium, typically being nucleons. Considering for
instance the Earth density this cross section leads to a mean free path of 1014 cm at 1 GeV, well above
the Earth diameter. Indeed the Earth becomes opaque to neutrinos only at energies above 102 TeV. Only
in extremely dense environments, such as supernovae cores and the Early Universe, these interactions
are sufficiently frequent to trap the neutrinos.

In the low density situations of interest, e.g. the Earth and the Sun, the medium affects neutrinos
nevertheless by modifying their effective masses. In matter, neutrinos interact with the background
particles, e.g. electrons, protons and neutrons, via forward elastic scattering [50]. Let’s consider a neutral
unpolarised medium at rest. We consider centre-of-mass energies well below the W and Z masses, for
which we can use the Fermi approximation. The effective Hamiltonian density for the CC interaction is
given by

HCC = 2
√

2GF [ēγµPLνe][ν̄eγ
µPLe] = 2

√
2GF [ν̄eγ

µPLνe][ēγµPLe] , (23)

where we have used a Fierz transformation to separate the neutrino part from the background electron
one. Averaging the electron component over the background at rest gives

〈ēγµPLe〉 = δµ0
Ne

2
, (24)
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Fig. 2: Feynman diagrams for the CC and NC neutrino interactions with a medium, such as the Earth or the Sun.

where Ne is the electron density. Similarly, one can compute the contribution due to the NC interactions.
In this case, in a neutral background, the electron and proton contributions cancel out and only the
neutron density Nn is relevant.

By considering the modified dispersion relations in matter, one can see that an effective potential
is induced in the Hamiltonian:

Ve =
√

2GF
(
Ne − Nn

2

)
, (25)

Vµ,τ =
√

2GF
(
−Nn

2

)
. (26)

For antineutrinos the potential changes sign. This indicates a violation of CP and CPT symmetries, which
is due to the fact that the background is itself CP and CPT violating as it contains only particles and not
antiparticles7.

Notice that these terms are diagonal in the flavour basis as there are no SM processes which change
one flavour into another and that the NC terms are the same for all three flavours as NC interactions are
flavour blind in the SM.

The effective Hamiltonian, describing the neutrino propagation in the medium, is given by the
vacuum one H0 augmented by the potential terms as

Hm = H0 + diag(Ve, Vµ, Vτ ) , (27)

in the flavour basis.

Let’s consider the simplest case of 2-neutrino oscillations and choose the νe–νµ flavours8. In the
flavour basis the neutrino propagation can be described by

i
d

dt

(
νe
νµ

)
=

(
−∆m2

4E cos 2θo +
√

2GFNe(t)
∆m2

4E sin 2θo
∆m2

4E sin 2θo
∆m2

4E cos 2θo

)(
νe
νµ

)
. (28)

For clarity we have indicated the mixing angle in vacuum as θo and it corresponds to θ in Eq. 14. To
derive this expression we have eliminated any common term in the diagonal as only relative phases
between the states are relevant in the probabilities. Computing the resulting evolution can be highly non
trivial, especially in the full 3-neutrino mixing picture, and one may have to resort to numerical tools.
In some case, analytical approximations can be applied. We consider two particularly relevant ones: the
constant density case and the case of varying density with adiabaticity.

7This is not the case in the Early Universe in which both types are typically present with a very similar density.
8As the matter potential is the same for νµ and ντ , we do not expect matter effects to arise in the oscillations between these

two flavours, at least at leading order.
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3.2.1 Constant density case
For constant density, the evolution of the two eigenstates in matter can be decoupled. The mixing between
the flavour states and the eigenstates in matter is

tan 2θm =
∆m2

2E sin 2θo
∆m2

2E cos 2θo −
√

2GFNe

. (29)

The probability of oscillation can be computed in analogy to the vacuum case and is given by

P (νe → νµ; t) = sin2 2θm sin2

(
L

2
(EA − EB)

)
, (30)

with

|EA − EB| =
√(

∆m2

2E
cos 2θo −

√
2GFNe

)2

+

(
∆m2

2E
sin 2θo

)2

. (31)

We notice that the behaviour in matter can be significantly different to the vacuum case [51].

– Vacuum limit. If
√

2GFNe � ∆m2

2E cos 2θo, θm ' θo and the vacuum solution is recovered.

– Matter domination. If
√

2GFNe � ∆m2

2E cos 2θo, matter effects dominate and the transition prob-
ability is very suppressed. This can be understood as matter effects are flavour diagonal and there-
fore tend to realign the evolving state onto the initial flavour direction, suppressing flavour transi-
tions.

– Resonance. The remaining option is particularly interesting and happens when
√

2GFNe =
∆m2

2E cos 2θo. In this case the mixing angle in matter is maximal, θm = π/4, independently from
the value of θo. This case is called "resonance" and can happen for neutrinos (antineutrinos) if
∆m2 > 0 (∆m2 < 0), for cos 2θo > 0. Once the resonant condition is satisfied, the oscillation
length is controlled by |EA−EB| = |∆m2|

2E sin 2θo requiring very long distances for the oscillations
to develop if θo is very small.

The case of constant density is relevant for long baseline neutrino oscillations experiments, e.g.
NOvA, DUNE. By searching for an enhancement of the oscillation probability in neutrinos or antineu-
trinos due to matter effects, these experiments are sensitive to the sign of ∆m2

31, or the mass ordering.
These are typically small effects and are partly degenerate with intrinsic CPV effects due to the Dirac
phase, which are also opposite for neutrinos and antineutrinos. Focusing on the νµ → νe transition, an
approximate form of the oscillation probability allows to study the dependence on the various effects [52]

P (νµ → νe) ' s2
23 sin2 2θ13

(
∆31

∆31 ∓A

)2

sin2 (∆31 ∓A)L

2

+c13 sin 2θ13 sin 2θ12 sin θ23
∆21

A
sin

AL

2

∆31

|∆31 ∓A|
sin
|∆31 ±A|L

2
cos

(
∆31L

2
∓ δ
)

+O(∆2
12L), (32)

with ∆ij ≡ ∆m2
ij/2Eν and A ≡ Ve − Vµ =

√
2GFNe. Due to the fact that θ13 is not too small, see

Sec. 3.4, the first term dominates and provides sensitivity to matter effects and the mass ordering. The
second term in this expression depends on the CPV phase δ. As expected, it arises from the interference
of the oscillations due to both ∆m2

31 and ∆m2
21 and increases at lower energies. From this expression,

we can understand that determining the mass ordering and CPV in long baseline neutrino oscillation
experiments is possible but presents some challenges. Having information at different energies and both
for neutrinos and antineutrinos alleviates the degeneracy between the various parameters and enhances
the physics reach.
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3.2.2 Varying density
In many situations, the neutrinos travel through a medium of varying density. This is the case for neutri-
nos produced in the inner parts of the Sun or for atmospheric neutrinos going through the Earth.

At any given time, it is possible to diagonalise the Hamiltonian and find the corresponding in-
stantaneous propagation states, νA, νB . The mixing angle in matter is time dependent as its expression
depends on the local density. As a result, in this basis, the Hamiltonian acquires off-diagonal terms which
depend on the time derivative of the potential as

i
d

dt

(
νA
νB

)
=

(
EA −iθm(t)

iθm(t) EB

)(
νA
νB

)
. (33)

For constant density, the off-diagonal terms are zero and the two states νA and νB evolve independently.
For varying density, the off-diagonal terms indicate the possibility of a transition from one state to the
other. An analytical solution is typically very difficult to obtain and numerical tools need to be employed
to compute the transition probabilities. If the off-diagonal terms are subdominant, as it happens for a
slowly varying density, then some approximate solution can be found. This is the adiabatic case for
which the adiabatic condition is satisfied

|EA − EB| �
∣∣∣∣
d

dt
θm

∣∣∣∣ . (34)

The case of varying density is realised in the Sun, in which the neutrinos see a slowly varying
density as they travel towards the surface. Let’s consider the 2-neutrino mixing approximation. At any
time t, it is possible to relate the flavour states to the instantaneous propagation states. Explicitly we have

(
νe
νµ

)
=

(
cos θm(t) sin θm(t)
− sin θm(t) cos θm(t)

)(
νA
νB

)
. (35)

As neutrinos originate from close to the centre of the Sun, at sufficiently high energies, matter effects
dominate and θm ∼ π/2 implying that electron neutrinos are mainly in the heavy state νB . This can be
seen from the form of the Hamiltonian in Eq. (28) which is nearly diagonal with the dominant term in
the ee position. As neutrinos reach the surface, they have remained in the same state νB as far as the
adiabaticity condition is satisfied. At this position, the vacuum case applies so that θm = θo and

|νB〉 = sin θo|νe〉+ cos θo|νµ〉 , (36)

implying that the survival probability is

P (νe → νe, surface) = sin2 θo . (37)

If the mixing angle in vacuum is small, this corresponds to a nearly total transition to νµ. This is the
so-called MSW effect [50, 51] and explains neutrino transitions in the Sun for energies of few MeV. It
should be noted that it is improper to speak about oscillations for these transitions. In fact the survival
probability does not result from the coherent evolution of the mass eigenstates produced at the source but
by the independent evolution of the propagation states, so that, at these energies, most solar neutrinos we
observe on the Earth are mass eigenstates ν2.

At low energies, matter effects are always negligible and vacuum oscillations take place, averaged
over the long distances. This produces a very typical transition behaviour, with the probability at low
energies given by P (νe → νe, surface) = 1− 1/2 sin2 2θo, a transition region around the few MeV and
P (νe → νe) = sin2 θo at high energies. The dependence on neutrino masses arises from the energy
at which the resonant condition is satisfied. In Fig. 3 we schematically show the behaviour of the solar
neutrino survival probability.
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Fig. 3: A schematic representation of the electron neutrino survival probability P (νe → νe) for solar neutrinos, as
a function of the energy.

3.3 Experimental knowledge on neutrino oscillations
Since the discovery of neutrino oscillations, a rather precise picture of neutrino oscillation properties
has been painted by a very rich experimental programme. Neutrino oscillations have been observed in
atmospheric, accelerator, solar, reactor neutrino experiments. Here, we provide a very concise summary,
referring the reader to more updated and broad discussions available in the literature and in conferences.

3.3.1 Atmospheric neutrinos
Neutrinos are produced in the atmosphere by pion and kaon decays, and subsequent muon decays, pro-
duced by cosmic rays hitting the atmosphere. The flux is mainly made of muon neutrinos and electron
neutrinos with a ratio of two since there are two muon neutrinos, one coming from pion decay and one
from muon decay, per electron neutrino9. The spectrum is very broad going from sub-GeV to multi-TeV
energies. For neutrino oscillation purposes the range of interest spans from hundrends of MeV to a few
GeV.

Since the discovery of neutrino oscillations in atmospheric neutrinos by the Super-Kamiokande
experiment, several experiments have studied these oscillations in greater detail. Super-Kamiokande 1-4
has collected more data [53], MINOS [54] has been able to distinguish neutrinos from antineutrinos,
thanks to its magnetisation, and IceCube/DeepCore have also provided relevant information [55].

Atmospheric neutrinos contribute to our current knowledge of neutrino parameters mainly by ob-
serving the muon neutrino disappearance channel. This gives information on ∆m2

31 and the angle θ23,
see Eq. (18). Thanks to the strong matter effects, some information can also be obtained on the mass
ordering, although the lack of magnetisation of the Super-Kamiokande detector and the limited number
of events do not allow to reach a high statistical significance.

3.3.2 Accelerator neutrinos
Accelerator neutrinos are produced in the similar manner as atmospheric neutrinos, by focusing a pion
beam down a decay pipe. This allows to have a controlled beam, in which the electron neutrino compo-

9At high energy this ratio becomes much bigger as muons hit the Earth before decaying, so that the electron component is
suppressed.
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nent is suppressed, the spectrum can be predicted with good accuracy, the intensity is enhanced and the
average energy tuned to match the first oscillation maximum.

After K2K, several experiments took place including MINOS [54, 56], and the currently running
T2K [57] and NOvA [58]. MINOS [54,56] used the NuMI (Neutrinos at Main Injector) beam sourced at
Fermilab and two iron magnetised detectors made of alternating planes of steel and plastic scintillators.
The near detector, with a mass of 980 tons, was close to the beam target. The far detector was located
in the Soudan mine in Northern Minnesota, 735 km from Fermilab, and had a mass of 5.4 ktons. Being
made of magnetised steel these detectors had very good muon reconstruction capabilities and could
distinguish neutrinos from antineutrino events. T2K (Tokai-to-Kamioka) experiment [57] exploits a
beam produced at the J-PARC facility and the Super-Kamiokande detector located 295 km away. Due
to its position, the beam reaching the detector is off-axis, resulting in a beam peaked at lower energies
compared with the on-axis one. This is useful as it reduces the backgrounds due to the high energy tail of
the neutrinos and increases the number of events at the first oscillation maximum. The Water-Cherenkov
detector allows to reconstruct both muon and electron neutrino events. The NOvA experiment [58] also
aims at detecting electron neutrinos, as well as muon ones, from the NuMI beam. The 14 kton detector
is at Ash River in Minnesota 810 km from Fermilab and is made of cells of plastic PVC filled with liquid
scintillator. Also in this experiment, the location is off-axis.

All these experiments provide key information on ∆m2
31 and the angle θ23, thanks to their ability

to measure the muon neutrino survival probability. T2K and NOvA are also aimed at detecting the
νµ → νe transition channel whose probability depends on θ13 and subdominantly on the CPV Dirac
phase δ. NOvA, thanks to its rather long baseline of ∼ 810 km, has also some sensitivity to the mass
ordering via matter effects.

We should also mention the OPERA experiment, which detected ντ from oscillations of the CNGS
beam sourced at CERN [59]. It was located at the Gran Sasso Laboratories 735 km away. The detector
was made of lead bricks and nuclear emulsions, to search for the characteristic tau tracks. It was able to
observe 5 tau neutrino events, confirming the hypothesis of νµ → ντ oscillations.

3.3.3 Solar neutrinos
Solar electron neutrinos are produced in the nuclear reactions that burn hydrogen into helium in the Sun,
and all other stars:

4p→ 4He + 2e+ + 2 νe . (38)

A multicomponent flux is generated: pp neutrinos dominate but have rather low energies,Eν . 0.4 MeV,
8B neutrinos have much higher energies reaching above 10 MeV although with a much lower flux, 7Be
and pep neutrinos have monochromatic lines at intermediate energies.

In recent years solar neutrinos have been studied mainly with the Super-Kamiokande detector [60],
via the elastic scattering process νee → νee, with SNO [61], sensitive to both electron neutrino and the
overall flux as discussed earlier, and more recently with Borexino [62], which thanks to its low threshold
can detect 7Be and pep neutrinos. These experiments provide information on the mixing angle θ12 and,
by reconstructing the transition probability above and below the resonance, on ∆m2

21. As discussed in
Sec. 3.2, the resonance condition depends on ∆m2

21 whose value can be then extracted with some level of
precision. By observing the resonant behaviour for neutrinos, we can also deduce that ∆m2

21 is positive,
for cos 2θ12 > 0, establishing the hierarchy between m1 and m2.

3.3.4 Reactor neutrinos
After the Reines and Cowan experiment, many other reactor neutrino experiments have taken place
using reactor electron anti-neutrinos. Depending on the distance, we can classify them as short10, for

10We will refer to reactor neutrino experiments searching for sterile neutrinos using baselines of tens of meters as "very-short"
baseline experiments.
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L ∼ 1 km, intermediate, for L ∼ 50–60 km, or long baseline, for L > 100 km, ones. Short-baseline
experiments have a detector located typically around 1 km from the nuclear core. This is the case for
currently running Daya Bay [46,63], RENO [47,64] and Double CHOOZ [48,65]. By exploiting inverse
beta decays, they search for electron antineutrino disappearance. As shown in Eq. (20), this depends on
θ13 which has been found to be non-zero in 2012 by these experiments, after previous hints and some
clear indications by T2K.

The long baseline KamLAND experiment [66], a 1 kton liquid scintillator detector, observed neu-
trinos coming from all nuclear reactors in Japan, with an average distance of 175 km. At these baselines,
the oscillation expression in Eq. (21) applies showing that this experiment provides the most precise in-
formation on ∆m2

21 as well as a measurement of θ12 [49,66]. Remarkably, the solar neutrino oscillations
and KamLAND results pointed to the same values of these parameters.

3.3.5 Short baseline neutrino oscillations
Although we focus on the 3-neutrino mixing scenario, we mention here that neutrino oscillation ex-
periments at short baselines have reported some hints which can be interpreted as being due to light
sterile neutrinos. In the 90s the LSND experiment found evidence of ν̄µ → ν̄e transitions using muon
antineutrinos from pion decays [67]. This result could be explained with neutrino oscillations at very
short baseline induced by a large mass squared difference ∆m2 ∼ 1 eV2. In order to accommodate
such large value together with the measured ∆m2

31 ' 2.5 × 10−3 eV2 and ∆m2
21 ' 8 × 10−5 eV2,

it is necessary to introduce 4 massive neutrinos. The fourth flavour state needs not to have SM inter-
actions as implied by the Z invisible width, see Eq. (3), hence the name of sterile. The MiniBooNE
experiment, designed to test this result, observed some anomaly as well, namely an excess of electron
neutrino events at low energies [68]. The LSND and MiniBooNE results could be interpreted in terms
of neutrino oscillations, see also Ref. [70]11. These results are somewhat in tension with disappearance
experiments, driven mainly by MINOS+ and IceCube, which put very stringent constraints on the mixing
between the muon and the fourth massive neutrinos [70], disfavouring this explanation. Regarding the
mixing with electron neutrinos, there are some additional indications in favour of sterile neutrinos. Very
short baseline reactor neutrino experiments, with L ∼ few m, have measured a flux which is lower than
predicted by ∼ 3% [71]. Although there are significant uncertainties on the reactor neutrino flux com-
putations, these results could be regarded in favour of sterile neutrino oscillations with |Ue4|2 ∼ 0.01.
The Gallium anomaly refers to a deficit of measured electron neutrinos from radioactive sources at the
GALLEX and SAGE solar neutrino experiments [72], calling for a somewhat larger value of the mixing
angle |Ue4|2 ∼ 0.1.

A coherent picture is still missing and several experiments are taking data. The SBN (Short-
Baseline Neutrino) program [73] at Fermilab exploits the Booster neutrino beam and 3 detectors: ICARUS,
a 500 ton LAr TPC at a distance of 600 m, MicroBooNE which is located 470 meters away and has
80 tons of liquid argon, and Short-Baseline Near Detector, or SBND, at 110 meters with 112 tons fidu-
cial mass. It aims at testing the sterile neutrino explanation for the LSND and MiniBooNE anomalies by
looking for νµ → νe oscillations at short distances. Thanks to the excellent detector capabilities, it has
also a rich programme of exotic physics, e.g. heavy sterile neutrinos, dark matter searches. Experiments
using reactor and radioactive source neutrinos with detectors at a distance of few meters from the source,
such as DANSS, NEOS, SOLiD, PROSPECT, Neutrino-4, are ongoing and will be able to clarify the
presence of a reactor neutrino anomaly by looking for electron antineutrino disappearance at different
distances.

11This explanation does not provide a particularly good fit to the MiniBooNE energy spectrum and alternative explanations
for the latter have been put forward (see e.g. [69]).
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3.4 Current knowledge of neutrino oscillation parameters and plans for the future
Thanks to the impressive programme discussed above, we have now a quite precise picture of neutrino
properties, although some key questions remain unanswered.

The ∆m2
21 mass squared splitting is determined with very good accuracy to be 7.39 × 10−5 eV2

with a 3σ range of 6.79–8.01 × 10−5 eV2 [74]. The sign of this mass squared difference is positive.
∆m2

31 is known slightly less precisely and its sign is not yet established, leaving open two possibilities,
normal (NO) or inverted (IO) ordering, see later. The measured values slightly differ between the order-
ings due to subleading effects in the oscillation probabilities. For NO one has ∆m2

31 = 2.525 (2.431–
2.622)× 10−3 eV2, for the best fit (3σ range) and similarly for IO ∆m2

32 = −2.512 (−2.413–2.606)×
10−3 eV2 [74].

There are three mixing angles and they control the flavour content of the three mass eigenstates,
given by |Uαi|2. Their values are known with quite good accuracy [74]:

θ12 = 33.82 (31.61− 36.27) for both mass orderings, (39)

θ23 = 49.7 (40.9− 52.2) (NO) θ23 = 49.7 (41.2− 52.1) (IO), (40)

θ13 = 8.61 (8.22− 8.98) (NO) θ13 = 8.65 (8.27− 9.03) (IO), (41)

in degrees. We notice that all three angles are sizable and θ23 could even be maximal. The first hints of
leptonic CPV have been reported, thanks to the combination of results from long-baseline experiments
and of θ13 measurement by reactor neutrino experiments. Currently, there is a preference for large CP
violation with δ = 217 (135–366) (NO) and δ = 280 (196–351) (IO), in degrees, although at 3σ the
CP-conserving values δ = 0, 180◦ for NO are still allowed. More data is required to confirm whether CP
is violated in the lepton sector. No information on the Majorana phases is currently available. In Fig. 4
we report the two-dimensional projections in the neutrino mixing parameter space after marginalization
with respect to the parameters not shown. The figure is taken from Ref. [74].

3.4.1 Future experiments
Future neutrino oscillation experiments aim at answering the questions related to the neutrino mass
ordering, CP violation and the precise determination of the oscillation parameters, as well as providing
important information on the Sun and supernovae. We provide here a concise review focusing on the
main efforts currently planned.

DUNE. The DUNE experiment [75], exploiting the LBNF facility at Fermilab, will use a beam
sourced at the Main Injector with 1.2 MW of power, upgraded to 2.4 MW after 6 years. The far detector
will be constituted by 4 10 kton modules of LAr TPC, located at the Sanford Underground Research
Facility site, at a distance of 1300 km from Fermilab. The first module is planned for 2024 and two
technologies are being developed, the single phase and the dual phase LAr TPC ones. A near detector
will be located at ∼ 500 m from the target. Its design is being finalised. The flux has a broad spectrum
with a peak around 3 GeV and a significant component at lower energies to optimise the sensitivity to
CP violation. Thanks to the long baseline this experiment will see strong matter effects and will be able
to determine the mass ordering at 5σ irrespective of the value of δ. The main drive for the experiment
is the discovery of CP violation: DUNE will reach 3σ for 75% of the values of δ after an exposure of
1320 (850) kton MW years using the CDR (optimised) beam, and 5σ for 50% of the values of δ after
810 (550) kton MW years [75]. The LAr far detector is also an ideal target for SN neutrinos and will
see atmospheric and solar neutrinos with a rich programme for non-accelerator neutrino physics and for
proton decay.

