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1 Foreword 

1.1 From the Chair 

Yong Ho Chin, KEK 
Mail to: yongho.chin@kek.jp 

 
This September, Weiren Chou, has stepped down from the chair of ICFA Beam 

Dynamics Pane, leaving his longstanding achievements with strong and successful 
leadership which cemented the very foundation of this panel as the central platform for 
international collaborations on beam dynamics studies for now and future. I was 
appointed by ICFA as the new panel chair to succeed his legacy and lead this 
international panel to play an even more active role in the accelerator community. It is 
my greatest honor and pleasure to serve on the very important panel with wonderful 
panel members and to serve to the accelerator community in terms of the beam 
dynamics collaboration. 

The mission of this panel is, as stated in the website, to encourage and promote 
international collaboration on beam dynamics studies for present and future accelerators. 
For this end, we have organized ICFA Advanced Beam Dynamics Workshops and 
sponsored ICFA Mini-Workshops. These activities have been stimulating discussions 
and collaborations among participants with great success. I believe that we can expand 
our activities further, for example, to serve as a forum to exchange useful and valuable 
information, in particular on small workshops or events, among the accelerator 
community with great ease. I will try to implement this idea, though my immediate task 
is to reorganize and reboot some of the panel activities that have been inactive for some 
time.  
 As the first task, I have already moved the ICFA Beam Dynamics Panel website 
from FNAL to KEK. The new website URL is 
 
http://icfa-bd.kek.jp 
 
Please update your address book to this new URL. When you access to the old FNAL 
site, you will be automatically redirected to this new site. Most of contents of the site 
were updated and I am planning to update the web design in future for a better look. 
   Good news of 2016 are successful commissioning and lasing at PAL-XFEL in Pohang, 
Korea and a partial but milestone commissioning of long-waited European XFEL at 
DESY, Germany. The Phase-I commissioning of SuperKEKB has been also 
successfully carried out at KEK, Japan. We expect that the year 2017 will be even more 
prosperous. 

The editor of this issue is Dr. Elias Métral, a panel member and a senior scientist at 
CERN, Geneva. The theme is “Collective Effects in Particle Accelerators.” He collected 
26 well-written articles, which cover almost entire subjects under the collective effects, 
including space-charge, wakefields, impedance, beam instabilities, beam-beam 
interaction, ion and electron clouds effects and so on. They provide very good and 
comprehensive reviews of this important field in beam dynamics.  

mailto:yongho.chin@kek.jp
http://icfa-bd.kek.jp/
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In this issue there are also five workshop/conference reports (IPAC16, HB2016, 
LINAC16, HOMSC16, Workshop on the Frontiers of Intense Beam Physics Modeling), 
six recent doctoral thesis abstracts (Adrian Oeftiger (CERN), Neven Blaskovic Kraljevic 
(Oxford), Alexandre Lasheen (CERN), Letizia Ventura (CERN), Dima El Khechen 
(LAL), and Shan Liu (DESY)) and eleven conference/workshop announcements 
(ERL17, SRF2017, ANARW2017, ICALEPS2017, Workshop on the “Status of 
Accelerator Driven Systems Research and Technology Development”, ICFA Mini- 
Workshop on Impedances and Beam Instabilities in Particle Accelerators, IBIC17, ICFA 
Mini-Workshop on “Beam Dynamics meets Vacuum, Collimations, and Surfaces”, 
IPAC17, Future Circular Collider Week 2017, and CLIC Workshop 2017). I want to 
thank Elias for editing a valuable newsletter of high quality for the accelerator 
community after one year break of Newsletter. 

1.2 From the Editor 

Elias Métral 
CERN, 1211 Geneva 23, Switzerland 

Mail to: Elias.Metral@cern.ch 
 
This newsletter is devoted to collective effects in particle accelerators. The subject is 

discussed in 26 articles, structured as follows. In the first article, Frank Zimmermann 
(CERN) introduces the field of collective effects in particle accelerators, discussing the 
main mechanisms, which have been studied over the last decades. The article 2 is devoted to 
space charge effects in sources and linacs (by Alessandra Lombardi et al., CERN), while 
article 3 focuses on space charge effects in circular machines (by Giuliano Franchetti et al., 
GSI). Intra-Beam Scattering is discussed in detail in the article 4 (by Michel Martini et al., 
CERN) before moving to the concept of impedance, introduced in particle accelerators 
exactly 50 years ago, in the articles 5 to 9, reviewing the early history (article 5 by Vittorio 
Vaccaro, Naples), the theoretical definitions of impedances and related wake fields (article 6 
by Gennady Stupakov et al., SLAC), the simulation aspects (article 7 by Uwe Niedermayer 
et al., TU Darmstadt) and finally the measurements on a bench (article 8 by Andrea 
Mostacci et al., La Sapienza) before putting together all the pieces to build a realistic 
impedance model (article 9 by Benoit Salvant et al., CERN). The coherent instabilities 
induced by these impedances (and the mitigations) are then discussed in the following 
articles: first in linear machines (article 10 by Massimo Ferrario et al., INFN-LNF) and then 
in circular machines. In the latter, the longitudinal plane is discussed first theoretically 
(article 11 by Alexey Burov, FNAL) and then from the simulation side (article 12 by Mauro 
Migliorati et al., La Sapienza). The theory of transverse instabilities is reviewed in the 
article 13 (by Yong Ho Chin, KEK), while the theoretical aspects of the different damping 
mechanisms are analyzed in the article 14 (by Alexey Burov, FNAL). The particular effect 
of space charge of transverse instabilities is examined in detail from the theoretical side in 
the article 15 (by Alexey Burov, FNAL) while the simulations are considered in the article 
16 (by Vladimir Kornilov, GSI). Simulations of transverse instabilities are discussed in the 
article 17 (by Kevin Li et al., CERN) while the main beam-based measurements, both in the 
longitudinal and transverse planes, are reviewed in the article 18 (by Giovanni Rumolo et al., 
CERN). With the article 19 we move to two other important areas of research, Schottky 
noise and Beam Transfer Function (article 20 by Mike Blaskiewicz, BNL) and with the 
article 20 we enter into the field of the two-beam effects: electron cloud in article 20 (by 

mailto:Elias.Metral@cern.ch
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Giovanni Iadarola et al., CERN), fast beam-ion in article 21 (by Ryutaro Nagaoka, SOLEIL) 
and beam-beam in the following articles. For the latter mechanism, linear colliders are 
discussed first (article 22 by Daniel Schulte, CERN), while circular hadron colliders are 
reviewed in the article 23 (by Werner Herr, CERN) and finally the different collision 
schemes of circular electron-positron factories are studied in the article 24 (by Mikhail 
Zobov, INFN-LNF). The concept of three-beam instability, introduced few years ago to try 
and explain some instabilities observed in the CERN LHC, is examined in the article 25 (by 
Alexey Burov, FNAL). Finally, the last article is devoted to the possible mitigations of 
collective effects by optics optimization (by Yannis Papaphilippou et al., CERN). 

As usual, there are also sections on workshop and conference reports, recent doctoral 
theses abstracts, forthcoming beam dynamics events and announcements of the beam 
dynamics panel. 

I really would like to warmly thank all the contributors for their excellent contributions 
and co-operation. It was a great pleasure for me to edit this ICFA Beam Dynamics 
NewsLetter no.69 and I do hope that you will find this issue informative and useful.  
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2 Theme Section: Collective Effects in Particle Accelerators 

2.1 Introduction to Collective Effects in Particle Accelerators 

Frank Zimmermann 
CERN, 1211 Geneva 23, Switzerland 
Mail to: frank.zimmermann@cern.ch 

 Introduction 2.1.1

The beam intensity and the beam brightness of particle accelerators or colliders operated 
for high-energy physics were, and are, often severely limited by “collective effects” (e.g. 
[1]). By contrast, new light sources, such as linac-based free electron lasers, may even rely 
on collective instabilities to accomplish their mission!  

The term “collective effects” refers to the interaction of beam particles with each other 
through a variety of processes, e.g. (1) non-delayed self-fields and image fields present even 
for constant perfectly conducting and magnetic boundaries (direct and indirect “space-
charge effects”), (2) longer-lived electro-magnetic “wake fields” due to a finite chamber 
resistivity or geometric variation in the beam-pipe cross section, which typically affect later 
parts of the beam, (3) coherent synchrotron radiation, which on a curved trajectory may 
even influence earlier parts of the beam, giving rise to “non-causal” wake fields, otherwise 
not normally encountered for ultra-relativistic beams, (4) beam-beam collisions, (5) particle-
particle scattering inside the beam (single scattering called “Touschek effect” and multiple 
scattering known as “intrabeam scattering’), (6) gas ionization (“trapped-ion” or “fast-ion” 
instability), and (7) ionization electrons, photoelectrons and secondary electrons (“electron 
cloud effects”). Arguably also the appearance of (8) micron-size “dust” particles near the 
beam (“UFO effect”) could be considered a collective effect, as it is not observed, or does 
rarely happen, at low beam current.  

Half a century ago, collective effects were often overlooked or could not be well 
computed. The design of the storage ring collider SPEAR, for example, seems to have 
considered beam currents of up to 40 A [2], but it only achieved 30 mA [3]. By contrast, the 
Intersection Storage Rings (ISR) at CERN were constructed with a careful assessment and 
minimization of the “impedance” for all their components, and, as a result, the ISR reached 
maximum (coasting) beam currents around 50 A. Indeed the first solid theories of wake-
field induced beam instabilities, by Neil and Sessler [4], and even the term “impedance,” 
introduced in the accelerator field by Vaccaro [5], date from about this era. Nowadays, the 
impedance or wake fields of most accelerator components can be calculated fairly reliably, 
using modern simulation codes run on powerful computers. Probably the first such code was 
developed by Weiland [6]. The impedance of special elements or for particular situations 
(e.g. two-beam impedance) still require care, however. Our understanding is rapidly 
evolving for other types of collective effects such as those driven by electron cloud or ions. 
The formation of beam tails and the required beam collimation also are important subject of 
active research. And so is the interplay between the optical lattice and collective effects. 
Micro-bunching instability, free-electron lasing or other types of coherent photon-beam 
interactions, e.g. beam interactions with FEL “seed laser” beams passing through undulators, 

mailto:frank.zimmermann@cern.ch
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as well as the harmful hose instability and the desired self-modulation instability in plasma 
acceleration (relevant for the AWAKE experiment at CERN), are further tantalizing 
manifestations of collective effects in modern and future particle accelerators. 

 Space Charge 2.1.2

Formulae to estimate coherent and incoherent space charge effects were already derived 
by Laslett [7]. These have been refined and extended over the years. For example, a recent 
study calculated the corrections for combined function magnets, as in the CERN PS ring, 
and for beam screens of almost arbitrary multi-polygon shape [8].  

Space-charge effects in proton injectors limit the achievable brightness of hadron 
colliders, which is the primary motivation for the LHC injector upgrade (LIU), presently 
underway at CERN.   

Space charge also restrains the brightness of electron RF guns and photo-injectors as 
needed for injection into electron linacs and linac-based FELs. For these injectors an 
efficient compensation scheme based on solenoid focusing was first proposed by 
Carlsten [9,10]  

Interestingly, space charge effects can be important up to highest energy, including the 
final-focus systems of future linear lepton colliders with beam energies of 100s of GeV [11]. 

 Wake Fields and Impedances, Classical instabilities  2.1.3

A formalism to describe and model single- and multi-bunch instabilities driven by 
impedances and to compute instability growth rates has been established by Sacherer [12]. 
Several excellent textbooks, monographs and review articles describe wake fields, wake 
functions and their Fourier transforms – the impedances – plus the resulting instabilities, e.g. 
[13,14,15,16,17,18]. Various powerful computer codes – CST Microwave Studio [19], 
ABCI, Gdfidl, ECHO3D, Omega3P, etc. exist to model vacuum chamber and to compute, in 
particular, geometric wake fields with any desired precision. The resistive wall wake field 
and impedance for various common beam pipe shapes of constant cross section have been 
derived analytically, including higher-order nonlinear components, e.g. by Piwinski [20,21] 
and Yokoya [22]. The resistive wall impedance for a superconducting beam pipe has also 
been calculated [23]. 

Particularly difficult components are those which combine elements of geometric wake 
fields and resistive elements, like tapered collimators, or dielectric structures.  

Also the impedances of surface roughness and of the small random pumping slots on 
LHC beam screens are more difficult to model, as are the wake fields and instabilities in 
situations with more than one beam, and for two or more beams, possibly moving in 
different directions, e.g. as in the interaction region of a collider and in the arcs or the 
acceleration section of an energy recovery linac. 

Different sets of computer codes are available to simulate instabilities by macroparticle 
tracking or to calculate instability thresholds by solving the Vlasov or Sacherer equations. 
From the pertinent analytical dispersion relations also the conditions for Landau damping 
may be derived. 

Sometimes one hears the argument that wake field effects are less important for higher-
energy accelerators, e.g. for the ILC as compared with the ATF-2 (KEK). Yet, the SLC at 
almost 50 times the beam energy of the ATF-2 suffered significantly from wake fields in its 
final focus system. The SLC final-focus behaviour agreed with expectations only for 
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intensities 5-10 lower than design, just as it seems to be the case at the ATF-2. A similar 
situation is seen for hadron beams - resistive-wall instabilities for the FCC-hh, at 3.3 TeV 
appear at least as severe as in the LHC at 0.45 TeV, and more dangerous than in the SPS at 
0.026 TeV/c. 

This can be tentatively understood from scaling laws. For example, the relative 
deflection from a single transition of smaller radius b is approximately [24] 

 
                                                 Δ𝑦𝑦′

𝜎𝜎𝑦𝑦
′ ≈ 𝛽𝛽 2𝑟𝑟𝑒𝑒𝑁𝑁𝑏𝑏

𝛾𝛾
1

𝑏𝑏2 .  (1) 

 
Now assume there is an aperture transition every cell with cell length scaling as β, β 

scaling as square root of energy, the normalized transverse emittance εN to be independent 
of energy, the length of the system to grow in proportion to energy, and b to scale with the 
rms beam size. This would yield a total wake field effect scaling as 

 

                                                Δ𝑦𝑦′
𝜎𝜎𝑦𝑦

′ �
tot

∝ 𝛽𝛽 1
𝛾𝛾

1
𝛽𝛽 𝛾𝛾⁄ ~1 ,  (2) 

 
actually suggesting a constant importance of wake fields for systems at higher beam energy. 
A similar or even stronger dependence on energy is found for the resistive wall wake 
fields [25]. Kubo compared scaling laws for cavity BPM wake fields with those for the 
resistive wall, and found that, under certain assumptions, the effects of the cavity BPM 
wake fields become less important at higher beam energy [25]. 

Mitigation measures for wake-field induced instabilities include octupole magnets which 
generate an amplitude-dependent tune spread providing “Landau damping” (e.g. at the 
LHC [26]), non-zero chromaticity (e.g. at the LHC [26], or earlier at the Tevatron [27]), 
controlled blow up of the longitudinal emittance during acceleration (e.g. in the CERN 
proton accelerator chain), and wide-band bunch-by-bunch feedback systems. Even intra-
bunch feedbacks have been, and are being, developed [28]. Also, lower temperature reduces 
the wall resistivity, e.g. for the LHC beam screen. For the Future Circular Collider, coating 
of the chamber wall with a high-temperature superconductor is being considered, a 
technological approach first proposed by Rossi [29]. 

In linear accelerators an energy-position correlation can be introduced to counteract 
single-bunch beam break up driven by the strong wake field of the accelerating structures. 
This scheme is called “BNS damping”, after Balakin, Novokhatski, and Smirnov [30].  

 Coherent Synchrotron Radiation 2.1.4

Following classical earlier work [31,32,33,34], coherent synchrotron radiation (CSR) 
has recently gained more and more prominence. It is an active field of research. CSR is a 
concern for future colliders with intense fairly short bunches such as SuperKEKB, and an 
important effects for linac-based FELs. Pioneering simulations, including the impact on the 
beam, were developed by Li at JLAB [35], by Kabel, Dohlus, and Limberg at DESY [36], 
and Borland at ANL [37]. The shielding by the vertical and horizontal chamber boundaries 
and the transients at the transition between curved and straight trajectories are among the 
interesting topics. Over the last decade several further numerical codes have been developed 
to compute the CSR wake field and the effect on the beam. All of the recent codes are based 
on a parabolic equation. They are using a mode expansion or mesh methods to compute the 
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field and consider different field and vacuum-chamber configurations. Noteworthy are the 
codes of Agoh and Yokoya [38], Stupakov and Kotelnikov [39 ], Oide [40], Zhou [41], 
Stupakov and Zhou [42] plus Warnock and Bizzozero [43]. For the case of a single bend 
followed by an infinite drift in a rectangular chamber, Zhou’s code (CSRZ) was 
benchmarked against Stupakov’s and Oide’s. In general the results are consistent. 

 Beam-Beam Interaction 2.1.5

The beam-beam collisions can reduce the beam lifetime, cause emittance growth or 
generate unacceptable beam tails. Empirically a maximum value for the beam-beam tune 
shift can be reached [44]. This maximum tends to be an order of magnitude lower for 
hadron colliders than for lepton colliders, which is attributed to the strong damping due to 
synchrotron radiation in the case of lepton colliders. Simulations do, however, suggest that, 
in the absence of any “errors” and imperfections, hadron colliders should be able to reach 
even higher beam-beam tune shifts than lepton collisions [45]. The head-on beam-beam 
collisions also introduce an important betatron tune spread and thereby provide Landau 
damping. At the LHC this Landau damping can be reduced by a transverse separation at the 
main collision points, e.g. when the beams are brought into collision [46]. 

The “errors” contributing to the beam-beam limit can come from the optical lattice, but 
strong perturbations and resonance-driving terms may also be introduced by the collision 
scheme, e.g. by the crossing angle. Crab cavities are one possibility to avoid the beam-
dynamics consequences of a crossing angle, and they indeed helped raising the beam-beam 
limit at KEKB (though less than expected, due to other residual aberrations). A newer 
scheme is the “crab waist” scheme, realized by special sextupoles [47]. This scheme 
eliminates the excitation of transverse betatron resonances (e.g. low order resonances 
coupling the x and y motion) by the collision. It has been successfully implemented at 
DAFNE. The crab waist collision scheme also is an important ingredient for future high-
luminosity high-energy lepton colliders like the FCC-ee. 

Table 1 compares some relevant beam-beam parameters for DAFNE, SuperKEKB, 
CEPC, and FCC-ee. 

 
Table 1: IP parameters for several present and future circular e+e- colliders with and without crab 
waist scheme. The CEPC values are taken from the CEPC pre-CDR. 
 
collider DAFNE SuperKEK

B 
CEPC FCC-ee 

Z 
FCC-ee 
top 

beam energy [GeV] 0.51 4 (e+), 7 (e-) 120 45.6 175 
crossing angle [mrad] 50 83 0 30 30 
rms hor. beam size [µm] 265 10 70 10 36 
rms vert. beam size [nm] 4200 50 150 45 70 
bunch population [1010] 2.05 9(e+),6.5(e-) 38 3.3 17 
IP beta βx,y

* [mm] 250, 8.4 30, 0.3 800, 1.2 1000, 2 1000, 2 
beam-beam parameter 
ξx,y 

0.011(x), 
0.04 (y) 

0.002 (x), 
0.09 (y) 

0.12, 
0.08 

0.05, 
0.13 

0.08, 
0.12 

rms bunch length [mm] 
(incl. beamstrahlung) 

16 6, 5 2.65 3.8 2.5 

Piwinski angle 1.5 25 0 5.7 1.0 
crab waist YES NO NO YES YES 
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For future colliders an important beam-beam effect is beamstrahlung [48], i.e., 

synchrotron radiation emitted in the field of the opposing beam. For linear colliders this 
effect is very strong and greatly degrades the purity of the differential luminosity spectrum 
(luminosity per energy interval). Limiting the number of beamstrahlung photons per particle 
per collision to about 1 is an important design constraint for linear colliders. A non-
negligible part of the beamstrahlung is spin-flip radiation and along with spin precession in 
the strong magnetic field of the opposing beam, this lowers the effective polarization of the 
collision. 

For circular colliders at highest energy presently considered (around 350 GeV c.m.), e.g. 
for t-tbar operation, the beamstrahlung can lead to so large an energy loss of the emitting 
electron that the latter falls out of the energy acceptance of the storage ring [49]. This effect 
limits the beam lifetime. As for linear colliders, an easy mitigation is to collide flat(ter) 
bunches, and, if necessary, to increase the bunch length or to reduce the bunch charge. In 
addition, the collider-ring optics should provide a reasonably large momentum acceptance 
of 1.5-2.0%. At lower energy, e.g. at the Z pole, the beamstrahlung implies emission of low 
energy photons over many turns, which together with the weak radiation damping here 
increases the bunch length and the energy spread [50,51]. This effect must be included in 
the overall parameter optimization. In monochromatization schemes, operating with nonzero 
dispersion at the collision point (of interest, e.g. for direct Higgs production), also the 
transverse emittance is blown up due to the beamstrahlung [52]. 

The beam-beam effect has been compensated with electron lenses [53] at FNAL (long-
range collision) and RHIC (head on collision) [54], significantly increasing the luminosity 
performance. In addition, current-fed wire compensators can mitigate the effect of parasitic 
collisions with a large transverse offset. Also the further correction of nonlinear optics 
aberrations, the use of crab cavities, a crab-waist collision scheme [47], or additional beam 
cooling may allow reaching higher values of the beam-beam tune shift. 

 Touschek and Intrabeam Scattering 2.1.6

 Touschek and intrabeam scattering can be fairly accurately calculated by analytical 
expressions, which need to be integrated over the ring circumference [55,56,57,58,59,60]. 
These calculations are programmed in standard design programmes like MAD-X and SAD. 
Lattices of existing storage rings can be modified to reduce the effect of intrabeam 
scattering [61]. Uncertainties may arise from the presence of betatron and synchro-betatron 
coupling, in particular close to betatron or synchro-betatron resonances 

 Ion Effects 2.1.7

Ionized molecules and atoms of the residual gas can be trapped and accumulate over 
successive turns or at least over the length of a bunch train giving rise to a nonlinear tune 
shift and potentially to trapped-ion [62] or fast beam-ion instabilities [63,64], respectively. 
The fast beam-ion instability had first been predicted from analytical theory and simulations, 
before it was unambiguously demonstrated in dedicated beam experiments [65]. Mitigation 
measures include establishing a low vacuum pressure in the presence of beam, 
antechambers, additional gaps in the bunch train or high chromaticity [67], bunch-by-bunch 
feedback systems, as well as the intentional creation of dispersion waves or beta beating 
across the arcs [66].  
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  Electron Cloud 2.1.8

Electron cloud can be created by gas ionization, photoelectrons, and secondary emission 
or, often, by a combination thereof. Modern simulation code, e.g. PyECLOUD [68], can 
give results in good agreement with observation if the beam-pipe surface parameters are 
known. Conversely critical surface parameters, and their evolution time (“scrubbing” of the 
secondary emission yield) can be deduced by benchmarking simulations against 
experimental data, e.g. measured heat load per unit length or synchronous phase shift. 
Electron clouds can drive coupled-bunch [69] and single-bunch instabilities [70]. 

The wake-field and impedance concepts, including their Fourier transforms, have been 
extended to higher dimensions in order to describe single-bunch electron-cloud 
effects [71,72,73]. 

 Dust Particles 2.1.9

Dust particles or “UFOs” have been seen at high beam current in many electron or 
antiproton storage rings [74], including light sources. Due to its extreme sensitivity to local 
beam loss, the LHC appears to be the first proton ring (operating with a positively charged 
beam) where such dust particles are observed, albeit they are expelled from the beam 
vicinity after a short moment of time [75,76]. 

 Compound Effects 2.1.10

In real life various collective effects, like the wake fields, beam-beam collisions, and 
electron cloud can conspire to render the beam more easily unstable than it would be from 
one of the single phenomena alone. Despite some pioneering work [77,0], the study and 
reliable prediction of such combined effects still is in its infancy.  
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 Introduction 2.2.1

Particle sources, Low Energy Beam Transports (LEBT) and Linacs are single-pass devices that 
generate and increase the energy of a charged particle beam by means of a (radio frequency) electric 
field. They are equipped with magnetic elements (quadrupoles, solenoids) to keep the charged 
particles confined in controlled volumes. The beam quality at the end of the linac (and therefore the 
brilliance available in the downstream circular machines) is determined by the control of the non-
linear forces during the extraction and acceleration process, of which space charge is one of the most 
important. 

The velocity of the beam varies from basically zero in the source plasma to something between 
30 and 50% of the speed of light at the end of the linac, consequently the effects of space charge are 
very different in the various sections. In this chapter we will report on few characteristics issues 
related to space charge, very specific for each part. The illustrative examples are taken from 
LINAC4 [1,2,3], the new 160 MeV H- linac under commissioning at CERN, as the authors are more 
familiar with the setup. 

There are two critical moments during the beam generation in preparation for RF acceleration, 
one is the definition of the transverse emittance in the extraction and low energy beam transport, the 
other is the formation of the longitudinal emittance in the Radio Frequency Quadrupole. In particular 
a widely used technique to control the emittance growth is to inject gas in the section between the 
source and the RFQ. A description of this technique is presented in the next chapter.  

 Space Charge Control in Low Energy Beam Transport, Neutralisation 2.2.2

Beam space charge compensation (SCC) is crucial to overcome the beam transport 
limitations of high intensity ion beams in LEBT region, where high space charge forces due 
to the beam low energy lead to fast beam size and emittance growth. SCC is a technique that 
reduces the space charge forces by adding opposite charge particles into the beam region. 
The SCC studied here occurs when particles of the negative beam ionize residual gas 
molecules through impact ionization and create ions through the process shown in Eq. (1) 

 
                                                 𝐻𝐻− + 𝑋𝑋 → 𝐻𝐻− + 𝑋𝑋+ + e . (1) 

 
In the case of negative beams once the secondary ions are created the electrons are 

expelled to the beam pipe walls and the positive ions are trapped by the beam potential 
leading to a decrease of the local charge density and therefore the electric field inside the 
beam [4]. The critical parameters for the SCC are the secondary particles, the stripping of 
the primary beam and the time it takes. Secondary particles are those that are created by the 
interaction of the beam particles with the system (positive ions and electrons). It takes to a 
primary beam ion to create one secondary ion, in the case of a particle beam only a small 
fraction of particles interact with the neutral gas, this time is of extreme interest because it 
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also says how long it takes to have an equal number of secondary ions to beam ions 
(assuming none are lost), this time is also known as the compensation time. 

When the neutral gas is a gas mixture the compensation time is determined by the sum of 
all gases present, as given in Eq. (2), where nH2 and nx are the residual gas densities of H2 
and other gas, σH2(E) and σx(E) are the respective cross sections for ionization of this atom 
or molecule by the beam [5] 

                   (2) 
 

Once the beam is compensated the system enters in a steady state, during the SCC build-
up the beam parameters are time dependent, and mismatch to the accelerator is expected. 
Often this problem is compensated by chopping away part of the beam after the first phase 
of acceleration but this is a difficult operation and not all linacs are equipped with a 
dedicated chopper at medium energy.    

For Linac4, the compensation time has been evaluated for different gas pressures and an 
the theoretical compensation time from Eq. (2) is shown in Fig. 1. 

 
Figure 1: Theoretical compensation time from Eq. (2). The baseline pressure consists of           (1 10-

6 mbar) H2. 
 

By increasing the residual gas density inside the beam pipe is possible to reduce the 
compensation time, however a balance with the increase in stripping losses should be found. 
In the following Fig. 2 we report the variation of the beam parameters along the pulse 
measured at the LINAC4 test stand. The space charge reaches steady state and the emittance 
becomes stable after 360 µs at low pressure, after 300 µs at medium pressure, and after 200 
µs at high pressure.  
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Figure 2: Emittance evolution along the pulse for 3 different residual gas pressures. 

 Space Charge in the First Stage of Acceleration (Radio Frequency 2.2.3
Quadrupoles) 

In hadron linacs the first stage of acceleration is generally performed by a Radio 
Frequency Quadrupole [6]. The Radio Frequency Quadrupole is a linear accelerator, which 
focuses, bunches and accelerates a continuous beam of charged particles with high 
efficiency and preserving the emittance. The focusing as well as the bunching and 
acceleration are performed by a Radio Frequency (RF) electric field. In the RFQ, it is where 
the crucial transition between a continuous beam, undergoing only 2D space charge effects, 
is transformed in a bunched beam, undergoing 3D space charge effects. The process of 
bunching is necessary for any further acceleration in a RF field. Mastering the transition of 
space charge forces from 2D to 3D is a key in the design of high intensity RFQ and the way 
it is done has a crucial input on the final longitudinal emittance. Going into more details, the 
bunching is done adiabatically over several cells in order to maximize the capture and 
minimize the emittance. When the beam is fully bunched, the phase is gradually tapered up 
to bring the beam to the final energy. All the time the transverse parameters are set as to 
keep a constant transverse phase advance per cell, by compensating the variation of the rf 
defocusing term and the space charge term during the process of bunching and acceleration. 
Schematically the RFQ is designed in 3 distinct parts: the shaper, to give the beam a 
longitudinal structure; the gentle buncher, to bunch and begin acceleration; and the 
accelerator to bring the beam to the final energy. The relative variation of the characteristics 
RFQ geometrical parameters (aperture modulation and phase) is controlled to fulfil these 
tasks sequentially. 

The main difference when designing RFQs comes from the space charge effects. For 
high intensity beam, when the space charge term dominates the emittance term in the 
equation of motion, it is important to start acceleration almost at the same time of shaping 
and bunching in order to compensate for the increased space charge defocusing during 
longitudinal compression. A RFQ designed for a high intensity beam will result in a longer 
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structure than one designed for the corresponding low intensity beam and, generally, will 
produce a higher output longitudinal emittance. Table 1 contains the main difference in the 
design strategy for high and low intensity beam.  

Table 1: Difference between a high intensity and a low intensity RFQ. 

Parameter Space charge 
dominated 

Emittance 
dominated 

RMS … 10.5 

SHAPER Shaping and 
acceleration 

Over many cells w/o 
acceleration 

PRE-BUNCHER Not used Fast bunching 

GENTLE BUNCHER Bunching and 
acceleration 

Complete the 
bunching 

(almost no energy 
increase up to here) 

BOOSTER Not used Fast transition to 
accelerating phase 

ACCELERATOR Beam bunched around 
ϕ = -35, -30 

Beam strongly 
bunched 

(ϕ = -20, -15) 

 Space Charge in LINACS 2.2.4

After extraction and the first phase of acceleration and bunching in an RFQ a hadron 
beam is accelerated by an efficient linear accelerator, like a Drift Tube Linac. The beam 
enters the second phase of acceleration with energy between 3 and 5 MeV generally, at this 
point space charge effects are important but less severe than in the LEBT. Recipes have 
been proven useful of maintain a given ratio between transverse and longitudinal phase 
advance to avoid resonances [7]. A smooth transition between sections is also important to 
control space charge. As the linac is a synchronous machine with the phases (and 
consequently the longitudinal phase advance) determined by the geometrical length of each 
cell, the control of the relation transverse /longitudinal phase advance in presence of space 
charge are performed by varying the intensity of the quadrupoles. 

More and more in modern linacs the choice is made to adopt a permanent magnet 
focusing channel, as it is very economical, simplifies the drift tube geometry and allows the 
use of high frequency at low velocity.  

The choice of Permanent Magnet Quadrupoles called for a new development in the 
design of linear accelerators which goes under the name of space charge independent 
matching. This scheme, which was tried at LINAC4 amongst others, foresee the design of a 
fixed focusing channel for different space charge intensity, with all the flexibility built into 
the matching line between the RFQ and the next stage of acceleration. Details of this design 
are given in the following chapters. 

 Space Charge Independent Matching  2.2.5

As a practical case of space charge independent matching we would like to illustrate the 
case of linac4 [1,2,3].  The pre-injector includes a source followed by a Low Energy Beam 
Transport at 45 keV, a Radio Frequency Quadrupole, which accelerates the beam to 3 MeV 
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and a Medium Energy Beam Transport line (MEBT). The MEBT, 3.6 m in length, houses a 
fast chopper with the purpose of removing selected micro-bunches in the 352 MHz 
sequence and therefore avoid losses at capture in the CERN PSB (1 MHz). The beam is then 
further accelerated to 50 MeV by a conventional Drift Tube Linac (DTL) equipped with 
Permanent Magnet Quadrupoles (PMQ), to 100 MeV by a Cell-Coupled Drift Tube Linac 
(CCDTL) and to 160 MeV by a π-mode structure (PIMS). The focusing after 100 MeV is 
provided by Electromagnetic Quadrupoles (EMQ) whereas between 50 and 100 MeV by a 
combination of PMQs and EMQs. 

The quadrupole settings of the chopper-line were arranged in order to insure a good 
chopping efficiency and a perfect matching to the DTL for beams of varying current. The 
main beam parameters at the MEBT output are listed in the Table 2. 

Table 2: Chopper output beam parameters. 

 Transmission 
(%) - mA 

X RMS 
Emittance 

(π.mm.mrad) 

Y RMS 
Emittance 

(π.mm.mrad) 

Z RMS 
Emittance 

(π.deg.MeV) 
20mA 99.1% - 19.5mA 0.282 0.283 0.116 
40mA 98.7% - 38.5mA 0.275 0.275 0.120 
60mA 95.6% - 54.7mA 0.270 0.286 0.140 

70mA-Nominal 95.7% - 62.5mA 0.290 0.297 0.155 
80mA 95.2% - 68.5mA 0.296 0.329 0.165 
100mA 95.3% - 75.1mA 0.332 0.348 0.185 

 
The transmission is better for the low current cases. Note that the difference of 

transmission between the 60 and 100 mA cases is negligible (less than 1%), but not the 
emittance increases. If we refer to Table 2, transverse emittance increases in the MEBT are 
equal to 4.3%, 22% and 43% respectively for the 20, 70 and 100 mA cases. For the 
longitudinal plane, the emittance behaves the same (4.3%, 17% and 27%). 

The eleven quadrupoles gradients have been changed to match the beam to the DTL and 
the chopping efficiency has been recovered for all the cases. In Table 3, the remaining 
proportions of the beam are listed for 2 different voltages seen by the beam. It shows that 
for the 100 mA cases, we would need more than 450 V effective voltage between the 
chopper plates in order to completely chop the beam. In fact, the dump aperture is fixed but 
the beam size increases with the current. The higher the current, the higher the chopping 
voltage should be.   

Table 3: Remaining beam after chopping. 
 

Remaining Beam  450V 400V 

20mA 0% 0.14% 
40mA 0% 0.25% 
60mA 0% 0.32% 

70mA-Nominal 0% 0.31% 
80mA 0% 0.26% 
100mA 0.2%  0.25% 
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We kept fixed the focusing in the DTL and in the CCDTL considering that the focusing 
schemes are established by PMQs (Permanent Magnet Quadrupoles). We cannot, as we did 
in the chopper-line, adjust the line to current. We have to adjust the initial beam parameters 
to the line by using the 4 last quadrupoles of the MEBT. The regular focusing layout of the 
DTL can be adapted to many currents and emittances as far as we are able to adjust the 
beam parameters (Twiss parameters) at the input. The third buncher of the MEBT and its 
four last quads insure a proper matching to the regular DTL lattice. The transition CCDTL-
PIMS needed some re-matching adjustments performed with the 4 first electromagnets of 
PIMS. Figure 3 shows the beam profiles at the DTL input for the 20 and 100 mA cases. As 
expected, the beam size is bigger and the halo much more developed in the 100 mA case. 
Figure 4 shows the transverse envelope of the beam along DTL CCDT and PIMS for the 
different current cases, 20, 40, 60, 70, 80 and 100 mA. For all these cases, the matching has 
been done to the same DTL-CCDTL channel thanks to the last part of the chopper-line. It 
means that only the 4 first quadrupole gradients of the PIMS were slightly adjusted. All the 
other parameters (quad gradients, gap phases and fields…) of the 65 meters line are the 
same for all the cases. We give in the following Table 4 the DTL input beam parameters for 
several currents. 

 
Table 4: Matched DTL input Twiss Parameters from 0 to 80 mA. 

 
Current 
(mA) AlphaX BetaX 

(mm/mrad) AlphaY BetaY 
(mm/mrad) AlphaZ BetaZ 

(mm/mrad) 
0 0.901 0.112 -1.701 0.410 -0.0104 0.225 
20 0.993 0.138 -1.952 0.475 -0.0122 0.299 
40 1.082 0.158 -2.148 0.532 -0.0143 0.346 
60 1.165 0.177 -2.309 0.577 -0.0161 0.378 
80 1.192 0.181 -2.396 0.601 -0.0160 0.384 

 
The values in Table 4 bring us to the same conclusions as Table 1 (RFQ case). The 

evolution of the input Twiss parameters is smooth, and we managed to reach them by using 
the matching section of the chopper-line. Figure 4 shows that the beam is matched for all the 
6 currents. Except for the 4 first quadrupoles of PIMS, all the settings are exactly the same, 
and, as done for the input beam. We can notice that the beam size is smaller at low currents. 
The main beam parameters at the outputs of the 3 structures are listed in the Tables 5, 6 and 
7. 
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Figure 3: DTL input beam profile for 20 and 100mA cases. 
 

Excepted few losses (< 0.5 ‰) in the DTL for the 100 mA case, the transmission is 
100 % for all the cases in all the 3 accelerating parts. In the 3 structures, the conclusions on 
emittance increases are the same. The emittances increase more for the high current cases. 
The beam parameters evolutions are summarized in Table 8 for the “RFQ to PIMS” 
simulations. 

Even if we noticed a bigger emittance increase in the RFQ for the low current case, the 
balance is reversed in chopper-line, DTL, CCDTL and PIMS. At the end of Linac4 we can 
conclude that transmission and emittance increases are correlated with the input beam 
current. Above 70 mA input beam current, we can expect more than 10 % of losses and 
emittance increases higher than 30 % in transverse and 50 % in longitudinal plane unless we 
increase the RFQ voltage. The emittance evolutions from chopper-line to PIMS are shown 
in Figs. 5,6 and 7. 

The evolution of the emittances is very similar for all the cases and higher the current, 
higher the emittance increase. Concerning the low current cases, there is almost no 
emittance increase in transverse planes and it is very low in longitudinal. 
Figure 8 compiles the results for all the input currents all over the Linac4 structures. The 
ratio of the output current of each structure over the transverse emittance gives us an idea of 
the beam quality. This ratio cannot increase along the Linac or take a value above the 
reference. A decrease of this ratio can be explained by losses and/or emittance increase. 
From this figure, we can find a summary of the results discussed previously. The evolution 
of the quality factor for the RFQ is linear and really close to the reference for the currents 
below 70-80 mA. This tells us that for this range of current, the losses in RFQ are 
compensated by a decrease of the emittance. Above 80 mA, it’s not the case anymore. The 
losses become so important, that they cannot be balanced by an adjustment in emittance 
value.  The chopper signature is really similar to the RFQ one. The factor is proportional 
until 70-80 mA and starts to be degraded above 80 mA. From 20 to 70 mA, the difference 
between the RFQ beam quality factor and the chopper one is mainly due to the losses in the 

20mA 
 

100mA 
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MEBT. Above 70 mA, the emittance increase in the chopper-line is becoming quite high 
and adds to the losses to saturate the beam quality factor.  

 

 
Figure 4: Transverse beam envelope along DTL and CCDTL. 
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Table 5: DTL output beam parameters. 
 

 Transmission 
(%) - mA 

X RMS 
Emittance 

(π.mm.mrad) 

Y RMS 
Emittance 

(π.mm.mrad) 

Z RMS 
Emittance 

(π.deg.MeV) 
20mA 100% - 19.5mA 0.279 0.281 0.126 
40mA 100% - 38.5mA 0.286 0.278 0.128 
60mA 100% - 54.7mA 0.289 0.287 0.16 

70mA-Nominal 100% - 62.5mA 0.31 0.309 0.186 
80mA 100% - 68.5mA 0.335 0.334 0.202 

100mA 99.97% - 
75.1mA 0.372 0.360 0.222 

 
Table 6: CCDTL output beam parameters. 

 

 Transmission 
(%) - mA 

X RMS 
Emittance 

(π.mm.mrad) 

Y RMS 
Emittance 

(π.mm.mrad) 

Z RMS 
Emittance 

(π.deg.MeV) 
20mA 100% - 19.5mA 0.287 0.283 0.129 
40mA 100% - 38.5mA 0.289 0.288 0.136 
60mA 100% - 54.7mA 0.299 0.299 0.167 

70mA-Nominal 100% - 62.5mA 0.319 0.324 0.199 
80mA 100% - 68.5mA 0.349 0.347 0.215 
100mA 100% - 75.1mA 0.389 0.378 0.236 

 
Table 7: PIMS output beam parameters. 

 

 Transmission 
(%) - mA 

X RMS 
Emittance 

(π.mm.mrad) 

Y RMS 
Emittance 

(π.mm.mrad) 

Z RMS 
Emittance 

(π.deg.MeV) 
20mA 100% - 19.5mA 0.289 0.283 0.129 
40mA 100% - 38.5mA 0.291 0.293 0.143 
60mA 100% - 54.7mA 0.307 0.306 0.17 

70mA-Nominal 100% - 62.5mA 0.337 0.327 0.199 
80mA 100% - 68.5mA 0.363 0.352 0.212 
100mA 100% - 75.1mA 0.416 0.382 0.232 
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Table 8: Beam parameters evolution along Linac4. 
 

 Transmission 
(%) - mA 

X RMS 
Emittance 
Increase 

Y RMS 
Emittance 
Increase 

Z RMS 
Emittance 

increase (from 

RFQ) 
20mA 97.5% - 19.5mA 15.6% 13.2% 16.2% 
40mA 96.2% - 38.5mA 16.4% 17.2% 31.2% 
60mA 91.2% - 54.7mA 22.8% 22.4% 34.9% 

70mA-Nominal 87.6% - 61.3mA 34.8% 30.8% 51.1% 
80mA 85.6% - 68.5mA 45.2% 40.8% 54.6% 
100mA 75.1% - 75.1mA 66.4% 52.8% 59.5% 

 

 
 

Figure 5: Horizontal emittance evolution from MEBT to PIMS. 
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Figure 6: Vertical emittance evolution from MEBT to PIMS. 
 

 
 

Figure 7: Longitudinal emittance evolution from MEBT to PIMS. 
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Figure 8: Linac4 structures beam quality factor. 
 

By looking at the evolution of beam quality factor at the Chopper and PIMS outputs, we 
can notice that the beam quality is almost not degraded along the path between the two 
structures. As there is no loss in the 70 meters of DTL, CCTL and PIMS, the slight beam 
degradation is only due the emittance increase. We can then conclude that the Linac4 
delivers a constant beam quality until 70-80 mA (considering as acceptable a transmission 
of 90 % from RFQ to PIMS). Above 80 mA, we observe a saturation effect that over rides 
the advantages of increasing the source current.  

 Emittance Reconstruction in Presence of Space Charge  2.2.6

The space charge has an effect not only in the design of a linac but also in the 
measurements techniques that can be used during the commissioning and operation of a 
linac. The measurement of the transverse beam emittance at each energy milestone is an 
essential step during the commissioning of a Linac. At low energy, as the beam penetration 
depth and activation are low, a direct method based on a slit and grid system is preferred [8].  
In this case the effect of space charge happens between the slit and the grid and accurate 
calculations should be done to evaluate the effect of space charge on the final emittance 
measurement accuracy. When the beam reaches energies of few tens of MeV the technical 
realisation of the slit becomes more challenging and therefore indirect methods to measure 
the emittance are preferred especially for a temporary measurement line. The classical 
emittance reconstruction techniques, based on measuring the beam profile at three different 
location, is reliable only if the emittance is conserved and there aren’t any self-forces acting 
on the beam in between the 3 monitors.  This latter condition is not fulfilled in the energy 
range 10-100 MeV for a beam, which carries about 80 mA of peak current. To compensate 
for this drawback the classical method has been extended by combining it with an iterative 
process of multi-particle tracking which starts from upstream the suite of monitors and 
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propagate the beam “forwards” taking into account space charge effects. This very efficient 
technique - which we call “forward method”- has been applied to the LINAC4 beam at 30, 
50, 100 and 160 MeV energy in preparation for the respective beam commissioning stages 
[3]. 

An example of the effectiveness of this method is shown in Fig. 9, where the emittance 
measured by direct method is compared to the emittance obtained from profiles and 
corrected for space charge effects with the “forward method”.  

 
Figure 9: Transverse emittance measured at the linac4 with a 12 MeV. Comparison between 
measurement with a direct method and indirect method corrected for the effects of space charge. 

 References 2.2.7

1. M. Vretenar ed., LINAC4 technical Design Report, CERN-AB-2006-084 ABP/RF 
(2006). 

2. A.M. Lombardi, et al., “Beam Dynamics in Linac4 at CERN”, HB’08, Nashville, 
Tennessee 2008; http://www.JACoW.org   

3. A.M. lombardi., “Commissioning Of The Low-Energy Part Of Linac4”, in Proc. 
Linac’14, Geneva, Switzerland.CA. Valerio-Lizarraga et al., Space charge 
compensation in the Linac4 Low Energy Beam Transport line with negative 
hydrogen ions, Rev. Sci. Instrum. 85 , 02A505 (2014). 

4. A. J. T. Holmes,Phys. Rev. A, Vol. 19, No 1 January (1979).  
5. M.E. Rudd, et al., Phys. Rev. A. 28, 3244 (1983). 
6. M.WEISS, “Radio Frequency Quadrupole”, CERN-PS/87-51 (CAS Aarhus,1986) 
7. I. Hofmann et al., “Review of beam dynamics and space charge resonances in high 

intensity linacs”, EPAC’02 proceedings, Paris, France (2002). 
8. J.B. Lallement, et al, “Linac4 Transverse and Longitudinal Emittance 

Reconstruction in the Presence of Space Charge”, THPP033, these proceedings, 
LINAC14, Geneva, Switzerland (2014). 



 31 
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 The Issue of Space Charge Limit 2.3.1

The beam dynamics of high intensity beams in a circular machine has undergone a 
change of focus in the past 15 years. The effects of pure space charge studied in the 
previous decades have become more mixed with the details of the machine, in particular the 
nonlinear dynamics deriving from the magnet nonlinear components. Accelerator wisdom 
suggests to limit intensity according to a space charge limit defined as  
 

                     (1) 
 
where Bf  is the bunching factor, m the mass of a nucleon, A the mass number, e the 
elementary charge, Z the charge state of the ion,  the rms horizontal emittance and  
the rms vertical emittance,  the incoherent tune-shift allowed, the “space charge 
limit”. In addition,  and  are the average horizontal and vertical beta functions 
along the machine. The coefficient  depends on the type of beam distribution: f’ = 1 for a 
transverse KV beam distribution, f’ = 4/3 for a Waterbag and f’ = 2 for a Gaussian. The 
conservative approach to the space charge limit was to assume a limit for  of ~ 0.25. 
This number stems from practice where it is assumed that the most dangerous machine 
resonances are accounted up to the fourth order.  

 Space Charge Induced Resonance Crossing 2.3.2

The results of the space charge tune-spread overlapping some resonance is the creation of 
emittance increase or beam loss. Long term beam loss is due to several factors, but lattice 
nonlinearities and high intensity certainly rank among the main cause. In fact, numerical and 
experimental studies at the CERN PS have shown that periodic resonance crossing induced 
by space charge in a bunched beam is a deleterious effect for beam survival (See Ref. [1]). 
The focus in that study was on the one-dimensional resonance 4Qx = 25, which was 
artificially excited by octupoles. A later study in GSI Ref. [2] has considered the natural 
resonance 3Qx = 13. The underlying mechanism leading to beam loss and emittance growth 
is explained, for 1D resonances, in terms of instantaneous stable islands in the two-
dimensional phase space and their crossing of particles orbits [3].  

 Third Order Coupling Resonance 2.3.3

Detailed studies for SIS100 have shown that in the injection scenario of the Uranium ions, 
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random components of magnet nonlinearities excite a significant web of resonances 
including 2D resonances [4], the simpler of which is third order Qx + 2Qy = N. The details 
of the periodic resonance crossing induced by space charge for coupled resonances have 
never been studied due to the high complexity. In fact, while for 1D resonances the 
mechanism is relatively well understood, for 2D resonances it is not, as the dynamics is 
now fully 4-dimensional in phase space. Indication of this complexity, have been observed 
in the experimental campaign at the CERN-PS in 2012, where space charge studies near the 
resonance Qx + 2Qy = 19 have shown that beam profiles for some machine tunes acquired 
an anomalous asymmetry. In this scenario, new nonlinear dynamics objects called fix-lines 
play a similar role as the fixed points for the crossing of the 1D resonances. A full study of 
the fix-lines is reported in Ref. [5]. The code requirements for simulation of long term 
storage in presence of space charge are discussed in [6].  

In SIS100 operational requirements do not allow beam loss to exceed ~ 5%, and the issue 
of whether a resonance compensation may be carried out for a long-term storage of a high 
intensity bunched beam or not is of high relevance. Recent numerical studies have shown 
that resonance compensation in simulations using a frozen space charge model has a 
beneficial effect on long-term beam loss [4, 7]. However, it remains to be established if this 
procedure is effective in a real high intensity bunched beam. In fact, resonance 
compensation is obtained by creating an artificial driving term that counteracts the driving 
term of the machine nonlinearities [8]. This procedure relies on the assumption that a 
resonance is excited mainly by a single harmonic. While this assumption works well in 
standard operational regimes for low intensity beams, it is not obvious what the 
consequences for multiple periodic resonances crossing induced by space charge are. Below 
(Fig. 1) is shown an example of single crossing of a 3rd order   resonance.              

           

Figure 1: Beam emittance blow up when crossing a third order resonance (left), and for the case 
with the compensated driving term (right).   

In the left picture of Fig. 1 we show the vertical emittance growth for an artificially 
induced crossing of a third order resonance in a computer simulation. In this example the 
third order resonance is excited in a computer model creating the driving term Λc = 0.45E-
01, Λs = 0. The effect of the resonance is to make the vertical emittance growth entirely 
caused by the nonlinear dynamics as the space charge is here not included. On the right 
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picture of Fig. 1, the driving term of the resonance is compensated by using two sextupoles 
and the yellow curve shows that no emittance growth takes place (as expected). However, in 
Fig. 2, when the high intensity is activated, the compensation of the driving term is affected 
by space charge, and a small emittance growth is detected (black curve). The consequences 
of this residual driving term in a regime of periodic resonance crossing are not easy to 
estimate, and due to the complexity of the topic, at GSI a campaign for testing the 
effectiveness of a resonance compensation in presence of space charge has been undertaken.  

 

Figure 2: Emittance growth for a single resonance crossing. The black curve shows that the 
presence of space charge disturbs the compensation of the original resonance driving term.  

 Third Order Resonance Mitigation 2.3.4

Figure 3 shows the resonance chart of SIS18 after the recent realignment of the 
accelerator magnets. The apparent mismatch of some of the resonance lines with the 
theoretical solid lines is due to small systematic tune-shifts present in the machine model 
used by the control system. The third order resonance Qx + 2Qy = 11, visibly excited, is of 
particular interest because a similar resonance will affect the SIS100 for the preliminary 
working point for ions (example for the Uranium beam scenario at the working point Qx = 
18.84, Qy = 18.73) and fast extraction [9]. This resonance strength was estimated by 
measuring beam loss with Trafo [10] while the resonance is crossed with linear ramp from 
Qy = 3.45 to Qy = 3.35 in 1 second keeping Qx = 4.2. The beam was coasting with an 
intensity low enough to prevent space charge effects; in fact, for 2 × 108 ions of U73+, the 
tune-shift is ∆Qx ≃ −2.5 × 10−3, ∆Qy ≃ −5 × 10−3. This is obtained via beam profile 
measurements [11], and also with the methods in Ref. [12]. In addition, the beam was 
injected so to fill the transverse acceptances of SIS18, thus emphasizing the beam loss due 
to resonances. Figure 4 left shows the beam survival during the crossing of the un-
compensated machine: only ∼ 35% of the beam survives. The beam loss stop-band is found 
in 450 ÷ 750 ms, which corresponds to Qy = 3.375 ÷ 3.405.  

In order to compensate the resonance Qx + 2Qy = 11 we created a controlled resonance 
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driving term by using the normal sextupoles of SIS18. We used two sextupoles (GS05KS3C, 
GS07KS3C) of strength K2,1, K2,2, which generate a driving characterized by the strength 
Λ and by an angle α. As the problem is completely invertible, by setting Λ, α, we obtain 
K2,1, K2,2. 

                          
Figure 3: Resonances of SIS18 measured on the 16/7/2014 after the magnets realignment. This 
picture has been obtained by using SISMODI control system.  

 

Figure 4: Left: beam survival by crossing the resonance Qx + 2Qy = 11 in 1 second. The survival is 
~ 35%. Right: best compensation for Λ = 0.025 at α = 270 degrees.  
 

Attempts of compensating this resonance at injection energy were obstacled by the 
resolution of the power supply of the correcting sextupoles. For this reason, the resonance 
compensation was performed at higher energy 300 MeV/u, so that the overall increase of 
rigidity would also increase the driving term of the resonance allowing the compensation. 
We proced first varying α keeping Λ fixed, in this way we found that the angle α ~ 270 
degrees is 180 degrees from the phase of the natural driving term. Afterwards we kept fixed 
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α = 270 degrees and vary Λ to find the optimal value that minimized the beam loss for the 
crossing the resonance. We find that Λ = 0.025 (the units of Λ are of integrated sextupole 
strength, as used in the LSA setting generation system). With this procedure, we improved 
the beam survival from ~ 35% to ~ 85%, see Fig. 4 right. The reasons of why a better 
compensation could not be reached could not be found in the beam time available.  

 Effect of High Intensity on Bunch Dynamics 2.3.5

The result of the trade-off with energy plateau for compensating the resonance is the 
creation of bunches of moderated high intensity. With these bunches the robustness of the 
best compensation achieved was tested. For this measurement, the beam was injected, 
bunched, accelerated, and stored for 1 second keeping the machine tunes fixed (standard 
operation mode). We explored the bunched beam survival for several working points along 
the vertical line in the vertical tune, while keeping Qx = 4.2. The beam intensity allowed for 

a moderate space charge tunes-shift of ∆Qy ~ 0.05 corresponding to 6.5 × 108 ions of U73+ 

present in the machine before bunching. This tune-spread is not significantly affected by the 
chromaticity because the momentum spread of the beam at injection is (δp/p)rms ~ 7.5 × 

10−4, which for the natural chromaticity yields a maximum tune spread of (δQy)max ~ ± 

7.2 × 10−3. Hence the space charge is the dominant perturbation on the linear dynamics. 
The same argument shows that the effect of the dispersion enlarges/reduces particles 
amplitudes of ~ 6 mm, which compared with full machine acceptance, becomes of minor 
relevance.  

The results of the scan are shown in Fig. 5. The red markers show the beam survival 
without resonance correction. We identify three “valleys” corresponding to the effect of 
three resonances: the half integer 2Qy = 7, the third order 2D resonance Qx + 2Qy = 11, and 
the third order 1D resonance 3Qy = 10. If we set the tune at the edge of the 2D resonance 
stop-band at Qx = 3.405 of the scan line, the impact on beam survival is dramatic: in 1 
second only ~ 10% of the beam survives, whereas in absence of periodic resonance crossing 
due to space charge, the beam survival on this working point is nearly 100%.  

The blue markers in Fig. 5 show the very same measurements with the two correcting 
sextupoles activated for the best correction of Qx + 2Qy = 11, i.e. for creating Λ = 0.025, α 
= 270 degrees (Fig. 4 left). We find that the partial resonance compensation achieved still 
yields an advantage to mitigate beam loss induced by the periodic resonance crossing over 1 
second storage. In particular, the blue markers show an increased beam survival to ~ 70% 
in the range 3.435 < Qy < 3.46. For Qy = 3.42 the advantage is evident as beam survival 
goes from ~ 30% for the machine uncompensated to ~ 75% with compensation active.  

At tune Qy ~ 3.43 the red curve exhibits a localized change of slope indicating the 
presence of a weaker resonance possibly of higher order. The effect of this weak resonance 
is evident when the resonance Qx + 2Qy = 11 is compensated by the appearing of a new 
valley in the beam survival. We have no information on the nature of this resonance, except 
of its weak strength suggested by small beam loss.  

We also observe that the resonance compensation here implemented does not affect the 
other two neighbour resonances, one of which is shown in Fig. 5 (yellow band). In fact, in 
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the region 3.35 < Qy < 3.37 and 3.45 < Qy < 3.48, blue and red markers fully overlap 
showing that the compensating method really affects only this resonance (green band in Fig. 
5). Other resonances far away from the investigated area might be excited by this 
compensation scheme, but the discussion of their effect is not part of this study.  

 

Figure 5: Beam survival for a bunched beam stored for 1 second as function of Qy. The blue curve 
is obtained for the partially compensated third order resonance, whereas the red curve is measured 
for the naked machine.  

 Issues 2.3.6

The measurements and the results obtained in this campaign allow to conclude the 
following: 1) The technique used to compensate the resonance seems a promising tool for a 
first order compensation. The implementation of this “fast” technique completely relies on 
the feature of the new settings generation system (LSA) for automatizing the data 
acquisition process. 2) The experimental evidence shows that the resonance compensation 
for a third order resonance allows mitigating the beam loss due to the effect of moderate 
space charge in bunched beams stored for 1 second. The physics case, and further details on 
these measurements will appear in dedicated studies.  

The following issues remain to be investigated: 1) We have no clear evidences of why we 
cannot compensate completely the resonance. This may lay in the imperfect knowledge of 
the optics at the location of the sextupole correctors, or due to other unknown details of the 
machine. In fact, there are experimental evidences that different pairs of sextupoles excited 
to create the same driving term do not produce the same beam survival. All these 
discrepancies require further investigations to consolidate the method and/or to improve it. 
2) The verification with the bunched beams was made with a relatively low intensity ∆Qy ~ 
0.05. The space charge tune-shift here obtained do not compare with that foreseen in the 
SIS100 scenario, which is expected to be a factor 4 larger. Further measurements on a single 
third order resonance with more intense beam have to be foreseen to consolidate these first 
findings.  
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 Introduction 2.4.1

Intrabeam scattering (IBS) consists in the diffusion effects caused by multiple Coulomb 
scattering on charged particle beams in a storage ring, in both the transverse and the 
longitudinal beam dimensions. This phenomenon induces the growth in beam emittances 
and, in some situations, leads to the redistribution of partial beam emittances and energy 
spread. Thereby, it can cause undesirable beam dilution in phase space or could heat the 
beam as a whole, i.e. increase the partial beam emittances and energy spread simultaneously. 
Different comportment results from scattering depending on whether the ring operates 
below or above transition. 

 Below transition, small-angle scattering between particles is analogous to particle 
collisions in a gas, where collisions lead to an equilibrium beam distribution. Above 
transition, the longitudinal behaviour differs from the one below transition; namely, an 
energy rise entails a longitudinal velocity decrease as the revolution frequency decreases. 
The analogy with particles in a gas is no longer valid. Instead, above transition, both the 
transverse emittances and (longitudinal) energy spread can all grow indefinitely, the energy 
for the growing oscillation amplitudes being supplied by the radio frequency system. 

In the following, we review the conventional IBS Piwinski and Bjorken-Mtingwa 
formalisms for bunched beams covered in Refs. [1-2], with adaptation of the original 
Piwinski theory [1] to include the variations of the optical parameters [2], [3]. The 
Zenkevich Monte Carlo IBS simulation formalism Refs. [11-12] based on binary collision 
models are also discussed in Refs. [14-15]. Finally, the benchmarking of the IBS theoretical 
models with Monte-Carlo codes is being presented before the conclusion. 

 Piwinski Model 2.4.2

 Collisional Momentum Kinematic and Emittance Variations 2.4.2.1

According to Piwinski [1], for two particles, labelled 1 and 2, colliding with each other, 
the momentum changes in longitudinal and transverse directions for particle 1 can be 
written as follows, with 𝛿𝛿𝑝⃗𝑝1 = 𝛿𝛿𝑝𝑝𝑠𝑠1𝑠̂𝑠 + 𝛿𝛿𝑝𝑝𝑥𝑥1𝑥𝑥� + 𝛿𝛿𝑝𝑝𝑧𝑧1𝑧̂𝑧: 

𝛿𝛿𝑝⃗𝑝1
𝑝𝑝

= 𝑝⃗𝑝1
′ −𝑝⃗𝑝1
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=
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⎨
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⎧

1
2

[2𝛾𝛾𝛾𝛾 cos 𝜙𝜙� sin 𝜓𝜓� + 𝛾𝛾𝛾𝛾(cos 𝜓𝜓� − 1)]
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��𝜁𝜁�1 + 𝜉𝜉2

4𝛼𝛼2 sin 𝜙𝜙� − 𝜉𝜉𝜉𝜉
2𝛼𝛼

cos 𝜙𝜙�� sin 𝜓𝜓� + 𝜃𝜃(cos 𝜓𝜓� − 1)�

1
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��𝜃𝜃�1 + 𝜉𝜉2
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2𝛼𝛼

cos 𝜙𝜙�� sin 𝜓𝜓� + 𝜁𝜁(cos 𝜓𝜓� − 1)�

, (1) 

where 𝑝𝑝 = |𝑝⃗𝑝| is the mean particle momentum, 𝜓𝜓�, 𝜙𝜙� are the scattering and azimuthal angles 
in the centre of mass (CM) of a two particles collisional event and 𝛾𝛾 is the Lorenz factor. 
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The variable 𝜉𝜉, 𝜃𝜃, 𝜁𝜁 will be used as integration variables for the averaging process of the 
particle density distribution inside a bunch, 𝛾𝛾 is the Lorenz factor: 

𝜉𝜉 = 𝑝𝑝1−𝑝𝑝2
𝛾𝛾𝛾𝛾

, 𝜃𝜃 = 𝑝𝑝𝑥𝑥1−𝑝𝑝𝑥𝑥2
𝑝𝑝

≡ 𝑥𝑥1
′ − 𝑥𝑥2

′ , 𝜁𝜁 = 𝑝𝑝𝑧𝑧1−𝑝𝑝𝑧𝑧2
𝑝𝑝

≡ 𝑧𝑧1
′ − 𝑧𝑧2

′ , (2)
   
2𝛼𝛼 = 𝛼𝛼1 + 𝛼𝛼2 = �(𝑥𝑥1

′ − 𝑥𝑥2
′ )2 + (𝑧𝑧1

′ − 𝑧𝑧2
′ )2 = �𝜃𝜃2 + 𝜁𝜁2. (3) 

A particle velocity in the CM frame is assumed non-relativistic i.e. 𝛽̅𝛽=�1 − 𝛾̅𝛾−2≪1 
and the particle angles made with the longitudinal axis are small, 𝜉𝜉, 𝜃𝜃, 𝜁𝜁 ≪ 1. 

 
Figure 1: Connexion between the LAB coordinate system (𝑠̂𝑠, 𝑥𝑥�, 𝑧̂𝑧)  and the overlaid (𝑢𝑢� , 𝑣𝑣, 𝑤𝑤�) 
coordinate system aligned on the CM motion (cf. Piwinski [1]). 

The invariants of the motion are the transverse emittances 𝜀𝜀𝑥𝑥,𝑧𝑧  (Courant–Snyder 
invariant) and the quantity 𝐻𝐻 for the longitudinal plane assuming a bunched beam. 

 𝜀𝜀𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥𝛽𝛽
2 + 2𝛼𝛼𝑥𝑥𝑥𝑥𝛽𝛽𝑥𝑥𝛽𝛽
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2
, (4) 

where 𝛼𝛼𝑥𝑥, 𝛽𝛽𝑥𝑥, 𝛾𝛾𝑥𝑥 are the Twiss parameters, with 𝛽𝛽𝑥𝑥 𝛾𝛾𝑥𝑥 − 𝛼𝛼𝑥𝑥
2 = 1, 2𝛼𝛼𝑥𝑥 = −𝛽𝛽𝑥𝑥

′  and Ω𝑠𝑠 is the 
synchrotron frequency.  

The alteration in the particle momenta after collision leads to a corresponding change in 
the particle invariants. Supposing the transverse particle locations stay fixed over the 
collision time allows calculating the invariant change. The change 𝛿𝛿𝛿𝛿𝑥𝑥,𝑧𝑧  and 𝛿𝛿𝛿𝛿  in the 
invariant after a single scattering event can be written as: 
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 (5) 

where 𝐷𝐷𝑥𝑥,𝑧𝑧  are the horizontal and vertical dispersions, 𝐷𝐷�𝑥𝑥,𝑧𝑧 = 𝛼𝛼𝑥𝑥,𝑧𝑧𝐷𝐷𝑥𝑥,𝑧𝑧 + 𝛽𝛽𝑥𝑥,𝑧𝑧𝐷𝐷𝑥𝑥,𝑧𝑧
′  with 

𝛿𝛿(∆𝑝𝑝/𝑝𝑝) = 𝛿𝛿𝛿𝛿/𝑝𝑝  as the reference momentum stays constant when the beam is not 
accelerated. We have neglected the time variation of the synchrotron frequency during the 
collision. From now on the short notation 𝜂𝜂 ≝ Δ𝑝𝑝/𝑝𝑝 will be used. 
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To calculate the mean value of the emittance and momentum deviation change for one 
particle, we have to average with respect to the second particle betatron angles and 
momentum deviations. Therefore, to get the overall mean value of the emittance and 
momentum deviation changes for all particles, we have to average further with respect to all 
betatron angles, momentum deviations and positions of the first particle. This means that we 
have to integrate over all phase space volume 𝑉𝑉  of betatron coordinates, momentum 
deviations and azimuthal positions of two interacting particles, using a probability density 
function 𝑃𝑃  for the betatron amplitudes and angles, momentum deviations and azimuthal 
positions of the interacting particles:  

� 𝑑𝑑
𝑑𝑑𝑡̅𝑡

〈𝜀𝜀𝑥𝑥1〉

𝛽𝛽𝑥𝑥
� = ∫ 2𝑐𝑐𝛽̅𝛽𝑉𝑉� 𝑃𝑃�𝑑𝑑𝑉𝑉� ∫ 𝑑𝑑𝜓𝜓�𝜋𝜋

𝜓𝜓� 𝑚𝑚𝑚𝑚𝑚𝑚
∫ 𝑑𝑑𝜙𝜙�2𝜋𝜋

0 𝜎𝜎�(𝜓𝜓�) sin 𝜓𝜓� 𝛿𝛿𝛿𝛿𝑥𝑥1
𝛽𝛽𝑥𝑥

, (6) 

where the outer and inner brackets denote the average value over the ring optical parameters 
and the average over the particle beam. An overhead bar symbol refers to the CM frame. 
Here, 𝜎𝜎�(𝜓𝜓�)𝑑𝑑Ω�  is the Coulomb scattering cross-section in the CM frame for a scattering 
event into a solid angle 𝑑𝑑Ω�(𝜓𝜓�, 𝜙𝜙�)= sin 𝜓𝜓� 𝑑𝑑𝜓𝜓�𝑑𝑑𝜙𝜙�. The time intervals in CM and LAB frames 
are 𝑑𝑑𝑡𝑡̅  and 𝑑𝑑𝑑𝑑  (𝑑𝑑𝑑𝑑=𝛾𝛾𝛾𝛾𝑡𝑡̅) , 𝑐𝑐  is the speed of light, 2𝑐𝑐𝛽̅𝛽  is the relative velocity of two 
interacting particles in the CM frame and 𝑃𝑃 is a probability density function of 12 phase 
space variables for the particle pair in the LAB frame (and 𝑃𝑃�=𝑃𝑃/𝛾𝛾 in CM). 𝑃𝑃 reduces to 9 
variables as 𝑠𝑠1=𝑠𝑠2  and 𝑥𝑥𝛽𝛽1+𝐷𝐷𝑥𝑥𝜂𝜂1=𝑥𝑥𝛽𝛽2+𝐷𝐷𝑥𝑥𝜂𝜂2  (idem for 𝑧𝑧𝛽𝛽1,2 ) since the positions the 
particles are supposed to remain constant during the collision, i.e. 

𝑃𝑃
12var
��� 𝑃𝑃𝜂𝜂𝜂𝜂(𝜂𝜂1, 𝑠𝑠1)𝑃𝑃𝜂𝜂𝜂𝜂(𝜂𝜂2, 𝑠𝑠2)𝑃𝑃𝑥𝑥𝛽𝛽𝑥𝑥𝛽𝛽

′ �𝑥𝑥𝛽𝛽1𝑥𝑥𝛽𝛽1
′ �𝑃𝑃𝑥𝑥𝛽𝛽𝑥𝑥𝛽𝛽

′ �𝑥𝑥𝛽𝛽2𝑥𝑥2
′ �𝑃𝑃𝑧𝑧𝛽𝛽𝑧𝑧𝛽𝛽

′ �𝑧𝑧𝛽𝛽1𝑧𝑧𝛽𝛽1
′ �𝑃𝑃𝑧𝑧𝛽𝛽𝑧𝑧𝛽𝛽

′ �𝑧𝑧𝛽𝛽2𝑧𝑧𝛽𝛽2
′ �,

𝑃𝑃
9var
�� 𝑃𝑃𝜂𝜂(𝜂𝜂1)𝑃𝑃𝜂𝜂(𝜂𝜂2)𝑃𝑃𝑠𝑠(𝑠𝑠1)𝑃𝑃𝑥𝑥𝛽𝛽�𝑥𝑥𝛽𝛽1�𝑃𝑃𝑥𝑥𝛽𝛽

′ �𝑥𝑥𝛽𝛽1
′ �𝑃𝑃𝑥𝑥𝛽𝛽

′ �𝑥𝑥𝛽𝛽2
′ �𝑃𝑃𝑧𝑧𝛽𝛽�𝑧𝑧𝛽𝛽1�𝑃𝑃𝑧𝑧𝛽𝛽

′ �𝑧𝑧𝛽𝛽1
′ �𝑃𝑃𝑥𝑥𝛽𝛽

′ �𝑧𝑧𝛽𝛽2
′ �.