Hyper-Kamiokande and T2HK long-baseline experiment. The Water-Cherenkov Hyper-Kamio-
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kande detector [76] is the successor of Super-Kamiokande and will have a 187 kton fiducial mass per 1
tank, with improved detector capabilities. The optimal tank design will comprise two cylindrical detec-
tors, 60 m in height and 74 m in diameter, with 40% photocoverage. Its main goals are the search for
proton decay, the study of astrophysical neutrinos and to act as the target for a MW beam sourced at the
J-PARC accelerator to discover CP violation. In regards to the beam, its location will be 2.5o off-axis
at 295 km in the Tochibora mine. Its physics reach is due to excellent energy resolution for neutrino-
nucleus quasi-elastic interactions, the large number of events and the low intrinsic background. With a
total exposure of 1.3 MW × 108 s, it can establish leptonic CP violation at 3σ for 76% of the values of
δ and discover it at 5σ for 58% of them, and will achieve an error on δ smaller than 22◦ for any value of
δ12. The possibility to locate a second detector in South Korea is currently being investigated [77]. The
longer baseline and higher energy, for a smaller off-axis angle, would allow to improve the sensitivity to
the mass ordering as well as to CP violation and its precise determination.

Other accelerator neutrino experiments. ESSνSB [78] would exploit a 10 MW beam, sourced
at the European Spallation Source. For a far detector distance between 300 and 550 km, its spectrum is
peaked around the second oscillation maximum in order to maximise the sensitivity to CP violation. With
500 kton Water-Cherenkov detector, this setup has the ability to discover CP violation at 5σ for up to
50% of the values of δ. Additional studies are currently ongoing in order to further optimise this facility.
A neutrino factory [79] would constitute the ultimate neutrino oscillation experiment with unsurpassed
physics reach. Neutrinos are produced by the decays of high energy muons in a decay ring, which source
a collimated beam of muon neutrinos and electron antineutrinos. Magnetisation is necessary at the far
detector to distinguish between muon neutrinos from the beam from muon antineutrinos from ν̄e → ν̄µ
oscillations. In the baseline design, a 100 kton magnetised iron MIND is used, 10 GeV muons and a
source-detector distance of 2000 km. Thanks to the high number of events, very low backgrounds and
the wide and well known energy spectrum, this setup would achieve a superior performance. For the
sake of completeness, we mention that there are non-long-baseline strategies to search for leptonic CP
violation. DAEδALUS (Decay-At-rest Experiment for δCP studies At the Laboratory for Underground
Science) [80] uses a cyclotron-driven muon antineutrino beam aimed at a very large detector optimised
for low energies at different distances in the few km range.

Atmospheric neutrinos. Very large detectors for atmospheric neutrinos are being planned or
constructed and will have a very good sensitivity to the mass ordering and possibly to CP violation [81]13.
Typically, these searches are performed as part of the high energy neutrino programme of IceCube2,
KM3Net, in highly instrumented regions of the detector so that a lower energy threshold can be achieved.
ORCA (Oscillation Research with Cosmics in the Abyss) [82] is part of KM3Net 2.0, with an intra-
distance of 9 m between the digital optical modules, and could achieve a mass ordering discovery by
2024/25 if current hints of NO are confirmed. IceCube plans a near future upgrade with 7 additional
strings in the Deep Core area, densely instrumented to study GeV neutrinos, and in a second phase
IceCube Gen2 with a high-density core for low-energy neutrinos (PINGU) [83].

JUNO. The JUNO (Jiangmen Underground Neutrino Observatory) experiment [84], due to start
data taking in 2021, will have a very rich experimental programme, both in astrophysical, terrestrial
and reactor neutrinos. It will use a 20 kton LSc (Liquid Scintillator) detector placed at a distance of
53 km from the 26.6 GW Yangjiang and Taishan Nuclear reactors and 700 m underground. It will have
an unprecedented 3% energy resolution (at 1 MeV), necessary to study neutrino oscillations with great
accuracy and in particular the interference between the solar and atmospheric amplitude contributions
at L/E ∼ 104 km/GeV [85, 86]. This effect is sensitive to the mass ordering and could lead to its
discovery within few years in a way complementary to the exploitation of matter effects in accelerator and
atmospheric neutrino experiments. Moreover, it will greatly increase the precision on the solar mixing

12The precision on δ is best for CP-conserving values while it is worse for maximal CPV, in vacuum.
13The latter aim is quite challenging and would require an effective volume of 5-10 Mton with an energy threshold of 0.5-

1 GeV and excellent detector performance.
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parameters with an expected 0.7% 1σ error on θ12 and 0.6% on ∆m2
21. The accurate determination of

θ12 is of great importance in distinguishing flavour models as it is a typical prediction for these models
and enter sum-rules and other relations between the oscillation parameters. For instance, its value for
tri-bimaximal mixing is sin2 θ12 = 1/3, see Sec. 6.3.

Solar neutrinos. In addition to the dedicated Borexino experiment, several multipurpose detec-
tors planned for the future will be able to provide information on solar neutrinos. Liquid scintillator
detectors SNO+ and JUNO, LAr DUNE and Water-Cherenkov HK, as well as future ideas for water-
based LSc Theia and the Jinping Slow LSc detector, could be used for this purpose with different energy
thresholds, directionality and energy resolution capabilities. They will mainly focus on the regeneration
of solar electron neutrinos while traversing the Earth, the so-called day/night effect, the precise shape of
the probability from low energy to high energy, and, from the astrophysics point of view, getting infor-
mation on the Sun. If their energy threshold and background reduction allow, they will also aim at the
observation on the CNO and hep neutrinos.

4 Majorana and Dirac neutrinos
Neutral fermions could be either of Dirac or Majorana type, as first suggested by E. Majorana in 1937
[16]. In the first case, the particles and antiparticles are different as it is the case, e.g., for electrons and
positrons. In the latter case, there is no distinction between particle and antiparticles. In the SM only
neutrinos could be of Majorana type, as they are the only known neutral fermions. Their nature is strictly
related to the conservation of lepton number and therefore offers an important window on the properties
of the ultimate theory of particles. Processes which violate lepton number by two units can provide
information on this important question, the most sensitive of which is neutrinoless double beta decay. A
rich experimental programme is ongoing and planned for the future.

4.1 Charge conjugation
We start by defining the charge conjugate of a fermion field as

(ψ)c(x) ≡ ξcCψT (x) , (42)

where ξc is the charge parity of the field. C is the charge conjugation matrix which satisfies the following
properties

CγTµC
−1 = −γµ , (43)

C† = C−1 , (44)

CT = −C . (45)

In the Dirac representation of the γµ matrices, one has C = iγ2γ0. Since two charge conjugation
transformations must bring back the field to its initial value

ψ
c−→ ξcCψ

T c−→ |ξc|2ψ , (46)

we find |ξc|2 = 1. The parameter ξc is a phase which represents the intrinsic charge parity of the
field. From here onwards we take ξc = 1 for left-handed neutrinos14. Under a charge conjugation
transformation, we have Ucψ(x)U†c = ψc(x).

We notice an important property, that is, the charge conjugate of a left-handed field is right-handed
and viceversa. In fact, using the left-handed projector PL, one can show

PLCψL
T

= C(ψLPL)T = C
(

(PRψL)†γ0
)T

= 0 . (47)

14Since weak interactions violate maximally the charge conjugation symmetry, the charge parity of neutrinos is arbitrary.
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Under a charge conjugation transformation, we find that UcψL(x)U†c = (ψR(x))c. Therefore, a La-
grangian which contains only left-handed fields, such as the charge and neutral current terms in the
Standard Model one, cannot preserve charge conjugation as a symmetry.

4.2 Majorana fields
A Majorana field is defined as

ψ = ψc . (48)

This condition means that particle and antiparticle are indistinguishable and therefore can only apply to
neutral fields. Majorana fields have several specific properties.

– Majorana fields satisfy the Dirac equation for particles and antiparticles

(iγµ∂µ −m)ψ = 0 . (49)

– In terms of its chiral components the Majorana condition implies that the field can be written as

ψ = ψL + ψcL , (50)

where we have used the fact that (ψL)c = (ψc)R.
– Majorana fields have only 2 degrees of freedom, differently from Dirac ones which have 4.
– Majorana fields are quantised in terms of only one type of creation operator. The Fourier expansion

is given by

ψ(x) =

∫
d3p

(2π)3
√

2E

∑

h=±1

[
ah(p)uh(p)e−ip·x + a†h(p)vh(p)eip·x

]
, (51)

where the Majorana condition has imposed ah = bh compared to a Dirac field. So there is only
one type of operator and there is no distinction between particle and antiparticle.

– Their electromagnetic current jµ = qψ̄γµψ vanishes exactly. Moreover, Majorana particles cannot
carry any U(1) quantum number.

In the SM only neutrinos are neutral fermions and can be Majorana particles. As they cannot carry
any charge, this implies that lepton number is not a conserved symmetry if neutrinos are of Majorana
type. This is evident from the fact that the Majorana condition is not invariant under a U(1)L trans-
formation and will become apparent considering Majorana mass terms. Therefore, the question of the
nature of neutrinos is directly related to the fundamental symmetries of nature. Lepton number is an ac-
cidental symmetry of the SM, meaning that it is conserved at the Lagrangian level because of the gauge
symmetry and particle content of the SM. Is the ultimate theory of particles lepton-number conserving
or not? This question is intrinsically bound to neutrinos.

Commonly one still uses the notion of neutrino and antineutrino for Majorana fields, as far as
neutrinos are ultrarelativistic (UR). An UR Majorana neutrino of negative helicity interacts as a Dirac
neutrino with the same helicity and for this reason it is common to call this particle a neutrino. Con-
versely, an UR Majorana neutrino of positive helicity will behave as a Dirac antineutrino of the same
helicity and will be called an antineutrino. We also stress that from the kinematic point of view Dirac
and Majorana neutrinos are equivalent as they satisfy the same energy-momentum dispersion relation
E =

√
p2 +m2.

4.3 Neutrinoless double beta decay
Neutrino oscillations do not distinguish between Majorana and Dirac particles, as they conserve lepton
number. To test this symmetry and establish the nature of neutrinos, it is necessary to search for processes
which break lepton number. The most sensitive of these is neutrinoless double beta decay (DBD0ν).
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This process takes place in nuclei when two neutrons simultaneously decay into two protons and
two electrons, with no neutrino emission. Its SM counterpart is the two-neutrino double beta decay
(DBD2ν), first proposed by M. Goeppert-Mayer in 1935 [87], in which two electron antineutrinos are
produced:

N (A,Z) → N (A,Z + 2) + 2e− + 2νe for DBD2ν , (52)

N (A,Z) → N (A,Z + 2) + 2e− for DBD0ν . (53)

In 1939, W. H. Furry [88] proposed that this process could proceed without emission of neutrinos, if the
latter are Majorana particles. Differently from DBD2ν, neutrinoless double beta decay violates lepton
number by two units and is not allowed by the SM. For this reason, its discovery would be of paramount
importance and would imply that neutrinos are of Majorana type.

We restrict the discussion to the simplest and most studied case in which we add to the SM massive
neutrinos, as required by the oscillation data. We assume that neutrinos are Majorana particles. The
inverse of the half-life is given by

T−1
ββ0ν
' G0ν

me
|mββ |2 M2

NUCL , (54)

whereG0ν is a known phase-space factor, me is the electron mass, MNUCL is the nuclear matrix element
for the nucleus of the process (NME). mββ ≡ mee ≡ 〈m〉 is the effective Majorana mass parameter
which embeds all the dependence on neutrino quantities as

|mββ | ≡
∣∣∣m1|Ue1|2 +m2|Ue2|2 eiα21 +m3|Ue3|2 ei(α31−2δ)

∣∣∣ . (55)

Here, mi, i = 1, 2, 3, indicate the three light neutrino masses, and Uei are the elements of the first row
of the PMNS lepton mixing matrix.

4.3.1 Predictions for the effective Majorana mass parameter
From Eq. (55) we see that the predicted value of |mββ | depends critically on the neutrino mass spectrum
and on the values of the two Majorana phases in the PMNS matrix, α21 and α31 (see, e.g. Refs. [89, 90]
and also Ref. [91]). We can consider the three limiting neutrino mass spectra discussed in Sec. 5, and we
find that

|mββ |NH '
∣∣∣∣
√

∆m2
21 sin2θ12 cos2θ13 +

√
∆m2

31 sin2θ13e
i(α32−2δ)

∣∣∣∣ , (56)

|mββ |IH '
√
|∆m2

32| cos2θ13

√
1− sin2 2θ12 sin2

(α21

2

)
, (57)

|mββ |QD ' m0

∣∣∣(cos2θ12 + sin2θ12e
iα21) cos2θ13+ei(α31−2δ)sin2θ13

∣∣∣ . (58)

We can obtain the predictions for |mββ | and consequently the decay rates, by assuming a specific mass
spectrum, substituting the measured values for ∆m2

21, ∆m2
31, θ12, θ13, and varying the CPV phases in

their allowed ranges. We get, including a 3σ error on the oscillation parameters,

|mββ |NH ' 1.1− 4.2 meV (59)

|mββ |IH ' 15− 50 meV (60)

|mββ |QD ' (0.29− 1)m0 . (61)

In the most general case, varying the minimal value of neutrino masses, we show in Fig. 5 the current
predictions for |mββ | for the two mass orderings.
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Fig. 5: The effective Majorana mass |mββ | at 2σ as a function of the smallest neutrino mass mMIN. The Majorana
phases α21 and α31, and δ, are varied within their allowed intervals [0, 180◦].

As it was noticed in Ref. [89] (see also Refs. [90]), in the case of large but non-maximal solar
mixing angle, there is significant lower bound on |mββ | for IO given by

|mββ |IO ≥
√
|∆m2

32| cos 2θ12 ' 15 meV . (62)

In the case of NO the effective Majorana mass can be zero even if neutrinos are Majorana particles due
a cancellation for values of mMIN ∼ 0.005 eV, as shown in Fig. 5.

It follows that neutrinoless double beta decay can provide information on the neutrino mass spec-
trum [89, 92, 93]. In the ideal case of perfectly known NME, a measurement of |mββ | > 0.1 eV would
imply that the spectrum is QD. For values of |mββ | < 15 meV the ordering would necessarily be nor-
mal if neutrinos are Majorana particles. For values in between, both orderings are possible, but with
constraints on the masses. For instance, for 15 meV ≤ |mββ | ≤ 50 meV, the neutrino mass spectrum
could be inverted hierarchical or with NO and partial hierarchy with m1 > 15 meV. Similar, although
somewhat weaker, conclusions can be obtained once the uncertainties on the NME and the experimental
error on |mββ | are taken into account.

In principle, neutrinoless double beta decay could also tell us something about CP violation due to
Majorana phases [89,92,94]. A very precise measurement of |mββ | and an accurate determination of the
neutrino masses would open this possibility. However, this search is extremely challenging as it would
require to know the NME with a very small error, at most at the few 10% level, which at present seems
difficult to achieve.

4.3.2 Experimental status
Searches for 2-neutrino double beta decay started in the 40s and in 1950 the double beta decay half-life
of 130Te was measured with geochemical methods [95]. The first observation in a laboratory experiment
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was carried out in 1987 using 82Se [96]. Since then it has been observed in many other nuclei while
neutrinoless DBD remains elusive. Double beta decay can be searched for in nuclei for which single
beta decay is not kinematically allowed. These include e.g. 48Ca, 76Ge, 82Se, 100Mo, 130Te, 136Xe. In
most experiments, the observation of double beta decay relies on the observation of the energy of the two
electrons emitted. For neutrinoless double beta decay, the energy sits at the end point of the 2-electron
spectrum as there is no neutrino emission and therefore the electrons carry away all the energy available.
For DBD2ν this is not the case and the spectrum is continuum reaching the end point. It follows that
DBD2ν is a background for DBD0ν searches and excellent energy resolution is required to distinguish
between the two15. These experiments are very challenging as they also require very low backgrounds,
hence they are located deep underground and use ultra-pure components, and need large masses because
of the very slow decay rate. After several years of development and construction, a new generation of
experiments has recently started and is giving new results.

We provide a concise summary of the current bounds and the future prospects. Current limits
on mββ correspond to the quasi-degenerate neutrino mass spectrum or with partial hierarchy for either
ordering. The goal of the next generation of experiments is to test the values of mββ predicted for the
inverted ordering and initial plans to go beyond are being discussed.

– Loaded liquid scintillator detectors. KamLAND-Zen uses 136Xe which has the advantage of being
available in large quantities. With an exposure of 126 kg yrs, KamLAND-Zen provides the current
best bound on neutrinoless double beta decay: Tββ0ν > 1.07×1026 yrs and |mββ | < 61−165 meV
at 90% C.L. [97]. The detector mass is being increased to 750 kg of Xe in KamLAND-Zen
800 and subsequently there are plans to bring it to 1 ton in KamLAND2-Zen which, with an
improved energy resolution, aims at |mββ | ∼ 20 meV close to the lower value predicted for
inverted ordering. The SNO+ experiment is a multi-purpose detector using liquid scintillator and
130Te to target Tββ0ν > 1027 yrs [98]. It has not yet started data taking in this configuration. The
possibility to use water-based scintillators might open the option of going to much bigger scales,
such as in the 50 kton THEIA proposal, which with a 3% natural Te could reach Tββ0ν > 1028 yrs
and go as low as 5 meV in the effective Majorana mass parameter.

– Xe-based TPCs. EXO-200, with 110 kg active mass, has reached a bound of Tββ0ν > 1.8 ×
1025 yrs and |mββ | < 147 − 398 meV at 90% C.L. [99]. Plans for nEXO with 5 tons of Xe are
being considered with a reach of Tββ0ν > 9.2 × 1027 yrs going below 10 meV for |mββ | in ten
years [100]. NEXT [101] uses high pressure enriched Xe TPC and will reach ∼ 1026 yrs in a first
phase and 1.5 × 1027 yrs in a second phase for the decay lifetime. The possibility to reduce the
DBD2ν backgrounds by tagging the daughter particle Ba++ seems promising. A similar effort is
currently ongoing in China with the PANDAX-III experiment which ultimately aims at reaching
the 1 ton scale [102].

– Germanium diodes. GERDA [103] uses high-purity Ge detectors, exploiting the decay of 76Ge.
This type of detectors have excellent energy resolution with no intrinsic backgrounds. Combin-
ing all results, for a total of 35 kg, a limit on Tββ0ν > 0.8 × 1026 yrs at 90% C.L. has been
obtained. Weaker bound has been found by the Majorana collaboration, Tββ0ν > 2.7 × 1025 yrs
at 90% C.L. [104]. Majorana and GERDA have combined their plans for the future in the LEG-
END detector which aims at reaching the 1028 yrs sensitivity, corresponding to |mββ | < 11 −
23 meV [105].

– Bolometers. CUORE searches for neutrinoless double beta decay in 130Te using tellurium oxide
bolometers. Combining the data from its demonstrator, CUORE-0, and Cuoricino, a bound of
Tββ0ν > 1.5 × 1025 yrs at 90% C.L., corresponding to |mββ | < 110 − 520 meV has been ob-
tained [106]. There are plans to increase the mass and use 100Mo in Li2MoO4 crystals to reach

15Ideas about the identification of the daughter nuclei, specifically in Xe, have been put forward and might become feasible
in the future.

23

NEUTRINO PHYSICS

235



Neutrino pheno Figure 2

1
2

3
1
2

3

Normal 
ordering

Inverted 
ordering

Ne
ut

rin
o m

as
s

Fig. 6: Fractional flavour content, |Uαi|2 (α = e, µ, τ ), of the three mass eigenstates νi, based on the current
best-fit values of the mixing angles. δ is varied from 0 (bottom of each coloured band) to 180◦ (top of coloured
band), for normal and inverted mass ordering on the left and right, respectively. The different colours correspond
to the νe fraction (green), νµ (blue) and ντ (red).

Tββ0ν > 2.1 × 1027 yrs, and |mββ | < 6 − 17 meV. This effort called CUPID [107] will exploit
scintillator bolometers to reduce backgrounds.

– Other efforts. The SuperNEMO experiment exploits a unique approach to track the individual
electrons emitted in the decay. It uses a thin foil of ββ emitter surrounded by a low-density tracker
and a fast calorimeter. In this way it can provide a full reconstruction of the event topology which
could provide important information in terms of angular distribution, in case of a positive signal.
The first demonstrator will start taking data this year using 82Se. The COBRA (Cadmium-zinc-
telluride 0-neutrino double Beta Research Apparatus) experiment uses the semiconductor CdZnTe
detector technology that contains nine double beta decay isotopes: five decays β−β− and four
β+β+.

It should be noted that the extraction of |mββ | from a limit or future measurement on T
ββ0ν

is
affected by the theoretical evaluation of the NME. At present there are still large uncertainties in their
computation and a strong theoretical effort is needed. Limits on |mββ | are given as a range which
accounts for the uncertainty on the NME in the literature for a given nucleus.

5 Neutrino properties and open questions
The information on the mass squared differences from neutrino oscillation experiments indicates that
there are three massive neutrinos and that we can order them in two ways16:

– normal ordering (NO): m1 < m2 < m3, i.e. ∆m2
31 > 0,

– inverted ordering (IO): m3 < m1 < m2, i.e. ∆m2
32 < 0.

In Fig. 6 we show the flavour content of each massive neutrino νi corresponding to |Uαi|2.

For each ordering17 the three neutrino masses can be expressed in term of just one unknown
parameter, the lightest neutrino mass, mMIN , see Fig. 7. We have

m1 = mMIN , m2 =
√
m2

MIN
+ ∆m2

21, m3 =
√
m2

MIN
+ ∆m2

31, for NO; (63)

16The convention of ordering the masses depends on the definition of the mixing angles, e.g. the correspondence between
the solar mixing angle and θ12. We adopt here the most widely used convention for which the meaning of the mixing angles
does not change between the NO and IO.

17We prefer the use of “ordering” rather than hierarchy for neutrino masses, as it has not yet been established that they are
indeed hierarchical.
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Fig. 7: Values of neutrino masses mi (m1 in blue, m2 in orange and m3 in green) for normal ordering (left) and
inverted ordering (right) as a function of m

MIN
. The current best-fit values of the mass squared-differences have

been used [74].

m3 = mMIN , m1 =
√
m2

MIN
+ |∆m2

32| −∆m2
21, m2 =

√
m2

MIN
+ |∆m2

32|, for IO. (64)

Therefore, determining the value of neutrino masses requires to establish the neutrino mass ordering and
the absolute mass scale. Three different limiting cases can be identified:

– Normal Hierarchical Spectrum (NH). For mMIN → 0, for NO we have m1 � m2 � m3, with
m1 ≡ mMIN , m2

∼=
√

∆m2
21 and m3

∼=
√

∆m2
31.