(7) 

 Averaging over the Scattering Angles and All Particles 2.4.2.2

Using the “classical” Rutherford differential cross-section 𝜎𝜎(𝜓𝜓�)  the likelihood of a 
collision per unit time and solid angle element 𝑑𝑑𝜙𝜙�  in CM frame, denoted 𝑃𝑃scat , is 
determined by the particle density distribution in phase space 𝑃𝑃 (LAB frame). Since 2𝛽̅𝛽𝑐𝑐 is 
the relative velocity between two colliding particles we can write  

 𝑃𝑃scat(𝜓𝜓�, 𝜙𝜙�, 𝑃𝑃)= 2𝛽𝛽�𝑐𝑐𝑐𝑐𝑐𝑐�𝜓𝜓� �𝑑𝑑Ω�

𝛾𝛾2 , 𝜎𝜎�(𝜓𝜓�)𝑑𝑑Ω�= 𝑟𝑟i
2

16𝛽𝛽�4sin4[𝜓𝜓�
2 ]

sin 𝜓𝜓� 𝑑𝑑𝜓𝜓�𝑑𝑑𝜙𝜙,� 𝑟𝑟i=
𝑒𝑒2𝑍𝑍2

4𝜋𝜋𝜖𝜖0𝑚𝑚𝑐𝑐2𝐴𝐴
, (8) 

𝑟𝑟𝑖𝑖 is the classical ion radius in SI units, with the ion mass and charge 𝐴𝐴, 𝑍𝑍, relative to proton 
or the electron mass 𝑚𝑚 and electron charge 𝑒𝑒 (the second 𝛾𝛾2 comes from an “underlying” 
time interval 𝑑𝑑𝑡𝑡̅=𝑑𝑑𝑑𝑑/𝛾𝛾). Let us mention that for non-relativistic collisions the maximum 
impact parameter 𝑏𝑏�max  gives a cut-off value 𝜓𝜓�min  for the scattering angle, 𝐶𝐶l̅og  is the 
“Coulomb logarithm”: 

 tan  𝜓𝜓� min
2

≈ 𝑟𝑟𝑖𝑖
2𝛽𝛽�2𝑏𝑏�max

, if  𝜓𝜓�min≪1: 𝐶𝐶l̅og≝ log 𝑏𝑏�max
𝑏𝑏�min

≈ log 2
𝜓𝜓� min

≈ log 2𝛽𝛽�2𝑏𝑏�max
𝑟𝑟i

.     (9) 

In the LAB frame 𝑏𝑏max=𝑏𝑏�max  and the Coulomb logarithm is defined alike 
𝐶𝐶log≈ log 2𝛽𝛽2𝑏𝑏max

𝑟𝑟i
. For example, integrating 〈𝛿𝛿𝐻𝐻1〉/𝛾𝛾2over 𝜙𝜙� and 𝜓𝜓� gives with Eq. (9)  
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∫ 𝑑𝑑𝜓𝜓�𝜋𝜋
𝜓𝜓� 𝑚𝑚𝑚𝑚𝑚𝑚

∫ 𝑑𝑑𝜙𝜙�2𝜋𝜋
0 𝜎𝜎�(𝜓𝜓�) sin 𝜓𝜓� �𝛿𝛿𝐻𝐻1

𝛾𝛾2 � = 𝜋𝜋𝑟𝑟𝑖𝑖
2

4𝛽𝛽�4 log �2𝛽𝛽�2𝑏𝑏�𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟i

� �− 4𝜂𝜂1
𝛾𝛾

𝜉𝜉 + 𝜃𝜃2 + 𝜁𝜁2� . (10) 

At this stage we make the following ad-hoc change of phase space variables, in 
conformity with Eq. (2), to compute the mean change of the invariants 𝜀𝜀𝑥𝑥,𝑧𝑧 and 𝐻𝐻. Here, the 
density distribution 𝑃𝑃 transforms into 𝒫𝒫, using new variables including the angles 𝜉𝜉, 𝜃𝜃, 𝜁𝜁: 

𝑃𝑃(𝜂𝜂1, 𝜂𝜂2, 𝑠𝑠1, 𝑥𝑥𝛽𝛽1 , 𝑥𝑥𝛽𝛽1
′ , 𝑥𝑥𝛽𝛽2

′ , 𝑧𝑧𝛽𝛽1 , 𝑧𝑧𝛽𝛽1
′ , 𝑧𝑧𝛽𝛽2

′ ) ⟼ 𝒫𝒫(𝜂𝜂, 𝜉𝜉, 𝑠𝑠, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛽𝛽
′ , 𝜃𝜃, 𝑧𝑧𝛽𝛽 , 𝑧𝑧𝛽𝛽

′ , 𝜁𝜁), (11) 

 
𝑥𝑥𝛽𝛽1,2 = 𝑥𝑥𝛽𝛽 ∓ 𝐷𝐷𝑥𝑥𝛾𝛾𝛾𝛾

2
, 𝑥𝑥𝛽𝛽1,2

′ = 𝑥𝑥𝛽𝛽
′ ± 𝜃𝜃−𝐷𝐷𝑥𝑥

′ 𝛾𝛾𝛾𝛾
2

, 𝜂𝜂1,2 = 𝜂𝜂 ± 𝛾𝛾𝛾𝛾
2

,

𝑧𝑧𝛽𝛽1,2 = 𝑧𝑧𝛽𝛽 ∓ 𝐷𝐷𝑧𝑧𝛾𝛾𝛾𝛾
2

,  𝑧𝑧𝛽𝛽1,2
′ = 𝑧𝑧𝛽𝛽

′ ± 𝜁𝜁−𝐷𝐷𝑧𝑧
′𝛾𝛾𝛾𝛾

2
, 𝜂𝜂1,2 = 𝜂𝜂 ± 𝛾𝛾𝛾𝛾

2
.
 (12) 

Obviously, 𝒫𝒫 is symmetric with respect to 𝜉𝜉, 𝜃𝜃, 𝜁𝜁 and thus the integrals vanish for the 
linear terms in 𝜉𝜉, 𝜃𝜃, 𝜁𝜁 of the integrands. Then, keeping only the factors 𝜉𝜉2, 𝜃𝜃2, 𝜁𝜁2 and using 
the variables 𝜂𝜂, 𝜉𝜉, 𝑠𝑠, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛽𝛽

′ , 𝜃𝜃, 𝑧𝑧𝛽𝛽 , 𝑧𝑧𝛽𝛽
′ , 𝜁𝜁  defined in Eqs. (11-12) to integrate the three 

invariants (see Eq. (6)) yields Eq. (12), where the phase space volume element expressed in 
the new variables is 𝑑𝑑𝒱𝒱=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥𝛽𝛽𝑑𝑑𝑥𝑥𝛽𝛽

′ 𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧𝛽𝛽𝑑𝑑𝑧𝑧𝛽𝛽
′ 𝑑𝑑𝑑𝑑:  

 

� 𝑑𝑑
𝑑𝑑𝑑𝑑

�
〈𝐻𝐻〉/𝛾𝛾2

〈𝜀𝜀𝑥𝑥〉/𝛽𝛽𝑥𝑥
〈𝜀𝜀𝑧𝑧〉/𝛽𝛽𝑧𝑧

�� = 𝜋𝜋𝜋𝜋𝑟𝑟i
2

2 ∫ 𝑑𝑑𝑑𝑑
𝛽𝛽�3𝛾𝛾𝒱𝒱 𝒫𝒫(𝜂𝜂, 𝑠𝑠, 𝜉𝜉, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛽𝛽

′ , 𝜃𝜃, 𝑧𝑧𝛽𝛽 , 𝑧𝑧𝛽𝛽
′ ) log �2𝛽𝛽�2𝑏𝑏�max

𝑟𝑟i
�

⎩
⎪
⎨

⎪
⎧ 𝜃𝜃2 + 𝜁𝜁2 − 2𝜉𝜉2

𝜉𝜉2 + 𝜁𝜁2 − 2𝜃𝜃2 + 𝐷𝐷𝑥𝑥
2+𝐷𝐷�𝑥𝑥

2

𝛽𝛽𝑥𝑥
2 𝛾𝛾2(𝜃𝜃2 + 𝜁𝜁2) − 2𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥

2

𝛽𝛽𝑥𝑥
𝛾𝛾2𝜉𝜉2 − 2𝐷𝐷𝑥𝑥

′

𝛽𝛽𝑥𝑥
�𝛼𝛼𝑥𝑥𝐷𝐷𝑥𝑥 + 𝐷𝐷�𝑥𝑥�𝛾𝛾2𝜉𝜉2

𝜉𝜉2 + 𝜃𝜃 − 2𝜁𝜁2 + 𝐷𝐷𝑧𝑧
2+𝐷𝐷�𝑧𝑧

2

𝛽𝛽𝑧𝑧
2 𝛾𝛾2(𝜃𝜃2 + 𝜁𝜁2) − 2𝛾𝛾𝑧𝑧𝐷𝐷𝑧𝑧

2

𝛽𝛽𝑧𝑧
𝛾𝛾2𝜉𝜉2 − 2𝐷𝐷𝑧𝑧

′

𝛽𝛽𝑧𝑧
�𝛼𝛼𝑧𝑧𝐷𝐷𝑧𝑧 + 𝐷𝐷�𝑧𝑧�𝛾𝛾2𝜉𝜉2

⎭
⎪
⎬

⎪
⎫

.

 (13) 

This formula for the mean change of the invariants makes no supposition about the 
distribution 𝒫𝒫  of particles in the bunch. Therefore, the integral can be in principle 
computed for arbitrary probability laws. However, since “Gaussian integration” is easily 
performed, many analytical IBS models are based on Gaussian distributions. 

So, we use here bi-Gaussian density distributions for the betatron amplitudes and 
angles 𝑃𝑃𝑥𝑥𝛽𝛽𝑥𝑥𝛽𝛽

′ (𝑥𝑥𝛽𝛽1,2 , 𝑥𝑥𝛽𝛽1,2
′ ) , 𝑃𝑃𝑧𝑧𝛽𝛽𝑧𝑧𝛽𝛽

′ (𝑧𝑧𝛽𝛽1,2 , 𝑧𝑧𝛽𝛽1,2
′ )  and the momentum and bunch length 

𝑃𝑃𝜂𝜂𝜂𝜂(𝜂𝜂1,2, 𝑠𝑠1,2). Also, to shorten the formalism and obtain manageable formulae we will 
neglect the derivatives of the dispersion and transverse betatron functions: 

 𝐷𝐷𝑥𝑥,𝑧𝑧
′ = 0, 𝛽𝛽𝑥𝑥,𝑧𝑧

′ = −2𝛼𝛼𝑥𝑥,𝑧𝑧 = 0, 𝐷𝐷�𝑥𝑥,𝑧𝑧 = 𝛼𝛼𝑥𝑥,𝑧𝑧𝐷𝐷𝑥𝑥,𝑧𝑧 + 𝛽𝛽𝑥𝑥,𝑧𝑧𝐷𝐷𝑥𝑥,𝑧𝑧
′ = 0, 𝛾𝛾𝑥𝑥,𝑧𝑧 = 1

𝛽𝛽𝑥𝑥,𝑧𝑧
. (14) 

Then, with the change of variables (Eq. (12)), we rewrite the Gaussian distributions in 
terms of the nine new variables, 𝜂𝜂, 𝑠𝑠, 𝜉𝜉, 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛽𝛽

′ , 𝜃𝜃, 𝑧𝑧𝛽𝛽 , 𝑧𝑧𝛽𝛽
′ , 𝜁𝜁:   

 
𝒫𝒫𝑥𝑥𝛽𝛽𝑥𝑥𝛽𝛽

′ �𝑥𝑥𝛽𝛽 ∓ 𝐷𝐷𝑥𝑥𝛾𝛾𝛾𝛾
2

, 𝑥𝑥𝛽𝛽
′ ± 𝜃𝜃

2
� , 𝒫𝒫𝑧𝑧𝛽𝛽𝑧𝑧𝛽𝛽

′ �𝑧𝑧𝛽𝛽 ∓ 𝐷𝐷𝑧𝑧𝛾𝛾𝛾𝛾
2

, 𝑧𝑧𝛽𝛽
′ ± 𝜁𝜁

2
� ,

𝒫𝒫𝜂𝜂 �𝜂𝜂 ± 𝛾𝛾𝛾𝛾
2

� , 𝒫𝒫𝑠𝑠(𝑠𝑠).
 (15) 
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After integration of the distribution 𝒫𝒫 over the 6 variables 𝑥𝑥𝛽𝛽 , 𝑥𝑥𝛽𝛽
′ , 𝑧𝑧𝛽𝛽 , 𝑧𝑧𝛽𝛽

′ , 𝜂𝜂, 𝑠𝑠, we get:   

  

𝒫𝒫(𝜉𝜉, 𝜃𝜃, 𝜁𝜁) ≡ 𝑁𝑁𝑏𝑏 ∏ ∫ 𝒫𝒫𝑢𝑢𝑑𝑑𝑑𝑑∞
−∞

𝜂𝜂,𝑠𝑠
𝑢𝑢=𝑥𝑥𝛽𝛽,𝑥𝑥𝛽𝛽

′

= 𝒜𝒜𝛽𝛽3𝛾𝛾4

𝑐𝑐𝑟𝑟i
2𝜋𝜋

exp �− 𝛾𝛾2𝜉𝜉2

4
� 1

𝜎𝜎𝜂𝜂
2 + 𝐷𝐷𝑥𝑥

2

𝜎𝜎𝑥𝑥𝛽𝛽
2 + 𝐷𝐷𝑧𝑧

2

𝜎𝜎𝑧𝑧𝛽𝛽
2 � − 𝜃𝜃2

4𝜎𝜎
𝑥𝑥𝛽𝛽

′
2 − 𝜁𝜁2

4𝜎𝜎
𝑧𝑧𝛽𝛽

′
2 �

𝒜𝒜 = 𝑐𝑐𝑟𝑟i
2𝑁𝑁𝑏𝑏

64𝜋𝜋2𝛽𝛽3𝛾𝛾4𝜎𝜎𝑥𝑥𝛽𝛽𝜎𝜎𝑥𝑥𝛽𝛽
′ 𝜎𝜎𝑧𝑧𝛽𝛽𝜎𝜎𝑧𝑧𝛽𝛽

′ 𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠
= 𝑐𝑐𝑟𝑟i

2𝑁𝑁𝑏𝑏
64𝜋𝜋2𝛽𝛽3𝛾𝛾4𝜀𝜀𝑥𝑥𝜀𝜀𝑧𝑧𝜀𝜀𝑠𝑠

,

,  (16) 

where𝑁𝑁𝑏𝑏 is the number of particles in the bunch, 𝜀𝜀𝑠𝑠=𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠 and 𝜀𝜀𝑥𝑥,𝑧𝑧=𝜎𝜎𝑥𝑥𝛽𝛽,𝑧𝑧𝛽𝛽
2 /𝛽𝛽𝑥𝑥,𝑧𝑧≡𝜎𝜎𝑥𝑥𝛽𝛽

′ ,𝑧𝑧𝛽𝛽
′

2 𝛽𝛽𝑥𝑥,𝑧𝑧 
are the longitudinal and transverse rms emittances. Assuming non-relativistic particle 
velocities in the CM frame, we express 𝛽𝛽 in LAB frame by means of a momentum-energy 
Lorentz transformation from CM to LAB. We obtain (Ref. [1]): 

 𝛽̅𝛽 ≈ 𝛽𝛽𝛽𝛽
2

��𝜂𝜂1−𝜂𝜂2
𝛾𝛾

�
2

+ (𝑥𝑥1
′ − 𝑥𝑥2

′ )2 + (𝑧𝑧1
′ − 𝑧𝑧2

′ )2 = 𝛽𝛽𝛽𝛽
2

�𝜉𝜉2 + 𝜃𝜃2 + 𝜁𝜁2. (17) 

Finally, it remains to transform the change of momenta and energy for the two colliding 
particles back to the LAB frame, replacing 𝛽̅𝛽 by its approximation Eq. (17).  Let us define 
the parameter 𝑞𝑞=𝛾𝛾�2𝛽𝛽2𝑏𝑏max/𝑟𝑟i. Since 𝐷𝐷𝑥𝑥,𝑧𝑧

′ =𝛼𝛼𝑥𝑥,𝑧𝑧=0 we can rework Eq. (13) this way: 

 

� 𝑑𝑑
𝑑𝑑𝑑𝑑

�
〈𝐻𝐻〉/𝛾𝛾2

〈𝜀𝜀𝑥𝑥〉/𝛽𝛽𝑥𝑥
〈𝜀𝜀𝑧𝑧〉/𝛽𝛽𝑧𝑧

�� = 4𝒜𝒜 ∭ exp �− 𝛾𝛾2𝜉𝜉2

4
� 1

𝜎𝜎𝜂𝜂
2 + 𝐷𝐷𝑥𝑥

2

𝜎𝜎𝑥𝑥𝛽𝛽
2 + 𝐷𝐷𝑧𝑧

2

𝜎𝜎𝑧𝑧𝛽𝛽
2 � − 𝜃𝜃2

4𝜎𝜎
𝑥𝑥𝛽𝛽

′
2 − 𝜁𝜁2

4𝜎𝜎
𝑧𝑧𝛽𝛽

′
2 �∞

−∞

⎩
⎪
⎨

⎪
⎧ 𝜃𝜃2 + 𝜁𝜁2 − 2𝜉𝜉2

𝜉𝜉2 + 𝜁𝜁2 − 2𝜃𝜃2 + 𝐷𝐷𝑥𝑥
2

𝛽𝛽𝑥𝑥
2 𝛾𝛾2(𝜃𝜃2 + 𝜁𝜁2 − 2𝜉𝜉2)

𝜉𝜉2 + 𝜃𝜃 − 2𝜁𝜁2 + 𝐷𝐷𝑧𝑧
2

𝛽𝛽𝑧𝑧
2 𝛾𝛾2(𝜃𝜃2 + 𝜁𝜁2 − 2𝜉𝜉2) ⎭

⎪
⎬

⎪
⎫

log �𝑞𝑞2

4
(𝜉𝜉2 + 𝜃𝜃2+𝜁𝜁2)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜉𝜉2+𝜃𝜃2+𝜁𝜁23/2

 (18) 

The remaining three integrals still need to be computed to get the mean change of the 
invariants. To this end, let us do a first change of variables 𝜉𝜉, 𝜃𝜃, 𝜁𝜁 → 2(𝑢𝑢, 𝑣𝑣, 𝑤𝑤)/𝑞𝑞  to 
transform Eq. (18) to the coordinates (𝑢𝑢, 𝑣𝑣, 𝑤𝑤), followed, by a second spherical-like change 
of variables (𝑢𝑢, 𝑣𝑣, 𝑤𝑤) → √𝑟𝑟(sin 𝜇𝜇 cos 𝜈𝜈 , sin 𝜇𝜇 sin 𝜈𝜈 , cos 𝜇𝜇) . This trick will allow us to 
derive the IBS growth rates in a synchrotron after some more approximations. 

 Calculation of Rise Times Neglecting 𝜶𝜶𝒙𝒙,𝒛𝒛 and 𝑫𝑫𝒙𝒙,𝒛𝒛
′  2.4.2.3

The IBS growth rates can be expressed in the form 

 
1

𝑇𝑇𝜂𝜂
= 1

𝜎𝜎𝜂𝜂

𝑑𝑑𝜎𝜎𝜂𝜂

𝑑𝑑𝑑𝑑
≡ 1

2〈𝐻𝐻〉
𝑑𝑑〈𝐻𝐻〉

𝑑𝑑𝑑𝑑
, 1

𝑇𝑇𝑥𝑥,𝑧𝑧
= 1

𝜎𝜎𝑥𝑥𝛽𝛽𝑧𝑧𝛽𝛽

𝑑𝑑𝜎𝜎𝑥𝑥𝛽𝛽𝑧𝑧𝛽𝛽

𝑑𝑑𝑑𝑑
≡ 1

2〈𝜀𝜀𝑥𝑥,𝑧𝑧〉
𝑑𝑑〈𝜀𝜀𝑥𝑥,𝑧𝑧〉

𝑑𝑑𝑑𝑑 , (19) 

where 𝑇𝑇𝜂𝜂, 𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑧𝑧 are the longitudinal, horizontal, and vertical IBS rise times, and 𝐻𝐻=𝜂𝜂2, 
supposing negligible synchrotron frequency values (i.e. Ω𝑠𝑠≈0) for the duration of a particle-
pair collision. Evidently, the time derivatives of  〈𝐻𝐻〉/𝛾𝛾2 and 〈𝜀𝜀𝑥𝑥,𝑧𝑧〉/𝛽𝛽𝑥𝑥,𝑧𝑧 in Eq. (18) have to 
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be revisited to match the growth rate definition. For this, let us define the following 
parameters and functions [6]  

  

1
𝜎𝜎ℎ

2 = 1
𝜎𝜎𝜂𝜂

2 + 𝐷𝐷𝑥𝑥
2

𝜎𝜎𝑥𝑥𝛽𝛽
2 + 𝐷𝐷𝑧𝑧

2

𝜎𝜎𝑧𝑧𝛽𝛽
2 , 𝜎𝜎ℎ

2 =
𝜎𝜎𝜂𝜂

2𝜎𝜎𝑥𝑥𝛽𝛽
2

𝐷𝐷𝑥𝑥
2𝜎𝜎𝜂𝜂

2+𝜎𝜎𝑥𝑥𝛽𝛽
2 �1+ �

𝐷𝐷𝑧𝑧𝜎𝜎𝜂𝜂
𝜎𝜎𝑧𝑧𝛽𝛽

�
2

�
  

𝐷𝐷𝑧𝑧=0
����   𝜎𝜎ℎ= 

𝜎𝜎𝜂𝜂𝜎𝜎𝑥𝑥𝛽𝛽

𝜎𝜎𝑥𝑥 ,

𝑎𝑎 = 𝜎𝜎ℎ
𝛾𝛾𝜎𝜎𝑥𝑥𝛽𝛽

′ ≡ 𝜎𝜎ℎ
𝛾𝛾 �

𝜀𝜀𝑥𝑥
𝛽𝛽𝑥𝑥

  
𝐷𝐷𝑧𝑧=𝛼𝛼𝑥𝑥,𝑧𝑧=0
��������  𝑎𝑎= 𝛽𝛽𝑥𝑥𝜎𝜎𝜂𝜂

𝛾𝛾𝜎𝜎𝑥𝑥
, 𝑏𝑏 = 𝜎𝜎ℎ

𝛾𝛾𝛾𝛾𝑧𝑧𝛽𝛽
′ ≡ 𝜎𝜎ℎ

𝛾𝛾 �
𝜀𝜀𝑧𝑧
𝛽𝛽𝑧𝑧

  
𝐷𝐷𝑧𝑧=𝛼𝛼𝑥𝑥,𝑧𝑧=0
��������  𝑏𝑏= 𝛽𝛽𝑧𝑧𝜎𝜎𝜂𝜂

𝛾𝛾𝜎𝜎𝑧𝑧
,

𝑐𝑐 = 𝑞𝑞𝜎𝜎ℎ = �𝛾𝛾�2𝛽𝛽2𝑏𝑏max
𝑟𝑟i

� 𝜎𝜎ℎ
Eq.9
�� 𝛾𝛾 exp �𝐶𝐶log

2
� 𝜎𝜎ℎ,

 (20) 

 
𝐷𝐷(𝜇𝜇, 𝜈𝜈) = 1

𝑐𝑐2 �𝑏𝑏2cos2 𝜇𝜇 + sin2 𝜇𝜇 (cos2 𝜈𝜈 + 𝑎𝑎2sin2 𝜈𝜈)�,
𝑔𝑔1(𝜇𝜇, 𝜈𝜈) = 1 − 3 sin2 𝜇𝜇 cos2 𝜇𝜇 𝑔𝑔2(𝜇𝜇, 𝜈𝜈) = 1 − 3 sin2 𝜇𝜇 sin2 𝜇𝜇,

𝑔𝑔3(𝜇𝜇, 𝜈𝜈) = 1 − 3 cos2 𝜇𝜇 ,
  (21) 

where 𝐶𝐶log is the Coulomb logarithm (cf. Eq. (9)). Thus Eq. (19) can be written  

 

�
1/𝑇𝑇𝜂𝜂
1/𝑇𝑇𝑥𝑥
1/𝑇𝑇𝑧𝑧

� = � 𝑞𝑞2

2𝑐𝑐2 �
𝜎𝜎ℎ

2/𝜎𝜎𝜂𝜂
2

𝑎𝑎2

𝑏𝑏2
� 𝑑𝑑

𝑑𝑑𝑑𝑑
�

〈𝐻𝐻〉/𝛾𝛾2

〈𝜀𝜀𝑥𝑥〉/𝛽𝛽𝑥𝑥
〈𝜀𝜀𝑧𝑧〉/𝛽𝛽𝑧𝑧

�� = 𝒜𝒜
𝑐𝑐2 ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑2𝜋𝜋

0
𝜋𝜋

0
∞

0

× sin 𝜇𝜇 exp[−𝑟𝑟𝑟𝑟(𝜇𝜇, 𝜈𝜈)] log[𝑟𝑟]

⎩
⎪
⎨

⎪
⎧

𝜎𝜎ℎ
2

𝜎𝜎𝜂𝜂
2 𝑔𝑔1(𝜇𝜇, 𝜈𝜈)

𝑎𝑎2𝑔𝑔2(𝜇𝜇, 𝜈𝜈) + 𝐷𝐷𝑥𝑥
2𝜎𝜎ℎ

2

𝛽𝛽𝑥𝑥𝜀𝜀𝑥𝑥
𝑔𝑔1(𝜇𝜇, 𝜈𝜈)

𝑏𝑏2𝑔𝑔3(𝜇𝜇, 𝜈𝜈) + 𝐷𝐷𝑧𝑧
2𝜎𝜎ℎ

2

𝛽𝛽𝑧𝑧𝜀𝜀𝑧𝑧
𝑔𝑔1(𝜇𝜇, 𝜈𝜈)⎭

⎪
⎬

⎪
⎫  (22)  

We can rewrite a more compact form of Eq. (22), replacing the 3 functions 𝑔𝑔𝑖𝑖 by the 
“scattering function” 𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐), where 𝜌𝜌=𝑟𝑟/𝑐𝑐2 replaces 𝑟𝑟 and adding the function 𝐷𝐷0: 

 𝐷𝐷0(𝜇𝜇, 𝜈𝜈) = sin2 𝜇𝜇 (𝑎𝑎2 cos2 𝜈𝜈 + 𝑏𝑏2sin2 𝜈𝜈) + cos2 𝜇𝜇, (23) 

 
𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 2 ∫ 𝑑𝑑𝑑𝑑 ∫ 𝑑𝑑𝑑𝑑 sin 𝜇𝜇2𝜋𝜋

0
𝜋𝜋

0 (1 − 3 cos2 𝜇𝜇)

× ∫ 𝑑𝑑𝑑𝑑∞
0 log[𝑐𝑐2𝜌𝜌] exp[−𝜌𝜌𝐷𝐷0(𝜇𝜇, 𝜈𝜈)] .

 (24) 

The integral over 𝜌𝜌 can be solved analytically:  

 ∫ 𝑑𝑑𝑑𝑑∞
0 log[𝑐𝑐2𝜌𝜌] exp[−𝜌𝜌𝐷𝐷0(𝜇𝜇, 𝜈𝜈)] = −𝐶𝐶Euler+2 log 𝑐𝑐−log[𝐷𝐷0(𝜇𝜇,𝜈𝜈)]

𝐷𝐷0(𝜇𝜇,𝜈𝜈)
, (25) 

were 𝐶𝐶Euler≈0.5772  is Euler’s constant. From Eq. (20), we get log 𝑐𝑐2 = 𝐶𝐶log +
log[𝛾𝛾2𝜎𝜎ℎ

2] ≈ 𝐶𝐶log  assuming that 𝐶𝐶log≫ log[𝛾𝛾2𝜎𝜎ℎ
2].  This sounds fine as in most cases 

10≲𝐶𝐶log≲20  (e.g. for the LHC: 𝛾𝛾=7000 , 𝜎𝜎𝜂𝜂≈10−4 , 𝐶𝐶log≈20 , and with 𝜎𝜎ℎ≈𝜎𝜎𝜂𝜂  we get 
log[𝑐𝑐2] ≈ 𝐶𝐶log ≫ log�𝛾𝛾2𝜎𝜎𝜂𝜂

2� = − 0.7). The remaining variables 𝜇𝜇, 𝜈𝜈 are then transformed 
into 𝑥𝑥= cos 𝜇𝜇 , 𝑧𝑧=2𝜈𝜈 using symmetry properties of trigonometric functions. Hence, using Eq. 
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(25), 𝑓𝑓  can be reduced to a single integral (see Ref. [7]) and cast into the form (with 
𝐶̃𝐶=2 log 𝑐𝑐 − 𝐶𝐶Euler): 

 
𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 8𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑1

0 �2 log �𝐶̃𝐶
2

� 1
�𝑃𝑃(𝑥𝑥)

+ 1
�𝑄𝑄(𝑥𝑥)

�� − 𝐶𝐶Euler� 1−3𝑦𝑦2

�𝑃𝑃(𝑦𝑦)𝑄𝑄(𝑦𝑦)
,

𝑃𝑃(𝑦𝑦) = 𝑎𝑎2 + (1 − 𝑎𝑎2)𝑦𝑦2 𝑄𝑄(𝑦𝑦) = 𝑏𝑏2 + (1 − 𝑏𝑏2)𝑦𝑦2.
 (26) 

After some work, the IBS growth rates for bunched beams (Eq. 22) are written as in [6]-
[9]: 

 

⎝

⎜
⎛

1
𝑇𝑇𝜂𝜂
1

𝑇𝑇𝑥𝑥
1
𝑇𝑇𝑧𝑧⎠

⎟
⎞

= 𝒜𝒜

⎝

⎜⎜
⎛

�𝜎𝜎ℎ
2

𝜎𝜎𝜂𝜂
2 𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�

�𝑓𝑓 �1
𝑎𝑎

, 𝑏𝑏
𝑎𝑎

, 𝑐𝑐
𝑎𝑎

� + 𝐷𝐷𝑥𝑥
2𝜎𝜎ℎ

2

𝛽𝛽𝑥𝑥𝜀𝜀𝑥𝑥
𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�

�𝑓𝑓 �1
𝑏𝑏

, 𝑎𝑎
𝑏𝑏

, 𝑐𝑐
𝑏𝑏

� + 𝐷𝐷𝑧𝑧
2𝜎𝜎ℎ

2

𝛽𝛽𝑧𝑧𝜀𝜀𝑧𝑧
𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�⎠

⎟⎟
⎞

. (27) 

The first term in each transverse growth rate of Eq. (27) corresponds to a straight 
excitation of their own emittance. Each of the second term relates to the longitudinal growth 
rate 𝑇𝑇𝜂𝜂

−1  and to the dispersion 𝐷𝐷𝑥𝑥,𝑧𝑧
2  that possibly makes a coupling of the longitudinal 

growth into their respective transverse planes. 
Many storage rings are planar (with reference orbit in the median plane (𝑠𝑠, 𝑥𝑥) i.e. zero 

vertical dispersion 𝐷𝐷𝑧𝑧=0). So, Eq. (26) shortens to (with 1 − 𝐷𝐷𝑥𝑥
2𝜎𝜎𝜂𝜂

2/𝜎𝜎𝑥𝑥
2 = 𝜎𝜎ℎ

2/𝜎𝜎𝜂𝜂
2): 

 

⎝

⎜
⎛

1
𝑇𝑇𝜂𝜂
1

𝑇𝑇𝑥𝑥
1
𝑇𝑇𝑧𝑧⎠

⎟
⎞

= 𝒜𝒜

⎝

⎜⎜
⎛

��1 − 𝐷𝐷𝑥𝑥
2𝜎𝜎𝜂𝜂

2

𝜎𝜎𝑥𝑥
2 � 𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�

�𝑓𝑓 �1
𝑎𝑎

, 𝑏𝑏
𝑎𝑎

, 𝑐𝑐
𝑎𝑎

� + 𝐷𝐷𝑥𝑥
2𝜎𝜎𝜂𝜂

2

𝜎𝜎𝑥𝑥
2 𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐)�

�𝑓𝑓 �1
𝑏𝑏

, 𝑎𝑎
𝑏𝑏

, 𝑐𝑐
𝑏𝑏

�� ⎠

⎟⎟
⎞

, (28) 

which is the original IBS Piwinski’s formula [1]. As the growth times change with the 
momentum spread (square) 𝜂𝜂2 and the emittances 𝜀𝜀𝑥𝑥,𝑧𝑧, an iterative procedure is needed to 
compute the evolution of growth time, and so update 𝜂𝜂2 and 𝜀𝜀𝑥𝑥,𝑧𝑧 (cf. last chapter).  

 Invariant 2.4.2.4

In the presence of IBS, bunched beams may experience phase space dilution leading to 
continuous growth of the momentum spread and/or growth of one or both transverse 
emittances. The performance of the beam can be described via an invariant that is arranged 
in a form close to the sum of the mean value of the change in emittance and that in 
momentum deviation due to the particle collisions (supposing 𝐻𝐻=𝜂𝜂2). 

 � 1
𝛾𝛾2 − �𝐷𝐷𝑥𝑥

2

𝛽𝛽𝑥𝑥
2� − �𝐷𝐷𝑧𝑧

2

𝛽𝛽𝑧𝑧
2�� 𝜂𝜂2 + � 1

𝛽𝛽𝑥𝑥
� 𝜀𝜀𝑥𝑥 + � 1

𝛽𝛽𝑧𝑧
� 𝜀𝜀𝑧𝑧 = constant. (29) 

Each term on the left hand side of Eq. (29) is positive in case the coefficient of 𝜂𝜂2 is 
positive. So, the sum of the three positive invariants, and thus of the three oscillation 
energies, is limited and the beam can attain an equilibrium (i.e. the IBS emittance growth is 
bounded). In case the coefficient of 𝜂𝜂2 is negative the total oscillation energy can increase 
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as long as it does not exceed further limitations. Then, no beam equilibrium can exist. 
Noting that, unlike planar rings, the conditions for beam equilibrium do not depend whether 
the storage rings are below or above the transition. 

For planar rings with 𝐷𝐷𝑧𝑧 = 0 the latter formula can be rewritten, assuming the “smooth 
focusing approximation” holds, as: 

 
� 1

𝛾𝛾2 − 1
𝛾𝛾𝑡𝑡

2� 𝜂𝜂2 + � 1
𝛽𝛽𝑥𝑥

� 𝜀𝜀𝑥𝑥 + � 1
𝛽𝛽𝑧𝑧

� 𝜀𝜀𝑧𝑧 = constant,

⟨𝐷𝐷𝑥𝑥⟩ ≡ 𝑅𝑅
𝑄𝑄𝑥𝑥

2 , 𝛼𝛼𝑝𝑝 = �𝐷𝐷𝑥𝑥(𝑠𝑠)
𝜌𝜌(𝑠𝑠)

� ≡ 1
𝛾𝛾𝑡𝑡

2 , 𝜂𝜂𝑡𝑡 = 1
𝛾𝛾𝑡𝑡

2 − 1
𝛾𝛾2 ,

 (30) 

where 𝛾𝛾𝑡𝑡  is the transition energy, 𝛼𝛼𝑝𝑝  the momentum compaction factor, 𝜂𝜂𝑡𝑡  the slip factor 
and 𝑄𝑄𝑥𝑥 the machine tune. As a result, below the transition (𝜂𝜂𝑡𝑡<0) the coefficient of 𝜂𝜂2 is 
positive and the beam can reach an equilibrium. Above transition (𝜂𝜂𝑡𝑡≥0) the coefficient of 
𝜂𝜂2 is negative and the beam cannot reach an equilibrium.  

Figure 2 shows an application of the Piwinski’s IBS model to the “Extra low energy 
antiproton” synchrotron (ELENA ≈ 30 m circumference). ELENA is a below transition ring 
with 𝜂𝜂𝑡𝑡≈ − 0.72 (for 𝛾𝛾≈1 at 100 keV), designed to decelerate antiprotons at 5.31 MeV 
kinetic energy (100 MeV/c) sent by the Antiproton Decelerator (AD), to yield dense beams 
at 100 keV (13.7 MeV/c). ELENA cycle with electron-cooling plateaus and deceleration 
ramps is overlaid to the plot. 

 

Figure 2: Antiproton deceleration down the 3s ELENA second ramp, from 0.65 MeV (35 MeV/c) to 
100 keV, after the second cooling plateau. Initial rms emittances are 𝜀𝜀𝑥𝑥,𝑧𝑧

∗ = 37.3  nm (physical 
emittances 𝜀𝜀𝑥𝑥,𝑧𝑧 = 1 𝜇𝜇m), 𝜀𝜀𝑠𝑠

∗ = 14.4 nm (or 𝜀𝜀𝑠𝑠
∗ = 0.56 m𝑒𝑒𝑒𝑒𝑒𝑒). The emittance evolution is calculated 

with IBS, by iteratively re-evaluating the growth rates, as they are determined by the emittance 
values, and since the energy decreases versus time. With regard to the plot, there is no strong 
argument to discard slow deceleration ramps between plateaus with electron cooling. (Mathematica 
code written by C. Carli, with linear coupling). 

 Bjorken-Mtingwa Model 2.4.3

 Beam Phase Space Density and Invariants  2.4.3.1

The IBS model formulated as in [2], in line with the work of Piwinski [1], considers 
Gaussian laws for the beam density distributions in phase space: 
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𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝) = 𝑁𝑁𝑏𝑏

Γ
exp[𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝)] , Γ = ∫ exp[𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝)] 𝑑𝑑3𝑟𝑟𝑑𝑑3𝑝⃗𝑝,

𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝) = 1
2

∑ �𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑝𝑝𝑖𝑖𝛿𝛿𝑝𝑝𝑗𝑗 + 𝐵𝐵𝑖𝑖𝑖𝑖𝛿𝛿𝑝𝑝𝑖𝑖𝛿𝛿𝑟𝑟𝑗𝑗 + 𝐶𝐶𝑖𝑖𝑖𝑖𝛿𝛿𝑟𝑟𝑖𝑖𝛿𝛿𝑟𝑟𝑗𝑗�3
𝑖𝑖,𝑗𝑗=1 = 𝑆𝑆(𝑥𝑥) + 𝑆𝑆(𝑧𝑧) + 𝑆𝑆(𝑠𝑠),

 (31) 

where 𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝) is the phase space density of a beam holding 𝑁𝑁𝑏𝑏 particles, Γ is the phase beam 
space volume and 𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝) is the Gaussian particle beam density distribution, 𝛿𝛿𝑟𝑟 and 𝛿𝛿𝑝⃗𝑝 are 
the position and momentum from the reference values 𝑟𝑟   and 𝑝⃗𝑝 . Working out the 
coefficients 𝐴𝐴𝑖𝑖𝑖𝑖 , 𝐵𝐵𝑖𝑖𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑖𝑖, the particle beam density distribution can be written  

 
𝑆𝑆(𝑥𝑥) = 𝛽𝛽𝑥𝑥

2𝜎𝜎𝑥𝑥𝛽𝛽
2 �𝛾𝛾𝑥𝑥𝑥𝑥𝛽𝛽

2 + 2𝛼𝛼𝑥𝑥𝑥𝑥𝛽𝛽𝑥𝑥′𝛽𝛽 + 𝛽𝛽𝑥𝑥𝑥𝑥′𝛽𝛽2�,

𝑆𝑆(𝑧𝑧) = 𝛽𝛽𝑧𝑧
2𝜎𝜎𝑧𝑧𝛽𝛽

2 �𝛾𝛾𝑧𝑧𝑧𝑧𝛽𝛽
2 + 2𝛼𝛼𝑧𝑧𝑧𝑧𝛽𝛽𝑧𝑧′𝛽𝛽 + 𝛽𝛽𝑧𝑧𝑧𝑧′𝛽𝛽2�, 𝑆𝑆(𝑠𝑠) = 𝜂𝜂2

2𝜎𝜎𝜂𝜂
2 + 𝜂𝜂(𝑠𝑠−𝑠𝑠0)2

2𝜎𝜎𝜂𝜂
2 .

 (32) 

Like in Eq. (16) 𝜀𝜀𝑠𝑠=𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠  and 𝜀𝜀𝑥𝑥,𝑧𝑧=𝜎𝜎𝑥𝑥𝛽𝛽,𝑧𝑧𝛽𝛽
2 /𝛽𝛽𝑥𝑥,𝑧𝑧≡𝜎𝜎𝑥𝑥𝛽𝛽

′ ,𝑧𝑧𝛽𝛽
′

2 𝛽𝛽𝑥𝑥,𝑧𝑧  are the longitudinal and 

transverse emittances and 𝜎𝜎𝜂𝜂,𝜎𝜎𝑠𝑠, 𝜎𝜎𝑥𝑥,𝑧𝑧, 𝜎𝜎𝑥𝑥,𝑧𝑧
′  the rms momentum spread, length, width and 

height of a bunch beam.  

 Two-Body Scattering: Rate of Change of Emittances and Momentum 2.4.3.2

Unlike Piwinski, the approach to IBS of Bjorken and Mtingwa is based on the time-
evolution operator « S-matrix » that relates transitions from an initial quantum state |𝑖𝑖⟩ to a 
final state |𝑓𝑓⟩ of a physical system experiencing a scattering process. The matrix elements 
of S are inner products symbolized ⟨𝑓𝑓|𝑆𝑆|𝑖𝑖⟩. The S-matrix is proportional to the amplitude 
ℳ that represents the physics of the interaction process.  

Following [2] (see also [4], where they proceed through a slightly different way) the 
“transition rate” for a two-particle scattering process, namely the number of scattering 
events per unit time, is given by Ref. [10]: 

  d℘
𝑑𝑑𝑑𝑑

= 1
2 ∫ 𝑑𝑑3𝑟𝑟 𝑑𝑑3𝑝⃗𝑝1

𝛾𝛾1

𝑑𝑑3𝑝⃗𝑝2
𝛾𝛾2

𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝1) 𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝2)|ℳ|2 𝑑𝑑3𝑝⃗𝑝1
′

𝛾𝛾1
′

𝑑𝑑3𝑝⃗𝑝2
′

𝛾𝛾2
′

𝛿𝛿4(𝑝⃗𝑝1+𝑝⃗𝑝2
′ −𝑝⃗𝑝1

′ −𝑝⃗𝑝2)
(2𝜋𝜋)2 , (33) 

where a prime ′ refers to the particle parameters after collision, 𝛾𝛾1,2=𝐸𝐸1,2/𝑚𝑚, 𝐸𝐸1,2 are the 
two colliding particle’ energy (in Heaviside Lorentz units in which 𝜖𝜖0=ℏ=𝑐𝑐=1), 𝑚𝑚 their 
mass and ℳ is the Coulomb “scattering amplitude” of a particle-pair collision. Then, using 
the beam density distribution 𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝) allows to compute the rate of change of the emittances  
𝜀𝜀𝑢𝑢 (𝑢𝑢=𝑥𝑥, 𝑧𝑧, 𝑠𝑠); we obtain: 

 

d𝜀𝜀𝑢𝑢
𝑑𝑑𝑑𝑑

= 1
2Γ2 ∫ 𝑑𝑑3𝑟𝑟 𝑑𝑑3𝑝⃗𝑝1

𝛾𝛾1

𝑑𝑑3𝑝⃗𝑝2
𝛾𝛾2

exp[−𝑆𝑆(𝑟𝑟, 𝑝⃗𝑝1)] 𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝1) 𝑃𝑃(𝑟𝑟, 𝑝⃗𝑝2)

× |ℳ|2(𝜀𝜀𝑢𝑢(𝑝⃗𝑝1) − 𝜀𝜀𝑢𝑢(𝑝⃗𝑝1
′ ) + 𝜀𝜀𝑢𝑢(𝑝⃗𝑝2

′ ) − 𝜀𝜀𝑢𝑢(𝑝⃗𝑝2)) 𝑑𝑑3𝑝⃗𝑝1
′

𝛾𝛾1
′

𝑑𝑑3𝑝⃗𝑝2
′

𝛾𝛾2
′

𝛿𝛿4(𝑝⃗𝑝1+𝑝⃗𝑝2
′ −𝑝⃗𝑝1

′ −𝑝⃗𝑝2)
(2𝜋𝜋)2 .

 (34) 

The aim is to compute the scattering amplitude ℳ. This will be done by means of the 
“Feynman rules”, using the “Feynman diagram” representation of a scattering process 
stemming from quantum electrodynamic theory (Ref. [10]): 

  |ℳ|2 = 𝑒𝑒4

𝑝⃗𝑝4 sin4[𝜓𝜓/2].  (35) 
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At this point the calculations are still far from finished, and also they are not easy to 
perform. After some difficult manipulations the rate of change of the emittances d𝜀𝜀𝑢𝑢/𝑑𝑑𝑑𝑑, 
can be recast in the form given by Eq. (36) below. See [2] for details of the rather lengthy 
calculations required to derive the following Bjorken–Mtingwa growth rates.  

 Intrabeam Scattering Growth Rates 2.4.3.3

The formula for the IBS growth rates derived by the Bjorken-Mtingwa formalism are: 

 1
𝑇𝑇𝑢𝑢

=  d log 𝜀𝜀𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝜋𝜋2𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟i
2𝐶𝐶log

𝛾𝛾Γ
�∫ 𝑑𝑑𝑑𝑑� 𝜆𝜆

det[𝐿𝐿+λI]
∞

0 �Tr[𝐿𝐿𝑢𝑢]Tr � 1
𝐿𝐿+λI

� − 3Tr � 1
𝐿𝐿𝑢𝑢+λI

���, (36) 

with 

 Γ = (2𝜋𝜋)2(𝛽𝛽𝛽𝛽)3𝜀𝜀𝑥𝑥𝜀𝜀𝑧𝑧𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠 = (2𝜋𝜋)2(𝛽𝛽𝛽𝛽)3𝜀𝜀𝑥𝑥𝜀𝜀𝑧𝑧𝜀𝜀𝑠𝑠, (37) 

 𝐿𝐿𝑥𝑥= 𝛽𝛽𝑥𝑥𝛾𝛾2

𝜀𝜀𝑥𝑥

⎣
⎢
⎢
⎡

1
𝛾𝛾2 − 𝜙𝜙𝑥𝑥

𝛾𝛾
0

− 𝜙𝜙𝑥𝑥
𝛾𝛾

𝐻𝐻𝑥𝑥
𝛽𝛽𝑥𝑥

0
0 0 0⎦

⎥
⎥
⎤

, 𝐿𝐿𝑧𝑧= 𝛽𝛽𝑧𝑧𝛾𝛾2

𝜀𝜀𝑧𝑧

⎣
⎢
⎢
⎡
0 0 0
0 𝐻𝐻𝑧𝑧

𝛽𝛽𝑧𝑧
− 𝜙𝜙𝑧𝑧

𝛾𝛾

0 − 𝜙𝜙𝑧𝑧
𝛾𝛾

1
𝛾𝛾2 ⎦

⎥
⎥
⎤

, 𝐿𝐿𝑠𝑠= 𝛾𝛾2

𝜎𝜎𝜂𝜂
2 �

0 0 0
0 1 0
0 0 0

� , (38) 

 𝜙𝜙𝑥𝑥,𝑧𝑧 = 𝐷𝐷𝑥𝑥,𝑧𝑧𝛼𝛼𝑥𝑥,𝑧𝑧+𝐷𝐷𝑥𝑥,𝑧𝑧
′ 𝛽𝛽𝑥𝑥,𝑧𝑧

𝛽𝛽𝑥𝑥,𝑧𝑧
, 𝐻𝐻𝑥𝑥,𝑧𝑧 = 𝐷𝐷𝑥𝑥,𝑧𝑧𝛼𝛼𝑥𝑥,𝑧𝑧+𝛽𝛽𝑥𝑥,𝑧𝑧

2 𝜙𝜙𝑥𝑥,𝑧𝑧
2

𝛽𝛽𝑥𝑥,𝑧𝑧
. (39) 

In Eq. (36) the Coulomb logarithm 𝐶𝐶log  is defined in Refs. [2,5,8] in terms of the 
maximum and minimum impact parameters and minimum scattering angle. Diverse 
definitions for 𝐶𝐶log exist. Luckily, its logarithmic dependence means that it varies slowly 
over a large range of the parameters involved in its definition (e.g. Eq. (9)). Ref. [2] takes 
the fixed Coulomb logarithm 𝐶𝐶log=20. Also, 𝑐𝑐 is the speed of light, 𝑟𝑟i is the classical ion 
radius, 𝑝⃗𝑝 and 𝐸𝐸0  the particle momentum rest energy, and 𝛾𝛾=�𝐸𝐸0

2 + 𝑝𝑝2/𝐸𝐸0 . The matrices 
inside the brackets depend on the emittances, momentum spread and bunch length (with 
𝜀𝜀𝑠𝑠=𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠  in m). For matched beams the longitudinal emittance is defined as 
𝜀𝜀𝑠𝑠=𝜋𝜋𝜋𝜋𝜎𝜎𝜂𝜂𝜎𝜎𝑠𝑠𝛽𝛽−1𝑐𝑐−1 in eVs. After expansion of the integrand in the brackets of Eq. (36) and 
some lengthy computations, the growth rates are finally stated in the form given in Ref. [3], 
with 𝑢𝑢=𝑥𝑥, 𝑧𝑧, 𝑠𝑠:  

 

1
𝑇𝑇𝑢𝑢

= 𝜋𝜋2𝑁𝑁𝑏𝑏𝑐𝑐𝑟𝑟𝑖𝑖
2𝐶𝐶log

𝛾𝛾Γ
∆𝑢𝑢 �∫ 𝑑𝑑𝑑𝑑 √𝜆𝜆(𝑎𝑎𝑢𝑢𝜆𝜆+𝑏𝑏𝑢𝑢)

(𝜆𝜆3+𝑎𝑎𝜆𝜆2+𝑏𝑏𝑏𝑏+𝑐𝑐)3/2
∞

0 � ,

∆𝑥𝑥= 𝛾𝛾2𝐻𝐻𝑥𝑥
𝜀𝜀𝑥𝑥

, ∆𝑧𝑧= 𝛾𝛾2𝐻𝐻𝑧𝑧
𝜀𝜀𝑧𝑧

, ∆𝑠𝑠= 𝛾𝛾2

𝜎𝜎𝜂𝜂
.

 (40) 

The nine coefficients  𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑎𝑎𝑥𝑥, 𝑏𝑏𝑥𝑥, 𝑎𝑎𝑧𝑧 , 𝑏𝑏𝑧𝑧 , 𝑎𝑎𝑠𝑠, 𝑏𝑏𝑠𝑠 depend on the optics parameters. They 
are not reproduced here (cf. Ref. [3] for the full list). The Bjorken-Mtingwa IBS growth 
rates seem somewhat dissimilar from the ones in the Piwinski formulae. However, the two 
groups of formulae match fairly well with certain approximations. In Ref. [4], Kubo, 
Mtingwa and Wolski develop the high-energy approximation “Completely integrated 
modified Piwinski” (CIMP) which shows an asymptotic equivalence with the Bjorken-
Mtingwa growth rates formulae. 
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 Zenkevich Model  2.4.4

Other IBS models based on non-Gaussian distributions have been formulated using the 
kinetic analysis for the modelling of small angle multiple Coulomb scattering. The method 
exposed here is based on the solution of the Fokker–Planck equation (FPE) for the particle 
density distribution, expressed in the position-momentum phase space. The FPE is an 
integro-differential equation with friction and diffusion coefficients with account of the 
multiple IBS. 

Here, we summarize the approach developed by Zenkevich, to solve the FPE using 
Monte Carlo tool for IBS simulations in three degrees of freedom by means of a macro-
particle algorithm called “binary collision map” (BCM) and realized in the macro-particle 
code “Monte-Carlo code” (MOCAC) for numerical modelling of IBS effects in accelerators 
and storage rings. Afterwards, another macro-particle code called “Software for Intrabeam 
Scattering and Radiation Effects” (SIRE) was developed to simulate the evolution of beam 
particle distributions in storage rings, taking into account IBS, radiation damping and 
quantum excitation. MOCAC and SIRE are both tracking codes where the beam is 
represented by a large number of macro-particles occupying points in the six-dimensional 
position-momentum phase space. 

 Fokker–Planck Formalism 2.4.4.1

The evolution of the particle distribution in a non-equilibrium beam facing to multiple 
micro Coulomb scattering can be expressed by the Fokker–Planck approach, where the 
collision term considers the many interactions between the charged particles as a series of 
small-angle scatterings. Assume that we know how to find a function 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) such that it 
represents the conditional transition probability of a change in momentum 𝑢𝑢�⃗  to 𝑢𝑢�⃗ → 𝑢𝑢�⃗ − ∆𝑢𝑢�⃗  
in time ∆𝑡𝑡 of a particle in an individual collision. Hence, the time evolution of the position-
momentum distribution 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) of particles in phase space is (Eq. (41) shows in what 
manner 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) happens to be just how it is at time 𝑡𝑡 as a result of how it was at an earlier 
time 𝑡𝑡 − ∆𝑡𝑡): 

 
𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) = ∫ 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ − ∆𝑢𝑢�⃗ , 𝑡𝑡 − ∆𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ − ∆𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )𝑑𝑑∆𝑢𝑢�⃗ , ∫ 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )𝑑𝑑∆𝑢𝑢�⃗ = 1,

∬ 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑑𝑑𝑟𝑟𝑑𝑑𝑢𝑢�⃗|𝑟𝑟|3|𝑢𝑢��⃗ |3 = 𝑁𝑁.
 (41) 

𝑁𝑁 is the number of particles in the whole or a part of the beam, 𝑑𝑑𝑤𝑤��⃗ ≝𝑑𝑑|𝑤𝑤��⃗ |3 and 𝑑𝑑𝑟𝑟≝𝑑𝑑|𝑟𝑟|3 
are the momentum and space volume elements and |𝑟𝑟|3|𝑢𝑢�⃗ |3  indicates the phase space 
volume to integrate; 𝑢𝑢�⃗  and 𝑟𝑟 will be well-defined later (Eq. (46)). Truly 𝑓𝑓  could just be 
thought as a momentum distribution of 𝑢𝑢�⃗  and 𝑡𝑡, but keeping 𝑟𝑟 offers flexibilities. 

Multiple small-angle scattering is dominant in IBS process where ∆𝑢𝑢�⃗  is small for small 
∆𝑡𝑡. This allows expanding in Taylor’ series, to first order in ∆𝑡𝑡 and second order in ∆𝑢𝑢�⃗  the 
product 𝑓𝑓𝑃𝑃 inside the integral:  

 

𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ − ∆𝑢𝑢�⃗ , 𝑡𝑡 − ∆𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ − ∆𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) ≈ 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )

−∆𝑡𝑡 𝜕𝜕
𝜕𝜕𝜕𝜕

[𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )] − ∆𝑢𝑢�⃗ ∙ 𝜕𝜕
𝜕𝜕𝑢𝑢��⃗

[𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )]

+ 1
2

∑ ∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗
𝜕𝜕2

𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑢𝑢𝑗𝑗
𝑖𝑖,𝑗𝑗 [𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )]

 (42) 
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Inserting this result in 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)  (Eq. (41)) yields (integrations over momentum 
volumes): 

 

𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) = 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) ∫ 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )𝑑𝑑∆𝑢𝑢�⃗ − ∆𝑡𝑡 𝜕𝜕𝜕𝜕(𝑟𝑟,𝑢𝑢��⃗ ,𝑡𝑡)
𝜕𝜕𝜕𝜕 ∫ 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )𝑑𝑑∆𝑢𝑢�⃗

− ∫ ∆𝑢𝑢�⃗ ∙ 𝜕𝜕
𝜕𝜕𝑢𝑢��⃗

[𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )] 𝑑𝑑∆𝑢𝑢�⃗

+ 1
2 ∫ ∑ 𝜕𝜕2

𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑢𝑢𝑗𝑗
𝑖𝑖,𝑗𝑗 �𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ )� 𝑑𝑑∆𝑢𝑢�⃗

 (43) 

Then, 𝑃𝑃 is normalized to one and 𝑓𝑓 does not depend on ∆𝑢𝑢�⃗ , Eq.(43) transforms into the 
rate of change of the density distribution 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)  for any momentum 𝑢𝑢�⃗ =(𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧) 
(subscripts 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 refer to the momentum directions, 𝑖𝑖, 𝑗𝑗 stand for 𝑥𝑥, 𝑦𝑦, 𝑧𝑧): 

 𝜕𝜕𝜕𝜕(𝑟𝑟,𝑢𝑢��⃗ ,𝑡𝑡)
𝜕𝜕𝜕𝜕

= − 𝜕𝜕
𝜕𝜕𝑢𝑢��⃗

∙ �𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) 〈∆𝑢𝑢��⃗ 〉
∆𝑡𝑡

� + 1
2

∑ ∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗
𝜕𝜕2

𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑢𝑢𝑗𝑗
𝑖𝑖,𝑗𝑗 �𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) 〈∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗〉

∆𝑡𝑡
�. (44) 

The quantities ⟨∆𝑢𝑢�⃗ ⟩
𝑖𝑖=𝑥𝑥,𝑦𝑦,𝑧𝑧
����� ⟨∆𝑢𝑢𝑖𝑖⟩ and �∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗� are the mean changes in ∆𝑢𝑢�⃗  and ∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗 

in time ∆𝑡𝑡  as a result of scattering events, that is the first and mixed moments of the 
transition probability function 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ), referred to as 𝐹⃗𝐹 and 𝐷𝐷𝑖𝑖𝑖𝑖: 

 𝐹⃗𝐹 ≝ �∆𝑢𝑢��⃗
∆𝑡𝑡

� = ∫ ∆𝑢𝑢��⃗
∆𝑡𝑡

𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) 𝑑𝑑∆𝑢𝑢�⃗ , 𝐷𝐷𝑖𝑖𝑖𝑖 ≝ 1
2

�∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗

∆𝑡𝑡
� = 1

2 ∫
∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗

∆𝑡𝑡
𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) 𝑑𝑑∆𝑢𝑢�⃗ . (45) 

The two collision terms ⟨∆𝑢𝑢�⃗ ⟩/∆𝑡𝑡 and �∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗�/∆𝑡𝑡 characterize a “frictional dynamic” 
and a “diffusion in momentum space”, with opposite sign in Eq. (44), which may be in 
balance for an equilibrium. Inserting 𝐹⃗𝐹  and 𝐷𝐷𝑖𝑖𝑖𝑖  in Eq. (44) results in the compact 
formulation: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕
𝜕𝜕𝑢𝑢��⃗

∙ �𝐹⃗𝐹𝑓𝑓� + ∑ 𝜕𝜕2

𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑢𝑢𝑗𝑗
𝑖𝑖,𝑗𝑗 �𝐷𝐷𝑖𝑖𝑖𝑖𝑓𝑓�. (46) 

The transport process Eqs. (44-46) is the Fokker-Planck equation (Refs. [16]-[17]). To 
solve it one must specify 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) to get 〈∆𝑢𝑢�⃗ 〉. Yet, there is an indirect way to do it. 
Suppose that multiple collisions are handled as series of particle-pair collisions, then, the 
mean momentum changes ⟨∆𝑢𝑢�⃗ ⟩ and �∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗� are computable via the Coulomb scattering 
cross-section (since ⟨∆𝑢𝑢�⃗ ⟩ contains the physics of the scattering process via Eq. (48) below). 

Let us work out the friction 𝐹⃗𝐹 and diffusion 𝐷𝐷𝑖𝑖𝑖𝑖 terms. For this purpose, we explore the 
different ways collisions are able to change the momentum of a “test” particle in a time ∆𝑡𝑡, 
and average all the occurrences of ∆𝑢𝑢�⃗  and ∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗. For ease, this will first be resolved in the 
CM frame and then converted back to the LAB frame (if wanted). The incidence of 
collisions in time ∆𝑡𝑡 on a test particle is evaluated for a certain “field” particle momentum 
by averaging ∆𝑢𝑢�⃗  on all possible factors that affect ∆𝑢𝑢�⃗  (i.e. azimuthal and scattering angles in 
IBS events). Next, averaging is computed for all field particle momenta 𝑤𝑤��⃗  via the density 
distribution 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡). Just after collisional time interval Δ𝑡𝑡, each field particle momentum 
is replaced by 𝑤𝑤��⃗ → 𝑤𝑤��⃗ + ∆𝑤𝑤��⃗ ≡ 𝑤𝑤��⃗ ⋆ (the sign ⋆ refer to post collision momenta).  
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 Single Pair-Collision Event 2.4.4.2

In the framework of particle-pair collision events, let us define the position 𝑟𝑟  and 
dimensionless momentum 𝑃𝑃�⃗  vectors for a test particle 𝑢𝑢�⃗  and a field particle 𝑤𝑤��⃗  as: 

 𝑟𝑟 = (𝑧𝑧 − 𝑧𝑧𝑠𝑠, 𝑥𝑥, 𝑦𝑦), 𝑃𝑃�⃗ = �𝜂𝜂
𝛾𝛾

≝ 1
𝛾𝛾

∆𝑝𝑝
𝑝𝑝

, 𝑥𝑥′ ≝ 𝑝𝑝𝑥𝑥
𝑝𝑝

, 𝑦𝑦′ ≝ 𝑝𝑝𝑦𝑦

𝑝𝑝
� = � 𝑢𝑢�⃗   test particle

𝑤𝑤��⃗   field particle. (47) 

The vectors (𝑟𝑟, 𝑢𝑢�⃗ ) are the phase space coordinates, where 𝑧𝑧 is the longitudinal deviation of a 
moving particle about the design orbit, with respect to the bunch centre 𝑧𝑧𝑐𝑐 and 𝑥𝑥, 𝑦𝑦 are the 
horizontal and vertical deviations of that particle in a plane perpendicular to the design orbit. 
In addition, 𝜂𝜂, 𝑥𝑥′, 𝑦𝑦′  are the relative longitudinal and transverse momenta, assuming a 
constant reference particle momentum 𝑝𝑝. The kinematics of the relative momentum changes 
after a pair collision between particles 𝑢𝑢�⃑  and 𝑤𝑤��⃑  in transverse and longitudinal directions are 
taken from the Piwinski model Eq. (1), with ∆𝑢𝑢�⃑ =∆𝑢𝑢𝑥𝑥𝑥𝑥�+∆𝑢𝑢𝑦𝑦𝑦𝑦�+∆𝑢𝑢𝑧𝑧𝑧̂𝑧: 

 ∆𝑢𝑢�⃑ = 𝑢𝑢�⃗ ⋆ − 𝑢𝑢�⃑ =

⎩
⎪
⎨

⎪
⎧

1
2

�𝑈𝑈𝑦𝑦𝑈𝑈 sin 𝜙𝜙� −𝑈𝑈𝑧𝑧𝑈𝑈𝑥𝑥 cos 𝜙𝜙�

𝑈𝑈⊥
sin 𝜓𝜓� + 𝑈𝑈𝑥𝑥(cos 𝜓𝜓� − 1)�  

1
2

�𝑈𝑈𝑥𝑥𝑈𝑈 sin 𝜙𝜙� −𝑈𝑈𝑧𝑧𝑈𝑈𝑦𝑦 cos 𝜙𝜙�

𝑈𝑈⊥
sin 𝜓𝜓� + 𝑈𝑈𝑦𝑦(cos 𝜓𝜓� − 1)� ,

1
2

[𝑈𝑈⊥ cos 𝜙𝜙� sin 𝜓𝜓� + 𝑈𝑈𝑧𝑧(cos 𝜓𝜓� − 1)]

 (48) 

where 

 
𝑈𝑈��⃗ =  𝑢𝑢�⃗ − 𝑤𝑤��⃗ = �𝑈𝑈𝑧𝑧 , 𝑈𝑈𝑥𝑥, 𝑈𝑈𝑦𝑦�, 𝑈𝑈⊥ = �𝑈𝑈𝑥𝑥

2 + 𝑈𝑈𝑦𝑦
2,

𝑈𝑈=�𝑈𝑈��⃗ �=�𝑈𝑈𝑧𝑧
2 + 𝑈𝑈𝑥𝑥

2 + 𝑈𝑈𝑦𝑦
2=|𝑢𝑢�⃗ − 𝑤𝑤��⃗ |=�(𝜂𝜂𝑢𝑢−𝜂𝜂𝑤𝑤)2

𝛾𝛾2 + (𝑥𝑥𝑢𝑢
′ − 𝑥𝑥𝑤𝑤

′ )2 + (𝑦𝑦𝑢𝑢
′ − 𝑦𝑦𝑤𝑤

′ )2,
 (49) 

in which 𝜓𝜓� and 𝜙𝜙� are the scattering and azimuthal angles in the centre of mass frame (CM). 
For elastic collisions we have ∆𝑤𝑤��⃑ = −∆𝑢𝑢�⃑ , namely 𝑢𝑢�⃗ ⋆ − 𝑢𝑢�⃑ = 𝑤𝑤��⃗ ⋆ − 𝑤𝑤��⃑  or 𝑢𝑢�⃗ ⋆ − 𝑤𝑤��⃗ ⋆ = 𝑢𝑢�⃑ − 𝑤𝑤��⃑ . 
Figure 3 pictorially displays the kinematic of a collision between a pair of particles with 
momenta 𝑢𝑢�⃗  and 𝑤𝑤��⃗  in the centre of mass of the particles, using the notation in Eqs. (47-49). 

 
 

Figure 3: Left figure: Binary collision in the CM frame. Before collision, the two particles, with 
momenta 𝑢𝑢�⃗  and 𝑤𝑤��⃗ , move non-relativistically in opposite direction parallel to the vertical y-axis. 
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Relative particle momenta 𝑈𝑈��⃗ =𝑢𝑢�⃗ -𝑤𝑤��⃗  before and after collision are outlined. The reference trihedral is 
such that before collision 𝑈𝑈��⃗  lays on the y-axis i.e. 𝑈𝑈��⃗ =�𝑢𝑢�⃗ -𝑤𝑤��⃗ �𝑦𝑦� , and is perpendicular to the 
longitudinal z-axis of the reference orbit (the hat means unit vector). After collision 
𝑈𝑈��⃗ ⋆=𝑢𝑢�⃗ ⋆-𝑤𝑤��⃗ ⋆=𝑈𝑈𝑥𝑥

⋆𝑥𝑥�+𝑈𝑈𝑦𝑦
⋆𝑦𝑦�+𝑈𝑈𝑧𝑧

⋆𝑧̂𝑧 ; likewise ∆𝑈𝑈��⃗ =𝑈𝑈��⃗ ⋆-𝑈𝑈��⃗ =∆𝑢𝑢�⃗ -∆𝑤𝑤��⃗ . So with the momenta shown in the 
sketch we get the result ∆𝑈𝑈��⃗ /𝑈𝑈= sin 𝜓𝜓� cos 𝜙𝜙� 𝑥𝑥�+�cos 𝜙𝜙� -1�𝑦𝑦�+ sin 𝜓𝜓� sin 𝜙𝜙� 𝑧̂𝑧, since U��⃗ ∥y�. Right figure: 
Frenet-Seret curved coordinate system in a storage ring, with the reference orbit and an individual 
particle trajectory. The particle location is: 𝑟𝑟(𝑠𝑠)=𝑟𝑟0(𝑠𝑠)+𝑥𝑥(𝑠𝑠)𝑥𝑥�+𝑦𝑦(𝑠𝑠)y�. 
 

As a primary step to evaluate the change in particle momentum change let us average 
∆𝑢𝑢�⃑ (𝜓𝜓�, 𝜙𝜙�) over the angle 𝜙𝜙� only by way of Eq. (48), that is not including the scattering angle 
𝜓𝜓�. We then obtain: 

 〈∆𝑢𝑢�⃗ 〉𝜙𝜙 = 1
2𝜋𝜋 ∫ ∆𝑢𝑢�⃗  sin 𝜓𝜓� 𝑑𝑑𝜙𝜙�2𝜋𝜋

0 = − sin2 𝜓𝜓�

2
(𝑢𝑢�⃗ − 𝑤𝑤��⃗ ), (50) 

in which integrating ∆𝑢𝑢�⃗  gives the vector − sin2 𝜓𝜓/2 �𝑈𝑈𝑧𝑧, 𝑈𝑈𝑥𝑥, 𝑈𝑈𝑦𝑦�, from which the above 
average follows since 𝑈𝑈��⃗ = 𝑢𝑢�⃗ − 𝑤𝑤��⃗ . We will use this result later. Now, to find the momentum 
mean changes during particle-pair collisions because of IBS we use the expression 𝑃𝑃scat to 
quantify the chance of collisions per unit time (in CM frame, with the a solid angle element 
𝑑𝑑Ω�= sin 𝜓𝜓� 𝑑𝑑𝜓𝜓�𝑑𝑑𝜙𝜙�): 

 𝑃𝑃scat(𝑟𝑟, 𝑢𝑢�⃗ , 𝜓𝜓�, 𝜙𝜙�, 𝑡𝑡) = 2𝛽𝛽�𝑐𝑐𝑓𝑓(𝑟𝑟,𝑢𝑢��⃗ ,𝑡𝑡)𝜎𝜎��𝜓𝜓� �𝑑𝑑Ω�  
𝛾𝛾2 , 𝜎𝜎�(𝜓𝜓�) = � 𝑟𝑟𝐢𝐢

4𝛽𝛽�2sin2�𝜓𝜓�
2 �

�
2

. (51) 

The density distribution 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) is defined in LAB frame and 𝜎𝜎(𝜓𝜓�) is the Rutherford 
cross-section (Eq. (8)). In analogy with Eq. (46), the FPE in phase space relevant to study 
the beam evolution in storage rings attributable to IBS effects is 

 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝑢𝑢��⃗

∙ �𝐹⃗𝐹 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)� + ∑ 𝜕𝜕2

𝜕𝜕𝑢𝑢𝑖𝑖𝜕𝜕𝑢𝑢𝑗𝑗
𝑖𝑖,𝑗𝑗 �𝐷𝐷𝑖𝑖𝑖𝑖  𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)�, (52) 

in which the summation is made over repeating indices. The frictional and diffusion 
coefficients are definite in terms of averaged scattering events, noting that 𝑃𝑃scat(𝑟𝑟, 𝑢𝑢�⃗ , 𝜓𝜓�, 𝑡𝑡) 
acts for the transition probability 𝑃𝑃(𝑢𝑢�⃗ , ∆𝑢𝑢�⃗ ) used in Eq. (45): 

 
𝐹⃗𝐹 ≡ �∆𝑢𝑢��⃗

∆𝑡𝑡
�

𝑤𝑤��⃗
= ∫ ∆𝑢𝑢��⃗

∆𝑡𝑡
𝑃𝑃scat(𝑟𝑟, 𝑢𝑢�⃗ , 𝜓𝜓�, 𝑡𝑡) 𝑑𝑑𝑢𝑢�⃗ ,

𝐷𝐷𝑖𝑖 ≡ 1
2

�∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗

∆𝑡𝑡
�

𝑤𝑤��⃗
= 1

2 ∫
∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗

∆𝑡𝑡
𝑃𝑃scat(𝑟𝑟, 𝑢𝑢�⃗ , 𝜓𝜓�, 𝑡𝑡) 𝑑𝑑𝑢𝑢�⃗ .

 (53) 

Then, using ∆𝑢𝑢�⃗ ≝ ∆𝑢𝑢𝜄𝜄=�∆𝑢𝑢𝑥𝑥, ∆𝑢𝑢𝑦𝑦, ∆𝑢𝑢𝑧𝑧� (cf. Eq. (48)), the average 〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗  of ∆𝑢𝑢�⃗  for a 
test particle (in CM frame) is computed in two steps: the first average, named 〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 , 
integrate ∆𝑢𝑢�⃗  on all possible azimuthal and scattering angles 𝜙𝜙� , 𝜓𝜓� ; the second average, 
named 〈〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙〉𝑤𝑤��⃗ , integrate 〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 over all field particles 𝑤𝑤��⃗  with phase space distribution 
𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) (for shortness 〈〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙〉𝑤𝑤��⃗ ) is renamed 〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗  hereinafter). The result of double 
integration is: 
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〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 = ∫ ∫ ∆𝑢𝑢�⃗  𝑃𝑃scat𝑑𝑑𝜙𝜙�𝑑𝑑𝜓𝜓�2𝜋𝜋
0 = − 𝜋𝜋𝜋𝜋𝑟𝑟i

2

𝛽𝛽�3𝛾𝛾2 log �2𝛽𝛽�2𝑏𝑏�max
𝑟𝑟i

� (𝑢𝑢�⃗ − 𝑤𝑤��⃗ ),𝜋𝜋
𝜓𝜓� min

〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗ ≝ ∫ 〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡)𝑑𝑑𝑤𝑤��⃗|𝑤𝑤��⃗ |3 = 𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡) ∫ 〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡)𝑑𝑑𝑤𝑤��⃗|𝑤𝑤��⃗ |3

= − �𝜋𝜋𝜋𝜋𝑟𝑟𝑖𝑖
2𝜌𝜌(𝑟𝑟,𝑡𝑡)

𝛽𝛽�3𝛾𝛾2 log �2𝛽𝛽�2𝑏𝑏�max
𝑟𝑟i

� (𝑢𝑢�⃗ − 𝑤𝑤��⃗ )�
𝑤𝑤��⃗

,

𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡) ≝ ∫ 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡)𝑑𝑑𝑤𝑤��⃗  ,|𝑤𝑤��⃗ |3 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡) = 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡)/𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡),

 (54) 

where 〈∙〉𝑤𝑤��⃗  means averaging over the field particles 𝑤𝑤��⃗ , 𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡) is the distribution in position 
coordinates after integration of 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡) over 𝑑𝑑𝑤𝑤��⃗ , and 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡) is the local distribution in 
momentum coordinates for a given 𝑟𝑟 . Therefore, integrating 𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡)  over 𝑑𝑑𝑟𝑟  yields the 
number 𝑁𝑁  of particles in the bunch, like integrating 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡)  over 𝑑𝑑𝑟𝑟𝑑𝑑𝑤𝑤��⃗  (Eq. (41)). 
Differently the integral of 𝑓𝑓(𝑟𝑟, 𝑤𝑤��⃗ , 𝑡𝑡) over 𝑑𝑑𝑟𝑟𝑑𝑑𝑤𝑤��⃗  is unity. By way of Eq. (17) the Lorentz 
factor 𝛽̅𝛽 in CM converts to 𝛽̅𝛽≈𝛽𝛽𝛽𝛽|𝑢𝑢�⃗ − 𝑤𝑤��⃗ |/2 in LAB; so, the first moments are: 

 〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗ = − �𝜋𝜋𝜋𝜋𝑟𝑟i
2𝜌𝜌𝑟𝑟(𝑟𝑟,𝑡𝑡)

𝛽𝛽3𝛾𝛾2 𝐶𝐶l̅og�
𝑤𝑤��⃗

, 〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗ = − �8𝜋𝜋𝜋𝜋𝑟𝑟i
2𝜌𝜌𝑟𝑟(𝑟𝑟,𝑡𝑡)

𝛽𝛽3𝛾𝛾5 𝐶𝐶log(𝑢𝑢�⃗ , 𝑤𝑤��⃗ ) 𝑢𝑢��⃗ −𝑤𝑤��⃗
|𝑢𝑢��⃗ −𝑤𝑤��⃗ |3�

𝑤𝑤��⃗
, (55) 

in which 𝐶𝐶l̅og  is the CM frame Coulomb logarithm and 𝐶𝐶log(𝑢𝑢�⃗ , 𝑤𝑤��⃗ )  is the “extended” 
Coulomb logarithm defined in LAB frame: 

 𝐶𝐶l̅og = log �2𝛽𝛽�2𝑏𝑏max
𝑟𝑟i

� , 𝐶𝐶log(𝑢𝑢�⃗ , 𝑤𝑤��⃗ ) = log �𝛽𝛽2𝛾𝛾2𝑏𝑏max
2𝑟𝑟i

(𝑢𝑢�⃗ − 𝑤𝑤��⃗ )2� . (56) 

We proceed similarly to compute the second moments in LAB frame by computing the 
averages of ∆𝑢𝑢�⃗  ∆𝑢𝑢�⃗ ≝∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗=�∆𝑢𝑢𝑥𝑥∆𝑢𝑢𝑥𝑥, ∆𝑢𝑢𝑥𝑥∆𝑢𝑢𝑦𝑦 … ∆𝑢𝑢𝑧𝑧∆𝑢𝑢𝑧𝑧�. The result is:  

 〈∆𝑢𝑢𝑖𝑖∆𝑢𝑢𝑗𝑗〉𝑤𝑤��⃗ ≈ �4𝜋𝜋𝜋𝜋𝑟𝑟𝑖𝑖
2𝜌𝜌𝑟𝑟(𝑟𝑟,𝑡𝑡)

𝛽𝛽3𝛾𝛾5 𝐶𝐶log(𝑢𝑢�⃗ , 𝑤𝑤��⃗ ) 𝛿𝛿𝑖𝑖𝑖𝑖|𝑢𝑢��⃗ −𝑤𝑤��⃗ |2−(𝑢𝑢𝑖𝑖−𝑤𝑤𝑖𝑖)�𝑢𝑢𝑗𝑗−𝑤𝑤𝑗𝑗�
|𝑢𝑢��⃗ −𝑤𝑤��⃗ |3 �

𝑤𝑤��⃗
, (57) 

where 𝛿𝛿𝑖𝑖𝑖𝑖=1 if 𝑖𝑖=𝑗𝑗, 𝛿𝛿𝑖𝑖𝑖𝑖=0 if 𝑖𝑖≠𝑗𝑗 is the Kronecker symbol.  
The study of the beam evolution in phase space of the distribution 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) demands in 

theory to solve a kinetic equation such as FPE (Eq. (52)) including the computation of 𝐹⃗𝐹 and 
𝐷𝐷𝑖𝑖𝑖𝑖 by integration of 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) as shown in the above three formulae. If one might solve the 
FPE, the knowledge of particle positions and momenta resulting from the phase space 
density 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) would give the progression of longitudinal and transverse beam emittances 
caused by multiple particle-pair collisions inside the beam. Yet in practice the FPE is 
complicated to solve in both the six and three-dimensional forms. Instead, we consider a 
different technique using macro-particles for IBS simulation, founded on the Zenkevich 
“binary collision map” (BCM). 

 Monte Carlo Binary Collision Model  2.4.4.3

The BCM is an algorithm that allows to “reduce” the effects of the continuous time 
dynamical IBS system to a discrete time “map” in momentum space. Indeed, BCM, replaces 
a multiple scattering process acting in a time gap ∆𝑡𝑡 by a discrete set of binary collision 
events. This method operates on each pair of macro-particles and calculates the change of 
momenta during a collision event (shown through the angles 𝜓𝜓 and 𝜙𝜙). The BCM algorithm 
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first proceeds by sampling at random macro-particle pairs (𝑢𝑢�⃗ 𝑖𝑖 , 𝑤𝑤��⃗ 𝑗𝑗 ) for approximate the 
continuous densities 𝑓𝑓(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) and 𝜌𝜌𝑟𝑟(𝑟𝑟, 𝑡𝑡) in Eq. (54), that are now changed to the discrete 
distributions 𝑓𝑓𝑁𝑁(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) and 𝜌𝜌𝑁𝑁(𝑟𝑟, 𝑡𝑡), formally written as:  

 
𝑓𝑓𝑁𝑁(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡) = 1

𝑁𝑁
∑ 𝛿𝛿�𝑟𝑟 − 𝑟𝑟𝑖𝑖�𝑁𝑁

𝑖𝑖=1 𝛿𝛿�𝑢𝑢�⃗ − 𝑢𝑢�⃗ 𝑖𝑖�, 𝜌𝜌𝑁𝑁(𝑟𝑟, 𝑡𝑡) = ∫ 𝑓𝑓𝑁𝑁(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑑𝑑𝑢𝑢�⃗ ,|𝑢𝑢��⃗ |3

∬ 𝑓𝑓𝑁𝑁(𝑟𝑟, 𝑢𝑢�⃗ , 𝑡𝑡)𝑑𝑑𝑟𝑟𝑑𝑑𝑢𝑢�⃗|𝑟𝑟|3|𝑢𝑢��⃗ |3 = 1, ∫ 𝜌𝜌𝑁𝑁(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑢𝑢�⃗ = N,|𝑟𝑟|3

 (58) 

where 𝛿𝛿  is the Dirac delta function, and the superscripts 𝑖𝑖, 𝑗𝑗  stand for a macro-particle 
numbers. 𝑁𝑁 is either the number of macro-particles populating a 6-D phase space or a 3-D 
spatial volume. By means of the discretization procedure the macro-particles 𝑟𝑟𝑖𝑖, 𝑢𝑢�⃗ 𝑖𝑖 can be 
grouped into an input “list” and identified by their 6-D position-momentum vectors. We 
assume the functions 𝑓𝑓𝑁𝑁 and 𝜌𝜌𝑁𝑁 remain stable during the interaction time ∆𝑡𝑡 and that a given 
macro-particle in the list collides only once. So 𝑓𝑓𝑁𝑁=𝑓𝑓𝑁𝑁(𝑟𝑟, 𝑢𝑢�⃗ )  and 𝜌𝜌𝑁𝑁=𝜌𝜌𝑁𝑁(𝑟𝑟)  are time-
independent. Observing the mean momentum changes 〈∆𝑢𝑢�⃗ 〉𝜙𝜙 in Eq. (50) and 〈∆𝑢𝑢�⃗ 〉𝜙𝜙𝜙𝜙 in Eq. 
(54) show that they are similar providing the scattering angle 𝜓𝜓�𝑖𝑖𝑖𝑖 or 𝜓𝜓𝑖𝑖𝑖𝑖  (CM/LAB frames) 
is defined as follows and the azimuthal angle 𝜙𝜙�𝑖𝑖𝑖𝑖 or 𝜙𝜙𝑖𝑖𝑖𝑖 is randomly chosen in the interval 
[0, 2𝜋𝜋] (see Refs. [11-13]). For shortness, we add the coefficients: 

 𝐴̅𝐴0= 𝜋𝜋𝜋𝜋𝑟𝑟i
2

𝛽𝛽�3𝛾𝛾2 , 𝐴𝐴0= 8𝜋𝜋𝜋𝜋𝑟𝑟i
2

𝛽𝛽3𝛾𝛾5 .  

Hence: 

 

sin �𝜓𝜓� 𝑖𝑖𝑖𝑖

2
� =�𝐴̅𝐴0𝜌𝜌𝑁𝑁(𝑟𝑟) log �2𝛽𝛽�2𝑏𝑏max

𝑟𝑟i
� Δ𝑡𝑡, sin �𝜓𝜓� 𝑖𝑖𝑖𝑖

2
� =�𝐴̅𝐴0𝜌𝜌𝑁𝑁(𝑟𝑟)𝐶𝐶l̅og Δ𝑡𝑡,

sin �𝜓𝜓𝑖𝑖𝑖𝑖

2
� =�𝐴𝐴0

𝜌𝜌𝑁𝑁(𝑟𝑟) log�𝛽𝛽2𝛾𝛾2𝑏𝑏max
2𝑟𝑟i

�𝑢𝑢��⃗ 𝑖𝑖−𝑤𝑤��⃗ 𝑗𝑗�2
�Δ𝑡𝑡

�𝑢𝑢��⃗ 𝑖𝑖−𝑤𝑤��⃗ 𝑗𝑗�3 , sin �𝜓𝜓𝑖𝑖𝑖𝑖

2
� =�𝐴𝐴0

𝜌𝜌𝑁𝑁(𝑟𝑟)𝐶𝐶log�𝑢𝑢��⃗ 𝑖𝑖,𝑤𝑤��⃗ 𝑗𝑗�Δ𝑡𝑡

�𝑢𝑢��⃗ 𝑖𝑖−𝑤𝑤��⃗ 𝑗𝑗�3 .
 (59) 

The time interval Δ𝑡𝑡 in the formula acts to fit the units as 〈∆𝑢𝑢�⃗ 〉𝑤𝑤��⃗  is in 1/s while 〈∆𝑢𝑢�⃗ 〉𝜙𝜙 
has no unit. In addition, Δ𝑡𝑡 is the time step of a collisional cycle, supposed short enough for 
noticeable variation of beam momenta and Δ𝑡𝑡 ≪ 𝑇𝑇𝑧𝑧,𝑥𝑥,𝑦𝑦 the IBS rise times. The maximum 
impact parameter 𝑏𝑏max is taken as the beam height or half the beam diameter, 𝜌𝜌𝑁𝑁(𝑟𝑟) is the 
discrete particle density.  

The BCM algorithm first divides the 𝑁𝑁 macro-particle domain representing the beam 
into “cells” with equal volume; then, it groups at random all the macro-particles into 𝑁𝑁/2 
pairs and distributes the pairs in the cells to form a discrete macro-particle density 
distribution as illustrated in Fig. 4.  
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Figure 4: Pictorial representation of the macro-particle domain split into cells with macro-particles 
grouped at random within the cells. Each pair of macro-particles picked undertakes a single collision 
within the duration Δ𝑡𝑡 of an interaction cycle.  

 
Clearly the 3-D macro-particle distribution 𝜌𝜌𝑁𝑁(𝑟𝑟, 𝑡𝑡) for the total or a fraction of the 

beam also applies to macro-particle distributions in little cell volumes. Let us assume that 
the density inside each cell is uniform and that two colliding macro-particles in the same 
cell have an equal spatial location. Note that the macro-particle positions, namely 
longitudinal and transverse displacements about the design orbit remain unchanged through 
the collision mapping. To simulate real IBS effects we must adjust the cell density 𝜌𝜌𝑁𝑁(𝑟𝑟, 𝑡𝑡) 
to the number of real particles (i.e. macro-particles × particle number per macro-particle). 
For suitability, the “scattering angle” 𝜓𝜓�𝑖𝑖𝑖𝑖  in every pair of macro-particles in each cell is 
chosen to refer to the CM frame (Eq. (59) upper formula).  

The collisional simulation is realized by a recurrent mapping procedure, that is we 
insert 𝑢𝑢�⃗ 𝑖𝑖, 𝑤𝑤��⃗ 𝑖𝑖 and sin 𝜙𝜙�𝑖𝑖𝑖𝑖, cos 𝜓𝜓�𝑖𝑖𝑖𝑖  onto the Piwinski’s formula (Eq. (48)), which returns Δ𝑢𝑢�⃗ 𝑖𝑖 
and Δ𝑤𝑤��⃗ 𝑖𝑖 for each pair �𝑢𝑢�⃗ 𝑖𝑖, 𝑤𝑤��⃗ 𝑗𝑗� within the cycle time Δ𝑡𝑡. So the post collisional momenta are 
𝑢𝑢�⃗ 𝑖𝑖⋆=𝑢𝑢�⃗ 𝑖𝑖+Δ𝑢𝑢�⃗ 𝑖𝑖 and 𝑤𝑤��⃗ 𝑖𝑖⋆=𝑤𝑤��⃗ 𝑖𝑖+Δ𝑤𝑤��⃗ 𝑖𝑖. After each cycle, in every cell the momentum distribution 
is updated for all macro-particle pair as �𝜂𝜂𝑖𝑖⋆, 𝑥𝑥′𝑖𝑖⋆, 𝑦𝑦′𝑖𝑖⋆�=�𝜂𝜂𝑖𝑖+∆𝜂𝜂𝑖𝑖,  𝑥𝑥′𝑖𝑖+∆𝑥𝑥′𝑖𝑖,  𝑦𝑦′𝑖𝑖+∆𝑦𝑦′𝑖𝑖� , 
where �∆𝜂𝜂′𝑖𝑖 , ∆𝑥𝑥′𝑖𝑖 , ∆𝑦𝑦′𝑖𝑖� stands for both 𝑢𝑢�⃗ 𝑖𝑖 and 𝑤𝑤��⃗ 𝑖𝑖. A new cycle of length Δ𝑡𝑡 is next started 
until the end of the simulation time. Once a cycle is over the post collision macro-particle 
invariants 𝜀𝜀𝑧𝑧

𝑖𝑖  (for bunched beams), 𝜀𝜀𝑥𝑥
𝑖𝑖  and 𝜀𝜀𝑦𝑦

𝑖𝑖  are upgraded. They are derived from the 
following expressions: 

 

𝜀𝜀𝑧𝑧
𝑖𝑖 = 𝛾𝛾𝑧𝑧 �Δ𝑧𝑧𝑖𝑖�

2
, 𝛾𝛾𝑧𝑧 ≝ 𝜈𝜈𝑠𝑠

2

𝜂𝜂𝑡𝑡
2𝑅𝑅2,

𝜀𝜀𝑥𝑥
𝑖𝑖 = 𝛾𝛾𝑥𝑥�𝑥𝑥𝑖𝑖 − 𝐷𝐷𝑥𝑥𝜂𝜂𝑖𝑖�

2
+ 2𝛼𝛼𝑥𝑥�𝑥𝑥𝑖𝑖 − 𝐷𝐷𝑥𝑥𝜂𝜂𝑖𝑖��𝑥𝑥′𝑖𝑖 − 𝐷𝐷𝑥𝑥

′ 𝜂𝜂𝑖𝑖� + 𝛽𝛽𝑥𝑥 �𝑥𝑥′𝑖𝑖 − 𝐷𝐷𝑥𝑥
′ 𝜂𝜂𝑖𝑖�

2
,

𝜀𝜀𝑦𝑦
𝑖𝑖 = 𝛾𝛾𝑦𝑦�𝑦𝑦𝑖𝑖 − 𝐷𝐷𝑦𝑦𝜂𝜂𝑖𝑖�

2
+ 2𝛼𝛼𝑦𝑦�𝑥𝑥𝑖𝑖 − 𝐷𝐷𝑦𝑦𝜂𝜂𝑖𝑖��𝑦𝑦′𝑖𝑖 − 𝐷𝐷𝑦𝑦

′ 𝜂𝜂𝑖𝑖� + 𝛽𝛽𝑦𝑦 �𝑦𝑦′𝑖𝑖 − 𝐷𝐷𝑦𝑦
′ 𝜂𝜂𝑖𝑖�

2
,
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where 𝜈𝜈𝑠𝑠=|Ω𝑠𝑠|/𝜔𝜔0 is the synchrotron tune, Ω𝑠𝑠 the synchrotron frequency, 𝜔𝜔0 the revolution 
frequency, 𝜂𝜂𝑡𝑡 the slip factor and 𝑅𝑅 the mean storage ring radius; 𝛼𝛼𝑥𝑥,𝑦𝑦, 𝛽𝛽𝑥𝑥,𝑦𝑦, 𝛾𝛾𝑥𝑥,𝑦𝑦 are the Twiss 
parameters and 𝐷𝐷𝑥𝑥,𝑦𝑦, 𝐷𝐷𝑥𝑥,𝑦𝑦

′  the dispersion functions and their derivatives varying, along the 
reference orbit . Inversely related, the particle phase space positions and momentum 
coordinates Δ𝑧𝑧𝑖𝑖, 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖,  and  𝜂𝜂𝑖𝑖 , 𝑥𝑥′𝑖𝑖, 𝑦𝑦′𝑖𝑖  are stated by means of the invariants and phases 
𝜙𝜙𝑧𝑧,𝑦𝑦,𝑥𝑥: 
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Δ𝑝𝑝𝑖𝑖

𝑝𝑝
=𝜂𝜂𝑖𝑖=-�𝜀𝜀𝑧𝑧

𝑖𝑖

𝛽𝛽𝑧𝑧
(𝛼𝛼𝑧𝑧 cos 𝜙𝜙𝑧𝑧+ sin 𝜙𝜙𝑧𝑧)=-�𝜀𝜀𝑧𝑧

𝑖𝑖

𝛽𝛽𝑧𝑧
sin 𝜙𝜙𝑧𝑧 , 𝑧𝑧𝑖𝑖-𝑧𝑧𝑠𝑠

𝑖𝑖=Δ𝑧𝑧𝑖𝑖=�𝛽𝛽𝑧𝑧 𝜀𝜀𝑧𝑧
𝑖𝑖 cos 𝜙𝜙𝑧𝑧 ,

𝑝𝑝𝑥𝑥
𝑖𝑖

𝑝𝑝
=𝑥𝑥′𝑖𝑖=-�𝜀𝜀𝑥𝑥

𝑖𝑖

𝛽𝛽𝑥𝑥
(𝛼𝛼𝑥𝑥 cos 𝜙𝜙𝑥𝑥+ sin 𝜙𝜙𝑥𝑥)+𝐷𝐷𝑥𝑥

′ 𝜂𝜂𝑖𝑖, 𝑥𝑥𝑖𝑖=�𝛽𝛽𝑥𝑥 𝜀𝜀𝑥𝑥
𝑖𝑖 �

1/2
cos 𝜙𝜙𝑥𝑥+ 𝐷𝐷𝑥𝑥𝜂𝜂𝑖𝑖 ,

𝑝𝑝𝑦𝑦
𝑖𝑖

𝑝𝑝
=𝑦𝑦′𝑖𝑖=-�𝜀𝜀𝑦𝑦

𝑖𝑖

𝛽𝛽𝑦𝑦
�𝛼𝛼𝑦𝑦 cos 𝜙𝜙𝑦𝑦+ sin 𝜙𝜙𝑦𝑦�+𝐷𝐷𝑦𝑦

′ 𝜂𝜂𝑖𝑖 , 𝑦𝑦𝑖𝑖=�𝛽𝛽𝑦𝑦 𝜀𝜀𝑦𝑦
𝑖𝑖 �

1/2
cos 𝜙𝜙𝑦𝑦+ 𝐷𝐷𝑦𝑦𝜂𝜂𝑖𝑖,

(61) 

where 𝛽𝛽𝑧𝑧≝ |𝜂𝜂𝑡𝑡|𝑅𝑅
𝜈𝜈𝑠𝑠

=constant, which implies that 𝛼𝛼𝑧𝑧≝- 𝛽𝛽𝑧𝑧
′

2
≡0 (Ref. [5]). 

- In the binary collision method implemented in MOCAC and SIRE tracking 
codes, the macro-particle beam is a set of 6-D position-momentum vectors. An 
initial macro-particle density distribution is generated by sampling a Gaussian 
probability law. Extra selective laws with non-Gaussian tails can be added if 
needed. Anyhow, at the beginning of the simulation the initial distribution must 
reflect the Courant-Snyder and longitudinal invariants of the beam.  

- Non-uniform synchrotron lattices are modelled as series of sets attached to the 
optical parameters located at separate azimuthal “points” around a lattice period; 
and, then averaged over the period. The mapping is reiterated all the way in each 
cell, through every time step ∆𝑡𝑡, in different points of the lattice period. 

 
Now combining all macro-particles within a bunch, we can compute the average values 

of the individual invariants 𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑖𝑖  around the ring by means of Eq. (60) and considering the 

variations of the Twiss parameters and dispersion functions with their derivatives. Lastly, 
the longitudinal, horizontal and vertical IBS growth rates write: 

 𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦 = 〈𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦
𝑖𝑖 〉, 1

𝑇𝑇𝑧𝑧,𝑥𝑥,𝑦𝑦
= 1

�𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑑𝑑�𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑑𝑑𝑑𝑑
= 1

2𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑑𝑑𝜀𝜀𝑧𝑧,𝑥𝑥,𝑦𝑦

𝑑𝑑𝑑𝑑 . (62) 

 Benchmarking of the IBS Theoretical Models with Monte-Carlo Codes 2.4.5

The IBS theoretical models have been studied in detail and benchmarked with 
experimental data for hadron beams over the years [18, 19]. In hadron machines, the IBS 
effect causes emittance dilution with time, limiting their performance. Lepton machines on 
the other hand, were operating until today in regimes were the IBS effect was negligible. 
Future linear collider Damping Rings, new generation light sources and B-factories, 
however, enter in regimes where the IBS effect can be predominant. It is thus important to 
study the IBS theories in the presence of synchrotron radiation damping (SRD) and quantum 
excitation (QE), benchmark the existing theoretical models and tracking codes with 
experimental data and identify their limitations. Even though e+/e− rings run normally 
above transition, where IBS leads to continuous emittance growth and equilibrium does not 
exist, synchrotron radiation damping counteracts the IBS growth, leading to new steady-
state emittances. The beam transverse emittance and relative energy spread evolution due to 
the effects of IBS and SRD can be obtained by solving numerically the three coupled 
differential equations: 
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𝑑𝑑𝜀𝜀𝑖𝑖
𝑑𝑑𝑑𝑑

= − 2
𝜏𝜏𝑖𝑖

(𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑖𝑖0) + 2𝜀𝜀𝑖𝑖
𝑇𝑇𝑖𝑖�𝜀𝜀𝑥𝑥,𝜀𝜀𝑦𝑦,𝜎𝜎𝑝𝑝�

, 𝑖𝑖 = 𝑥𝑥, 𝑦𝑦,
𝑑𝑑𝜎𝜎𝑝𝑝

𝑑𝑑𝑑𝑑
= − 1

𝜏𝜏𝑝𝑝
�𝜎𝜎𝑝𝑝 − 𝜎𝜎𝑝𝑝0� + 𝜎𝜎𝑝𝑝

𝑇𝑇𝑝𝑝�𝜀𝜀𝑥𝑥,𝜀𝜀𝑦𝑦,𝜎𝜎𝑝𝑝�
,

 (63) 

using small time iteration steps δt which are much smaller than the damping time and for 
which the emittances change adiabatically. The symbols 𝜀𝜀𝑥𝑥0 ,  𝜀𝜀𝑦𝑦0 ,  𝜎𝜎𝑝𝑝0  denote the zero-
current (without the effect of IBS) equilibrium horizontal and vertical emittances and rms 
energy spread. 𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦, 𝜏𝜏𝑝𝑝 are the synchrotron radiation damping times. From the IBS growth 

times 𝑇𝑇𝑥𝑥, Ty, 𝑇𝑇𝑝𝑝, one can obtain the steady state properties, for which: 𝑑𝑑𝜀𝜀𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝜀𝜀𝑦𝑦

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝜎𝜎𝑝𝑝

2

𝑑𝑑𝑑𝑑
= 0.   

The CLIC DR is a wiggler-dominated lattice, targeting ultra-low emittances in all three 
planes and small damping times. The output emittances are strongly dominated by the IBS 
effect; thus, it is an interesting testbed for the comparison between different theoretical 
models and the multi-particle tracking code SIRE, in the presence of synchrotron radiation 
and quantum excitation.  Table 1 summarizes some basic lattice and beam properties of the 
CLIC DRs lattice design [20].  

Table 1: Basic equilibrium lattice parameters for the CLIC DR lattice. 

Parameter Value 
Energy [GeV] 2.86 
Circumference [m] 427.5 
Bunch population [1011] 4.1 
Hor. emittance [nm rad] w/wo IBS 0.056 
Vert. emittance [pm rad] w/wo IBS 0.56 
Bunch length [mm] w/wo IBS 1.6 
Energy spread w/wo IBS 1e-3 
Damping times [tau_x/tau_y/tau_l] [ms] 2/2/1 

 
For the IBS growth rate calculations, the IBS kicks are distributed over an adequate 

amount of points across the ring, such that the variation of the optics is taken into account 
and the areas were IBS is predominant are well represented. Table 2 summarizes the steady 
state horizontal geometrical emittance as estimated by the theoretical models of Bjorken-
Mtingwa (BM) and Piwinski (Piw.) and the high energy approximations of Bane [21] and 
CIMP [4]. BM, Bane and CIMP are in good agreement, while Piwinski underestimates the 
effect with respect to the other three. The same study was performed for other low emittance 
lattices as well, coming to the same conclusion: In regimes where the IBS effect acts as a 
perturbation, all theoretical models are in very good agreement while in regimes where the 
steady state emittances are dominated by the IBS effect, the theoretical models diverge [22].    

Table 2: Steady state hor. emittance calculated by BM, P, Bane and CIMP for the CLIC DR. 

Parameter 
(model) 

εx 
 (BM) 

εx 
 (Piw.) 

εx 
 (Bane) 

εx 
 (CIMP) 

Steady state emittance [pm-rad] 95.4 85.8 98.1 97.2 

Figure 5 shows a comparison between the theoretical models of Bjorken-Mtingwa and 
Piwinski with the multi-particle tracking code SIRE for one turn of the CLIC DR lattice. As 
SIRE is a Monte-Carlo code, the tracking simulations were performed several times and the 
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one standard deviation error-bars are also shown in the plots. The results from SIRE 
simulations are shown in green, from Bjorken-Mtingwa in black, from Piwinski in red and 
from Bane in magenta. The classical formalism of Piwinski is in perfect agreement with the 
SIRE results, in all planes. This is not a surprise, as both Piwinski formalism and the 
tracking codes use the Rutherford cross-section, to calculate the scattering probability in a 
solid angle. All theories and simulations predict the same trend for the emittance evolution 
along the ring and are in fairly good agreement within 3σ in all planes.  

 

Figure 5: One turn comparison for the horizontal (left) and vertical (middle) emittance and energy 
spread (right) between the tracking code SIRE (green) and the theoretical models BM (black), 
Piwinski (red) and Bane (magenta) for the CLIC DR lattice. 

For the LHC/HL-LHC proton beams at collision energy, synchrotron radiation turns into 
a perceptible effect as well. It continuously shrinks the emittances with damping times of 
12.9 h in the longitudinal plane and of 26.0 h in the two transverse planes. The effects of 
IBS and SRD on the expected evolution of the LHC and SLHC beam emittances during 
physics coasts at 7 TeV were examined in [23] and SIRE was benchmarked against the 
Bjorken-Mtingwa formalism for different cases.  

 

       
  

Figure 6: Comparison of εH
N (left) and εL (right) between SIRE (magenta) and analytical  IBS (B-M) 

(green) computations (case 2, Table 1): difference δmax(ΔεH/εH) ~ 1% and δmax(ΔεL/εL) ~ 2%. 

Figure 6 compares the evolution of the emittances for the first IR upgrade with reduced 
emittances [23] between SIRE simulation and the straight IBS computation, taking into 
account the joint effects of IBS and radiation damping. Including quantum excitation effect 
in Bjorken-Mtingwa calculations would yield negligible change of the LHC proton beam 
equilibrium emittances (assuming 1% coupling between the horizontal and vertical planes). 
Examination of the joint intrabeam and synchrotron radiation damping phenomena during a 
10 hours physics beam store at 7 TeV in the first IR upgrade of LHC shows that over the 
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full physics fill duration the evolution of emittances is kept inside the design values, as the 
IBS growth is largely balanced by the synchrotron radiation damping. 

Even though SIRE simulation algorithm and Bjorken-Mtingwa analytical formalism 
make use of distinct approaches to tackle the IBS issue, both techniques agree rather well. 

 Summary 2.4.6

      The conventional IBS Piwinski and Bjorken-Mtingwa formalisms for bunched beams 
and the Zenkevich Monte Carlo IBS simulation formalism based on binary collision models 
have been reviewed.  
      The Piwinski formalism is using the “classical” Rutherford differential cross-section for 
the Coulomb scattering. Unlike Piwinski, the approach to IBS of Bjorken and Mtingwa is 
based on the time-evolution operator « S-matrix » that relates transitions from an initial 
quantum state |𝑖𝑖⟩ to a final state |𝑓𝑓⟩ of a physical system experiencing a scattering process. 
Both models consider Gaussian laws for the beam density distributions in phase space in 
order to derive analytical formulas for the IBS rise times.  
      Other IBS models based on non-Gaussian distributions have been formulated using the 
kinetic analysis for the modelling of small angle multiple Coulomb scattering. Zenkevich’s 
approach was to develop a Monte Carlo based macro-particle algorithm called “binary 
collision map” (BCM), realized in the macro-particle code “Monte-Carlo code” (MOCAC) 
for numerical modelling of IBS effects in accelerators and storage rings. An extension of it 
called “Software for Intrabeam Scattering and Radiation effects” (SIRE) was developed to 
simulate the evolution of beam particle distributions in storage rings, taking into account 
IBS, radiation damping and quantum excitation.  
      A benchmarking of the IBS theoretical models with the Monde Carlo SIRE code for the 
case of the CLIC Damping Rings, which is an intrabeam scattering dominated ring in the 
presence of strong synchrotron radiation and for the LHS/HL-LHC proton beams at 
collision energy, where synchrotron radiation turns into a noticeable effect as well, shows 
very good agreement of the simulation tools and the conventional models. 
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At beginning of sixties important breakthrough innovations were already accomplished 
in accelerator science, which produced leaps forward in the performances of particle 
accelerators.  

 The First Breakthrough Innovation: the Phase Stability 2.5.1

The basic principles of synchrotron design (phase stability) were proposed independently 
by Vladimir Veksler in the Soviet Union (1944) and Edwin McMillan in the United States 
(1945). According to this principle, it is possible to accelerate bunches of charged particles 
of finite dimensions.  

Based on the principles stated by Vladimir Veksler and Edwin McMillan a proton 
synchrotron was built at Brookhaven National Laboratory, named Cosmotron. Its 
construction started in 1948 and it reached its full energy in 1953. It was the first particle 
accelerator to exceed the GeV wall, accelerating protons to 3.3 GeV. Since when 
Brookhaven's Cosmotron went into operation in the early 1950's, scientists knew that 
achieving the higher energies was going to be a difficult problem. Calculations showed that, 
using existing technology, building a proton accelerator 10 times more powerful than the 
3.3GeV Cosmotron would require 100 times as much steel.  

 The Second Breakthrough Innovation: the Alternating Gradient 2.5.2

While the first strictly used the toroid shape, the strong focusing principle independently 
discovered by Nicholas Christofilos (1949) and Ernest Courant (1952) allowed the complete 
separation of the accelerator into the guiding magnets and focusing magnets, shaping the 
path into a round-cornered polygon. Without strong focusing, a machine as powerful as the 
Alternating Gradient Synchrotron (AGS) would have needed apertures (the gaps between 
the magnet poles) between 0.5 m and 1.5 m instead of apertures of less than 0.1 m. The 
construction of AGS was accomplished in 1960.  

 The Collider Age. Looking Far 2.5.3

Even before the successful achievements of PS and AGS, the scientific community was 
aware that another step forward was needed. Indeed, the impact of particles against fixed 
targets is very inefficient from the point of view of the energy actually available for new 
experiments: much more efficient could be the head on collisions between high-energy 
particles. With increasing energy, the energy available in the Inertial Frame with fixed 
targets is incomparably smaller than in the head-on collision (HC), as Wideroe thought 
some decades before. If we want the same energy in IF, using fixed targets one should build 
gigantic accelerators. The challenge was to produce intense and high-collimated beams. 

mailto:vaccaro@na.infn.it
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 Hamburger Intermezzo 2.5.3.1

Touschek was born and attended school in Vienna. Because of racial reasons, he was not 
allowed to finish high school. However, he could continue is studies in a precarious way. 
After Anschluss, he moved to Hamburg, where nobody knew of his origins. There he met 
Rolf Wideroe with whom he started cooperating in building a betatron and discussing on 
Wideroe’s visionary thoughts. However, Touschek was discovered and arrested by the 
Gestapo in 1945, Wideroe visited him in prison, bringing cigarettes, food and, during these 
meetings they continued to talk about the betatron. Incidentally, in that context Touschek 
conceived the idea of radiation damping for electrons. When the Allied army reached 
Hamburg Wideroe, suspected of collaboration, was arrested. Sometime after, he was found 
not guilty and released. After the war, Touscheck roamed about Europe. Finally, in 1952 he 
decided to stay in Rome permanently, receiving the position of researcher at the National 
laboratories of the Istituto Nazionale di Fisica Nucleare in Frascati, near Rome. 

 Collider Contest: Frascati vs. Princeton 2.5.3.2

A contest between Princeton and the Frascati Laboratories started: both labs were 
developing collider programs accelerating electrons and positrons. Princeton chose an eight-
shaped structure: two circular rings in which electrons and positron were circulating with 
the same orientation, meeting at the collision point. Frascati team, which took the field later, 
was even more audacious: they used a single ring with "counter-rotating" beams of electrons 
and positrons. 

The enterprise began on March 7, 1960, when Bruno Touschek held a seminar at Frascati 
Laboratories. He was proposing to build an electron-positron storage ring, according to 
Wideroe’s visionary ideas concerning storage rings and colliders. On March 14, a 
preliminary study demonstrated the feasibility of the proposal. The storage ring was named 
ADA (Anello Di Accumulazione = Storage Ring). Touschek pointed out the extreme 
scientific interest of high-energy collisions between particles and antiparticles, and the 
simplicity of realization of such an accelerator. The machine was conceived as a feasibility 
experiment to provide a sound basis for the realization of electron-positron colliders of 
larger center of mass energy and luminosity. The total cost of the project (converted to the 
present purchasing power) was around 800.000 €. 

A first stored beam of few electrons was obtained at the end of May 1961, using the 
Frascati Electron Synchrotron as an injector. The first electron-positron interactions were 
observed at the beginning of 1964. The impact of the ADA Collider has been immense in 
enabling a new chapter of accelerator physics to be established with the machine being the 
first particle-antiparticle collider and the first electron-positron storage ring. In addition to 
this grand accomplishment, the machine was also able to prove the idea that one could 
accelerate and collide a beam of particles and antiparticles in the same machine.  

Many laboratories started programs of to accelerate and store particles in order to prove 
the feasibility to intense beams. Surprisingly enough, a longitudinal instability below 
transition energy was discovered in 1963 in the MURA 40 MeV electron accelerator. At the 
same time vertical instabilities in the MURA 50 MeV were observed [1]. At that time, it was 
a common place that above transition energy, a beam could be unstable since it was 
postulated that the prevalent electromagnetic interaction with the vacuum pipe was 
capacitive. Furthermore, it was not known that there could exist some stabilizing 
mechanism.  
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 The Analysis of Instabilities. A Step Forward 2.5.4

Two companion papers [2,3] appeared in 1965 on the Review of Scientific Instruments, 
one concerning longitudinal coherent instability and a second one transverse coherent 
instability. The approach to the problem was the usual one adopted for modulational 
instability, which arises from the coupling between the equation of the particle dynamics 
and the electromagnetic interaction a coasting particle beam with the surrounding pipe of a 
circular accelerator. 

 

Figure 1: Block diagram of the coupling between e-magnetic equation and dynamics equation. 

The novelty was the use of Vlasov equation where it is assumed that the beam particles 
have an energy distribution function. The problem is solved by means of perturbative 
techniques that lead to a dispersion relation. The role of Landau damping of the instability 
coming from the energy spread was emphasized. The pipe is supposed circular, smooth, and 
lossy and with circular or rectangular cross-section. 

In both paper the case in the absence of frequency spread was examined and it was found 
that the rise time depends on the conductivity of the pipe. However, allowing for a finite 
spread, the stability criteria obtained from the dispersion relation do not involve the pipe 
losses. It is worth noting that the stability criteria were derived assuming Gaussian or 
Lorenzian distribution functions. Four years later, in a CERN internal report [4], a more 
accurate analysis showed that, taking in account a more realistic distribution function, the 
stability criteria do involve the pipe losses. This aspect tells the amplitude and the generality 
of the concepts presented in the two papers. The stream of research born in 1965 and still 
lasting gave and gives results that have of fundamental importance for particle accelerator. 

 An Impedance is in the Air. The Banality of Invention 2.5.5

When I was hired by CERN on June 1966, I joined the RF group of the Intersecting 
Storage Ring (ISR) Department. ISR was under construction and was destined to be the 
world's first hadron collider. It ran from 1971 to 1984, with a maximum center of mass 
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energy of 62 GeV. At that time at CERN, there was big concern about stability of the beams 
because of large number and various kind of lumped equipment (300 pairs of clearing 
electrodes, pick-ups, cavities, etc.), which could be “seen” by the beam. Unfortunately, the 
stability criteria did not apply to the situation of ISR. I was committed to work on this 
problem. The task to introduce in the dispersion relation the contribution of a lumped 
element, e.g. cavity of impedance 𝑍𝑍𝑐𝑐  (eventually clearing electrodes) 

                                          𝐼𝐼𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⟨2𝜋𝜋𝜋𝜋𝐸𝐸𝜃𝜃⟩ ∫ 𝑑𝑑𝜓𝜓0
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
[𝜔𝜔−𝑛𝑛𝜔𝜔0(𝑊𝑊)] ,                (1) 

where  𝐼𝐼𝑖𝑖  is the incipient perturbed current in the beam and  𝜔𝜔 the  frequency of the 
instability. The procedure is described in Ref. [5]. The impressed voltage at the cavity gaps 
𝑉𝑉𝑖𝑖  is calculated assuming that the image current, that loads the  cavity is equal to the 
perturbed beam current 𝐼𝐼𝑖𝑖. The field distribution in the accelerator is expanded in travelling 
waves inside the pipe. Then, only the nth harmonic is retained which is riding with the 
perturbation. Therefore, the mean integral in the above equation may be written as:   

                                                      ⟨2𝜋𝜋𝜋𝜋𝐸𝐸𝜃𝜃⟩ = −𝑍𝑍𝑐𝑐𝐼𝐼𝑖𝑖.  (2) 

The concept of coupling impedance was then extended to pipe with uniform properties. 
Of course, the above procedure consisted in a brute force approach. Its validity is restricted 
to wavelengths much larger than the cavity gap and of the pipe radius; however, this 
limitation does not affect the principle. Fifty years have passed. In the meantime, exact 
approaches were performed resorting to numerical codes or to analytical-numerical 
techniques such as the mode matching. Few months after my arrival, Andy Sessler, on leave 
of absence from LBL, joined the ISR-RF group. I was committed to him and I showed him 
the manuscript of my results. He reviewed it, making corrections, suggesting integrations 
and then he stated that the report had to appear with my name only. However, the paper was 
issued in closed distribution restricted to AR and ISR Scientific Staff. At the same time, he 
proposed a general treatment of impedance of arbitrary electrical properties [6]. There is 
another important aspect which should be taken into account: the concept of coupling 
impedance is a handy concept. This is very well illustrated by Sessler in one of his papers 
[7]: “It was emphasized - and, it was the main point of [6] - that Z described the impedance 
of the wall elements and as, thus, amenable to computation - or measurement - by means of 
all the standard techniques employed in electrical engineering. This engineering technique 
was applied to a number of problems, such as helical conducting walls [8], and allowed 
complicated structures to be readily analyzed. Maybe this feature has been one of the factors 
that determined the success of the coupling impedance concept.  

 The Universal Stability Charts  2.5.6

The introduction of coupling impedance concept is tightly linked to the analysis of the 
dispersion relation. The first step was done. The success of the first one influenced the 
advancement of the second one. Then, when the picture of the longitudinal instability 
phenomenon was clear, the problem of transverse instability was tackled. 

Except in particular cases, Eq. (2) cannot be solved analytically; namely, given the 
impedance, the distribution function, the harmonic number 𝑛𝑛 and the function 𝜔𝜔0(𝑊𝑊) it is 
not in general possible to find analytically the frequency 𝜔𝜔 of the instability, if any. A 
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collaboration with Sandro Ruggiero was set up, which tackled the problem with another 
point of view: find the coupling impedance for a given value of the complex frequency 𝜔𝜔, 
assuming a linear dependence of 𝜔𝜔0 on 𝑊𝑊; repeat the procedure for various distribution 
functions [4]. Therefore, we had to perform analytically the integral for several reasonable 
distributions: 

                                              𝑍𝑍(𝜔𝜔) = − 1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∫𝑑𝑑𝜓𝜓0
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
[𝜔𝜔−𝑛𝑛𝜔𝜔0(𝑊𝑊)]

 . (3) 

This is nothing but a conformal mapping of the complex variable 𝜔𝜔 into the complex 
variable  𝑍𝑍. The interest is to explore the region where the imaginary part of 𝜔𝜔 is negative, 
namely where the oscillation is exponentially increasing. A particular interest was devoted 
to the mapping of the lines where the frequency is real with a vanishing imaginary part, 
namely  

                                                             𝜔𝜔 = 𝜔𝜔𝑟𝑟 + 𝑗𝑗0− .  (3) 

This procedure gave quite surprising results: 

• The mapping of the lower half-plane covers almost entirely the 𝑍𝑍 plane.  
• The mapping of the upper half plane covers the same region of the 𝑍𝑍 plane. 
• There is a “neutral region”, which is not covered by none of the two mapping and is 

defined as the stable region. 
• The stable region is finite if the tails of the distribution function are finite. 
• The stable region of a monoenergetic distribution (infinitesimal tails) is the positive 

imaginary axis. 
 

In Fig. 2 the result of the mapping for a Lorenzian distribution function is reported 
(similarly to Refs. [2,3]). The impedance is normalized in such a way to get a universal 
stability diagram. The dashed domain is the stability region, contour of which is a parabola. 
It is apparent that the stable domain is infinite. The coupling impedance of smooth pipe has 
small real part due to the pipe resistivity and a large positive imaginary (normalized) part 
and one could infer that the beam should be stable, which was the same conclusion inferred 
by the authors. Other distribution functions were considered, such as the Gaussian one 
(which produces also an infinite stability region), a 2nd, 3rd and 4th order parabola and a 
truncated cosine. According to the available data, the working point of MURA accelerator 
was very close to the imaginary axis and had a very large imaginary component. This 
means that, the detected instability is compatible with the results obtained from the Vlasov 
equation, provided, that one takes a realistic distribution function. That was an excellent 
result confirming that correctness of the Vlasov equation approach. 

The successful aftermaths stimulated the extension of the research on transverse 
instabilities. An example is reported in Fig. 3. In this case it is taken into account not only 
the frequency spread but also the distribution function of the betatron amplitude oscillation. 
Coupling impedance is fifty this year, but it does not show… 
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Figure 2: Stability boundaries for various distribution functions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Transverse stability chart with curves at constant rise time. 
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2.6 Wakefields and Impedances  

K. Bane and G. Stupakov  
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA 

Mail to: stupakov@slac.stanford.edu 

 Introduction 2.6.1

The problem of beam stability is fundamental for modern accelerators where acceleration 
and storage of intense relativistic beams with small emittances are crucial for machine 
operation. This complex problem interconnects the properties of the beam environment with 
the beam dynamics through electromagnetic fields excited by the beam in the vacuum 
chamber. To simplify the analysis of the beam stability, it is customary to split the study of 
the fields excited by the beam into a separated topic through introduction of the notion of 
the wakefield. Wakefields can usually be calculated using a simplified assumption about the 
beam trajectory - in many cases considering the trajectory as a straight line passing through 
an element of the vacuum chamber that excites the wake. Moreover, due to the linearity of 
Maxwell’s equations, the wakefield can be first calculated for a point charge, and then 
convoluted with the beam distribution to obtained the field inside the beam.  

In this text we will introduce main concepts associated with wakefields. In our 
consideration we use an assumption of relativistic particles for which the Lorentz factor 
γ ≫ 1. 

 Definition of Wakes 2.6.2

The interaction between particles of a beam and the electromagnetic field generated by 
an inhomogeneity in the beam pipe in many cases is localized in a region that is small when 
compared to the length of the beam orbit. It also occurs on a time scale much smaller than 
the characteristic oscillation times of the beam in the accelerator (such as the betatron and 
synchrotron periods). This allows us to consider the interaction of the beam in the impulse 
approximation and characterize it by the amount of integrated momentum transferred from 
the electromagnetic field to the particle. 

The concept of the wakefield or wake is introduced in the following way. Consider a 
leading particle 1 of charge q moving along the axis z with a velocity close to the speed of 
light, v ≈ c, so that z = ct (see Fig. 1). A trailing particle 2 of unit charge moves parallel to 
the leading one, with the same velocity, at a distance s with offset ρ relative to the z-axis. 
The vector ρ is a two-dimensional vector perpendicular to the z-axis, ρ = (x, y). Although 
the two particles move in vacuum, there are material boundaries in the problem that scatter 
the electromagnetic field and lead to an interaction between the particles through this 
electromagnetic field. 

Let us assume that we have solved Maxwell’s equations and found the electromagnetic 
field generated by the first particle. We calculate the change of momentum ∆p of the second 
particle caused by this field as a function of the offset ρ and distance s,  

  (1) 
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Figure 1: A leading particle 1 and a trailing particle 2 move parallel to each other in a vacuum 
chamber. 
 
Note that here we integrate along a straight line - the unperturbed orbit of the second 
particle. The integration limits in Eq. (1) are extended from minus to plus infinity, assuming 
that the integral rapidly converges outside of the element that generates the fields.  

Since the beam dynamics is different in the longitudinal and transverse directions, it is 
useful to separate the longitudinal momentum ∆pz from the transverse component ∆p⊥. With 
the proper sign and the normalization factor c / q, these two components are called the 
longitudinal and transverse wake functions, 

  (2) 

Note the minus sign in the definition of the longitudinal wake function - it is introduced so 
that the positive longitudinal wake corresponds to the energy loss of the trailing particle (if 
both the leading and trailing particles have the same sign of charge). The so defined wakes 
have dimension V/C in SI units and cm−1 in CGS units (a useful relation between the units 
is: 1 V/pC = 1.11 cm−1).  

There is an important relation that connects the longitudinal and transverse wakes 
defined by Eq. (2)  

  (3) 

This relation is usually referred to as the Panofsky-Wenzel theorem.  
Because we have assumed that the leading particle is moving with the speed of light, the 

field that it generates in a vacuum chamber cannot propagate ahead of it. This is the 
causality principle, which means that the wake is zero for negative values of s,  

  (4) 
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It was assumed above that the electromagnetic field is localized in space and time and the 
integral in Eq. (1) converges. There are cases, however, such as the resistive wall wake of a 
long pipe, when this is not true and the source of the wake is uniformly distributed along an 
extended path. In this case, it is more convenient to introduce the wake per unit length of the 
path by dropping the integration in Eq. (1) 

  (5) 

In this definition, the wakes acquire an additional dimension of inverse length, and have the 
dimension cm−2 in CGS and V/C/m in SI.  

Another example where the wakes per unit length are more appropriate than the 
integrated wakes is the case of periodic structures. For such structures, the fields and the 
wakes in Eq. (5) are understood as averaged over one structure period with the total wake 
given by multiplying the wake per unit length by the length of the structure. 

 The “Catch-Up” Distance 2.6.3

As mentioned earlier, for a beam particle moving along a straight line with the speed of 
light, due to causality, the electromagnetic field scattered off discontinuities on the wall of 
the pipe does not affect the charges that travel ahead of it. This field can only interact with 
the charges in the beam that are behind of the particle that generates the field. For short 
bunches, the time needed for the fields scattered off the wall of the vacuum chamber to 
reach the beam on the axis may not be negligible, and the interaction with this field may 
occur well downstream of the point where the field was generated. Let us find where the 
electromagnetic field produced by a leading charge reaches a trailing particle traveling at a 
distance s behind the leading one. Assume that a discontinuity located on the surface of a 
pipe of radius b at coordinate z = 0 is passed by the leading particle at time t = 0 (see Fig. 2). 

 

                     
 

Figure 2: A wall discontinuity located at z = 0 scatters the electromagnetic field of a relativistic 
particle. When the particle moves to location z, the scattered field arrives to point z − s. 
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If the scattered field reaches point z − s at time t, then (ct)2 = (z − s)2 + b2, where z is the 
coordinate of the leading particle at time t, z = ct. Assuming that s ≪ b, from these two 
equations we find  

  (6) 

The distance z given by this equation is often called the catch-up distance. Only after the 
leading charge has traveled that far away from the discontinuity, a particle at point s behind 
it starts to feel the wake field generated by the discontinuity. 

 Transverse Wakes in Axisymmetric Systems 2.6.4

In the general case of a vacuum chamber which does not have symmetries, the transverse 
wake defined by the second equation in (5) can be directed at arbitrary angle to the offset of 
the leading particle. Of special interest for applications is the case of an axisymmetric 
vacuum chamber. From the axisymmetry, we first conclude that 𝔀𝔀 t = 0 if the leading 
particle travels on axis of the vacuum chamber. Moreover, in view of the symmetry, for a 
nonzero offset of the leading particle, the wake 𝔀𝔀t is directed along the offset. In this case, 
instead of the vectorial wake 𝔀𝔀t a scalar wake 𝓌𝓌t is used which is defined as the projection 
of 𝔀𝔀t onto the direction of the offset.  

Since 𝓌𝓌t is zero for zero offset, it is small for small offsets. In the lowest order, it can be 
approximated as a linear function of the offset of the leading particle r  

  (7) 

Note that in this approximation the wake does not depend on the offset of the trailing 
particle. The quantity W(s) is the wake per unit offset. It has dimension of V/(pC m) in SI 
units and cm−2 in CGS units. It is normally called the dipole wake.  

 Wakefield of a Bunch of Particles 2.6.5

Given the interaction of two point charges we can calculate the wakefield inside a bunch 
that contains N particles assuming N ≫ 1. Let the longitudinal distribution function of the 
bunch be λ(s) (the distribution function is defined so that λ(s)ds gives the probability of 
finding a particle near point s). The coordinate s here is measured along the direction of the 
bunch motion; the head of the bunch corresponds to positive s, and the tail - to negative s. 
This meaning of s should not be confused with s shown in Fig. 1: there, it is the distance 
from the leading and trailing particles and is measured in the direction opposite to the 
direction of motion. To find the change of the longitudinal momentum of a particle located 
at point s inside the bunch we sum the wakes generated by all other particles at s,  

  (8) 
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Here we have used the causality principle and integrated only over the part of the bunch in 
front of point s. In the relativistic limit, the energy loss ∆E(s) caused by the wake field is 
equal to −c∆pz, so Eq. (8) can also be rewritten as  

  (9) 

Two important integral characteristics of the strength of the wake are given by the average 
value of the energy loss ∆Eav, and the rms spread in energy, ∆Erms, generated by the wake. 
These two quantities are defined by the following equations  

  (10) 

and  

  (11) 

The average energy loss normalized by the product eQ, where Q = Ne is the bunch charge, 
is called the loss factor. Denoting the loss factor by 𝜘𝜘 we have a relation 𝜘𝜘 = ∆Eav / eQ. 

 Wake at Origin for a Periodic Structure 2.6.6

When a short bunch passes through a single structure, such as a single-cell cavity, 
connected to infinitely long beam pipes, it can lose a large amount of energy to the 
wakefields. In fact, the diffraction model of wakes says that the bunch energy loss for this 
situation depends on bunch length, σz, as σz

−1/2, and the corresponding point charge wake 
depends on s as 𝓌𝓌l  ~ s−1/2.  

For periodic structures (which includes the case of structures with translational 
symmetry) this changes, and 𝓌𝓌 l  (0+) appears to equal a constant that depends on the 
aperture of the structure. In an axisymmetric structure that constant is given by 

  (12) 

where a is the radius of the aperture. The parameter Z0 is the impedance of free space, equal 
to (4π/c) in the cgs system, and 377 Ω in the MKS system. This relation has been found to 
hold for a smooth resistive pipe [1], a metallic pipe with a thin dielectric layer [2], a disk-
loaded accelerator structure [3], and a metallic pipe with small corrugations [2]. It seems to 
be a general property of axisymmetric, periodic structures. (Ref. [4] claims to have a general 
proof that it is.) For the transverse wake, in an axisymmetric structure, the slope of the 
dipole wake at the origin depends only on the pipe radius,  

 



 72 

  (13) 

In flat geometry - e.g. the beam passes on the symmetry plane between two, infinitely wide, 
resistive plates - 𝓌𝓌l  (0+) is given by the result of Eq. (12) multiplied by the factor (π2/16), 
with a now half the distance between the plates.  

These properties give one the upper limit of how quickly energy can be removed from 
the beam by the wakefield and how strong the transverse force can be. Note that these 
relations concerning the wakes at the origin do not depend on the material properties of the 
structure, provided that the region within the aperture contains, as usual, only vacuum.  

 Impedances 2.6.7

Knowledge of the longitudinal and transverse wake functions gives us a fairly complete 
understanding of the electromagnetic interaction of the beam with its environment. However, 
in many cases, especially in the study of beam instabilities, it is more convenient to use the 
Fourier transform of the wake functions, which gives us the impedances. Also, it is often 
easier to calculate the impedance for a given geometry of the beam pipe, rather than the 
wake function.  

For historical reasons the longitudinal Zl and transverse Zt impedances are defined as 
Fourier transforms of wakes with different factors 

  (14) 

where index q denotes a transverse component, q = x, y. Note that the integration in 
Eqs. (14) can actually be extended into the region of negative values of s, because 𝓌𝓌l and 
𝓌𝓌t,q are equal to zero there. 

Impedance can also be defined for complex values of ω such that Im ω > 0 and the 
integrals of Eq. (14), converge. So defined, the impedance is an analytic function in the 
upper half-plane of the complex variable ω.  

Note that other authors use definitions of the impedance that differ from Eq. (14). In Refs. 
[5, 6] the longitudinal impedance is defined as a complex conjugate to the one given by Eqs. 
(14). Here we follow the definitions of Refs. [7, 8].  

From the definitions in Eqs. (14) it follows that the impedance satisfies the following 
symmetry relations  

  (15) 

The inverse Fourier transform expresses the wakes in terms of the impedances 
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  (16) 

 Resonator Wakefield and Impedance 2.6.8

The resonator model of wakes and impedances is quite useful in accelerator physics. For 
example, the impedance of the individual (trapped) modes of an RF cavity can be described 
with this model. The parameters are shunt resistance Rs, resonant frequency ωr, and quality 
factor Q. This model is also used at times to describe the impedance of a storage ring, 
typically with Q taken to be 1, and the other parameters deduced from machine physics 
studies. In the Large Electron Positron Collider (LEP) at CERN, for example, this approach 
was taken to model both the longitudinal and transverse impedances of the ring [9]. Note 
that, unlike in the previous section, where the impedance and wake were per unit length for 
periodic structures, for the resonator model they are normally per object.  
The longitudinal impedance of the resonator model is given by  

  (17) 

The corresponding wake becomes  

  (18) 

with the unit step function H(s) = 0 (1) for s < 0 (s > 0), the mode loss factor 𝜘𝜘 = ωrRs / (2Q), 
and 𝜔𝜔𝑟𝑟���� = 𝜔𝜔𝑟𝑟 �1 − 1/(4𝑄𝑄2). If Rs is in units of ohms, then so is the impedance, and the loss 
factor (and wake) have units of V/C. For Q ≫ 1, we can approximate  

  (19) 

For Q = 1, the resonator impedance is plotted in Fig. 3, and the corresponding wake in 
Fig. 4.  
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Figure 3: The real (blue) and imaginary (red) parts of the resonator impedance, assuming Q = 1. 

                          

Figure 4: The longitudinal wake for the resonator impedance, assuming Q = 1. 
 

The resonator impedance can also be used to model the transverse impedance and wake of a 
cavity or a storage ring. For example, assuming cylindrical symmetry, with the beam near the axis, 
the dipole impedance and wake will dominate the transverse wake force. In this case the transverse 
impedance is of the same form as Eq. 17, but with Rs replaced by cRsd / ω, where Rsd has units of 
Ohm/m2 in the MKS system.  

 Resistive Wall Impedance 2.6.9

One of the first impedances studied in accelerator physics was the resistive wall (rw) 
impedance, in particular, the low-frequency, transverse rw impedance. This impedance is 
often a limiting factor in the average current that can be stored in a storage ring. (Note that 
the equations presented here, with slightly different notation, can be found in [7].)  

The low-frequency longitudinal rw impedance (the interaction per unit length) is given 
by  
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  (20) 

where a is beam pipe radius, σc is wall conductivity. A more general expression for Zl, valid 
also for high frequencies, is given by   

  (21) 

where Λ = ωs0 / c and the length scale s0 is   

  (22) 

This general form of the longitudinal rw wall impedance is needed when considering 
bunches of length σz ≲ s0. Normally, s0 is a very short distance. For example, for a Cu (σc = 
5.9×107 Ω−1m−1) pipe of radius a = 1 cm, s0 = 21 μm.  

The longitudinal rw wake (again given per unit length) corresponding to the impedance 
of Eq. (21) is a universal function of x = s / s0  

  (23) 

The longitudinal rw impedance is plotted in Fig. 5, and the corresponding wake in Fig. 6.  
These calculations have assumed that the conductivity of the pipe wall is a constant. A 

more involved calculation, including the so-called “ac conductivity” of the metal wall has 
also been performed. In fact, a calculation also including the anomalous skin effect - an 
effect that tends to be a low temperature effect - has also been done. Finally, the 
corresponding calculations have been carried out for the transverse rw impedance and wake 
in a round structure. Equations (20) and (23) imply that the long-range longitudinal rw wake 
asymptotically varies as s−3/2, whereas the long-range dipole rw wake varies as s−1/2, which 
is why the transverse rw wake can limit the average current stored stably in a ring, whereas 
the corresponding longitudinal wake tends not to. 
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Figure 5: The real (blue) and imaginary (red) parts of the longitudinal resistive wall impedance. 
 

 
Figure 6: The longitudinal resistive wall wake. 
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 Introduction 2.7.1

Wake potentials and beam coupling impedances can be calculated analytically only if 
the structures are fairly simple and an appropriate coordinate system can be attached. In 
practice this is often not the case and one has to rely on numerical techniques. Although the 
term beam coupling impedance was introduced first in the Frequency Domain (FD) by 
Vaccaro [1] in 1966, first numerical wake field computations were performed in the Time 
Domain (TD) by Balakin et al. [2] in 1978, and Weiland [3] in 1980. Nowadays, TD 
methods on structured meshes are the most common way to determine beam coupling 
impedances; they are available in many commercial and non-commercial codes. 

Explicit TD methods require only matrix-vector multiplications for time stepping, which 
makes them computationally efficient. Usually they are based on Finite Differences Time 
Domain (FDTD [4]) or Finite Integration Technique (FIT [5]), which result in a coinciding 
space discretization on a Cartesian mesh. However, in general, mesh and method are 
independent. For example FIT or the Finite Element Method (FEM) can be applied on 
tetrahedral, hexahedral, or even mixed meshes.  

In explicit TD simulations stability requires fulfilling the Courant Friedrichs Lewy 
(CFL) condition [6]. This makes them well suited for wave-propagation dominated 
problems but not well suited for structure-dominated problems, particularly at Low 
Frequency (LF). The small time step, which is tied to the space step by the CFL condition 
leads to a massive oversampling of an LF wave. Moreover, sub-relativistic beams and 
dispersive materials are difficult to treat in TD. 

In these rather exotic cases, it makes sense to compute the beam coupling impedance 
directly in FD. Such computations are somewhat oriented on analytical methods [7], but 
generalized to arbitrary geometries by discretization methods as FIT or FEM. The current 
status of FD methods, however, is not as advanced as for TD methods. In particular, there is 
no high performance tool to compute beam coupling impedance in FD for three-dimensional 
structures. 

In this paper, we will first discuss relevant assumptions and requirements for the 
computation of wake potentials and impedances in TD and FD. Then we give an overview 
of methods and codes. In the end, we give two examples; one is a three-dimensional RF-
finger bellow structure planned to be used in the LHC which we address in TD and the other 
is a scenario for FCC-hh beam pipe addressed by a two-dimensional FD approach.   

 Definitions and Assumptions for the Computation of Wakefields and 2.7.2
Impedances 

The definition of wake potentials decouples the electromagnetical and the mechanical 
problems in beam dynamics by making the two assumptions: 
 

http://mylab.institution.org/%7Emypage
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- Rigid beam approximation: all particles move through the structure with constant 
velocity, 

- Kick approximation: the force continuously acting on the trailing charge is 
lumped to a single kick (instantaneous change of momentum) after the passage 
through the structure. 

 
The three-dimensional wake function is generally defined as (see e.g. [8])  

                           ∫
∞

∞−
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where 21 , rr  are the transverse coordinates of the leading and trailing charge, respectively. 

Equation 1 fulfills the Panofsky-Wenzel (PW) theorem [9] as ,0),,(' 21 =×∇ srrW  where the 
relative gradient is T

syx ),,(' 22 −∂∂∂=∇ . A supplement to the PW theorem is the fact that the 
longitudinal wake function is a harmonic function of the transverse coordinates in the ultra-
relativistic limit. This is the basis of several methods to modify the wake integration contour 
[10,11]. Among the most famous ones are the indirect test beam method [12] and the 
indirect interfaces [13] method. An approach to avoid lengthy wake integration for 
evanescent waveguide modes in the beam pipe after a cavity is presented in [14]. Finally, 
generalized methods for arbitrary structures are discussed in an abstract mathematical 
framework in [15]. 

The improper integral (1) exists only if the assumed infinite beam pipe connections do 
not cause any wakefields, i.e. the following conditions have to be fulfilled: 
 

- smooth pipe (no geometric wake fields), 
- perfectly conducting pipe (no resistive wake fields), 
- ultra-relativistic beam (no space-charge wake fields).  

 
Note that the last two requirements can be relaxed by taking into account a pipe stub 
impedance per unit length. However inserting a nonrelativistic beam into a 3D structure is 
involved and requires a numerical Lorentz transformation [16]. 

The wake potential is connected to the wake function by convolution with the bunch 
profile (line density )(sλ ),   
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Due to the minimal duration–bandwidth product, a Gaussian bunch 
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is usually employed for the excitation. Fourier transform over s = vt-z leads to 
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Note that the excitation bunch length ss  in a TD simulation does not necessarily 
correspond to the true bunch length in the operated accelerator, but rather to the frequency 
of interest. The point charge impedance is recovered by applying the convolution theorem 
as  
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For ultra-relativistic beams the dipolar and quadrupolar transverse impedances can be 
obtained by displacing the source bunch or the wake integration line, respectively. If the 
displacement is small, the impedance scales linearly with it and thus one defines a 
transverse dipolar or quadrupolar impedance in units of Ohms/m, which is obtained from 
the wake potential in the same way as the longitudinal impedance. 

The beam coupling impedance can also be defined directly in FD by the power loss 
integral of a beam with finite transverse size as  

dVJE
q

Z
beam

*

2

1)( ⋅−= ∫ω ,                                                    (6) 

where EJ ,  are the beam current density and the electric field spectral densities, 
respectively. The dipolar transverse impedance can be obtained accordingly by using a 
dipolar excitation current density and the PW theorem. Note that the representation of the 
impedance by a volume integral over the longitudinal electric field and the current density is 
particularly convenient for the computation on a mesh since discretization noise is averaged 
out. Moreover, it allows for consistent computation of the space charge impedance in the 
case of v < c [17].  

 Time Domain Simulation Tools and Methods 2.7.3

Computational loads in wake field computation can be heavy, thus parallel codes lead to 
a significant progress. Nowadays, more than 1e9 mesh cells are easily handled in parallel 
codes on cluster computers, while on a single machine the limit is at about 1e7 to 1e8. 
Moreover, an important recent improvement was the introduction of boundary conformal 
meshing, increasing the convergence order and avoiding extremely fine meshes to 
approximate the geometry accurately.   

For the computation of short range wakes, it is advantageous to use a moving window, i.e. 
a mesh which moves along with the bunch and re-discretizes the geometry in every time 
step. The moving mesh approach was first introduced by Bane and Weiland [18] and is 
nowadays implemented in many codes such as PBCI [19] or GdfidL [20]. For long-range 
wakes, however, where the desired wake length is much longer than the structure, the 
moving mesh is rather inappropriate, since the entire wake length needs to be meshed.  

Another important property for short-range wake computation in TD is the suppression 
of numerical dispersion in direction of beam propagation. This can be achieved by e.g. 
longitudinal-transversal-splitting [19] or TE-TM-splitting [21]. An overview of different TD 
codes can be found in [22], where these properties are discussed in more detail.  