– Inverted Hierarchical Spectrum (IH). In the limit mMIN → 0, for IO we have m3 � m1 < m2,
with m1,2

∼=
√
|∆m2

32| and m3 ≡ mMIN .
– Quasi-Degenerate Spectrum (QD). For large values of mMIN (mMIN �

√
|∆m2

31|) the three mass
eigenstates are almost degenerate, m2

i ' mMIN ≡ m0, i = 1, 2, 3.

On the mixing, it is interesting to note that leptonic mixing shows a very different pattern compared
to quark mixing, which is rather small. In the leptonic mixing matrix, indeed two angles are very large,
with θ23 which could be even maximal and θ12 which instead is far from maximality. The third mixing
angle is significantly different from zero opening the possibility to search for matter effects and leptonic
CP violation. The latter is one of the key open questions in this field as, in some models, it can be related
to the baryon asymmetry of the Universe, see Sec. 6.4. The precise measurement of the oscillation
parameters, including δ, is critical to hunt for the origin of the mixing structure and solve the leptonic
flavour problem.

We note that we restrict our discussion to the 3-neutrino mixing scenario. As discussed earlier,
controversial hints in favour of deviations from it, in terms of sterile neutrinos possibly with non-standard
properties, have been found by experiments. A consistent picture has not emerged and tension is present
with disappearance experiments and cosmology. Upcoming data will shed further light on these issues
and we do not discuss them further.

5.1 Open questions regarding neutrino properties
The key open questions in current neutrino phenomenology can be summarised as follows:

– What is the nature of neutrinos? Are neutrinos Dirac or Majorana particles?
– What are the absolute values of the masses? In order to answer this question is necessary to

establish the mass ordering and the overall mass scale.
– Is there leptonic CP violation? And if so, what is the precise value of the δ phase?
– What are the precise values of the mixing angles? Do they point towards an underlying flavour

principle?
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– Is the standard 3-neutrino picture correct or are there other effects, such as sterile neutrinos, non-
standard interactions or even more exotic ones, e.g. Lorentz-violation?

We discussed in some detail the searches for neutrinoless double beta decay which can answer
the first question. As discussed previously, the neutrino mass ordering can be determined in accelerator
neutrino experiments, as well as atmospheric ones, exploiting matter effects, and in JUNO. Neutrino-
less double beta decay can provide information on the neutrino mass spectrum as well, if neutrinos are
Majorana particles. Cosmology can test the sum of neutrino masses, see Sec. 7.3. Direct neutrino mass
searches aim at measuring the neutrino masses in a model independent way. They exploit the fact that
in a beta decay the electron spectrum is affected by neutrino masses around the end point, as suggested
initially by Fermi [108] and Perrin [109]. More specifically, for the values of the masses to which current
experiments are sensitive, that is in the QD spectrum, the differential decay rate can be expressed as

dΓe
dEe

=
G2
F

2π3
m5
e cos2 θCpe(Ee +me)(E0 − Ee)

√
(E0 − E)2 −m0F (Ee)|NMEβ|2 , (65)

where Ee, pe and me are the electron kinetic energy, momentum and mass, respectively. θC is the
Cabibbo angle, F (Ee) is the Fermi function arising from the Coulomb interactions of the final particles,
NMEβ is the nuclear matrix element. The nucleus of choice is currently tritium as it has several advan-
tages. Its decay is superallowed so that the nuclear matrix element is constant and the beta spectrum is
uniquely determined by phase space. The energy release Q is small, Q = 18.6 keV, which is beneficial
since the high end part of the spectrum scales asQ−3. The lifetime is not too long, T1/2 = 12.3 yrs. After
the Troitzk and Mainz experiments set bounds in the eV range, m0 < 2.2 eV [40], a new experimental
effort using tritium is ongoing, the KATRIN project [110]. It will reach a sensitivity of 0.2 eV after three
years of beam time. Ideas about using Cyclotron Radiation Emission Spectroscopy with atomic tritium
are being explored by the Project 8 collaboration, with the ultimate goal of 0.04 eV. Other efforts, ECHo
and HOLMES, exploit 163Ho and, although are not currently competitive with KATRIN, will aim at
obtaining sub-eV sensitivities in the future.

The hunt for leptonic CP violation is ongoing in long baseline neutrino oscillation experiments
by observing the νµ → νe transition channel. As discussed, first hints have been reported by T2K and
NOvA in combination with Daya Bay and future experiments, in particular DUNE and T2HK, will be
able to discover it for a large fraction of the parameter space. The same experiments can also provide a
precise determination of the mixing angle θ23, while JUNO will give the most accurate measurement of
θ12. Although accessible in principle in neutrinoless double beta decay experiments, it will be difficult
to obtain information on Majorana CPV in the near future.

Regarding the last question, we just mention that there are several searches for sterile neutrinos
both in neutrino oscillation experiments, e.g. the SBN programme at Fermilab and many reactor and
radioactive source experiments, as well as in beta decay and other experiments. Present and future
oscillation experiments can also search for non-standard neutrino properties and new interactions. The
hunt is on.

5.2 Complementarity and synergy between different experiments
With the vast experimental programme currently ongoing or planned for the future, a strong complemen-
tarity and synergy between different strategies is present. We mention here some relevant examples.

– The determination of the mass ordering can be achieved exploiting matter effects in long baseline
neutrino oscillation experiments in a very controlled manner in DUNE, as well as in atmospheric
neutrinos and by looking for the ∆m2

21–∆m2
31 interference in reactor neutrino oscillations in vac-

uum. Given the importance of this issue, it is critical to have multiple experiments establishing the
ordering. Once this is achieved, subdominant effects can be studied e.g. in atmospheric neutrinos
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and important information can be deduced on supernovae (SN) evolution, once SN neutrinos are
detected.

– Neutrinoless double beta decay and neutrino oscillation experiments. As shown in Sec. 4.3.1, the
predictions for |mββ | depend on the neutrino mass ordering. If neutrino oscillation experiments
determine that the neutrino mass ordering is inverted, |mββ | is predicted to be bigger than 15 meV
providing a clear target for the neutrinoless double beta decay experiments. Further conclusions
could be obtained depending on the experimental results. Let’s first assume that the ordering is es-
tablished to be inverted. (i) If |mββ | ≥ 15 meV, one can conclude that neutrinos are Majorana par-
ticles. Moreover, if |mββ | > 50 meV both upper and lower bounds on m3 can be deduced, given
approximately by |mββ | ≤ m3 ≤ |mββ |/ cos 2θ12. Consequently, a predicted range for the sum of
neutrino masses relevant in cosmology could be found. For 15 meV ≤ |mββ | ≤ 50 meV, the spec-
trum would need to be inverted hierarchical. In principle, if a precise measurement of the masses
is obtained from cosmological observations, CPV due to Majorana phases could be hunted for but
a very precise determination of |mββ | would be needed. (ii) If |mββ | < 15 meV is measured, neu-
trinos are also established to be Majorana particles but there must be some cancellation between
the standard light neutrino mass contribution and new physics. The simplest example is the case of
a light see-saw mechanism in which some of the heavy neutrinos have masses below 100 MeV. (iii)
If only an upper bound below 15 meV is found on |mββ |, then the simplest conclusion would be
that neutrinos are Dirac particles, although a cancellation between the three-neutrino contribution
and new physics could still be at work, for instance in the case of a light see-saw. It would be of
particular importance to test this second hypothesis by looking for new particles and interactions
which can give a sizable contribution to neutrinoless double beta decay. Let’s now consider the
case in which neutrino oscillation experiments determine that the ordering is normal, as first hints
seem to indicate. We have seen that the predictions for |mββ | go from current bounds to a complete
cancellation (see Fig. 5). A measurement of |mββ | would establish that neutrinos are Majorana
particles and would restrict their masses to a specific range. We consider values up to few meV
which may be at reach in a next-to-next generation of experiments. (i) If |mββ | � 4 meV, the neu-
trino mass spectrum has a partial hierarchy, with |mββ | ≤ m1 ≤ |mββ |/ cos 2θ12 with a predicted
range for Σimi in cosmology. (ii) If |mββ | � 4 meV, and the process has not been observed, no
conclusion can be drawn on the nature of neutrinos.

– Cosmology and terrestrial experiments. If terrestrial experiments establish that the ordering is
inverted, Σimi ≥ 0.1 eV. A precise measurement of its value would lead to an accurate determi-
nation of the values of neutrino masses, with implications for neutrinoless double beta decay as
discussed above. If it is found that Σimi < 0.1 eV from cosmological observations, necessarily
there are new cosmological or particle physics effects which reduce the impact of neutrino masses
in the formation of large scale structures or which counter them.

6 Neutrino masses beyond the Standard Model
As we know that neutrinos have mass, it is necessary to augment the SM Lagrangian including the
neutrino mass terms and then to explain the origin of these terms in a gauge invariant manner, hunting
for the ultimate theory of particles and their interactions.

6.1 Dirac and Majorana mass terms
Being neutrinos Dirac or Majorana, different options are available to describe their masses.

– Dirac masses. The Lagrangian contains a mass term

−LDirac = νmDν = νLmDνR + h.c. . (66)
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We notice that such mass term requires both νL and νR and is analogous to the mass terms for
the SM charged fermions. This term conserves lepton number as it is possible to give both chiral
components the same lepton number, so that under a U(1)L transformation νL,R → eiηνL,R

LDirac
U(1)L−−−−→ eiηe−iηLDirac = LDirac (67)

the mass term remains invariant. Generically, there will be several neutrinos and the mass term
contains a mass matrix MD. In order to find the masses, it is necessary to diagonalise this mass
matrix via a biunitary transformation V †νLMDVνR = diag(mi): the eigenvalues correspond to the
neutrino masses and the mass states are related to the initial states as νiL = V †νLνL. The matrix
VνL will then enter the CC Lagrangian, together with one coming from the diagonalisation of the
charged lepton mass matrix, and from there neutrino oscillations.

– Majorana masses. Using only one Weyl spinor νL it is still possible to construct a mass term using
the fact that (νL)c is a right-handed field. It reads

−LMajorana =
1

2
νcmMν = −1

2
νTLC

†mMνL + h.c. . (68)

This term is Lorentz invariant as both ν and νc behave in the same way under a Lorentz transfor-
mation. This term breaks lepton number by two units

LMajorana
U(1)L−−−−→ e2iηLMajorana . (69)

For multiple νL, the mass mM is promoted to a matrix MM which needs to be diagonalised to
find the values of the masses and the corresponding eigenstates. It can be shown that this matrix is
symmetric, MM = MT

M, and can be diagonalised using one unitary matrix

V T
ν MMVν = mdiag , (70)

wheremdiag contains the real and positive massesmi. The massive fields νi,L will be related to the
initial states νL as νiL = V †ν νL. If one defines the Majorana fields νi ≡ νi,L + νci,L, this term can
be rewritten as−LMajorana = 1

2miνiνi, showing that the resulting massive fields are of Majorana
type.

– Dirac plus Majorana masses. In presence of both νL and νR fields, generically both Dirac and
Majorana mass terms will be present

LDirac+Majorana = −νLMDνR +
1

2
νTLC

†MM,LνL +
1

2
νTRC

†MM,RνR + h.c. . (71)

Defining the left-handed field

NL ≡
(
νL
νcR

)
, (72)

one can rewrite these Lagrangian terms as

LDirac+Majorana =
1

2
NT
LC
†MNL + h.c. , (73)

where the mass matrix M is given by

M =

(
MM,L M∗D
M †D MM,R

)
. (74)

Upon diagonalisation of this mass matrix, the mass eigenvalues can be found and the mass eigen-

states νi,L = V †D+M

(
νL
νcR

)
. The resulting fields are Majorana, as expected since this Lagrangian

breaks lepton number.
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6.2 Neutrino masses beyond the SM
The mass terms discussed above are forbidden in the SM. There are no right-handed neutrinos and a
Dirac mass term cannot be included. A Majorana mass term can be constructed using the νL fields only,
but breaks the SM gauge invariance. Consequently, the SM, in its minimal form, does not allow for
neutrino masses. In this sense, neutrino masses and mixing constitute the first particle physics evidence
that the SM is incomplete. How can one extend it in order to account for neutrino masses in a consistent
framework? A vast number of models has been proposed. We review here the key features of Dirac and
Majorana mass models and we discuss more in detail the see-saw type I mechanism.

6.2.1 Dirac masses
The simplest extension which can be made to the SM involves adding new SM gauge singlets, called
sterile neutrinos. We indicate them as νR. The following Yukawa coupling is allowed by the gauge
symmetries

−Ly = Lyν · H̃νR + h.c. , (75)

where L ≡ (νTL , `
T )T is the leptonic doublet, H̃ = iσ2H

∗ and H is the Higgs field. Once the neutral
component of the Higgs field acquires a vacuum expectation value 〈H̃〉 = (vH/

√
2, 0)T , this term

generates a Dirac mass for the light neutrinos

−Ly
〈H̃〉6=0−−−−→ −LDirac =

vH√
2
νLyννR + h.c. . (76)

This Yukawa coupling and the resulting Dirac mass conserve lepton number. Indeed, as a Majorana mass
term for νR is not forbidden by gauge invariance, its absence must be imposed by requiring lepton number
conservation. In this case, this symmetry needs to be promoted from being an accidental symmetry of
the SM to a fundamental ingredient of the theory of particle interactions. In this sense, this is a major
departure from the Standard Model.

We can estimate the order of magnitude of the coupling yν . Working in a one generation case,
taking mν = yνvH/

√
2 to be sub-eV, we get that yν ∼ 10−12. This is a very small number and in

this minimal model there is no explanation for the very strong hierarchy of masses between the charged
leptons and the neutrinos. Moreover, one would naively expect a similar hierarchy between the neutrino
masses and a similar mixing structure to the quark sector, contradicting the observations. For these
reasons, other explanations for neutrino masses have also been considered.

6.2.2 Majorana masses and the Weinberg operator
Among all SM fermions, neutrinos are the only ones that can have a Majorana mass term. Noticing that
the term L · H̃ is gauge invariant, it is possible to construct a singlet combination [111]

LM,BSM =
λ

Λ
LT · H̃∗C†H̃† · L+ h.c. . (77)

This term, called the Weinberg operator, has dimension 5 and requires a mass scale Λ in the denominator.
It should be pointed out that this operator is the only D = 5 admitted by the SM, with other effective
operators being of higher dimension. Its presence is of great importance. It suggests that there is a new
theory at a high scale Λ which is integrated out at low energies. This is in analogy to the Fermi theory
being the low energy realisation of the weak interactions mediated by the W boson. The hunt for the
new particles and interactions involved is at the centre of much of current research in theoretical neutrino
physics.

The Weinberg operator breaks lepton number by two units and leads to a Majorana mass term once
the Higgs boson gets a vacuum expectation value

LM,BSM
〈H̃〉6=0−−−−→ λv2

H

2Λ
νTLC

†νL + h.c. . (78)
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NR
<latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit>

hHi
<latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit>

hHi
<latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit>

NR
<latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit><latexit sha1_base64="8W87N0Gx3Dr5b1ofJJmNA9jMP8I=">AAAB/XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BL54kPvKAZAmzk9lkyMzsMjMrLEvwC7zqF3gTr36LH+B/OEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hrqt5+o0iySjyaNqS/wULKQEWys9HDbv++XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfEzrAwjnE5KvUTTGJMxHtKupRILqv1sduoEnVllgMJI2ZIGzdS/ExkWWqcisJ0Cm5Fe9qbif143MWHNz5iME0MlmS8KE45MhKZ/owFTlBieWoKJYvZWREZYYWJsOgtbQppKEU9sLt5yCqukdVH13Kp3d1mp1/KEinACp3AOHlxBHW6gAU0gMIQXeIU359l5dz6cz3lrwclnjmEBztcvm+eV+w==</latexit>

⌫L<latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit>

⌫L<latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit>

hHi
<latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit>

hHi
<latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit><latexit sha1_base64="76FLUUtHZBMU2ToweB/+U2VI8BQ=">AAACDXicbZDLSsNAFIYn9VbrLdWlm8EiuCqJCHZZcNNlBXuBNpTJ9KQdOpmEmYkSQp/BJ3CrT+BO3PoMPoDv4TTNwrb+cODjP+dwDr8fc6a043xbpa3tnd298n7l4PDo+MSunnZVlEgKHRrxSPZ9ooAzAR3NNId+LIGEPoeeP7tb9HuPIBWLxINOY/BCMhEsYJRoY43s6pATMeGAW3gocxrZNafu5MKb4BZQQ4XaI/tnOI5oEoLQlBOlBq4Tay8jUjPKYV4ZJgpiQmdkAgODgoSgvCx/fY4vjTPGQSRNCY1z9+9GRkKl0tA3kyHRU7XeW5j/9QaJDhpexkScaBB0eShIONYRXuSAx0wC1Tw1QKhk5ldMp0QSqk1aK1cCSEUYz00u7noKm9C9rrtO3b2/qTUbRUJldI4u0BVy0S1qohZqow6i6Am9oFf0Zj1b79aH9bkcLVnFzhlakfX1C4fYm+U=</latexit>

⌫L<latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit>

⌃R
<latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit>

⌃R
<latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit><latexit sha1_base64="o2Wek4L8McLOjxNoNPQAZYC5I8I=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxWN85AFJCLOT3mTIzOwyMyssS25+gVf9Am/i1R/xA/wPJ8keTGJBQ1HVTXdXEHOmjed9O2vrG5tb24Wd4u7e/sFh6ei4qaNEUWzQiEeqHRCNnElsGGY4tmOFRAQcW8H4Zuq3nlBpFslHk8bYE2QoWcgoMVZqdx/YUJD+fb9U9ireDO4q8XNShhz1fumnO4hoIlAayonWHd+LTS8jyjDKcVLsJhpjQsdkiB1LJRGoe9ns3ol7bpWBG0bKljTuTP07kRGhdSoC2ymIGellbyr+53USE1Z7GZNxYlDS+aIw4a6J3Onz7oAppIanlhCqmL3VpSOiCDU2ooUtIaZSxBObi7+cwippXlZ8r+LfXZVr1TyhApzCGVyAD9dQg1uoQwMocHiBV3hznp1358P5nLeuOfnMCSzA+foFixOYLA==</latexit>

M⌃
<latexit sha1_base64="aphbe2fhAvL6/VOH2B6TyjH7acQ=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxYsQ0TwgCWF20psMmZldZmaFZcnNL/CqX+BNvPojfoD/4STZg0ksaCiquunuCmLOtPG8b2dtfWNza7uwU9zd2z84LB0dN3WUKIoNGvFItQOikTOJDcMMx3askIiAYysY30z91hMqzSL5aNIYe4IMJQsZJcZK7bt+94ENBemXyl7Fm8FdJX5OypCj3i/9dAcRTQRKQznRuuN7sellRBlGOU6K3URjTOiYDLFjqSQCdS+b3Ttxz60ycMNI2ZLGnal/JzIitE5FYDsFMSO97E3F/7xOYsJqL2MyTgxKOl8UJtw1kTt93h0whdTw1BJCFbO3unREFKHGRrSwJcRUinhic/GXU1glzcuK71X8+6tyrZonVIBTOIML8OEaanALdWgABQ4v8ApvzrPz7nw4n/PWNSefOYEFOF+/gnyYJw==</latexit><latexit sha1_base64="aphbe2fhAvL6/VOH2B6TyjH7acQ=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxYsQ0TwgCWF20psMmZldZmaFZcnNL/CqX+BNvPojfoD/4STZg0ksaCiquunuCmLOtPG8b2dtfWNza7uwU9zd2z84LB0dN3WUKIoNGvFItQOikTOJDcMMx3askIiAYysY30z91hMqzSL5aNIYe4IMJQsZJcZK7bt+94ENBemXyl7Fm8FdJX5OypCj3i/9dAcRTQRKQznRuuN7sellRBlGOU6K3URjTOiYDLFjqSQCdS+b3Ttxz60ycMNI2ZLGnal/JzIitE5FYDsFMSO97E3F/7xOYsJqL2MyTgxKOl8UJtw1kTt93h0whdTw1BJCFbO3unREFKHGRrSwJcRUinhic/GXU1glzcuK71X8+6tyrZonVIBTOIML8OEaanALdWgABQ4v8ApvzrPz7nw4n/PWNSefOYEFOF+/gnyYJw==</latexit><latexit sha1_base64="aphbe2fhAvL6/VOH2B6TyjH7acQ=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxYsQ0TwgCWF20psMmZldZmaFZcnNL/CqX+BNvPojfoD/4STZg0ksaCiquunuCmLOtPG8b2dtfWNza7uwU9zd2z84LB0dN3WUKIoNGvFItQOikTOJDcMMx3askIiAYysY30z91hMqzSL5aNIYe4IMJQsZJcZK7bt+94ENBemXyl7Fm8FdJX5OypCj3i/9dAcRTQRKQznRuuN7sellRBlGOU6K3URjTOiYDLFjqSQCdS+b3Ttxz60ycMNI2ZLGnal/JzIitE5FYDsFMSO97E3F/7xOYsJqL2MyTgxKOl8UJtw1kTt93h0whdTw1BJCFbO3unREFKHGRrSwJcRUinhic/GXU1glzcuK71X8+6tyrZonVIBTOIML8OEaanALdWgABQ4v8ApvzrPz7nw4n/PWNSefOYEFOF+/gnyYJw==</latexit><latexit sha1_base64="aphbe2fhAvL6/VOH2B6TyjH7acQ=">AAACAnicbVDLSgNBEOz1GeMr6tHLYhA8hV0RzDHgxYsQ0TwgCWF20psMmZldZmaFZcnNL/CqX+BNvPojfoD/4STZg0ksaCiquunuCmLOtPG8b2dtfWNza7uwU9zd2z84LB0dN3WUKIoNGvFItQOikTOJDcMMx3askIiAYysY30z91hMqzSL5aNIYe4IMJQsZJcZK7bt+94ENBemXyl7Fm8FdJX5OypCj3i/9dAcRTQRKQznRuuN7sellRBlGOU6K3URjTOiYDLFjqSQCdS+b3Ttxz60ycMNI2ZLGnal/JzIitE5FYDsFMSO97E3F/7xOYsJqL2MyTgxKOl8UJtw1kTt93h0whdTw1BJCFbO3unREFKHGRrSwJcRUinhic/GXU1glzcuK71X8+6tyrZonVIBTOIML8OEaanALdWgABQ4v8ApvzrPz7nw4n/PWNSefOYEFOF+/gnyYJw==</latexit>