 Flexible RF-Finger Structures 2.7.4

We investigate the structure shown in Fig. 1, which is designed to serve as a shielding for 
the LHC triplet bellows in point 1 and point 5. The fingers are made from a single copper 
beryllium sheet of 0.1 mm thickness. In total, it is considered to have 32 such structures in 
the LHC [23]. The beam coupling impedance is computed using the commercial CST 
Particle Studio (PS) [24] wake field solver and the PBCI code. The latter is a dedicated 
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dispersion free, moving window, parallel wake field solver developed at TEMF, TU 
Darmstadt. Recently, also conformal meshing was added to PBCI. 
 

 
Figure 1: RF-Finger and bellow structure. 

 
Since the structure is symmetric with respect to both the x-z and y-z planes, only one 

quarter of the geometry needs to be modeled when the beam is on axis (see Fig. 2) and only 
half needs to be modeled for dipolar excitation. When wakefield integration by means of 
indirect interfaces (see also [13]) is applied, the beam pipe stubs can be chosen to be very 
short, which reduces the number of cells in the structured mesh significantly. Wave guide 
port boundaries taking into account at least 50 modes guarantee that the reflections at the 
beam entry and exit are small. The excitation is applied as a Gaussian bunch with 12=ss
mm.  

The simulated wake potential is displayed in Fig. 3, where the different parameters for 
the PBCI runs are given in Table 1. Figure 4 shows the real and imaginary parts of the 
impedance obtained by CST PS, where long wake lengths can be easily realized. Finally, 
Fig. 5 shows a comparison of CST and PBCI impedance magnitude, also for the structure 
fingers closed, such that only a bellow structure remains. This can be simulated much easier, 
and the results show good agreement with the simulation of the original structure. From this, 
one can conclude that the structure works as it should, i.e. shielding the beam from the 
outside in the frequency range of the beam spectrum. The expected cutoff at which 
significant field transmission occurs is at f=c/2d=60GHz, where d=2.5mm is the gap 
between two fingers. Finally, Fig. 6 shows the transverse impedance that also behaves 
almost identically in both the finger and closed cases. 
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Figure 2: Boundary and symmetry conditions. 

 
Figure 3: Longitudinal wake potential. 

 
Table 1: Parameters of PBCI simulation runs. 

 
 
 
 
 
We interpret the impedance curves in Figs. 5 and 6 as follows: the first resonance at 
5.1 GHz (3.6 GHz for the dipolar impedance) corresponds to a cavity mode. In the absence 
of losses its quality factor tends to infinity. In the simulations the height of the peak is 

 #cells Wake length Processes 
PBCI1 8.6e7 3.2m 83 
PBCI2 5e8 6.4m 332 
PBCI3 1e9 12.8m 162 
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limited by the finite wake length and thus increases with increasing wake length. The 
second peak at 7.8 GHz (6.3 GHz for the dipolar impedance) is independent of the wake 
length. This is a broadband resonance caused by leaky cavity modes, i.e. cavity modes, 
which decay due to losses through the pipe. The small peak at 2.28 GHz (1.73 GHz for the 
dipolar impedance) corresponds to the cutoff of the first TM (TE) waveguide mode. 

 
Figure 4: Real and imaginary part for different wake lengths. 

 
Figure 5: Comparison of PBCI and CST, also for the closed structure. 
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Figure 6: Dipolar transverse impedance magnitude. 

 Frequency Domain Solver Example 2.7.5

In FD, there is no direct advantage from the FIT diagonal material matrices, which favors 
the FEM on an unstructured mesh. However, in practice FIT is also used, since the 
structured mesh makes the implementation of Floquet boundary conditions simple [25]. 
Particularly in the absence of bulk materials, the Boundary Element Method (BEM) is also 
an attractive option in FD [26, 27]. The beam velocity and dispersive material data are just 
parameters in FD that can in principle be chosen arbitrarily. However, such parameters 
influence the condition number of the system matrix, which becomes an issue when a large 
System of Linear Equations (SLE) has to be solved for each frequency point. 

We address an example for the FCC-hh [28] design study, i.e. a beam pipe design 
proposal (see Fig. 7), with the FEM code BeamImpedance2D [17]. The code solves the curl-
curl equation 

JiEE ωεωµ −=−×∇×∇ − 21  

for the electric field  32: CRE → , subject to the beam current density J  as the excitation. 

Note that E  and J  are not free of divergence due to the beam’s charge. The permeability 
and permittivity are allowed to be complex, i.e. conductive, polarization and magnetization 
losses are taken care of. For the solution of the system Nedelec finite elements are used. 
Since those are (at lowest order) not capable of modelling the divergence of E , a Helmholtz 
split needs to be performed to calculate the (quasi) static fields from a complex potential 
separately (see [17]). Furthermore, the code allows using a Surface Impedance Boundary 
Condition (SIBC) to avoid meshing the extremely small skin depth at high frequency.  
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Figure 7: Proposed FCC beam pipe design (R. Kersevan) and GMSH mesh (T. Egenolf). 

 

Figure 7 shows the proposed FCC-hh beam pipe design, where the green color indicates 
vacuum domains. The inner surface of the beam screen is covered by a copper layer of 
thickness 80 µm. In order to avoid meshing the material behind the copper, a two-layer 
surface impedance is used [29]. Figure 8 shows the transverse impedance of the structure, 
together with analytical results by ReWall [30] for circular pipes with the 

 
Figure 8: Transverse impedance of the FCC pipe. 
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the smaller and larger semi-axis radii 12mm and 18mm. As expected, the impedance curves 
for the real structure are between the two analytical curves and the horizontal is smaller than 
the vertical impedance due to the larger distance to the wall. The bump of the imaginary part 
at high frequency is a numerical artifact, due to improper cancelation of the electric and 
magnetic parts of the space charge impedance at the extremely high gamma=50000. At low 
frequency the discrepancies between the analytical and numerical results are due to different 
modelling of the structure. In ReWall the titanium behind the copper is considered with its 
thickness of 2mm and vacuum behind. The SIBC for BeamImpedance2D assumes infinite 
thickness of the titanium. However, this modeling discrepancy matters only for extremely 
low frequencies below 100Hz. 
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 Introduction 2.8.1

Bench measurements nowadays represent an important tool to estimate the coupling 
impedance [1] of any resonant and not resonant device present in modern particle 
accelerators. A complete review of the most common methods, including as well practical 
suggestions, is reported in Ref. [2]. 

For the non resonant components, the most well-known technique based on the coaxial 
wire method allows to excite in the device under test a field similar to the one generated by 
an ultra-relativistic point charge. We discuss the basics of the coaxial wire method and 
review the formulae widely used to convert measured scattering parameters to longitudinal 
and transverse impedance data.  

For resonant devices (such as accelerating and deflecting cavities) the way to estimate 
the impedance is the well-known bead-pull technique used, as well, in the design, 
construction and tuning the structures themselves.  

Nowadays, numerical simulations are useful tools also in the measurement stage to 
compare results and to guide the measurements in order to avoid measurement artifacts. The 
tools have been described in the previous section; here we will briefly comment on the 
(typical) reliability of such comparisons against bench measurements. 

 The Coaxial Wire Method 2.8.2

After the introduction of the beam coupling impedance concept by V. Vaccaro it was 
realized soon that for highly relativistic beams a very close similarity exists between the 
Transvers Electric Magnetic (TEM) like field of the charged particles and the field of a wire 
in a coaxial structure. This is the main basis and motivation of the coaxial wire method. 

We review the early concepts of this method in order to show the motivation; we show 
some issues (and advantages) concerning the practical implementation of those concepts 
with modern instruments; we show some practical cases to compare the different 
approaches.  

Longitudinal impedance measurements are straightforward, but also transverse 
impedance measurements using two wires carrying currents with opposite polarity were 
already done on the late 70s. The concept was extended to the evaluation of dipole and 
quadrupolar transverse impedances [3] by applying a single displaced wire and pair of wires. 
We discuss the basis of those methods and present some examples relevant for modern 
accelerator components. 

The coaxial wire set-up can also be used to study the properties of the structure when 
excited by a beam passing through; trapped modes or beam transfer impedance can, for 
example, be measured in this way [4]. 

mailto:Andrea.Mostacci@uniroma1.it
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 Motivation and Validation 2.8.2.1

The field of a relativistic point charge q in the free space (or in a perfectly conducting 
beam pipe) is a TEM wave, namely it has only components transverse to the propagation 
direction (z-axis). The amplitude scales inversely with the distance r from the propagation 
axis and the propagation constant is ω/c. The fundamental mode of a coaxial wave guide is a 
TEM wave as well, with the same amplitude dependence on 1/r and the same propagation 
constant.  

Therefore the excitation due to a relativistic beam in a given Device Under Test (DUT) 
can be “simulated” by exciting a TEM field by means of a conductor placed along the axis 
of the structure. The impedance source on the DUT will scatter some field, i.e. exciting 
some higher order modes; such modes must not propagate otherwise the propagating field 
will not be anymore similar to the TEM beam field. In principle, then, simulating the beam 
field with the TEM mode of a coaxial waveguide is possible only at frequencies below the 
first higher mode cut-off, namely below the TM01 cut-off frequency for circular waveguides. 
One can also demonstrate that the modes of the coaxial waveguide converges for vanishing 
wire radius to the analogous mode of the cylindrical waveguide, at least at the beam pipe 
boundary, where the impedance source is usually located. 

To compare the excitation of a given DUT by a coaxial wire and with the beam itself, 
we review some measurements done in the framework of the investigations of the shielding 
properties of coated ceramic vacuum chambers [5]. The 500 MeV CERN EPA electron 
beam was sent through two identical ceramic vacuum chamber sections; the first one was 
internally coated with a layer of 1.5 µm depth. Magnetic field probes were placed to 
measure the beam field just outside the two ceramic chambers (the coated and the reference 
one). In a first experiment, shielding properties of the resistive coating (thinner than the skin 
depth) were demonstrated, confirming previous indirect measurements and simulations [6]. 
In a following experiment, among other results, it was proved that the screening properties 
of the coating can be spoiled by the addition of a second conducting layer placed outside the 
field probes and electrically connected to the metallic vacuum chamber sections. In this case, 
in fact, the magnetic field probe was measuring clearly the field of the 1 ns (r.m.s.) bunched 
beam (see Fig. 1). 

The same chamber in the same configuration (i.e. with this additional external 
conductor) was then measured in the bench set-up: a 0.8 mm diameter wire was stretched on 
the axis of the structure. One end of the wire was connected to a 50 Ω load while the other 
end was connected to one port of a Vector Network Analyzer (VNA); matching resistors 
were used. The other port of the VNA was connected to the field probe. The network 
analyzer was set to send through the wire a synthetic pulse (using the so called “time 
domain option”) with 300 MHz bandwidth and measured the transmission between the ports, 
i.e. the signal through the probe. 

This particular kind of set-up is not very often used, but it is very similar to the “time 
domain” measurement originally proposed by Sands and Rees in the 70s [7]; nowadays time 
domain measurements are often performed with synthetic pulse techniques in many 
microwaves applications. The measurement with the beam and with the wire should give 
virtually the same result, apart from a scaling factor due to the difference of the power 
carried by the beam and by the VNA signal. The results are shown in Fig. 1 where the beam 
and the bench data have been normalized and time shifted so that the traces coincides in 
their minimum point. 
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Figure 1: Signal from the field probe after normalization and time shifting in the EPA experiment 
on coated chamber shielding properties. The field probe is inserted between the coated ceramic and 
an external conductor connected to the beam pipe. 

The external shield, having a DC resistance much smaller than the coating, carries the 
image currents, the field penetrates the ceramic and the field probe can measure a clear 
signal. This is only one of the configurations measured both with the beam and in the bench 
set-up; the agreement with other measurements is similar to the one of Fig. 1. 

The results of that comparison confirm the validity of the coaxial wire approach to 
simulate the beam field effect on a given DUT. Coaxial wire measurements are widely used 
to estimate impedances of many accelerator devices. 

 Longitudinal Coupling Impedance 2.8.2.2

The wire stretched in the DUT of length L can be modeled, as mentioned before, as a 
TEM coaxial line of length L. In general, such a line is considered to have distributed 
parameters but in case of L much smaller than the wavelength λ, the lumped elements 
approximation is applicable. The DUT beam coupling impedance is then modeled as a 
series impedance of an ideal reference line (REF). Therefore coupling impedance can be 
obtained from the REF and DUT characteristic impedances and propagation constants of the 
lines (see for example Ref. [8]). It is well known that any transmission line can be 
characterized by measuring its scattering S-parameters, for example with VNA. In principle 
both reflection (i.e. S11) and transmission measurement (i.e. S12) are possible, but usually 
transmission measurements are preferred for practical reasons.  

In the framework of this transmission line model, the DUT coupling impedance can be 
exactly computed from measured S-parameters but the procedure is cumbersome and not 
practically convenient. Therefore a number of approximated formulae are derived in 
literature and we will report the most used ones, highlighting their approximations.  

All the following formulae do not consider the effect of the mismatch at the beginning 
and at the end of the perturbed transmission line. Therefore matching net- works (resistive 
networks or cones) are normally used in the actual bench set-ups. Cones are mechanically 
difficult and act as a frequency dependent distributed transformer, which doesn’t work at 
low frequency; on the contrary resistive networks are affected by parasitic inductances and 
capacitances affecting their performance at high frequency (depending on the components 
actually used). Approximated formulas and the “exact” transmission line solution are 
numerically compared in Ref. [9]. 
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Being Zc the characteristic impedance of the wire inside the DUT, the beam coupling 
impedance Z∥ can be estimated with the“improved log-formula”[8] 

  (1) 

Expressing the S21
REF in terms of the DUT electrical length L, one can get another equation 

analogous to Eq. (1) [10]: 

  (2) 

which can be useful in practice. The improved impedance expression requires the 
knowledge of the electrical length of the DUT and its accuracy decreases for shorter de- 
vices [11]. Reference [9] suggests the use of improved log-formula for DUT longer than the 
wavelength λ. 

For small ratios Z∥/Zc, the so-called “standard log-formula” has been proposed for 
the distributed impedances [12]: 

  (3) 

The log-formula Eq. (3) is generally applicable including lumped components, provided that 
no strong resonance is present and the perturbation treatment is justified. 

For lumped elements, i.e. when the DUT electric length is much smaller than the 
wavelength, the previous expressions converge to the so called “lumped element formula” 
[13]: 

  (4) 

The lumped impedance formula is applicable to single resonances and has the advantage 
that the scattering coefficient ratio is directly converted into an impedance by the network 
analyzer [14]. 

The quantities ZLOG, Zlog, ZHP are estimations of the beam coupling impedance Z∥; the 
smaller the ratio Z∥/Zc, the more accurate the approximated formulae. As an example, a 
wire in a perfectly conducting cylindrical beam pipe with circular cross section has a 
characteristic impedance equal to 

  (5) 

where a is the wire radius, b is the (inner) pipe radius and Z0 is the vacuum impedance. 
Therefore a smaller wire has an higher Zc, resulting in a more accurate measurement of the 



 92 

coupling impedance. A detailed discussion of the systematic error done in estimating the 
beam coupling impedance Z∥ with ZLOG, Zlog or ZHP is reported in Ref. [11]. 

The difference between the improved log formula of Eqs. (2, 3) and the standard one of 
Eq. (4) can be shown in measurements performed on the 7 cells module of the MKE 
kicker [15]. The coupling impedance is much bigger than the characteristic impedance of 
the wire in the DUT (≈ 300Ω) and therefore the improved log formula must be used: 

  (6) 

Equation (6) differs from Eq. (2) because the length of the ferrite (Lf = 1.66m) is used 
instead of the length of the whole kicker tank (L = 2.31m), as discussed in Ref. [15]. Figure 
2 shows the wire measurement results interpreted with the improved formula Eq. (6) (green 
line) and the standard one Eq. (3) (blue line). The comparison with theory (black line) 
shows that, at least for the real part of the impedance, the improved log formula gives a 
result closer to theoretical expectations for frequencies higher than few hundreds of MHz. 
At lower frequencies, i.e. where the DUT length is comparable to the wave-length and the 
impedance is much closer to the characteristic impedance of the wire in the DUT, the 
standard log formula is a better estimation of the coupling impedance. 

 
Figure 2: Real part of the longitudinal coupling impedance for the 7 cells MKE kicker module [15]. 
The measured data are interpreted via the improved log formula (green line) or the standard log 
formula (blue line) and compared to theoretical expectations (dashed line). 

In conclusion, longitudinal coupling impedance bench measurements are reasonably 
well understood and the technique is well established. Moreover, with modern simulation 
codes, one can derive directly the coupling impedance or simulate the bench set-up with 
wire, virtually for any structure. Evaluation of coupling impedance from measured or 
simulated wire method results require the same cautions; but simulations and RF 
measurements usually agree well. Moreover comparisons with numerical results are very 
useful to drive and to interpret the measurements. One should pay attention that simulation 
may require a simplified DUT model, which will only reproduce the main DUT 
electromagnetic features. 
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 Transverse Coupling Impedance 2.8.2.3

The transverse impedance is proportional at a given frequency to the change in 
longitudinal impedance due to the lateral displacement of the beam in the plane under 
consideration (vertical or horizontal). Therefore the transverse impedance is proportional to 
the transverse gradient of the longitudinal impedance (Panowsky-Wenzel theorem [1]). 
Based on this theorem, the most common method to bench measure transverse impedance 
uses two parallel wires stretched along the DUT [2]. Opposite currents are sent through the 
wires (odd mode excitation); instead of the wires, a loop can be used to increase the signal 
to noise ratio [16]. The bench transverse impedance Z⊥,bench is given by [17] 

  (7) 

where ∆ is the wire spacing (usually about 10% of the DUT radius). Z∥ ,bench is the 
longitudinal coupling impedance measured from the S-parameters as discussed above, e.g. 
using the improved log-formula 

  (8) 

where now Zc is the characteristic impedance of the odd mode of a two wires transmission 
line. Concerning LHC (and other modern machines as well), low frequency transverse 
impedance is interesting and therefore the lumped element Eq. (4) must be used in Eq. (8). 
A practical example of low frequency transverse impedance is reported in Ref. [16] for a 
simple case; results are compared to theoretical expectations to define a reliable 
measurement procedure. 

In the two wires bench set-up only dipole field components are excited because of the 
symmetry of the wires/coil; therefore there is no electric field component on the axis. In 
numerical simulations, this is analogous to putting a metallic image plane between the wires. 
Nevertheless some accelerator devices may exhibit a strong asymmetry in the image current 
distribution due to azimuthal variation of conductivity (e.g. ferrite in kickers) or to cross 
section shape. Two wire techniques can be used with some cautions in these cases because 
the field in the structure is not TEM-like; in order to get a more complete view of the 
transverse kick on the beam, it may be useful to characterize the device with a single wire 
[18]. 

The transverse impedance itself can be measured with a single wire displaced in various 
positions, which is measuring the longitudinal coupling impedance as a function of the 
displacement x0 of a single wire. From the Panowsky- Wenzel theorem we get 

  (9) 

provided that x0 is small with respect to the typical variation length of the bench measured 
coupling impedance Z∥,bench . 

From the practical point of view, transverse impedance measurement techniques are 
more delicate and require particular attention for asymmetric devices (e.g. traveling wave 
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kickers like). Novel techniques optimized for particular DUTs, are also being proposed, e.g. 
SNS kicker measurements reported in Ref. [19]. Numerical simulations are necessary to 
control and validate the measurement procedure. One should pay attention that DUT models 
feasible for simulations do not introduce non-physical symmetries or approximations; in 
principle, dealing with transverse problem may require more complex simulations than the 
longitudinal case. 

 Resonant Structures 2.8.3

An important class of accelerator devices includes cavities, which are now used both for 
accelerating and deflecting the particle beam. Each cavity is characterized by its resonant 
frequency f0, the quality factor of the resonance Q and its shunt impedance R. One can think 
of measuring all these quantities with the coaxial wire set-up, i.e. measuring strong notches 
in the transmission scattering coefficient between the ends of the wire. But the wire perturbs 
longitudinal cavity modes, e.g. lowers the Q and detunes the frequency. Therefore the 
coaxial wire set-up is not usually recommended for cavity measurements and it is advisable 
only for special cases, mainly transverse modes [2]. 

The most used technique to characterize cavities is the “bead pull” measurement [20]. 
The field in the cavity can be sampled by introducing a perturbing object and measuring the 
change in resonant frequency: where the field is maximum (minimum) the resonance 
frequency will be more (less) perturbed. Since it is a perturbation method, the perturbing 
object must be so small that the field does not vary significantly over its largest linear 
dimension. Shaped beads are used to enhance perturbation and give directional selectivity 
among different field components. 

Quantitatively, the change of the resonant frequency is related to the perturbed cavity 
field by the Slater theorem. For the typical case of longitudinal electric field on the axis of 
accelerating cavities, the variation of the resonance frequency ∆f from the unperturbed one 
is [21] 

  (10) 

for a conducting bead of volume ∆V; Ez is the field at the perturbing object position and U 
is the electromagnetic energy stored in the cavity. The form factor kE of the perturbing 
object can be exactly calculated for ellipsoids or can be calibrated in a known field (e.g. 
TM0n0 of a pillbox cavity). 

The frequency variation can be measured by the variation of the phase φ at the 
unperturbed resonant frequency, according to [22] 

  (11) 

where QL is the (loaded) quality factor of the resonance. Even if a very precise initial tuning 
is needed, this method allows easily measuring the field of many points (as many as the 
points of the instrument trace). The field shape can also be directly visualized on the 
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instrument screen, greatly facilitating the structure tuning procedure, which is typically a 
very cumbersome procedure in multicell cavities. 

An important cavity design parameter is the R/Q, which can be obtained from electric 
field data using 

  (12) 

where Lc is the length of the structure. 
In general measurement on resonant structures are accurate and in very good agreement 

with simulations. Bead pull measurements are often used to check if the DUT fits the design 
specifications and they are still required for tuning the multiple cell cavities. R/Q 
measurements agree always with simulations within the few %. 

 Conclusions 2.8.4

Bench measurements are used for estimating the coupling impedance of accelerator 
devices, exploiting the very accurate instrumentation used in microwave measurement in the 
frequency domain (namely vector network analyzer). We have reviewed the standard 
methods used for non resonant and resonant devices; coaxial wire set-up are used for the 
first class of devices while the second class of devices are bench measured with bead-pull 
techniques. The main idea of the coaxial wire technique is the analogy between the field of 
an ultra-relativistic charged beam and the one of a coaxial waveguide; thus the beam is 
simulated by an electric pulse travelling on the inner wire. Bead pull techniques allow 
measuring the resonant field in cavities through perturbation of the cavity space, according 
to Slater theorem; from the measured field on the beam path, one can compute the 
resonance parameters (e.g. R/Q). In this paper we have reviewed the most common concepts 
used in bench measurement, focusing on the motivation, their limit of validity and trying to 
compare their different results.  

 References 2.8.5

1. L. Palumbo, V.G. Vaccaro and M. Zobov, in Fifth Advanced Accelerator Physics 
Course, CAS Cern Accelerator School, CERN 95-06 (1995), p.331. See also INFN 
LNF-94/041 (1994). 

2. F. Caspers in Handbook of Accelerator Physics and Engineering, A. Chao and M. 
Tinger (editors), World Scientific, Singapore (1998), p.570. 

3. S. Heifets, A. Wagner, B. Zotter, SLAC AP110 (1998). 
4. A. Mostacci et al, NIM A517 (2004), p. 19. 
5. L. Vos, F. Caspers, A. Mostacci et al., CERN AB-Note- 2003-02 MD EPA (2003). 
6. F. Caspers, E. Jensen, F. Ruggiero et al., “RF Screening by Thin Resistive Layers”, 

PAC’99, New York (1999). 
7. M. Sands, J. Rees, SLAC report PEP-95 (1974). 
8. V.G. Vaccaro, INFN/TC-94/023 (1994). 
9. E. Jensen, CERN PS/RF/Note2000-001 (2000). 
10. F. Caspers, C. Gonzalez, M. Dyachkov, E. Shaposhnikova, H. Tsutsui, CERN 

PS/RF/Note 2000-004 (2000). 



 96 

11. H. Hahn, Phys. Rev. ST Accel. Beams 3, 122001 (2000). 
12. L. Walling et al, NIM A281 (1989), p.433. 
13. H. Hahn, F. Pedersen, BNL 50870 (1978). 
14. H. Hahn, Phys. Rev. ST Accel. Beams 7, 012001 (2004). 
15. F. Caspers, A. Mostacci, H. Tsutsui, CERN SL-2000-071 AP (2000). 
16. F. Caspers, A. Mostacci, U. Iriso, CERNAB-2003-051 (RF) and PAC’03, Portland 

(2003). 
17. G. Nassibian, F. Sacherer, CERN ISR-TH/77-61 (1977). 
18. H.Tsutsui, CERN SL-Note-2002-034 (2002). 
19. H. Hahn, Phys. Rev. ST Accel. Beams 7, 103501 (2004). 
20. R. Rimmer, M. Tinger in Handbook of Accelerator Physics and Engineering, A. 

Chao and M. Tinger (editors), World Scientific, Singapore (1998), p.403. 
21. T.P. Wangler, Principles of RF Linear Accelerator, JohnWiley and Sons Inc., 

Canada (1998). 
22. F. Caspers, G. Dome, CERNSPS/85-46ARF (1984). 
 

  



 97 
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 Introduction 2.9.1

While equipment heating due to beam coupling impedance is usually localized to that 
piece of accelerator equipment, the impedance contributions to beam instabilities add up for 
the whole machine. Therefore impedance models have been built for many existing 
machines, upgrades and projects in order to assess their stability limit.  

Impedance models in various levels of complexity were developed over the years 
depending on the needs and knowledge at the time of implementation: for example for the 
CERN ISR [1], PS [2,3,4], PSB [5], SPS [6,7,8,9], LEP [10], LEP2 [11] LHC [11,12], 
RHIC [13] at Brookhaven National Lab, TeVatron [14] at Fermi National Lab, HERA [15] 
at DESY, KEKB [16], as well as many light sources: NSLS-II [17], PETRA [18] SOLEIL 
[19], ALBA [20], to name only a few. 

Since impedance related instabilities can be a significant limitation and can drive 
fundamental parameters of the accelerator, impedance models are nowadays developed at 
the very early stage of machine design: for instance transverse instabilities required 
increasing the aperture of the beam screen for the Future Circular Collider project [21]. 

The complexity of an impedance model can range from a single number to an elaborated 
tool, which is able to recompute wake functions and complex impedance contributions as a 
function of frequency and their related thresholds with slight changes of machine 
configuration (e.g. energy, number of devices, beta function at the location of the devices, 
gaps of moving devices).  

A complete impedance model should in fact compute the longitudinal, transverse driving 
and transverse detuning contributions (also referred to as dipolar and quadrupolar) [22] for 
obtaining all resistive wall, broadband and narrow band contributions over a frequency 
range that would span from the first potentially unstable frequency to the maximum 
frequency that can be excited by the various single bunch and multibunch modes. It is in 
particular crucial to disentangle the driving and detuning contributions as their respective 
impact on beam dynamics is very different: the driving impedance contributes to the growth 
of Headtail modes (see for instance [8]), while the detuning impedance is not expected to. 

In practice, it is important to assess how the impedance model will be used in order to 
tailor the parameters of the computations/simulations or measurements: instability 
thresholds can be computed using macroparticle tracking codes or Vlasov solvers, that take 
impedance or wake functions as input, for single bunch or multi-bunch estimates. Several 
tools require fitting the impedance by one single resonator or several resonators, while other 
beam dynamics tools can use any type of impedance or wake as input.  

Since impedance computations can be heavily time and resource consuming, it is 
important to identify what drives the accuracy of the impedance in the range of interest. For 
3D simulations, the antagonistic requirements for (1) very short excitation source size to 
assess the high frequency components correctly and (2) very long wakes to take into 
account low frequency components and multi bunch effects accurately tend to always 
increase CPU needs and simulation times. For instance, single-bunch single-turn 
simulations with the macroparticle code HEADTAIL [23] require a wake function, which 
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can be computed with a very short source excitation over the length of the tracked bunch. 
Taking into account the multibunch/multi-turn effect requires much longer wakes, which 
makes it usually very difficult to keep a very short exciting source due to the very large 
number of mesh cells it needs. The long-range wake can therefore be assessed in a second 
simulation with a longer exciting source bunch, or by using a simpler model such as 
external circuits [24]. These two short-range and long-range wakes from these two 
computations can later be combined, with great care for the overlapping region and with 
convergence studies. 

 Assess Impedance of Individual Elements 2.9.2

Electromagnetic simulations are necessary to calculate the contribution to the total 
impedance of single accelerator components. Time domain simulations are of special 
interest, because the wake fields they provide can be fed directly into macroparticle 
simulation codes in order to predict their effects on the beam in realistic conditions. 

 Calculation of the Beam Couplings Impedance 2.9.2.1

The impedance can be calculated analytically or numerically. Analytical models could be 
used for simple geometries (resistive wall, simplified structures, pillbox). Numerical 
simulations are fundamental to account for all features of complex structures (e.g. kickers, 
collimators, cavities, beam diagnostic devices, etc.). CST Particle Studio 3D 
electromagnetic simulations [25] can be used to calculate wakes and/or impedances of 
simple accelerator structures. The software has been benchmarked with the known 
analytical solutions for several structures [24] (resistive wall, pillbox cavities, simplified 
models of kicker magnets, asymmetric chambers). Moreover the results of CST beam 
coupling impedance simulations were used to build the PSB, PS and SPS impedance models, 
which were found in very good agreement with experimental observations (beam induced 
heating, coherent tune shift and instability growth rate [4, 5, 8, 24]).  

CST Studio Suite is a commercial 3-D electromagnetic Computer Aided Design (CAD) 
software. In particular, the Wakefield solver of Particle Studio solves Maxwell's equations 
in Time Domain (TD), using a particle bunch as excitation of the structure under study. 
Standard outputs of the code are the wake potentials produced by the exciting Gaussian 
bunch (called “source”) as a function of the time delay τ with respect to the passage of the 
source (i.e. the integrated electromagnetic force felt by a witness charge that goes through 
the structure a time τ behind the source) and its equivalent in Frequency Domain (FD), the 
Fourier transform normalized to the bunch spectrum, i.e. the beam coupling impedance. 
Besides, since the code allows defining separately the transverse position of the exciting 
bunch and that of the computation point, we can also separately simulate the driving and the 
detuning terms of the transverse wake potentials. 
The main interest of simulating accelerator structures in time domain lies in the fact that the 
output of the simulation in terms of wake function may be directly used in particle tracking 
simulations to study the impact of these elements on the beam stability. In particular, wake 
functions in form of tables can be fed as an input into the HEADTAIL code, which is 
typically used for studying collective effects in beam dynamics. Since the wake functions 
are needed, the source bunch used in CST simulations should be short enough to be 
consistent with the length of the bunch slices simulated in HEADTAIL. This obviously 
limits the analysis to a maximum frequency defined by the bunch slicing, but it can be 
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applied when no higher frequency mechanisms are expected in the given beam dynamics 
problem. 

Resistive wall, Indirect Space Charge (ISC), magnetic kickers, collimators, stripline 
kickers, RF cavities, beam pipe transitions and beam diagnostics elements like wire scanner 
and Beam Position Monitors (BPMs), constitute a non-exhaustive list of classical 
impedance sources. Some of these elements could be not relevant for the overall impedance 
budget but could suffer of beam induced heating and then limit the beam intensity at which 
these elements can be used (e.g. wire scanners). 

Resistive wall: in general, the resistive wall impedance describes the coupling between 
the beam and an external chamber with finite conductivity. Analytical derivations are 
possible when dealing with chambers with simple geometries. Many of the existing theories 
are based on the field matching technique [12, 26, 27, 28, 29]. Alternative models for 
resistive wall calculations are based on the Transmission Line (TL) theory [24, 30, 31, 32]. 
For more complicated geometries (asymmetries, small beam pipe ceramic breaks or thin 
inserts [33, 34], holes [35], etc.), a theoretical estimation without involving numerical 
electromagnetic simulations becomes more involved. An example of interest in this sense is 
the LHC beam-screen where CST 3D simulations were used for the impedance estimation 
[24]. 

Indirect space charge: usually it is computed analytically. For complex vacuum 
chambers it can be computed numerically using form factors which could be obtained 
performing non-relativistic CST simulations [25] or using the BeamImpedance2D code 
[36]. 

Kicker magnets: they are the most important impedance source in the CERN SPS. In a 
very simple approximation a SPS ferrite loaded kicker can be modelled as two parallel 
plates of ferrite. For this simple geometrical model all the impedance terms (longitudinal, 
driving and detuning horizontal and vertical impedances) can be calculated analytically [37, 
38, 39]. CST 3D simulations were found to be in very good agreement with the analytical 
results [24]. The excellent agreement between analytical model and numerical simulations 
can be read as an important benchmark for the simulation code in the correct solution of 
electromagnetic problems involving dispersive materials such a ferrite. In the framework of 
an improvement of the SPS kicker impedance model a step by step simulation study has 
been performed starting from the simplest model and introducing one by one the new 
features that make the model gradually closer to reality. This approach allows for a good 
understanding of the different contributions brought to the kicker impedance by the different 
aspects. First, the ferrite is assumed to be C-shaped and the whole finite length device is 
inserted in the vacuum tank and equipped with an inner conductor [40]. In order to further 
approach a more realistic model other aspects have to be included: the cell longitudinal 
structure, also called segmentation, which determines a significant increase of the beam 
coupling impedance for the SPS injection kickers (due to the short cell length) and the 
serigraphy for the SPS extraction kickers. More details about the SPS kicker impedance 
model can be found in Ref. [24]. 

Collimators: in the case of the LHC [12], the collimation system represents the 
largest source of impedance in the machine due to the collimator jaws proximity to 
the beam. Detailed calculations could proceed with CAD models and codes like CST 
[25], HFSS [41], GdfidL [42] or ACE3P [43]. A first approximation is considering the 
jaws of the collimator as two parallel plates for which codes like [12] can provide 
accurate impedance calculation. One should note that, for very small collimator 
gaps, the nonlinear wakefield introduced by the beam distribution may play an 
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important role [44]. 
Stripline kickers: analytical models could be used for a first estimation [45, 46, 47]. For 

the final calculation a 3D EM simulation should be performed in order to include all the 
relevant features of the kicker. 

RF cavities: a model could be developed based on the RF parameters of the cavity. 
However, a good estimation of the beam coupling impedance of the RF cavities would 
require measuring the actual cavities or simulate the 3D geometry of the tuned cavity. 

Transitions between different vacuum chambers: the beam coupling impedance of these 
elements can be accurately calculated by using CST Particle Studio. Analytical models are 
available for simple geometries of the vacuum chambers [24, 48, 49]. 

Beam diagnostic elements: for complex devices a simplified calculation is strongly 
advised in order to have a good understanding of the beam coupling impedance contribution.  

 Bench Measurements of the Beam Coupling Impedance: the Wire 2.9.2.2
Method  

Ideally measurements of beam coupling impedances of a device should be done by 
exciting the device with the beam itself [50]. However, in most cases this solution is not 
possible and one must resort to bench measurement techniques in which the beam is 
simulated by a current pulse flowing through a wire stretched along the beam axis. For 
beam coupling impedance evaluations, the Wire Method (WM) is a common and 
appreciated choice.  

This technique was proposed in the first half of the 70’s, based on intuitive 
considerations. By means of WM, Faltens et al. [51] measured the wall contributions to the 
beam coupling impedance. M. Sands and J. Rees (1974) [52] measured the energy loss of a 
stored beam to a cavity due to the higher mode excitation. Moreover, at BNL and at CERN, 
the method was employed to measure the longitudinal and transverse beam coupling 
impedance [53, 54] of a kicker in the frequency domain. The method of Sands and Rees 
requires a complex numerical manipulation to obtain the beam coupling impedance from the 
measured quantities, because of the presence of multiple reflections in the measuring 
devices [52]. An improved method of measurement that does not need this manipulation 
was proposed by V.G. Vaccaro [55]. 

Since many years it has become customary to use the coaxial wire method [52, 55] to 
measure the beam coupling impedance of accelerator devices (e.g. [56, 57, 58, 59, 60, 61, 
62, 63]). Nevertheless, the results obtained from wire measurements might not entirely 
represent the solution of our initial problem, because the presence of the stretched wire 
perturbs the electromagnetic boundary conditions. The most evident consequence of the 
presence of another conductive medium in the center of the device under study is the fact 
that it artificially allows TEM propagation through the device, with zero cut-off frequency. 
The presence of a TEM mode among the solutions of the electromagnetic problem will have 
the undesired effect to cause additional losses during the measurement. Theoretical studies 
about the validity limits of the Sands and Rees method in relation to the presence of the 
central wire that simulates the beam can be found in Ref. [64], where, by means of a general 
theoretical approach, the effect of the central conductor with small but finite radius has been 
studied. As results for an example of application (pill-box cavity with a radius of 15 cm 
using a wire with a diameter of 1.12 mm) the longitudinal beam coupling impedance of the 
DUT, calculated with this approach, is very similar to the impedance obtained with the 
Sands and Rees formula (Fig. 2 of Ref. [64]). Details about the measurement setup used in 
[64] can be found in [65]. However, the mode analyzed in this study is above the cut off 
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frequency of the beam chamber. For modes below this frequency, due to the TEM 
propagation introduced by the wire, the WM is found to provide inaccurate results, as 
investigated in Ref. [66] comparing the impedance with and without a wire for a Copper 
pillbox, by means of the Mode Matching Technique. 

 Summing the Different Impedance Sources to Build the Impedance 2.9.2.3
Model of a Real Machine 

The impedance model of the machine can be obtained summing the contributions of all 
the impedance sources analysed. In the transverse plane the sum has to be weighted by the 
respective beta functions as expressed in the following formula (see e.g. [12]): 
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where  𝛽𝛽⊥

𝑖𝑖  is the beta function of the 𝑖𝑖𝑡𝑡ℎ element (since the element extends over a certain 
length the beta function should be averaged over the element length), 〈𝛽𝛽⊥〉 is the average 
beta function of the ring and 𝑍𝑍⊥

𝑖𝑖 (𝑓𝑓) is the transverse impedance of the 𝑖𝑖𝑡𝑡ℎ element. 
As an example, Fig. 1 shows the full SPS impedance model, which includes kicker 

magnets, wall, BPMs, RF cavities and broadband impedance from step transitions for the 
horizontal and vertical driving and detuning impedances [8].  

  
Figure 9: Horizontal (left) and vertical (right) SPS impedance model. 

 Compute Beam Observables and Compare with Measurements 2.9.3

When an impedance model is produced for an accelerator machine, it allows to perform 
beam stability predictions and to calculate the impact of upgraded (or removed) equipment 
in the machine. A series of benchmark can be performed in order to ensure the good 
agreement between impedance model and beam observables. In the following we will 
introduce some of the most common procedures used to validate an impedance model. 

 Single Bunch Tune Shift / Growth Rate versus Intensity 2.9.3.1

Measuring the complex betatron coherent frequency shift with intensity gives 
information on the total transverse impedance according to Sacherer’s theory [67]. Given a 
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beam with Gaussian longitudinal distribution we can calculate the total machine tune shift 
with intensity as 
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𝑞𝑞𝑞𝑞𝐼𝐼𝑇̅𝑇0

8𝜋𝜋
3
2𝐴𝐴𝐴𝐴𝐸𝐸0𝜎𝜎𝑡𝑡

� 𝛽𝛽⊥𝑘𝑘  𝑍𝑍⊥𝑘𝑘
𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘

, (2) 

 
where Δ𝑄𝑄⊥  is the complex machine transverse betatron tune, 𝑞𝑞  the elementary charge, 
𝐼𝐼 ̅ = 𝑞𝑞𝑞𝑞𝑁𝑁𝑏𝑏𝑓𝑓0  the beam current (with 𝑁𝑁𝑏𝑏  number of particles, 𝑍𝑍  the charge number, and 
𝑓𝑓0 = 1/𝑇𝑇0 the revolution frequency), 𝛽𝛽 relativistic beta factor, 𝐸𝐸0 = 𝛾𝛾𝛾𝛾𝑚𝑚𝑢𝑢𝑐𝑐2 is the energy 
of a traveling ion with 𝑚𝑚𝑢𝑢 nucleon rest mass, 𝐴𝐴 number of mass, 𝛾𝛾 the relativistic gamma 
and 𝑐𝑐 speed of light, 𝜎𝜎𝑡𝑡 is the rms bunch length, 𝑍𝑍⊥𝑘𝑘

𝑒𝑒𝑒𝑒𝑒𝑒 the effective transverse impedance of 
the 𝑘𝑘𝑡𝑡ℎ  element weighted by the corresponding betatron function  𝛽𝛽⊥𝑘𝑘 . The effective 
impedance is defined as 
 

𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒 =
∫ 𝑍𝑍(𝜔𝜔)‖𝑆𝑆(𝜔𝜔)‖2𝑑𝑑𝑑𝑑∞

−∞

∫ ‖𝑆𝑆(𝜔𝜔)‖2𝑑𝑑𝑑𝑑∞
−∞

, (3) 

 
where 𝜔𝜔 is the angular frequency, ‖𝑆𝑆(𝜔𝜔)‖2 the beam power spectrum. For a Gaussian beam 
distribution we have 
 

‖𝑆𝑆(𝜔𝜔)‖2 = 𝑒𝑒− 𝜔𝜔2𝜎𝜎𝑡𝑡
2
. (4) 

 
From Eq. (2), we infer that a measurement of the tune frequency shift versus intensity can 
give information on the imaginary part of the total transverse effective impedance of the 
machine, while the measurement of the corresponding growth rate would give information 
on the real part. In practice, this is usually done injecting in the machine few bunches of 
different intensity and measuring their tune frequency shift versus intensity. If the machine 
duty cycle is high, the measurement could be done injecting one bunch per cycle with 
different intensity. The growth rate can be measured moving the machine to negative 
(positive) chromaticity if operating above (below) the transition energy. The agreement or 
disagreement with the impedance model predicted tune shift can point to a lack of 
knowledge of the machine impedance in which case one would have to refine it including 
those elements not yet included in the model or performing impedance localization 
measurements. In Fig. 2 we show the progressive refinement of the SPS impedance model 
accounting for kickers and, progressively, wall, BPMs, RF cavities and flanges 
impedance [24]. 
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Figure 2: Measured tune shift in the CERN SPS compared with impedance model simulations 
accounting for kickers and, progressively, wall, BPMs, RF cavities and flanges impedance. 
 

For particular equipment, where the impedance presents Higher Order Modes (HOMs) 
with considerably high shunt impedance, the tune shift estimation may not be enough to get 
the full picture of the equipment impact on the machine performance. In this case the full 
Sacherer’s theory should be applied, especially studying the effect of the HOMs on the most 
unstable couple bunch growth rate. As an example, the HL-LHC crab cavities are planned to 
be installed close to the LHC interaction points IP1 and IP5 [68] where large 𝛽𝛽 functions are 
expected. The HOMs introduced by the cavities are therefore magnified by the 𝛽𝛽 function 
according to Eq. (1) and the impact on the corresponding coupled bunch most unstable 
mode has been addressed [69]. 

 Impedance Localization Techniques  2.9.3.2

An extension of the tune shift method for measuring the reactive part of transverse 
localized impedances was proposed the first time in 1995 at CERN [70]: measuring the 
impedance-induced betatron phase advance shift with intensity, the LEP RF sections were 
found to be important impedance contributors. A similar method, based on the impedance-
induced orbit shift with intensity, was proposed in 1999 in the Novosibirsk VEPP-4M 
electron-positron storage ring [71] and in 2001 in the Argonne APS synchrotron 
accelerator [72]. Later in 2002, the same method was tried in the Grenoble ESRF [73]. The 
CERN research on the impedance localization method using phase advance shift with 
intensity was continued in 2004 in the SPS [74, 75] and in BNL RHIC [76]. The method has 
been recently successfully employed in the CERN PS [77] as shown in Fig. 3 and in 
Alba  [78] and extended to the use of AC dipoles in order to achieve a higher signal to noise 
ratio and sufficient measurement resolution to detect impedance sources [79]. 
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Figure 3: Impedance-induced phase advance beating (top) and corresponding reconstruction 
with detected impedance sources along the PS ring (bottom). 

 Single Bunch Octupole Threshold 2.9.3.3

In machines like the LHC, the beam stability at high energy is ensured by the combined 
stabilizing effect of transverse damper and Landau octupoles [80]. The threshold for 
stability as a function of the damper gain and/or octupole current can give information of the 
accuracy of the impedance model. This approach assumes the impedance to be the only 
source of instability, which is not always the case, especially when operating with train of 
bunches where electron cloud effects are not negligible, or two beams, where beam-beam 
effects play a role. As long as single bunches are accelerated, the octupole threshold can be 
measured and correlated with the machine impedance. Figure 4 shows the overall picture of 
the LHC octupole threshold as a function of chromaticity [81] measured and simulated with 
DELPHI [82]: a good agreement is obtained for positive chromaticities while discrepancies 
are present for negative and close to zero chromaticities where, probably, a refined damper 
model is required and currently being investigated. 
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Figure 3: LHC octupole current threshold 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜 as a function of 𝑄𝑄′ for different damper gains 𝑑𝑑 
measured at flat top (FT) and end of the squeeze (EOS). 
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75. G. Arduini E. Métral G. Papotti D. Quatraro G. Rumolo B. Salvant R. 
Calaga and R. Tomás (2009). “Transverse impedance localization using 
intensity dependent optics”, Proceedings of the 23rd Particle Accelerator 
Conference, Vancouver, Canada. 

76. R. Calaga (2010), “ Transverse impedance measurements in RHIC”, in APEX 
Workshop, Stony Brook University, NY, USA, (Stony Brook University, NY, 
2010). 

77. N. Biancacci (2014, July) “Improved techniques of impedance calculation and 
localization in particle accelerators”, PhD thesis, CERN. 

78. M. Carlà et al (2016) “ Local Impedance Measurements at ALBA from Turn-
by-Turn Acquisition”, In Proceedings, 7th International Particle Accelerator 
Conference (IPAC 2016), Busan, Korea. 

79. N. Biancacci and R. Tomás (2016, May), “ Using ac dipoles to localize sources 
of beam coupling impedance”, Phys. Rev. Accel. Beams, 19:054001. 

80. O. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. 
Proudlock (2004), LHC Design Report. CERN, Geneva, Switzerland. 

81. L. R. Carver et al. (2016) “Current Status of Instability Threshold 
Measurements in the LHC at 6.5 TeV”, in Proc. of International Particle 
Accelerator Conference (IPAC’16), Busan, Korea. 

82. N. Mounet (2014, April), “DELPHI: an analytic Vlasov solver for impedance-
driven modes”, HSC meeting, CERN, Geneva, Switzerland. 

 
 
 

  



 110 

2.10 Wake Field Driven Beam Instabilities and Damping Mechanisms in 
Linear Machines 

M. Ferrario, M. Migliorati and L. Palumbo 
INFN-LNF, Via E. Fermi 40, 00044 Frascati (Roma)  

and Università di Roma “La Sapienza” , Piazzale Aldo Moro 5, 00185 Roma 
Mail to: Massimo.Ferrario@lnf.infn.it 

 Introduction 2.10.1

Self induced electromagnetic (e.m.) forces in an accelerator, are generated by a charged 
particle beam which interacts with all the components of the vacuum chamber. These 
components may have a complex geometry: kickers, bellows, r.f. cavities, diagnostics 
components, special devices, etc. The study of the fields generally requires of solving the 
Maxwell’s equations in a given structure taking the beam current as source of fields. This 
could result a quite complicated task, and therefore several dedicated computer codes, used 
to study and design accelerator devices, which solve the e.m. problem in the frequency or in 
the time domain, have been developed. These include, for example, CST Studio Suite [1], 
GDFIDL [2], ACE3P [3], ABCI [4], and others. In this paper we study the effects of the 
wake fields, based on the analytical models introduced in the previous contributions, on the 
dynamics of a beam in a LINAC, such as single and multi-bunch Beam Break-Up (BBU) 
instability [5,6,7], and the way to cure it [8].  

 Wake Fields Effects in Linear Accelerators 2.10.2

A beam injected off-center in a LINAC, because for example of focusing quadrupoles 
misalignment, executes betatron oscillations. The bunch displacement produces a transverse 
wake field in all the devices crossed during the flight, which deflects the trailing charges 
(single bunch beam break-up), or other bunches following the first one in a multi-bunch 
regime (multi-bunch beam break-up). The first observation of the BBU was made at SLAC 
back in 1966 [9].  

 Single Bunch Beam Break-Up: Two-Particle Model 2.10.2.1

In order to understand this effect, we consider a simple model with only two charges 
q1=q0/2 (leading = half bunch) and q2=q (trailing = single charge) travelling with β=1.  

The leading charge executes free betatron oscillations of the kind:  

                                                     (1) 

The trailing charge, at a distance z behind, over a length Lw experiences an average 
deflecting force proportional to the displacement y1, and dependent on the distance z, which, 
from the definition of the transverse dipole wake field is:  

                                               (2) 
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Notice that Lw is the length of the device for which the transverse wake has been 
computed. For example, in the case of a cavity cell Lw is the length of the cell. This force 
drives the motion of the trailing charge:  

                                       (3) 

This is the typical equation of a resonator driven at the resonant frequency. The solution 
is given by the superposition of the “free” oscillations and “forced” ones, which, being 
driven at the resonant frequency, grow linearly with s, as shown in Fig. 1:  

                                                  (4) 

                                              (5) 

                    
Figure 1: HOMDYN [10] simulation of a typical BBU instability, 50 µm initial bunch offset, no 
energy spread. 

 
At the end of the LINAC of length LL, the oscillation amplitude is grown by ( = ): 

                                                (6) 

If the transverse wake is given per cell, the relative displacement of the tail with respect 
to the head of the bunch depends on the number of cells. It depends, of course, also on the 
focusing strength through the betatron frequency ωy.  
 

 BNS Damping 2.10.2.2
 

The BBU instability is quite harmful and hard to take under control even at high energy 
with a strong focusing, and after a careful injection and steering. A simple method to cure it 
has been proposed observing that the strong oscillation amplitude of the bunch tail is mainly 
due to the “resonant” driving head. If the tail and the head move with a different frequency, 
this effect can be significantly removed [8].  
Let us assume that the tail oscillates with a frequency ωy +∆ωy , so that Eq. (3) becomes:  
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                                (7)  

the solution of which is:  

               (8)  

In this case we observe that the amplitude of the oscillation is limited and does not grow 
up linearly with s any more. Furthermore, by a suitable choice of ∆ωy, it is possible to fully 
depress the oscillations of the tail. Indeed, by setting:  

                                                  (9)  

if , from Eq. (8) we get:  

                                                     (10)  

that is the tail oscillates with the same amplitude of the head and with the same betatron 
frequency. This method of curing the single bunch BBU instability is called BNS damping 
by the names of the authors Balakin, Novokhatsky, and Smirnov who proposed it [8]. In 
order to have the BNS damping, Eq. (9) imposes an extra focusing at the tail, which must 
have a higher betatron frequency than the head. This extra focusing can be obtained by: 
1) using a RFQ, where head and tail see a different focusing strength, 2) create a correlated 
energy spread across the bunch which, because of the chromaticity, induces a spread in the 
betatron frequency. An energy spread correlated with the position is attainable with the 
external accelerating voltage or with the wake fields. In Fig. 2 we show the betatron 
oscillation corresponding to Fig. 1 but with a 2% of energy spread.  

                     
Figure 2: HOMDYN simulation of a typical BNS damping, 50 µm bunch initial offset, 2% energy 
spread.  

 
 Single Bunch Beam Break-Up: General Distribution 2.10.2.3
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To extend the analysis we did in the previous section to a particle distribution, we write 
the transverse equation of motion of a single charge q with the inclusion of the transverse 
wake field effects as [7]:  

              (11)  

where  is the relativistic parameter, which varies along the LINAC, and 1/  the 
betatron function. Notice that the integral of the longitudinal distribution function  is 
the total charge of the bunch q0. We solve the above equation by applying a perturbation 
method to obtain the solution at any order in the wake field intensity. Indeed we write:  

                                                     (12)  

with n representing the nth order solution. The first order solution is found without the wake 
field effect from the equation 

                               (13)  

It is important to notice that the above equation does not depend on z any more. This 
means that the bunch distribution remains constant along the structure. If the s-dependence 
of  and  is moderate, we can use the WKB approximation [5], and the solution 
of the above equation with the starting conditions , y’(0) = 0 is: 

                                         (14) 

where 

                                                      (15) 

Equation (14) represents the unperturbed transverse motion of the bunch in a LINAC. 
The differential equation of the second order solution is obtained by substituting the first 
order solution (14) in the right side of Eq. (11) thus giving 

 

            (16) 

We are interested in the forced solution of the above equation that can be written in the 
form 

                      (17) 

where  
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                         (18) 

The first integral undergoes several oscillations with s and, if  and  do not vary 
much, it is negligible, so that we can finally write 

            (19) 

Note that the last integral in the above equation is proportional to the transverse wake 
potential produced by the whole bunch. This solution can then be substituted again in the 
right side of Eq. (11) to obtain a third order solution and so on. If we consider constant  
and , Eq. (19) gives the same result of the two-particle model of Eq. (5) when we 
substitute  with q0/2 representing the leading half bunch affecting a trailing charge q. 
If the BBU effect is strong, it is necessary to include higher order terms in the perturbation 
expansion. Under the assumption of: 

• rectangular bunch distribution , -l0 / 2 < z < l0 / 2, l0 bunch length; 
• monoenergetic beam; 
• constant acceleration gradient dE0 /ds = const; 
• constant beta function; 
• linear wake function inside the bunch ; 

the sum of Eq. (12) can be written in terms of powers of the adimensional parameter  also 
called BBU strength 

                                              (20) 

with  and  respectively the initial and final relativistic parameter. By using the method 
of the steeping descents [6], it is possible to obtain the asymptotic expression of y(z,s) thus 
finding, at the end of the LINAC, 

                      (21) 

that, differently from the two-particle model and from the first order solution, gives a tail 
displacement growing exponential with . 
 

 Multi-Bunch Beam Break-Up 2.10.2.4
 
We have seen in the previous sections that when a bunch passes off-axis (due, for 

example, to betatron oscillations) in an axis-symmetric accelerating structure, it excites 
transverse wake fields which may cause the tail of the bunch to oscillate with increasing 
amplitude as the bunch goes along the LINAC. In the same way, the whole bunch may 
excite deflecting trapped modes in the RF cavities of the LINAC that may cause trailing 
bunches to be deflected, whether they are on axis or not. These angular deflections are 
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transformed into transverse displacements through the transfer matrices of the focusing 
system and the displaced bunches will themselves create similar wake fields in the 
downstream accelerating structures of a LINAC. The subsequent bunches will be further 
deflected leading to a beam blow-up. Due to the long range wake fields, there is a coupling 
in the motion of the bunches that are more and more deflected as they proceed along the 
LINAC in a process that is called multi-bunch BBU. Even if the bunches are not lost, the 
transverse beam emittance can be greatly increased, leading to a significant luminosity 
reduction. 

We summarize here the analytical study of multi-bunch BBU performed with the 
formalism used in [7]. All the bunches are considered to be rigid macro-particles, like delta-
functions, separated by period T, and we assume all bunches injected with the same initial 
offset x0. We consider the transverse equation of motion of a bunch as a whole, ignoring 
internal structures; the beam is therefore made of a train of bunches with same charge (Qb) 
evenly spaced by period T, which is an integer number of the RF period of the accelerating 
mode. We also consider all the cells of the LINAC accelerating structure identical and with 
the same dipole trapped mode in each cell of length Lw. Rigorously the analytical approach 
requires that many betatron oscillations are performed in the LINAC and the BBU remains 
moderate within a betatron oscillation. Moreover, the theory is valid if the beam energy 
does not change too much in a betatron wavelength. This last hypothesis is also called 
adiabatic acceleration. The transverse wake field force experienced by the kth bunch, spaced 
kT from the first bunch, depends on the transverse wake field generated by the preceding 
bunches (and thus by their transverse displacement). The dipole long range wake field is 
produced by a high order deflecting mode, identical in all the cavities of the structure, and it 
is described in terms of its resonant frequency ωr, the quality factor Q and the dipole shunt 
resistance R⊥ (expressed in ohm/meter). The equations of motion are then written in terms of 
the Z-transform [11] since the displacement x(kT,s) of the kth bunch at the position s is a 
discrete function of time. The solution can be retrieved with a perturbation method, which 
considers its expansion into a series of the driving wake field force. The 0th order solution is 
given for a vanishing driving force, i.e. a pure betatron oscillation (unperturbed motion). It 
represents the motion of the first bunch, which is not affected by any wake field because of 
the causality principle (the wake field cannot travel ahead of the bunch itself). The nth order 
solution is driven by the wake field excited by the solution of the order n−1. Thus the 1st 
order solution is computed from the motion of the first bunch and it affects all the bunches, 
except the first one; it means that the nth order solution affects only bunches of index larger 
then n. Therefore the summation of the series can be stopped at the Mth order of a train of M 
bunches. The nth order solution in the Z-domain can be written as [7] 

                                      (22) 

where a(s) is the so called dimensionless BBU strength given, in case of constant ky(s), by 

                                              (23) 

with G is the accelerating gradient (in V/m), and 

                                                     (24) 
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with 

                                                 (25) 

and 

                                                       (26) 

The inverse Z-transform of xn(z,s), that is xn(kT,s), can then be summed to get the 
transverse displacement of the kth bunch as 

                                                   (27) 

We remember that the sum can be stopped at the Mth term for a beam containing M 
bunches. 

For a(s)≪1 the series expansion can be stopped at the first order term, while, if the 
BBU strength parameter a is moderate, it is sufficient to keep only few terms of the 
summation. 

In the z-domain the nth order solution, given by Eq. (22) has been determined 
analytically, and the same is possible with its infinite sum, but its inverse z-transform (27) is, 
in general, not possible to write in a closed analytical form. It is however possible to 
compute the exact solution for the nth bunch as a sum of n terms if the BBU instability is 
moderate in a betatron period. Moreover, it is possible to use an asymptotic technique, valid 
when the blow-up is strong, to have an expression of the transverse displacement that puts 
in evidence the main parameters playing an important role in the instability. The asymptotic 
transverse displacement of the kth bunch, expressed in terms of the oscillation amplitude 
only, is [7] 

 

(28) 

where x∞(s) is the steady state solution that is reached when long (rigorously infinite) train 
of bunches are accelerated. In Fig. 3 we show a comparison between the analytical solution 
obtained by numerically solving Eq. (27) and a simple tracking code that considers the 
bunches in the train as rigid macro-particles, but which can also take into account the 
contribution of several resonant modes, and different initial offsets and displacements of the 
bunches. The parameters used for the calculations are given in Table 1. They refer to a C-
band LINAC with the BBU effect produced by a HOM. In the vertical axis the normalized 
transverse position, evaluated at the exit of the LINAC, is defined as: 

                                                         (29) 

From Eq. (22) we see that one possible way to reduce the BBU instability is to act on the 
dimensionless BBU strength given by Eq. (23). For example we can reduce the bunch 
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charge Qb or the betatron function, i.e. increase the focusing strength. A better approach is 
to remove the source of the instability by damping the transverse dipole mode, for example 
with an improved electromagnetic design of the accelerating cells.  

The other main approach to the BBU instability suppression is to detune the cell 
frequencies in order to introduce a spread in the resonance frequency of the dangerous mode 
so that it will no longer be excited coherently by the beam. Indeed by properly detuning 
each cell, a damping of the BBU instability is produced by a de-coherence of the various 
cell wake fields. It has been demonstrated [12] that a Gaussian distribution of the cell 
frequencies, which provides a rapid drop in the wake field for a given total frequency spread, 
would be optimal. The analytical approach to determine the effectiveness of this detuning 
technique for the BBU multi-bunch instability can be found in Ref. [7], where it is also 
shown that the damping increases with the amplitude of the frequency spread. 

 

                                  
Figure 3: Normalized transverse position as a function of the bunch number: comparison between 
the analytical solution and a tracking code. 

 
 Table1: Beam parameters used for comparing the analytical solution of multi-bunch BBU with the 
results of a tracking code. 

 

Linac length 30 m 
Initial energy 80 MeV 
Energy gradient 30 MeV/m 
Betatron function 1/ky 1 m 
Bunch spacing T 15 ns 
Bunch charge 1 nC 
HOM resonant frequency fr 8.4 GHz 
HOM transverse impedance R⊥ 50 MΩ/m 
HOM quality factor 11000 
Cell length 17.5 cm 
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2.11 Loss of Landau Damping for Bunch Longitudinal Oscillations 
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 Introduction 2.11.1

Conditions for the existence, uniqueness and stability of self-consistent bunch steady 
states are considered. For the existence and uniqueness problems, simple algebraic criteria 
are derived for both the action and Hamiltonian domain distributions. For the stability 
problem, van Kampen theory is used [1-3]. The onset of a discrete van Kampen mode 
means the emergence of a coherent mode without any Landau damping; thus, even a tiny 
couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented 
here assumes an arbitrary impedance, RF shape, and beam distribution function. Available 
areas on the intensity-emittance plane are shown for resistive wall wake and single 
harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds 
calculated for the Tevatron parameters and impedance model are in agreement with the 
observations. These thresholds are found to be extremely sensitive to the small-argument 
behaviour of the bunch distribution function. Accordingly, a method to increase the LLD 
threshold is suggested. This article summarizes and extends recent author’s publications [4, 
5]. 

 Main Equations 2.11.2

Let H(z,p) be a Hamiltonian for longitudinal motion inside an RF bucket distorted by the 
wake field   

                                     

2

rf

( , ) ( ) ( , ) ;
2

( ) ( ) ( ) ( ) ;

( , ) ( , ) ( ) .

pH z p U z V z t

U z U z z W z z dz

V z t z t W z z dz

λ

r

= + +

′ ′ ′= − −

′ ′ ′= − −

∫
∫         (1) 

Here z and p are the offset and the momentum of a particle, U(z) is the steady state 
potential with Urf(z) as its RF part, λ(z) is steady state linear density, W(z) is the wake 
function, V(z,t) and ρ(z,t) are small perturbations of the potential and linear density. For the 
potential well U(z), action I and phase φ variables can be found:  

                                      

max

min

1( ) 2( ( )) ;

2( ( ))
( ) ; .

( )

z

z

I H H U z dz

H U zdH dzI
dI d I

π

ϕ

= −

−
Ω = =

Ω

∫

        (2) 

The linear density λ and its perturbation ρ can be related to steady state phase space 
density F(I) and its perturbation f(I,φ,t) 
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( ) ( ) ;

( , ) ( , , ) .

z F I dp

z t f I t dp

λ

ρ ϕ

=

=

∫
∫                      (3) 

Below, the steady state distribution F(I) is treated as an input function, determined either 
by cooling-diffusion kinetics, or by injection. The perturbation f(I,φ,t) satisfies the 
Boltzmann-Jeans-Vlasov (BJV) equation [6] 

                                          
( ) ( ) 0 .f f VI F I

t ϕ ϕ
∂ ∂ ∂ ′+ Ω − =
∂ ∂ ∂             (4) 

Equations (1-4) assume given input functions Urf(z), W(z) and ( )F I , with ( ) /F I dF dI′ ≡ , 
while the steady state solution U(z), I(H), λ(z) and all the eigenfunctions of the BJV Eq. (4) 
are to be found.  

To obtain the steady state solution, the following set of three equations must be solved: 
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−

∫

∫

∫
  (5) 

For any given input functions Urf(z), W(z) and F(I), the solution can be obtained 
numerically by means of the relaxation method. Indeed, let it be assumed that initially there 
is no wake, so that the entire potential well is equal to the RF potential U(z)=U0(z)=Urf(z). 
With that assumption, initial action and linear density functions I0(H) and λ0(z) can be found 
from the 2nd and 3rd equations of the set (5). Then the following iteration procedure can be 
applied 

                                  

( )1 1 1( ) ( ) ( ) [ ] ;
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n n n RHS n

n RHS n
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=
= =       (6) 

If the solution exists and the convergence parameter ε>0 is sufficiently small, the 
process is very likely to converge. Stability of the steady state solution can be determined by 
analysis of the BJV Eq. (4). Following Oide and Yokoya [7], the eigenfunctions may be 
expanded in Fourier series over the synchrotron phase φ 

                                
[ ]

1
( , , ) ( ) cos ( )sini t

m m
m

f I t e f I m g I mωϕ ϕ ϕ
∞

−

=

= +∑
.     (7) 

With the zero-phase at the left stopping point, 

                                   

min max( , 0) ( ); ( , ) ( );
( , ) ( , ) ; ( , ) ( , ),
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yield an equation for the amplitudes fm(I) 
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The matrix elements ( , )mnV I I ′  can be also expressed in terms of the impedance Z(q). 
After [8, Sec. 2.3, Eq. (2.69)] 
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                (10) 

 ( , )mnV I I ′  is then given by 
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Note that there is no bunch-to-bunch interaction in the formulas above - long-range 
wakes are omitted for the sake of simplicity. Equations (9-11) reduce the integro-differential 
BJV Eq. (4) to a standard eigen-system problem of linear algebra after the action integral in 
Eq. (9) is expressed as a proper sum.  

 Steady State solution 2.11.3

The algorithm of Eq. (6) allows the determination of a numerical solution of the steady 
state problem. In this section, the problem of the existence and uniqueness of that solution is 
considered.  

It is well known that the steady-state solution does not necessarily exist. For example, 
below a certain temperature threshold, there is no thermodynamic equilibrium (no solution 
of the Haissinski equation [9]) for the space charge wake above transition, W(z) ~ δ(z) [8,10]. 
For this case though, the distribution function is given in the Hamiltonian domain, 

exp( / )F C H T= − , not in the action domain, as in the previous section. As a consequence, 
the normalization constant C for the Haissinski equation is yet to be found from the 
normalization condition 

                                             0

2 exp( ( ) / ) 1C H I T dIp
∞

− =∫  

which is to be added to the entire set of Eqs. (5) and must be solved jointly with them. If the 
temperature T is low enough, the normalization condition leads to an algebraic equation 
having no solutions. This situation is not specific to thermodynamic equilibrium only. A 
similar phenomenon appears for any distribution function in the Hamiltonian domain. For 
instance, the same problem emerges for the Hofmann-Pedersen distribution

maxF C H H= − , as is shown in Ref. [8, Chapter 6.2]. For space charge above transition, 
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and some other wakes, the bunch momentum spread and average Hamiltonian turn out to be 
limited from below: for a given RF and bunch population, they cannot be smaller than a 
certain value for any longitudinal emittance. That is why it may be wrong to assume an 
arbitrary distribution function in terms of the Hamiltonian. On the contrary, Eqs. (5) assume 
distribution density as a function of action. Therefore it is a priori explicitly defined and 
normalized; thus, the specific limitations for Hamiltonian-domain distribution functions do 
not apply.   

The following estimation shows when Eqs. (5) do have a solution. Let I  be the rms 
bunch emittance, and l be the rms bunch length. The rms momentum spread is then 
estimated to be /p I l≅ , and the average synchrotron frequency is 2/ /p l I lΩ ≅ ≅ . It is 
also known that 2 2 1 2

0 Im( ( )) /Z l l−Ω − Ω ∝ , where Ω0 is the bare RF synchrotron frequency 
(note that RF nonlinearity is neglected at this point). Combination of these two expressions 
yields (compare with Ref. [8], p. 285) 

                                                 
2 4 21 Im ( );I q q Z q= +  

where q=1/l is the inverse bunch length to be found from this equation; q is measured in 
inverse radians of RF phase. The emittance I  is dimensionless, and its value in 
conventional eVs units can be found after multiplication by a factor of 2

0 0 rf/ ( ),E ηωΩ  where 
2

0E mcγ=  is the beam energy. The dimensionless impedance Z(q) of this paper, Eq. (10), 
relates to the conventional Z||(q) as Z(q)=DZ||(q) with the intensity factor 

( )2 2
0 rf 0/D Nr c Cη ω γ= Ω , where N is the bunch population, r0 - the classical radius, 
2 2

tη γ γ− −= − – the slippage factor, ωrf – RF angular frequency, γ – relativistic factor, and C – 
the machine circumference. Note that this equation does not give an exact solution for the 
bunch length. Instead, it is an estimate showing the existence of the solution and its 
dependence on the parameters. It follows that the solution exists if the wake is not too 
singular: at high frequencies the impedance may not grow too fast, providing 

2lim Im ( ) / 0
q

Z q q
→∞

= , which is true for all realistic cases. For non-monotonic impedances 

there may, in general, be several solutions. For the space charge and the resistive wall 
impedances there is always a unique steady state.  

However, since the RF potential is never an infinite parabola, Eqs. (5) may still have no 
solution. Indeed, the bucket has a limited acceptance; thus, it cannot hold a bunch with an 
emittance that is greater than that acceptance. Moreover, in many cases, wake fields reduce 
bucket capacity. This could lead to some beam loss to DC, even if the bunch fits within the 
bare RF bucket. 

In a case where the distribution function is given as a function of Hamiltonian, with H  
as its average value, the steady state estimation for the parabolic RF is written as  

                                                 
2 21 Im ( )Hq q Z q= + . 

In this case, the existence of a solution is not intensity-limited for slow-growing or bunch-
lengthening impedances only, when 

||lim Im ( ) 0
q

D Z q
→∞

≤ . The last condition is not satisfied 

for the space charge above transition and the resistive wall below transition. Thus, for these 
impedances and sufficiently high intensity, there are either no solutions, or there are two of 
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them. In the case of two solutions, they have identical Hamiltonian distributions, but 
different phase space densities.  

 Van Kampen Modes 2.11.4

More than half a century ago, N.G. van Kampen found an eigensystem of the BJV 
equation for infinite plasma [1-3]. In general, this spectrum consists of continuous and 
discrete parts. The continuous spectrum essentially describes single-particle motion, 
accompanied with a proper plasma response. The frequency band of the continuous 
spectrum is one of the incoherent frequencies. For any velocity v within the distribution 
function, there is a continuous van Kampen mode with a frequency kv, where k is the wave 
number. Continuous modes are described by singular functions in the velocity space, 
underlying their primary relation to single-particle motion. In these terms, Landau damping 
results from phase mixing of van Kampen modes of the continuous spectrum. Unlike the 
continuous spectrum, discrete one not necessarily exists. If it does, the discrete modes are 
described by regular functions, and some of them do not decay with time. Indeed, since the 
original equations (analogue of Eq. (9)) possess real coefficients, the mode frequencies are 
either real or form complex-conjugate pairs. The first case corresponds to a pure Loss of 
Landau damping (loss of LD, or LLD), while the second describes an instability. Plasma 
with a monotonic density distribution has been shown to be always stable [11]. The discrete 
modes of pure LLD type may only appear if the distribution function is of a finite width.  

Most of the plasma results are applicable to circulating bunches in accelerators. 
However, two issues distinguish bunches and plasma. First, for beams, particle interaction 
may be described by various wake functions, being more diverse than pure Coulomb forces 
of the classical plasma. Second, the frequency spectrum for bunch particles is always 
limited, while in plasma the velocity spectrum may be considered infinite in extent, at least 
formally.  

The eigenvalue problem of the BJV equation for bunch longitudinal motion was first 
considered by A.N. Lebedev [12]. Although the suggested formalism was not numerically 
tractable, an important result was analytically obtained. It was proved that for the space 
charge impedance above transition, a bunch steady state is always stable (which does not 
exclude LLD). The numerically tractable algorithm was suggested more than twenty years 
later by Oide and Yokoya [7]. 

For a parabolic RF potential, van Kampen modes were analyzed for power wakes [7], 
capacitive [13], broad-band wakes [7,13], and modified inductive wakes [14]. For that RF 
potential, rigid bunch oscillations at the unperturbed synchrotron frequency are always a 
solution of equation of motion [13]. Indeed, the single-particle equations of motion can be 
written as  

                             . 
The solution can be presented as a sum of a steady-state-related part ˆiz  and a small 

perturbation . It is clear that rigid-bunch mode,  satisfies this equation. 
While the rigid-bunch frequency is intensity-independent, all of the incoherent frequencies 
are typically either suppressed or elevated by the potential well distortion. Thus, this mode 
normally stays outside the incoherent band, and so is a discrete LLD-type mode. This 
conclusion may not apply when the core and the tail particles have opposite signs of their 
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incoherent tune shifts. As was shown in Ref [13], for a broad band impedance model, core 
and tail incoherent frequencies may correlate with intensity in the opposite direction, so that 
the rigid-bunch mode may be covered by incoherent frequencies. Thus, the rigid-bunch 
mode should be Landau-damped in that case. In Ref. [15], loss of Landau damping was 
analyzed for the space charge impedance and various RF shapes, arbitrarily assuming the 
coherent motion as the rigid-bunch one. It is shown in the next section that such an 
assumption is not correct when the RF frequency spread is taken into account. The action 
dependence of the emerging discrete mode is normally very different from that of the rigid-
bunch case. Because of that, rigid bunch approximation overestimates the threshold 
intensity.              

Without interaction, there are no discrete modes for Eqs. (9). All modes belong to a 
continuous spectrum, ω=mΩ(I). If the bunch intensity is low enough, the weak head-tail 
approximation may be applied, allowing the omission of terms with different azimuthal 
numbers. In this case, it is straightforward to show that for monotonic distributions, dF/dI<0, 
and for symmetric potential wells, U(-z)=U(z), Eq. (9) reduces to one with a symmetric 
matrix. In that case all of its eigenvalues are real. Since there are no unstable modes, all of 
the discrete modes, if any, belong to the pure LLD type. In practice there are always some 
energy losses, and so the distorted potential well U(z) is always somewhat asymmetric. 
However, my attempts to find the weak head-tail instability in numerical solutions for 
monotonic distributions over frequencies, some realistic wakes and purposely asymmetric 
RF potentials have not yet succeeded. If the frequency distribution is not monotonic, a mode 
coupling instability is possible. To save CPU time, the stability analysis was limited by the 
weak head-tail approximation and considering only the dipole azimuthal mode. In other 
words, for the following analysis only the m=n=1 matrix elements are left in Eq. (9).      

This paper takes into account two possible reasons for bunch intensity limitations: 
reduction of the bucket acceptance by wake fields and the emergence of a discrete mode 
(LLD). 

 Resistive Wall Impedance 2.11.5

In this section, the intensity limitations for resistive wall impedance are summarized. 
The beam energy is assumed to be above transition. The RF potential is written as 

                                     rf 2( ) (1 cos ) (1 cos 2 ) / 4U z z zα= − + − .        (12) 
Three options for the second RF harmonic are considered: single harmonic (SH) with 

α2=0, bunch shortening (BS) with α2=1, and bunch lengthening (BL) with α2=-1. 
Equation (12) assumes the synchrotron frequencies are given in units of zero-amplitude 
synchrotron frequency provided by the first RF harmonic only, Ω0. For the SH case, the RF 
bucket acceptance (maximal action) in these dimensionless units is 8/π≈2.54. The energy 
offset is related to the dimensionless momentum by 0 0 rf/ / ( )E E pδ ηω= − Ω . The time offset 
is z/ωrf. The dimensionless wake function and impedance of a round chamber with radius b 
are written as       
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where the wall conductivity σ stays in the CGS units of 1/s.  
An example with the parabolic RF potential suggests that wake fields act more on 

incoherent frequencies than on the coherent ones. For the parabolic potential, the first 
discrete mode does not depend on the impedance at all. Thus, at a certain threshold, a first 
discrete mode comes off the continuous spectrum, since its frequency is not suppressed or 
increased as much as the incoherent frequencies are. For the SH and BS RF, above 
transition, mostly lowest-amplitude particles are excited for this mode, since their 
frequencies are closer to the coherent frequency.  

 

                             
 

Figure 1: Relative width of the discrete mode σI/Ilim (%) versus the intensity parameter k for the 
distribution F(I)~(Ilim-I)1/2 and emittances Ilim=0.5 , 1.0 and 1.5 (red, blue and green), SH case.   

 
An assumption of rigid-bunch discrete mode normally is far from being correct. In Fig.1, 

the relative width of that discrete mode σI/Ilim is shown as a function of the intensity 
parameter k for 3 emittances and the Hoffman-Pedersen distribution F(I)~(Ilim-I)1/2. The 
relative width is defined as 
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Figure 2: LLD threshold of the resistive wall intensity parameter kth for SH RF, versus the bunch 
emittance for lim( ) ( )PF I I I∝ − . Blue dots : P=1/2, red dots: P=2, lines are fits with 9/4

th limk I∝ . Note 
the strong dependence on the distribution parameter P. 
 

                             
 
Figure 3: Same thresholds as in Fig. 2, in terms of the relative shift of zero-amplitude synchrotron 
frequencies 0(0)∆Ω = Ω − Ω . Lines are linear fits th limI∆Ω ∝ . Note that the threshold frequency shifts 
are fairly low, even for the blue line. 

 
LLD thresholds for the intensity parameter k versus emittance Ilim for two different 

distributions are presented in Fig.2. The power law 9/4
th limk I∝  agrees with a dependence 

obtained by method of Ref.  [16], i. e. by means of comparison of the zero-amplitude 
synchrotron tune shift 1 2

0(0) Im ( ) /Z l l−∆Ω = Ω − Ω ∝ , with the synchrotron tune spread in 
the nonlinear SH RF, 2lδΩ ∝ . Equating these two values with the bunch length liml I∝ ,  

and 1 1/2Im ( )Z l l− −∝  one gets the thresholds 9/4
th limk I∝  for the resistive wall impedance. For 

inductive impedance, it gives 5/2
th limk I∝ . For any impedance, at the LLD threshold 

limIδ∆Ω ≅ Ω ∝ . Although this scaling is based on the small bunch frequency spread 
formula, 2lδΩ ∝ , it appears to be valid up to full bucket case, see Figs. (2, 3). A reason for 
that is that the discrete mode in this case appears above all the incoherent spectrum, so it is 
mostly associated with the low-amplitude particles. That is why the mode is mostly 
sensitive to the frequency spread of those particles, for which the small-bunch 
approximation 2lδΩ ∝  is always valid. 
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Contrary to the SH and BS RF cases, for the BL case incoherent frequency is not a 
monotonic function of action, it has a maximum at I=Im≈1.5. That is why, for the considered 
case of an effectively repulsive wake, the discrete mode emerges from the tail particle 
frequencies if the bunch limiting emittance is small, (Ilim<Im). For BL RF, the emergence of 
the discrete mode is sensitive to the tails of the distribution: even a tiny tail covering the 
coherent frequency yields Landau damping, killing that discrete mode. If the bunch 
emittance is not that small (I>Im), the discrete mode emerges above the incoherent 
maximum. Since this mode emerges outside the entire bucket area of the incoherent 
frequencies, Landau damping cannot be restored by tiny perturbations of the distribution 
function. That is why this kind of LLD, which cannot be cured by tiny corrections of the 
distribution function, is called hereinafter “radical LLD.” To avoid that tail ambiguity, only 
radical LLD is taken as a real stability limit here.  

Figure 4 shows radical LLD limitations for BL RF, for two different distributions. Note 
that LLD restricts the available acceptance by Im≈1.5, while the entire BL bucket area is 
about twice higher. Stability limitation associated with the maximum of incoherent 
synchrotron frequencies was pointed out in Ref. [17, 18]; it was studied at CERN SPS (see 
Ref. [19] and references therein). To overcome this limitation of the BS mode, a phase shift 
of the two RF harmonics can be applied; the bunch flatness would be lost in this case [20].  

 

                              
Figure 4: Threshold intensity kth versus emittance Ilim for BL RF and two distribution functions: 
F(I)~(Ilim-I)1/2 (red) and F(I) ~(Ilim-I)2 (blue).   

 
On the k-Ilim area, the availability is limited by LLD and the bucket acceptance. For the 

three RF configurations, SH, BS and BL, their areas of availability are shown in Fig. 5 with 
F(I)~(Ilim-I)1/2. Clearly, every RF configuration has its own beneficial area: hot and low-
intensity beams better fit into SH, cold high-intensity ones are more suitable for BL, and the 
intermediate case is for BS RF.  
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Figure 5: Intensity-emittance k-Ilim areas of availability for F(I)~(Ilim-I)1/2. Red lines are for SH, blue 
– for BS, green – for BL. Solid lines show radical LLD, dashed – limiting bucket capacity. 

 Inductive Impedance 2.11.6

Hadron machines are normally dominated by resistive wall and inductive (or space 
charge) impedances (see e. g. Ref. [19]). In the dimensionless units, the inductive wake 
function and impedance are written as 

                                              

3
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where Z0=4π/c=377 Ohm, and n is the revolution harmonic number. LLD threshold lines, kth 
versus Ilim , are presented in Fig (6) for SH RF, k>0 and three distribution functions: 
F(I)~(Ilim-I)1/2 (most stable), F(I)~(Ilim-I)2 (medium stable) and 

( )2
lim lim( ) ( ) 1 cos(8 / )F I I I I Iπ∝ − +  (least stable).  The last distribution mimics a coalesced 

proton bunch in the Tevatron [21]. It takes about an hour for memory of the constituent 7 
bunches be smeared in the coalesced proton bunch in the Tevatron.  

                             
 
Figure 6: Threshold LLD intensity parameter kth for SH RF versus the bunch emittance for 3 
denoted distributions F(I), where lim/x I I= . Lines are fits with 5/2

th limk I∝ . Crosses and stars show 
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protons and antiprotons at Tevatron at injection (violet and red, on the right part) and top energy 
(blue and orange, on the left).   

 

                             
 
Figure 7: Same thresholds as above, in terms of the zero-amplitude relative incoherent frequency 
shifts. Lines are linear fits. 

 
Threshold dependences 5/2

th limk I∝ , th limI∆Ω ∝ are in agreement with scaling law of 
Ref. [16]. The plots in Figs. (2,3,6,7) show the strong dependence of the threshold intensity 
on details of the distribution function. Qualitatively, this can be interpreted as a high 
sensitivity to steepness of the bunch distribution at small arguments. That high sensitivity 
should not be too surprising. Indeed, for both resistive wall and inductive impedances, the 
threshold phase space density th lim/k I  goes down with the bunch length. It may sound 
counter-intuitive, but it is what is shown above: at a given phase space density, the least 
stable are the less populated bunches! A reason for that follows from a fact that, at fixed 
phase space density, the less populated bunch is shorter. The wake effect is stronger for 
shorter bunches, and the stabilizing frequency spread is weaker for them. That is why a 
small central portion of a bunch is less stable than the entire bunch. The ability of that small 
portion to be effectively disconnected from the entire bunch depends on the distribution 
function: the steeper the distribution at small amplitudes, the stronger this ability is.  

According to the Tevatron impedance model [22], its proton bunches at injection are 2 
times above the green line LLD threshold of Fig. (6). At the top energy, they are ~20 times 
above that threshold. This agrees with the observations: in the reality, the protons were 
always “dancing” in the Tevatron, unless the damper was on [21]. According to these 
calculations, the antiprotons stay slightly below the green line threshold at injection, and 
they are ~10 times above it at the top energy. In reality, they are stable at injection, and 
unstable at collisions. To conclude, both proton and antiproton stability observations are in 
agreement with the model described.   

Since the LLD threshold strongly depends on the small-argument steepness of the 
distribution function, its local flattening there should increase the LLD threshold. That local 
flattening can be realized by means of RF phase modulation at a narrow frequency band 
around the zero-amplitude synchrotron frequency, smearing the distribution for the resonant 
particles. Dedicated experiments with this bunch shaking were performed at the Tevatron; it 
was realized that this bucket shaking indeed stops bunch dancing, see Ref. [23].  
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It may be supposed that LLD was a reason for the persistent bunch oscillations observed 
at RHIC [24, 25] and CERN SPS [19] as well. To the author’s point of view, the LLD 
explanation is rather a supplement than a competitor to the soliton theory of Refs. [24, 25]. 
Indeed, being linear, LLD describes a mode growth from whatever small initial perturbation 
due to multi-turn or couple-bunch wakes. This growth can be saturated at nonlinear stage of 
the coherent motion, where the soliton theory takes over. 

 Conclusions 2.11.7

This paper includes a general treatment of a bunch self-consistent steady state in a 
distorted potential well, and van Kampen mode analysis for the steady state case. Criteria of 
existence and uniqueness for the steady state problem in action and Hamiltonian domains 
are formulated. A relaxation method for numerical solution of the steady state problem is 
described and used.  

The language of van Kampen modes is a powerful tool for studying beam stability. This 
method leads to an eigensystem problem, so it is straightforward to implement numerically. 
Sum of the growth rates of the emergent discrete modes is zero; thus, some of them do not 
decay; there is loss of Landau damping for them. By definition, the discrete modes lie 
outside the continuous incoherent spectrum, but they may still stay within the bucket. In the 
last case, the discrete mode would disappear after a tiny portion of resonant particles being 
added. However, if the discrete mode lies outside the bucket, Landau damping cannot be 
restored by a tiny perturbation of the particle distribution; this sort of LLD is characterised 
as radical.  

For a given bunch emittance and RF voltage, the intensity is limited either by reduction 
of the bucket acceptance or by (radical) LLD. In this paper, results are presented for 
longitudinal bunch stability in the weak head-tail approximation for resistive wall and 
inductive impedances. For the resistive wall impedance, three RF configurations are studied: 
single harmonic (SH), bunch shortening (BS) and bunch lengthening (BL). It is shown that 
every one of these RF configurations may be most preferable, depending on the bunch 
emittance and intensity.  

The LLD threshold intensities are typically very low. For the cases under study, the 
threshold low-amplitude incoherent frequency shifts vary from 10% to 1% at full bucket. 
Although LLD itself means in many cases the emergence of a mode with zero growth rate, 
even a tiny multi-turn or couple-bunch wake can drive the instability for the discrete mode. 
In that sense, LLD is similar to the loss of the immune system of a living cell, when any 
microbe becomes fatal for it. 

 Specific results of this paper agree with the power lows for LLD suggested by Ref. [16]. 
However, the numerical factors obtained here for these lows strongly depend on the bunch 
distribution function. Particularly, for SH RF and inductive impedance above transition, for 
the three examined distributions, the highest LLD threshold intensity exceeds the lowest one 
by almost two orders of magnitude. Based on that observation, a method of beam 
stabilization was suggested and implemented [23]. 

The author is thankful to V. Lebedev and E. Shaposhnikova for useful discussions. 
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 Introduction 2.12.1

When studying the dynamics of high intensity beams, in addition to the external guiding 
fields, it is necessary to take into account, in a self-consistent way, the effects of the self-
induced electromagnetic fields, for which in time domain we use the word wakefields, and 
in frequency domain coupling impedances [1]. In this article we discuss the principal issues 
and solutions which emerge from simulation codes dealing with longitudinal beam 
instabilities induced by coupling impedances in circular machines. 

To simplify the beam dynamics study, it is generally convenient to distinguish between 
short-range wakefields, which influence the single turn beam dynamics (often also called 
single bunch beam dynamics), and long-range wakefields, which last for many turns, are 
generated by resonant electromagnetic modes with high quality factors, are excited by one 
or a train of bunches, and produce, under some conditions, coupled-bunch instabilities 
(multi-turn or multi-bunch beam dynamics). In both cases a linear perturbation theory is 
generally used to study analytically these instabilities. 

However, in order to analyze the behavior of the beam under the influence of wakefields 
also in the non-linear regime, and for more reliable results, very often simulation codes are 
used. In these codes, which take into account collective effects related to impedance-
induced instabilities, the used equations of motion of a single charge in a bunch are quite 
simple. However, the inclusion of the effects of wakefield, which is also called beam 
induced voltage, and which couples the motion of different particles, can be very tricky due 
to the possible introduction of numerical noise and non-physical phenomena.  

The basic idea behind the numerical calculation of the beam induced voltage in 
longitudinal beam dynamics codes has not changed since the 1980s [2]. The first official 
release in 1984 of the well-known FermiLab code ESME [3] has been an important 
reference for many years to calculate the beam induced voltage and its effect on the beam 
dynamics. Over a period of more than thirty years, several codes using short-range 
wakefields for longitudinal [4,5,6] and transverse [7,8] beam dynamics, long-range 
wakefields [9,10], and both short- and long-range wakefields [11,12,13] in circular 
accelerators have been developed and have been proved to be reliable tools in the 
comprehension of the collective effects. Many laboratories prefer to rely on their own codes, 
such as, for example, Fermilab (United States) [14], CERN (Switzerland) [7,15], J-PARC 
(Japan) [16], CSNS (China) [17]. All these codes use the same techniques or close variants. 
Certainly the code evolution cannot be compared with the exponential increase in 
computational power during the past forty years [18]. 

In order to include the wakefields in a simulation, a convolution sum, which takes into 
account the electromagnetic fields acting on a charge and produced by all the others, is 
needed. This issue is discussed in the following section. The evaluation of the effects of 
short- and long-range wakefields generally requires different approaches which are 
reviewed in sections 2.12.3 and 2.12.4 respectively, while in section 2.12.5 we briefly 
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mention some damping mechanisms, both natural and induced, that can be included in 
simulations, and, finally, other methods of simulation for impedance-induced instabilities, 
different from tracking codes, are presented in section 2.12.6. 

 Common Approach in Wakefield Simulations 2.12.2

In order to write the longitudinal equations of motion of a single particle in a circular 
accelerator to be used in a simulation code, we assume, for simplicity, that the energy 
exchange between a charge and the surrounding accelerator environment is localized in a 
single place of the machine. In addition, we suppose that the minimum time interval to be 
integrated is the revolution period 𝑇𝑇0, and the variation of  the charge longitudinal position 
and energy with respect to the synchronous particle is evaluated every 𝑇𝑇0 . These 
assumptions are generally satisfied in many circular machines. However, in some particular 
cases, they are not valid. For example, the FCC accelerator [19] has a design circumference 
of about 100 km, and the previous approximations are too rough. In such cases it is possible 
to divide the circumference in several sectors and apply the procedure here described to 
each sector. Also the inclusion of the space charge generally requires to split the 
circumference, since the local effect of this force varies over one turn because of different 
environment conditions along the ring, such as beam pipe cross section shapes and 
dimensions. 

If we call 𝜀𝜀 the energy difference of a charge 𝑞𝑞 with respect to the synchronous particle 
divided by the nominal energy, which we consider equal to the synchronous particle energy 
𝐸𝐸𝑠𝑠, its variation in one turn, ∆𝜀𝜀, depends on the energy gain due to the RF system, on the 
beam induced voltage, and on other sources of energy exchange, such as the synchrotron 
radiation, possible higher order RF cavities for bunch length control, electron cooler, 
betatron acceleration due to changing magnetic field in synchrotrons [20], etc.  

Without loss of generality, let us consider here only the energy exchange due to the main 
RF system, the wakefield and the synchrotron radiation, so that ∆𝜀𝜀 can be written as: 

  (1) 

where 𝑉𝑉𝑅𝑅𝑅𝑅  is the RF peak voltage, 𝑉𝑉𝑊𝑊𝑊𝑊(𝜙𝜙)  the induced wakefield voltage, 𝑅𝑅(𝑇𝑇0)  a 
stochastic variable changing each turn and taking into account the fact that the 
electromagnetic radiation occurs in quanta of discrete energy, and 𝜏𝜏𝑠𝑠  the longitudinal 
damping time, these last two terms related to synchrotron radiation effects and important, in 
particular, in electron machines [21]. In the above equation, 𝜙𝜙 and 𝜙𝜙𝑠𝑠 are the phases, with 
respect to the RF voltage, of the charge 𝑞𝑞 and of the synchronous particle, respectively. The 
value of 𝜙𝜙𝑠𝑠 depends on the acceleration in synchrotrons and on the energy loss per turn due 
to synchrotron radiation. In the above equation, if necessary, it is possible to add terms due 
to other sources of energy exchange. 

The second quantity necessary to describe 1-D motion in simulations is related to the 
longitudinal position of the charge with respect to the synchronous particle. Its variation in 
one turn is given by the relation 

  (2) 
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with ℎ  the RF harmonic number, 𝜂𝜂  the slippage factor equal to 1/ 𝛾𝛾2 − 𝛼𝛼𝑐𝑐  with 𝛾𝛾  the 
relativistic factor and 𝛼𝛼𝑐𝑐 the momentum compaction, and 𝛽𝛽 the ratio between the particle 
velocity and the speed of light. In the above equation we have assumed 𝜙𝜙 − 𝜙𝜙𝑠𝑠 > 0 for a 
particle behind the synchronous one, that is with positive time delay. 

The common approach used in longitudinal simulation codes models each bunch as an 
ensemble of particles, each one governed by the above two coupled equations, and tracks 
these particles turn after turn. Since in a bunch the number of charges is in the range 
108 −  1012  and, sometimes, even more, it would be necessary a very high computing 
power, with the help of parallel clusters, to track all the particles. For this reason, generally, 
macro-particles, which gather together the behavior of a given number of charges, are used. 
The maximum possible number of simulated macro-particles depends on the available 
computing power, but, nowadays, codes with 107 charges can be run on a personal PC.  

Without the presence of wakefield, the two equations can be easily solved turn by turn, 
and they are independent from one macro-particle to another. The term which couples the 
equations of different particles, making the tracking more complicated, is the induced 
wakefield voltage 𝑉𝑉𝑊𝑊𝑊𝑊(𝜙𝜙). This is the voltage acting on a charge in a position 𝜙𝜙 , and 
induced by all the others. This voltage depends on the normalized longitudinal bunch 
distribution 𝜆𝜆(𝜙𝜙) according to the relation 

  (3) 

where the integration is performed over the bunch length, 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 is the total charge of a bunch, 
and 𝑤𝑤|| is the wake function of a point charge or Green function. The convolution integral is 
also called wake potential. It represents the energy gained or lost by a unity charge due to 
the entire bunch. If a charge is travelling with the speed of light, due to the causality 
property, the upper bound of the integral can be stopped at 𝜙𝜙 because 𝑤𝑤||(𝑥𝑥) = 0 for 𝑥𝑥 < 0. 
The opposite happens for simulations having coherent synchrotron radiation effect, for 
which the wake function is different from zero only ahead of the charge that created it. The 
above equation is valid only if we take into account the short-range wakefields. In order to 
include also the long-range wakefields for coupled bunch simulations, we have to add a sum 
over previous bunches and turns in the above convolution integral, as we will discuss in 
section 2.12.4.  

In writing Eq. (3) we have described the behavior of the particle ensemble, representing 
a bunch, with a continuous distribution function, as it is generally done with theoretical 
methods, even if the real structure of a bunch is discrete. With a simulation code we have 
the opposite approach, which uses a number of macro-particles reduced with respect to the 
real number of charges in a bunch. In this case Eq. (3), or the expanded version with the 
long-range wakefields, can be transformed into 

  (4) 

with 𝜙𝜙𝑖𝑖  the longitudinal position of the 𝑖𝑖𝑡𝑡ℎ  macro-particle and 𝑁𝑁𝑚𝑚  the total number of  
macro-particles. If the bunch is travelling with the speed of light, due to the fundamental 
theorem of beam loading [22], in the above summation we have to use 𝑤𝑤||(0)/2  instead of 
𝑤𝑤||(0) when 𝜙𝜙𝑖𝑖 = 𝜙𝜙𝑗𝑗 . Equation (4) has to be evaluated at each turn and for each macro-



 135 

particle. This means that, at each turn, the calculation of wakefields in simulations requires 
in general 𝑁𝑁𝑚𝑚

2  operations, and (𝑁𝑁𝑚𝑚 − 1)𝑁𝑁𝑚𝑚/2 for the ultra-relativistic case. In order to track 
106 −  107  macro-particles, at each turn more than 1011  operations are needed, and this 
task can be accomplished, at least for the moment, only on parallel computing clusters. In 
order to reduce the computing time and only in the evaluation of the wakefield effects, the 
bunch is generally divided into 𝑁𝑁𝑠𝑠  slices, or bins, of width Δ and center 𝜙𝜙𝑖𝑖∆ , each one 
containing 𝑛𝑛𝑖𝑖(∆) macro-particles. By supposing that slices act as point charges, the induced 
voltage at the center of each slice is then evaluated by using the relation 

  (5) 

Once the induced voltage is known in the positions 𝜙𝜙𝑖𝑖∆, a linear interpolation (or higher 
order ones) permits to evaluate the wake potential acting on any macro-particle of the bunch. 
Since in general the number of slices is between few hundreds to some thousands, this 
greatly reduces the number of operations. 

This kind of approach has been widely used in simulations, and in the years it has 
demonstrated to give reliable results. However, a particular care has to be taken when 
deciding the size and the number of the slices (and, of course, of macro-particles). A low 
number of slices reduces the computing time, but it could suppress some physical 
microstructures in the bunch leading to instabilities. On the other side, slices can introduce 
numerical noise additional to that of macro-particles, making necessary, in some cases, a 
parametric study to investigate any possible dependence of the results on the number of 
slices and of macro-particles inside the slices. 

One possible approach to determine the slice size is to plot the absolute value of the 
product of the bunch spectrum and the impedance. This allows to identify a certain fmax 
above which the product can be considered negligible. This frequency defines the length of 
the slices since ∆tslice = 1/(2fmax) . Once the slices are fixed, the number of macro-
particles is increased by steps until a convergence is reached.  

 Simulations With Short-Range Wakefields 2.12.3

Single-bunch simulations can be performed according to the previous equations once the 
short-range wake function 𝑤𝑤||  of a circular accelerator, or the corresponding coupling 
impedance, is known.  

The coupling impedance model of a machine is generally obtained with the help of 
dedicated electromagnetic computer codes, such as CST Particle Studio [23], GdfidL [24], 
or ACE3P [25]. From the impedance, with the inverse Discrete Fourier Transform (DFT), 
the wakefield 𝑤𝑤||  in Eq. (5) can be obtained. Another method to calculate directly the 
induced voltage in circular machines without the use of Eq. (5) is to multiply the impedance 
by the spectrum of the longitudinal distribution and take the inverse DFT of the result. Often 
these two methods in time and frequency domain give the same result, even if different 
numbers of slices and macro-particles have to be chosen to obtain the same accuracy. Of 
course particular attention has to be paid to the inverse DFT in order to avoid non-physical 
results. 

One important problem that sometimes arises in simulations is the necessity to use a too 
high number of slices such that the code becomes too cumbersome and other solutions have 
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to be found. As an example, let us take the wake field of a broad-band resonator, which 
sometimes is used as a simplified impedance model of an accelerator. Depending on its 
resonant frequency and on the bunch length, it may happen that a high number of slices is 
necessary to properly reconstruct the correct induced voltage.  

In Fig. 1 we show, for example, the induced voltage for a broad-band resonator with unit 
quality factor, produced by a Gaussian bunch with RMS bunch length 2.4 times higher than 
the resonant wavelength in the relativistic case. If we consider that, generally, for single 
bunch simulations, a longitudinal interval of ±5𝜎𝜎, with 𝜎𝜎 the RMS bunch length, is used, in 
order to have about 20 slices for wavelength, about 480 slices are needed. Indeed, from the 
figure, we can see that, with 500 slices, Eq. (5) for the Gaussian bunch gives a slightly 
different result (green line) with respect to the theoretical wake potential, and only with 1e3 
slices (red curve) the induced voltage is very close to the theoretical one, represented with 
the black curve. 

With such a high number of slices, also a very high number of macro-particles has to be 
used, because there is the need to have a reasonable number of particles in each slice for 
proper beam simulations. If the number is not sufficiently high, the strong fluctuations of 
macro-particles from one slice to another could produce non-physical effects. 

There is however the possibility to bypass this problem by using, in Eq. (5), instead of 
the Green function, the wake potential (induced voltage) of a very short Gaussian bunch. 
Indeed, in the same figure, with the cyan dashed line, we have also represented the induced 
voltage as given directly by a simulation with only 100 slices, for which we have used in 
Eq. (5) in place of 𝑤𝑤||, the wake potential of a Gaussian bunch 10 times shorter than the 
simulated one. As can be seen from the figure, with 100 slices we obtain a result similar to 
that obtained with 1000 slices and the Green function. Also with the method in frequency 
domain described at the beginning of this section, it is possible to obtain the correct induced 
voltage with only about 150 slices. 

 Simulations With Long-Range Wakefields 2.12.4

For the multi-bunch simulations, in addition to the slice problem, the main issue is the 
necessity to know the wakefield as a function of time until it becomes zero. Since the long 
range wakefields are generated by resonant modes with a high quality factor, depending on 
its value and on the resonant frequency, these modes can last for several hundreds of 
nanoseconds up to microseconds, influencing many bunches for many turns, and then 
requiring the calculation of a very long interaction of the wakefield with the beam. 

Different simulation codes have different approaches to tackle this problem.  



 137 

 
Figure 1: Induced beam voltage for a broad-band resonator produced by a Gaussian bunch with 
RMS length a factor 2.4 higher than the resonant wavelength. The voltage has been obtained by 
using 200 slices (blue), 500 slices (green), 1000 slices (red). The cyan dashed line represents the 
induced voltage obtained with only 100 slices by using, as Green function, the wake potential of a 
Gaussian bunch 10 times shorter. The black line is the theoretical induced voltage. 

 
For example, in the BLonD code [13], different routines can be selected depending on 

the length of the wakefield. In particular, two different approaches are used to memorize the 
long range wakefields. The first one stores into memory, at each turn, the sum of the present 
induced voltage extended to the future and the induced voltage derived from the past after 
appropriate time shift of one revolution period. A complication arises in presence of 
acceleration: the time frame, which length is the revolution period, shrinks turn after turn 
and, as a consequence, an interpolation is needed each turn when the present voltage is 
summed to the voltage from the past.  

To avoid potentially expensive interpolations in computing time, another approach, 
operating in frequency domain, has been introduced considering that a multiplication of a 
Fourier-transformed function by a complex exponential in frequency domain is equivalent 
to a shift of the same function in time domain. The algorithm uses a 𝑀𝑀 × 𝑁𝑁 matrix with 𝑀𝑀 
the number of turns to be stored, and 𝑁𝑁  the number of slices (this time of the whole 
accelerator and not of the single bunch) times 𝑀𝑀 . At each turn the beam spectrum is 
multiplied by the impedance and the result saved into a matrix row. All the remaining rows 
are multiplied by a complex exponential to shift the past induced voltage by one turn, all the 
rows are summed element by element, and the result, after an inverse DFT, gives the 
induced voltage in the present time frame. After the last row of the matrix is filled in, at the 
turn 𝑀𝑀 + 1, the first row of the matrix is overwritten, since the known wakefield has a 
length corresponding to 𝑀𝑀 turns. The downside of this second approach is that the size of 𝑀𝑀 
influences heavily the computation time and the user has to choose wisely which method to 
use depending on the simulation parameters. 
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Another method, used in the tracking parallel code SPACE [11], expands the long range 
wake force in Taylor series and stores the moments of the longitudinal distribution of all the 
bunches in previous turns. This method requires a slowly varying wake function and, in 
addition, the number of terms 𝑁𝑁𝑇𝑇𝑇𝑇 for the Taylor expansion has to be wisely chosen together 
with the order of the method to calculate the 𝑁𝑁𝑇𝑇𝑇𝑇 derivatives of the wake. However, the 
strength of the algorithm derives from the fact that the induced voltage acting on a certain 
bunch can be calculated in parallel via master-to-slave processor communications. This 
means that at each turn, after having applied the single particle equations of motion, the 
various moments of the present longitudinal bunch profiles are calculated independently by 
different processors. These independent computations are then communicated to the master 
processor which can sum them to the other calculated moments from previous turns which 
have been stored into memory.  

In some cases, mostly when the distance between the source and the test charges is big, 
it is reasonable supposing that the wake function doesn’t change significantly. This idea has 
been implemented in [10]. Whenever the wake amplitude does not change more than 0.1% 
in a certain longitudinal frame, then all the slices contained in that window are replaced by a 
single slice characterised by a wake that is just an average of the wake values of all the 
concerned slices. The frame length can be even of the order of the bunch length or the 
revolution period. Using this approximation, the convolution sum to calculate the long range 
wakefields can be significantly simplified.  

An alternative approach, which has been developed and used in the simulation code 
MuSiC [12], exploits a matrix formalism to transport the wakefield of resonators, both 
broadband and narrow band, from one macro-particle to the following one, removing the 
necessity to resort to the convolution sum, avoiding problems related to bunch slices, and 
eliminating the necessity to store long range wakefields. The code allows to simulate, 
simultaneously, the effects of short and long range wakefields without the necessity to 
distinguish between the single and multi-bunch beam dynamics and including intra-bunch 
motion. It also contains a frequency domain feedback system to damp coupled bunch 
instabilities. The drawback of the MuSiC approach is that it requires to fit the machine 
coupling impedance with a sum of resonators, which are used as input parameters in place 
of the wakefield.  

 Damping Mechanisms 2.12.5

Intrinsic damping mechanisms, such as Landau damping, are naturally included in 
simulation codes if the number of macro-particles is high enough. Cases of Landau damping 
effects in simulations can be found in Refs. [12, 15, 26]. Also the radiation damping is 
simulated by means of the last term in Eq. (1). A particular mention regards feedback 
systems. For example, a coupled bunch feedback can be simulated in a given point of the 
machine exchanging energy with the macro-particles. The correct amount of energy to be 
exchanged has to be evaluated according to the kind of feedback. In case of time domain, 
for example, each bunch is treated separately by the others, while in frequency domain the 
motion of all the bunches has to be first decomposed as sum of eigenmodes, turn after turn, 
and then the feedback energy kick acting on each eigenmode has to be proportional to its 
oscillation amplitude. 

Examples of coupled bunch feedback systems included in simulation codes can be found 
in Refs. [15, 27] for the time domain, and in Ref. [12] for the frequency domain. 
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 Vlasov-Fokker-Planck Solvers and Other Methods 2.12.6

In addition to simulation codes, which track macro-particles turn after turn, a different 
approach can be used, and it consists in solving numerically the time domain Vlasov-
Fokker-Planck equation with the inclusion of wakefields.  

By considering the same effects discussed for Eq. (1), that is damping and fluctuations 
produced by the synchrotron radiation, the Vlasov’s nonlinear integro-differential equation, 
with the inclusion of the Fokker-Plank terms, can be written as [28] 

  (6) 

where 𝑓𝑓 is the phase space longitudinal distribution, (𝑞𝑞, 𝑝𝑝) are the canonical coordinates 
related to the position 𝜙𝜙 and relative energy 𝜀𝜀 respectively, 𝐻𝐻 the Hamiltonian accounting 
for both the external fields and the collective force produced by the wakefields, and 𝐷𝐷 a 
diffusion constant of the random process related to 𝑅𝑅(𝑇𝑇0). If the right hand side of Eq. (6) is 
zero, hypothesis valid, for example, with a good approximation for proton beams, we have 
the so-called Vlasov equation. In writing the above equation, we made a sort of smooth 
approximation in which the dissipation and fluctuations are distributed homogeneously in 
the independent variable 𝑡𝑡. The nonlinearity in Eq. (6) derives from the collective force 
contained in the Hamiltonian, which is proportional to the convolution integral between the 
wakefield and the longitudinal distribution, according to Eq. (3). 

As first approach, it would seem that the above equation could be treated by the usual 
methods for partial differential equations, as the finite differences, to approximate the phase 
space longitudinal distribution function 𝑓𝑓 on nodes of a finite grid.  

However, such a technique fails completely with or without implicit time stepping, and 
not because of any effect of the nonlinear terms, but because it does not preserve the 
symplectic form. Different and more appropriate methods must therefore be applied to 
preserve the symplectic structure of the equation, as, for example, the one of Ref. [29], 
where the integration of the equation is based on discretization of the local Perron Frobenius 
operator. In Ref. [30] instead, an algebraic technique of solution, that is suited for general 
evolution-type equations and that can also be applied to the Vlasov equation, extended to 
the non-linear case, has been developed, and it is based on the evolution operator technique, 
widely exploited in the solution of quantum mechanical problems.  

Codes solving Vlasov-Fokker-Planck equations have been developed to study single 
bunch effects [31, 32] as alternative to multi-particle tracking codes, and they generally 
guarantee a very smooth evolution of the beam distribution function in time that allows to 
reduce, and in some cases to completely eliminate, the effect of numerical noise. Usually, 
the computing time for a simulation solving the Vlasov-Fokker-Plank equation is 
comparable to that of the multi-particle tracking codes because the problem due to the slices 
previously discussed is avoided, but, in any case, in order to calculate the collective force in 
the Hamiltonian term, the convolution integral of Eq. (3) has to be performed over a finite 
phase space grid. 
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 Introduction 2.13.1

In this article, we first describe the head-tail instability, as much as visually, so that 
readers can get fresh and vivid ideas about this classical phenomenon. We then review 
Sacherer’s head-tail instability theory and Transverse Mode-Coupling Instability (TMCI) 
theory to get more quantitative understanding. The article is concluded with some historical 
records on how the concept of “mode-coupling” was developed, not only in transverse 
instabilities (TMCI), but also in longitudinal ones (the bunch lengthening) in early 1980s. 

 Head-Tail Instability 2.13.2

In a long proton bunch, every parts along the longitudinal direction do not have to 
oscillate together transversely. For example, it is possible that the head and the tail of the 
bunch oscillate 180 degrees out of phase, as illustrated in Fig. 1 (right). 

 

 
 

Figure 1: Snapshots of beam oscillations when the head and the tail of a bunch oscillate in phase 
(left) and out of phase (right). 

 
In order for the head and the tail of the bunch to oscillate 180 degrees out of phase, we 

need a fast oscillating wake field which changes the phase by 180 degrees during the 
passage of the bunch. Such rapid phase oscillation is possible only by high frequency 
impedance. For synchronizing with the high frequency impedance, the intra-bunch motion 
needs to be more complex than a simple dipole oscillation. That introduces the synchrotron 
motion. 

Let us explain the head-tail effect using the two-particle model (see Fig. 2). Only the 
particle behind can feel the wake fields created by the particle ahead. Since the degree of 
freedom is two (two particles), we have two modes in which the head and the tail of the 
bunch oscillate either in phase or out of phase, as illustrated in Fig. 3. Their motion can be 
unstable depending on the strength of the bunch intensity. 
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Figure 2: Position of the two particles in the synchrotron phase space and wake fields at every 
quarter of the synchrotron oscillation. The wake fields are denoted by the red dashed lines. 

 
Figure 3: Two modes in which the head and the tail of the bunch oscillate in phase (left) and out of 
phase (right). 

 
Unstable coherent oscillations with different betatron phase advances inside a bunch 

have been observed in many machines such as CERN PS. This phenomenon was called the 
head-tail instability [1-3]. Figure 4 shows the measured signals of the dipole moment at 
CERN PS Booster [2].  

 
Figure 4: The measured signals of the dipole moment at CERN PS Booster [2]. 
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 Sacherer’s Head-Tail Instability Theory 2.13.3

The important element of Sacherer’s head-tail instability theory is the chromaticity. It is 
defined by  
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where βω  is the angular betatron frequency and 𝛿𝛿 = 𝛥𝛥𝛥𝛥/𝑝𝑝  is the relative momentum 
deviation. In other words, the betatron frequency depends on the momentum deviation as 
 

                                                         )1()( 0 ξδωδω ββ += .                                                  (2)   
                                                                                                      
When a particle moves along the ring, the accumulated betatron phase advance is developed 
as  

                                         
τω

β
ωτ

η
ξ

β
ω

β
δξ

β
ω

β
δωφ

ξββ

βββ

−≡−=

+== ∫∫

c
s

c
s

c
δs

c
s

c
δss

00

0

)(

)()()(
     ,                              (3)                                                                        

 
where 𝜏𝜏 is the arrival time difference of the particle at the position s (positive toward the 
head of bunch), 𝛽𝛽𝛽𝛽 is the velocity of the particle, and 𝜂𝜂 is the slippage factor. Thus, the 
betatron phase advance varies linearly along the bunch and attains its minimum (maximum) 
at the head (tail) of the bunch as illustrated in Fig. 5. 
 

 
 

Figure 5:  Change of the betatron oscillation below transition energy (η < 0). 

 
To investigate how the difference of phase advance between the head and the tail of the 

bunch varies over one synchrotron oscillation period, let us look at the four-particle model 
in the synchrotron phase space, as illustrated in Fig. 6 [4]. We assume that the arrival time is 
oscillating as 
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where 𝜈𝜈𝑠𝑠 is the synchrotron oscillation tune and k is the revolution turn. We also assume that 
the chromaticity is negative and the ring is operated below the transition energy (𝜂𝜂 < 0). 
Thus particles move clockwise in synchrotron phase space. 

In principle, the betatron phase advance slows down (quickens up) by 𝜔𝜔𝜉𝜉𝜏̂𝜏  for every 
quarter period of synchrotron oscillation as the particle moves forward (backward) along the 
synchrotron orbit, respectively. As can be seen in Fig. 6, the initial phase relationship along 
the bunch is preserved after the quarter period of synchrotron oscillation. One can quickly 
check that the phase pattern remains stationary over the full period of the synchrotron 
oscillation. In other words, the difference of the phase advance between the head and the tail 
of the bunch is constant, and we denote this constant as χ: 

 

                                                    
constantˆ2 ==−= tωφφc ξββ HeadTail

                                             (5) 

 

       
 
Figure 6: (a) The initial phase advance setting of the four particles. (b) The phase advance after a 
quarter period of the full synchrotron oscillation. The phase difference between the head and the tail 
of the bunch remains the same:  τωφφχ ξββ ˆ2=−=

HeadTail
 after a quarter period of the full 

synchrotron oscillation. 
 
Let us assume that the dipole moment observed at a single point in the ring has the 

following standing wave pattern [1]: 
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where Lτ is the total bunch length. The transverse pick-up signal observed at that point on 
the k-th revolution turn is given by 
 
                                                                                                                                            ,       (7) 
                                              
where 0βν  is the betatron tune. Typical time evolutions of the transverse oscillation signals 
are shown in Fig. 7. 
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Figure 7: Typical time evolutions of the transverse oscillation signals for different χ [2]. 
 

The effect of the travelling-wave component )2exp( 0βx νpω kiti +  over the standing-

wave dipole moment )(tpm  is to shift the bunch spectrum by ξω . Figure 8 shows an 
example where the transverse resistive-wall impedance and the narrow-band kicker 
impedance are shown as impedance examples. The spectra are drawn for the head-tail 
modes 0 and 1 with positive phase difference χ. In this example, the mode 0 is stabilized, 
while the mode 1 becomes unstable by the transverse resistive-wall impedance at low 
frequency. 
 

 
 

Figure 8: An example of the bunch spectrum shift by non-zero chromaticity. 

 
The physical reason for the spectrum shift is as follows. When χ is large, the head and 

the tail of the bunch oscillate with large betatron phase difference. In order to excite such an 
intra-bunch oscillation, the wake field has to change its phase rapidly during the passage of 
the bunch. In other words, the impedance around the frequency ξω can now best 
synchronize with the fast intra-bunch motion. 

The shift of the left peak of the bunch spectrum of the mode 1 means that a part of the 
mode now oscillates slowly. The head and the tail of the bunch will move almost in phase, 
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not out of phase, to synchronize with the low frequency impedance. On the other hand, the 
shift of the right peak of the mode 1 bunch spectrum implies that this part of the mode now 
oscillates faster. In summary, the mode m=1 is degenerated at zero chromaticity, but are 
now split to slower and faster oscillating parts by non-zero chromaticity. These split modes 
are equally excited due to the standing-wave condition of head-tail modes, and thus they 
always have a node at the center just like the m=1 mode at zero chromaticity. 

The coherent tune shift of head-tail mode can be calculated by solving the Vlasov 
equation. Here, we only show the analytical result with the airbag model [3]: 
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Here 𝑍𝑍𝑇𝑇(𝜔𝜔) is the transverse impedance and  
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The other parameters are: 𝐼𝐼𝑏𝑏 is the bunch current, 𝑅𝑅 is the ring radius, 𝐸𝐸0 is the beam energy 
and 𝐽𝐽𝑚𝑚(𝑥𝑥) is the Bessel function. 

 TMCI Theory 2.13.4

When the beam intensity is increased, the interaction between different head-tail modes 
becomes non-negligible. We now have to solve the entire matrix including the interaction 
between various head-tail modes [5,6]. The eigen-solution ν, the coherent tune, can be 
obtained by solving the following equation (for the airbag model [3]): 
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Here I is the unit matrix and the matrix element of A is given by 
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Let us examine how the interaction between head-tail modes changes the behavior of the 

instability. The real part of the coherent tune (the coherent tune shift from the unperturbed 
tune 𝜈𝜈𝛽𝛽0 + 𝜈𝜈𝑠𝑠0) is determined by the sum of the imaginary part (multiplied by the bunch 
spectrum) of the transverse impedance over frequency. Therefore, broadband impedance, 
rather than narrow one, tends to excite a larger tune shift. In conventional head-tail 
instability, the broadband impedance has a little effect on its excitation. But, when the beam 
intensity is increased and exceeds a certain threshold value, the tunes of two modes can 
merge and then suddenly, a strong instability occurs, as illustrated in Fig. 9. The growth 
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time of the instability can be as fast as the synchrotron oscillation period. This instability is 
called the Transverse Mode-Coupling Instability (TMCI) or the strong head-tail instability. 
TMCI has been observed mostly in electron machines such as PETRA, PEP [5] and LEP [7] 
where a bunch is short, but it has been observed also in proton machines such as SPS [8] 
where a bunch is relatively short compared to most of other proton machines. 
 

 
         Beam current 

 
Figure 9: Typical behavior of coherent tune shifts as a function of the beam current. The real and the 
imaginary parts of the tune shifts are denoted by the solid and dashed lines. When the two tune shifts 
merge, the imaginary part of the tune shift (the growth rate) starts to increase rapidly. 

 Historical Record 2.13.5

By 1983, accelerator theorists faced two challenging instability problems to solve. One 
was the bunch lengthening phenomenon (longitudinal) and other was a transverse one, 
which is now called TMCI. The both phenomena have clear thresholds in the bunch current, 
and thus they are distinct from conventional Robinson-type instabilities. 

By that time, there was common understanding among the accelerator theorists that the 
both phenomena are caused by mode-couplings. At the first glance, the bunch lengthening 
seemed to be easier to solve, since it involves only the longitudinal motion and the 
construction of the theory was simpler. However, such attempt encountered a big problem: 
the calculated threshold is much higher than the measured one. It is because the bunch 
lengthening is accompanied with the potential-well distortion, and thus the non-linear effect 
should have a significant role in the theory, which a simple linear theory cannot cope with. 
The breakthrough of this dilemma came out when Oide and Yokoya introduced the action-
angle variable technique to solve the linearized Vlasov equation with an arbitrary potential 
well [9]. 

The TMCI theory was more complicated, but straightforward, since it involves no non-
linearity. It is interesting to point out that the period of time when the TMCI theory was 
developed coincided with time when the independent variable in the instability theory was 
changed from “time t” to “position s or θ” in a ring, in order to be more precise and 
straightforward. Up to then, instability theories were written with time as the independent 
variable, as seen in Sacherer’s model Eqs. (6) and (8). This introduces annoying correction 
terms to be consistent with measurements, and there was strong demand to straighten the 
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theoretical foundation. Nowadays, it sounds too natural to describe beam instabilities 
developing as a beam moves along a ring, but the snapshot type understanding used to be 
dominant those days. 

The picture like Fig. 9, now familiar with TMCI, first appeared in Chin and Satoh’s 
theoretical paper [5]. As seen from Fig. 9, the first mode-coupling happens usually between 
m=0 and m=-1 modes. There is a clear asymmetrical behavior between positive and 
negative m modes. However, in Sacherer’s head-tail model (Eqs. (6) and (8)), positive and 
negative m modes are supposed to be symmetrical. The only difference between them is that 
they rotate in the opposite direction in the synchrotron phase space. In this way, they 
together create a standing wave pattern and Sacherer’s head-tail modes are described only 
by positive m numbers. Notice that the bunch spectrums in Fig. 8 are only for positive (no 
negative) m. Measured dipole signals such as shown in Fig. 4 have clear nodes, which 
demonstrates the validity of the standing wave model. On the other hands, measured tune 
shifts show the behavior, as illustrated in Fig. 9, and positive and negative m modes are 
clearly distinct, especially close to the TMCI threshold. This thinking exercise reveals that 
Sacherer’s standing wave model and the bunch spectrum shift by non-zero chromaticity, as 
illustrated in Fig. 8, are valid only at low beam intensity. It may be interesting to investigate 
how the degeneracy of positive and negative m modes starts to break down as a function of 
the beam intensity and how head-tail modes look like in that regime, in particular, close to 
the TMCI threshold, to bridge Sacherer’s model and the TMCI theory. 
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2.14 Damping of Transverse Instabilities of Bunched Beams 

A. Burov 
FNAL, Batavia, IL 60510, U.S.A  

Mail to: burov@fnal.gov 
 
Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at 

which chromaticity it is better to stay? These questions are considered by means of the 
author’s Nested Head-Tail Vlasov Solver (NHT) for the broadband impedance, and for the 
LHC impedance model. 3D plots for the growth rate at the chromaticity-intensity and 
chromaticity-gain planes and possibilities to use them are shown and discussed. It is 
demonstrated that feedbacks may generate asymmetry of the tune shift distribution, which 
requires positively-shifted stability diagrams. 

 Introduction 2.14.1

How one has to use the bunch-by-bunch damper for the most efficient suppression of the 
transverse instabilities of bunched beams? This problem has so many parameters and input 
functions, associated with the beam, impedance and damper, that its full treatment seems 
hardly possible. In this situation, studies of especially interesting cases by means of 
available models suggest a reasonable way to get a better understanding. This paper is an 
example of that sort of research; its more extended version is suggested by Ref. [1].  

One-particle model is the simplest one; still it is useful for the Robinson and coupled-
bunch instabilities [2,3]. Without limitation of the accuracy, the coupled-bunch instability 
can be separated in two stages: at the first one the bunches are treated as macroparticles, 
while at the second stage a distribution of the obtained coupled-bunch growth rates over the 
head-tail degrees of freedom can be found [3]. 

 The two-particle model [2, 4-6] is the next after the simplest one. It certainly sheds light 
on the head-tail factors, but its practical use is too limited: it can both underestimate and 
overestimate possible instabilities, and it is hard to tell in advance by how much. After the 
two-particle model, the next in complexity is the hollow-beam or air-bag one [2], which 
represents the bunch by a homogeneously populated circle in the longitudinal phase space.  

In this paper, I am using my own method of analysis, the Nested Head-Tail Vlasov 
Solver (NHT), which represents the bunch by a reasonable number of concentric air-bags 
and takes into account intra- and inter-bunch wake fields, as well as the damper [7]. One 
may consider NHT as an extension of the air-bag model with its reduction of the Vlasov 
equation to the standard eigensystem problem of linear algebra. Although NHT allows 
computing Landau damping as well, and hence the instability thresholds, that sort of 
problems is predominantly left beyond the scope of this paper. 

With the NHT, two impedance models were analyzed: the broadband impedance and the 
LHC model [8]. For both of them, it is shown that with the resistive damper there is an area 
of stability in the gain-chromaticity plane, centered at slightly negative chromaticity, where 
the multi-bunch beam is stable even without radiation or Landau damping. It is shown that 
the shapes of these areas of stability, as well as their limitations by the beam intensity, vary 
a lot. While for the broadband impedance this area allows to increase the TMCI threshold 
by up to a factor of four, for the LHC model it disappears almost exactly at the same 
intensity as the no-gain, zero-chromaticity TMCI onset (addressed below just as the TMCI 
threshold), so one cannot use it close to or above this threshold. That is why at sufficiently 
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high intensity of separated LHC beams, the optimal strategy is to work at high chromaticity 
and sufficient gain area, or in the valley of slow instabilities. 

 Broadband impedance 2.14.2

In this section, we discuss the main features of single-bunch instabilities for broadband 
impedance, taking the ring and bunch parameters of the Advanced Photon Source (APS) of 
Argonne National Laboratory, a storage ring of 1.1km circumference and electron beam 
energy of 7GeV [9]. We will assume the synchrotron tune , rms bunch 
length , and rms momentum spread . The computations are done 
for a broadband impedance model  

                                       , (1) 

with , , and the weighted shunt impedance , where  is 
the average beta-function. The vacuum chamber is assumed to be round.  

For the given beam and impedance, NHT computes the entire beam spectrum; the total 
number of modes is limited by two modelling factors: first, by a number of radial rings 
representing the bunch longitudinal distribution, and second, by the truncating azimuthal 
harmonic. For these calculations, the former was taken to be 5, and the latter was limited by 
±10; thus, the total number of intra-bunch modes is .  

Growth rate of the fastest growing mode is presented in Figs. 1 and 2 as a function of 
beam intensity and reactive damper gain; the chromaticity is zero. The intensity parameter 

 (impedance factor) is defined as a ratio of the bunch population N to its 
value  taken as the nominal. Terms resistive and reactive for the dampers are 
conventional: the former assumes 90° phase advance between the pickup and the kicker 
signals, while for the latter this phase is zero. The absolute value of the feedback gain |g| is 
defined as the rate at which the bunch dipole moment decays if the damper is resistive; it is 
conventionally measured in the units of the synchrotron frequency . In the same units are 
measured the eigenvalues q, the coherent frequency shifts; the symbol  stands for the 
maximal growth rate at the given machine and beam parameters, i.e., for the growth rate of 
the most unstable mode. It is worth noting that the growth rate is not a monotonic function 
of the gain, neither in its focusing nor defocusing direction. At a small gain, , the 
positive (focusing) sign allows to double the instability threshold, while the defocusing one 
may reduce the threshold up to a factor of three. However, a further increase of the gain 
value makes the situation worse in both directions, up to  when the instability 
threshold jumps more than 4 times compared to its zero-gain value of 1.6, saturating there 
for higher defocusing gain values, as one can see in Fig. 2. To reach the same threshold for 
the focusing damper, gain three times higher is needed, while the saturation threshold for 
the focusing sign is only ~20% higher than for the defocusing one.  
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Figure 1: Мaximal growth rate  versus gain g and intensity parameter 

 for reactive damper and zero chromaticity. Gain is in units of ; its positive sign 
corresponds to focusing.   

     

                             
 

Figure 2: Same as Fig. 1 but for a larger range of the variables. 
 
As one may conclude from Figs. 3 and 4, the reactive damper is not very effective for 

non-zero chromaticity: outside of a very narrow range of chromaticity, the ravine around 
zero, the reactive damper is insignificant.  

Before going into details of the resistive damper, it is instructive to see the growth rate 
versus intensity and chromaticity for the no-damper case as it is shown in Fig. 5. Similar 
plots for the resistive case with  and  are presented in Figs. 6 and 7. Figure 8 
shows how the growth rate depends on the chromaticity for various resistive gains, to 
compare with the similar results for the reactive damper presented in Fig. 4. Figure 9 
demonstrates that at a high resistive gain and proper chromaticity, the threshold saturates 
approximately at a four times higher value than the TMCI threshold.  
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Figure 3: The growth rate versus chromaticity and reactive gain for intensity twice exceeding zero-
gain zero-chromaticity TMCI threshold, i.e. for .  

 

                             
 

Figure 4: Same as Fig. 3 but for three selected gains. 
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Figure 5: Growth rate versus intensity and chromaticity; the damper is off. 
 

                             
 

Figure 6: Same as Fig. 5 for resistive . 
 

                             
 

Figure 7: Same as Fig. 5 for resistive . 
 

                             
 

Figure 8: Same as Fig.3 but for the resistive damper. Note the fjord of stability. 
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For the reactive damper with any gain, the growth rate can be zero only at zero 
chromaticity. Contrary to that, for the resistive damper there is a fjord of stability, as one 
can see in Figs. 6-8. Above the transition energy, this area typically corresponds to small 
negative values of the rms head-tail phase, centered at  

                                        .  (2) 
 

                             
 
Figure 9: The growth rate for  vs. intensity for selected resistive gains. At high gains, the 
threshold saturates approximately at four times higher value than its damper-off zero-chromaticity 
value (6.4:1.6).  

 
The reason for this was in fact explained in Ref. [10]. At slightly negative head-tail 

phase and below TMCI threshold, impedance makes all the modes stable except the zeroth 
one, corresponding to an almost rigid bunch motion. Since the zeroth mode is perfectly seen 
by the damper, the feedback’s damping rate goes almost entirely to the zeroth mode. All 
other modes are poorly seen by the damper at small chromaticity, but there is no need in that 
since they decay due to impedance (see e.g. Ref.[2] p.351). Thus, at low and negative head-
tail phase and below the TMCI threshold, the resistive damper stabilizes the only unstable 
mode and almost does not influence stability of other modes, which are already stable. How 
far above the TMCI threshold this area of stability may exist is one of the questions of this 
paper.   
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Figure 10: Growth rate for zero chromaticity and almost reactive damper, which phase declines 
towards resistive by 18°. 

 
Figures 10 and 11 demonstrate sensitivity of effectiveness of the reactive damper to its 

small phase variation. These figures show the growth rate versus intensity and gain for zero 
chromaticity and an almost reactive damper, when its phase declines to the resistive 
direction by 18°.  

Let’s imagine, for example, that common action of radiation and Landau damping 
provides damping rate 0.02, and that available gain cannot be higher than 3.0. Then, as we 
can see from Fig. 11, this feedback allows increasing the intensity threshold at best by 25%, 
from 1.6 to 2.0. If the gain deviates from its optimal value in one or another direction, the 
benefit from the feedback would be even smaller. In this respect, the resistive damper is 
much more robust also, as one can see from Figs. 12 and 13, where 50% phase deviation 
towards the reactive one creates almost no effect.  

 

                             
 

Figure 11: Same as the previous figure, for selected intensities. 
 

                             
 

Figure 12: Growth rate for the resistive feedback and chromaticity . 
 
Thus, for the single bunch and the broadband impedance we may conclude about 

definite advantage of the resistive damper over reactive one. While in both cases the 
instability threshold, in principle, could be increased up to 4-5 times, tolerance to the offsets 
of chromaticity and the feedback phase is much better for the former than for the latter.  
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In the following section we will see how different are the results for the LHC impedance 
model and how significant can the coupled-bunch contribution be. 

 

                             
 
Figure 13: Same for the feedback phase p/4, i.e. 50% resistive and 50% reactive. Comparison with 
the previous figure shows how robust the resistive damper is against the phase variations at the 
proper chromaticity.  

 LHC at Top Energy 2.14.3

Transverse instabilities of the LHC beams have been studied with the NHT code in 
Ref. [7] for the Run I parameters. In this section that is reworked with new details for the 
Run II beam with the energy of 6.5TeV, the bunch separation of 25ns, the synchrotron tune 

, the rms length of a Gaussian bunch , the nominal bunch 
population , and with the same resistive-wall-like impedances [8]. 

Figure 14 shows the highest growth rate for a single bunch and no feedback. The TMCI 
threshold is at .  Figure 15 demonstrates a decent lake of stability for the 
resistive damper and the full 25ns beam, with the impedance factor , or 62.5% of 
the TMCI threshold. Note a difference with Fig.7: while for the LHC impedance its area of 
stability is a lake, for the broadband one it is a fjord. Figure 16 demonstrates one more 
specific feature of the LHC: the lake of stability disappears almost at the TMCI threshold, 

. Thus, by itself the resistive damper cannot increase the instability threshold for 
the LHC impedance, even for the single bunch. Variation of the damper phase does not help 
much: for intermediate resistive-reactive phases the lake disappearance threshold could be 
increased only by ~15%.  
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Figure 14: Growth rate for a single bunch LHC beam and no feedback. The TMCI threshold is at 
. 

 

Sufficiently below the TMCI threshold, when the lake is wide enough, the resistive 
damper tuned to the lake presents an attractive option. Near and above this threshold the 
only reasonable option for the LHC is to work at the high chromaticity valley of slow 
instabilities, relying on Landau damping for the suppression of these relatively slow 
instabilities that remain there when the damper effect is saturated, see Fig. 16-18.  

Figure 19 makes clear that the reactive damper is almost as effective for the LHC as it is 
for the broadband case: operated at its proper zero chromaticity, for the single bunch it 
allows to increase the instability threshold more than three times. However, the reactive 
damper helps very little for the suppression of coupled-bunch instabilities, which all are 
maximally powerful at zero chromaticity, see Fig. 20. Thus, for the LHC, with its huge 
number of bunches, the reactive feedback would not be reasonable. 
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Figure 15: Growth rate for 25ns LHC beam with the resistive feedback and . Coupled 
bunch interaction is included. Note the lake of stability; for the multi-bunch regime, the lake is 
limited by . 

                             
 

Figure 16: Single bunch growth rate for the resistive damper and TMCI threshold intensity 
. Note that the lake of stability (shown upside down) almost vanished.   

                             
 

Figure 17: The same damper phase and bunch intensity for the full 25ns beam. 
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Figure 18: Threshold current of the Landau octupoles, in Amperes, for the same case as Fig. 17, 
computed according to Ref. [7].   

                             
 

Figure 19: Growth rate for the single LHC bunch, reactive damper and zero chromaticity. Compare 
with Fig. 1 for the broadband impedance. 
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Figure 20: Same as above, but for the full 25ns beam. The average linear slope towards higher 
intensity reflects contribution of the coupled-bunch motion. It can be approximated as 

.  

 Feedbacks and Landau Damping 2.14.4

Generally speaking, there are three factors, which may contribute to beam stability: 
radiation, Landau damping, and feedbacks. The first of them is efficient only for electron 
beams; it is determined by the beam orbit, focusing, and by sizes of a vacuum chamber 
shielding coherent synchrotron radiation. This damping is independent of feedbacks, and 
can be added separately to the total sum of the stabilizing factors. Landau damping is a 
mechanism of dissipation of a collective mode due to a transfer of its energy to incoherent 
degrees of freedom of individual particles that happened to be in resonance with this mode. 
Landau damping is determined by the phase space density of the resonance particles, i.e. 
both by the separation between the coherent tune and the centre of the incoherent spectrum, 
as well as by the tails of the incoherent spectrum. If the beam is sufficiently relativistic, the 
space charge effects can be neglected. In such a case, which is the only one considered in 
this paper, the collective spectrum is determined by the wakes and feedbacks, while the 
incoherent one is a function of the optics’ nonlinearity. Thus, since feedbacks play a role in 
shaping of beam collective modes, they modify Landau damping also.   

With the exception of extremely long bunches or very broadband feedbacks, typical 
bunch-by-bunch dampers react only on the bunch centroid, mostly kicking the bunch as a 
whole. As a result, for sufficiently high resistive gain, the bunch center of mass is blocked, 
while all other possibilities of the bunch motion are not affected by the damper. For round 
vacuum chambers, as well as for the vertical direction in flat chambers, tunes of modes with 
significant motion of the center of mass are shifted down for typical wakes [2]. Since these 
center-of-mass dominated modes are normally most unstable, one should expect a certain 
asymmetry of the modes on the complex tune shift plane. First, with the damper off, this 
chart of unstable modes should be dominated by the left-hand-sided, or by the negative 
tune-shifted. When a significant gain is applied, the left-hand-sided modes should be 
significantly suppressed, while the right-hand-sided, if there are such, most likely should not 
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improve, and might even become worse. That sort of behavior of the chart of unstable 
modes can be seen in Figs. 21 and 22, for the LHC and broadband impedance respectfully.   

 

                             
 
Figure 21: Tune shifts of unstable modes for the full 25ns LHC beam at chromaticity , 

, damper off (blue, 1), and with resistive gain  (red, 2). Both with and without 
damper, there are no unstable modes with positive tune shifts. Seventeen representative coupled-
bunch mode numbers are depicted. 

  

                             
 

Figure 22: Tune shifts of unstable modes for the APS single bunch broadband impedance model at 
chromaticity , , damper off (blue, 1), and with resistive gain  (red, 2).  

  
We see here a pronounced dependence of the asymmetry on a sort of impedance. With 

the damper off, both Fig. 21 and Fig. 22 dominate by the left-hand-side modes. However, 
when it is on, one of them remains to be left-hand sided, while another becomes right-hand-
sided. This asymmetry is especially important for electron machines where one of the 
emittances, the horizontal one, is much higher than another, the vertical. Due to that, 
transverse nonlinearity makes the stability diagram one-sided too, scaled by the horizontal 
emittance only, since the vertical emittance is too small to play a role. That is why, for the 
electron rings, one has to choose whether the diagram has to be designed as right- or left-
hand-sided. The correct answer depends, as we just saw, on the type of impedance. Another 
approach to this problem of the one-sidedness of the stability diagram of electron beams is 
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to provide electrons with the missing sign of the tune shift by means of the second order 
chromaticity which sign is made opposite to the one of the horizontal nonlinearity. 

 Conclusions 2.14.5

Possible strategies of beam stabilization by means of a feedback were considered for the 
broadband and the LHC impedance models by means of the Nested Head-Tail Vlasov 
Solver (NHT). Advantages, challenges and limitations for reactive and resistive dampers are 
formulated. Existence and details of the 2D area of stability in the gain-chromaticity and 
intensity-chromaticity planes is shown to depend on the type of impedance. One-sidedness 
of the mode tune shifts, as well as stability diagrams is pointed out as a source of instability. 
Possible solutions for this problem are outlined. 

The author is thankful to Elias Metral (CERN), Alexander Zholents (ANL) and Vadim 
Sajaev (ANL) for multiple discussions, both encouraging and clarifying.  
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 Introduction 2.15.1

This paper collects main general formulas related to stability of bunched beams at strong 
space charge, i.e. when the maximal space charge tune shift is much bigger than the 
synchrotron tune. 

 Main Equation 2.15.2

Space charge is known to be able to change dramatically collective modes [1-3]. For 
transverse oscillations of bunched beams, a parameter of the space charge strength is a ratio 
of the maximal space charge tune shift to the synchrotron tune. When this parameter is large, 
the transverse oscillations are described by a one-dimensional integral-differential equation 
derived in Ref. [2] and reproduced here for the sake of convenience 

   

                                          (1) 

Here  and  are the eigenfunction and the eigenvalue to be found for the bunch 
transverse oscillations,  and  are longitudinal positions within the bunch, W and D are 
the dipole and quadrupole (or the driving and detuning) wakes, r is the normalized line 
density  

                                                                  (2) 

N is the number of particles per bunch, 

                                                               (3) 

with  as the classical radius, R as the average machine radius, β and γ as the relativistic 
factors and  as the bare betatron tune. The parameter ζ staying in the exponents of the 
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wake integral is a negated ratio of the chromaticity  and the slippage factor 

, i.e. . The symbol  stays for the space charge tune 
shift at the given position along the bunch τ, averaged over the both transverse action, see 
Ref. [2]. Thus, the effective space charge tune shift is proportional to the local line density 

                                                  .  (4) 

  For the transversely Gaussian bunch,  

                                                        (5) 

where  is the space charge tune shift at the bunch axis. The symbol  
stays for the average square of the particle longitudinal velocity , with time 
measured as the angle θ along the machine circumference, at the given position τ  

                                                   , (6) 

where f(υ,τ) is the longitudinal distribution function. For the longitudinally Gaussian 
distribution with the rms bunch length , the temperature function  is constant along the 
bunch 

                                                                  , (7) 

where  is the synchrotron tune.   