⌫L<latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit>

⌫L<latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit><latexit sha1_base64="ZWx49JqN7OzctjNYuSaUQMcBOAg=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFUxbaEOZTCft0JlJmJkIIXThF7jVL3Anbv0UP8D/cNpmYVsPXDiccy/33hMmnGnjut9OaWNza3unvFvZ2z84PKoen7R1nCpCfRLzWHVDrClnkvqGGU67iaJYhJx2wsntzO88UaVZLB9NltBA4JFkESPYWMnvy3RwP6jW3Lo7B1onXkFqUKA1qP70hzFJBZWGcKx1z3MTE+RYGUY4nVb6qaYJJhM8oj1LJRZUB/n82Cm6sMoQRbGyJQ2aq38nciy0zkRoOwU2Y73qzcT/vF5qokaQM5mkhkqyWBSlHJkYzT5HQ6YoMTyzBBPF7K2IjLHCxNh8lrZENJMimdpcvNUU1kn7qu65de/hutZsFAmV4QzO4RI8uIEm3EELfCDA4AVe4c15dt6dD+dz0VpyiplTWILz9Qteopb6</latexit>

�<latexit sha1_base64="5biBaQ6IGrAj/xZCV6n/Qdkvf9s=">AAACAHicbVDLSgNBEJz1GeMr6tHLYBA8hV0RzDGgB48RzAOSJcxOepMxs7PLTK+whFz8Aq/6Bd7Eq3/iB/gfTpI9mMSChqKqm+6uIJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aeJUc2jwWMa6HTADUihooEAJ7UQDiwIJrWB0M/VbT6CNiNUDZgn4ERsoEQrO0ErN7i1IZL1S2a24M9BV4uWkTHLUe6Wfbj/maQQKuWTGdDw3QX/MNAouYVLspgYSxkdsAB1LFYvA+OPZtRN6bpU+DWNtSyGdqX8nxiwyJosC2xkxHJplbyr+53VSDKv+WKgkRVB8vihMJcWYTl+nfaGBo8wsYVwLeyvlQ6YZRxvQwpYQMhUlE5uLt5zCKmleVjy34t1flWvVPKECOSVn5IJ45JrUyB2pkwbh5JG8kFfy5jw7786H8zlvXXPymROyAOfrFxdIl2A=</latexit><latexit sha1_base64="5biBaQ6IGrAj/xZCV6n/Qdkvf9s=">AAACAHicbVDLSgNBEJz1GeMr6tHLYBA8hV0RzDGgB48RzAOSJcxOepMxs7PLTK+whFz8Aq/6Bd7Eq3/iB/gfTpI9mMSChqKqm+6uIJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aeJUc2jwWMa6HTADUihooEAJ7UQDiwIJrWB0M/VbT6CNiNUDZgn4ERsoEQrO0ErN7i1IZL1S2a24M9BV4uWkTHLUe6Wfbj/maQQKuWTGdDw3QX/MNAouYVLspgYSxkdsAB1LFYvA+OPZtRN6bpU+DWNtSyGdqX8nxiwyJosC2xkxHJplbyr+53VSDKv+WKgkRVB8vihMJcWYTl+nfaGBo8wsYVwLeyvlQ6YZRxvQwpYQMhUlE5uLt5zCKmleVjy34t1flWvVPKECOSVn5IJ45JrUyB2pkwbh5JG8kFfy5jw7786H8zlvXXPymROyAOfrFxdIl2A=</latexit><latexit sha1_base64="5biBaQ6IGrAj/xZCV6n/Qdkvf9s=">AAACAHicbVDLSgNBEJz1GeMr6tHLYBA8hV0RzDGgB48RzAOSJcxOepMxs7PLTK+whFz8Aq/6Bd7Eq3/iB/gfTpI9mMSChqKqm+6uIJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aeJUc2jwWMa6HTADUihooEAJ7UQDiwIJrWB0M/VbT6CNiNUDZgn4ERsoEQrO0ErN7i1IZL1S2a24M9BV4uWkTHLUe6Wfbj/maQQKuWTGdDw3QX/MNAouYVLspgYSxkdsAB1LFYvA+OPZtRN6bpU+DWNtSyGdqX8nxiwyJosC2xkxHJplbyr+53VSDKv+WKgkRVB8vihMJcWYTl+nfaGBo8wsYVwLeyvlQ6YZRxvQwpYQMhUlE5uLt5zCKmleVjy34t1flWvVPKECOSVn5IJ45JrUyB2pkwbh5JG8kFfy5jw7786H8zlvXXPymROyAOfrFxdIl2A=</latexit><latexit sha1_base64="5biBaQ6IGrAj/xZCV6n/Qdkvf9s=">AAACAHicbVDLSgNBEJz1GeMr6tHLYBA8hV0RzDGgB48RzAOSJcxOepMxs7PLTK+whFz8Aq/6Bd7Eq3/iB/gfTpI9mMSChqKqm+6uIJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4aeJUc2jwWMa6HTADUihooEAJ7UQDiwIJrWB0M/VbT6CNiNUDZgn4ERsoEQrO0ErN7i1IZL1S2a24M9BV4uWkTHLUe6Wfbj/maQQKuWTGdDw3QX/MNAouYVLspgYSxkdsAB1LFYvA+OPZtRN6bpU+DWNtSyGdqX8nxiwyJosC2xkxHJplbyr+53VSDKv+WKgkRVB8vihMJcWYTl+nfaGBo8wsYVwLeyvlQ6YZRxvQwpYQMhUlE5uLt5zCKmleVjy34t1flWvVPKECOSVn5IJ45JrUyB2pkwbh5JG8kFfy5jw7786H8zlvXXPymROyAOfrFxdIl2A=</latexit>

hHi
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See-saw type I See-saw type II See-saw type III

Fig. 8: Diagrams contributing to light neutrino masses in the three see-saw cases. 〈H〉 indicates the vev of the
neutral component of the Higgs field. ∆ is a scalar triplet and Σ is the neutral component of a fermion triplet, with
mass MΣ.

The resulting massive neutrinos are of Majorana type.

6.2.3 Hunting for the origin of the Weinberg operator: the seesaw mechanism
As the Weinberg operator is a low energy effective term, the key question revolves around the physics
responsible for it. We can proceed by analogy with the Fermi theory. In the latter case, the four-fermion
interaction is mediated at high energy by the exchange of a massive boson at tree level. For energies
much smaller than the boson mass, its presence is felt in the m2

W term in the propagator, which enters
GF . Also in the case of the Weinberg operator one can consider the exchange of virtual massive particles
at tree level. Their mass M corresponds to the scale Λ. There are three main options which have been
classified based on the exchanged particle as

– see-saw type I [112] for a singlet fermion;
– see-saw type II [113] using heavy triplet scalars;
– see-saw type III [114] for triplet fermions.

In Fig. 8 we schematically show the contribution to neutrino masses in the three cases. In many exten-
sions, the scale Λ is taken to be at or close to the Grand Unification one, ∼ 1014 GeV. The advantage
of this formulation is that large couplings are allowed and the suppression of neutrino masses is due
to the heavy masses. Moreover, see-saw mechanisms can be embedded in GUT theories, for instance
see-saw type I naturally emerges in SO(10) models. This choice remains very popular and has the added
advantage that leptogenesis can be readily embedded in this framework providing an explanation for the
baryon asymmetry of the Universe. The drawback is that it would be impossible to test such models,
apart from a rather indirect indication coming from proton decay. Moreover, if a stabilising mechanism
for the electroweak breaking scale, e.g. supersymmetry, is absent, the new physics will generically in-
duce a correction to the Higgs mass and this suggests a scale lower than 107 GeV [115]. In order to lower
the scale and make the models directly testable, one can consider smaller couplings. A lot of attention
has been devoted to the TeV scale as this is accessible at the LHC. New particles, such as scalar and
fermion triplets as well as sterile neutrinos would leave characteristic signatures. For instance sterile
neutrinos would induce same-sign dileptons plus jets with no missing energy and lepton flavour violat-
ing signals [116, 117]. Searches of this kind have been made at LHCb [118], ATLAS [119], CMS [120],
Belle [121]. Allowing for even smaller couplings would lower the scale further, with heavy neutrinos
with GeV, MeV and even eV masses. These low energy see-saw models have very interesting signatures
which depend on their mass and flavour mixing. For eV masses, they will induce neutrino oscillations
at short distances. In the keV range, their emission in beta decays distorts the electron spectrum with
kinks and for very small mixing angles they could be stable on cosmological timescales providing a can-
didate for dark matter [122]. For MeV-GeV masses they induce peaks in the spectrum of electrons and
muons emitted in meson decays [123]. These so-called peak searches are rather model independent and
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provide very strong constraints on the mixing angles [124,125] with new results being recently provided
by the NA62 experiment [126]. Another strategy to search for them is to look for their decays once they
are produced in meson or lepton decays [127]. Past experiments such as PS191 [128] set some of the
strongest bounds for 100s of MeV masses and present/future experiments used in beam dump mode,
e.g. T2K [129], NA62, DUNE, T2HK, as well the purpose made SHiP one will be able to improve on
current bounds [130]. It should be noted that these bounds could be significantly modified and weakened
if additional interactions lead to fast invisible decays. If the neavy neutral leptons are Majorana particles
they will induce lepton number violating processes, such as neutrinoless double beta decay and LNV
meson and tau decays [117, 131]. The GeV mass range is of particular interest as these sterile neutrinos
could be at the origin of the baryon asymmetry of the Universe via the ARS mechanism [132, 133].

Apart from making the couplings smaller and smaller, there are other ways to enhance the testabil-
ity of neutrino mass models. Research has been done in models in which neutrino masses are forbidden
at tree-level and arise at the loop one [134–136]. Another possibility is to extend the see-saw framework
imposing a quasi-preserved lepton number symmetry. This is the case for inverse and linear, as well as
extended, see-saws [137]. For instance in the inverse see-saw mechanism, one introduces multiple sterile
neutrinos and imposes a quasi-preserved lepton number symmetry. The smallness of neutrino masses is
explained in terms of small lepton number violating parameters and the heavy states are pseudo-Dirac 18

particles which can have sizable mixing with the active neutrinos.

6.2.4 See-saw type I model
The see-saw type I mechanism is the simplest extension of the SM which can explain not only neutrino
masses but also their smallness. It breaks lepton number by two units and predicts Majorana neutrinos.

Let’s introduce 2 or more19 sterile neutrinos Nj,R, j > 1. These are fermions with no SM gauge
numbers. The most general Lagrangian which respects the SM gauge group reads

Lseesaw = LSM −
∑

j,α

Lαyαj · H̃Nj,R +
∑

j,k

1

2
NT
j,RC

†MN,jkNk,R + h.c. , (79)

where y is a 3× j matrix andMN is a j× j symmetric Majorana mass matrix. Without loss of generality
one can choose to work in the basis in which MN is real and diagonal with heavy masses Mj . Once
the neutral component of the Higgs boson gets a vev, the Yukawa term will induce a Dirac mass for the
neutrinos mD ≡ yvH/

√
2. In the να,L–Nj,R basis the mass terms read

Lseesaw,mass =
1

2

(
(νcL)T NT

R

)
C†
(

0 mD

mT
D MN

)(
νcL
NR

)
+ h.c. . (80)

This Lagrangian is of the Dirac+Majorana form discussed in Eq. (74).

We consider the limit20 in which mD � MN . Upon diagonalisation of the mass matrix, we find
that the heavy neutrinos remain mainly in the sterile neutrino direction, hence their name of nearly-sterile
neutrinos, and have mass ∼ Mj . The light neutrinos, mainly in the active component, acquire a small
mass

mν ' −mD
1

MN
mT
D . (81)

The larger MN the smaller the neutrino masses, hence the name of see-saw. The smallness of neutrino
masses is due to the large hierarchy between the mD and MN scales. If we take MN at the GUT scale
and mD of the same order of the charged fermions, one can easily obtain neutrino masses in the right

18Pseudo-Dirac particles are Majorana particles which have nearly degenerate masses with opposite CP-parity. If the masses
were exactly equal, they would form a Dirac pair.

19At least two heavy neutrinos are required to reproduce two mass squared differences.
20In the opposite case, M → 0, we recover lepton number conservation and Dirac masses for the neutrinos.
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Fig. 9: Yukawa coupling versus nearly-sterile neutrino mass needed to generate a light neutrino mass m = 1–
0.1 eV. The corresponding value of sin θ is also indicated. Experimental strategies to search for the nearly-sterile
neutrinos in the mass ranges of interest are schematically reported.

ballpark. In Fig. 9 we show the values of the Yukawa couplings required to give a light neutrino mass
mν in a simplified one-generation case. The mixing angle between the heavy neutrino and the active one
is sin2 θ = mν/MN and therefore typically very small.

It is useful to consider the number of free parameters. For 3 sterile neutrinos, a see-saw type I
model has 3 heavy masses, 9 real parameters in the Yukawa coupling and 6 phases. Of these only 3
light neutrino masses, 3 mixing angles and 3 phases can be measured at low energy21. If the scale is
sufficiently low, some additional parameters, e.g. the heavy neutrino masses, might be at reach. A useful
parameterisation allows to separate the high energy parameters from the low energy observable ones.
This is the so-called Casas-Ibarra parameterisation [138]

y =
i
√

2

vH
V ∗ diag(mν)1/2RM

1/2
R , (82)

where R is a complex orthogonal matrix so that RRT = 1.

6.3 Leptonic mixing
Apart from neutrino masses, the other key question in neutrino theory is the origin of the observed
leptonic flavour structure. It is significantly different from the one in the quark sector [40, 74], which is
close to the identity with correction of order λ ∼ 0.2 and its powers λ2, λ3. We have for the UPMNS and
the CKM mixing matrices

|UPMNS|3σ =




0.797− 0.842 0.518− 0.585 0.143− 0.156
0.233− 0.495 0.448− 0.679 0.639− 0.783
0.287− 0.532 0.486− 0.706 0.604− 0.754


 , (83)

|VCKM| =




0.97427(14) 0.22536(61) 0.00355(15)
0.22522(61) 0.97343(15) 0.0414(12)
0.00886(33) 0.0405(12) 0.99914(5)


 . (84)

21Realistically only one CPV phase can be measured in long baseline neutrino oscillation experiments and the determination
of the two Majorana phases will remain most likely out of reach.
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Motivated by the measured values of the mixing angles, in particular θ23 being (nearly) maximal and
θ13 being smaller than the other two angles, a lot of attention has been devoted to leading-order patterns.
They typically have sin2 2θ23 = 1, sin2 2θ13 = 0 and various values for θ12. Among these, the most pop-
ular patterns include the tri-bimaximal (TBM) one [139], with sin2 2θ23 = 1, sin2 θ12 = 1

3 , sin2 θ13 =
0 and the bimaximal (BM) one [140], with sin2 2θ23 = 1, sin2 2θ12 = 1, sin2 θ13 = 0 . Other cases
are the golden ratio, trimaximal or hexagonal mixing, see e.g. Ref. [141], and it is also possible to have
non-zero θ13 from the start. The basic idea is to invoke a principle, e.g. a flavour symmetry, which
leads to such a pattern and then introduce corrections to reproduce sin θ13 6= 0, if needed, and deviations
from the canonical values of the angles. In order to achieve this goal a specific form of the neutrino and
charged lepton mass matrices is imposed.

We recall that the neutrino mass matrix and its eigenvalues (i.e., the neutrino masses) are related
by a unitary matrix Vν22 as

diag(m1,m2,m3) = V T
ν Mν Vν . (85)

In a similar manner, the charged lepton mass matrix can be diagonalised using two unitary matrices V`
and V ′` , the first acting on the chiral fields `L and the latter on `R. The mass eigenstates, with definite
non-negative masses, are what we commonly refer to as “electron", “muon" and “tau" leptons, which
are differentiated only by their masses. The PMNS mixing matrix, which enters the CC interactions and
whose elements can be measured in neutrino oscillation experiments, emerges from the product of the
two transformations

UPMNS = V †` Vν , (86)

which inherits the flavour structure from both the neutrino and charged lepton sectors.

Various theoretical approaches have been invoked to explain the observed structure of the PMNS
matrix. As the neutrino mixing angles do not exhibit a very strong hierarchy, the notion of anarchy [142]
was put forward in which the values of all the entries ofMν are of the same order. Anarchy models can
reproduce the observed values of the neutrino parameters but offer no further insight into the leptonic
flavour problem.

An alternative approach is to invoke a guiding principle which dictates the values of the mixing
angles, given the fact that θ23 is close to maximal and θ12 is not far from special numerical values such as
1/
√

3. The most popular strategy is to employ flavour symmetries and control their breaking. Significant
work has been done using non-abelian discrete groups S4, A4, A5, DN , Σ(2N2), Σ(3N3), ∆(3N2),
∆(6N2) (for reviews see e.g. Refs. [143]) and the continuous groups SU(3) [144] and SO(3) [145].
The leptonic doublets are charged under a given flavour symmetry Gf which needs to be subsequently
broken, as the charged lepton masses are non-degenerate [146]. The breaking needs to lead to different
structures in the charged lepton and the neutrino sectors, typically Abelian residual symmetries G` and
Gν . These groups constrain the form of the neutrino and charged lepton mass matrices, leading to V` and
Vν and ultimately to UPMNS.

We do not enter into a detailed discussion of leptonic flavour models as the literature is very vast.
Instead, we give a simple illustration of how a symmetry can induce a specific value for a mixing angle.
Let’s assume a Lµ − Lτ symmetry in a 2-neutrino mixing scenario. The neutrino mass matrix is forced
to have the following structure:

Mν =

(
a b
b a

)
, (87)

where we take a and b to be two arbitrary parameters which satisfy the hierarchy a � b. The diago-
nalisation of this matrix leads to two quasi-degenerate neutrino masses b ± a23 and to maximal mixing

22We refer here to the neutrino mixing matrix as Vν , in a generic basis for the charged leptons. Previously, we used the
PMNS mixing matrix in the basis in which the charged leptons are in the mass eigenstate basis.

23A negative sign for the neutrino mass can be absorbed into a redefinition of the neutrino field via its Majorana phase.
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θ = 45o. A structure of this kind could be employed to explain a maximal atmospheric mixing angle and
an inverted hierarchical spectrum. This reasoning can be extended to three-neutrino mixing.

It is very common for models based on flavour symmetries to have correlations between mixing
parameters, usually the mixing angles and the CPV phases [147–149]. To start with, the leading-order
mass matrices have very few parameters once the flavour symmetry is imposed. The corrections intro-
duced to shift the angles also typically depend on very few quantities, leading to correlations between the
mixing parameters commonly known as sum rules. They can be typically divided into two main classes:

– atmospheric sum rules [148], which are of the type sin2 θ23 = 1/2 + ζ sin θ13 cos δ, with ζ a real
parameter predicted by the model. An important example is trimaximal mixing, which can be ob-
tained from TBM pattern using a rotation in the 2-3 or 1-3 plane: sin2 θ23 = 1/2−

√
2 sin θ13 cos δ

and sin2 θ23 = 1/2 + 1/
√

2 sin θ13 cos δ, respectively.
– solar sum rules [149–151] for which sin2 θ12 = 1/3 + ζ ′ sin2 θ13 cos δ, with ζ ′ a real param-

eter given by the model. They often arise in models in which the leading-order mixing matrix
receives corrections from the charged lepton sector. In models motivated by Grand Unified The-
ories (GUTs), the charged lepton mass matrix is related to the down-type quark one and V` gets
corrections of the order of the Cabibbo angle.

It is interesting to note that, as the values of the mixing angles are known with good accuracy, the
sum rules amount to predictions for the δ phase. For instance, focusing on solar sum rules, assuming that
there are no 1-3 rotations in Vν or V` at leading order, cos δ is predicted to be [152]

cos δ =
t23 sin2θ12 + sin2 θ13 cos2θ12/t23 − sin2 θν12(t23 + sin2 θ13/t23)

sin 2θ12 sin θ13
, (88)

where t23 ≡ tan θ23. θν12 is the value in Vν predicted by the flavour symmetry at leading order, e.g.
sin2 θν12 = 1/3 for TBM and sin2 θν12 = 1/2 for BM. Present and/or future oscillation experiments can
test these relations and provide useful insight on the origin of the observed leptonic flavour structure.

The possibility to impose a symmetry associated with CP at the Lagrangian level has also been
investigated. It requires the introduction of a generalised CP symmetry [153–155] which is a combination
of charge conjugation and parity and acts in a non-trivial manner on the flavour indices of a field ψ:

ψ(x)→ Xψc(x′) . (89)

Here, x′ = (t,−x) and X is a symmetric unitary matrix (XX∗ = X∗X = 1) which guarantees that
the original state is recovered after applying the transformation twice. The basic idea is to combine
this symmetry with a discrete flavour one. Typically, definite predictions for the CPV phases, including
the Majorana ones, emerge in this scheme, leading to testable signatures in neutrino oscillation and
neutrinoless double beta decay experiments.

6.4 Leptogenesis and the baryon asymmetry
The origin of the matter-antimatter asymmetry in the Universe is one of the most compelling questions in
cosmology. Its value has been well measured using the cosmic microwave background (CMB) radiation
by Planck [156]

Y CMB
B ' (8.67± 0.09)× 10−10 , (90)

where YB is the baryon to photon ratio at recombination and is in good agreement with the one derived
from Big Bang Nucleosynthesis (BBN).

Assuming that the Universe started with the same amount of baryons and antibaryons, as sug-
gested by inflationary models, the baryon asymmetry can be dynamically generated if the Sakharov
conditions [157] are satisfied:
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– Baryon number violation (or Lepton number violation, for the leptogenesis mechanism). In the SM
B and L are accidental symmetries which are conserved at the perturbative level. However, B+L
is anomalous and transitions which violate lepton and baryon number can happen at sufficiently
high temperatures via thermal excitations with topological charge called sphalerons. This implies
that a violation of lepton number can induce a baryon asymmetry.

– C and CP violation. If CP is conserved, every reaction which produces a particle will be accom-
panied by the opposite one creating an antiparticle, so that there is no net creation of a baryon
number.

– Departure from thermal equilibrium. In equilibrium, the production and destruction of a baryon
asymmetry proceed with the same rate. This condition is readily satisfied by the expansion of the
Universe.

Several mechanisms have been proposed to explain the origin of the baryon asymmetry. Here we
focus on one of the most popular and successful: leptogenesis [158]. The basic idea is that a lepton
number is created in the Early Universe and this is then converted into a baryon number. This conversion
happens in the SM itself at the non-perturbative level by sphaleron effects [159].