In general, the wake term  is a sum of single-bunch (SB), coupled-bunch (CB) wakes 
and the damper (G) terms 

                                                       (8) 

The single-bunch term  is described exactly as in Eq. (1), where only 
contributes due to the causality, and the integral is taken along the single-bunch interval 
only 

                        (9) 
The coupled-bunch term results from summations of the fields left by preceding 

passages of the bunches through the given position of the ring. This summation is especially 
simple when the bunches are equidistant. In this case, due to the symmetry, the offsets of the 
neighbor bunches, being taken at the same time, differ only by the phase factors  

                                                     .  (10) 

For M bunches in the ring,  
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                                                 , (11) 

where integer µ is a counter of the coupled-bunch modes. After that, we have to take into 
account that the given reference bunch sees the fields left behind by other bunches not at the 
same time, but certain time ago, proportional to the distance between the bunches. This 
leads to an additional time-related factor to be taken into account together with the space-
related phase factor: 

                                          (12) 
Remember that both time and space are measured as the angles of revolution, and the 

leading particles have higher coordinate than the following ones. From here, the coupled-
bunch contribution in Eq. (8) follows as a single-bunch integral   

                                        (13) 
For those cases when the wake function of the neighbour bunch does not change much 

along the reference bunch, i.e. the coupled-bunch wake is flat [4], 

                                                      (14) 
the result of summation in the right hand side of Eq. (13) does not depend on the specific 
positions s, τ within the bunches; thus, the effective coupled bunch wake  is a  constant 
which can be taken out of the integral 

                                                 (15) 

In principle, the damper term  in Eq. (8) is similar to the coupled-bunch one. If the 
feedback bandwidth is much smaller than the inverse bunch length, the damper takes just 
one parameter per bunch. This parameter can be chosen as an offset of the centre of mass, 
and the kick can be designed to be flat along the bunch. Then the damper term is 
represented similar to Eq. (15)   

                                                  . (16) 
If the damper is bunch-by-bunch, there is no coupled-bunch mode dependence in the 

feedback factor , i.e. .   
Similarly to the driving wake factor, Eq. (8), there is a certain coupled-bunch 

contribution in the detuning wake as well  
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                                                    (17) 
If the detuning wake is flat in the same sense as in Eq. (14), its coupled-bunch 

contribution is identical for all the particles, so it works as a constant quadrupole without 
any influence to the beam dynamics unless it leads to a dangerous resonance crossing. 

To be precise, the strong space charge approximation requires the effective space charge 
tune shift  to be much bigger than all other tune shifts: the synchrotron tune times the 
mode number, as well as the wake-related tune shifts, the rms chromatic tune shift and the 
rms octupolar tune shift.  

 Solution 2.15.3

To find the spectrum of Eq. (1), its eigenfunctions can be expanded over its zero-wake 
solutions  satisfying the following equation 

                                               (18) 

All the eigenfunctions  are orthogonal and can be normalized, so that 

                                               .  (19) 
For the Gaussian distribution, the spectrum of this equation has been described in 

Refs. [2,3]; similarly, it can be found for any potential well and distribution function.  
Expansion of the eigenfunction y(τ) over the no-wake set y0(τ), 

                                                      (20) 
with the amplitudes B to be found, with the following multiplication of Eq. (1) on 

 and its integration over the bunch length, leads to 

                                        . (21) 
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Here  is a diagonal matrix with the no–wake eigenvalues of Eq. (18) as the 
diagonal elements ,  and  are the matrices of the driving and detuning wakes in the 
basis of the no-wake modes of Eqs. (18) and (19)  

                                                    (22) 

                                  (23) 

                                                (24)   

                                       (25) 

                                       (26) 

 Damper Details 2.15.4

In case when the feedback takes something different from the centre of mass and its kick 
is not flat over the bunch, the damper matrix has to be modified with provided pickup and 
kicker functions  

                                          (27) 
Equation (21) is a standard linear algebra eigensystem problem which solution is 

straightforward as soon as the wake functions, the feedback properties, the potential well, 
and the beam distribution functions, longitudinal and transverse, are given. This equation 
allows computing the instability growth rates for fairly general situations when the Landau 
damping can be neglected. However, without Landau damping nothing can be said about the 
instability threshold, so the theory is significantly incomplete in this case. 

 Instability Thresholds 2.15.5
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For the strong space charge, Landau damping rates were estimated in Ref. [2]. 
Numerical simulations give a possibility for more accurate knowledge of the damping rates, 
with the numerical factors to be found with a good precision. This work has been started by 
V. Kornilov and O. Boine-Frankenheim several years ago with their PATRIC code [5,6] and 
has been joined recently by A. Macridin et al. with the Synergia program [7]. A good 
agreement with the analytical estimations of the intrinsic damping rates of Ref. [2] for no-
wake case gives a hope that the same general formulas will work well with wake fields too. 
Checking this, as well as the octupole–driven damping rates, with the Synergia simulations 
is planned at the Fermilab. Potential importance of the image charges and currents for 
Landau damping was shown in Refs. [5,6]. As soon as Landau damping rates are included 
in Eq. (21), theory of transverse stability of bunched beams at strong space charge would be 
complete.  

FNAL is operated by Fermi Research Alliance, LLC under Contract No. De–AC02–
07CH11359 with the United States Department of Energy. 
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 Introduction 2.16.1

There is a number of different transverse instabilities which have always been a limiting 
factor for the accelerator performance. Broad reviews and physical explanations can be 
found in the books of Ng [1], Chao [2], the Handbook of Accelerator Physics and 
Engineering [3], etc. The main effects of space-charge on the collective transverse 
instabilities can be best illustrated using a few basic phenomena in the transverse beam 
dynamics. These can be the eigenmodes of the coasting beam, the head-tail modes in the 
bunches, the coupling of the bunch head-tail modes which results in the transverse mode 
coupling instability. The implications for the coupled-bunch instabilities, e-cloud driven 
transverse instabilities, beam breakup, etc., follow from the basic principles. In this paper 
we try to focus on the limited aspects of the space-charge effect on the basic transverse 
eigenmodes. Another essential aspect of the space-charge effect is related to Landau 
damping which is discussed in the dedicated paper of this Newsletter. 

 Space-Charge Tune Shifts 2.16.2

Transverse space-charge effects can be described by the characteristic tune shift ΔQsc, 

  (1) 

which is the tune shift in the rms-equivalent K-V beam, defined as the absolute value of a 
negative tune shift. This means that, for example, the maximum space-charge tune shift for 
a Gaussian transverse profile is (−2×) of this value. For bunches, the relevant line density λ0 
is the peak density, normally in the bunch middle z=0. The ring equivalent radius is R=C/2π, 
rp is the classical particle radius, γ and β are the relativistic parameters, εtr 
=0.5( εx+[εxεyQx/Qy]1/2 ) is the effective transverse emittance, εx, εy are the normalized 
horizontal, vertical rms emittances. This is the expression for the horizontal plane, for the 
vertical plane it is in the analogous way. 

The parameter for the effect of space-charge in a bunch is defined as a ratio of the 
characteristic space-charge tune shift to the synchrotron tune, 

  (2) 

The beam parameters with q ≪ 1 imply weak space-charge, while q ≫ 1 means the strong 
space-charge regime. The space-charge parameter can strongly change during the 
synchrotron magnetic cycle due to changes in the beam energy, the transverse radius and the 
bunch length, and due to the evolving synchrotron tune. Figure 1 demonstrates on the 
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example of the SIS100 synchrotron how the space-charge parameter range can change 
during the ramp [4]. The tune shift ΔQsc decreases from the strong space-charge regime to a 
rather weak space-charge, while the bunch dynamics related parameter q stays in a narrow 
range, due to decrease of Qs. 

It is intuitive to assume that a higher intensity always means stronger space-charge. 
However, this also can be different. An example of measurements in CERN PS Booster in 
Fig. 2 shows [5] that a nearly linear dependence of the transverse emittance on the beam 
intensity can result in an almost constant space-charge tune shift. 
 

                                      
 
Figure 1: Space-charge tune shift Eq. (1) (the full lines, left axis) and the bunch space-charge 
parameter Eq. (2) (the dashed lines, right axis) for the nominal SIS100 heavy ion bunches along the 
ramp, from [4]. 
 

                                       
Figure 2: Space-charge tune shift Eq. (1) (the full line, left axis) and the horizontal effective 
emittance (the dashed line, right axis) in PS Booster in a dependence on the intensity, from [5]. 

 Coasting Beams 2.16.3

A transverse collective instability in one of the transverse planes can be regarded as a 
decoupled wave with the eigenmode x(z) = x0 exp(inz/R), with the mode index n, which 
gives the number of waves in the “snake” of the instability along the ring in the snapshot 
observation. The eigenfrequency is directly related to the mode index, Ω=(n-Q0)ω0, where 
ω0 is the revolution frequency. This is the slow wave, which is driven by a positive real 
impedance, while the fast wave is damped. Space-charge does not change the space- and the 
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time structure of the coasting beam instability. It was also confirmed in numerous numerical 
and experimental observations. 

A small shift can be caused by the inductive impedance of the image charges, which is 
sometimes considered as a part of space-charge [3]. In this case the coherent frequency is 
shifted to Ω=(n−Q0−ΔQcoh)ω0, and the real impedance is probed at this frequency. 

The most important effect of space-charge on the coasting beam instability is the loss of 
Landau damping. Many good reviews for this can be found in the CAS proceedings, for 
example [6]. There is a dedicated paper about Landau damping in this Newsletter, thus we 
only mention that space-charge shifts the incoherent spectrum away from the coherent line 
Ω, and Landau damping (due to momentum spread, nonlinearities, etc.) can become 
inefficient. 

Space-charge tune shift is different for every individual particle because of the 
transverse profile nonlinearity. This produces an additional tune spread, which changes 
Landau damping in the beam [7-12], even if there is no Landau damping due to nonlinear 
space-charge alone in a coasting beam. 

 Head-Tail Instability 2.16.4

The head-tail modes [13] represent the eigenmodes of the transverse oscillations in 
bunches. Although these instabilities are often observed in many different ring machines, it 
is still not straightforward to explain the time- and space structure of the most unstable 
modes [5, 21, 22] in observations. The effects of space-charge may sometimes play a role.  

It has been repeatedly assumed in experiments that space-charge does not cause visible 
modifications of the head-tail instability space structure. The usual reason for the distortions 
in comparison to the classical symmetrical standing-wave pattern is the strong driving 
impedance, which deforms the eigenmodes. For example, observations in the CERN PS 
Booster [5] show two instabilities at different times during the ramp, see Fig. 3 and Fig. 4. 
Both seem to be the k=3 head-tail mode. Both instabilities evolved in a similarly strong 
space-charge condition,  q≈100. But, while a slower instability in Fig. 3 (Im(ΔQ)/Qs=0.025) 
has well-pronounced nodes of the standing-wave structure, the faster instability in Fig. 4 
(Im(ΔQ)/Qs=0.13) is much strongly distorted. 
 

                                       
 
Figure 3: Transverse head-tail instability observed in CERN PS Booster in single-rf operation, 
Np=400x1010 ppb, the growth rate is Im(ΔQ)=0.036x10−3, from [5]. 
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Figure 4: Transverse head-tail instability observed in CERN PS Booster in single-rf operation, 
Np=370x1010 ppb, the growth rate is Im(ΔQ)=0.23x10−3, from [5]. 
 

The conclusion, that space-charge only weakly changes the space structure of the head-
tail eigenmodes, has also been confirmed in theoretical studies [14-16] and observed in 
particle simulations [18]. 

The effect of space-charge on head-tail modes is rather important and strong in the time 
domain. A good description for this effect is given by the "airbag" model [14], 
Re(ΔQ)/Qs=−0.5q±(0.25q2+k2)1/2. These space-charge tune shifts are illustrated in Fig. 5. 
Despite the simplicity of the model, it appeared as a useful tool of the bunch transverse 
dynamics. The model has been perfectly confirmed by particle tracking simulations for 
airbag bunches. Analytical studies and particle simulations indicated that this model gives 
reasonable predictions for the realistic (e.g. Gaussian) bunches [15-18]. The validity of this 
description for the space-charge effect has been also confirmed in experimental 
observations [19, 20]. 
 

                                      
 
Figure 5: Effect of space-charge on eigenfrequencies of the head-tail modes from the airbag 
theory [14].  

 
The increment of an instability can be calculated in the frequency domain, as a 

convolution of the bunch spectrum with the frequency function of the complex 
impedance [13]. This can also be done in the space domain, as a convolution of the mode 
eigenfunctions with the wake functions of the facility [2, 15]. For both methods, it is clear 
that the mode frequencies and eigenfunctions determine the resulting instability growth rate. 
The effect of space-charge on the eigenmodes saturates for strong space-charge, thus the 
instability growth rates saturate for strong space-charge as well [14, 15, 18]. Since the 
frequency shifts within the sidebands are relatively small, and the eigenmode modifications 
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due to space-charge are weak, the effect on the instability growth rates is rather weak, 
especially for strong space-charge. 

Similarly to the coasting beam case, an important effect of space-charge on instabilities 
is Landau damping [15-19]. This is a decisive factor of the transverse stability for beams 
with space-charge, and is considered in a dedicated chapter of the Newsletter. 

 Transverse Mode Coupling Instability 2.16.5

As soon as two head-tail modes cross in frequency under the effect of an impedance, a 
Transverse Mode Coupling Instability is excited [1, 2, 24]. Since space-charge has a strong 
effect on the frequencies of the head-tail modes, it can change the thresholds of the coupling 
and the instability. The effect of TMCI suppression has been found in theoretical and 
numerical studies [25, 15]. It is especially clear for the coupling of the k=0 mode with the 
k=−1 mode, because there is a strong difference in the space-charge effect on these two 
modes. Space-charge drives these two modes apart and a stronger wake (and thus, a higher 
beam intensity) is needed to make the coupling possible. This results in higher instability 
thresholds, or instability suppression. 

Some observations, for example in the CERN SPS [26], have suggested that there was 
only a weak effect of space charge on TMCI. A possible explanation is related to the finding 
that the TMCI in SPS was due to the coupling of the k=−2 mode with the k=−3 mode. 
Analytical modes and the airbag model (see also Fig. 5) indicate a nearly parallel 
dependence of eigenfrequencies of these modes on the space-charge strength. Thus, there 
can be a different effect of space-charge on specific mode coupling, under conditions of the 
driving impedance and beam- and machine settings. 
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 Introduction 2.17.1

The effects of impedance on beam dynamics can be studied with a variety of methods. 
For example, they can be analyzed (semi-)analytically by means of two-particle models or 
by using approximate solutions emerging from the Vlasov equation or circulant matrix 
models. The latter allow also to more accurately obtain the beam eigenmodes and 
eigenfrequencies in the presence of impedances when solved with numerical methods. And 
then, there are the macroparticle models which provide the greatest flexibility in the types of 
physical processes that can be modeled. These include non-linearities in both the transverse 
and longitudinal motion, complex feedback systems and other highly non-linear and 
dynamic processes. 

We will briefly describe some of the methods available and used today and show how 
they compare to each other. We will then show a few selected examples of beam dynamics 
studies in the presence of impedances and how modern simulation tools can be used to 
improve our understanding. 

 A Brief Overview over Contemporary Simulation Tools 2.17.2

 Frequency Domain Vlasov Solvers 2.17.2.1

Frequency domain Vlasov solvers are used to numerically solve the beam mode 
eigensystem in order to directly obtain the eigenmodes and the eigenvalues. In the Vlasov 
formalism, impedance induced wake fields are treated as a perturbation which in turn lead to 
a perturbation on top of an equilibrium distribution. To construct the eigensystem to be 
solved, the Vlasov equation is written down up to first order in all perturbations. Assuming 
purely dipolar wake fields, all transverse degrees of freedom can be eliminated. An 
expansion of the remaining perturbation term in the longitudinal degrees of freedom then 
leads to the eigenvalue problem: 

                                  �Ω − 𝜔𝜔𝛽𝛽 − 𝑙𝑙 𝜔𝜔𝑠𝑠�𝑎𝑎𝑙𝑙𝑏𝑏𝑘𝑘𝑘𝑘 = ∑ 𝑎𝑎𝑙𝑙′𝑏𝑏𝑘𝑘′𝑙𝑙′𝑀𝑀𝑘𝑘𝑘𝑘′,𝑙𝑙𝑙𝑙′𝑘𝑘′,𝑙𝑙′ .   (1) 

Here, Ω is the complex tune giving the coherent tune shift and the rise time of the respective 
eigenmodes (𝑘𝑘, 𝑙𝑙), thus characterizing the beam stability, and 𝜔𝜔𝛽𝛽  and ωs are the betatron 
and synchrotron frequencies, respectively. 𝑀𝑀𝑘𝑘𝑘𝑘′,𝑙𝑙𝑙𝑙′  is the interaction matrix described in 
detail in [1]. This equation resembles an eigenvalue problem that can be diagonalized to 
obtain the eingenmodes and the eigenfrequencies of the perturbation. There are several 
codes available to solve it [2, 3, 4]. The modern ones also include feedback systems in the 
special form of an impedance. The code DELPHI [4] uses an expansion in Laguerre 
polynomials which provides certain advantages in the convergence of the solutions and for 
the implementation of automated convergence checks. 

Roughly speaking, when neglecting mode coupling, the interaction matrix corresponds to 
the effective impedance, such that [1]: 
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                  𝑀𝑀 ∝ (𝑍𝑍1
⊥)𝑒𝑒𝑒𝑒𝑒𝑒 =

∑ 𝑍𝑍�𝜔𝜔′�ℎ𝑙𝑙�𝜔𝜔′−𝜔𝜔𝜉𝜉�𝑝𝑝

∑ ℎ𝑙𝑙�𝜔𝜔′−𝜔𝜔𝜉𝜉�𝑝𝑝
, 𝜔𝜔′ = 𝑝𝑝𝜔𝜔0 + 𝜔𝜔𝛽𝛽 + 𝑙𝑙𝜔𝜔𝑠𝑠, 𝜔𝜔𝜉𝜉 = 𝜉𝜉 𝜔𝜔𝛽𝛽

𝜂𝜂
.  (2) 

Here, 𝑍𝑍 is the impedance, 𝜔𝜔0 the revolution frequency,  𝜉𝜉 the chromaticiy and 𝜂𝜂 the slippage 
factor. For analytical estimations, where the system is not strictly diagonalized, one often 
makes an educated guess on the eigenmodes  ℎ𝑙𝑙(𝜔𝜔′) assuming that they diagonalize the 
problem reasonably well, and uses these to compute the effective impedance and thus the 
complex tune shifts [1, 5]. 

 Circulant Matrix Models 2.17.2.2

Impedances are typically computed only up to leading order, generating dipolar and 
quadrupolar wake fields. Then, all the involved forces are linear which makes matrix 
formalisms a natural choice to study beam stability. To describe the beam interaction with 
wake fields in the presence of betatron and synchrotron motion, correctly taking into 
account the synchro-betatron coupling generated via the wake fields, circulant matrix 
models have proven to be extremely powerful [6, 7]. They rely on a similar discretization of 
the longitudinal phase space as is done for Vlasov solvers, i.e. using polar coordinates. The 
full transverse dynamics is then described via a linear one-turn-map expressed by the 
matrix: 

                                                        𝑀𝑀 = 𝑆𝑆0 ⊗ 𝐵𝐵 ⊗ 𝐶𝐶𝑤𝑤,  (3) 
with 

𝑆𝑆0 = 𝕀𝕀𝑁𝑁𝑟𝑟 ⊗ �𝑃𝑃𝑁𝑁𝑠𝑠�
𝑁𝑁𝑠𝑠𝑄𝑄𝑠𝑠 , 𝑃𝑃𝑁𝑁𝑠𝑠 = �

0 1   0
 0 1   
  ⋱ ⋱  
1   0 1

�, 

 
𝐵𝐵 = 𝑤𝑤(𝑧𝑧, 𝛿𝛿)𝐵𝐵0(𝑧𝑧, 𝛿𝛿), 

 

[𝐶𝐶𝑤𝑤]𝑖𝑖𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧

�
1 0

� 𝑊𝑊𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑘𝑘)
𝑘𝑘

1� , if 𝑖𝑖 = 𝑗𝑗

�
0 0

� 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑘𝑘)
𝑘𝑘

0� , if 𝑖𝑖 ≠ 𝑗𝑗

. 

The one-turn-map is constructed via tensor products, the final dimensionality being given 
as  dim(𝑀𝑀) = 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑠𝑠 , with 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑  the number of degrees of freedom in the 
transverse plane (typically 4), and 𝑁𝑁𝑟𝑟 and 𝑁𝑁𝑠𝑠 as the number of rings and slices used for the 
discretization, respectively. 𝑆𝑆0 is a permutation matrix describing the synchrotron motion, 
𝑤𝑤(𝑧𝑧, 𝛿𝛿)𝐵𝐵0(𝑧𝑧, 𝛿𝛿) is the distribution weighted betatron motion over one turn for a given cell 
element and can contain chromatic effects via the dependency on the longitudinal 
coordinates. And, finally, 𝐶𝐶𝑤𝑤  contains the coupling of the cells via the dipole and 
quadrupole wake fields 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑊𝑊𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞, respectively. 

The eigenmodes and eigenfrequencies can be computed easily, again, by diagonalizing 
the obtained one-turn-matrix. With a systematic expansion in dimensions, multi-bunch 
effects can be added in a straightforward manner. The formalism allows additional inclusion 
of further linearized forces such as the ones introduced by long-range and head-on beam-



 179 

beam effects. In that sense it provides a highly efficient way of computing multi-bunch or 
even multi-beam effects as long as all forces are linear. At the same time, however, this is 
also one of the main limitations as any non-linear forces are excluded. This means that for 
example Landau damping cannot be modeled. 

 Macroparticle Tracking Codes 2.17.2.3

Macroparticle models provide the most flexible way of implementing physical effects in 
computer simulations. Very little abstraction is needed as the particle system along with the 
external and internal forces are directly mapped to the computer system via the complete 
and explicit implementation of the equations of motion. The basic idea is that a cluster of 
neighboring physical particles can be numerically represented by its center of mass 
dynamics as a single macroparticle. If the physical particles are close enough to each other 
and collision effects are neglected this is a valid approximation. This dramatically reduces 
the number of degrees of freedom and makes the modelling of realistic particle systems 
computationally accessible. 

The equations of motion are integrated numerically in that each macroparticle is 
propagated in small time steps according to the equations of motion. Here, in principle any 
effect that can be described in terms of equations of motion can be included. They can be 
external electromagnetic fields as well as collective forces from either the same or from 
another macroparticle system. Highly non-linear and time-dependent fields, such as the ones 
encountered when modeling electron cloud interaction, as well as complex feedback or 
feedforward systems can be integrated. The price to pay for the enhanced flexibility is the 
increase in the requirements for computational power as little approximations are made and 
the full set of equations of motion needs to be solved for a macroparticle system that can 
contain several millions of macroparticles. Moreover, solving the equations of motion takes 
place in time domain and the complex tune shift can only be accessed indirectly in a post-
processing step. The real part is extracted from a frequency analysis, while the imaginary 
part is obtained by fitting rise times. Hence, to access slow rise times, tracking may need to 
be performed over millions of turns. 

By varying the time step interval and the macroparticle number one can check the 
convergence and thus the potential validity of the solution. To obtain full confidence in the 
obtained solutions, typically different codes using different approaches, such as the ones 
described here, are used to benchmark results against each other. This is used 
complementary to the ultimate benchmarks which come from machine observations. 

 Benchmarking for Transverse Mode Coupling Instability in the SPS 2.17.3

Using the three beam dynamics models introduced in section 2.16.2 above, the coherent 
mode spectra are evaluated and compared to one another. The codes used are the Vlasov 
solver DELPHI [4], the circulant matrix model BimBim [6] and the macroparticle tracking 
code PyHEADTAIL, all of which are developed at CERN. 
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The Transverse Mode Coupling Instability (TMCI) in the Super Proton Synchrotron 
(SPS) at CERN serves as an excellent use case to study different accelerator beam dynamics 
models. To obtain clear results, the SPS impedance model is approximated by only a 
broadband resonator. It is worth mentioning that even with such a simple model, one 
manages to reproduce the main observations made in the machine [8]. The results from 
simulations are given in Fig. 1 and show the intensity-dependent mode spectra and the tune 
shifts induced by the presence of the impedance. The overlay of the mode spectra obtained 
with DELPHI, BimBim and PyHEADTAIL shows a very good agreement between the three 
approaches. The tune shifts are reproduced with all the models and the mode couplings 
occur at the same intensities. Some small differences are currently under investigations. 

 Examples of Simulations and Use Cases 2.17.4

We will show two examples of use cases for studying impedance induced instabilities 
and damping mechanisms which involve modern simulation techniques. Both rely on an 
accurate modeling also of the synchrotron motion. The first example shows Landau 
damping in the LHC achieved in two different fashions. Using the LHC impedance model, 
instabilities observed at 3.5 TeV can be reproduced in simulations. These instabilities are 
then shown to be mitigated using the installed Landau octupoles. The same instabilities can 
also be mitigated by means of an rf quadrupole which introduces a betatron tune spread via 
the longitudinal action. The second example shows the impact of a multi-harmonic rf 
system on the transverse mode coupling instability in the HL-LHC. Finally, the interplay 
with a bunch-by-bunch damper on the same type of instability is briefly discussed. 

 Stabilization from Incoherent Betatron Tune Spread 2.17.4.1

One successful stabilizing mechanism for the so-called slow head-tail instabilities [1] is 
the effect of Landau damping [9]. It is present when there is a spread in the betatron 

Figure 1: Mode spectra for the SPS obtained for a broadband resonator impedance with 
DELPHI (green), BimBim (red) and PyHEADTAIL (grey). 
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frequency, or tune, of the particles in a bunch. A necessary, though not sufficient, condition 
for Landau damping is that the real part of the complex coherent tune shift ΔΩ, induced by 
the impedance, lies within the incoherent tune spread of the beam. The details of the 
stabilizing mechanism are e.g. discussed in [1] and references therein. 

The incoherent betatron tune spread results from non-linearities in the machine, e.g. 
space-charge forces, beam-beam interactions at collision, etc. In addition, they are often 
introduced by design through dedicated elements. The tune spread is produced through 
detuning with amplitude, i.e. a dependence of the betatron tunes (𝑄𝑄𝑥𝑥

𝑖𝑖 , 𝑄𝑄𝑦𝑦
𝑖𝑖 ) on the action 

(𝐽𝐽𝑥𝑥
𝑖𝑖 , 𝐽𝐽𝑦𝑦

𝑖𝑖 , 𝐽𝐽𝑧𝑧
𝑖𝑖 )  of a particle  𝑖𝑖 . In practice, dedicated magnetic octupoles, so-called Landau 

octupoles, have been successfully used for that purpose. They change the betatron tunes of a 
particle 𝑖𝑖 depending on its transverse actions (𝐽𝐽𝑥𝑥

𝑖𝑖 , 𝐽𝐽𝑦𝑦
𝑖𝑖 ), which is also known as detuning with 

transverse amplitude. A typical tune footprint generated by magnetic octupoles is shown in 
Fig. 2, left. The stabilizing effect from Landau octupoles has been studied extensively in 
experiments, simulations and using stability diagram theory [10, 11]. An example of a 
PyHEADTAIL simulation proving the stabilizing effect from magnetic octupoles is shown 
in Fig. 3, left. 

Alternatively to betatron detuning with transverse amplitude, one can introduce a 
detuning with longitudinal amplitude, i.e.  〈∆𝑄𝑄𝑥𝑥,𝑦𝑦

𝑖𝑖 〉𝑇𝑇𝑠𝑠 =  𝑓𝑓(𝐽𝐽𝑧𝑧
𝑖𝑖 ) , where  〈… 〉𝑇𝑇𝑠𝑠  denotes the 

average detuning over one synchrotron period  𝑇𝑇𝑠𝑠 . Such a detuning can be achieved for 
instance by means of a non-zero second-order chromaticity 𝑄𝑄𝑥𝑥,𝑦𝑦

′′ , where 

                        ∆𝑄𝑄𝑥𝑥,𝑦𝑦
𝑖𝑖 (𝑡𝑡) = 𝑄𝑄𝑥𝑥,𝑦𝑦

′′

2
𝛿𝛿𝑖𝑖

2,      and hence      〈∆𝑄𝑄𝑥𝑥,𝑦𝑦
𝑖𝑖 〉𝑇𝑇𝑠𝑠 = 𝑄𝑄𝑥𝑥,𝑦𝑦

′′

2
𝜎𝜎𝛿𝛿𝐽𝐽𝑧𝑧

𝑖𝑖 .  (4) 

𝛿𝛿𝑖𝑖 denotes the momentum error of particle 𝑖𝑖, and 𝜎𝜎𝛿𝛿  is the momentum spread. The averaging 
is done assuming linear synchrotron motion. Alternatively, a so-called rf quadrupole 
structure can be used, which is a dedicated rf cavity operating in a quadrupolar mode, 
therewith introducing a harmonic dependence of the betatron tunes along the longitudinal 
coordinate of the bunch: 

∆𝑄𝑄𝑥𝑥,𝑦𝑦
𝑖𝑖 (𝑡𝑡) ∝ cos � 𝜔𝜔

𝛽𝛽𝛽𝛽
𝑧𝑧𝑖𝑖(𝑡𝑡)�  ≈ 1 − 1

2
� 𝜔𝜔

𝛽𝛽𝛽𝛽
�

2
𝑧𝑧𝑖𝑖

2(𝑡𝑡) , hence  〈∆𝑄𝑄𝑥𝑥,𝑦𝑦
𝑖𝑖 〉𝑇𝑇𝑠𝑠 ∝ 1 − 1

2
�𝜔𝜔𝜎𝜎𝑧𝑧

𝛽𝛽𝛽𝛽
�

2
𝐽𝐽𝑧𝑧

𝑖𝑖 ,  (5) 

where 𝜔𝜔 is the rf frequency, 𝛽𝛽𝛽𝛽 the particle speed, 𝑧𝑧𝑖𝑖 the longitudinal position, and 𝜎𝜎𝑧𝑧 the 
rms bunch length. The equations are valid under the assumptions of linear synchrotron 
motion and given that 𝜎𝜎𝑧𝑧 ≪  𝛽𝛽𝛽𝛽/𝜔𝜔. The two methods are discussed in more detail in [12]. 

Up until now, betatron detuning with longitudinal amplitude has not been deliberately 
employed as a means of stabilization in real machines. However, with the planned upgrade 
from LHC to High Luminosity LHC (HL-LHC), or the Future Circular Collider (FCC), it 
has gained more interest and is under extensive study, both theoretically and experimentally. 
The reason is that compared to detuning with transverse amplitude, detuning with 
longitudinal amplitude can be much more efficient, since in machines of this type, the 
longitudinal action spread is by orders of magnitude larger than the transverse ones [13]. 
Moreover, for reasons of stability in the longitudinal plane, the longitudinal emittance and 
thus the longitudinal action spread is held constant along the energy ramp, while the 
transverse action spread suffers from adiabatic damping. Consequently, the incoherent tune 
spread can be generated more easily by means of a dependence on  𝐽𝐽𝑧𝑧 . A typical tune 
distribution introduced by 𝑄𝑄𝑥𝑥,𝑦𝑦

′′  is shown on the right hand side of Fig. 2 for comparison to 
that obtained from magnetic octupoles. There are two major differences. First, the tune 
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footprint from 𝑄𝑄𝑥𝑥,𝑦𝑦
′′  shows a full correlation between 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑦𝑦 , since there is only one 

independent variable 𝐽𝐽𝑧𝑧 causing the detuning. Second, the projection histograms reveal an 
asymmetry for the incoherent tune distributions for detuning with longitudinal amplitude. 
The latter may have consequences on the stabilizing effect and is currently under study. 
Nevertheless, the numerical proof-of-principle for Landau damping from detuning with 
longitudinal amplitude has been achieved with the PyHEADTAIL macroparticle tracking 
code and was presented in [12, 14]. 

The main result is summarized in Fig. 3, where an LHC weak head-tail instability in the 
horizontal plane observed at 3.5 TeV is suppressed by means of Landau damping once with 
magnetic octupoles (left) and once with an rf quadrupole (right). The required current in the 
LHC Landau octupoles is in good agreement with experiment and stability diagram 
theory [10]. 

 Impact of Multi-Harmonic Rf Systems and Transverse Damper on 2.17.4.2
TMCI 

The HL-LHC impedance leads to a transverse mode coupling instability at sufficiently 
high intensities. Although the instability threshold is well beyond the design value, it is 
worth studying this threshold in order to assess the available margin. The particular features 
of the HL-LHC impedance results in a coupling of modes 0 and -1 and a rough scaling law 

Figure 3: LHC at 3.5 TeV. Horizontal weak head-tail instability suppressed thanks to Landau 
damping. Left: Using LHC magnetic octupoles. Right: With an rf quadrupole. 𝒃𝒃(𝟐𝟐) denotes the 
quadrupolar strength of the cavity in magnetic units. 

Figure 2: Simulated tune footprints caused by detuning with transverse (magnetic 
octupoles, left) and longitudinal (second-order chromaticity, right) amplitude. 
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for the TMCI intensity threshold described as 𝐼𝐼𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∝ 𝜎𝜎𝑧𝑧 𝑄𝑄𝑠𝑠 [15], where 𝜎𝜎𝑧𝑧 is the rms 
bunch length and 𝑄𝑄𝑠𝑠 is the synchrotron tune. 

A multi-harmonic rf system is studied as a possible option for HL-LHC to enhance 
Landau damping in the longitudinal plane. This will change the bunch lengths as well as the 
synchrotron tune spectrum and will therefore have an impact also on the transverse stability. 
To model the beam dynamics consistently in all three planes, macroparticle models again 
provide the most straightforward and flexible way. Figure 4 shows the synchrotron tune 
spectrum obtained with a PyHEADTAIL simulation running with a single 200 MHz rf 
system and compares it to a combined 200 and 400 MHz system operated in bunch 
shortening and bunch lengthening mode, respectively. 

Figure 5 shows the impact of the different operating modes on the TMCI threshold. It 
becomes clear that from the TMCI point of view, bunch shortening mode is the most 
favourable due to the strongly enhance synchrotron tune. 

In a final example, a bunch-by-bunch damper is added to the simulation in an attempt to 
entirely mitigate the TMCI. As illustrated in Fig. 6, the bunch-by-bunch damper 
successfully mitigates the dipole component of the motion and moves the TMCI threshold. 
However, it also modifies the impedance and, with its limited bandwidth, excites a mode 1 
type head-tail motion even below the TMCI threshold. It is likely linked to the limited 
bandwidth and a feedback system with a larger bandwidth could potentially overcome this 
limitation. Feedback systems of this type are currently being investigated in simulations [16]. 

Figure 4: The synchrotron tune distribution evaluated from macroparticle simulations for 
different configurations of a double harmonic rf system. 
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2.18 Beam-Based Longitudinal and Transverse Impedance/Instability 
Measurements  
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 Introduction 2.18.1

The wake function of an accelerator device is defined as the integral along the full 
electromagnetic length of the device of the electromagnetic force generated by a point 
charge going through the device at the speed of light and acting on a witness point charge 
placed at a distance z from the source. For the longitudinal plane, both source and witness 
are assumed to be traveling on axis – usually defined by the symmetry axis of the device, or 
by the closed orbit trajectory when the device is placed in an accelerator. For the transverse 
plane (horizontal and vertical), one has to consider offsetting either the source particle 
(dipolar wake) or the witness particle (quadrupolar wake) by an arbitrarily small amount, 
and redefine the wake as the electromagnetic force normalised to the given offset. The beam 
coupling impedance is the Fourier transform of the wake function (additionally multiplied 
by the imaginary unit i in the case of the transverse impedance) and therefore describes the 
same type of interaction in the frequency domain. Note that, due to the normalisation to the 
offset in the definitions, transverse wakes/impedances have an additional m-1 in the 
dimensions with respect to their longitudinal counterparts. Due to the validity of 
superposition and if one assumes that adjacent devices can be considered 
electromagnetically decoupled, the beam coupling impedance of a sequence of devices turns 
out to be a simple weighted sum of the beam coupling impedances of the single devices. 
The weights are given by the optical beta functions at the locations of the devices for the 
horizontal and vertical impedances, while they are just unitary for the longitudinal 
impedances. A full accelerator ring can be described through a global beam coupling 
impedance, which represents the beta function weighted sum of the beam coupling 
impedances of its individual components in the transverse plane and their simple sum in the 
longitudinal plane (see Section 2.9). While wake functions are widely used in macroparticle 
simulations to express the driving terms representing the electromagnetic interaction of the 
beam in the equations of motion of the single macroparticles, beam coupling impedances 
are commonly used to describe electromagnetically single devices and make comparative 
studies. Furthermore, since analytical models usually solve the beam equations in frequency 
domain, global or individual beam coupling impedances can also be fed in handy formulae 
to estimate quantities like power loss, synchronous phase shift, betatron and synchrotron 
tune shifts and instability/damping rates in controlled operating conditions. Beam coupling 
impedances of single devices can be measured either in a laboratory prior to their 
installation in a machine (see Section 2.8) or with beam directly in the accelerator in which 
they are installed, using specific local techniques, some of which will be shortly addressed 
in one of the next subsections. The global beam coupling impedance of an accelerator can 
be estimated using techniques based on direct global beam observables, like the quantities 
listed above, for which simplified analytical expressions exist. Different techniques have to 
be used to estimate separately the real and the imaginary parts of the impedance, while 
different frequency ranges can be probed according to the beam parameters used in the 
measurement, as will be explained in this chapter at a later stage. 

mailto:Giovanni.Rumolo@cern.ch
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In the following subsections, we will solely focus on the review of a subset of the most 
common existing techniques to measure the beam coupling impedance of a full accelerator 
ring based on global beam measurements. However, it is worth mentioning briefly at this 
stage that there exist also techniques to estimate the impedance of single components with 
beam. Here are some examples: 

• Differential global measurements can be used for elements that can be moved in 
and out, like collimators, scrapers, experimental insertions, movable diagnostics, 
or in-vacuum undulators. The contribution to the impedance given by these 
elements in their ‘in’ position can be evaluated by difference measuring the 
global impedance of the ring when they are retracted and when they are inserted.  

• Global impedance measurements can also be made in the same beam conditions 
before and after the installation of a certain element into an accelerator ring. This 
provides a direct estimation of the impedance of the element installed. For both 
this case and the case above, this type of measurement is possible only if the 
relative contribution of the device under test to the global impedance of the ring is 
high enough to be detectable within the accuracy of the measurement. 

• Another technique that has been attempted in many accelerators is the transverse 
impedance localisation through the measurement of the shift of the phase advance 
between successive beam position monitors with intensity. This method is 
expected to provide information about the detailed breakdown of the total 
impedance of a machine over its elements and identify at least the most 
significant contributors. 

• The longitudinal impedance of a certain element can be directly estimated if the 
beam induced heating of this element can be measured. This is usually the case 
for devices like ferrite kickers, whose temperature is monitored to prevent them 
from overheating and reaching the Curie temperature, or cold vacuum chambers 
or pieces of equipment, e.g. in superconducting magnets (like the LHC beam 
screen) or superconducting RF cavities.  

It should be noted that in many cases the impedance model of a device or a machine is 
also built independently via electromagnetic simulations and/or bench measurements 
(ideally, already in the design phase of the accelerator to predict its perfomance), and then 
simply validated through beam based measurements. For completeness, in the next sections 
we will always illustrate selected applications of the various methods to running 
accelerators. 

 Transverse Impedance Measurements with Beam 2.18.2

 Tune Shifts with Intensity and Instability Growth Rates with 2.18.2.1
Chromaticity 

The kinetic theory based on the solution of the Vlasov equation can be applied to a single 
bunch under the effect of a dipolar transverse wake/impedance and the evolution of the 
bunch distribution function in phase space can be resolved resorting to mode decomposition. 
In particular, it can be demonstrated that, for sufficiently low intensity values, any coherent 
transverse oscillation of a single Gaussian bunch circulating in a given machine can be 
decomposed into an infinity of modes, whose frequencies are given by the following 
formula [1]: 
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                   (1) 
 
where l is the mode number, C is the circumference of the accelerator,  is the betatron 
frequency (i.e. the machine tune Qx,y multiplied by the revolution frequency ), 

 is the synchrotron frequency (i.e. the synchrotron tune Qs multiplied by the revolution 
frequency ), N is the number of particles in the bunch,  is the average beta 

function of the accelerator, γ is the relativistic factor, sz is the rms bunch length,  is 
the global transverse impedance of the machine,  are the spectra of the different 
modes of the Gaussian bunch, given by the following equation: 
 

                                                (2) 
 

 is defined by 
 
                                                      (3) 

 
 is the chromatic frequency defined by: 

 

                                                           (4) 
 

is the slippage factor of the accelerator, which depends on the momentum compaction 
factor α and the relativistic factor γ according to 
 

                                                                (5) 
 

With this convention,  is positive if the accelerator ring is operated below transition 

( ) and it is negative above transition. The modes given by Eq. (1) are called 
‘azimuthal modes’. In reality, for each azimuthal mode there exists also an infinity of ‘radial 
modes’, but this can be neglected in the regime we are considering. To be noted that the last 
fraction present at the RHS of Eq. (1), featuring at the numerator the weighted summation of 
the sampled transverse impedance multiplied by the bunch modal spectrum (shifted by the 
chromatic frequency), is usually defined as effective impedance Zeff and does not depend on 
frequency. 

From Eq. (1) we can derive two possible classes of observables: 
1) If the chromaticity is zero, the l=0 mode represents a pure centroid (rigid bunch) 
oscillation. Its frequency is purely real and depends solely on the imaginary part of the 
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impedance. The LHS of Eq. (1), divided by the revolution frequency, reduces to the 
coherent betatron tune shift of the bunch. It can be measured in practice by exciting 
the bunch (by means of a kick or continuous excitation) and determining the deviation 
of its tune, as obtained by Foutier analysing the turn-by-turn data acquired with a 
position pick up, from the nominal tune of the machine (zero intensity tune). This 
measurement can be repeated for different intensities and the measured slope 

 would provide direct information about the effective transverse 
impedance. It is important to point out here that the slope of the coherent tune shift 
with intensity is always negative because the summation at the numerator of the LHC 
of Eq. (1) reduces to i times a positive quantity (this can be demonstrated from the 
properties of the impedances). Physically, this means that the effect of an impedance 
on a bunch is always globally defocusing. Modes with l≠0 represent components of 
the bunch oscillation accounting for the relative dephasing between head and tail. 
These modes exist also in absence of chromaticity, as they are introduced by the 
synchro-betatron coupling due to the beam coupling impedance itself – and the 
formula above would provide their shift with intensity similarly to mode l=0. 
However, since they are usually very weak and difficult to detect, the shift with 
intensity of high order headtail modes is not a handy observable to make impedance 
estimations. In practice, these modes tend to become visible only for higher intensities, 
when Eq. (1) breaks down and adjacent modes tend to couple, giving rise to strong 
headtail instabilities. This will be covered to some extent in the next subsection. It is 
important to highlight at this stage that, although Eq. (1) was obtained by assuming in 
the model only the presence of a dipolar type of impedance, in reality the transverse 
impedance that can be inferred through the measurement of the coherent tune shift 
with intensity is what accelerator physisicts usually refer to as ‘generalised 
impedance’, i.e. the sum of the dipolar and quadrupolar components of the transverse 
impedance [2]. This has to be kept in mind when applying this method, as in most 
accelerators the quadrupolar component of the impedance is of the same order of 
magnitude as the dipolar component and its contribution to the tune shift is not 
negligible. This may result in either a significantly larger value of impedance with 
respect to what could be expected from a model based on dipolar impedances alone or 
in an almost zero impedance measured, as the quadrupolar component can have 
opposite sign with respect to the dipolar component and the two contributions to the 
coherent tune shift would therefore tend to cancel out. 
2) If chromaticity is nonzero, the pattern of the l=0 mode is associated with a headtail 
dephasing and the oscillation frequency of this mode is complex. One can see that the 
imaginary part of this complex number, which only depends on the real part of the 
transverse impedance, is positive (growth rate, which is the inverse of the rise time) if 
chromaticity is negative above transition energy. In a similar fashion, this mode will 
be also unstable for positive chromaticy if the accelerator ring is operating below 
transition. The rise time of this instability can be measured for different chromaticity 
values providing not only an estimation of the resistive part of the impedance but also 
providing information on its frequency spectrum, roughly scanned via the change of 
the chromatic frequency. Usually, this mode is quite strong and its rise time is a 
clearly measurable quantity. Modes with l≠0 are headtail oscillations that tend to 
become unstable in a complementary fashion with respect to the l=0 mode (i.e. with 
positive chromaticty above transition and with negative chromaticity below transition). 
This is certainly true with impedances of resistive wall type, while the situation is 
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more complicated with broad-band types of impedances and depends on the bunch 
length and resonance frequency of the broad band resonator. Measurements of the 
growth rates of these high order headtail modes, usually possible in presence of a 
strong resistive wall impedance, are quite difficult in other cases, because they have 
long rise times for low intensities and can be easily stabilised by other mechanisms 
(e.g. Landau damping). 

In the case of the growth rates of the headtail modes (of whatever order l), the 
mechanism that drives the instability is only linked to the dipolar impedance. As a 
consequence, the measurement can only reveal the real part of the dipolar component of the 
impedance, while no information on the quadrupolar component can be inferred using this 
method.  

It is worth noting also that using short bunches (as low sz as possible) for the evaluation 
of Eq. (1) has the twofold benefit to i) produce potentially larger tune shifts with intensity 
and make the tune shift more easily detactable and freer from resolution errors; and ii) result 
in wider bunch spectra hl(ω), sampling the impedance over a larger frequency span. An 
important implication of this simple fact is that measurements with different bunch lengths 
can be conducted to potentially assess the high frequency content of the impedance 
spectrum. If increasing the bunch length results in a tune shift with intensity scaling like the 
inverse of the bunch length, one could deduce that the transverse impedance spectrum does 
not extend significantly beyond the bandwidth of the longest bunch used in the 
measurements; if, conversely, the relation is more complicated, information on the 
integrated impedance spectrum in the ranges of frequency progressively covered by the 
different bunch spectra can be found. 

Measurements of coherent tune shift with intensity for about constant bunch length 
carried out at the CERN Super Proton Synchrotron (SPS) in 2012 are displayed in Fig. 1 [3]. 
 

 
 
Figure 1: Fractional part of the horizontal (left) and vertical (right) tune as a function of the bunch 
intensity in the CERN SPS. The red crosses correspond to the measured points. 
 
In both plots shown in Fig. 1, we can see the measured tunes at the different intensities (red 
crosses) as well as the calculations using the existing SPS impedance model, built from 
summing up the contributions of the individual elements (at least those deemed to be most 
significant in the global impedance assessment). In the case of the vertical plane, in addition, 
the breakdown of the different contributions to the global impedance model of the machine 
has been explicitly included. Looking at the different lines, one can easily deduce that the 
magnetic kickers are responsible for about 40% of the total vertical impedance for the SPS 
(blue crosses), the vacuum chamber wall for 20% (blue to green crosses), other components 
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– e.g. Beam Position Monitors and RF cavities – for about 5% (green to black crosses), and 
the vacuum flanges and chamber discontinuities for 25% (black to cyan crosses). In total, 
the imaginary part of the vertical impedance of the SPS is known up to 90% and this is 
proven also by complementary measurements shown in the following.  

The SPS is also an ideal example to illustrate the importance of including the 
contribution of the quadrupolar impedance in the interpretation of the measurements of 
coherent tune shift with intensity for a certain machine. Figure 2 shows the expected tune 
shift with intensity in both the horizontal and vertical planes when the quadrupolar 
impedance of the SPS (as known from the global impedance model of the machine) is 
included in the calculation or not. 
 

 

 
 
Figure 2: Fractional part of the horizontal (top) and vertical (down) tune as a function of the bunch 
intensity in the CERN SPS. The blue lines show the expected tune shift with intensity if only the 
dipolar component of the impedance is included in the calculation. 

 
It is clear that, without the quadrupolar impedance, we would expect roughly similar tune 

shifts with intensity in both planes (i.e. ∆Qx,y/1011 ≈ 0.05). However, this value acquires an 
additional 30% in the vertical plane, while it is basically compensated in the horizontal 
plane, only due to the contribution of the quadrupolar impedance. The negative quadrupolar 
impedance in the horizontal plane comes from both the flat vacuum chambers, which 
occupy more than 60% of the full SPS circumference, and the magnetic kickers (for which 
the negative quadrupolar impedance is even larger in absolute value than the dipolar one). 

Another set of measurements conducted at the CERN SPS is that of the growth rates of 
the l=0 mode instability for negative chromaticity. Here single bunches with very low 
intensity (2 x 1010 p) were injected into the SPS with a kinetic energy of 25 GeV (γ =27.7), 
which is above the transition energy of the ring in both optics configurations for which these 
measurements were carried out (Q20 with γt =18 and Q26 with γt =23). By setting the 
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vertical chromaticity to different negative values prior to injection, the beam would become 
immediately unstable after injection and its rise time could be inferred from the turn-by-turn 
signal of a position pick up. To interpret these measurements, two different methods were 
considered: the first one based on the simple application of Eq. (1) with the real part of the 
impedance as from the global SPS impedance model and the second one based on the 
reproduction of the observed bunch dynamics by means of the HEADTAIL macroparticle 
code [4] fed with the wake function associated to the SPS impedance model. The advantage 
of the second method with respect to the first one was that it would include the possible 
effects of the nonlinear chromaticity model of the machine as well as the nonlinear 
longitudinal dynamics of the long bunch in its RF bucket. Figure 3 shows the measured and 
predicted growth rates in the Q20 (left) and Q26 (right) optics as a function of the chromatic 
frequency. Due to closer proximity to transition at injection in the Q26 optics, and therefore 
the lower value of the slippage factor η, obviously the explored frequency range is in this 
case could be over 3 times larger than in Q20 case. 
 

 
 
Figure 3: Growth rate of the unstable l=0 mode as a function of the chromatic frequency in the 
CERN SPS as measured (red), predicted analytically (green) and predicted with macroparticle 
simulations (blue) in both Q20 (left) and Q26 optics (right). 
 

The agreement between the measurements and the HEADTAIL simulations was found to 
be excellent for both sets of measurements. The analytical estimation seemed to reproduce 
closely enough the measured growth rates in the low frequency part, while a discrepancy by 
up to a factor two was found for higher chromatic frequency shifts. This could be ascribed 
either to the important influence of nonlinearities in this frequency range, or to the fact that 
the knowledge of the beam coupling impedance at higher frequencies is not accurate enough 
to be used in the analytical formula. This is because the impedance model of the SPS was 
mainly built by means of time domain electromagnetic simulations of the accelerator 
components and the impedance was then calculated in post-processing by Fourier 
transforming the wake functions. 

 Transverse Impedance Measurements with Beam: Transverse Mode 2.18.2.2
Coupling Instability (TMCI) Thresholds 

For higher bunch intensities, the validity of Eq. (1) breaks down. In this regime, radial 
modes should be also considered in addition to the azimuthal modes, and the shift of the 
different modes becomes highly nonlinear with the bunch intensity. Above a certain 
intensity, adjacent modes merge together, or couple, leading to violent headtail instabilities, 
known as Transverse Mode Coupling Instabilities (TMCI). The threshold intensity at which  
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this instability sets in has a direct relation with the global transverse impedance of the 
machine (dipolar plus quadrupolar). Short bunches (i.e. with a l=0 spectrum extending well 
beyond the impedance spectrum of the accelerator) usually become unstable when modes 0 
and -1 couple. This could be intuitively explained mainly for two reasons. First, Eq. (1) 
shows that the modes shift about like 2-|l| (the Gamma function at the numerator and the 
factorial at the denominator roughly cancel), therefore the modes shifting faster are 0 and ±1. 
Secondly, we know that the mode 0 shifts downwards, therefore it will couple with -1, 
which can shift upwards or downwards according to the shape of the imaginary part of the 
impedance. For long bunches, the situation is more complicated and usually it is higher 
order modes that lead to a strong coupling and instability. Reference [5] provides analytical 
formulae that can be applied to predict the onset of TMCI for a bunch under the effect of a 
broad-band resonator impedance (defined by the parameters: shunt impedance RT in Ω/m, 
resonance frequency ωr, and quality factor Q), in the limiting cases of short and long bunch 
(with respect to the inverse of the resonance frequency of the resonator): 
 

                                    (6) 
 

In the above equations, rp,e represent the classical radius of the proton or of the electron, 
according to whether we are considering a proton or a lepton machine. Written in a differen 
form, the equations above confirm in essence the empirical criterion that the frequency shift 
of the lowest headtail mode should remain lower than the synchrotron frequency, but it also 
adds that this criterion becomes unnecessarily pessimistic for long bunches. The frequency 
shift only needs to be larger than the synchrotron frequency multiplied by a certain ‘mode 
coupling coefficient’, which lies between one and two for short bunches but increases 
linearly with bunch length for longer ones. If one measures the TMCI threshold in a running 
machine, a quick estimation of the parameters of the broad-band resonator modeling the 
global machine impedance can be inferred from the above formulae. Different sets of 
measurements with different bunch lengths or longitudinal emittances can be used to make 
the estimation more robust. 

Alternatively to this approach, the mode shifting and coupling can be simulated with a 
full analytical Vlasov solver, e.g. MOSES [6] or DELPHI [7], or extracted from the results 
of macroparticle codes like HEADTAIL [4], and both the tune shift and the TMCI threshold 
can be then fitted at the same time. If the impedance model of the machine is complete, then 
the simulations will closely reproduce the observed behaviour. However, in most practical 
cases, a discrepancy will be found between the two and an additional broad-band resonator 
will have to be added to the impedance model to fit the measured data, providing an 
indication of the missing impedance. 

An example of application of this technique to investigate the impedance of a relatively 
new machine is the measurement of the vertical TMCI threshold at the ALBA synchrotron 
(Barcelona, Spain) [8]. Figure 4 shows the measured vertical coherent tune shift with single 
bunch intensity (red points in both plots), up to the point in which the TMCI sets in and 
beam losses occur, at an intensity value of 9.8 mA. The blue points represent the shift 
predicted with HEADTAIL simulations by assuming the ALBA impedance model as known 
(left plot) and after adding to it a broad-band resonator with RT =1.6 MΩ/m and ωr = 1 GHz. 
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The much better agreement of both the coherent tune slope and the TMCI threshold found 
with the additional broad-band resonator indicates that this resonator is a very reasonable 
estimation of the missing impedance in the model of the ALBA ring. 
 

 
 
Figure 4: Mode shift as a function of bunch intensity in ALBA as measured (red points) and 
predicted with macroparticle simulations (blue points) up to the measured TMCI threshold (9.8 mA) 
with both the bare impedance model of the machine (left) and by adding to it an additional broad-
band resonator (right). 
 

TMCI thresholds in a wide range of longitudinal emittances and for the two different 
optics configurations Q20 and Q26 were also measured for the CERN-SPS and reproduced 
with HEADTAIL simulations [9]. Figure 5 shows the measured boundary between stable 
and unstable region for a single bunch in Q26 optics in the plane of longitudinal emittance 
versus bunch intensity (left) and that simulated with the HEADTAIL macroparticle code 
using the beam parameters as in the measurement and the SPS impedance model (right). 
The level of accuracy to which the measurements are reproduced by simulations is yet 
another confirmation of the advanced knowledge of the transverse impedance of the 
machine, as was discussed in the previous subsection. 
 

  
 
Figure 5: Growth rate of the vertical instability for different bunch intensity/longitudinal emittance 
pairs as measured in the SPS (left plot, color code in label) and as simulated with the HEADTAIL 
code (right plot, color code in palette) in Q26 optics 
 

In the case of the Q20 optics, the detailed agreement between measurements and 
simulations is even more striking. In Fig. 6 the same type of plots as in Fig. 5 are displayed, 
but for the Q20 optics. In particular, in this case, the simulations are able to reproduce not 
only the onset of the strong TMCI at very high bunch intensity (red points in the left plot 
and light blue to red stripe in the right plot, e.g. > 4 x 1011 p/b for 0.35 eVs, which is the 
nominal value of longitudinal emittance for LHC-type beams), but also the island of weak 
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coupling specially pronounced for low longitudinal emittance values (blue points in the left 
plot, and region in lighter shades of blue in the plot of the simulations). 
 

 
Figure 6: Growth rate of the vertical instability for different bunch intensity/longitudinal emittance 
pairs as measured in the SPS (left plot, color code in label) and as simulated with the HEADTAIL 
code (right plot, color code in palette) in Q20 optics. 
 

Another impressive observation about the TMCI with Q20 is that the intra-bunch motion 
measured with a wide-band pick up is reproduced exactly in simulations for both types of 
instabilities, which are expected to come from the coupling of different modes. Figure 7 
shows measured and simulated intra-bunch traces for the weak instability (top row, showing 
a quasi mode -1 mode) and for the strong TMCI (bottom row). 
 

 

  
Figure 7: Intra-bunch vertical position signal measured by a wide band pick up on subsequent turns 
during the instability rise (left plots) for the weak (top) and strong instability (bottom). The 
corresponding simulated signals are plotted on the right side. 
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 Longitudinal Impedance Measurements with Beam 2.18.3

In equilibrium, the distribution of a particle bunch in the longitudinal plane is a function 
of the Hamiltonian H alone, assuming a potential well defined by the total voltage seen by 
each particle, i.e. the sum of the external and the induced voltage. Including the effect of the 
induced voltage, which is the convolution of the bunch line density by the longitudinal wake 
function, or the product of their spectra in frequency domain, leads to what is known as the 
effect of ‘potential well distortion’. By adding the induced voltage to the RF voltage in the 
linearized longitudinal equation of motion, one can find analytical expressions for both the 
single particle (incoherent) synchronous phase shift and the synchrotron frequency shift due 
to the impedance [10, 11]: 
 

 
  (7) 

 
 

In the equations above, Vrf is the applied RF voltage, ωs0 is the unperturbed synchrotron 
frequency, φs is the synchronous phase, h is the harmonic number of the RF system, Λn are 
the harmonics of the expansion in Fourier series of the line density λ(z), Z(ω) represents the 
longitudinal impedance of the machine. 

For a reactive impedance Im[Z(nω0)]/n which is constant over the stable bunch spectrum, 
the single particle synchrotron frequency shift can be rewritten as a function of the second 
derivative of the bunch line density at the bunch center in the form 
 

                                            (8) 
 

In this section we will discuss only the beam-based methods for the measurement of 
longitudinal impedances, which make use of observables related to synchronous phase shift 
and synchrotron frequency shift. Other methods exist, e.g. based on the measurement of 
bunch lengthening with intensity, instability thresholds, loss of Landau damping or 
spectrum of a debunching bunch, but they will not be addressed in this newsletter. 

 Incoherent Synchrotron Frequency Shift 2.18.3.1

The incoherent synchrotron frequency shift can be found for a bunch in equilibrium by 
measuring the distance 2m∆fs between positive and negative mth synchrotron sidebands of 
the longitudinal Schottky spectrum [12]. This method was used in both RHIC rings [13], 
where the dependence on intensity was obtained from the natural intensity decay during 
luminosity production. The parabolas were fitted to the top 30% of the averaged bunch 
profiles to find the second derivative of the line density. The results obtained by this method 
for the two RHIC rings, blue and yellow, which are very similar, differed by more than a 
factor three and the source of this difference is not clear. The quadrupole (m=2) line of the 
peak detected Schottky spectrum contains information about the particle distribution in 
synchrotron frequency [14] and can be used to observe the synchrotron frequency shift. The 
measurements of m = 2 line performed at bottom energy of the CERN LHC for two bunches 
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of similar bunch length and different intensity are shown in Fig. 8. As one can see the 
available frequency resolution of 0.2 Hz is not sufficient and only an upper limit on 
Im[Z(nω0)]/n could be obtained (< 0.2 Ω) [15]. This limit agrees with the current LHC 
impedance budget of 0.1 Ω. 

Another method, which can be used for estimation of the synchrotron frequency shift, 
when applied in the LHC, gave similar results. Eight bunches with intensities in the range 
(0.6 – 2.0) x 1011 and bunch length in the range (1.2 –1.4) ns were excited via cavity set 
point by phase modulation φ(t) =φ0 sin(2pfmodt) with modulation frequency fmod changing in 
steps of 0.1 Hz from the value above zero-intensity synchrotron frequency fs0 = 55.1 Hz. 
Dipole oscillations of different bunches were observed at excitation frequencies reaching the 
synchrotron frequency spread inside these bunches. The results are again in agreement with 
an expected maximum frequency shift of 0.11 Hz. Due to the finite length of this excitation 
(and therefore frequency bandwidth) a constant offset in synchrotron frequencies was also 
observed. To improve accuracy longer excitations were applied for shorter bunches 
(available at the LHC flat top). Finally, the LHC impedance (Im[Z(nω0)]/n = 0.09 Ω) could 
be estimated most accurately from the measurements of thresholds of the loss of Landau 
damping (for bunches with various lengths and intensities) due to the incoherent 
synchrotron frequency shift [15], but these results are not discussed in this paper. 
 

 
 
Figure 8: Quadrupole line of the peak detected Schottky signal, proportional to the particle 
distribution in synchrotron frequency, for two LHC bunches of Beam 1 with similar length of 1.4 ns 
(4s Gaussian fit) but different intensities between 0.1 and 1:1 x 1011 at 450 GeV/c (fs0 = 55.1 Hz). 
The difference 2δfs is below 1.0 Hz and δfs = 0.35 Hz is expected from the LHC impedance model. 

 Coherent Synchrotron Frequency Shift 2.18.3.2

The synchrotron frequency shift can also be measured from excited oscillations of 
bunches with different intensities N. In this case we are dealing with the coherent 
synchrotron frequency shift as well as with the incoherent spectrum since now the bunch 
spectrum consists of both stationary and oscillating components. The frequency of bunch 
oscillations can be presented in the form  
 
                                                (9) 

 
where ∆ωinc and ∆ωcoh are correspondingly the incoherent and coherent synchrotron 
frequency shifts. The two last terms in the equation above are defined by the two different 
effective impedances. In fact, while the incoherent frequency shift ∆ωinc is proportional to 
Im(Z0), the coherent frequency shift ∆ωcoh is proportional to [Im(Z)/ω]m

eff, where 
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                                                             (10) 

 

with ωpm=pω0+mωs. The spectral functions hm(ω) were defined in the previous subsection. 
For dipole oscillations (m = 1) the last two terms in the equation for the longitudinal modes 
of the single bunch oscillation frequency practically cancel each other (exactly for a 
parabolic bunch in a linear RF voltage). So for beam measurements we are left with 
quadrupole (m = 2) oscillations, which, for example, can be excited at injection into a 
mismatched RF voltage or by nonadiabatic increase of voltage. The frequency of bunch 
length (or bunch peak amplitude) oscillations can be found from fitting the measured 
oscillations with a sine-wave. The variation of bunch intensity allows the dependence of 
oscillation frequency on impedance to be estimated using the expression 
 
                                                            (11) 
 
where for Im(Z)/n=const the slope b is proportional to Im(Z)/n. Note that the slope b also 
strongly depends on bunch length (like 1/sz

3 for Im(Z)/n=const) and special care should be 
taken when performing the reference impedance measurements, as in the CERN SPS [16], 
by using bunches with similar bunch lengths and longitudinal emittances. Indeed single 
bunches injected into mismatched voltage at 26 GeV/c (above transition) have been used in 
the CERN SPS to evaluate changes in longitudinal inductive impedance since 1999, see 
Fig. 9 (left). The first significant reduction in the inductive impedance (the slope b) could be 
seen after shielding the ~900 pumping ports in 2000 (compare measurements from 1999 and 
2001) followed by impedance increase due to installation in 2003 and 2006 of kickers for 
beam extraction to the two LHC rings. Later the impedance of a few kickers was 
significantly reduced, but the effect was not measurable with beam anymore [16], mainly 
due to bunch length variation in measurements. Recently measurements of synchrotron 
frequency shift as a function of bunch length allow the frequency dependence of effective 
impedances to be studied as well, see Fig. 9 (right). Comparison of these measurements with 
particle simulations can serve as a good test of the impedance model of the ring. In the case 
of the CERN SPS this comparison reveals some missing inductive impedance 
Im(Z)/n~0.3 Ω [17]. The analysis also shows that for the SPS impedance measured using the 
quadrupole oscillations, the frequency shift is dominated by the contribution from the 
incoherent frequency shift. 
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Figure 9: Left: measurements of quadrupole frequency shift as a function of intensity (slope b) over 
few years in the CERN SPS following the impedance evolution of the ring. Right: recent 
measurements of the slope b in [Hz/1010] as a function of average bunch length. 

 Synchronous Phase Shift 2.18.3.3

Measurements of the synchronous phase shift as a function of intensity are often used for 
the evaluation of the resistive impedance of a ring [18]. The shift of the synchronous phase 
φs is defined by the expression 
 

                                                        (12) 
 
where U is energy loss per turn and per particle. The first equation in Section 2.17.3 
describes the phase shift of a single particle with a small synchrotron oscillation amplitude. 
In the same way as the energy loss of a given particle, this phase shift depends on the 
particle oscillation amplitude. Experimentally only the total energy loss of the whole bunch 
can be measured. The total energy loss normalised to the number of particles can be found 
by measuring the synchronous phase shift ∆φs at different bunch intensities. The measured 
dependence of energy loss on bunch length can be compared with that calculated from the 
known resistive impedances and the given bunch distribution. The energy loss of the whole 
bunch per turn and per particle can be found from the following expression 
 

                                      (13) 
 

The shift of the synchronous phase ∆φs can be measured from the distance between the two 
bunches in the ring or from the phase of beam signal relative either to the reference RF 
signal or to the signal from a probe in the RF cavity. When using the reference RF signal 
(sent from the power amplifier to the cavity) the energy loss due to the cavity fundamental 
impedance is included. The signal from the probe in the cavity contains information about 
the sum of applied RF voltage and beam induced voltage, so that in this case the beam-
loading effect will be excluded from the measured phase shift. Measuring the distance 
between a time reference, low intensity bunch, and a witness bunch with varied intensity 
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(see e.g., [19]) is similar to the use of the reference RF signal since the measured loss factor 
can be dominated by the contribution from the RF cavities. 

The measurements of synchronous phase shift done in the CERN SPS after the first 
impedance reduction using the RF reference signal [20] are shown in Fig. 10. Single 
bunches with variable intensity were injected in 4 different RF voltages to obtain the 
dependence of energy loss on bunch length. In the measurements st=sz/(βc), with β being 
the relativistic factor, varied in the range (0.6-0.9) ns so that impedances up to 1 GHz should 
be taken into account. Contributions to the normalised energy loss |U|/(N/1010) from 
different SPS impedances below 1 GHz (at the time of measurements) calculated for a 
Gaussian bunch are shown in Fig. 10 (left). As can be seen, in these measurements the 
energy loss was dominated by the loss in the fundamental impedance of the 200 MHz RF 
system (shunt impedance Rsh~4.5 MΩ, quality factor Q = 140) and the MKE kickers. 
Contributions due to the main impedance of the 800 MHz cavities, total Rsh = 1.94 MΩ and 
Q = 300, as well as the HOM of the 200 MHz RF system, with fr = 629 MHz, Q = 500 and 
Rsh = 604 kΩ are much smaller. The contribution to the energy loss from the resistive wall 
impedance is about 0.8 keV for a bunch with st = 0.6 ns and decreases like st

-3/2 for longer 
bunches. The measured and estimated total energy losses are presented in Fig. 10 (right) as a 
function of bunch length. 
 

 
 
Figure 10: Left: contribution to energy loss (keV) from different SPS impedances as a function of 
4sz bunch length. Right: Normalised energy loss (keV) calculated from the known SPS impedances 
(solid line) and measured from the phase shift (circles – measurement points, dashed line – their 
linear fit) for different bunch lengths. 

 
The bunch-by-bunch measurements of the beam phase relative to the measured RF phase 

(probe) were used in the CERN LHC to estimate the energy loss of the proton bunches due 
to the electron cloud. Very high accuracy, below one degree, is required to accurately 
measure the small shifts. To obtain reliable results the first 12 bunches were used as a 
reference to exclude other energy losses, from (short range) impedances. The required 
accuracy was achieved after corrections for systematic errors and data post-processing [15]. 
Comparison with simulations gives a good estimate of the e-cloud density, as is discussed in 
deeper detail in the section of this newsletter devoted to electron cloud. From 2015 this 
diagnostic tool is available in the CERN Control Center and used for evaluation of results of 
beam scrubbing of the vacuum chamber (see Fig. 12). 
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Figure 11: Bunch-by-bunch synchronous phase shift for similar bunches spaced at 25 ns before 
(left) and after (right) scrubbing of the CERN LHC. Measurements at 450 GeV/c flat bottom. 
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 Introduction 2.19.1

Beam transfer functions (BTF)s encapsulate the stability properties of charged particle 
beams [1,2]. In general one excites the beam with a sinusoidal signal and measures the 
amplitude and phase of the beam response. Most systems are very nearly linear and one can 
use various Fourier techniques to reduce the number of measurements and/or simulations 
needed to fully characterize the response. Schottky noise is associated with the finite 
number of particles in the beam. This signal is always present. Since the Schottky current 
drives wakefields, the measured Schottky signal is influenced by parasitic impedances.    

 Beam Transfer Functions 2.19.2

BTFs can be for longitudinal or transverse motion, for a single bunch or multiple 
bunches. In principle they are always the same with a sinusoidal drive yielding the phase 
and amplitude of the response. When there are no collective effects the BTF is relatively 
straightforward to calculate. One simply needs to get the response of a single particle and do 
appropriate averaging of the initial synchrotron and betatron coordinates. When space 
charge and or wakefields are present things get more interesting. There is a profound 
difference between coasting and bunched beams. Longitudinal coasting beam BTFs are 
effectively a homework problem. Transverse BTFs of coasting beams can be solved within 
the approximation of transverse forces that vary linearly [3].  This covers the important case 
of arbitrary wall wakes and space charge with a transverse KV distribution. The inclusion of 
wall induced frequency spread from octupolar fields is straightforward to include but the 
effects of nonlinear space charge forces have only been addressed in crude approximation. 
Of course one can always do simulations but the difficulties associated with numerical 
convergence can be significant.  