Leptogenesis is particularly appealing because it can naturally take place in see-saw models [112].
For simplicity, we focus only on leptogenesis in see-saw type I models, but it is possible to embed this
mechanism also in other neutrino mass models. A see-saw type I model can satisfy the three Sakharov
conditions: (i) lepton number is violated by the Majorana MN term; (ii) CP violation can be present in
the y matrix if it is complex; (iii) the departure from equilibrium is due to theNj decays in the expanding
Universe, once the temperature drops below their mass.

At very high temperatures, the heavy neutrinos Nj are in thermal equilibrium with the rest of the
plasma thanks to their Yukawa interactions

Nj ↔ H0νL, Nj ↔ H+` . (91)

As the Universe cools, T becomes smaller than Mj implying the particles in the plasma do not have
sufficient energy to produce back right handed neutrinos. Only their decays are allowed

Nj → H0νL, Nj → H+` . (92)

Being Majorana neutrinos, Nj can decay both into one channel and its charge conjugate one

Nj → H−`+, Nj → H+`− . (93)

If the rates of these two processes are different, due to CP violation, then a net charge asymmetry ε is
generated. This process is not instantaneous and washout effects, due e.g. by inverse decays, will partly
erase the asymmetry. The remaining lepton asymmetry can then be converted by sphaleron processes
into a baryon asymmetry. The latter depends on

ηB ∝ kcsε1 , (94)

where k is the washout factor which takes into account the fact that the decoupling is not instantaneous,
cs is the sphaleron constant which quantifies how much of the lepton asymmetry is converted to a baryon
asymmetry, ε1 is the CP-asymmetry given by ε1 ≡ Γ(N→lH)−Γ(N→lcHc)

Γ(N→lH)+Γ(N→lcHc) .

At high temperatures, T > 1012 GeV, different leptonic flavours cannot be distinguished as their
Yukawa interactions are out of equilibrium. In this case, assuming M1 � M2 � M3, it is useful to
consider only the total CP-asymmetry [158, 160, 161] :

ε1 =
Γ(N1 → H− `+)− Γ(N1 → H+ `−)

Γ(N1 → H− `+) + Γ(N1 → H+ `−)
' 3

16πv2
H

∑

j 6=1

=(mDm
†
D)2

1j

(mDm
†
D)11

M1

Mj
. (95)
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Once the interactions due to the charged lepton Yukawa couplings get into equilibrium, at T ∼
1012 GeV for τ leptons and at T ∼ 109 GeV for muons, different lepton flavours become distinguishable
and the asymmetry and wash-out effects become flavour-dependent. The total lepton asymmetry can be
obtained summing the separate contributions of each flavour CP asymmetry washed-out by the same-
lepton number violating processes [162]. Each flavour asymmetry is given by

εl =
3

16πv2
H

1

(mDm
†
D)11

=
(∑

j

(
(mD)1l(mDm

†
D)1j(m

∗
D)jl

))M1

Mj
. (96)

Similarly, one has to consider the “wash-out mass parameter” for each flavour l, m̃l ∝ |(mD)1l|2, which
depends on the decay rate of N1 to the leptons of flavour l.

Since leptogenesis requires CPV, one can ask whether the one necessary to explain the baryon
asymmetry is related to the CP-violating phases observable at low energies (in the PMNS mixing ma-
trix) [163,164]. As discussed in Sec. 6.2.4, in general see-saw models contain a larger number of param-
eters than those measurable. Consequently, in a completely model-independent way it is not possible to
draw a direct link between the two. However, we are interested in models which aim to explain the values
of neutrino masses and of the mixing structure we observe. As we briefly reviewed in Sec. 6.2.4, these
models have a reduced number of parameters which can control both the high energy and low energy
ones, see Sec. 6.3. In these scenarios, it is common for the low energy phases to be directly connected to
the baryon asymmetry.

We can even make some more general statement. Let’s restrict the discussion to see-saw type I
with three hierarchical heavy neutrino masses. In the one-flavour approximation, using the Casas-Ibarra
approximation, one can show that the low energy U cancels out in the CP-asymmetry. This implies that it
is possible to have low energy CP violation and no leptogenesis. However, this is not true if one considers
flavour effects, see Eq. (96). The PMNS matrix does not cancel out in the CP asymmetry and the low
energy CP-violating phases do induce a baryon asymmetry. It can also be shown that even δ can generate
enough CPV to reproduce the observed baryon asymmetry. This is a highly non-trivial statement since its
CPV effects are suppressed by θ13. One can conclude that generically the observation of lepton number
violation (e.g., neutrinoless double beta decay) and of CP violation in long-baseline neutrino oscillation
experiments and/or possibly neutrinoless double beta decay would constitute a strong indication (even
if not a proof) in favour of the leptogenesis mechanism as the origin of the baryon asymmetry of the
Universe.

7 Neutrinos in the Early Universe and in Astrophysics
Thanks to their interactions, neutrinos were in thermal equilibrium with the rest of the plasma in the
Early Universe. As the temperature T dropped, neutrinos decoupled when the interaction rate became
too slow compared to the expansion of the Universe. Since then they travelled unperturbed redshifting
their momentum but, due to their large density, they nevertheless affected significantly the evolution of
the Universe leaving an inprint in Big Bang Nucleosynthesis, the Cosmic Microwave background, large
scale structure (LSS) formation and finally pervading the Universe with a cosmic neutrino background
of around 100 neutrinos per cm3.

7.1 Neutrino decoupling.
The SM interactions such as

νν̄ ↔ e+e−, νe↔ νe, ...

kept neutrinos in thermal equilibrium at sufficiently high densities. They decouple when the interaction
rate Γ becomes comparable with the expansion rateH,

Γ ∼ H ,
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with Γ ∼ G2
FT

5 andH ∼ T 2/MPl in a radiation dominated era. This leads to a decoupling temperature
Td ∼ 1 MeV, which slightly differs for electron neutrinos, being lower, from that of µ–τ neutrinos as the
former have both CC and NC interactions. Since we know from beta-decay measurements that neutrino
masses must be below the eV scale, relic neutrinos decoupled while they were still relativistic.

7.2 Neutrino temperature.
Soon after neutrino decoupling, electrons-positrons get out of equilibrium transferring their entropy to
the photon plasma. The neutrinos do not partake in this transfer and consequently they remain colder
than the photons. Using entropy conservation, one can find that

Tν
Tγ

=

(
4

11

)1/3

.

7.3 Neutrinos as hot dark matter.
After decoupling, neutrinos have their momentum redshifted by the expansion of the Universe and turn
non-relativistic at late times24. An inprint of their existence is on the CMB and on LSS. At early times,
massive neutrinos change the matter-radiation equality leading to a small shift and height increase of the
peaks of the CMB power spectrum [156], due to the Sachs-Wolfe effect [165]. Later on, their biggest
effect is that they behave as hot dark matter at the time of cosmological structure formation, suppressing
their growth at small scales. These structures formed from initial seeds, i.e. perturbations in the dark
matter density, under the gravitational pull. Cold dark matter falls into the gravitational wells which
are created by the overdensities, making them grow further and leading to the formation of galaxies and
clusters. Neutrinos were too fast to be trapped in the wells and free-streamed out of them, suppressing
the growth of structures at sufficiently small scales. The neutrino free-streaming length λFS depends on
their thermal velocity vth as [166]

λFS = 2π

√
2

3

vth(t)

H(t)
,

where H(t) is the Hubble rate at a given time t. We notice that the thermal velocity is inversely pro-
portional to the neutrino mass. The suppression of the matter power spectrum at scales smaller than the
free-streaming length is approximately given by

∆P

P
∝ 8

Ων

Ωm
, (97)

where Ωm is the matter density fraction and Ων the neutrino density fraction25. The latter is related to
neutrino masses as

Ων =
∑

i

mi/(93 eVh2) , (98)

where h is defined as h(t) ≡ H(t)/(100 km s−1 Mpc−1). As these effects are purely gravitational, there
is no distinction between the different mass states which all contribute in the same manner to a good
approximation. As we know that at least two neutrinos are massive, we can set a lower limit on the sum
of neutrino masses which depends on the neutrino mass ordering:

∑

i

mi >
√

∆m2
21 +

√
∆m2

31 ' 0.06 eV for NO,

∑

i

mi >
√
|∆m2

31|+
√
|∆m2

32| ' 0.10 eV for IO.

24As one of the neutrinos could be nearly massless, there is the possibility that one of the three massive neutrinos is still
relativistic today.

25Ωi is defined as the ratio of the density of particle i over the critical density of the universe ρc.
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The distribution of structures in the Early Universe is measured with good accuracy, leading to a
strong upper bound on the sum of neutrino masses. There are two main tools to establish the distribution
of matter at the relevant scales:

– observing tracers of the matter distribution, e.g. galaxy surveys, such as SDSS [167], BOSS [168],
HETDEX [169] and DES [170], or low density intergalactic gas for Ly-α surveys [171]. This type
of measurement is very powerful but is affected by the problem of bias, i.e. the relation between
the matter and the tracer power spectra;

– looking directly at the dark matter distribution via gravitational lensing [172]. This is becoming
more and more the tool of choice for constraining the matter power spectrum and consequently
neutrino masses.

Although cosmology provides the most stringent constraints on neutrino masses, care should be given to
the fact that the bounds can vary depending on the set of cosmological data included and one needs to
exploit the complementarity between different probes, for instance high and low red-shift observables,
to break the degeneracy with other cosmological parameters. We just note that there is currently some
tension in the measured value of H0 by Planck and SN surveys, with a possible impact on neutrino pa-
rameters. Importantly, the bounds on neutrino masses are obtained assuming the standard ΛCDM model.
Different underlying cosmological models, e.g. invoked to explain the accelerated expansion of the Uni-
verse, could lead to significantly different constraints. Without entering in this complex discussion, we
report the bound obtained by the combination of Planck CMB and BOSS BAO [156]

∑

i

mi < 0.12 eV (95% C.L.).

In the literature other recent bounds typically are around 0.15–0.3 eV depending on the datasets included.
Therefore, as current and future cosmological measurements continue to improve their precision, it is
expected that cosmology will be able to distinguish between the NO and IO ordering of masses. It will
be particularly interesting to assess the reliability of such bounds and to combine them with terrestrial
experiments, such as neutrinoless double beta decay and direct mass searches, see Sec. 5.2.

7.4 Sterile neutrinos as warm dark matter
Light nearly-sterile neutrinos νh with masses in the keV range have been advocated as dark matter
candidates. If the mixing angle between the nearly-sterile neutrino and the active neutrino is large, these
particles were in thermal equilibrium in the Early Universe and decoupled at a temperature slightly higher
then that of standard neutrinos. For small mixing angles, they were produced via oscillations in neutrino
processes without ever reaching thermal equilibrium [173].

These particles can decay into 3ν via SM NC interactions, further suppressed by the mixing angle
squared. If their mass is in the keV range, they are quasi-stable on cosmological timescales and they can
constitute the dominant component of DM. The production of nearly-sterile neutrinos can be obtained
by solving the Boltzmann equation for the nearly-sterile neutrino phase space density fh [173, 174]

(
∂fh
∂T

)

E/T

=
1

4

1

HT Γα sin2 2θm(fα − fh) ,

where
(
∂fh
∂T

)
E/T

is the derivative taken at constantE/T ,H = 5.4T 2/MPl, with the Plank massMPl =

1.2× 1019 GeV, Γα is the να interaction rate Γα ∼ G2
FT

4E and fα = (1 + exp(E/T ))−1 is the phase
space density for active neutrinos. sin2 2θm denotes the mixing angle in the thermal bath which is related
to the one in vacuum θ as

sin2 2θm '

(
m2

4
2E

)2
sin2 2θ

(
m2

4
2E + 1.1× 10−8T 4E/GeV4

)2 . (99)
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The contribution of the nearly-sterile neutrino to the energy density is given by ρh = mhnh, where nh is
the number density obtained integrating fh. Other mechanisms of production invoke a lepton asymmetry
which can resonantly enhance the angle θm and lead to a colder spectrum or assume late decays of
heavier particles giving a even colder distribution of sterile neutrinos. Depending on the spectrum, these
nearly-sterile neutrinos can behave as cold, cool, warm dark matter leading to intermediate behaviour in
structure formation [175]. Typically, the matter power spectrum is suppressed at small structures with
a sharp cut-off in the linear matter power spectrum. Confronting these predictions with observations
allows to set bounds on the nearly-sterile neutrino mass, given a specific production mechanism.

Apart from the decay into 3ν, νh can also subdominantly decay into a photon and a neutrino with
a branching ratio of around 1%. This channel would give rise to a x-ray line with Eγ = m4/2 which
can be searched for by looking in DM-rich regions of the Universe, such as the centre of our Galaxy and
DM-dominated dwarf galaxies.

7.5 Supernova neutrinos
During a supernova (SN) explosion, 99% of the energy is released in neutrinos as they can escape from
deep regions thanks to their weak interactions [176]. One can identify three main phases of emission:
the neutronization peak, the accretion phase and the cooling phase. The neutronization peak takes place
in the first ∼ 25 ms. Electron neutrinos are produced by electron capture on protons and nuclei. In
the second phase, lasting tens to hundreds of milliseconds, the shock stalls before the start of the SN
explosion. Mainly electron neutrinos are emitted and the spectrum can be rather complex due to the
standing accretion shock instability. The final phase can last few tens of seconds and it is when the
neutron star, born from the explosion, cools. Most of the SN gravitational binding energy is released
in this phase. An intense flux of neutrinos and antineutrinos of all flavours is emitted with energies
of tens of MeV. Because electron neutrinos interact more strongly with the background than electron
antineutrinos, they are emitted from a neutrinosphere located less deep in the SN, implying a smaller
energy. Similarly, as muon and tau neutrinos have only NC interactions with the background of electrons,
protons and neutrons, their energy will be even higher. The hierarchy of average energies expected is
〈Eνµ,ντ 〉 > 〈Eν̄e〉 > 〈Eνe〉.

As the SN neutrinos propagate from the inner parts of the SN to the outer layers, their evolution
is affected by oscillations in matter. Deep in the SN core, the neutrino density is so high that neutrinos
become a background to themselves and a large matter potential due to neutrino-neutrino interactions
is generated. “Collective oscillations” can take place as the entire neutrino system evolves as a single
collective mode. Due to the complex matter profiles and time evolution, neutrino transition can be quite
complex and present a behaviour which can vary significantly with energy, flavour and time. As SN
neutrinos leave the inner parts of the SN, at smaller densities, SN neutrinos will feel the effects of the
matter resonance due to ∆m2

31 and ∆m2
21. Finally, they will travel through space reaching the Earth.

Here, they may undergo additional transitions if they transverse a significant amount of matter.

SN neutrinos can be hunted for by several types of experiments [177]. Large Water-Cherenkov
detectors, such as Super-Kamiokande, and liquid scintillators, e.g. KamLAND and the future SNO+
and JUNO, can detect mainly electron antineutrinos via inverse beta decay. The addition of gadolinium,
already ongoing in Super-Kamiokande, significantly improves the neutron capture detection efficiency
and reduces the backgrounds enhancing the sensitivity. Elastic scattering can also give an important,
although much smaller, sample of neutrinos mainly of the electron flavour. NC and other interactions on
nuclei give a small contribution to the number of events. LAr detectors, such as DUNE at SURF, have
unique sensitivity to electron neutrinos via the reaction νe40Ar → e−40K∗ and can detect antineutrinos
via inverse beta decay and NC interactions.

On 24 February 1987 a bright supernova of type II was found in the Large Magellanic Cloud about
50 kpc away from the solar system [178]. It was named SN1987A. The neutrinos emitted by this super-
nova were observed at the neutrino detectors operating at the time: Kamiokande-II [179], IMB [180],
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Baksan and LSD. They recorded few tens of events in a time window of 10 seconds few hours before the
optical discovery of SN1987A 26. Their observation allows to set bounds on neutrino properties. Their
mass can be bound requiring that the spread in time of the events does not exceed few seconds. This
translates into a bound of around 5-30 eV, depending on the neutrino emission assumptions. Moreover,
they imply that a large fraction of the SN energy was emitted in neutrinos, limiting the amount which can
be carried away by other invisible particles and therefore constraining neutrino interactions in extensions
of the Standard Model, their decay time and their mixing with heavy neutrinos. The observation of the
SN1987A neutrinos marked the start of extrasolar system neutrino astronomy. M. Koshiba received the
Nobel Prize in Physics in 2012 for this discovery.

8 Conclusions and Outlook
Thanks to an impressive series of experiments, we have established that neutrino oscillate. This discovery
is of ground breaking importance as it implies that neutrinos have mass and mix and constitute the first,
and so far only, particle physics evidence that the SM is incomplete. The two key questions, possibly
inter-related, which emerge concern the origin of neutrino masses and the principle behind the observed
leptonic structure. In order to address them, we require a picture of neutrino properties as complete and
as precise as possible. This means identifying the nature of neutrinos, establishing the absolute values
of neutrino masses, by determining their ordering and the mass scale, measuring the mixing angles and
the CP violating phase very precisely, and testing if the standard 3-neutrino mixing scenario is correct.
Despite being challenging, an exciting experimental programme is ongoing and planned for the future
and will be able to address these issues. In these lectures I have reviewed the phenomenology relevant in
current and future neutrino experiments, the theory behind neutrino masses and mixing and the impact
of neutrinos in the Early Universe, from leptogenesis to dark matter.
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Practical Statistics for Particle Physicists

H. B. Prosper
Florida State University, Department of Physics, Tallahassee, USA

Abstract
These lectures cover the basic ideas of frequentist and Bayesian analysis and
introduce the mathematical underpinnings of supervised machine learning. In
order to focus on the essentials, we illustrate the ideas using two simple exam-
ples from particle physics.

Keywords
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1 Introduction
Statistics and physics are similar in that each starts from sets of basic principles. They are similar also in
the fact that physicists and statisticians from time to time engage in vigorous debate about the foundations
of their respective disciplines. These disciplines, of course, also differ in significant ways. For example,
physicists are forced, at some point, to bury the hatchet. Why? Because there is an ultimate judge
of the correctness of a proposed principle, namely, Nature. If a principle yields results that contradict
observations then the former does not apply to Nature and is, in that sense, wrong. For statisticians,
alas, their many judges are other statisticians. Consequently, they are not compelled to reach, and for
some basic questions have not reached, a consensus. Happily, however, for the typical applications in
particle physics the debate and disagreements among statisticians can usually be ignored. But this is a
poor excuse for dismissing these disagreements as even a modicum of understanding of them can avert
hours of fruitless arguments that prove, ultimately, to be about intellectual taste and therefore cannot be
adjudicated by appealing to a third party such as Nature. Therefore, while these lectures focus on the
practical, we occasionally comment on some of these disagreements.

The remainder of the introduction, presents a birds eye view of statistical analysis. For detailed
expositions on statistical analysis aimed at physicists, we recommend the books: [1–4]. For historical
perspectives see [5, 6].

1.1 Samples
The result of an experiment is a sample of N data X = x1, x2, · · · , xN , which can be characterized
with quantities called statistics1. A statistic is number that can be computed from the sample alone and
known parameters. Here are a few well-known statistics:

the sample moments xr =
1

N

N∑

i=1

xri , (1)

the sample average x̄ =
1

N

N∑

i=1

xi, (2)

and the sample variance s2 =
1

N

N∑

i=1

(xi − x̄)2. (3)

1Statisticians tend to use upper case letters to denote random variables and lower case letters to denote actual values. We do
not follow this convention.
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The sample moments give detailed information about the sample, while the sample average and variance
are measures of the center of the data and their spread. Statistics that characterize the data are called
descriptive statistics. In these lectures, we shall encounter statistics that provide more sophisticated
information about samples.

1.2 Populations
An infinitely large sample is called a population, which physicists usually refer to as an ensemble. Like
other abstractions, populations can be studied mathematically and can be characterized with numbers,
such as those listed below. (The symbol E[∗] means ensemble average, that is, the average over the
population of the quantity within the brackets.)

Ensemble average E[x]

Mean µ

Error ε = x− µ
Bias b = E[x]− µ
Variance V = E[(x− E[x])2]

Standard deviation σ =
√
V

Mean square error MSE = E[(x− µ)2]

Root MSE RMS =
√

MSE (4)

However, unlike the statistics of a sample, the numbers that characterize a population are abstractions.
After all, no one has ever amassed an infinity of anything. In practice, a population is approximated
by a large sample. Such “populations" are the basis of a statistical method called the bootstrap, in
which various quantities can be approximated by treating the sample as if it were a population. Large,
typically simulated, samples are used in physics analyses to assess, for example, the effect of systematic
uncertainties or to confirm that an analysis method performs as claimed. In a simulated “population"
some quantities can be computed exactly, for example the error associated with each element of the
“population" because x and µ are known. Quantities such as bias, however, can only be approximated.

While it may not be possible to calculate a population quantity exactly, it often possible to relate
one population quantity to another, which can sometimes provide useful insight. Take for example the
mean square error (MSE), whose square root is called the root mean square (RMS)2. The MSE can be
written as

MSE = V + b2. (5)

Exercise 1: Show this

This is an instructive result. Suppose, for example, that µ is the true Higgs boson mass and x is a
measurement of it. If the MSE is used as a measure of the accuracy of the mass measurements, then the
result in Eq. (6) shows that correcting a measurement of the mass for bias makes sense only if, on the
average, the bias-corrected results yield a smaller MSE than that of the uncorrected result. Making a bias
correction may not always be the correct thing to do if the goal is to arrive at mass measurements, which,
on average, are as close to the true value of the mass in the MSE sense. Using simulations to study
and understand the characteristics of a population is both useful and educational. It is good practice to
do lots of simple simulations (sometimes called toy experiments) in order to develop an intuition about
statistical quantities and the behavior of statistical procedures as well as to decide whether a particular
manipulation of a measurement—e.g., a bias correction—makes sense.

2The RMS and standard deviation are sometimes used interchangeably. The two quantities are identical only if the bias is
zero.
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Another example of the ability (and utility) of mathematical analysis with respect to a population
is the calculation of the bias in the variance of a sample. When we speak of “bias in a measurement
x", say a measurement of the Higgs boson mass, we should remember that this phrasing is a shortcut.
There is very likely an error in x, which in the real world is unknown. But, strictly speaking, bias does
not apply to x, but rather to the ensemble to which x is presumed to belong. However, it would quickly
become horribly pedantic not to use the shortcut "bias in x", so it is perfectly reasonable to use it so long
as we remember what the phrase means. The ensemble average of the sample variance, Eq. (3), is given
by

E[s2] = E[x2]− E[x̄2],

= V − V

N
.

Exercise 2: Show this

and has a bias of b = −V/N . The result shows that the bias can be calculated exactly only if the variance
V is known exactly.

1.3 Statistical Inference
The main goal of a theory of statistical inference is to use a sample to infer something about the associated
population. We may wish to estimate (that is, measure) a parameter associated with the population, for
example, the mean Higgs boson signal in the proton-proton to 4-lepton channel. Then, in order to make
this estimate meaningful, we need to quantify its accuracy. Finally, we may wish to assess to what degree
we can claim the signal is real and not an apparent signal caused by a fluctuation of the background. We
shall consider each of these tasks using the two most commonly used theories of inference, frequentist
and Bayesian. In both theories, the foundational concept is probability, albeit interpreted in two different
ways:

– Degree of belief in, or assigned to, a proposition, e.g.,

– proposition: it will rain in Maratea tomorrow
– probability: p = 5× 10−2

– Relative frequency of given outcomes in an infinite set of trials, e.g.,

– trial: a proton-proton collision at the Large Hadron Collider (LHC)
– outcome: creation of a Higgs boson
– probability: p = 5× 10−10

Since each theory of inference uses a different interpretation of probability, it is not surprising that
the interpretation of their results differ. This can cause confusion, especially when both theories give
numerically identical results. When data are plentiful, these interpretation typically do not affect how the
results are subsequently used. The difficulties arise when sample sizes are small and when each approach
can yield substantially different results. This is when intellectual taste becomes the main arbiter of which
approach is considered the more reasonable.

The next two sections cover the application of frequentist and Bayesian theories of statistical anal-
ysis in particle physics using a simple real-word example, while the last section provides an introduction
to supervised machine learning.

2 Frequentist Analysis
In 2014, the CMS Collaboration published its measurement of the properties of the Higgs boson in the
4-lepton final states [7]. We shall analyze the summary results of this analysis, namely,N = 25 observed
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4-lepton events with a background estimate ofB±δB = 9.4±0.5 events. The goal is to make statements
about the mean Higgs boson event count s—that is, the signal, where d = b+ s is the mean event count
and b is the mean background count. Although these data are very simple, they are sufficient to illustrate
the essential ideas of frequentist analysis.

Whether the data are to be analyzed using a frequentist or Bayesian approach, the starting point is
the same: the first task is constructing an accurate probability model for the mechanism that generates
the data.

2.1 The Probability Model
Given the observed count N = 25 events, a particle physicist would immediately model the data gener-
ation mechanism with a Poisson distribution,

Poisson(n, d) =
e−ddn

n!
,

because everyone knows that is the distribution for a counting experiment. If the data comprised M
counts Nm,m = 1, · · · ,M that are considered independent, the model would be a product of Poisson
distributions. But, why is a Poisson appropriate? Let us start at the very beginning.

2.1.1 Bernoulli trial
A Bernoulli trial, named after the Swiss mathematician Jacob Bernoulli (1654 – 1705), is an experiment
with only two possible outcomes: S, a success or F, a failure. Each collision between protons at the
LHC is a Bernoulli trial in which either a Higgs boson is created (S) or is not (F ). Here is a sequence of
collisions results

F F S F F F F S F · · ·
What is the probability of this sequence of results? There is no answer. Unless that is we are prepared to
make assumptions, such as the following.

1. Let p be the probability of a success.
2. Let p be the same for every collision (trial).
3. Let S and F be exhaustive (the only possible outcomes) and mutually exclusive (one outcome

precludes the occurrence of the other).

Assumption 3 implies that the probability of F is 1− p. Therefore, for a given sequence O of n proton-
proton collisions, the probability P (k|n, p,O) of exactly k successes and exactly n− k failures is

P (k|n, p,O) = pk(1− p)n−k. (6)

The specific sequence O of successes and failures is unknown at the LHC. Whenever, we have a pa-
rameter that is either irrelevant or whose value is unknown, the rules of probability theory imply that
the unknown can be eliminated from the problem by summing over all possible values of the unknown,
here the orders of successes and failures O. This rule is called marginalization and is one of the most
important procedures in probability calculations. Applied to our problem this yields,

P (k|n, p) =
∑

O

P (k|n, p,O) =
∑

O

pk(1− p)n−k. (7)

Notice that every term in Eq. (7) is identical and there are
(
n
k

)
of them. Therefore,

P (k|n, p) =

(
n

k

)
pk(1− p)n−k, (8)
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that is, we arrive at the binomial distribution, Binomial(k, n, p). If a is the mean number of successes
in n trials, then

a =

n∑

k=0

kBinomial(k, n, p),

= pn. (9)

Exercise 4: Show this

For the Higgs boson outcomes, p ∼ 10−10 and n � 1012. Therefore, it is reasonable to consider the
limit p→ 0 and n→∞, while keeping a constant. In this limit

Binomial(k, n, p)→ e−aak/k!,

≡ Poisson(k, a). (10)

Exercise 5: Show this

We conclude that a Poisson distribution is an appropriate model when the probability of individual events
is extremely small. Indeed, the distribution can be derived from a stochastic model in which that assump-
tion is made explicit. Therefore, it is indeed reasonable to take

p(n|s, b) = Poisson(n, s+ b) =
(s+ b)ne−(s+b)

n!
, (11)

as the probability to obtain a count n given mean event count s+ b.

We now turn to the probability model for the background data. In principle, the model should
encode in detail how the background estimate was obtained. But, in order to keep matters as simple
as possible, let us assume that the background estimate was obtained from an accurate Monte Carlo
simulation, which yields a count m. The mean count in the simulation is kb, where k is a known scale
factor that relates the mean count in the simulation to that in the signal region of the experiment that
yielded N events. Therefore, the probability model for the background shall be taken to be

p(m|kb) = Poisson(m, kb). (12)

Since the counts n and m are independent, the full model is

p(n,m|s, b) = Poisson(n, s+ b)Poisson(m, kb). (13)

2.2 The Likelihood Function
The likelihood function is the probability function—either a probability density function (pdf) if the
random variables are continuous, or a probability mass function (pmf) if they are discrete—into which
observations, that is, data have been inserted. Since the data are constants, the likelihood, p(N,M |s, b)
in our example, is a function of the parameters only. Sometimes, p(N,M |s, b) is written as L(s, b) to
emphasize this point.

In this example, we are given B ± δB, not M and k. But, we can infer M and k from B and δB
using a plausible model, namely, that B and δB are M and

√
M scaled down by k, that is,

B = M/k, (14)

δB =
√
M/k. (15)

Inverting these equations yields

M = (B/δB)2 = 353.4, (16)
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k = B/δB2 = 37.6. (17)

Therefore, the likelihood for the count M is

(kb)Me−kb/Γ(M + 1), (18)

which we have written in a form that allows for non-integral values of M . Writing D = N,M , the full
likelihood can be written as

p(D|s, b) =
(s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
. (19)

In a more realistic analysis, a probability model for the scale factor k would also be included. But, to
keep things simple, we shall neglect the uncertainty in k.

Now that we have the likelihood function, several questions can be answered, including the fol-
lowing.

1. How is a parameter to be estimated?
2. How is its accuracy to be quantified?
3. How can an hypothesis be tested?
4. How is the statistical significance of a result to be quantified?

2.3 The Frequentist Principle
The goal of a frequentist analysis is to construct statements such that it can be guaranteed, a priori, that a
fraction f ≥ p of them are true over an ensemble of similarly constructed statements. This stipulation is
called the frequentist principle (FP) and was championed by the Polish statistician Jerzy Neyman [8].
The fraction f is called the coverage probability, or coverage for short, and p is called the confidence
level (C.L.). An ensemble of statements that obey the frequentist principle is said to cover.

Points to Note
1. The FP applies to real ensembles 3, not just the virtual ones we simulate on a computer. Moreover,

the ensembles can contain statements about different quantities. Example: all published measure-
ments x, since the discovery of the electron in 1897, of the form θ ∈ [l(x), u(x)], where θ is a
parameter of interest, that is, the parameter to be measured.

2. Coverage is an objective characteristic of ensembles of statements. However, in order to verify
whether an ensemble of statements covers, we need to know which statements are true and which
ones are false. Alas, since this information is generally not available in the real world there is no
operational way to compute the coverage. The fact that we can do so in a simulation may give us
confidence that the actual coverage of published statements is as the simulation reports, but does
not prove that it is so.

Example

Consider an ensemble of different experiments, each with a different mean count θ, and each yielding a
count N . Each experiment makes a single statement of the form

N +
√
N > θ,

3Strictly speaking, we mean real samples because, as we have defined it, an ensemble is a synonym for a population, which
by definition contains infinitely many elements
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Fig. 1: Plotted is the tensor product of the parameter space, with parameter s, and the space of observations with
potential observations n. For a given value of s, the observation space is partitioned into three disjoint intervals,
labeled L, M , and R, such that the probability to observe a count n in M is f ≥ p, where p = is the desired
confidence level.

which is either true or false. If these were real experiments, we would not be able to determine which
statements are true and which are false and, therefore, determine the coverage. Suppose that each mean
count θ is randomly sampled from uniform(0, 10), with range [0, 10], and suppose that these means are
known as would be the case in a simulation. Since the numbers are known, we can compute the coverage
probability f .

Exercise 7: Compute the coverage of these statements; repeat the exercise using uniform(0, 1000)

In the next section, we discuss the important concept of the confidence interval, which is the classic
exemplar of the frequentist principle.

2.4 Confidence Intervals
In 1937, Neyman [8] introduced the concept of the confidence interval, a way to quantify uncertainty
in estimates that respects the frequentist principle. Confidence intervals are a concept best explained
through an example. Consider an experiment that observes n = N events with mean signal count s and
no background. A confidence interval [l(N), u(N)], with confidence level CL = p, permits a statement
of the form

s ∈ [l(N), u(N)], (20)

with the a priori guarantee that a fraction f ≥ p of statements will be true over an ensemble of such
statements, not necessarily about the same quantity or the same kind of experiment. For simplicity,
however, we shall consider experiments of the same kind, but which differ by their mean signal count s.

Consider Fig. 1, which shows the tensor product of the parameter space {s} and the space of po-
tential observations {N} as well as the potential observations, represented by the dots, of an experiment
with mean count s. The two vertical lines divide the space of observations into the three regions labeled
L, M , and R. The region M is chosen so that the probability to obtain a count in that region is f ≥ p,
where p is the desired confidence level (CL). The probabilities to obtain a count in region L or region R
are αL and αR, respectively. Since the three regions span the space of observations, αL + f + αR = 1.
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Fig. 2: The algorithm for defining region M (see Fig. 1), must be repeated for every value of s that is possible a
priori. For the experiment whose mean s is represented by the thick horizontal line, the figure shows three possible
outcomes, labeled A, B, and C, and their associated confidence intervals [l(n), u(n)]. Only outcomes, such as B,
which lie within the region M of the experiment will yield intervals that bracket s. The probability to obtain such
an interval is f ≥ p, by construction.

For a given coverage f , the choice of region M is not unique and different methods have been
suggested to define it. The first method was devised by Neyman [8], which we shall consider shortly.
Another method was suggested by Feldman and Cousins [9]. We shall use that method to explain the
general construction of confidence intervals.

Feldman-Cousins Method

In the Feldman-Cousins method, every potential count n is associated with a pair of numbers: a weight
p(n|s) / p(n|ŝ), where ŝ = n is the maximum likelihood estimate of s, together with the probability
p(n|s) to obtain the count n. The counts are placed in descending order of their weights. Starting with
the first count in the ordered list, a set of counts (n(1), n(2), · · · ) is accumulated one by one until their
summed probabilities f =

∑
(i) p(n(i)|s) ≥ p. The symbol (i) denotes the ordinal value of a count in

the ordered list. The set of counts (n(1), n(2), · · · ) defines an interval in the space of observations whose
lowest (leftmost) and highest (rightmost) counts nL and nR are given by nL = min(n(1), n(2), · · · )
and nR = max(n(1), n(2), · · · ), respectively. This construction (for this single parameter problem)
guarantees that the probability to obtain a count within region M is f ≥ p 4.

There is, however, a snag with any algorithm to define M . The latter can only be defined if the
mean count associated with an experiment is known. This may well be true within a simulation, but it is
not so in the real world. Therefore, any algorithm for defining the region M must be repeated for every
value of s that is considered possible a priori, as illustrated in Fig. 2. The repetition produces regions
Ms, labeled by the mean count s, that define two curves, labeled l(n) and u(n), in the product space
{s} ⊗ {n}. For a given n, these curves define the confidence intervals [l(n), u(n)]. Over an ensemble

4We write f ≥ p rather than f = p because, in general, for a discrete distribution it is not possible to satisfy the equality
except at specific values of s.
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Fig. 3: The Neyman method. For every n, an interval [l(n), u(n)] is computed by solving the equations in the plot.
See text for details.

of experiments—and irrespective of their associated mean count s, the fraction of statements of the form
s ∈ [l(n), u(n)] that are true is f ≥ p, by construction. To see this, consider again Fig. 2. It shows three
possible outcomes for the experiment defined by the thick horizontal line together with the three possible
confidence intervals (the vertical lines terminated with dots). If an observation lands in the region M
for that experiment, the interval [l(n), u(n)] will bracket the mean count s, as shown in the figure. If
a count lands in region L, then the upper limit u(n) will lie below s and, consequently, the interval
[l(n), u(n)] will exclude s. If n lands in region R, then the lower limit l(n) will lie above s and the
interval will exclude s. Therefore, the interval [l(n), u(n)] will include s only if n lies in M , for which
the probability is f ≥ p. A procedure for constructing confidence intervals in this manner is called a
Neyman construction.

Neyman Method

The algorithm described above requires that a regionM be constructed for each value of s. An alternative
algorithm was devised by Neyman in his 1937 paper and is illustrated in Fig. 3. For every n, the upper
and lower limits are found by solving

P (x ≤ n|u) = αL, (21)

P (x ≥ n|l) = αR. (22)

Equation (21) yields a curve u(n) for which the probability to obtain a count x ≤ n, for a given s, is αL,
while Eq. (22) yields a curve l(n) for which the probability to obtain a count x ≥ n, for a given s, is αR.
These curves can also be made using the Neyman construction described above for the Feldman-Cousins
method, but the solution using Eqs. (21) and (22) is computationally more efficient. Figure 4 shows
the coverage probability over the parameter space for the Neyman intervals, in which we have chosen
αL = αR = (1 − p)/2. This choice, the one made by Neyman, define central confidence intervals.
As advertised, these confidence intervals satisfy the frequentist principle. Also shown is the coverage
for intervals of the form [N −

√
N,N +

√
N ] and [N −

√
N,N +

√
N + exp(−N)]. These intervals

are approximate confidence intervals in that they do not satisfy the frequentist principle exactly. Notice,
however, that for s > 2.5 the coverage of these intervals bounces around the p = 0.683 line. Therefore,
over a large sample of experiments, with a distribution of Poisson means, it is plausible that the coverage
could turn out to be close to the desired confidence level.
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Fig. 4: Coverage probability f as a function of the Poisson mean s. As expected, the central intervals satisfy the
frequentist principle, namely, f ≥ p, where p = 0.683 is the confidence level. The coverage for two other sets of
intervals are shown for which the frequentist principle is not satisfied.

A notable feature of Fig. 4 is the jaggedness of the coverage probabilities over the parameter space.
The jaggedness is caused by the discreteness of the Poisson distribution. For a discrete distribution,
coverage equal to the desired confidence level is possible only at specific values of s. Therefore, if we
insist on the frequentist principle, f ≥ p, the price to be paid is over-coverage in subsets of the parameter
space.

2.5 The Profile Likelihood
The likelihood function,

p(D|s, b) =
(s+ b)Ne−(s+b)

N !

(kb)Me−kb

Γ(M + 1)
, (23)

contains two parameters, the mean signal count s and mean background count b. However, the parame-
ter of interest is the mean signal. The mean background count is needed to define the probability model,
but inferences about it are not of interest. The parameter b is an example of a nuisance parameter. One
way or another, we must rid a probability model of all nuisance parameters if we wish to make infer-
ences about the parameter(s) of interest, here the mean Higgs boson signal count s. A widely accepted
method for doing so is to convert the likelihood function into a function called the profile likelihood. But,
before discussing this, we briefly describe the most common frequentist method to arrive at estimates of
parameters.

Given the likelihood function L(s, b) ≡ p(D|s, b), its parameters can be estimated by maximizing
L(s, b), or, equivalently, maximizing lnL(s, b), with respect to s and b,

∂ ln p(D|s, b)
∂s

= 0 leading to ŝ = N −B,
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∂ ln p(D|s, b)
∂b

= 0 leading to b̂ = B,

as expected. Estimates found this way (first done by Karl Gauss and systematically developed by
Fisher [10]) are called maximum likelihood estimates (MLE). This method generally leads to rea-
sonable estimates, but, as is true of other procedures in statistical analysis, the method has its good and
bad features, as noted below.

– The Good

– Maximum likelihood estimates are consistent, that is, the RMS of estimates goes to zero as
more and more data are included in the likelihood. This basically says that acquiring more
data makes sense because the accuracy of results is expected to improve.

– If an unbiased estimate of a parameter exists, the maximum likelihood procedure will find it.
– Given the MLE for s, the MLE for any function y = g(s) of s is ŷ = g(ŝ). This useful

feature means that it possible to maximize the likelihood using any parameterization of it,
say s, because, at the end, we can transform to the parameter of interest using ŷ = g(ŝ).

– The Bad

– In general, MLEs are biased.

Exercise 7: Show this
Hint: Taylor expand ŷ = g(s + ŝ − s) about s and
consider its ensemble average.

– The Ugly

– Most MLEs are biased, which, unfortunately, encourages the routine application of bias cor-
rection. But correcting for bias only makes sense if the RMS of an unbiased result is less
than or equal to the RMS of a biased result. Recall that the RMS =

√
V + b2, where V is

the variance and b is the bias.

We now return to the profile likelihood. In order to make an inference about the signal, s, the 2-
parameter model L(s, b) must be reduced to one involving s only. In principle, this must be done while
respecting the frequentist principle, that is, f ≥ p, where f is the coverage probability of an ensemble
of statements and p is the desired confidence level. In practice, all nuisance parameters are replaced by
their MLEs conditional on given values of the parameters of interest. For the Higgs boson example, an
estimate of b is found as a function of s, b̂ = f(s), and b is replaced by ŝ in L(s, b). This leads to a
function Lp(s) = L(s, f(s)) called the profile likelihood. For the likelihood in Eq. (23),

b̂ = f(s) =
g +

√
g2 + 4(1 + k)Ms

2(1 + k)
,

where g = N +M − (1 + k)s. (24)

Figure 5 shows a density plot of the likelihood L(s, b) with the function b̂ = f(s) superimposed. Notice
that b̂ = f(s) goes through the mode of L(s, b), which occurs at s = ŝ = N−B = 15.6 events. Figure 6
shows the profile likelihood.

Replacing the (unknown) true value of b with an estimate thereof is clearly an approximation.
Therefore, it should come as no surprise that inferences based on the profile likelihood are not guaran-
teed to be satisfy the frequentist principle exactly. However, it is found that for the typical applications
in particle physics (as will be evident below), the procedures based on the profile likelihood work sur-
prisingly well. Moreover, the use of the profile likelihood has a sound theoretical justification.
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Fig. 5: The likelihood L(s, b) and the graph of the func-
tion b̂ = f(s).

Fig. 6: The profile likelihood Lp(s) ≡ L(s, f(s)).

Consider the profile likelihood ratio

λ(s) = Lp(s)/Lp(ŝ), (25)

where ŝ is the MLE of s. Taylor expand the asso-
ciated quantity

t(s) = −2 lnλ(s) (26)

about ŝ,

t(ŝ+ s− ŝ) = t(ŝ) + t′(ŝ)(s− ŝ)
+ t′′(ŝ)(s− ŝ)2/2 + · · ·
≈ (s− ŝ)2/2/σ2 + · · · ,

where σ2 ≈ 2/t′′(ŝ). (27)

The quadratic approximation is called the Wald
approximation (1943) (see Cowan et al. [11]). If
ŝ does not occur on the boundary of the parame-
ter space (in which case the derivative of t at ŝ is
zero), the sample is large enough (that is, when the
density of ŝ is approximately Gaussian(ŝ, s, σ)),
and if s is the true value of the signal, then the
density of t(s) converges to a χ2 density of one
degree of freedom. The result, which is impor-
tant because of its generality, is a special case of
Wilks’ theorem (1938) (Cowan et al. [11]).

Since t(s) ≈ χ2, we can compute an ap-
proximate 68% confidence interval by solving

t(s) = −2 lnλ(s) = 1, (28)

for the lower and upper limits of the interval.
Given N = 25 observed 4-lepton events, a back-
ground estimate of B ± δB = 9.4 ± 0.5, we can
state that

s ∈ [10.9, 21.0] @ 68% C.L. (29)

Exercise 8: Verify this interval.

As noted, intervals constructed using the profile likelihood are not guaranteed to satisfy the fre-
quentist principle. However, for applications in particle physics the coverage of these intervals is usually
very good even for small amounts of data.

2.6 Hypothesis Tests
In the previous section, we concluded that s ∈ [10.9, 21.0] @ 68% C.L. This result strongly suggests
that a signal exists in the N = 25 4-lepton events observed by CMS. But, a qualitative statement such as
this is generally considered insufficient. The accepted practice is to perform an hypothesis test. Indeed,
in particle physics, a discovery is declared only if a certain quantitative threshold has been reached in an
hypothesis test.

An hypothesis test, in the frequentist approach, is a procedure for rejecting an hypothesis, which
adheres to the following protocol.
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1. Decide which hypothesis is to be rejected. This is called the null hypothesis. At the LHC, this is
usually the background-only hypothesis.

2. Construct a function of the data called a test statistic with the property that large values of it would
cast doubt on the veracity of the null hypothesis.

3. Choose a test statistic threshold above which we are inclined to reject the null. Do the experiment,
compute the statistic, and reject the null if the threshold is breached.

We consider two related variants of this protocol, one by Fisher [10] and the other by Neyman, both de-
veloped in the 1930s. Fisher and Neyman disagreed strenuously about hypothesis testing, which suggests
that the topic is rather more subtle than it seems. Fisher held that an hypothesis test required considera-
tion of the null hypothesis only, while Neyman argued that a proper test required consideration of both
a null as well as an alternative hypothesis. Physicists ignore these disagreements and see utility in an
amalgam of the approaches of Fisher and Neyman. The is eminently sensible and pragmatic, whereas
our quasi-religious adherence to a 5σ threshold before declaring a discovery is not always sensible.