Transfer functions of bunched beams with collective effects are difficult to calculate. The 
author knows of no closed form solutions. Various ways to numerically solve for 
appropriate moments of the Vlasov equation have been developed but generally it seems 
that numerical simulations give the quickest, most reliable results, at least for bunches that 
are short compared to the circumference of the synchrotron [4]. In this case it is possible to 
use a relatively straightforward Fourier technique to obtain the BTF spanning an entire 
revolution line with only 2 independent simulations. The idea is quite simple. Suppose you 
have a bunch that is short compared to the radius of the accelerator so that the a signal at the 
revolution frequency, frev, has a small phase advance along the bunch. Then along the bunch 
an excitation at frequency f looks much like an excitation at frequency f+frev except for a 
slip in phase from turn to turn. So, one just calculates the impulse response function of the 
bunch from single turn kicks of sin(2πft) and cos(2πft) and employs linearity. Figure 1 
shows a simulation of the transverse beam transfer function [4]. 
 

mailto:Blaskiewicz@bnl.gov
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Figure 1: Transverse beam transfer function obtained from two simulations. While calculated for a 
bunched beam the resolution is intentionally low to suppress the synchrobetatron structure. 

This transfer function was obtained for a bunched beam below transition with a fractional 
betatron tune of 0.25 and a negative chromaticity. This broadens the sideband near -0.25 and 
leads to enhanced Landau damping of the unstable modes with n-Qβ >0. While this figure 
was made for a bunched beam the individual synchrobetatron lines have been smoothed 
over. When individual synchrobetatron lines are resolved the data become quite rich. 
Figure 2 shows the resistive part of the BTF measured at low frequency in the presence of a 
step wake potential (like long stripline beam position monitors) for various chromaticity 
values [4].  
 

                     
 
Figure 2: Low frequency transverse beam transfer function obtained from two simulations. This is a 
high resolution image showing the detailed synchrobetatron structure. 

The solid lines in the figure are from simulations while the crosses are from a solution of the 
Vlasov equation. The near perfect agreement suggests both techniques are accurate. It is 
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clear there is a rich behavior waiting to be measured and in fact many measurements have 
been done. See [5] for a good example. It is hoped that the new methods of calculation will 
allow for more and better understanding of parasitic impedances.  

 Schottky Signals 2.19.3

Schottky signals have been used to measure the broad band longitudinal impedance in 
RHIC. The technique is straightforward. In a stable beam the broad band impedance creates 
a potential well distortion that modifies the synchrotron frequency. By measuring the 
synchrotron frequency as a function of intensity one gets the broad band impedance.  There 
is one subtlety in this technique. Any measurement one makes is, by necessity, a 
measurement of a collective mode of the beam. This includes the self excited Schottky 
modes. If the center frequency of the Schottky signal is too low the coherent tune shift can 
be quite different from the estimated incoherent response. A toy model will illustrate the 
idea. Suppose we have N particles in the bunch and approximate the equation of motion for 
particle j as 
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where ω is the unperturbed synchrotron frequency, zj is the longitudinal position of particle j,  
and Δ is the small, coherent frequency shift. For an actual wake field the sum on the right 
would be over W(zj-zk) with the highly nonlinear wake W. Such a wake is easily used in 
simulations, but not analytically tractable.  Solving Eq. (1) yields 
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where 2πR=cT for our relativistic beam. Inserting Eq. (2) in Eq. (3) and defining φ=z/R,  
the current for a single value of m is 
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With the caveat, corresponding to subtracting the arithmetic means in Eq. (2), 
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The p=0 term in the sum of Eq. (4) has frequency ω and is the coherent mode in the toy 
model. Hence we need p and m to be large enough so that Eq. (5) has little effect. We also 
need the arguments of the Bessel functions to be significant. The data shown in Fig. 3 are 
the center frequencies of synchrotron lines measured in the yellow RHIC ring as a function 
of the central curvature of the current pulse [6]. The linear correlation, corresponding to the 
variation in synchrotron tune with beam current, is clear. Figure 4 shows the broad band 
impedance obtained from the slopes of the lines in Fig. 3. For p>2 there is a nearly constant 
value. The larger values at p=1 and 2 are ascribed to low lying collective modes, similar to 
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the p=0 mode in the toy model. The blue results in Fig. 6 assume the accelerator was stable 
during data acquisition. The green lines allow for a linear drift of the synchrotron tune with 
time. The differences are comparable to the error bars. 
 

                        
Figure 3: Measured synchrotron frequency shifts as a function of intensity for 12 synchrotron 
sidebands. 

                        
Figure 4: Broad band impedance needed to produce the slopes observed in Fig. 3. 

 Conclusions 2.19.4

Beam Transfer Functions and Schottky signals are useful to constrain both machine 
impedance and beam dynamics. BTFs can be simulated quite well allowing for a detailed 
comparison between model and measurement. Conversely, Schottky signals can be used to 
study the fields present when there are no large collective oscillations, greatly simplifying 
the analysis. Additionally, these measurements are made with stable beams allowing for 
adequate set up time and minimal beam loss. 
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 Introduction 2.20.1

Secondary electron emission in resonance with an alternating electric field can lead to 
avalanche electron multiplication. The underlying mechanism is called multipactor effect. 
Although desirable for some applications [1], it is usually associated with deleterious effects, 
such as voltage breakdown in radio frequency (RF) devices, outgassing, surface heating [2, 
3, 4].  

In the case of a particle accelerator operated with closely spaced bunches multipactor 
effects can occur in the beam chambers leading to the formation of so called Electron 
Clouds (ECs) with several negative effect on the machine performances [5, 6, 7, 8, 9]. EC 
effects have been observed in several accelerators all over the world, much more commonly 
in those operated with positively charged particles (e. g. positrons, protons, heavy ions), and 
are presently among the major performance limitations for high energy colliders, like the 
Relativistic Heavy Ion Collider (RHIC) in the USA [10], the KEKB electron positron 
collider in Japan [11], the DAΦNE electron positron collider in Italy [12] and, more recently, 
the CERN Large Hadron Collider (LHC) [13, 14, 15, 16].  

A qualitative picture of the EC buildup at a section of an accelerator operated with 
bunches of positively charged particles is sketched in Fig. 1. The circulating beam can 
produce electrons due to different mechanisms, e.g. ionization of the residual gas in the 
beam chamber or photoemission from the chamber’s wall due to the synchrotron radiation 
emitted by the beam. These are called “primary or seed electrons”. Seeds are attracted by 
the passing particle bunch and can be accelerated to energies up to several hundreds of 
electronvolts. When an electron with this energy impacts the wall, “secondary electrons” are 
likely to be emitted. The secondaries have energies up to few tens of electronvolts and, if 
they impact the wall with these energies, they are either absorbed or elastically reflected but 
cannot produce any secondary. On the other hand, if they survive until the passage of the 
following bunch they can in turn be accelerated, projected onto the wall and produce 
secondaries. This can trigger an avalanche multiplication effect, which builds up the EC 
during the passage of an entire bunch train.  

 Secondary Electron Emission  2.20.2

The Secondary Electron Emission process can be described through the Secondary 
Electron Yield (SEY) of the surface, which is defined as the ratio between the electron 
current impinging the wall and the corresponding emitted current, and is a function of the 
energy of the impacting electrons  

mailto:%20Principal.Author@myplace.org
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Figure 1: Schematic of the formation of an electron cloud in a particle accelerator (a similar sketch 
can be found in [17]). 

  (1) 

A typical SEY curve is presented in Fig. 2. Following the approach presented in [18, 19, 
20, 21, 22], this quantity can in turn be decomposed in two main components 

  (1) 

where δelas(E) and δtrue(E) correspond respectively to electrons which are elastically reflected 
by the surface and to the so called “true secondaries”. The dependence of the two 
components on the energy the impacting electrons in shown by the green and red curve in 
Fig. 2.  

We will call δmax the maximum of the SEY curve. This parameter is strongly dependent 
on the surface material, roughness and history and plays a key role in the EC buildup, as we 
will describe in Sec. 2.19.3. In the following it will be often referred to simply as the “SEY 
parameter”. A typical energy distribution of the true secondary electrons is shown in Fig. 3. 

 

        
Figure 2: Left: SEY curve for δmax=1.7 - elastic component δelas(E), “true secondary” component 
δtrue(E), and total δ(E). Right: zoom on the low energy region. 
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Figure 3: Energy distribution of the true secondary electrons. 

 The EC Buildup Mechanism 2.20.3

Let us consider a train of uniformly spaced bunches passing at a certain section of an 
accelerator, which does not contain any electron before the passage of the first bunch. Let n0 
be the number of primary electrons generated by a single bunch passage and ni the number 
of electrons in the chamber at the instant ti right before the passage of the i-th bunch. We 
can define δeff, i such that 

  (3) 

where δeff, i ni is the number of electrons generated by the interaction of the EC with the 
chamber’s wall (such a quantity can also be negative, when the wall acts like a net electron 
absorber). The quantity δeff,i can be directly related to the SEY of the chamber’s surface δ(E) 
and to the energy spectrum of the impacting electrons, since we can write 

  (4) 

where 

  (5) 

is the instantaneous energy spectrum of the electrons impinging the wall. If we define the 
normalized energy spectrum for the i-th bunch passage as 

  (6) 

we can rewrite the Eq. (4) as 
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Figure 4: SEY curve for different values of the δmax parameter. The values for which the material 
behaves as electron absorber or emitter are plotted in blue and red respectively.  

 

  (7) 

and, comparing against Eq. (3), we obtain 

  (8) 

The meaning of this equation is quite intuitive: the SEY curve can be divided in two regions, 
one in which δ(E) < 1 and the wall acts as an electron absorber, and the other in which δ(E) 
> 1 and the wall acts as an electron emitter. The two regions are shown in blue and red 
respectively in Fig. 4, for different values of δmax. Looking at Eq. (8) we observe that, if the 
electron flux φi(E) lies mainly in the δ(E) < 1 region, then the integral is negative, δeff, i < 1, 
and the chamber’s wall behaves like a net absorber. On the other hand, if φi (E) lies manly in 
the δ(E) > 1 region than the integral is positive, δeff,i > 1, and the chamber’s wall behaves 
like a net emitter. 

If the electrons do not influence each other’s trajectory, which means that the Coulomb 
forces between them are negligible, then we can assume that φi (E) does not depend on the 
bunch index 

  (9) 

and hence the same holds for δeff, i 

  (10) 

In these conditions by recursively applying Eq. (3) we find 
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  (11) 

From this expression we can recognize two different regimes. When δeff < 1 we observe 
that, for sufficiently large i, ni tends to the constant value 

  (12) 

which is essentially an equilibrium condition between primary electron production and 
electron absorption at the chamber’s wall. We will therefore call this condition “seed 
accumulation regime”. 

When δeff > 1 we observe an exponential growth of the number of electrons in the 
chamber, i.e. for sufficiently large i: 

  (13) 

which is indeed an avalanche multiplication of the electrons driven by the secondary 
emission. We will therefore call this condition “multipacting regime”. In the seed 
accumulation regime, a significant amount of electrons can be accumulated only if primary 
electron production mechanisms are very strong, as it can be the case of synchrotron 
radiation in high-energy lepton machines, while typically for hadron accelerators sizable EC 
effects are observed only in the multipacting regime.  

Equation 13 seems to suggest that the number of electrons can grow indefinitely. In fact, 
other mechanisms intervene to limit the number of electrons. To illustrate these effects, we 
use the PyECLOUD code to simulate the EC buildup in the very simple case of a cylindrical 
chamber (radius 22 mm, i.e. the horizontal size of the LHC arc beams screen) without any 
externally applied magnetic field, with nominal LHC bunch parameters, and a uniform train 
of 25 ns spaced bunches. For the case of δmax = 1.75, the results are presented in Figs. 5 and 
6. In these plots we can recognize two different stages, one going from the first passage up 
to around the 45-th, and the second from that point onward. In the first stage the condition 
(9) is verified and δeff,i is larger than one, which means we are in the multipacting regime. 
Indeed the energy spectrum φi(E) lies mainly in the energy region where the wall behaves 
like a net electron emitter, as confirmed by Figs. 5 (bottom) and 6. In this case Eq. (11) 
predicts an exponential growth of the number of electrons, which is exactly what is 
observed Fig. 5 (top).  

Later on we observe that the evolution of ni deviates from the expected exponential 
growth and finally “saturates” to a constant value, which is larger than the equilibrium value 
reached in the seed accumulation regime by several orders of magnitude. By looking at 
Fig. 6 we observe that during this transition the condition (9) is not fulfilled anymore since 
one can notice a strong increase in the number of electrons hitting the wall with extremely 
low energy (<10 eV). We also observe that the electron flux becomes dominated by the 
fraction lying in the net absorber region (see Fig. 5 - bottom) and that the effect of this 
change in the electron spectrum is that the parameter δeff,i drops to one (see Fig. 5 - middle).  

The reason of this change can be understood considering the fact that most of true 
secondary electrons are emitted with energies of the order of few eV (see Fig. 3), and 
therefore, if they impact on the wall before being accelerated by a bunch passage, they have 
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a high chance to be absorbed (the wall acts as net absorber for these energies, see Fig. 6 - 
top).  

 
 
Figure 5: Simulated EC buildup for δmax = 1.75. Top: number of electrons before each bunch 
passage (directly from simulation - blue - and estimated from Eq. (11) - dashed green). Center: δeff 
(both from the integral formula 8 and the recursive formula 3). Bottom: fractions of the electron 
energy spectrum falling in the absorber/emitter regions of the SEY curve. 

 

 
 

Figure 6: Top: SEY curve. Bottom: energy spectrum φi (E) for different bunch passages. 
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Figure 7: Simulated EC buildup for δmax = 1.75. Left: electron density and electrostatic potential as a 
function of the distance from the center and of the bunch passage. Right: two snapshots of the 
electron density in the chamber, one taken right before a bunch passage during the exponential rise 
(top) and one taken right before a bunch passage during the saturation phase (bottom).  

 
Figure 7 shows how the electron density and the electrostatic potential evolve during the 

buildup (all plots correspond to snapshots taken right before the passage of the 
corresponding bunch). During the first stages the electron density is quite modest, and, as a 
result, the electrostatic potential in the chamber (with respect to the wall) is smaller than 
1 eV. In these conditions most of the true secondaries are practically free to move in the 
chamber. Due to their initial velocity they drift towards the center and have a high chance of 
avoiding to impact on the wall before the next bunch passage. 

As the electron density in the chamber increases, so does also the electrostatic potential, 
which means that the forces due to “space charge” effects within the EC itself become 
increasingly stronger. Around the 45-th bunch passage the true secondaries emitted by the 
wall see a potential barrier comparable to their kinetic energy and therefore tend to be 
confined in a region close to the chamber’s wall. As a consequence the electron density 
assumes a ring like shape (see Fig. 7) and the probability that low energy electrons reach the 
wall before the next passage strongly increases. This causes the change in the energy 
spectrum observed in Fig. 6 towards an equilibrium condition such that:  

  (14) 

Here electron emission and absorption at the wall perfectly balance one another and 
therefore δeff,i = 1 (see Eq. (8)). 

Figure 8 shows how the maximum number of electrons in the chamber and the δeff 
coefficient in the first stage of the buildup simulation (before space charge effects become 
significant) depend on the SEY parameter δmax. The value of δmax for which δeff = 1 is called 
“multipacting threshold” and separates the seed accumulation and the multipacting regimes.  
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Figure 8: Maximum number of electrons in the chamber and δeff coefficient as a function of the SEY 
parameter. 

The multipacting threshold can be easily recognized also on the number of electrons in 
the beam chamber (see Fig. 8 - top) since around this point an increase of several orders of 
magnitude is observed with respect to the seed accumulation regime. This kind of 
dependence is observed also on many other quantities related to the EC in the chamber, e.g. 
the electron flux on the wall, the electron density at the beam position, the energy deposition 
onto the wall. Typically, if δmax is below the multipacting threshold and therefore no 
avalanche multiplication is occurring, the EC is practically harmless for the machine 
performance, unless very strong seeding mechanisms are present.  

 Effects of Externally Applied Magnetic Fields 2.20.4

The features of the EC buildup are strongly influenced by externally applied magnetic 
fields, like those present in bending and focusing magnets of a particle accelerator. It is 
simple to prove [23] that a non-relativistic electron moving in a uniform magnetic field (as 
for example in the case of a bending magnet) follows an helicoidal trajectory around the 
field lines.  

In a typical EC buildup, the total kinetic energy of an electron is typically not larger than 
2 keV (see for example the energy spectra in Fig. 6), which implies that the cyclotron radius 
never exceeds a few millimeters. This means that the electrons are practically constrained to 
move around the field lines. Electrons trapped by different field lines will receive different 
kicks from the passing bunches, corresponding to different efficiencies for the multipacting 
process. This generates characteristic patterns of the electron density, as for example, the 
one shown in Fig. 9 (left).  
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Figure 9: Snapshots of the electron cloud density in a dipole (left) and a quadrupole (right) magnet 
of the LHC. 

Similar effects are observed also in quadrupole magnets. For example, with the chamber 
and beam parameters of LHC, the electron density shows an x-like shape as shown in 
Fig. 9 (b). In the case of quadrupoles, the presence of a magnetic field gradient can also 
trigger electron trapping mechanisms, which can make the EC buildup even more 
severe [24].  

 Impact of EC Effects on the Accelerator’s Performances 2.20.5

The presence of EC in the beam chambers of a particle accelerator can limit its 
achievable performance through different effects, which will be briefly reviewed in the 
following. In general, the effects of the EC in a particle accelerator can be classified as 

• global: the EC is present in a large fraction of the machine and can significantly 
influence the beam dynamics; 

• local: the EC is only generated in certain machine elements (due to their geometry or 
wall properties), its impact on the beam dynamics is usually negligible, but it can 
nevertheless be responsible for local (detrimental) phenomena. 

 Impact on Beam Dynamics: Coherent and Incoherent Effects  2.20.5.1

When the EC covers a significant fraction of a machine, the integrated effect of its 
electric forces on the particle beam affects the collective beam motion leading to a coherent 
tune shift and well as to the onset of different types of transverse coherent instabilities above 
a certain electron density threshold.  

EC effects can obviously only appear in a machine operating with long trains of bunches, 
because, as was explained in the previous sections, the EC only builds up and reaches 
saturation after several bunch passages. Despite that, both coupled-bunch and single-bunch 
phenomena (affecting typically only the last bunches in a long train) have been observed in 
running machines and they were studied in the past, showing that the EC can be indeed the 
source of unconventional wake fields which affect the beam dynamics in a similar fashion 
as an impedance source. A multi-bunch dipole-mode instability was observed at the KEK 
Photon Factory on positron beam operation, and it was subsequently explained as an effect 
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of the variation in the EC centroid position induced by an offset bunch, which can feed into 
the motion of subsequent bunches in an unstable loop [25]. More studies on this subject 
were carried out by an IHEP-KEK collaboration at the Bejing Electron Positron Collider 
[26], and at the PEP-II B factory [27].  

Coupled bunch instabilities in the horizontal plane were then observed also at CERN, 
first at the Super Proton Synchrotron with LHC-type beams [28] and then at the Proton 
Synchrotron in the last phase of production of the LHC-type beams [29]. They were also 
recorded at the LHC during the first injections of trains of 48 bunches of 25 ns spaced 
beam [30]. Fortunately, due to their coupled-bunch nature, these instabilities can be usually 
damped by a transverse feedback system without posing too stringent requirements on its 
bandwidth. 

With a similar mechanism, however, an EC inside the beam pipe can also be the origin 
of a short-range wake field for a bunch that goes through it, giving rise to head-tail coupling 
and single-bunch instabilities. Since this mechanism relies on the preexistence of an electron 
cloud when the bunch arrives, it can obviously only affect the bunches at the tail of a long 
train, such that the electron cloud has formed with the passage of the preceding bunches.  

Assuming that the bunch goes into the EC with its head slightly offset, a global net force 
will be acting on the electrons around the head centroid position and consequently an 
accumulation of electrons will take place in that region. The newly reconfigured electron 
distribution will thus kick the following bunch particles toward the higher density region. 
The motion of the head will be therefore transmitted and potentially amplified at the tail of 
the bunch. The tail deflection will then increase over successive turns and it will eventually 
transfer back to the head thanks to the longitudinal mixing given by the synchrotron motion 
(after a few synchrotron periods). This head-tail coupling mechanism naturally follows the 
oscillation of the electrons in the bunch potential and therefore the oscillation frequency of 
the associated wake can be roughly expressed as: 

  (15) 

In the above equation, N is the number of positively charged particles in the bunch, sx,y,z 
its rms sizes in the three directions, re represents the classical electron radius. The frequency 
given by the equation above can quickly hit into the gigahertz range and above, especially 
for high intensity/brightness, high energy beams made of trains of short bunches. Due to the 
important high frequency content, the conventional transverse feedback systems are usually 
incapable of controlling this type of EC induced instabilities. One has to rely instead on 
altering the head-tail phasing through high chromaticity settings or on Landau damping [31] 
using octupole magnets. This type of solutions, however, can have a negative impact on 
transverse emittance preservation and beam lifetime [32, 33].  
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Figure 10: Vertical position of selected bunches along a train over the first 4000 turns after injection. 
A transverse instability developing on the trailing bunches is clearly visible. 

The single-bunch instability due to the EC, observed in the SPS and in the LHC, 
happens mainly in the vertical plane if a large fraction of the driving EC is concentrated in 
the dipoles, but it can equally affect the horizontal plane if the driving EC comes from drift 
sections or quadrupoles. In a machine like LHC, which has 66% of the circumference 
covered by dipoles, the single bunch instability will mainly affect the vertical plane at least 
as long as the beam screen of the dipoles in not sufficiently scrubbed. The bunch-by-bunch 
position signal from the first 4000 turns after injection, as acquired from a beam position 
monitor for a train of 24 bunches, is displayed in Fig. 10 (every second bunch). It is clearly 
visible that, while the first 12 bunches are stable, an unstable signal begins to appear after 
bunch 14 and the rise-time of the instability tends to become shorter while moving to the tail 
of the train. 

It must be noted here that the simple picture of the EC single bunch instability offered 
above only applies for zero chromaticity. With non-zero chromaticity the situation becomes 
more complex and the presence of an electron cloud can also favour the onset of ’classical’ 
headtail instabilities in either plane, which can be damped with a classical transverse 
feedback system if the mode number is low enough to be handled by the system.  

Even when the beam remains transversely stable, either because the integrated EC 
density is low enough or thanks to stabilising mechanisms (chromaticity, Landau damping, 
transverse feedback), its interaction with the EC can drive incoherent effects, which slowly 
degrade the beam quality.  
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Figure 11: Left: tune footprint at 450 GeV as obtained from PyECLOUD- PyHEADTAIL 
simulations. Right: beam lifetime measured with 25 ns beams in the LHC for different settings of 
vertical tune and chromaticity. 

These effects are usually caused by the fact that, even if the beam as a whole does not 
respond coherently to the EC excitation, the single particles are still detuned by the 
additional transverse force coming from the EC (usually focusing and strongly nonlinear, 
but in general dependent on the detailed electron distribution) and their tunes can be 
individually pushed onto resonance lines with consequent growth of the particles’ 
amplitudes. Therefore, the resulting tune spread from the EC can be the origin of 
phenomena like slow emittance blow up or slow particle losses, which are particularly 
worrying in storage rings and colliders, where the aim is to store the beam in the ring for a 
very long time (several hours) while preserving as much as possible the beam quality and 
limiting all types of unwanted beam losses.  

An example of incoherent effect in the LHC is illustrated in Fig. 11. The left plot shows 
the calculated tune spread of a single bunch in LHC at injection energy (450 GeV) assuming 
the operational settings for chromaticity (15 units in the horizontal plane and 20 units in the 
vertical plane) and octupole currents of 20 A, and in addition an electron cloud density of 
5 × 1011 m−3 all around the machine dipoles. The nominal working point is (0.28, 0.31). The 
effect of the octupoles on the tune footprint is quite negligible compared with the one 
imprinted by chromaticity, while the electron cloud makes the tune spread asymmetric 
around the nominal tunes by pushing the footprint towards higher tune values in the vertical 
plane. The visible consequence of the electron cloud contribution to the footprint is that 
some particles come to cross the third order resonance. In this configuration, important 
losses are expected in LHC, affecting mainly the bunches at the tails of the long injected 
trains. The right plot shows an experiment in the machine, in which a strong degradation of 
the beam lifetime was observed when increasing the vertical chromaticity from 10 to 15 
units, which could be recovered (and even slightly improved) by moving the vertical tune 
down by 0.005. This lifetime changes were observed only on the bunches at the tails of the 
trains. 

 Other effects 2.20.5.2

The presence of an EC in a particle accelerator can be also revealed by the observables 
listed here in the following:  
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• Vacuum degradation: The electron flux on the chamber’s wall stimulates the 
desorption of gas molecules from the surface (dependent on the desorption yield 
of the wall for electron impingement), which results in an increased residual gas 
density in the beam chamber, and therefore in a pressure increase. This is 
obviously a local effect that can take place only in specific parts of the machine, 
prone to EC formation due to their geometry or surface properties, or in extended 
machine sectors if the beam chamber geometry and SEY are such to support 
widespread EC build up. The pressure rise is associated to several deleterious 
effects like larger equipment irradiation, worse background in the experimental 
areas, increased probability of breakdown in high voltage devices like kickers or 
electrostatic septa, and impact on the beam lifetime [34]. 

• Beam energy loss and heat load: The electrons accelerated in the beam field 
subtract energy from the beam and also deposit a large fraction of this energy on 
the chamber’s wall when they hit it and produce secondary electrons (usually it 
takes one electron with few hundreds of eV to produce one or more electrons 
with few eV). Therefore two different observables can be associated to this 
process. First, if the amount of integrated EC on the beam path is sufficiently 
large in the accelerator, then the total energy loss of a bunch due to the EC over 
one turn can become significant and result into a measurable contribution to the 
stable phase shift of the bunch in the RF bucket (beside the contributions coming 
from beam loading and the longitudinal impedance). This is a global 
measurement and provides information on the total amount of EC present in the 
machine. Usually, this is assumed to be detectable if it is at least few tenths of a 
degree. Second, the energy deposited by the electrons on the chamber’s wall 
heats it up and the additional heat load could be measured (either as increase of 
the chamber wall’s temperature or as an increased power required from the 
cooling system to keep the chamber at a desired temperature). While this effect is 
typically negligible in room temperature accelerator components, it can become 
a serious issue in devices operating at cryogenic temperature like the 
superconducting magnets of the LHC. Here the EC induced heat load can even 
reach the cooling capacity limit of the cryogenic system [35]. 

• Impact on beam diagnostics: The presence of an undesired electron flux at the 
frequency of the bunch spacing can be the source of spurious signals, and 
therefore malfunctions, on beam diagnostics devices like pickups (beam position 
monitors) and beam gas ionization chambers [36]. 

All these effects have been observed at the LHC and in its injector chain. 

 Mitigation Strategies 2.20.6

In some cases, the accumulation of primary electrons alone inside the beam chamber of 
an accelerator can be the source of detrimental effects even in absence of beam induced 
multipacting. Since this mainly happens for photoelectron production in bending/wiggler 
chambers of very high energy beams, an obvious mitigation technique would be to reduce 
the photoelectron production rate by either using surfaces with naturally low photoelectron 
yield or by guiding the photons into a region where the produced photoelectrons can then do 
no harm. When the EC formation is mainly caused by secondary emission, it is necessary to 
find methods to reduce the effective SEY of the inner chamber walls in order to suppress or 
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at least reduce the EC build up, and thereby limit its adverse effects. In either case, other 
viable options for mitigation could be: 

• to alter the electron dynamics to avoid large fluxes of high energy electrons 
towards the chamber walls. This can be achieved with electric fields (e.g. 
clearing electrodes) or magnetic fields (e.g. solenoids).   

• not to suppress the EC, but just alleviate its effects on the beam or on the devices 
that could be affected.   

For machines like the KEKB photon factory, LHC and even more the Future Circular 
Colliders (FCC) [37][38], the primary production of photoelectrons would be so high that 
the EC could reach saturation within a few bunch passages even without any multipacting, if 
no countermeasures were taken. The solutions implemented in the running machines are an 
antechamber (KEKB) or, for dipole fields, a sawtooth pattern impressed on the chamber 
wall (LHC). Weak solenoids of the order of 50 G are another possibility, which was also 
successfully implemented at KEKB. The solenoids do not really reduce the photoemission, 
but they quickly loop the emitted photoelectrons back to the wall, thus mitigating the 
subsequent beam-electron interaction. For the FCC machines, different schemes are under 
study, based on photon absorbers to intercept the photons at controlled locations and limit 
the associated photoelectron production, or to a novel design of the vacuum chamber with 
lateral slits shaped to trap the photons and subsequently shield the photoelectrons from the 
beam field. Electrons generated by beam loss at a collimator can be controlled by solenoids 
or clearing electrodes. For example, the SNS project has installed solenoids along the 
collimator straight sections [39].   

When the EC build up is dominated by the process of secondary emission, the surface of 
the inner wall of the vacuum chamber needs to be treated such that its effective SEY is 
minimised, and ideally reduced to a value below one. This can be achieved by either coating 
(i.e. changing the chemical properties of the exposed surface) or machining (i.e. changing 
the geometrical properties of the exposed surface). A well-established method to reduce 
multipacting in RF couplers is coating with TiN, a material that has proven to condition to 
very low values of SEY. The thickness of the coating is of the order of a micron, which does 
not alter the resistive impedance seen by the beam.  

A more favourable getter material made from TiZrV (Non-Evaporable Getter) was 
developed at CERN and it has the advantage of pumping while having low SEY [40]. This 
NEG is characterized by greater structural stability than TiN as well as low activation 
temperature. The warm sections of the LHC, especially those around the experimental areas 
(about 20% of the circumference), have been coated with this material [41]. The coating has 
been already widely used at several synchrotron light sources around the world (both in 
insertion devices and for general coating of the vacuum chambers) to guarantee Ultra High 
Vacuum and improve the beam lifetime while reducing the probability to excite fast beam 
ion instabilities.  

In the last 10 years an impressive work has been done at CERN to develop a new type of 
coating with amorphous carbon (a-C), which does not require activation, has intrinsically a 
very low SEY and does not degrade with time [42]. This coating has been widely tested at 
the CERN SPS, where the suppression of the EC was successfully proven in dedicated strip 
monitors as well as in a few main bending units. In particular, an a-C coated liner has 
remained installed in a strip monitor since 2007 and no EC signal was ever measured in it, 
even after long technical stops and extensive machine venting. This confirms that the a-C 
coating can preserve its low SEY even after being long exposed to air.  
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More recently, another type of procedure based on laser engineering of the surface 
(applicable for example to copper, stainless steel and aluminium) has been proposed to 
reduce the effective SEY. The laser treatment, which imprints a surface topography made of 
organised microstructures, has the advantage of relatively easy application and possible 
retrofitting in existing machines [43].  

In parallel to the research on coating and laser treating, several authors have also 
proposed to suppress multipacting by machining the wall surface to produce macroscopic 
grooves on it. These grooves essentially act as electron traps, as the electron emitted by the 
surface are very likely to be re-absorbed quickly before they can be accelerated in the beam 
field. A lot of optimisation work has been done to define the shape and the size of the 
grooves such as to obtain the best EC suppression [44].  

Multipacting may also be suppressed by solenoids, though one should pay attention to 
the possibility of cyclotron resonances (i.e. conditions for which the cyclotron period of the 
electrons in the solenoid field is a multiple of the bunch spacing).  

Electric clearing fields are also shown to be an efficient cure in simulations. They were 
already used to cure electron-proton instabilities for the coasting proton beams in the CERN 
ISR during the early 70s. At the SNS operating with long proton bunches, all beam position 
monitors can be biased with a clearing voltage of 1 kV. To be effective for the multipacting 
experienced by short bunches with close spacing, the clearing electrodes must be mounted 
all around the ring at close distances. The impedance introduced by many such devices 
could be an obvious showstopper. However, a continuous long wire on an insulating support 
would not necessarily exhibit a prohibitively large impedance. Other options for a practical 
implementation of electric clearing fields may be splitting the beam pipe into a top and 
bottom half, isolated from each other and held at different potential. Biasing the two jaws of 
a collimator against each other is a similar idea.  

Finally, another way to reduce the SEY of the inner surface of an accelerator vacuum 
chamber is to rely on its conditioning with time thanks to the electron bombardment during 
beam operation with EC. This technique is called "scrubbing" and is based on the 
experimental observation that the SEY of a surface exposed to a continuous flux of 
electrons with sufficiently high energy exhibits a decreasing behaviour with the deposited 
electron dose. While this decrease is usually very fast at the beginning for large values of 
the SEY, when scrubbing means physically removing the external layers of molecules and 
oxides present on the surface of the bare metal, it then tends to slow down exponentially and 
eventually requires enormous doses to make tiny steps in the region of SEY’s below 1.3-1.4.  

Scrubbing has been widely used at CERN for the SPS and LHC, both of which have 
reached successful operation with 25 ns beams thanks to extended scrubbing runs. In the 
case of the LHC, an important part of the scrubbing process has been carried out not only 
through the dedicated scrubbing periods, necessary nevertheless to prepare the machine to 
operate with 25 ns beams, but also through the physics stores with 25 ns beams. Assuming 
the heat load in the cold arcs to be a measure of the amount of EC present in the machine, 
Fig. 12 displays the evolution of this quantity over to months during the 2015 run, when 
increasing numbers of bunches were injected into LHC and brought to collision at 6.5 TeV. 
The scrubbing of the surface of the beam screen in the arcs is visible as the decrease of the 
heat load normalised to the total beam current, which has taken place with a time constant of 
weeks and has led to about half the value over the full two-months period. It must be 
highlighted here that the decrease of the normalised heat load is not fully ascribable to the 
surface scrubbing, but it was also aided by relaxing the filling pattern into the LHC (moving 
from trains of 72 bunches to trains of 36 bunches) and increasing the bunch length at top 
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energy (as shown in the plot looking at the ’Filling pattern’ and ’Target b. length’ strips). 
These additional electron cloud mitigating measures were necessary to increase the number 
of bunches injected into LHC, while keeping the produced heat load in the arcs within the 
cooling capacity of the cryogenic system. 

 

 
 
Figure 12: Evolution of the beam intensity (top), average heat load in the arc magnets (middle) and 
heat load normalized to the beam intensity (bottom) during the intensity ramp-up with 25 ns beams. 

 
Proper tailoring of the bunch filling patterns (bunch spacing, bunch trains and bunch 

charges) is yet another way of achieving an acceptable electron density. The application of 
this technique can be two-fold. On one side, the arrangement of the bunches in a train can be 
such as to minimise the electron cloud build up and allow an EC-free operation of the 
accelerator. In particular, a larger bunch spacing can help, or gaps within trains can lower 
the EC density and reset the cloud at least to some extent. However, this usually comes at 
the expense of the total amount of beam intensity that can be stored in the machine, with 
consequent impact on the performance. Examples here include mini-trains in PEP-II, the 
actual bunch spacings chosen for PEP-II and KEKB operation, which are twice or three 
times the design spacing, and the 50 ns (until 2012) or so-called 8b+4e configuration 
proposed and successfully tested for the LHC, in which long trains of 25 ns spaced bunches 
are replaced with trains exhibiting a gap of 4 empty buckets every 8 full buckets [45]. On 
the other side, special beam configurations can be put in place with the goal of increasing as 
much as possible the EC formation and accelerate the scrubbing process. The typical 
example of this type of approach is the possible use of doublet beams in the SPS and LHC, 
i.e. beams made of 5 ns spaced bunch pairs separated by 25 ns from each other. These 
beams were expected and proved to produce a large EC in both the SPS and LHC, offering 
the potential of possibly scrubbing the wall surfaces to SEY values below the EC build up 
thresholds for the nominal 25 ns beams [45]. 
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 Introduction 2.21.1

Ions that are created via collisions of a stored beam with residual gases existing in a 
beam duct have historically caused performance degradations for both negatively and 
positively charged beams through their electrostatic interactions. In particular, a beam of 
ions trapped in the electrostatic potential of negatively charged particles, like electrons, may 
act collectively on the stored beam such as shifting their betatron tunes or inducing coherent 
oscillations. Many studies were made both experimentally and theoretically to understand 
these perturbations on the stored beam and find cures, particularly in light source storage 
rings where the stability of a circulating beam is of crucial importance [1-12].  The serious 
impact of ions had even led some of them to switch the stored beam from electrons to 
positrons such as DCI, ACO, APS and KEK-PF. Different means to mitigate ion trapping 
issues were studied and developed, such as introducing ion clearing electrodes, beam gaps 
and introducing octupoles that Landau damp coherent motions.  

With a lower beam emittance achieved as a general trend in modern storage rings to 
further raise the ring performance in terms of luminosity and brilliance, the trapping of ions 
that suffered many rings in the past seems to have become much less of an issue as the 
critical mass, which represents the lightest ion that can be trapped, becomes significantly 
higher than known trapped species. On the other hand, however, a new direct type of 
interactions between a stored beam and a beam of ions occurring in a single passage of the 
former may become a risk for these machines due to a stronger electric field generated by 
the stored beam. Historically, such mechanism of two-beam instability, named as Fast 
Beam-Ion Instability (FBII), was first predicted theoretically by Raubenheimer and 
Zimmermann [13], which shall be the subject of this chapter. 

The present chapter is organised as follows: In the next section, we shall follow the early 
study of Raubenheimer and Zimmermann, as well as some complementary theoretical 
works made on FBII. The experimental evidence, observations and analyses of FBII are 
addressed in Sec. 2.20.3. Some mitigation methods of FBII are reviewed in Sec. 2.20.4. A 
conclusion is given in Sec. 2.20.5. 

 Theoretical and Numerical Studies 2.21.2

 Early Studies Made by Raubenheimer and Zimmermann 2.21.2.1

To understand the mechanism and characteristics of FBII, let us synthetically follow the 
model developed by Raubenheimer and Zimmermann [13]. The transverse coupled linear 
equations describing a single pass interaction of the two beams are given by 

 
2

2
2

( , )   ( , )  [ ( , ) ( , )] ( ') '

z

b
b i b

d y s z y s z K y s t y s z z dz
ds bω ρ

−∞

+ ⋅ = ⋅ − ⋅∫ , (1) 

http://mylab.institution.org/%7Emypage
mailto:nagaoka@synchrotron-soleil.fr


 228 

 . (2) 

Three variables s, z and t are used to describe the beam motions. A longitudinal position in 
the ring is specified by s, at which an electron beam interacts with ions. The relative 
position within the electron beam is specified by z, with z=0 at the centre of the bunch train 
and extending in between –z0 and + z0, i.e. -z0 ≤ z ≤+ z0. The head of the train is defined as z 
= -z0. Since the electron beam is assumed travel at the speed of light c, the time variable t is 
related to s via t = (s+z)/c. It must be noted that in their original paper, the assumed 
accelerator is not restricted to a ring and could well be a transfer line. Also, the perturbing 
beam is not limited to ions and could be electrons against positively charged beams. 
Reflecting the large difference in the mass between an ion and an electron, an ion frequency 
ωi generally corresponds to an oscillation period much longer than the time spacing between 
bunches. The interaction between the two beams therefore becomes of coupled-bunch 
nature, while in the case of electron clouds, the two-beam instability is usually of single 
bunch nature.  

In the first equation, yb(s, z) and yi(s, t) represent respectively electron and ion beam 
centroids. The non-perturbed motion of an electron beam centroid is a betatron oscillation 
represented by ωβ (= Qβy⋅ω0). Its motion is perturbed by an electrostatic potential of ions, as 
represented by the constant K, the attractive force depending proportionally on the 
difference of two amplitudes. What distinguishes this model from the previous ones on 
trapped ions is that reflecting the single pass ionization, the amplitude of ion perturbation 
depends explicitly on the number of electrons upstream the beam centroid yb(s, z) at the 
relative position z, as indicated by the last factor on the r.h.s. of Eq. (1). The longitudinal 
distribution of the electron bunch train is denoted by r(z), normalized to unity. The second 
equation (Eq. 2) describes the vertical centroid of a transverse slice of ions  created 
at a position s at a certain moment 't  (< t) due to collision of electrons with the residual 
gases. Reflecting the way they are generated, the initial conditions  

and  are adopted for a transverse slice. The ion beam centroid yi(s, t) 
that influences the motion of an electron beam centroid yb(s, z) consists of all possible ion 
slices  with ' ( ') /t s z c= + created at the position s up till the time t. This is 
modelled as a r(z)-weighted average over 'z , 

 . (3) 

The coupled equations are then solved via perturbation expansion in K/ωβ. A great 
simplification is introduced by assuming a rectangular distribution for r(z), which signifies 
assuming no variation of the ion frequency ωi along the bunch train. An asymptotic solution 
is derived in the form yb(s, z) ≈ 2 1/4/e η η ·sin(ωiz - ωβs + θ - φ), where a variable η, given by 
η ≡ K·ωi·(z + z0)2s/(16ωβ z0), is assumed to be large (η  1), θ and φ  are constants 
appearing from the initial phases of oscillations. From the obtained solution above, the 
asymptotic growth rate evaluated at the tail of a bunch train z = z0 (i.e. where the instability 
is strongest) is given by 
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where Ne is the number of electrons per bunch, nb is the number of bunches, γ is the 
relativistic energy factor for the electrons, re and rp are the classical electron and proton radii,  
sx and sy are the rms electron transverse beam sizes, Lsep is the longitudinal spacing 
between bunches, A is the mass number of the ions and pgas is the residual gas pressure in 
Torr. The formula is obtained for a horizontally flat electron beam. 

The asymptotic growth rate 1
aympτ − is obtained in the form yb(s, z0) ~ / asmpte t and is 

therefore not an e-folding time. From Eq. (4), we see that it depends strongly on the number 
of bunches (∝ nb

2), the number of particles per bunch (∝ Ne
3/2) and the transverse beam 

sizes ( 3/2 3/2 ( )y x yσσσ  − −∝ ⋅ + ). The assumed linear model is supposed to break down when 
the amplitude of the oscillation yb(s, z) exceeds the vertical beam size sy  where the coupling 
force between the two beams falls off. The growth rate above was evaluated for several 
existing rings in Ref. [13]. In particular, significantly short growth times result for the light 
source rings.  However, no clear evidence of FBII was observed for these machines. The 
possible explanations are: 1) The developed model assumes constant ωi, whereas these light 
sources have strongly varying β functions due to adoption of DBA and TBA lattices. 
Namely the ion frequency ωi could effectively vary significantly around the ring. 
2) Presence of Landau damping sources such as strong sextupoles and non-zero 
chromaticity that these rings generally possess. 3) Other important nonlinear effects not 
considered in the linear model. 

In addition to the linear model above, Raubenheimer and Zimmermann developed a 
simulation code to study numerically the growth of instability as a complementary and more 
rigorous method. The numerical simulation using macro particles to represent the two 
beams has a large advantage of being able to integrate nonlinear effects such as due to finite 
beam sizes and follow self-consistently the evolution of bunch distributions of the two 
beams. In the developed scheme, the ionisation process via the beam - residual gas 
collisions was simulated by using the ionisation cross section and partial pressure of a 
specific gas species to generate ions. Then the space-charge forces of each of the two beams 
were calculated and applied to macroparticles of the opponent beam. The cascading process 
of ions growing in number due to successive arrival of electron bunches at the interaction 
point was correctly simulated. All ions at the end of each beam passage are discarded 
assuming an ion clearing beam gap from turn to turn. More details are described in Ref. [13]. 
Though the obtained simulation results showed certain sensitivity of the growth rate on the 
initial conditions of the beam, apart from this uncertainty the calculated growth rates agreed 
well with the predicted asymptotic growth rates.  

Macro-particle simulations of FBII can generally be quite time consuming especially as 
the physical process of the collisional ionisation is intrinsically sequential and cannot be 
parallelised. If the bunch distribution of the electron beam can be assumed not to change 
through its interactions with ions, the beam bunch can be treated as a single rigid object. 
Such a model, conventionally called the weak-strong model, can bring about a great 
simplification and reduction in CPU time. It allows integrating other physically important 
ingredients into the simulation such as transverse bunch-by-bunch feedback and/or the 
effect of coupling impedance of a ring. There are a number of codes available today that 
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perform simulation of FBII with options developed for different investigation purposes [14-
19]. 

 Nonlinear Tune Spreads 2.21.2.2

Some further theoretical efforts were made by several groups to better describe the fast 
beam-ion instability. One is the influence of ion frequency spread which was ignored in the 
linear model above. As known, a spread in the frequency generally helps reducing the 
instability growth rate via Landau damping. There are at least the three following sources of 
ion frequency spread: 1) Due to electron beam density variations that may arise from 
relative transverse displacement of the two beams. 2) Amplitude dependent frequency shift 
due to the nonlinearity of the static potential of the electron beam. 3) Electron beam size 
variations along the ring arising from beta function changes. To elucidate the effect of ion 
decoherence analytically, Stupakov, Raubenheimer and Zimmermann [20] introduced a 
distribution function f(ωi) on the ion frequency in the previous linear model, and used it in 
averaging over all possible transverse ion slices to get the ion beam centroid yi(s,t) in Eq. (3). 
Proceeding in an analogous way to solve the coupled linear equations as in the earlier model, 
we arrive at the following equation for the electron beam centroid yb(s, z) 
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where ( ')D z z− is named as a decoherence function given by the integral of f(ωi) multiplied 
by cos[ / ( ')]i c z zω ⋅ − over ωi. The physical picture taken here is that the beam-ion 
instability develops on a time scale that is much larger than both the betatron and ion 
oscillation periods ( 2 2  ,  iK βω ω ), which is true in most cases. The above justifies looking 

for a solution in the form 0/ /( , )  ( , ) ii s c i z c
by s z A s z e bω ω− += ⋅  where ωi0 is the central ion 

frequency. In the absence of frequency spread f(ωi) = δ(ωi – ωi0), the decoherence function 
becomes unity and the solution A(s,z) is confirmed to consistently reduce to the asymptotic 
solution found in the previous subsection. In Ref. [20], the decoherence functions were 
explored in the exponential form to be able to derive analytically the solutions A(s, z) for the 
first two sources of the frequency spread listed above. Analytical results were found to be in 
good agreement with macro particle simulations, where the treated ion tune spreads caused 
a reduction of the instability growth rate by roughly a factor of 2. 

 Effective Wake Induced by Ions 2.21.2.3

A first such attempt was made in describing a positron coasting beam driven unstable by 
an electron cloud [21]. Analogous treatment to ion clouds interacting with bunched electron 
beam was then made by two groups [22, 16]. Here we introduce below the work of Wang et 
al. [16]. The physical picture set up is that there is initially an ion cloud formed by collisions 
of electrons with residual gases, consisting on Ni ions. Now if there comes an electron 
bunch composed of Ne electrons with its centre of mass deviated by ∆ye0 from the centre of 
the ion distribution, assumed to be described with a Gaussian, the ion distribution gets a 
kick from the electron bunch and starts oscillating coherently. The oscillating ion 
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distribution can in turn give a kick '( )ey s∆ to another electron bunch following the first 
bunch at a distance s behind. If the initial displacement ∆ye0 is small enough and 
corresponds to the linear part of the ion distribution, all this process can be followed 
analytically using the relations derived in previous sections. In addition, we find that '( )ey s∆  
is proportional to ∆ye0 so that the transverse dipolar wake excited by a bunch of electrons 
defined by Wy(s) ≡ γ/(Neε0re)· '( )ey s∆ /∆ye does not depend on ∆ye0, namely it satisfies the 
linear response condition. The linearity of the wake function Wy(s) as defined above was 
numerically confirmed. Also noticed in the numerical studies of Wy(s) is the damping of the 
oscillation, which is due to the nonlinearity of the beam-ion space charge force, inducing an 
ion frequency spread. Wang et al. managed to parametrise the wake function in the usual 
broadband resonator function as follows, 

 { }ˆ( )  exp / (2 ) sin i
y y i

sW s W s Qc
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and the Q values of close to 9 was found to reproduce well the numerically obtained wakes 
of the most of  concerned ions and electron beam sizes.  

The advantage of describing the beam-ion dynamics of a wake or an impedance function 
is to be able to use the same linearised Vlasov equation formalism developed for 
conventional coupled-bunch instabilities. In Ref. [16], an application was made to study the 
stabilisation effect of beam gaps introduced in a bunch train. 

 Experimental Studies 2.21.3

 Demonstration of FBII in Some Rings by Artificially Injecting Gas into 2.21.3.1
the Vacuum Chamber 

The FBII was experimentally demonstrated in ALS [23], PLS [24] and KEK [25] by 
artificially increasing the vacuum pressure in a ring. In the first such attempt made at 
ALS [23], He gas was injected into the ring to attain 80×10-9 Torr, and bunch-by-bunch 
transverse feedback was switched on to stabilise beam against conventional beam instability 
induced by the coupling impedance. A comparison of the vertical beam size was then made 
to the nominal pressure case as a function of the length of a bunch train, leaving always a 
large beam gap of more than 80 buckets. A steady increase of the vertical beam size was 
observed until the bunch train reached some 15 bunches and then saturated above. The 
evolution of the coherent signals exhibited by the beam was followed as a function of its 
intensity, where the measured peak frequencies turned out to well reproduce what expected 
from the theory. Another interesting observation was the beam current distribution along the 
bunch train after inserting a vertical scraper to scrape off a vertically blown up beam. As 
expected from the theory, the intensity tended to decrease from the head to the tail of a 
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bunch train. All these observations well confirmed the characteristics of FBII. Studies made 
at PLS and KEK equally gave good agreement with theory.   

 Characterizations in SPEAR-III 2.21.3.2

A systematic characterisation of FBII was made more recently at SPEAR3 (SLAC) by 
measuring the vertical betatron sideband signals over the multibunch frequency band under 
different beam and machine conditions without any artificial injection of gases [17]. These 
experimental results were compared with what expected from theory using the wake 
formalism referred to in the previous section. Three such sets of measurement may be cited 
here: the first concerned the dependence on the vertical beam size adjusted with skew 
quadrupoles. Without them, the beam size was about 2.3 times larger. As expected from 
theory, the two-beam interaction was significantly enhanced as the beam size was reduced. 
The dependence on the bunch filling pattern was then followed. Three different filling 
patterns were tested by keeping the total number of bunches, the length of the beam gap 
between the bunch trains, and the total beam current equal. The comparison clearly 
indicated the advantage of filling a beam in many short trains of bunches in fighting against 
FBII. The third measurement followed the dependence on the vertical chromaticity, which 
was increased from 2 to 7. Again, as expected the chromaticity helped suppressing FBII, 
supposedly through an increased tune spread of the electron beam, though the increase of 
chromaticity caused a significant reduction of lifetime. 

 FBII Arising from Local Outgassing due to Impedance 2.21.3.3

Beam losses, which are often total losses, have been encountered at SOLEIL at high 
beam current. A series of studies identify these losses as due to FBII that induces a 
complicated combined effect involving Resistive-Wall (RW) instability and transverse 
feedback [26, 27]. A feature to be noted here is that FBII does not arise from the ordinary 
vacuum pressure, but from localised outgassing of vacuum chambers heated by wake fields. 
The fact that the multibunch operation at SOLEIL is under the influence of both RW and 
FBII was known since the commissioning times through analyses of bunch-by-bunch 
transverse feedback data. At relatively low current, the beam is affected by RW alone, as 
seen from the amplitude and phase relations in a bunch train. Above a certain current, 
however, a transition to FBII dominated regime occurs. The bunch to bunch betatron phase 
variations of around 0.9 and 40 degrees measured respectively at the RW and FBII regimes 
are in agreement with what can be expected from theory. The measured growth rate versus 
current, averaged over bunches, follows well the curve expected from the RW instability, 
but with larger error bars at high current, suggesting the nature of mixture of the two 
instabilities. 

Though the vacuum conditioning with beam over years helped reducing the relative 
contributions of FBII at a given beam current, FBII still persistently exists at SOLEIL at the 
nominal current of 500 mA, even after 10 years of operation. It can still provoke beam 
losses, which happen strangely at some ten minutes after ramping the current to its final 
value. During this period, the beam is diagnosed to be stable. To avoid the beam losses, a 
number of different beam fillings were tried assuming that beam gaps help suppress FBII. 
However, the experimental results indicated on the contrary that uniform filling gives the 
most stable beam. This, along with the fact that lower RF voltage reduces beam losses, led 
us to realise that the source of FBII is the beam-induced heating of vacuum components via 
longitudinal wake fields that in turn triggers outgassing. Thus, keeping the bunch current 
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low and the bunch length long to avoid heating suppresses the origin of instability. Besides, 
the puzzle of beam losses due to FBII was understood to be due to interlock that trips the RF 
upon detecting a rapid drop of beam current to protect the RF system. 

It remained to clarify the sudden beam current drops triggering the interlock. Again, the 
bunch-by-bunch diagnostics used as a post-mortem helped getting a closer look into the 
beam motion just before the beam loss. Following the averaged amplitude of the beam 
versus time, we see that the beam blows up exponentially before it is lost. It suggests that 
the sudden current drop is due to the blown up beam being scraped off either by the 
chamber or by the dynamic acceptance. Analysing the phase relation between adjacent 
bunches, we identify the sequence of the following three regimes up to the explosion: 1) no 
phase correlation (i.e. absence of coherence), 2) ion regime, and 3) RW regime. Somehow 
transverse feedback fails in keeping the beam stable when it is in the ion regime. The last 
observation implies that during some ten minutes of “silence”, the gas density, and therefore 
the number of ions created at each turn steadily increases up to the point that the FBII 
growth rate exceeds the limit of feedback, since the underlying machine heating continues. 
What is not obvious, however, is the reason for which the beam continues to blow up in the 
RW regime when ions are expected to have gone due to large amplitude beam oscillations. 
Namely, we need to understand the failure of feedback in the third RW regime. A possible 
explanation is that feedback, with its filter and gain used, is not reacting adequately against 
the fast dynamical change of beam motions from FBII to RW. More details are found in Ref. 
[28]. A simulation study that includes the effect of RW, FBII and feedback reproduces the 
beam behaviour similar to the observation, supporting the above conjecture [28].  

 Mitigations of FBII 2.21.4

Cutting a long bunch train into small pieces and introducing small bunch gaps between 
each of them generally helps reducing the growth rate of FBII. A numerical study was made 
by Wang et al. by using the wake function formalism introduced earlier [16]. Introducing a 
pair of electrodes to clear the ions away is a known effective method in reducing the ion 
effects [6, 12, 29]. Ion clearing electrodes have however the risk of increasing the 
broadband impedance of a ring, lowering the single bunch instability thresholds or inducing 
local machine heating. Optimization of the electrode design should be done in advance to 
minimize the impedance [30].  

With the performance available today on the market, transverse bunch-by-bunch 
feedback would be the best method to stabilise a beam against FBII. Experiences gained at 
the ESRF and SOLEIL confirm this feature [26, 31]. In both rings, the ion frequencies are 
typically in a few tens of MHz range, which is low compared to the feedback bandwidth of 
176 MHz for these machines. The beam oscillations can therefore be corrected relatively 
easily. At SOLEIL, feedback turned out to be destructive under exceptional situations, as 
was described in the previous section.  

Through studies of FBII, an interesting idea emerged that if an electron beam can only 
blow up vertically by roughly a factor of two and never gets lost due to the saturation of the 
two-beam interaction, one may reduce the vertical beam size by a factor of two in advance 
by anticipating the blow up [32]. More studies may nevertheless be needed to fully certify 
the absence of residual beam blow up in the saturation regime. The absence of FBII in many 
modern light sources suggests sources of stabilization in these machines, among which the 
strong variations of beta function is suspected as they induce ion frequency spreads. Going 
further along this direction, we may actively enhance vertical beta function variation to 
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stabilise the beam via Landau damping. Again, more studies would be necessary to certify 
the damping mechanism quantitatively. 

 Conclusion 2.21.5

Due to the general difficulties of measurement and non-reproducibility of vacuum 
conditions, ion instabilities are often not straightforward to understand quantitatively, as 
compared to other instabilities. However, the theoretical, numerical and experimental 
studies made so far creating a solid basis of the beam-ion physics allow fairly good 
explanations and predictions today qualitatively and quantitatively. There are yet a number 
of nonlinear beam-ion dynamics involving Landau damping and stabilization, which are not 
adequately understood and would require further efforts. 

Owing presumably to lower beam emittances in modern storage rings, ion trapping does 
not seem to be a big issue anymore. However, FBII could jeopardise the performance of 
future low emittance and high beam intensity accelerators as its growth rate would get larger. 
For light sources, in particular, the effort of reaching an ultra-low emittance tends to render 
the vacuum chamber aperture smaller and smaller. The vacuum issues and hence ion-
induced beam instabilities would likely remain important especially in a combined manner 
with other effects, as already encountered at SOLEIL. Continuation of beam-ion studies 
would therefore be of great importance in raising the performance of future accelerators. 
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 Overview 2.22.1

Linear colliders are promising candidates for future high-energy lepton colliders. In the 
past the SLC [1] has successfully operated at the Z-resonance. Two future linear collider 
projects are under consideration, the International Linear Collider (ILC [2-6]) and the 
Compact LInear Collider (CLIC [7-10]). ILC aims at a centre-of-mass energy of 500 GeV, 
potentially starting at 250 GeV. CLIC is foreseen to be implemented in three stages ranging 
from a centre-off-mass energy of 380 GeV up to 3 TeV. Both projects are studied by global 
collaborations. The use of advanced acceleration techniques, such as plasma-based 
acceleration, is also considered by smaller teams. 

Beam-beam effects are an important driver of their design choices and affect the 
performance of physics experiments. In the following a short reminder of the beam-beam 
effects is given and their impact on the parameter choice is highlighted; as it has for 
example been used in the recent optimisation of CLIC parameters for the first energy stage 
with a centre-of-mass energy of 380GeV [10]. Some recent improvement in the 
understanding of the choices by studying the performance of physics event analysis is given 
in the section on the choice of horizontal beam size. 

 Introduction 2.22.2

In ILC and CLIC, the beams are produced in an electron and a positron source, 
respectively. They are slightly accelerated and transported to a damping ring. Here their 
emittance is reduced to very small values, especially in the vertical plane. Then the beams 
are transported through the Ring-To-Main-Linac system (RTML). During the transport they 
are slightly more accelerated and compressed longitudinally. In the main linac they are 
accelerated to full energy. In the Beam Delivery System (BDS) the beams are then focused 
to the very small sizes at the collision point. Then they are disposed off in beam dumps. 

The main challenges of a linear collider are first to achieve the beam energy in the main 
linac. This requires very high gradients for the acceleration. The second challenge is to 
achieve the high luminosity in a single pass. This requires very dense beams at the collision 
point, which results in strong beam-beam interaction. Both, ILC and CLIC, will deliver 
short pulses of bunches that collide with longer intervals between pulses. 

The ILC is based on the use of superconducting cavities to accelerate the beam. These 
allow the use of long beam pulses. To provide the accelerating field, the cavity needs to be 
filled with energy. This energy is lost very slowly in the walls of the cavity, hence one can 
afford a long pulse. In contrast, CLIC is based on high-gradient normal-conducting 
accelerating structures. These require very short pulses since the energy in the accelerating 
structures is lost rapidly in the copper walls. To achieve sufficient efficiency it is therefore 
necessary to use very short pulses and to increase the beam current in the pulse as much as 
possible. This requires short distances between the bunches. The advantage of the normal 
conducting accelerating structures is that they allow to use higher accelerating fields than 
superconducting cavities (about a factor 3 between CLIC and ILC). To achieve multi-TeV 
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energies at practical machine length and cost thus requires the use of normal conducting 
technology. The main beam parameters for ILC and CLIC are given in Table 1. 

 

Table 1: Key parameters of the linear colliders. For ILC and CLIC nominal parameters are given, 
for the SLC typical parameters towards the end of the operation. The latter differ significantly from 
the target values. 

Parameter Symbol [unit] SLC ILC CLIC CLIC 
CMS energy Ecm [GeV] 92 500 380 3000 

Geometric luminosity L [1034cm-2s-1] 0.00015 0.75 0.8 4.3 
Luminosity L [1034cm-2s-1] 0.0003 1.8 1.5 6 

Luminosity in peak L0.01 [1034cm-2s-1] 0.0003 1 0.9 2 
Beam power [MW] 0.065 10.5 0.9 28 

Gradient G [MV/m] 20 31.5 72 100 
Particles per bunch N [109] 37 20 5.2 3.72 

Bunch length σz [μm] 1000 300 70 44 
Interaction point beam size σx,y [nm/nm] 1700/600 474/6 149/3 40/1 

Normalised emittances εx,y [nm/nm] 3000/3000 104/35 950/30 660/20 
Initial beam energy spread σE [%] - O(0.1) 0.35 0.35 

Bunches per train nb 1 1312 352 312 
Bunch distance Δz [ns] - 554 0.5 0.5 
Repetition rate fr [Hz] 120 5 50 50 

Horizontal disruption Dx 0.6 0.3 0.24 0.2 
Vertical disruption Dy 1.7 24.3 12.5 7.6 

Photons per beam particle nγ - 1.9 1.5 2.1 
Average photon energy 2Eγ/Ecm [%] - 2.4 4.5 13 

Coherent pairs Ncoh [108] - - - 6.8 
Their energy Ecoh [108TeV] - - - 2.1 

Incoherent pairs Nincoh [103] - 196 58 300 
Their energy Eincoh [TeV] - 484 187 2.3x104 

 Beam-Beam Physics 2.22.3

In this section a short reminder of the beam-beam physics is given. More detailed 
information can be found for example in [11-14]. In the next section novel results for the 
choice of parameters will be presented. 

 Beam Parameters and Luminosity Drivers 2.22.3.1

The luminosity target for linear colliders is in the range of 1034cm-2s-1 following the 
requests of the experiments. In Table 1, one can note that ILC and CLIC use flat beams to 
achieve this ambitious goal and that the vertical beam size is only of the order of nm. In the 
following we will discuss the reason. 

The luminosity L in a linear collider is given by the following formula: 

                                                                                                               (1) 
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Here, N is the number of particles per bunch, σx,y are the horizontal and vertical beam sizes 
at the collision point, nb is the number of bunches per train, fr is the rate of trains per second 
and HD is a factor that contains the impact of beam-beam forces and other relevant effects. 
HD is typically in the order of 1.5-2. It is useful to rewrite the formula in the following form: 

                                                                                                         (2) 

The term Nnbfr represents the beam current. Its upper limit arises from the power 
consumption of the collider and the efficiency to turn this power into beam power. As can 
be seen in Table 1, the beam power is quite high. It is therefore important to maximise the 
luminosity per beam current, i.e. the factors N/σx and 1/σy. However a lower limit to the 
beam size arises from the beam-beam effects. 

 Beam-Beam Dynamics and Disruption 2.22.3.2

At collision, the beams generate strong electromagnetic fields that focus each other in an 
electron-positron collider. In circular colliders this deflection is quite small and can be 
understood as a thin-lens kick. In a linear collider the beams are so dense that the particles 
move strongly during the collision. This so-called pinch effect reduces the effective beam 
size and leads to an increase in luminosity. 

The focusing is described using the so-called disruption parameters: Dx,y for the 
horizontal and the vertical plane, respectively. Dx,y is calculated as 

                                                                                                       (3) 

Here, re is the classical electron radius and γ the relativistic factor. For Dx,y<<1 particles 
with small offsets x and y and no initial angle will receive final angles x’=(Dx/σZ) x=x/fx 
and y’=(Dy/σZ) y=y/fy. This implies that in each plane, the core of the beam is focused to a 
single point at distance fx,y behind the collision plane and Dx,y is the ratio of the bunch 
length to this distance. Hence D<<1 corresponds to a thin lens kick. In contrast D>>1 
indicates that the particle motion during the collision is important. In ILC and CLIC Dx<<1 
and Dy>>1. 

For large disruption analytical models are difficult to develop and computer codes are 
used to simulate the effect. The two most widely used codes are GUINEA-PIG [14] and 
CAIN [15]. They represent the beam by a number of macro-particles. Their predictions have 
been experimentally verified in the SLC [16], where under some conditions the luminosity 
was more than doubled in good agreement with the simulations. The codes also include the 
beamstrahlung effect, which is described in more detail below, and the generation of the 
different electron-positron background processes. GUINEA-PIG also includes the 
generation of hadronic background and the generation of muons, both processes will not be 
discussed here. 

 Beamstrahlung 2.22.3.3

When the particle is forced on a curved trajectory by the other beam, it will emit 
radiation in a similar fashion as in a bending magnet. This radiation is called beamstrahlung. 
For typical parameters each particle emits one to a few photons each of which carries some 
percentage of the particle's energy. It is therefore important to be aware of the stochastic 
nature of the beamstrahlung. Due to beamstrahlung the particles lose energy during the 
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collision and can therefore collide with less than the initial energy. This leads to the 
formation of a luminosity spectrum. This obviously impacts the performance of the physics 
experiments. The importance depends on the physics analysis that is being carried out. 

The beamstrahlung can be described by the so-called beamstrahlung parameter ψ, which 
is related to the average critical energy of the radiation emitted by the beam particles. It can 
be calculated as 

                                                                                                           (4)
                                                

 

Here ρ is the bending radius of the particle trajectory and γ the relativistic factor. The 
average <Ψ> is given by the beam parameters and the fine structure constant α as 

                                                                                                     (5) 

The beamstrahlung spectrum is described by the Sokolov-Ternov spectrum. For Ψ<<1 the 
spectrum corresponds to synchrotron radiation and one speaks of the classical regime. For 
Ψ>>1 the radiation is partially suppressed since the critical energy is above the beam energy. 
This is the so-called quantum regime. Only CLIC at 3TeV will operate in this regime. In the 
classical regime, the number nγ and average energy Eγ of photons emitted per beam particle 
depends on the bunch charge and transverse dimensions 

                                                                                       (6)
              

 

Typically one is only interested in collisions with energies very close to the nominal. In this 
case often the emission of a single photon is sufficient to place the particle outside of this 
energy range. Hence the number of emitted photons has to be limited. More detail will be 
given in the final section on horizontal beam size choice.  

For a given N and σz, one has to use a relatively large sum of the transverse beam sizes 
σx+σy. The luminosity is proportional to 1/(σxσy), so one aims to minimise the product of the 
two beam sizes. Both goals can be simultaneously achieved by using a flat beam σx>>σy; the 
horizontal beam size is chosen to be larger than the vertical, since the damping rings 
naturally deliver a horizontal emittance that is larger than the vertical. Using σx+σy≈σx one 
finds that N/σx in Eq. (2) is proportional to the number of beamstrahlung photons. As one 
can see in Table 1, all projects have a value of nγ in the range of 1.5-2. The rational for this 
choice will be revisited in section on the choice of the horizontal beam size. The typical 
angular distribution of the photons is small, similar to the one of the beam particles after 
collision. Hence the beamstrahlung does not generate direct background in the detector. 

 Vertical Beam Size and Waist Shift 2.22.3.4

The vertical beam size is limited by the beam emittance and by the ability to focus the 
beam. Here, the practical limitations for the focusing will be ignored and only the impact of 
the vertical beta function will be considered assuming perfectly linear behaviour of the 
beam. For weak beam-beam effects, the luminosity is limited by the hourglass effect similar 
to circular colliders. The left-hand side of Fig. 1 shows the luminosity ignoring hourglass 
effect (“geom.”) and including it (“hourg.”). The optimum is at βy=0.25σz. The beam-beam 
forces shift the optimum to much larger beta functions around βy≈σz (“ILC” and “CLIC”). 
The pinching of the beams is more efficient if their divergence is smaller. 
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Figure 1: Left: Luminosity as a function of the vertical beta function (normalised to the bunch 
length). Right: The luminosity in ILC as a function of the longitudinal shift of the vertical waist for 
different vertical beta functions. 
 

If the beam-beam forces are weak the maximum luminosity is obtained when the vertical 
waists of the two beams are placed at the collision point. A distance Wy of the waists to the 
collision point leads to a reduced luminosity. In presence of beam-beam forces it can be 
better to have the vertical waists before the collision point [16], which can increase the 
luminosity by up to 25%. The exact location and the luminosity gain also depend on the beta 
function. This is shown in Fig. 1 for ILC. A small beta function of βy=0.12mm gives worse 
performance for centred waists than βy=0.48mm. After the optimisation of the waist it 
however yields more luminosity.  

 Beam Offsets 2.22.3.5

The beam-beam forces also modify the luminosity reduction resulting from vertical 
beam-beam offsets. For weak disruption the luminosity decreases somewhat more slowly 
with offset than for rigid beams because the beam attract each other. In contrast, for larger 
disruption, already very small offsets can lead to a large loss of luminosity. This is due to 
the fact that the collision becomes unstable, the so-called kink instability, which is a typical 
two-stream instability. Again for larger offsets, the beam-beam forces maintain more 
luminosity than for rigid beams. Figure 2 illustrates this for different disruption parameters. 

To avoid luminosity reduction, control of the beam-beam offset is required at the level of 
a fraction of a nanometre. The motion of the ground and vibrations of technical components 
make this a challenging task. Two main methods are used to address this challenge. First, in 
case of CLIC, the beam guiding magnets are stabilised with active feedback systems that 
sense the motion of the magnet and correct it using movers. Second, in both ILC and CLIC, 
the beam-beam offset is measured and corrected with a beam-based feedback system. In 
case of ILC this feedback system can correct from one bunch to the next within the pulse, in 
CLIC it has a latency of a few bunch crossings and mainly acts from one pulse to the next. 
This feedback can easily detect an offset even of a fraction of a nm, since the resulting 
deflection of the beams is in the order of tens of μrad. A few metres downstream of the 
collision point such an angle has translated into an offset that can be easily measured with a 
beam position monitor. 
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Figure 2: Left: Luminosity as a function of offset for different vertical disruption parameters. Right: 
The luminosity as a function of the emittance in the case of TESLA an older linear collider design. 