We first illustrate Fisher’s theory of hypothesis testing and follow with a description of Neyman’s
theory.

p(x | H
0
)

x x
0

Fig. 7: The p-value is the tail-probability, P (x >

x0|H0), calculated from the probability density under
the null hypothesis, H0. Consequently, the probabil-
ity density of the p-value under the null hypothesis is
uniform(0, 1).

Fisher’s Approach

We take the null hypothesis, which is denoted by
H0, to be the background-only model, that is, the
Standard Model without a Higgs boson and com-
pute a measure of the incompatibility of H0 with
the observations, called a p-value, defined by

p-value(x0) = P (x > x0|H0), (30)

where x is a test statistic, designed so that large
values indicate departure from the null hypothe-
sis, and x0 is the observed value of the statistic.
Figure 7 shows the location of x0. The p-value is
the probability that x could have been higher than
the x0. Fisher argued that a sufficiently small p-
value implies that either the null hypothesis is false or something rare has occurred. If the p-value is
extremely small, say ∼ 3 × 10−7, then of the two possibilities the response of the particle physicist is
to reject the null hypothesis and declare that a discovery has been made. The p-value for our example,
neglecting the uncertainty in the background estimate, is

p-value =
∞∑

k=N

Poisson(k, 9.4) = 1.76× 10−5, with N = 25.

Since the p-value is a bit non-intuitive, it is conventional to map it to a Z-value, that is, the number
of standard deviations the observation is away from the null if the distribution were a Gaussian. The
Z-value can be computed using 5.

Z =
√

2 erf−1(1− 2p-value). (31)

A p-value of 1.76 × 10−5 corresponds to a Z of 4.14σ. The Z-value can be calculated using the Root
function

Z = TMath::NormQuantile(1-p-value).

If the p-value is judged to be small enough, or the Z-value is large enough, the background-only hypoth-
esis is rejected.

5erf(x) = 1√
π

∫ x
−x exp(−t

2) dt is the error funtion.
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p(x | H0 )
p(x | H1)
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Alternative hypothesis 

Fig. 8: Distribution of a test statistic x for two hypothe-
ses, the null H0 and the alternative H1. In Neyman’s
approach to testing, α = P (x > xα|H0) is a fixed proba-
bility called the significance of the test, which for a given
class of experiments corresponds the threshold xα. The
hypothesis H0 is rejected if x > xα.

Neyman’s Approach

As noted, Neyman insisted that a correct hypothe-
sis test required two hypotheses to be considered,
the null hypothesis H0 and an alternative hypoth-
esis H1. This is illustrated in Fig. 8. The null is
the same as before but the alternative hypothesis
is the Standard Model with a Higgs boson, that
is, the background plus signal hypothesis. Again,
the statistic x is constructed so that large values
would cast doubt on the validity of H0. How-
ever, the Neyman test is specifically designed to
respect the frequentist principle. A fixed probabil-
ity α called the significance (or size) of the test
is chosen, which corresponds to some threshold
value xα defined by

α = P (x > xα|H0). (32)

Should the observed value x0 > xα, or equivalently, p-value(x0) < α, the hypothesis H0 is rejected in
favor of the alternative. By construction, a repeated application of this test will reject a fraction α of true
null hypotheses. Since these are false rejections, we say that these are Type I errors. Neyman’s test
discards the p-value and reports only α and whether or not the null was rejected. However, in particle
physics, in addition to reporting the results of the test, perhaps announcing a discovery, we also report
the observed p-value. This makes sense because there is a more information in the p-value than merely
reporting the fact that a null hypothesis was rejected at a significance level of α.

1 

x

 

x!

p(x | H0 ) p(x | H1)

Fig. 9: See Fig. 8 for details. Unlike the case in Fig. 8,
the two hypotheses H0 and H1 are not that different. It is
then not clear whether it makes practical sense to reject
H0 when x > xα only to replace it with an hypothesis
H1 that is not much better.

Given that Neyman’s test requires an alter-
native hypothesis there is more that can be said
than simply reporting the result of the test and the
observed p-value. Figure 8 shows that we can also
calculate

β = P (x ≤ xα|H1), (33)

which is the relative frequency with which we re-
ject true alternative hypotheses H1. This mistake
is called a Type II error. The quantity 1 − β
is called the power of the test and is the rela-
tive frequency with which we would accept the
true alternative hypotheses. The defining feature
of the Neyman test is that, in accordance with the

Neyman-Pearson lemma (see for example Ref. [2]), the power is maximized subject to the constraint that
α is fixed. The Neyman-Pearson lemma asserts that given two simple hypotheses—that is, hypotheses in
which all parameters have specified values—the optimal test statistic t for conducting an hypothesis test
is the likelihood ratio t = p(x|H1)/p(x|H0).

Maximizing the power seems like a reasonable procedure. Consider Fig. 9, which shows that the
significance of the test in this figure is the same as that in Fig. 8. Therefore, the Type I error rates are
identical. However, the Type II error rate is much greater in Fig. 9 than in Fig. 8 because the power of
the test is considerably weaker in the former. Consequently, it is debatable whether rejecting the null
is a wise course of action since the alternative hypothesis is not that much better. This insight was one
source of Neyman’s disagreement with Fisher. Neyman objected to the possibility that one might reject
a null hypothesis regardless of whether it made sense to do so. He argued that the goal of hypothesis
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testing is always one of deciding between competing hypotheses. Fisher’s counter argument was that an
alternative hypothesis may not be available, in which case we either give up or we have a method to test
the only hypothesis that is available in order to decide whether it is worth keeping. In a Bayesian analysis
an alternative hypothesis is also needed, in agreement with Neyman viewpoint, but is used in a way that
neither he nor Fisher agreed with.

So far we have assumed that the hypotheses H0 and H1 are simple, that is, fully specified. Alas,
most of the hypotheses that arise in realistic particle physics analyses are not of this kind. In the Higgs
boson example, the probability models depend on a nuisance parameter for which only an estimate is
available. Consequently, neither the background-only nor the background plus signal hypotheses are
fully specified. Such hypotheses are examples of compound hypotheses. In the following, we illustrate
how hypothesis testing proceeds in this case using the 4-lepton example.

Compound Hypotheses

In Sec. 2.5, we reviewed the standard way nuisance parameters are handled in a frequentist analysis,
namely, their replacement by their conditional MLEs, thereby converting the likelihood function to the
profile likelihood. In the 4-lepton example, this yielded the function Lp(s) = L(s, f(s)). The justifi-
cation for this is that the statistic t(s) = lnλ(s), where λ(s) = Lp(s)/Lp(ŝ) and ŝ is the MLE of s
can be used to compute (approximate) confidence intervals in light of Wilks’ theorem, which essentially
states that t(s) ≈ χ2. Therefore, the same statistic can also be used as a test statistic with the associated
p-values calculated using the χ2 density. Moreover, since, by definition, Z =

√
χ2, the p-value calcu-

lation can be sidestepped altogether. Using N = 25 and s = 0, we find
√
t(0) = 4.13, which is to be

compared with Z = 4.14, the value found neglecting the ±0.5 event uncertainty in the background.

In summary, the statistic t(s) can be used to test null hypotheses as well as compute confidence
intervals and, therefore, provides a unified way to deal with both tasks. If s is the true value of the mean
signal, then the distribution of t(s) under that hypothesis is a χ2 density with one degree of freedom,
p(χ2|ndf = 1). Sometimes, however, it is necessary to consider t(s) when the value of s in the argument
differs from the value s, say s0, which determines the density of t(s). For example, suppose that a model
of new physics predicts a mean count s0 and an analysis is planned to test this model. We may be
interested to know, for example, what value of t(s) we might expect for a given amount of data. If s = 0,
the goal may be to determine the average or median significance with which we may be able to reject the
background-only hypothesis. Since the predicted signal s0 differs from s = 0, the density of t(s, ŝ)—
where for clarity, the dependence on the estimate ŝ is made explicit—will no longer be χ2, but rather a
non-central χ2 density, p(χ2|ndf = 1, nc) with non-centrality parameter nc, an approximate value for
which is nc = t(s, s0); that is, it is the test statistic computed using an Asimov6 data set [11] in which
the “observed" count N is set equal to the true mean signal count, s0 + b.

3 Bayesian Analysis
Bayesian analysis is merely applied probability theory with the following significant twist: a method is
Bayesian if

– it is based on the degree of belief interpretation of probability and
– it uses Bayes’ theorem

p(θ, ω|D) =
p(D|θ, ω)π(θ, ω)

p(D)
, (34)

6The name of this special data set is inspired by the short story Franchise by Isaac Asimov describing a futuristic United
States in which, rather than having everyone vote in a general election, a single (presumably representative) person is chosen
to answer a series of questions whose answers are analyzed by an AI system. The AI system then decides the outcome of the
election by determining what would have been the outcome had the general election been held!

15

PRACTICAL STATISTICS FOR PARTICLE PHYSICISTS

275



where

D = observed data,

θ = parameters of interest,

ω = nuisance parameters,

p(D|θ, ω) = likelihood,

p(θ, ω|D) = posterior density,

π(θ, ω) = prior density,

for all inferences. The posterior density is the final result of a Bayesian analysis from which, if desired,
various summaries can be extracted. The posterior density assigns a weight to every hypothesis about the
values of the parameters of the probability model, which, in addition to the likelihood, also includes a
function called the prior density or prior for short. The parameters can be discrete, continuous, or both,
and nuisance parameters are eliminated by marginalization,

p(θ|D) =

∫
p(θ, ω|D) dω, (35)

∝
∫
p(D|θ, ω)π(θ, ω) dω.

The prior π(θ, ω) encodes whatever assumptions we make and information we have about the parameters
θ and ω independently of the data D. A key feature of the Bayesian approach is recursion: the use of the
posterior density p(θ, ω|D) as the prior in a subsequent analysis.

These rules are simple, yet they yield an extremely powerful and general inference algorithm.
However, particle physicists remain wedded to the frequentist approach because of the still widespread
perception that the Bayesian algorithm is too subjective to be useful for scientific work. However, there
is considerable published evidence to contrary, including in particle physics, witness the successful use
of Bayesian analysis in the discovery of single top quark production at the Tevatron [16,17] and searches
for new physics at the LHC [18–20].

So, why do particle physicists, for the most part, remain skeptical about Bayesian analysis? For
many, the Achilles heel of the Bayesian approach is the difficulty of specifying a believable prior over
the parameter space of the likelihood function. In our example, in order to make an inference about the
mean event count s using the data N = 25 events with a background of B ± δB = 9.4 ± 0.5 events, a
prior density π(s, b) must be constructed. Even after more than two centuries of effort, discussion, and
argument, however, statisticians have failed to reach a consensus about how to do this in the general case.
Nevertheless, Bayesian analysis is widely and successfully used, and used even within particle physics.
This strongly suggests that we should refrain from overstating the difficulties. After all, physics is replete
with approximations, both of a technical and conceptual nature. The same is true of statistical analysis.
But, of course, this is no excuse for sloppiness. Rather it is a reminder not to make perfection the enemy
of the good.

The particle physicists who have given this topic some thought seem to agree with the statisticians
who argue that the following invariance property should hold for any prior, at least ideally,

πφ(φ)dφ = πθ(θ)dθ, (36)

where φ = f(θ) is a one-to-one mapping of the parameter vector θ, e.g., θ = (s, b), to the new parameter
vector φ and πφ and πθ are, in general, different functions of their arguments. If the above invariance
holds, then the posterior density will likewise be reparametrization invariant in the same sense as the
prior. Suppose we have a rule for creating a prior π(∗) and we apply this rule to create the density πφ.
The same rule is now used to create πθ after which we transform from πθ(θ)dθ to π(φ)dφ. Invariance
with respect to the choice of parametrization demands that π = πφ. It surely ought not to matter whether
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we parametrize the likelihood p(D|s, b) in terms of s and b or in terms of s and u =
√
b. After all, the

likelihood hasn’t really changed, therefore, it would be odd if this “non-change" changed the posterior
density. But, whether or not a change occurs depends on the nature of the prior, as the following example
shows.

Consider the probability function p(D|s) = Poisson(D|s), written in two different ways: p(D|s) =
exp(−s)sD/D! and p(D|σ) = exp(−σ2)σ2D/D!, where σ =

√
s. In order to compute the posterior

densities p(s|D) and p(σ|D) priors must be specified. The most widely used rule for doing so is: choose
the prior to be flat, that is, uniform, e.g., π(s) = 1 and π(σ) = 1 in the parameter space. Notice that
for an unbounded parameter space

∫
π(s) ds =

∫
π(σ) dσ = ∞. Yes, this has a bad look, but it is not

necessarily a problem [12]! The posterior density in the s parametrization is p(s|D) = exp(−s)sD/D!,
while it is p(σ|D) = exp(−σ2)σ2D/Γ(D + 1/2) in the σ parametrization.

Now, if we transform p(σ|D)dσ to p′(s|D)ds the result is p′(s|D) = exp(−s)sD−1/2/Γ(D +
1/2), which clearly differs from p(s|D). But, this is not surprising given that the flat prior is not
reparametrization invariant. Some regard this as a serious problem, one that worsens as the dimen-
sionality of the parameter space increases. Others point to the numerous successful uses of the uniform
prior, even in problems with high dimensional parameter spaces, and accept the lack of invariance as a
price worth paying in order to avoid the not inconsiderable effort of constructing an invariant prior.

A general method to create invariant priors was suggested by Jeffreys in the 1930s [15], which in
the intervening years has received considerable mathematical validation through many different lines of
reasoning (see, for example, [22]). The Jeffreys prior is given by

π(θ) =
√

det I(θ), (37)

where Iij = −E
[
∂2 ln p(x|θ)
∂θi ∂θj

]
is the Fisher information matrix,

and where the average is with respect to potential observations x sampled from the density p(x|θ). When
the Jeffreys rule is applied to p(x|µ, σ) = Gaussian(x, µ, σ) it yields

π(µ, σ)dµ dσ =
dµ dσ

σ2
. (38)

Exercise 9: Show this

Ironically, the resulting posterior density was rejected by Jeffreys, and subsequently by statisticians be-
cause it yielded unsatisfactory inferences! The preferred prior for the Gaussian is

π(µ, σ)dµ dσ =
dµ dσ

σ
, (39)

because it leads to excellent results.

So, what is a confused physicist to make of this? One possibility is to reject the whole Bayesian
omelette and stick to the frequentist gruel. It may be a tad thin for some, but it is at least relatively easy to
make. The other is to dismiss the arguments that yield Eq. (37) in favor of reasoning that yields Eq. (39)
(see, for example, [21]). Yet another way forward is to take seriously the many persuasive arguments
that lead to Eq. (37) and try to understand what the reported failures of the Jeffreys prior for problems
involving more than one parameter is telling us. Here is a hint of some understanding. Note that Eq. (39)
can be written as

π(µ, σ)dµ dσ = σ

[
dµ dσ

σ2

]
,

= σ0 exp(lnσ/σ0)

[
dµ dσ

σ2

]
. (40)
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This suggests, in the spirit of [22], that it is better to interpret the Jeffreys prior as simply an invariant mea-
sure on the parameter space of the associated likelihood function, one that assigns equal weight to every
probability density labeled by θ. Assigning equal weight to every probability density is a reparametriza-
tion invariant procedure, while, as we saw above, assigning equal weight to every parameter is not. If
this interpretation is accepted, then the prior density is actually given by

π(θ) = g(θ)
√

det I(θ), (41)

where g(θ) is a function that could assign non-equal weights to the probability densities, such as the term
before the brackets in Eq. (40). That term is essentially the exponential of the entropy of the Gaussian
density, which assigns a weight ∝ σ to every density indexed by µ, σ. What is missing is a convincing
theoretical framework for choosing g(θ), a challenge that we leave to the reader.

For our example, we shall forego invariance in order to keep things simple and use a flat prior
in both s and b. But, before delving back into the example, we review hypothesis testing in Bayesian
analysis.

3.1 Model Selection
Hypothesis testing (also known as model selection) in Bayesian analysis requires the calculation of an
appropriate posterior density or probability, as is true of all fully Bayesian calculations,

p(θ, ω,H|D) =
p(D|θ, ω,H)π(θ, ω,H)

p(D)
, (42)

where we have explicitly included the index H to identify the different hypotheses. By marginalizing
p(θ, ω,H|D) with respect to all parameters except the ones that label the hypotheses or models, H , we
arrive at

p(H|D) =

∫
p(θ, ω,H|D) dθ dω, (43)

that is, the probability of hypothesis H given observed data D. In principle, the parameters ω could also
depend on H . For example, suppose that H labels different parton distribution function (PDF) models,
say CT14, MMHT, and NNPDF, then ω would depend on the PDF model and should be written as ωH .
Like a Ph.D., it is usually convenient to arrive at the end-point, here the probability p(H|D), in stages.

1. Factorize the prior, e.g.,

π(θ, ωH , H) = π(θ, ωH |H)π(H),

= π(θ|ωH , H)π(ωH |H)π(H). (44)

In many cases, we can assume that the parameters of interest θ are independent, a priori, of
both the nuisance parameters ωH as well as the model label H , in which case we can write,
π(θ, ωH , H) = π(θ)π(ωH |H)π(H).

2. Then, for each hypothesis, H , compute the function

p(D|H) =

∫
p(D|θ, ωH , H)π(θ, ωH |H) dθ dωH . (45)

3. Then, compute the probability of each hypothesis,

p(H|D) =
p(D|H)π(H)∑
H p(D|H)π(H)

. (46)
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Clearly, in order to calculate the probabilities p(H|D) it is necessary to specify the priors π(θ, ω|H) and
π(H). With some effort, it is possible to arrive at an acceptable form for π(θ, ω|H), however, it is highly
unlikely that consensus could ever be reached on the prior π(H). At best, we would have to make do with
a convention. For example we could, by convention, assign equal probabilities to the two hypotheses H0

and H1, a priori, that is, π(H0) = π(H1) = 0.5. But, do we really believe that the Standard Model and
the MSSM are equally probable models?

One way to sidestep the polemics of assigning π(H) is to compare probabilities,

p(H1|D)

p(H0|D)
=

[
p(D|H1)

p(D|H0

]
π(H1)

π(H0)
, (47)

but use only the term in brackets, called the global Bayes factor, B10, as a way to compare hypotheses.
The Bayes factor is the factor by which the relative probabilities of two hypotheses changes as a result of
incorporating the data, D. The word global indicates that we have marginalized over all the parameters
of the two models. The local Bayes factor, B10(θ) is defined by

B10(θ) =
p(D|θ,H1)

p(D|H0)
, (48)

where,

p(D|θ,H1) ≡
∫
p(D|θ, ωH1 , H1)π(ωH1 |H1) dωH1 , (49)

are the marginal or integrated likelihoods in which we have assumed the a priori independence of θ
and ωH1 . We have further assumed that the marginal likelihood H0 is independent of θ, which is a very
common situation. For example, θ could be the expected signal count s, while ωH1 = ω could be the
expected background b. In this case, the hypothesis H0 is a special case of H1, namely, it is the same
as H1 with s = 0. An hypothesis that is a special case of another is said to be nested within the more
general hypothesis. All this will become clearer when we work through the Bayesian analysis of the
4-lepton data.

There is a notational subtlety that may be missed: because of the way we have defined p(D|θ,H),
we need to multiply p(D|θ,H) by the prior π(θ) and then integrate with respect to θ in order to calculate
p(D|H).

3.2 Bayesian Analysis of 4-lepton Data
In this section, we shall

1. compute the posterior density p(s|D),
2. compute a 68% credible interval [l(D), u(D)], and
3. compute the global Bayes factor B10 = p(D|H1)/p(D|H0),

as a way to illustrate a Bayesian analysis of the 4-lepton data.

Probability model

The likelihood is the same as that used in the frequentist analysis, namely, Eq. (23). However, the
likelihood is only part of the model; we also need a prior π(s, b) that encodes what we know, or assume,
about the mean background and signal independently of the observations D. How exactly that should be
done remains an active area of debate and research. Below, we shall take the easy way out!

One point that should be noted is that the prior π(s, b) can be factorized in two ways,

π(s, b) = π(s|b)π(b),
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= π(b|s)π(s). (50)

It is worth noting because π(s, b) is routinely written as π(s, b) = π(s)π(b), which is not true, in general.
The a priori independence of s and b is an assumption, one that we shall make. What do we know about
s and b? We know that s and b are ≥ 0. We also know the probability function and how s and b enter it.
Given this information, there are well founded methods to construct π(s, b). However, for simplicity, for
b, we shall use the improper prior π(b) = k, where k is the scale factor in the likelihood p(D|s, b), and
either the improper prior π(s) = 1, or the proper prior π(s) = δ(s − 15.6). An improper prior is one
that integrates to infinity, which as noted above is not necessarily problematic [12].

Marginal likelihood

Having completed the probability model, the rest of the Bayesian analysis proceeds in a routine manner.
First, it is convenient to eliminate the nuisance parameter b, using the improper prior π(b) = k,

p(D|s,H1) =

∫ ∞

0
p(D|s, b)π(b) db,

=
1

M
(1− x)2

N∑

r=0

Beta(x, r + 1,M) Poisson(N − r|, s), (51)

where x = 1/(1 + k),

Exercise 10: Show this

and thereby arrive at the marginal likelihood p(D|s,H1). The symbol H1 has been introduced to repre-
sent the hypothesis that the signal is non-zero.

Posterior density

Given the marginal likelihood p(D|s,H1) and π(s) we can compute the posterior density,

p(s|D,H1) = p(D|s,H1)π(s)/p(D|H1), (52)

where,

p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Setting π(s) = 1 yields,

p(s|D,H1) =

∑N
r=0 Beta(x, r + 1,M) Poisson(N − r|s)

∑N
r=0 Beta(x, r + 1,M)

. (53)

Exercise 11: Derive an expression for p(s|D,H1) assuming
π(s) = Gamma(qs, 1, U + 1) where q and U are known con-
stants.

The posterior density p(s|D,H1) completes the inference about the mean signal s. In principle, we could
stop there, but, in practice, summaries of the posterior density are furnished, such as a credible interval,
the analog of a confidence interval. But, like confidence intervals, credible intervals, [l(D), u(D)] with
credible level p, defined by

∫ u(D)

l(D)
p(s|D,H1) ds = p (54)

are not unique. The analog of Neyman’s central interval is the central credible interval defined by
∫ l(D)

0
p(s|D,H1) ds = (1− p)/2,
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Fig. 10: Posterior density for 4-lepton data. The shaded area is the 68% central credible interval.

∫ ∞

u(D)
p(s|D,H1) ds = (1− p)/2. (55)

For the 4-lepton data this leads to the central credible interval [11.5, 21.7] for s with p = 0.683, which
is shown in Fig. 10. The statement s ∈ [11.5, 21.7] at 68% C.L. means there is a 68% probability
that s lies in the specified interval. Unlike the analogous frequentist statement, this one is about this
particular interval and the 68% is a degree of belief, not a relative frequency. Statements of this form
do, of course, have a coverage probability. However, a priori, there is no reason why the coverage
probability of credible intervals should satisfy the frequentist principle. In practice, it is found that
credible intervals with appropriately chosen priors can moonlight as approximate confidence intervals.
But when this happens if does not mean that their interpretations somehow merge, it simply means that
a misinterpretation of the intervals is likely to be benign.

Bayes factor

We noted above that
p(D|H1) =

∫ ∞

0
p(D|s,H1)π(s) ds.

Furthermore, p(D|H1) < ∞ even with the improper prior π(s) = 1. However, another arbitrary
constant besides unity could have been chosen, for example, π(s) = C. That constant would not have
altered the posterior density p(s|D,H1) and therefore choosing C = 1 as a matter of convenience was
fine. However, here we wish to compute the global Bayes factor B10 = p(D|H1) / p(D|H0). The
background-only hypothesis, H0, is nested in H1 and has marginal likelihood p(D|H0) ≡ p(D|0, H1).
Since the constant k in the background prior π(b) = k scales both p(D|H1) and p(D|H0) the constant
cancels and no issue arises from using an improper background prior. However, since for H1 π(s) = C
and the parameter s appears only in the calculation of p(D|H1), the Bayes factor is scaled by the arbitrary
constantC. Consequently, the Bayes factor can be assigned any value merely by choosing an appropriate
value for C. This is clearly unsatisfactory. The upshot is that while improper priors may yield reasonable
results for the posterior density p(s|D,H1), albeit ones that are not reparametrization invariant, that is
not the case for Bayes factors. To arrive at a satisfactory Bayes factor, a proper prior must be used. The
simplest such prior is, for example, π(s) = δ(s− ŝ), where ŝ = N − B = 15.6 events. With this prior,
the Bayes factor is

B10 =
p(D|H1)

p(D|H0)
= 4967.
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We conclude that the 4-lepton observations increase the probability of hypothesis s = 15.6 events relative
to the probability of the hypothesis s = 0 by ≈ 5000. In order to avoid large numbers, the Bayes factor
can be mapped into a measure akin to the frequentist “n-sigma",

Z =
√

2 lnB10, (56)

which gives Z = 4.13.

The Bayesian and frequentist results are approximately the same, which is typically the case when
the data are sufficient. This is because the influence of the prior is smaller than when the data are sparse.

4 Supervised Machine Learning
The project of creating artificial beings that mimicked some characteristics of humans has been a dream
of visionaries for millennia. But, during the Second World War, dreams gave way to a desperate focus on
matters of life and death when latter day visionaries sought to create algorithms that could solve difficult
problems such as cracking military codes in real-time. After the war, the pursuit of artificially intelligent
agents was revived. In 1950, the great English mathematician Alan Turing, whose genius helped save
millions of lives and shortened the most calamitous war in history, proposed an operational definition
of such an agent, a test now known as the Turing test [23]. The test cuts to the chase regarding what it
means to be intelligent: if it is impossible to tell whether one is conversing with a person or a machine
and you are in fact conversing with a machine then the latter is intelligent. In the decades following
the publication of the Turing test, progress towards creating such agents was slow, in part because the
required conceptual breakthroughs were lacking and in part because the available computing power was
severely limited.

However, an enormous change has occurred during the last decade or so, driven in part by algo-
rithmic breakthroughs, but mostly by the exponential growth in the size of data sets and the available
computing power. In just a few years, the field of machine learning, that is, the use of computer-based
algorithms to construct useful models of data, has gone from research lab to everyday commercial ap-
plications. To be sure, there are many things humans do that seem far beyond current machine learning
capabilities. It is still the case that we are unable to replicate a young child’s ability to intuit the fact
that the noises she hears from the people around her have meaning. Nor can we replicate the extraor-
dinary human ability to be “trained" on a relatively small number of instances of, say, pictures of the
Golden Gate bridge, and yet be able to identify the Golden Gate in other pictures of the bridge taken
from perspectives that may never have been seen before. Nevertheless, impressive progress has been
made recently. Arguably, the most notable is the breakthrough by the Google subsidiary DeepMind in
creating an agent that taught itself to play to superhuman levels the ancient Chinese game of Go, as well
as Chess and Shogi (Japanese chess) tabula rasa. These self-teaching feats were achieved in a mere 24
hours [24]!

Our purpose here is considerably more modest; it is to emphasize something that can easily get
lost in the hype, namely, that these systems are, for the most part, “simply" highly non-linear high-
dimensional parameter space functions that provide mappings from one space to another. The break-
through has been the ability to fit these enormously complicated functions on practical timescales. In
order to avoid complications that merely obfuscate, we consider a simplified version of the following
problem: separating Higgs boson events in which the Higgs boson is produced via vector boson fusion
(VBF) from events in which the Higgs boson is created via gluon gluon fusion (ggF). But, first, we give
an overview of a few key ideas of machine learning.

Most machine learning algorithms fall into five broad categories:

1. supervised learning,
2. semi-supervised learning,
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3. unsupervised learning (i.e., pattern detection)
4. reinforcement learning, and
5. generative learning.

The simplest category of algorithm is supervised learning in which the data for fitting models, i.e.,
training them, consist of labeled objects. If the labels define the class to which objects belong, for
example, −1, or 0, for gluon gluon fusion events and +1 for vector boson fusion events, then, as shown
below, the resulting function will be a classifier. If the labels form a continuous set, then the resulting
function will be a regression function (sometimes called a “regressor"). For example, suppose the objects
are jets characterized by their transverse momentum pT and pseudo-rapidity η and possibly other detailed
characteristics, such as the electromagnetic fraction, while the labels are the true jet transverse momenta.
The regressor will be a correction function that maps the jet characteristics to an approximation of the
true jet pT . Our example will be a simple VBF/ggF classifier.

4.1 A Bird’s Eye View of Supervised Learning
Supervised machine learning can be construed as a game in which winning means picking the best
function (or functions) from a function space. The game includes three elements:

1. a function space F = {f(x,w)} containing parametrized functions f(x,w), where x are object
characteristics—features in machine learning jargon—and w are the parameters;

2. a loss function L(y, f), which measures the cost of making a bad function choice, and where y are
labels associated with the features x, and

3. a constraint C(w) that places some restriction on the choices.

The best function f(x,w∗) is found by minimizing the constrained empirical risk,

R(f) =
K∑

i=1

L(yi, fi) + C(w), where fi = f(xi, w), (57)

with respect to the choice of function f , which in practice means with respect to the parameters w.

Minimization via Gradient Descent

A loss function, through the empirical risk, defines a “landscape" in the space of parameters, or equiva-
lently in the space of functions. The goal is to find the lowest point in that landscape, usually by moving
in the direction of the local negative gradient,

wj ← wj − ρ
∂R

∂wj
, j = 1, · · · J, (58)

where ρ is called the learning rate and J is the dimensionality of the parameter space, which, in some
recent commercial applications can be in the millions. As is, the algorithm in Eq. (58) would fail mis-
erably because of the complexity of the landscape and the possibility that the minimizer could get stuck
in a local minimum or diverge away from the minimum because of the instability caused by a saddle
point. To alleviate this problem, the standard approach is to replace the exact derivatives ∂R/∂wj by
noisy estimates thereof. This is usually achieved by replacing R by an approximation that uses a small
subset—that is, batch—of the training data in the sum that defines R. Typically, a new batch is used at
every step of the minimization algorithm. This minimization algorithm is called stochastic gradient de-
scent, of which there are many variations. The addition of noise increases the chance that the minimizer
will escape from an unfavorable location in the parameter space.
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To Infinity and Beyond

It is intuitively clear that a successful minimization of the empirical risk, Eq. (57), will yield a solution
f(x,w∗) that is as close as possible to the labels, or targets, y. But, in mathematics, as in physics, we
can gain a a clearer understanding of a construct by taking a suitable limit of it. To that end, consider the
limit of R(f)/K, that is, the average loss, as K → ∞. Writing the average loss in that limit as E, and
assuming that the effect of the constraint goes to zero in that limit, we can write

E[f ] =

∫
dx

∫
dy L(y, f) p(y, x),

=

∫
dx p(x)

[∫
dy L(y, f) p(y|x)

]
, (59)

where we have used p(y|x) = p(y, x)/p(x). The function p(y, x) is the (typically unknown) joint
probability density of the targets and features (y, x). Whether the features x represent an event, a jet,
an image, or piece of writing, and y represents useful known data about each instance of x, all the
information about the mapping from x to y is contained in the joint probability density p(y, x). This
is an important point because the failures of machine learning are almost always due to an object with
known characteristics x′, but unknown label y′, not being a member of the population {(y, x)} that
defines p(y, x). If an agent is trained on a million images of dogs and cats, it is not surprising that it
will classify a horse as either a dog or a cat because the probability density p(y, x) does not encompass
images of horses. The point is that the function f(x,w) will do what it is designed to do. But, what
exactly is f(x,w) designed to do? To answer this question concretely, let us consider the minimization
of Eq. (59) with the widely used quadratic loss,

L(y, f) = (y − f)2. (60)

If we change the function f by an arbitrary amount δf this induces a change

δE = 2

∫
dx p(x) δf(x,w)

[∫
dy (y − f) p(y|x)

]
, (61)

in the mean loss E, which, in general, is not zero. If, however, the function f(x,w) is sufficiently
flexible, it will be possible to reach the minimum of E, where δE = 0. But, we want this to hold for
all variations δf—because these variations are, after all, arbitrary—and for all values of x in order that
the function f not fail—that is, perform poorly—for some subset of the space of features. This can be
assured provided that the quantity in brackets in Eq. (61) is zero, that is, if

f(x,w∗) =
∫
y p(y|x) dy. (62)

Equation (62) is an important result because it tells us precisely what the function f(x,w∗) approximates.
If one uses the quadratic loss, then the function f(x,w∗) approximates the conditional average of the
targets. This result was first derived in the context of neural networks [25–27], however, the result holds
irrespective of the details of the function f(x,w). In particular, the function does not have to be a neural
network. The result holds provided that

1. we use sufficient training data T = {(y, x)},
2. we use a sufficiently flexible function f(x,w) and
3. we use an appropriate loss function.

Moreover, if we choose targets in the discrete set y ∈ {0, 1}, the general result reduces to

f(x,w∗) = p(y = 1|x) (63)
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We conclude that if we minimize the average quadratic loss using training data in which one class of ob-
jects is labeled with y = 0 and the other with y = 1, the function f(x,w∗) approximates the probability
that the object with features x belongs to the class labeled with y = 1; that is, f(x,w∗) is a classifier that
approximates the class probability. From Bayes theorem, this class probability, p(1|x), can be written as

p(1|x) =
p(x|1) p(1)

p(x|1) p(1) + p(x|0) p(0)
, (64)

where p(1) and p(0) are the prior probabilities associated with the two classes. Typically, one trains with
p(1) = p(0), in which case p(1|x) is referred to as a discriminant, D(x), and is given by

D(x) =
p(x|1)

p(x|1) + p(x|0)
. (65)

Boosted Decision Trees

Boosted decision trees (BDT) [28] are, currently, the most popular machine learning method in particle
physics; and for good reason. They perform well, they are faster to train than neural networks, they
are insensitive to poorly performing variables, and they are resistant to overfitting. In view of their
widespread use, it is worth taking the time to understand exactly what this machine learning model
entails. We shall highlight key features of BDTs using a simple example in which we seek to separate
Higgs boson events produced via vector boson fusion (VBF) from gluon gluon fusion (ggF) produced
events. In this section, we first discuss decision trees (DT) and then the notion of boosting, that is,
enhancing the performance of a machine learning model by averaging over many models.

A decision tree is a nested sequence of if then else statements, which can also be viewed as a
histogram whose bins are created recursively through binary partitioning. The VBF/ggF example uses
two discriminating variables (features) |∆η|jj and mjj , the absolute pseudo-rapidity difference between
the two most forward (i.e., largest rapidity) jets in the event and the associated di-jet mass, respectively.
Figure 11 shows two representations of a decision tree for our VBF/ggF discrimination example.

At face value, decision trees do not seem to fit into the mathematical ideas about loss functions
discussed above. In particular, it is far from clear what loss function, if any, is being minimized when
a decision tree is grown. However, all successful uses of decision trees entail averaging over many of
them. As we shall see, it is the averaging that provides the connection to a loss function. Averaging
also mitigates a serious problem with decision trees, namely, their instability. Even minor changes to the
training data can radically alter the structure of a tree.

The first successful averaging algorithm, called AdaBoost, was published by AT&T researchers
Freund and Schapire in 1997 [29] who showed that it was possible to create high performance classifiers
by averaging ones (called weak learners) that perform only marginally better than classification via a
coin toss. The algorithm builds a classifier using training data labeled by the discrete labels y = −1 or
y = +1. In the VBF/ggF example below, y = −1 is assigned to ggF events and +1 is assigned to VBF
events. The algorithm, for N training events and K decision trees, proceeds as follows:

1. initialize event weights ω1,n = 1/N, n = 1, · · · , N
2. repeat for k ∈ 1, · · ·K

(a) fit a tree fk(x) that returns either −1 or +1, using the current event weights {wk,n}
(b) compute error rate εk =

∑N
n=1 ωk,nI[−ynfk(xn)], I(z) = 1 if z > 1, 0 otherwise

(c) compute coefficient αk = 1
2 ln[(1− εk)/εk]

(d) update weights wk+1,n = wk,n exp(−αkynfk(xn))/Zk,
where Zk =

∑N
n=1 ωk,n exp(−αkynfk(xn))

3. classifier f(x) =
∑K

k=1 αk fk(x)
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Fig. 11: Two representations of a decision tree to separate VBF from ggF events based on the variables |∆η|jj
and mjj . On the right, the decision tree is represented as a branching structure in which the circles, called nodes,
represent if then else decisions, that is, binary decisions. The boxes terminate the tree and are referred to, appropri-
ately, as leaves. On the left, the decision tree is represented as a 2D histogram in which the bins, which correspond
to the leaves, have been defined by recursive binary partitioning. The bin boundaries, that is, the binary partitions,
correspond to the decisions. At a given node, the left branch is taken if x < xcut otherwise the right branch is
taken; xcut is an optimal cut on the variable x ∈ {|∆η|jj ,mjj}. The numbers within the leaves are the VBF purity
p = S/(S +B), where S and B are the VBF and ggF event counts in a given bin, that is, leaf.

In step 2(d), the weight of incorrectly classified events, for which ynfk(xn) = −1, is increased, while
that of correctly classified events, for which ynfk(xn) = +1, is decreased.

AdaBoost is a rather cryptic algorithm, which, like decision tree classifiers, does not seem to fit
into the general discussion about average loss given above. However, subsequent to the publication of the
AdaBoost algorithm, Friedman, Hastie, and Tibshirani [30] showed that this algorithm can be viewed as
a way to minimize the average loss function

E[f ] =

∫
dx

∫
dy exp[−yf(x)] p(y, x), (66)

whose minimum occurs at

f(x) =
1

2
ln
p(y = +1|x)

p(y = −1|x)
. (67)

To see this consider the problem of minimizing the error rate on the training sample,

ε =
1

N

N∑

n=1

I[ynf(xn)].

Minimizing the error rate directly in a reasonable amount of time is extremely difficult, therefore, in
practice, a proxy for the error rate is minimized instead. Noting that exp(−ynf(xn)) > 1 when
ynf((xn) < 0, one such proxy is the righthand side of the following

ε =
1

N

N∑

n=1

I[ynf(xn)],
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≤ 1

N

N∑

n=1

e−ynf(xn)I[ynf(xn)],

≤ 1

N

N∑

n=1

e−ynf(xn). (68)

Note that in the limit N → ∞, the righthand side of the above equation, which is an upper bound on
the error rate, converges to Eq. (66). Furthermore, from the recursive definition of the normalized event
weights wk+1,n = wk,n exp(−αkynfk(xn))/Zk in the AdaBoost algorithm, we conclude that

ε ≤ 1

N

N∑

n=1

e−ynf(xn) =

K∏

k=1

Zk,

=
K∏

k=1

N∑

n=1

ωk,n exp(−αkynfk(xn)) ≡ ε′. (69)

If we regard the coefficients αk as free parameters (by neglecting the dependence of the event weights
on αk), we can minimize ε′ with respect to αk by solving

∂ε′

∂αk
= −


∏

j 6=k
Zj




N∑

n=1

ωk,nynfk(xn) exp(−αkynfk(xn)) = 0,

that is,
N∑

n=1

ωk,nynfk(xn) exp(−αkynfk(xn)) = 0. (70)

Since y ∈ {−1,+1}, we can write

e−αk
N∑

n=1

ωk,nI[ynfk(xn)]− eαk
N∑

n=1

ωk,nI[−ynfk(xn)] = 0,

e−αk(1− εk)− eαkεk = 0,

where, recall, εk =

N∑

n=1

ωk,nI[−ynfk(xn)], (71)

is the weighted error rate. We therefore conclude that the upper bound on the error rate ε′ is minimized if
we choose the coefficients to be αk = 1

2 ln[(1− εk)/εk], which is indeed the choice made in AdaBoost.

Therefore, in spite of appearances, boosted decision trees fit into the mathematical framework
sketched above. In particular, AdaBoost can be viewed as a clever way to minimize the average expo-
nential loss given in Eq. (66). Moreover, while the boosted decision tree f(x) cannot be interpreted as a
probability, it can be mapped to a probability by inverting Eq. (67),

p(y = +1|x) =
1

1 + exp(−2f(x))
. (72)

Below, we illustrate the use of the AdaBoost algorithm using the Toolkit for Multivariate Analysis
TMVA [31], which is released with the ROOT [32] package from CERN. Note, in the TMVA implemen-
tation, αk is defined omitting the factor of 1/2, therefore, in order to convert the unnormalized BDT,
f(x), in TMVA to a probability, the appropriate mapping is

p(y = +1|x) =
1

1 + exp(−f(x))
(TMVA). (73)
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Fig. 12: Simulated distributions of the discriminating variables (|∆ηjj |,mjj) for VBF and ggF events. As ex-
pected, there is a larger rapidity gap between the jets inVBF events than those in ggF, which arise from gluon
radiation.

VBF/ggF discrimination
In this example, a BDT is trained using the AdaBoost algorithm in TMVA to discriminate between events
in which the Higgs boson is created via vector boson fusion (VBF) and events in which the Higgs boson
is created via gluon gluon fusion (ggF). The key difference between VBF events and ggF events is that
the former features a pair of forward (i.e., large rapidity) jets that is absent from the latter. It is found
that the two most discriminating variables between these two classes of events are the absolute pseudo-
rapidity difference |∆η|jj between the two jets and the associated di-jet mass mjj and. The predicted
distributions of the two variables is shown in Fig. 12.

We use a training sample size of N = 20, 000 events, split equally between VBF and ggF
events with assigned targets of y = +1 and y = −1, respectively. The TMVA training parameters are
BoostType=AdaBoost, NTrees=800—the number of trees K, nEventsMin=100—the minimum num-
ber of events per bin, and nCuts=50—the number of binary partitions per variable to search for the
optimal partition, i.e., cut. The optimal cut is the one which gives the greatest decrease in impurity as
measured by the Gini index7, defined by p(1−p) where p = S/(S+B) is the purity and S andB are the
signal and background counts, respectively, in a given bin. A bin is maximally pure, either pure signal
or pure background, when the Gini index is zero.

Figure 13 shows the first six decision trees as histograms, each with its associated coefficient
αk = ln[(1 − εk)/εk]8 printed on the histogram. A decision tree is a piecewise constant function in
which each bin (i.e., leaf) is assigned a value. In the AdaBoost algorithm, the values are y = ±1; in our
example, y = −1 for bins in which B > S (i.e., ggF bins) and +1 for bins in which S > B (i.e., VBF
bins). A given feature vector x = |∆η|jj ,mjj , characterizing an event, will fall in a bin in each of the
six decision trees of Fig. (13) and the BDT is equal to the average

∑6
k=1 fk(x) where each tree fk(x)

7After Italian statistician Corrado Gini, 1884-1965.
8As noted, TMVA omits the factor of 1/2.
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Fig. 13: The first six of the 800 decision trees, displayed as 2D histograms, showing the coefficients α1, · · · , α6

associated with the threes.

Fig. 14: The outputs of boosted decision trees averaged over differing numbers of decision trees, 25, 50,...,800.
Each BDT (x), with x = |∆η|jj ,mjj , is mapped to the probability p(y = +1 |x) = 1/[1 + exp(−BDT (x))].
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Fig. 15: The distributions of the discriminant D(x) = 1/[1 + exp(−BDT (x))], where BDT (x) is a boosted
decision tree with K = 800 trees.

Fig. 16: Receiver operating characteristic (ROC) curve. The area under the curve (AUC) is a commonly used
global measure of the discrimination power of a classifier.

returns either +1 or −1 depending on the bin in which x falls. In other words, a BDT is an average
over histograms, each with different set of bins. While the piecewise constant nature remains, the more
histograms (that is, trees) are averaged, the smoother one expects the BDT output to become. This is
illustrated in Fig. 14, which shows the effect of averaging over an increasing number of trees. Finally,
Figs. 15 and 16 show the distribution of the BDT, in which the output has been mapped to the probability
p(VBF |x) ≡ p(y = +1 |x) = 1/[1+exp(−BDT (x))], and the receiver operating characteristic (ROC)
curve of the BDT.

The ROC curve, and the area underneath it (AUC), are often used as simple measures of the
performance of a binary classifier. The larger the AUC the better the performance of the classifier.
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Summary
We have given an overview of the frequentist and Bayesian approaches to statistical inference and a brief
survey of the main mathematical ideas that underpin supervised machine learning. Frequentist analysis
is based on the relative frequency interpretation of probability and, ideally, adheres to the frequentist
principle: repeated application of a statistical procedure will yield statements a fraction f ≥ p of which
are guaranteed to be true, where p is the desired confidence level. The Bayesian approach uses the
degree of belief interpretation of probability and Bayes theorem as the primary inference algorithm. In
both approaches, the key task is building an accurate probability model.

A brief introduction to supervised machine learning was given in which the emphasis was clarify-
ing the critical role of the loss function. We noted the mathematical fact that the quantity approximated
by a machine learning model is determined by the loss function and not by the particulars of the model
provided that sufficient training data are used, the model is sufficiently flexible, and a good approxima-
tion to the minimum of the average loss can be found.
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