 The Banana Effect 2.22.3.6

For strong vertical disruption (typically Dy≥15) correct modelling of the full 6D phase 
space of the beam. The projected emittance is not a good measure of the luminosity any 
more. This is due to the so-called banana effect described in [17] for TESLA, an older linear 
collider design similar to the ILC. The luminosity drops much faster with increasing beam 
emittance than anticipated from the projected emittances [18]. 

The right-hand side of Fig. 2 shows an example where the main linac wakefield effects 
are included. Similar results are obtained for other sources of emittance growth, e.g. ground 
motion in the beam delivery system [19]. In the figure, the horizontal scale indicates the 
emittance at the interaction point, which consists of an uncorrelated part of 20 nm and an 
additional contribution from the main linac wakefields. The luminosity is shown on the 
vertical axis. The curve “approx” assumes that the luminosity scales with . The curve 
“L1“ shows the luminosity if both beams are centred in position and angle. Even a small 
emittance increase yields a very strong luminosity loss since the collision is unstable as a 
result of the high disruption. 

The luminosity can be recovered if a full luminosity optimisation is performed at the 
interaction point by varying the beam-beam offset (Loff) and by varying offset and angle 
(Lang). This procedure however requires that the luminosity is measured online. Hence it 
takes much more time than a simple beam position monitor based feedback. In ILC it is 
foreseen to perform such an optimisation during each bunch train. For a smaller disruption, 
as in CLIC, the banana effect is negligible. Hence a luminosity optimisation scan during the 
train is not required. 

 Beam-beam Background and its Impact on the Detector Design 2.22.3.7

The beam-beam effects lead to the generation of background for the physics experiments. 
This includes the production of electrons and positrons, muons, and hadrons. These effects 
can significantly impact the detector design and close interaction of accelerator and detector 
design is required. However, this subject cannot be covered in this paper. 

 Choice of Horizontal Beam Size 2.22.4

A lower limit of horizontal beam size and beta function arises from the beamstrahlung to 
limit the degradation of the luminosity spectrum. It is important to note that the luminosity 
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spectrum is also affected by another process. If particles collide, they can emit a photon just 
before the collision as a part of the physics process, this is called Initial State Radiation 
(ISR). This emission is a radiative correction to the physics process. In contrast to 
beamstrahlung, it therefore happens only to colliding particles that undergo some physics 
process. However, it will degrade the luminosity spectrum in a similar fashion to 
beamstrahlung; the typical centre of mass energy spectrum of the colliding electrons and 
positrons is shown on the right-hand side of Fig. 3. 

Usually the experiments require that the degradation of the luminosity spectrum due to 
beamstrahlung is similar to the degradation due to ISR. As a measure one uses the ratio of 
the luminosity L0.01, i.e. the part above 99% of the nominal centre of mass energy, and the 
total luminosity. In case of CLIC at 380GeV a ratio of 60% has been targeted. 

The total and peak luminosity is shown in Fig. 3 for CLIC at 380 GeV and ILC at 
500 GeV as a function of the horizontal beta function. One can observe that the total 
luminosity increases strongly for smaller beta functions. It increases even faster than the 
geometric luminosity. This is a result of the fact that a smaller horizontal beam size 
increases the disruption and therefore leads to an increase in the pinch enhancement factor 
HD. However the peak luminosity only increases slightly for smaller beam sizes. Hence the 
ratio of peak to total luminosity decreases rapidly for small beta functions, which yields a 
lower limit. It should be noted that additional lower limits for the horizontal beta function 
exist, e.g. from the ability to design the beam delivery system. With the chosen value, CLIC 
indeed reaches a ratio of 60%, as one can see on the left-hand side in Fig. 3. 
 

 
 
Figure 3: Left: Luminosity as a function of the horizontal beam size. Right: The luminosity 
spectrum from beamstrahlung and from ISR. 
 

Recently a study has been carried to identify the optimum choice of beamstrahlung level 
for CLIC and ILC [20]. To this end one of the main physics processes that should be studied 
at 380 GeV has been selected. This is the reconstruction of the total higgs production cross 
section in the channel e+e- -> Zh. In this analysis only the Z is measured and from the initial 
beam conditions and the Z energy and momentum the missing particle is reconstructed 
indirectly. It is then determined whether this particle is consistent with the higgs. This 
measurement has the advantage that the higgs production rate can be measured independent 
of the higgs decay. One would even be able to see invisible higgs decays (even if they are 
not expected). This measurement is expected to be very sensitive to beamstrahlung since the 
beamstrahlung will change the initial conditions. In particular the assumed energy of the 
colliding particles will be wrong. This leads to a wrong reconstruction of the missing 
particle. 
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In the study the beam parameters have been optimised assuming a constant time of 
operation. The horizontal beam size has been varied and all other parameters were left 
constant. A wide beam will give less beamstrahlung but also less integrated luminosity. For 
each beam size the luminosity spectrum has been simulated with GUINEA-PIG and the 
corresponding higgs events been generated using WHIZARD [21]. In addition, also the 
main background events that could fake the signal have been produced; their number is 
larger by some orders of magnitude. The particle energies have then been randomly 
modified corresponding to the detector resolution. Finally the events have been analysed 
using TMVA [22] a boosted device tree classifier. This allowed to determine the expected 
accuracy of the measured higgs production cross section. 

The study concluded that pushing the horizontal beam size further would improve the 
performance slightly. However the improvement is only a few percent compared to the 
nominal parameters, in spite of the fact that the luminosity would about double. Given the 
difficulty to obtain narrower beams this small improvement appears not too relevant. This 
supports that the choice that has been made for the acceptable level beamstrahlung is good. 

It should be noted that in case of CLIC at 3TeV, the requirement on the spectrum quality 
is somewhat relaxed (30%), since also the tail of the luminosity spectrum contributes to the 
creation of interesting physics events. An important example is the double Higgs production, 
which allows to measure the Higgs self-coupling. Basically the whole luminosity spectrum 
contributes to this production process at high energies, increasing the importance of the total 
luminosity with respect to the peak luminosity. 

Further studies of the optimum beam parameter choice will be useful in order to obtain 
the optimum exploitation strategy for future linear colliders. 

 Conclusion 2.22.5

Beam-beam effects drive the choices of linear collider designs; in particular the choice of 
flat beams. For otherwise fixed beam parameters the horizontal beam size choice is driven 
by the emission of beamstrahlung that leads to a degradation of the luminosity spectrum. 
This in turn limits the luminosity that can be achieved. Up to now, the acceptable level of 
beamstrahlung has been chosen by comparing to initial state radiation. An example is the 
recent optimisation of the CLIC parameters for the first energy stage of 380 GeV centre-of-
mass. A recent study has used an important physics experiment at this energy in order to 
verify this choice for CLIC and ILC. It concluded that slightly higher levels of 
beamstrahlung would still improve the resolution of the physics analysis by a few percent. 
Hence a more aggressive choice of beamstrahlung level is acceptable but can yield only 
minor improvements of the physics in spite of a much higher luminosity. 
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One of the most severe limitations in high intensity particle colliders is the beam-beam 
interaction, i.e. the perturbation of the beams as they cross the opposing beam. This short 
overview on beam-beam effects in hadron colliders concentrates on a description of the 
most important and relevant phenomena that are present in modern colliding hadron beams 
facilities   

 Introduction 2.23.1

For hadron beams at low energies, space charge effect play a dominant role for the beam 
dynamics while at higher energies they are strongly suppressed because of the cancellation 
of electric and magnetic fields. In the case of a collider the particles travel in opposite 
directions and collide at the interaction point. In such a case the cancellation does not occur 
and the beam-beam interaction becomes the most important non-linearity in the machine [1]. 

The forces are most important for high brillance beams, i.e. high intensity and small 
beam sizes. After considering the forces, one can assess the most important consequences 
and relevant issues of the beam-beam interactions, the most important ones are  

 
•  Head-on collisions, 
•  Long-range collisions, 
•  Incoherent and coherent effects,  
•  Beam-beam compensation. 

 Beam-Beam Force 2.23.2

In the rest frame of a beam we have only electrostatic fields and to find the forces on 
other moving charges, we have to transform the fields into the moving frame and to 
calculate the Lorentz forces [2–4]. The fields are obtained by integrating over the charge 
distributions. The forces can be defocusing or focusing since a particle can have the same or 
opposite charge with respect to the counter-rotating beam producing the forces. 

The distribution of particles producing the fields can follow various functions, leading to 
different fields and forces. Unlike lepton beams, the beams in hadron machine can be 
considered round which simplifies the computation of the forces considerably (see e.g. [3, 
4]). In general this is a good approximation. For the Cartesian components in the two 
transverse planes one obtains  

  (1) 

The forces (1) are computed when the charges of the test particle and the opposing beam 
have opposite signs. For equally charged beams the forces change signs. For small 
amplitudes the force is approximately linear and a particle crossing a beam at small 
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amplitudes will experience a linear field. This results in a change of the tune like in a 
quadrupole. At larger amplitudes (i.e. above ≈ 1 σ) the force deviates strongly from this 
linear behaviour. Particles at larger amplitudes will also experience a tune change, however 
this tune change will depend on the amplitude. Already from the analytical form (1) one can 
see that the beam-beam force includes higher multipoles. 

 Head-On Beam-Beam Interactions  2.23.3

 Beam-Beam Parameter 2.23.3.1

We can derive the linear tune shift of a small amplitude particle crossing a round beam of 
a finite length. We use the force to calculate the kick it receives from the opposing beam, i.e. 
the change of the slope of the particle trajectory. The radial kick ∆r′ a particle with a radial 
distance r from the opposing beam centre receives is then 

  (2) 

where I have re-written the constants and use the classical particle radius 

  (3) 

where m is the mass of the particle. For small amplitudes r one can derive the asymptotic 
limit  

  (4) 

This limit is the slope of the force at r = 0 and the force becomes linear with a focal length 
as the proportionality factor. It is well known how the focal length relates to a tune change 
and one can derive a quantity ξ which is known as the linear beam-beam parameter 

  (5) 

r0 is the classical particle radius, (e.g.: re, rp) and β* is the optical amplitude function (β-
function) at the interaction point. For small values of ξ and a tune far enough away from 
linear resonances this parameter is equal to the linear tune shift ∆Q [2]. The beam-beam 
parameter can be generalized for the case of non-round beams and becomes  

  (6) 
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The beam-beam parameter is often used to quantify the strength of the beam-beam 
interaction, however it does not reflect the non-linear nature.  

 Non-Linear Effects 2.23.3.2

First we briefly discuss the immediate effect of the non-linearity of the beam-beam force 
on a single particle. It manifests as an amplitude dependent tune shift and for a beam with 
many particles as a tune spread. The instantaneous tune shift of a particle when it crosses the 
other beam is related to the derivative of the force with respect to the amplitude ∂F/∂x. For a 
particle performing an oscillation with a given amplitude the tune shift is calculated by 
averaging the slopes of the force over the range (i.e. the phases) of the particle’s oscillation 
amplitudes. We get the formula for the non-linear detuning with the amplitude J [2, 5]  

  (7) 

where I0(x) is the modified Bessel function and J = A β / σ2. Here A is the invariant of the 
motion (action) and must not be confused with the beam emittance. In the 2-dimensional 
case, the tune shifts (∆Qx, ∆Qy) of a particle with amplitudes x and y depend on both, 
horizontal and vertical amplitudes. The detuning must be computed and presented in a 2- 
dimensional form, i.e. the amplitude (x, y) is mapped into the tune space (Qx, Qy) or 
alternatively to the 2-dimensional tune change (∆Qx, ∆Qy). The maximum tune spread for a 
single head-on collision is equal to the tune shift of a particle with small amplitudes and for 
small tune shifts equal to the beam-beam parameter ξ. In the simple case of a single head-on 
collision the parameter ξ is therefore a measure for the tune spread in the beam.  

 Dynamic β 2.23.3.3

For small particle amplitudes the beam-beam force is approximately linear and therefore 
resembles a quadrupole. In addition to the tune shift a beating of the β-functions is 
introduced. This also changes the β at the collision point and therefore the beam size. For 
tunes far away from linear resonances this effect is small but otherwise it can be significant. 
This effect can be used deliberately to decrease the beam size and increase the 
luminosity [6]. Such a procedure has been used in LEP to increase the luminosity by about 
40 % [6]. Whether one should work slightly above or below an integer depends on the type 
of particle. For particle-antiparticle collisions a tune just above the integer leads to a 
decrease of β*, while working below the integer has the opposite effect.  

 Landau Damping due to the Beam-Beam Interaction 2.23.3.4

Since the beam-beam interaction results in a considerable tune spread, one expects a 
strong contribution to Landau damping. Comparing the detuning from octupoles, head-on 
and long-range beam-beam effects, one observes a very different contribution to the stability 
region and damping. While octupoles and long-range interactions provide the largest spread 
for large amplitude particles, this is not the case for the head-on interaction. Since the region 
with small amplitude particles is much more populated, the stability region is largely 
enhanced. It was shown in [7] that for an equal overall detuning the stable region is 
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increased by a factor ten. This strong stabilising effect is clearly observed in the operation of 
the LHC.  

 Long-Range Beam-Beam Interactions  2.23.4

In hadron colliders with a large number of bunches, unwanted collisions must be avoided. 
In particle-antiparticle colliders this can be achieved by separate orbits of the two beams in 
the same vacuum chamber. For particle-particle collisions separate vacuum chambers are 
required and parasitic interactions are usually avoided using a crossing angle at the 
interaction point.  

Although the long-range interactions distort the beams much less than a head-on 
interaction, their large number and some particular properties require careful studies  

 
• They break the symmetry between planes, i.e. more resonances can be excited. 
• While the effect of head-on collisions is strongest for small amplitude particles, 

parasitic interactions mostly affect particles at large amplitudes. This leads to a 
reduction of the dynamic aperture and particle losses, resulting in reduced beam 
lifetime. 

• The tune shift caused by long-range interactions has opposite sign in the plane of 
separation compared to the head-on tune shift. 

• They cause changes of the closed orbit. 
• They largely enhance the so-called PACMAN effects. The effect of the strong non-

linearities of the long-range interactions was demonstrated in experiments and 
compared with an analytical model based on the analysis of the effective 
Hamiltonian obtained using a technique based on Lie transformations [8]. 

 Beam-Beam Induced Orbit Effects  2.23.4.1

When two beams do not collide exactly head-on, the force has a constant contribution 
which can easily be seen when the kick ∆x′ (for sufficiently large separation) is developed in 
a series 

  (8) 

A constant contribution, i.e. more precisely an amplitude independent contribution, changes 
the orbit of the bunch as a whole (Fig. 1). When the beam-beam effect is strong enough, i.e. 
for high intensity and/or small separation, the orbit effects are large enough to be 
observed [6]. When the orbit of a beam changes, the separation between the beams will 
change as well, which in turn will lead to a slightly different beam-beam effect and so on. 
The orbit effects must therefore be computed in a self-consistent way [9], in particular when 
the effects are sizable. The closed orbit of an accelerator can usually be corrected, however 
an additional effect which is present in some form in many colliders, sets a limit to the 
correction possibilities. A particularly important example is the LHC and I shall therefore 
use it to illustrate this feature.  
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Figure 1: Beam-beam deflection leading to orbit changes. 

 PACMAN Effects  2.23.4.2

The bunches in the LHC do not form a continuous train of equidistant bunches spaced by 
25 ns, but some empty space must be provided to allow for the rise time of kickers. The 
whole LHC bunch pattern is composed of 39 smaller batches (trains of 72 bunches) 
separated by gaps of various length followed by a large abort gap for the dump kicker at the 
end. In the LHC, only 2808 out of 3564 possible bunches are present with the above filling 
scheme. Due to the symmetry, bunches normally meet other bunches at the head-on 
collision point. For the long-range interactions this is no longer the case. This is illustrated 
in Fig. 2. Bunches at the beginning and at the end of a small batch will encounter a hole and 
as a result experience fewer long-range interactions than bunches from the middle of a 
batch [10]. In the limit, the first bunch of a batch near a large gap encounters no opposing 
bunch before the central collision and the full number of bunches after.  

 

                        
 

Figure 2: Long-range interactions with missing bunches. 
 

Bunches with fewer long-range interactions have a very different integrated beam-beam 
effect and a different dynamics must be expected. In particular they will have a different 
tune and occupy a different area in the working diagram, therefore may be susceptible to 
resonances, which can be avoided for nominal bunches. The overall space needed in the 
working diagram is therefore largely increased [10]. Another consequence of reduced long-
range interactions is the different effect on the closed orbit of the bunches. We have to 
expect a slightly different orbit from bunch to bunch. This effect is demonstrated in Fig. 3 
where I show the horizontal position at one head-on collision point for 432 bunches (out of 
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2808). The bunches in the middle of a batch have all interactions and therefore the same 
orbit while the bunches at the beginning and end of a batch show a structure which exhibits 
the decreasing number of long-range interactions. The orbit spread is approximately 10 - 
15 % of the beam size. Since the orbits of the two beams are not the same, it is impossible to 
make all bunches collide exactly head-on. A significant fraction will collide with an offset. 
Although the direct (geometrical) effect on the luminosity is small, collisions at an offset 
can potentially affect the dynamics and are undesirable. An example was the detrimental 
effect on the dynamic β in LEP [6]. The LHC design should try to minimize these off- 
sets [10]. The variation of the orbit bunch by bunch is confirmed by reconstructing the 
collision vertex in the experiments.  

 

                    
 

Figure 3: Horizontal orbits of the first 432 bunches at IP1. 
 

A second effect, the different tunes of the bunches, is shown in Fig. 4. For three batches 
it shows a sizable spread from bunch to bunch and without compensation effects it may be 
too large for a safe operation. It may be noted that in other colliders such as the Tevatron or 
the SPS proton-antiproton collider, bunch to bunch differences may be present. Although 
the two beams do not have the PACMAN effects as related to a crossing angle and missing 
bunches, the bunches have a different collision pattern and the parasitic interactions occur at 
different positions around the circumference. However these effects are very small.  

 

                       
 

Figure 4: Tune variation along the LHC bunch pattern. 
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 Coherent Beam-Beam Effects  2.23.5

So far we have mainly studied how the beam-beam interaction affects the single particle 
behaviour and treated the beam-beam interaction as a static lens. In the literature this is 
often called a "weak-strong" model: a "weak" beam (a single particle) is perturbed by a 
"strong" beam (not affected by the weak beam). When the beam-beam perturbation is 
important, the model of an unperturbed, strong beam is not valid anymore since its 
parameters change under the influence of the other beam and vice versa. When this is the 
case, we talk about so-called "strong-strong" conditions. The first example of such a 
"strong- strong" situation was the orbit effect where the beams mutually changed their 
closed orbits. These closed orbits had to be found in a self-consistent way. This represents a 
static strong-strong effect.  

In the next step we investigate dynamic effects under the strong-strong condition. When 
we consider the coherent motion of bunches, the collective behaviour of all particles in a 
bunch is studied. A coherent motion requires an organized behaviour of all particles in a 
bunch. A typical example are oscillations of the centre of mass of the bunches, so-called 
dipole oscillations. At the collision effect of two counter-rotating bunches not only the 
individual particles receive a kick from the opposing beam, but the bunch as an entity gets a 
coherent kick. This coherent kick of separated beams can excite coherent dipole oscillations. 
Its strength depends on the distance between the bunch centres at the collision point. It can 
be computed by adding the individual contributions of all particles. For small distances it 
can be shown [2] that it is just one half of the incoherent kick a single particle would receive 
at the same distance. For distances large enough the incoherent and coherent kicks become 
the same. 

 Coherent Beam-Beam Modes  2.23.6

To understand the dynamics of dipole oscillations we first study the simplest case with 
one bunch in each beam. When the bunches meet turn after turn at the collision point, their 
oscillation can either be exactly in phase (0 degree phase difference) or out of phase 
(180 degrees phase difference). Any other oscillation can be constructed from these basic 
modes. The modes are sketched very schematically in Fig. 5.  

 

                                   
 
Figure 5: Basic dipole modes of two bunches. Relative position of the bunches at the interaction 
point at two consecutive turns. 

 
The relative positions of the bunches as observed at the interaction point are shown for 

two consecutive turns n and n + 1. The first mode is called the 0-mode (or sometimes called 
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σ-mode) and the second the π-mode. In the first mode the distance between the bunches 
does not change turn by turn and therefore there is no net force driving an oscillation. This 
mode must oscillate with the unperturbed frequency (tune) Q0. For the second mode the net 
force difference between two turns is a maximum and the tune becomes Q0 + ∆Qcoh. The 
sign of ∆Qcoh depends whether the two beams have equal charge (defocusing case) or 
opposite charge (focusing case). The calculation of ∆Qcoh is non-trivial: when the bunches 
are considered as rigid objects, the tune shift can be computed easily using the coherent kick 
but is underestimated. The correct calculation must allow for changes of the density 
distribution during the collision and moreover, must allow a deviation from a Gaussian 
function. The computation requires to solve the Vlasov-equation for two coupled 
beams [11].  

The 0-mode is found at the unperturbed tune as expected. The π-mode is shifted by 1.2-
1.3 ξ. The precise value depends on the ratio of the horizontal and vertical beam sizes [11]. 
We have seen before the incoherent tune spread (footprint) the individual particles occupy 
and we know that it spans the interval [0.0,1.0] ξ, starting at the 0-mode.  

Here one can make an important observation: under the strong-strong condition the π-
mode is a discrete mode outside the incoherent spectrum. This has dramatic consequences 
for the stability of the beams. A coherent mode that is outside an incoherent frequency 
spectrum cannot be stabilized by Landau damping. Under these conditions the coherent 
beam-beam effect could drive the dipole oscillation to large amplitudes and may result in 
the loss of the beam. Observations of the coherent beam-beam effects have been made at 
PETRA.  

Coherent beam-beam modes can be driven by head-on collisions with a small offset or by 
long-range interactions. In the first case and for small oscillations, the problem can be 
linearized and the theoretical treatment is simplified. The forces from long-range 
interactions are very non-linear but the numerical evaluation is feasible. Since the coherent 
shift must have the opposite sign for long-range interactions, the situation is very different. 
In particular the π-mode from long-range interactions alone would appear on the opposite 
side of the 0-mode in the frequency spectrum.  

 Compensation of Beam-Beam Effects  2.23.7

For the case the beam-beam effects limit the performance of a collider, several schemes 
have be proposed to compensate all or part of the detrimental effects. The basic principle is 
to design correction devices which act as non-linear ’lenses’ to counteract the distortions 
from the non-linear beam-beam ’lens’. For both, head-on and long-range effects schemes 
have been proposed 

 
•  Head on effects 
 

- Electron lenses,  
- Linear lens to shift tunes, 
- Non-linear lens to decrease tune spread.  

 
• Long-range effects 
 

- At large distance, the beam-beam force changes like 1/r. A wire can compensate for 
this behaviour at large distances.  
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- Passive compensation with alternating crossing schemes.  

 Electron Lenses  2.23.7.1

The basic principle of a compensation of proton-proton (or antiproton) collisions with an 
"electron lens" implies that the proton (antiproton) beam travels through a counter-rotating 
high current electron beam ("electron lens") [13, 14]. The negative electron space charge 
can reduce the effect from the collision with the other proton beam.  

An electron beam with a size much larger than the proton beam can be used to shift the 
tune of the proton beam ("linear lens"). When the current in the electron bunches can be 
varied fast enough, the tune shift can be different for the different proton bunches, thus 
correcting PACMAN tune shifts. When the electron charge distribution is chosen to be the 
same as the counter-rotating proton beam, the non-linear focusing of this proton beam can 
be compensated ("non-linear lens"). When it is correctly applied, the tune spread in the 
beam can be strongly reduced.  

Such lenses have been constructed at the Tevatron at Fermilab [14] and experiments are 
in progress. 

 Electrostatic Wire  2.23.7.2

To compensate the tune spread from long-range interactions, one needs a non-linear lens 
that resembles a separated beam. At large enough separation, the long-range force changes 
approximately with 1 / r and this can be simulated by a wire parallel to the beam [15]. In 
order to compensate PACMAN effects, the wires have to be pulsed according to the bunch 
filling scheme. It is planned to install a wire in the LHC to study the feasibility of a partial 
compensation and it is foreseen to use this compensation effect for the high luminosity LHC 
(HL-LHC). 

 Passive Compensation with Alternating Crossing Schemes  2.23.7.3

In the crossing plane the long range interactions produce a detuning with a sign opposite 
to the other plane. This can be used to partially compensate beam-beam effects. In the case 
of the LHC the main experiments are exactly opposite in azimuth, the same bunches cross in 
the two collision points, i.e. the same is true for PACMAN bunches and the missing 
interactions. Alternating crossing schemes, i.e. vertical in one collision point and horizontal 
in the opposite, can substantially reduce the PACMAN effects. In particular the tune spread 
from bunch to bunch can be reduced to almost zero [16]. 
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 Present Generation Electron-Positron Factories 2.24.1

Present generation lepton factories have been very successful. Both B-factories, KEKB in 
Japan and PEPII in USA, have largely exceeded their design goals. A collection of articles 
summarizing their performances can be found in [1]. The Italian Φ-factory DAΦNE has 
exceeded the phase-I design luminosity in 2004 [2] and obtained a luminosity increase by a 
factor 3 after implementation of the novel crab waist collision scheme [3]. In the beginning 
of this year also the Tau-Charm factory in Beijing, BEPCII, has reached its design 
luminosity [4]. 

All the present generation factories relied, at least at the beginning of their operation, on 
the standard strategy in choosing beam parameters in order to achieve high luminosity. The 
strategy can be understood by considering the well-known expressions for the luminosity L 
and beam-beam tune shifts. For simplicity we start with the case of head-on collisions of 
short bunches having equal beam parameters at the Interaction Point (IP) 
 

                                     (1) 

 

where yx,x  are the space charge parameters whose maximum values are limited by the 

beam-beam effects, xε is the horizontal emittance of the beams, *
,yxσ  are their rms sizes at 

the IP, *
yβ  is the vertical beta function at the IP, N the number of particles per bunch, bN is 

the number of bunches and 0f the revolution frequency. Neglecting beam dynamics aspects, 
the luminosity increase in a collider at a given energy requires (according to Eq. (1)) 
 

- higher number of particles per bunch, 
- more colliding bunches, 
- larger beam emittance, 
- smaller beta functions at the IP, 
- round beams, 
- higher tune shift parameters. 
 

The present factories have obtained their good luminosity performances trying to fulfill 
almost all the above conditions as much as possible except that 

- it was chosen to collide flat bunches **
xy σσ <<  since it is rather difficult to provide a 

good dynamic aperture for the round beam case with both vertical and horizontal 
beta functions low at the IP; 
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- besides, in order to eliminate parasitic collisions in multibunch operation a small 
horizontal crossing angle was necessary. In the factories a relatively small 

Piwinski angle 1
2* ≤






=Φ

θ
σ
σ tg

x

z  was mandatory to avoid excessive geometric 

luminosity reduction and to diminish the strength of synchrobetatron resonances 
arising from beam-beam interaction with the crossing angle. 

However, a further substantial luminosity increase based on the standard collision 
scheme is hardly possible due to several limitations imposed by beam dynamics 
requirements: 

- in order to minimize the luminosity reduction due to the hour-glass effect (the 
dependence of the vertical beam size on the longitudinal position along the crossing 
region) the vertical beta function at the IP can not be much smaller than the bunch 
length zy σβ ≤* ; 

- a drastic bunch length reduction is impossible without incurring into single bunch 
instabilities: bunch lengthening and microwave instabilities due to the beam 
interaction with the surrounding vacuum chamber. Besides, too short bunches tend 
to produce Coherent Synchrotron Radiation (CSR) affecting beam quality and 
leading to a dramatic increase of the power losses; 

- a further multibunch current increase would result in different kinds of coupled 
bunch beam instabilities, excessive power loss due to interactions with parasitic 
Higher Order Modes (HOM) and increase of the required wall plug power; 

- higher emittances conflict with stay-clear and dynamic aperture limitations, require 
again higher currents to exploit the emittance increase for the luminosity 
enhancement; 

- tune shifts saturate and beam lifetime drops due to a strong nonlinear beam-beam 
interaction. 

 Novel Concepts 2.24.2

In order to overcome these limitations several novel collisions concepts and new 
collision schemes were proposed. The most known are the following 
 

- round beam collision preserving an additional integral of motion; 
- crab crossing; 
- collision with large Piwinski angle (“superbunch” in hadron colliders); 
- crab waist collision; 
- collision with travelling waist;  
- longitudinal strong RF focusing. 

 
Recently some of these ideas, such as round beam collisions, crab crossing and crab waist 
have been experimentally tested.  

The idea of round beams collisions preserving one of the integrals of motion was 
proposed by A.Ruggiero in 1982 [5] and then developed by the Novosibirsk Team for the 
Φ-factory design [6]. It requires equal emittances, equal small and positive fractional tunes, 
equal beta functions at the IP, no betatron coupling in the arcs. A 90° rotation at each 
passage of the transverse oscillation plane by means of solenoids in the interaction regions 
(IR) provides conservation of the longitudinal component of the angular moment 
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yxz xpypM −=  [7]. Thus the transverse motion becomes one-dimensional. In addition to 
the obvious advantages coming from Eq. (1), the round beam scheme helps to eliminate all 
betatron coupling resonances that are of crucial importance for tune shift saturation and 
lifetime degradation. The synchrobetatron resonances are also weakened since the 
transverse tune shift is almost independent of particle’s longitudinal position. The round 
beam concept was successfully tested at the electron-positron collider VEPP2000 in 2007 at 
the energy of 510 MeV [8]. Despite the low energy a high single bunch luminosity of 
1.2x1031 cm-2s-1 was achieved together with the maximum tune shift as high as 0.125 [9]. 
Another round beam collisions scheme, “Mobius accelerator”, was proposed in [10] and 
tested at CESR providing a tune shift of 0.09 in agreement with simulations [11]. 

The crab crossing collision scheme was proposed by R. Palmer in 1988 [12] and further 
developed in [13]. This idea makes it possible to collide bunches at a large crossing angle 
without luminosity loss and excitation of synchrobetatron resonances. In the crab crossing 
scheme both bunches are tilted before collision by half the crossing angle 2/θ , providing 
head-on collision at the IP. The tilt is created by a transverse RF deflector (crab cavity) 
giving opposite transverse kicks to the bunch head and tail. The RF deflector is placed at a 
point where the betatron phase in the crossing plane is 2/π− from the IP. In the classic crab 
crossing scheme another RF deflector after the collision point is used to restore the tilt. The 
crab crossing collisions with a single crab cavity per ring were successfully performed at the 
KEK B-factory [14]. A world record luminosity of 2.1x1034 cm-2s-1 has been obtained in this 
configuration. However, the achieved luminosity is still lower than that predicted by 
numerical simulation and work is in progress to find out the reasons of the disagreement. 

The idea of colliding with a large Piwinski angle is not a new one as well. In 1995, 
discussing beam-beam interactions with a large crossing angle, K.Hirata suggested that a 
large angle might have several merits for future high-luminosity colliders [15]. It has been 
also proposed for hadron colliders to increase the bunch length and the crossing angle [16, 
17] for luminosity optimization. The advantages of a large Φ  can be understood by writing 
down the formulae for the luminosity and tune shifts with a horizontal crossing angle. 
Neglecting the hour-glass effect, the expressions can be obtained from Eq. (1) simply by 
substituting the horizontal beam size by the effective transverse size 2** 1 Φ+→ xx σσ . Then, 
for large Piwinski angle, 1>>Φ , the luminosity and the tune shifts scale as [18] 
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Clearly, in such a case, if it were possible to increase N proportionally to θσ z , the vertical 
tune shift yξ would remain constant, while the luminosity would grow proportionally to θσ z . 
Moreover, the horizontal tune shift would drop )/(1 θσ z∝ . 

The idea of using a “travelling” waist (focus) to compensate the luminosity reduction due 
to the hour-glass effect in circular colliders came from linear colliders [19]. In the travelling 
waist collision scheme, the optical focal point depends on the longitudinal position of a 
particle within the bunch. In other words, particles with different longitudinal coordinates in 
collision “see” the same and minimal beta functions. In circular colliders the travelling waist 
can be realized by a combination of accelerator components that provides a transformation 
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described by a Hamiltonian 2
0 2

1
yzpHH −=  relating the longitudinal position z and the 

vertical momentum yp . For example, as proposed in [20], the travelling waist with the crab 
crossing can be obtained by using together crab cavities and sextupole magnets. 

The longitudinal strong RF focusing is an alternative way to obtain short bunches at the 
IP [21]. It consists in realizing a large momentum compaction of the lattice together with a 
strong RF gradient. In this regime the bunch length is no longer constant, but it is modulated 
along the ring and can be minimized at the IP. In turn, if the main impedance generating 
elements of the ring are located where the bunch remains long, it is possible to minimize the 
strength of wake fields. This helps to avoid microwave instabilities and excessive bunch 
lengthening due to the potential well distortion [22]. This concept was proposed as one of 
the possible options for the DAΦNE upgrade [23]. 

 Crab Waist Collision Scheme 2.24.3

   Contrary to the conventional strategy, the crab waist collision scheme requires small 
emittance and large crossing angle; there is no need to decrease the bunch length and push 
beam currents beyond the values already achieved in the present factories. This scheme can 
greatly enhance the luminosity of a collider since it combines several potentially 
advantageous ideas [24] 
 

- the first step is to provide a large Piwinski angle by decreasing the horizontal beam 
size xσ  and increasing the crossing angle θ . In this way, in addition to the 
advantages of the large Piwinski angle scheme, the length of the collision region, 
proportional to θσ /x  can be substantially decreased for low emittance beams. 
Besides, the problem of Parasitic Crossings (PC) is automatically solved due to the 
larger crossing angle and a beam separation in terms of at the PC positions. 
- the vertical beta at the IP can be made very low, comparable to the small length of 
the collision region, without significant luminosity loss due the hour-glass effect. In 
addition to the obvious geometric luminosity increase, the micro-beta scheme 
provides several advantages in beams dynamics:  

a) possibility of bunch current increase (if it is limited by yξ ), thus resulting 
in further luminosity gain; 
b) suppression of vertical synchrobetatron resonances [25]; 
c) reduction of the vertical tune shift with longitudinal oscillation 
amplitude [25]. 

- a further luminosity boost is given by the “crab waist transformation” described by 

the Hamiltonian 2
0

1
yxpHH

θ
+=  that provides a vertical beta function rotation in 

such a way that the beta function waist of one beam is oriented along the central 
trajectory of the other one. In practice the waist rotation (that is why it is called “crab 
waist”) is provided by sextupole magnets placed on both sides of the IP in phase 
with the IP in the horizontal plane and at p/2 in the vertical one. The integrated crab 
sextupole strength should satisfy the following condition depending on the crossing 
angle and the beta function at the IP and the sextupole locations 
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The crab waist transformation yields a small geometric luminosity gain due to the vertical 
beta function redistribution along the collision region, while the dominating effect comes 
from the suppression of betatron (and synchrobetatron) resonances arising in the 
conventional collision scheme due to the vertical motion modulation by the horizontal 
betatron oscillations [26]. The effect of the resonance suppression is clearly demonstrated 
by using frequency map analysis technique [27] (see Fig.1). 

 
Figure 1: DAΦNE beam-beam footprint with crab sextupoles off (left) and on (right) obtained by 
frequency map analysis techniques [27]. 

 
The crab waist collision scheme has been successfully tested at the electron-positron 

collider Φ-factory DAΦNE providing luminosity increase by a factor 3 [3]. The achieved 
peak luminosity of 4.5x1032 cm-2s-1 is close (within 10%) to the design value, in a good 
agreement with numerical simulations [28]. The successful test provided the opportunity to 
continue the DAΦNE physics program with the upgraded detector of the KLOE-2 
experiment [29, 30]. 

The advantages of the crab waist collision scheme have triggered several collider projects 
exploiting its potential. At present this scheme is considered to be most attractive for the 
next generation lepton factories since it holds the promise of increasing the luminosity of 
the storage-ring colliders by 1-2 orders of magnitude beyond the current state-of-art, without 
any significant increase in beam current and without reducing the bunch length. Several new 
collider projects seek to exploit the potential of the crab waist collision scheme. In particular, 
physics and accelerator communities are discussing and developing new projects which 
make use of the CW collision scheme: SuperB-factory in Japan (SuperKEKB [31]), SuperC-
Tau factory in Novosibirsk [32], two Higgs-factories FCC-ee at CERN [33] and CEPC in 
China [34]. 

The SuperKEKB is a natural upgrade of the very successful KEKB, Japanese B-factory at 
KEK (Tsukuba). The design luminosity goal of the project is 0.8x1036 cm-2s-1, i.e. by a 
factor of 40 higher than the world record luminosity of 2.1x1034 cm-2s-1 achieved at KEKB. 
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The commissioning of SuperKEKB has successfully started in the very beginning of 
2016 [35]. 

The Budker Institute of Nuclear Physics (Novosibirsk, Russia) is promoting the project of 
a new generation SuperC-Tau factory. The crab waist concept should allow reaching the 
project luminosity of (1-2)x1035 cm-2s-1 that by more than 2 orders of magnitude higher than 
the luminosity of 1.0x1033 cm-2s-1 presently achieved at the operating τ-charm factory 
BEPCII in Beijing [4]. SuperC-Tau has entered in the list of 6 most important Russian 
mega-science projects. In December 2015 the injection complex of the new collider has been 
successfully commissioned. 

In 2014 CERN launched the Future Circular Collider (FCC) study aimed at the design of 
a 100-km proton-proton collider with the collision energy of 100 TeV. As an intermediate 
step, the electron-positron collider (FCC-ee) hosted in the same tunnel and covering the 
energy range between 90 GeV and 350 GeV is also under consideration and its intensive 
design study is ongoing. The CW scheme has been proposed [36] and recently chosen as the 
baseline option for the FCC-ee design. This scheme provides a substantially higher 
luminosity with respect to the traditional head-on collisions at low energies and 
approximately the same luminosity at higher energies (> 240 GeV) at much relaxed beam 
optics parameters.  A CW lattice solution with twice higher vertical beta function at the 
interaction point, good dynamic aperture and energy acceptance and manageable photon 
energies has been found.  
    Presently China is considering building a 54-km long Higgs factory CEPC (Circular 
Electron Positron Collider). Along with the head-on collision option the collider design 
team has started seriously evaluating a possibility to build a local double ring option with 
the Crab Waist interaction region [37].   
     In order to complete the picture, we should mention other collider projects that were 
considering an application of the CW scheme such as SuperB [38] and SuperTau-
Charm [39] factories in Italy, a 500 GeV e+e- collider in a 233-km tunnel [40] in USA, and 
an upgrade option of the LHC based on collisions of very flat bunches [41, 42].    
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2.25 Three-Beam Instability in the LHC 
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 Introduction 2.25.1

In the LHC, a transverse instability has been regularly observed at 4 TeV right after the 
beta-squeeze, when the beams are separated by ten transverse rms sizes, and only one of the 
two beams is seen as oscillating. According to the author, only a single hypothesis appeared 
to be consistent with all the observations and basic concepts, one about a third beam - an 
electron cloud, generated by the two proton beams in the high-beta areas of the interaction 
regions. The instability results from a combined action of the cloud nonlinear focusing and 
impedance. 

 Facts and Hypotheses 2.25.2

To prevent transverse instabilities, LHC is normally operated with Landau octupoles and 
with a damper on [1]. For a single beam in the machine, the octupole instability threshold 
never exceeded 200A for high chromaticity values, 10Q′ ≥  and e-fold damping rate 50-200 
revolutions [2]. During the 4 TeV proton-proton run, LHC normally worked with maximally 
available 530A of the octupoles and with full damper gain, but still had regular instabilities 
at the end of the squeeze [3-5]. To avoid cancellation of stabilizing beam-beam and octupole 
anharmonicities [4, 6], octupole polarity was switched to positive since summer 2012. As a 
result, at the end of the squeeze beam-beam nonlinearity effectively provided additional 
~ 220A for the edge (“pacman”) bunches and ~ 450A for regular bunches. At this stage of 
the process, the edge bunches had ~ 4 times more effective octupole nonlinearity than the 
single beam threshold, still being unstable. Typically, the instability was observed as 
intensity loss of the trailing bunches, accompanied with coherent activity at few synchro-
betatron lines seen at the BBQ spectrometers.   

That high sensitivity of the instability to the beams interaction inclines to suspect 
coupled-beam oscillations. Indeed, every pacman bunch has 8 long-range beam-beam 
collisions per interaction region (IR), resulting in 3~ 1.3 10−⋅  of the incoherent tune shift per 
every one of the two main interaction regions (IR1 and IR5). This linear tune shift is more 
than a half of the synchrotron tune, exceeding the rms tune spread on the Landau octupoles 
at their maximal current. Although the linear (quadrupolar) parts of incoherent tune shifts at 
IR1 and IR5 are compensating each other thanks to the crossing horizontal-vertical collision 
scheme [7], the coherent beam-beam tune shifts are not cancelled, since the two beams have 
significantly different phase advances between the two interaction points (IP) [8]. Thus, 
reasons to suspect coupled-beam oscillations as a cause of the end-of-the-squeeze instability 
seem to be very serious. However, an attentive consideration of these reasons leads to a 
definite refutation of that suspicion.  

First of all, it has to be noted that although the instability is highly sensitive to the 
presence of both beams in the IR, normally only one of the two beams is seen as unstable 
(more precisely, only one from the four transverse degrees of freedom is normally seen as 
unstable [3-5]). However, this observation does not refute the significant coupled-beam 
contribution to the instability: a role of the apparently stable beam could be hidden by a 
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possible asymmetry of the two-beam oscillations [9,10]. Thus, the apparent stability of one 
of the beams does not yet contradict to the coupled-beam hypothesis. This hypothesis is still 
refuted though, but by another argument, based on the damper consideration.  

The LHC transverse damper normally works at rather high gain providing a damping rate 
of 0.02 inverse revolutions, which is 40% higher than the angular synchrotron frequency sω . 
Originally the damper worked in a narrow-band regime with FWHM of its time-domain 
response ~ 140 ns, so high frequency coupled-bunch modes of 50 ns beams were not 
effectively damped. Last several months of the Run I the damper worked in a broadband, 
really bunch-by-bunch regime [11], but that did not show any improvement for the 
instability. That new bunch-by-bunch damper is broadband enough to resolve coherent 
motion of every bunch, but it cannot resolve intra-bunch motion; it sees only a centroid of 
every individual bunch, thus reacting to every head-tail mode proportionally to a weight of 
the centroid in its oscillations. At a sufficiently high damper gain, this means that only those 
modes are unstable which have practically zero centre of mass amplitude. These modes are 
invisible for the damper and thus can be unstable due to the machine impedance. It is 
important that beam-beam coupling for that sort of potentially unstable modes is suppressed 
by the same reason as their visibility for the damper. Indeed, for the long-range collisions, 
the bunch length is much smaller than the beta-functions, so kicks of the oncoming bunches 
are equivalent to kicks of their centres. Since the bunch centres are blocked by the damper, 
the beam-beam coupling is strongly suppressed, so beam-coupling cannot play a significant 
role. This qualitative refutation of the coupled-beam contribution in case of a strong damper 
can be expressed by means of a simple model treating coupling of two head-tail modes of 
the two beams.  

Let 1,2A  be the amplitudes of the eigenmodes in beam 1 and beam 2. Due to the beam-
beam interaction, they become coupled. Assuming for simplicity a single IP, the mode 
dynamic equations follow       

                                                 (1) 

Here cω  is the impedance-related coherent tune shift of the separated beams; the 
parameter α  reflects a weight of the centre of mass in the amplitudes A so that at zero 
chromaticity 1α =  for the 0th head-tail mode; d and q are the damping rate and beam-beam 
tune shift. A straightforward solution shows that this system has two coupled modes (so 
called π  and Σ  modes) with frequencies 

                                                       .c id qω α α±Ω = − ±  (2) 
To be unstable and thus require some Landau damping to stabilize it, the mode centre of 

mass parameter has to be small enough: Im /c dα ω< . From here, the coupled-beam tune 
shift is limited as  

                                                     Im( ) / .cq q dα ω<  (3) 
When the gain d is high enough, the beam-coupling correction just slightly shifts the 

coherent tunes, so that their positions in the stability diagram remain almost the same. In 
case when the beam-beam octupolar term adds up to the Landau octupoles, the stability 
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diagram increases, so that the two beams are more stable than one. For LHC at the end of 
the beta-squeeze, the beam-beam tune shift per IR and the damping rate are close to each 
other, q/d ~ 1, so the coupled-beam tune shift is limited as Im( ).cqα ω<  Thus, in this case, 
the beam-beam coupling moves coherent tune shifts along their real axis by a value not 
exceeding their imaginary part. However, the stability diagram width (say, FWHM) is 3-10 
times higher than its height; moreover, with the damper, imaginary parts of the coherent 
tunes are much smaller than their real parts [12], so a shift of the real parts of the coherent 
tunes at the value limited by its imaginary part results only in a small increase of the 
required octupolar current, in any case smaller than ~ 30%, and much smaller than that for 
the LHC impedance model. Taking into account that beam-beam octupolar term increases 
the stability diagram at least by 40 %, it can be concluded that the two beams have to be 
more stable than one – in contradiction to the observations. Thus, the effect of coupling 
oscillations of the two beams cannot explain the observed instability at the end of the 
squeeze.  

For those who may be not quite convinced by the qualitative explanation and the model 
above, suspecting them to be over-simplified, the author provided a detailed solution of 
Vlasov equation, where the azimuthal, radial, coupled-bunch, and coupled-beam mode 
dimensions were taken into account in a framework of the Nested Head-Tail (NHT) Vlasov 
solver [12]. The result of that detailed computation confirmed the conclusions above: two-
beam stability requires almost the same stabilizing octupolarity as a single beam does; with 
the beam-beam octupolar term taken into account it means the two beams have to be stable 
at less than 100 A of the Landau octupoles, while in reality they are not stable even at the 
maximally available 550 A. Almost at the same time similar result was obtained by S. White 
for single-bunch beam-beam tracking simulation with Beam-Beam3D program [13]. 
According to his results, stability conditions for weak-strong and strong-strong collisions 
are almost the same when the damper is fully on.  

To verify these considerations, a special LHC beam experiment was run, where two 
beams with 78 bunches each were able to see or not see each other in the interaction regions 
by means of RF cogging (“cogging MD”). On top of that, tune separations of the two beams 
were varied up to several times the beam-beam tune shift per IR [14]. Despite a relatively 
small number of bunches (78⊗78), the end-of-squeeze instability was still observed. No 
sensitivity of the instability to that large tune separation was distinctly detected, while its 
sensitivity to simultaneous presence of the two beams in the IR1 and IR5 [15] was very 
clear. Thus, the three-level theoretical refutation of the coupled-beam oscillations as a cause 
of the instability was supported by its experimental refutation. Then, what is the cause of the 
instability? 

Well, the fact is that when a reference beam sees another beam in the IR1 and IR5, it is 
much more unstable. The other beam, being rock-stable, dramatically changes life 
conditions of the reference beam. The Coulomb field of the other beam makes the reference 
beam even more stable than it would be alone. Hence, the other beam brings with itself 
something else, a third element, which interacting with the reference beam makes the beam 
much more unstable. What can that third element, created by the two beams in the IR, be?    

   This third element cannot be a high order mode (HOM) electromagnetic field excited 
by joint efforts of the two beams inside a parasitic cavity located somewhere in IR. Indeed, 
that sort of coherent tune shift for two beams cannot be higher than a doubled tune shift of a 
single beam. Moreover, the two-beam HOM-driven tune shift is coming closer to the 
doubled single beam tune shift only if the dominant part of the entire single beam tune shift 
is driven by that HOM, which cannot be the case since the observed instability for 78⊗78 
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bunches does not show any difference from 1378⊗1378 bunches. At the same time, while 
the single beam is stabilized by 200 A, the two beams are unstable with 750 A of the 
effective octupole current. That is why the sought-for third element cannot be a HOM of 
one or another parasitic cavity in the IR; it cannot be a free EM field. If this third element is 
not an EM field, it can be only matter, attracted by the two beams in the IR and disappearing 
when one of the beams is not there. It appears to be very clear that this matter can be 
nothing but an electron cloud in the IR. 

 E-Cloud as Nonlinear Lens 2.25.3

Electron cloud influences proton oscillations in two aspects. First, it works as a static lens, 
shifting up all coherent and incoherent tunes. This lens is nonlinear; the tune shifts of the 
transverse tails should be smaller than those of the core. Nonlinearity of this lens changes 
the proton stability diagram. The second aspect is that e-cloud is a reactive medium, whose 
response to proton perturbations is similar to a low-Q impedance [16-18]. Impedance of the 
electron cloud moves coherent tune shifts of the proton beam.  

Electron cloud is not homogeneous along the bunch length; its line density changes and it 
may have multiple transverse pinches, so accurate computation of its effect on the proton 
coherent motion is very complicated. So far approaches in this direction are based either on 
simplified analytical models [16-18] or heavy multi-particle tracking [19,20]. Below, both 
focusing (static) and reactive (dynamic) aspects of the electron cloud are taken into account 
within a framework of a simplified model, where the cloud is represented as a longitudinally 
homogeneous electron density distribution, or a beam with zero longitudinal velocity, whose 
transverse profile is identical to one of the Gaussian proton beam. It can be rephrased that 
only electrons within the transverse radius of the proton beam are taken into account, while 
all the outside parts of the cloud are neglected both for the focusing and impedance aspects. 

With eN  electrons along the entire LHC circumference seen by the proton beam of the 

normalized rms emittance nε γε= , the incoherent proton tune shift from the electrons e xQ∆  
can be expanded over the proton actions ,x yJ J . For that, the space charge tune shift for a 
Gaussian bunch can be used (see Eq. (7) of Ref. [21]), leading to   
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In the weak head-tail approximation, the eigenvalues Q are to be found as solutions of 

the dispersion equation [22] 
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where F is a normalized phase space density defined on the phase space , cQ  is the 

coherent tune shift, which gives the mode tune in case of no tune spread xQ∆ , sQ  is the 
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synchrotron tune,  l – azimuthal mode number and ο - infinitesimally small positive value. 
The stability diagram is a map of the real axis in a complex plane Q onto a complex plane  
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so the mode is stable if and only if its tune shift cQ  is located inside the stability diagram. 
For Gaussian transverse distribution, and with negligible spread of the synchrotron 
frequencies, the 2D dispersion integral was found by R. Gluckstern [22] 
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Here P.V. stays for the principle value and θ( )z  is the Heaviside theta-function. Stability 
diagrams for distribution functions ( , ) (1 ( ) / )n

x y x yF J J J J a∝ − +  are discussed in 
Ref. [23].  

The incoherent tune shift xQ∆  in the denominator of the dispersion integral takes into 
account all the nonlinearities: Landau octupoles, beam-beam, e-cloud, and the remaining 
machine nonlinearities if they cannot be neglected: ....x o x bb x e xQ Q Q Q∆ = ∆ + ∆ + ∆ +  The 
octupoles incoherent tune shift contribution is described by a symmetric matrix [24]  
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for the normalized rms emittance 2μmnε =  and octupole current 100AoI = + , the LHC 
octupole matrix elements were computed at 4 TeV as [24]  

                                            
5 54.2 10 ; 2.9 10o oa b− −= ⋅ = − ⋅ .  (9) 

Approximating the interaction region as a drift space, the long-range beam-beam 
octupole contribution per IR is computed as (see the Appendix) 
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with (0)
bb xQ∆  as the quadrupole beam-beam tune shift per IR, and r as the normalized beam-

beam separation, or the separation in the units of rms beam sizes, which is almost the same 
for all the long-range collisions. At the end of the squeeze, (0) 3| | 2.5 10 , 9.5bb xQ r−∆ = ⋅ = .  

One of the main issues associated with multiple contributions to the incoherent tune shift 

xQ∆  is a possibility of significant reduction of the stability diagram. When it was realized 
that the Landau octupoles and beam-beam contributions may almost cancel each other for 
negative octupole polarity [4, 6], their polarity was inverted. For positive octupole polarity, 
these two contributions add together. According to the LHC impedance model [7, 25], the 
coherent tune shifts of unstable modes are all negative [12]. At the left (defocusing) side of 
the stability diagram, the beam-beam contribution at the end of the squeeze is approximately 
equivalent to 200 A for pacman bunches. 

Electron cloud may significantly change the stability diagram: defocusing anharmonicity 
of the cloud may almost cancel common focusing anharmonicity of the octupoles and beam-
beam, resulting in a collapse of the focusing side of the diagram. The tune shifts formulas 
above show that at the end of the squeeze with 500 A of the Landau octupoles this requires 

101 10eN ⋅  seen by the proton beam within its size along the entire orbit. This collapse of 
the focusing part of the stability diagram would not yet lead to instability, were the coherent 
tune shifts of unstable modes all negative, as they are computed [12] for the LHC 
impedance model [25]. However, the electron cloud not only changes the stability diagram, 
it also introduces its own impedance. Tune shifts of unstable modes driven by this 
impedance are mostly positive. 

 Impedance and E-Cloud 2.25.4

Electron cloud is a dynamic object: it responds to collective perturbations of the proton 
bunches. Being excited by these perturbations, a dipole moment of the cloud oscillates, then, 
in the proton Coulomb field. Due to significant nonlinearity of this field, the excited 
electron perturbation has a high frequency spread and decoheres quickly. This consideration 
leads to an idea to represent the cloud coherent response by means of a resonator wake 
function with rather small Q-factor, Q ~ 2-5. [16-18]. To estimate this wake function, the 
proton bunch can be substituted by a piece of a coasting beam with constant 3D density, 
equal to an average density of a Gaussian bunch 
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In the Coulomb field of this homogeneous bunch, electrons oscillate with an angular 
frequency   
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Let a small longitudinal sample of this bunch have a charge q and a rigid offset px . Due 

to its dipole moment pqx , this proton sample excites an electron velocity   
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leading to an amplitude of the electron offset /e e ex v ω= . Modelling the electron beam by 
the transversely homogeneous one, same as the proton one, the kick to the protons is 
calculated. This kick can be expressed in terms of the cloud wake function; using the same 
convention as in Ref.[26], this yields 
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where eN  is the total number of electrons seen by the proton bunch at the given part of the 
orbit. Note that sign of this wake is the same as for the conventional cavity modes: its 
derivative is positive at τ = -0. This wake differs only by a factor of 1/4 1.3π ≈  from one 
suggested in Ref. [17], which appears to be well within error bars of both derivations.   

Coherent tune shifts caused by the electron cloud wake field can be estimated within the 
air-bag approximation. Neglecting bunch coupling and assuming the weak head-tail 
approximation, the coherent tune shift can be presented as in Eq. (6.188) of Ref. [26] 
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Here xβ  is the beta-function assumed to be weighed with the impedance xZ  along the orbit, 

 stands for the air-bag equivalent bunch length, and 0 /x bQχ ω τ η′=  is the 

conventional head-tail phase with /x xQ pdQ dp′ ≡  as a chromaticity, 0ω  as the angular 
revolution frequency and η  as the slippage factor. Substitution of the cloud impedance into 
the air-bag formulas for  yields 

                                       

( )
( )

( )

(0)

(0)

22
0

22

22
0

Im ;

Re ;

( ) ( )2 ;
1 1 /

( ) 1 /
.

2 1 1 /

c e x R

c e x I

l e l e
R e

l ee
I

Q Q F
Q Q F

J x J x dxF Q
xQ x x

J x x xQ dxF
xQ x x

c

φ φφ
π

φφ
π

∞

∞

= ∆

= ∆

′
=

+ −

−
=

+ −

∫

∫
  (16) 

Here 2 /e e b e z cφ ω τ ω σ= =  is a phase advance of the electron oscillations on the air-bag 

bunch length 2 zσ . According to Ref. [17], for round beams . For this Q-factor, the 

resonator impedance form-factors ,R IF F  as functions of the phase advance eφ  are presented 
in Figs. 1 and 2. 
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Figure 1: Growth rate form factor RF  for head-tail modes 0-4 (consequently red, orange, green, 
blue and black curves). 

 

                              
 

Figure 2: Same as Fig. 1 but for the tune shift form factor IF . 
 
As it is seen from the results above, the growth rate of the most unstable head-tail mode 

max (Im )l cQ  is almost independent of the beta-function, at least directly, since the 

incoherent tune shift (0)
e xQ∆  does not contain any explicit dependence on that, and the form 

factor RF  of the most unstable mode is almost constant. Certain dependence on the beta-

function is implicitly contained in the tune shift (0)
e xQ∆  due to some sensitivity of the e-

cloud build-up to the beam size, but this issue is beyond the scope of this paper. It is already 
clearly seen that the head-tail number of the most unstable mode *l  is about equal to the 
integer part of the phase * 1 /e xl φ β∝ . For the LHC, the orbit-average 

0 / 70mx xR Qβ = ≈  yields the phase advance 20radeφ =  and thus the same number of the 

most unstable mode, . In reality those high-order head-tail modes should be 
suppressed by a spread of the synchrotron tunes. That is why a possible e-cloud 
accumulation inside the regular part of the machine contributes to the Landau damping, 
while its contribution to the effective impedance can be neglected. The situation 
dramatically changes at the end of the squeeze, when beta-functions reach a level of few km 
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for significant part of the interaction regions. For instance, at 4kmxβ = , the phase advance 

, and so the head-tail number is not that high: * 2l = . 
  

                              
 
Figure 3: LHC stability diagrams: a separated stable beam with + 200A of the Landau octupoles 
(green); pacman beam-beam only (no octupoles) at the end of the squeeze (blue); this pacman beam-
beam and + 500A of the octupoles in addition (black); same as the black line plus e-cloud with total 

 (magenta, red, brown). Markers of the corresponding colour show the most 
unstable modes.  

 
In the Fig. 3, several LHC stability diagrams are shown together with the coherent tune 

shifts of the most unstable modes. Several important aspects of this figure deserve to be 
discussed.  

1. According to Fig. 3, the instability happens if and only if the total number of 
electrons belongs to a certain interval: . This may raise a 
suspicion that this instability can hardly happen since it requires a rather narrow 
interval of the cloud intensities. However, this suspicion can be counter-argued that 
the upper limit of the instability may not be so important. Indeed, as soon as the 
electron population reaches the lower instability threshold, the instability itself may 
prevent further accumulation of the electrons, and thus the cloud intensity will never 
reach the upper instability threshold. Still, the instability may stop due to emittance 
growth and intensity loss of the proton beam, caused by the instability itself. That 
sort of scenario appears to be consistent with observations.  

2. While the collapse of the right (focusing) side of the stability diagram is driven by 
the total number of electrons seen by the beam along the orbit, the coherent tune 
shifts of the unstable modes are driven to the right by the electrons seen at high-beta 
(~ km-range) areas only. Figure 3 does not make any difference between these two 
groups of electrons; in other words, it assumes that all the electrons are mainly 
accumulated in the high-beta areas. If the opposite is true, the right-side collapse of 
the stability diagram would not lead to the instability: the electron impedance does 
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not play a role in that case, while all the coherent tune shifts of the unstable modes 
are negative [12] according to the currently accepted impedance model [25].  

3. However, the LHC impedance model is not so certain. Measured single-beam 
thresholds and single-bunch tune shifts are consistent with 2-3 times higher 
impedance at the single-bunch (~ GHz) frequency range than it is calculated in 
Refs. [7, 25]. An origin of this discrepancy is so far unknown. In case this lost 
impedance is mostly associated with a broadband resonator, underestimated in the 
computations, the impedance-related unstable coherent tune shifts will appear at the 
focusing part of the stability diagram, and a smaller value of the e-cloud impedance 
would be sufficient to explain the instability. In that case the fraction of the e-cloud 
in the interaction region may be smaller or even much smaller than the contribution 
of the regular part of the orbit. One more reason for reduction of the threshold 
electron population in the high-beta parts of the IRs can be found in Refs. [27,28] 
suggesting significant enhancement factor for the cloud wake function.  

4. It has been mentioned above that the head-tail number of the most unstable mode 
depends on the beta-function of the cloud localization. For the average beta-function 
in the LHC, about 70 m, this number is very high, , so these modes should be 

stabilized by the spread of the synchrotron tunes, entering as . However, 
during the ramp and then at the flat top the bunch length is reduced, and so is the 
synchrotron tune spread. On top of that, some e-clouds could be accumulated at the 
areas of maximal beta-functions of the regular cells, where , and thus 

. Maybe, due to the ramp these modes are not suppressed any more by the 
longitudinal Landau damping, and thus become unstable. Their instability cannot be 
seen by BBQ spectrometers since the bunch oscillations are too microwaving, at the 
~ 10 GHz frequency range. Instability of these microwave modes could be an 
explanation for the emittance growth at the LHC ramp and losses during and after 
that [29, 30].  

5. Computations of this paper neglect the damper. Excitation of the microwave modes 

* 2l >  should not be sensitive to the damper seeing the bunch centre only. 
One more question appearing in this context relates to the fact that normally only one 

beam is seen oscillating, while another appears to be rock-stable. Can this observation be 
consistent with the three-beam instability picture? The answer appears to be strictly positive. 
Indeed, the four degrees of freedom (two beams, horizontal and vertical directions) can 
never be identical: one of them is always closer to the instability threshold than the other 
three. Due to the damper, these degrees of freedom are uncoupled. Thus, when the most 
unstable of them, crosses its threshold, the others are not influenced. After that, the 
instability itself should prevent other modes to cross the threshold. 

 Summary 2.25.5

Accumulation of an electron cloud in the high-beta areas of the ATLAS and CMS 
interaction regions so far is the only hypothesis having a potential to explain the transverse 
instability at the end of the beta-squeeze in the LHC. According to that hypothesis the 
instability develops due to two different effects of the e-cloud: collapse of the focusing side 
of the stability diagram and introduction of the broadband impedance at GHz frequency 
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range at the end of the squeeze. The purpose of this paper was to show that this hypothesis 
is compatible with all known observations and main conventional ideas.   

Finally, I would like to stress that all computations of this paper are extremely 
approximate, with unknown error bars. An electron cloud model applied above is very 
simplified; many other factors are neglected - the bunch-by-bunch damper, radial head-tail 
modes, couple-bunch interaction. Certainly all these factors require more detailed and 
thorough future analysis. The main purpose of this paper is to attract attention to the three-
beam instability hypothesis as a potential explanation of the end-of-the-squeeze instability, 
so that the future elaborative studies will either confirm this explanation or refute it and find 
a real one. 
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 Appendix: Long-Range Beam-Beam Tune Shift 2.25.7

Octupole components of the long-range beam-beam tune shift can be found from an 
expansion of Coulomb potential of a charged cylinder ( , )x yΦ  at a distance 0r  from its axis, 

with 2 2 2
0x y r+ 0 . Keeping only even terms up to 4th order, it yields 
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Substitution 2 cosx x xx J β ψ=  and similar to y , after betatron phase averaging and 
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 Introduction 2.26.1

The quantities characterizing the performance of a large variety of hadron and lepton 
rings, as the power of synchrotron based proton drivers, the luminosity of colliders, the 
brightness of their associated injectors or the brilliance of X-ray storage rings, are 
proportional to the beam intensity or to the ratio of the intensity with the beam dimensions. 
The modern tendency is to push the performance frontiers towards extreme conditions, i.e. 
the highest beam intensity contained within the smallest beam volume, where the collective 
behavior of the beam becomes predominant. It is thus of paramount importance to take 
measures in order to alleviate collective effects, including instabilities, space-charge and 
intrabeam scattering (IBS), in the early phase of the design, which usually begins with the 
linear optics. 

In the case of rings in operation, dealing with collective effects usually implicates 
mitigation techniques based on the use of multipole magnets [1] or higher harmonic RF 
cavities [2] for providing Landau damping, dedicated feedback systems [3] or the reduction 
of the beam interaction with its environment through careful vacuum and low-impedance 
component design [4]. Changing the linear optics, without major upgrade involving radical 
modifications of the machine configuration, is an unconventional approach, since it is 
subject to the constraints of the existing magnet and powering systems. It can be even more 
challenging because of its interplay with the already optimized operation of critical systems, 
such as beam transfer elements or RF. On the other hand, if a viable solution is found, it can 
be a very cost effective way to break existing intensity or brightness limits.  

 Impact of Optics Parameters on Collective Effects 2.26.2

In this section, three fundamental quantities that affect collective effects are described, 
following the logical route of an optics study: starting from the most basic one, the beam 
energy, passing to the most fundamental, the transverse beam sizes and ending with the 
phase slip factor, the most intimately connected to collective effects. 

The beam energy is one among the basic parameters that have to be settled even before 
starting the optics design of a ring. Although, strictly speaking, it cannot be considered as an 
optics constraint, it is indirectly related through the integrated magnet strengths and the size 
of the lattice cells. At the same time, in the absence of synchrotron radiation damping, the 
transverse emittance is inversely proportional to the energy, thus reducing the physical beam 
size. Almost all collective effects become less pronounced with the beam energy, with the 
notable exception of the electron cloud instability thresholds [5]. Hence, for hadron rings, it 
is natural to target always the highest possible energy although this heavily depends on the 
users’ physics needs, the reach of the pre-injectors and finally on cost. In the case of beams 
dominated by synchrotron radiation damping, the quadratic dependence of the horizontal 
equilibrium emittance to the energy puts an additional restriction to this increase, and a 
careful optimization has to be performed, in order to meet the specific design targets. 
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Transverse beam sizes are also playing an important role to the collective beam behavior, 
especially in the case of self-induced fields. For example, the space-charge tune-shift [6] 
and IBS growth rates [7] are inversely proportional to their product raised to a certain power.  
For high-intensity/power rings, there is usually no specific preference on the size of 
transverse emittances and the trend is to produce them large enough, for limiting the 
aforementioned effects. When the performance target is high brightness, which corresponds 
to small transverse emittances, the optics is one handle to increase beam sizes. For hadron 
rings, the FODO cells are well suited for this, due to the alternating behavior of the optics 
functions. In particular, weaker focusing can maximize beam sizes, within the limits set by 
the machine aperture. In the case of e+/e- rings targeting low emittances, doublet-like cells 
are usually employed for minimizing horizontal beam sizes. On the other hand, the vertical 
beta functions can be increased, especially along the bending magnets, where the horizontal 
ones are small. Although this strategy is valid for space-charge or IBS, beam current 
thresholds of instabilities such as transverse mode coupling or coupled bunch, present an 
opposite dependence and call for a reduction of the average (vertical) beta functions. 

The slippage (or phase slip) factor η is defined as the rate of change of the revolution 
frequency with the momentum deviation. At leading order, it is a function of the relativistic 
γ factor (i.e. the energy) and the momentum compaction factor αp:  

  (1) 

The momentum compaction factor is the rate of change of the circumference C with the 
momentum spread and, again at leading order, it is given by  

  (2) 

It depends on the variation of the horizontal dispersion function along the bending magnets. 
The phase slip factor unites transverse and longitudinal particle motion. In fact, the 
synchrotron frequency or the bunch length are proportional to η1/2, which means that 
increasing the slippage factor makes synchrotron motion faster. 

 The phase slip factor vanishes when γ = αp
-1/2 = γt and the corresponding energy is 

named transition energy. It is widely known, since the commissioning of the first 
synchrotrons, that crossing transition can cause various harmful effects with respect to the 
collective behavior of the beam [8], as the longitudinal motion basically freezes at this point. 
Although several transition crossing schemes have been proposed and operated reliably in 
synchrotrons like the CERN PS for more than 40 years (see [9] and references therein), the 
call for beams with higher intensity (or power) resulted in the consideration of ring designs 
which avoid transition, either by injecting above (η>0), or always remaining below 
transition (η<0). The former case is almost always true for electron/positron rings above a 
few hundred MeV (unless αp<0). For hadron rings, it requires the combination of high 
energy (i.e. large circumference) and a large momentum compaction, which is translated to 
larger dispersion excursions and, generally speaking, weaker focusing, thereby larger beam 
sizes [10]. For remaining below transition, the operating energy range has to be kept narrow 
and a positive momentum compaction factor should be low, which points towards stronger 
focusing and smaller beam sizes. The special case of negative momentum compaction 
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(NMC) [11] is very interesting because the beam remains below transition independent of 
energy. As for the rings remaining above transition, the need to excite dispersion 
oscillations for getting an overall negative dispersion integral on the bends results in larger 
beam sizes.   

 High-Power Synchrotrons 2.26.3

Recent optics design of high-intensity and/or high-power rings such as the J-Parc main 
ring [12], the PS2 [13], or the High-Power PS [14] are based on NMC arc cells, for avoiding 
transition and reducing losses. These are sequences of modified FODO cells with an 
increased number of quadrupole families (up to four) for inducing negative dispersion, 
leading to an overall “imaginary” γt [11]. In that case, the absolute value of the slippage 
factor could be increased for raising instability thresholds but also because a fast 
synchrotron frequency would be beneficial for longitudinal beam manipulation [15]. A 
complete picture of the achievable tuning range of a ring such as the PS2 can be obtained by 
the Global Analysis of all Stable Solutions (GLASS), a numerical method pioneered in low 
emittance rings [17], where all possible quadrupole configurations providing stable 
solutions are obtained. In Fig. 1 (left), the imaginary transition γt is presented for all stable 
solutions in the tune diagram, along with resonance lines up to 3rd order. The blue zones 
corresponding to low imaginary values of γt (i.e. large absolute values of the momentum 
compaction) are obtained for higher horizontal tunes. There is large flexibility for the 
vertical tunes. In Fig. 1 (right), the geometrical acceptance is computed for the most 
demanding beam parameters with respect to emittance. The red color corresponds to small 
acceptance (above a limit of 3.5s), which means larger beam sizes. This type of global 
analysis including non-linear dynamics constraints was used during the conceptual design of 
the PS2 ring [16]. 

 

         
Figure 1: Transition energy γt (left) and geometrical acceptance in units of beam sizes Ns (right) for 
a global scan of optics solutions in the tune diagram [17]. 

 Low Emittance Rings 2.26.4

The present trend of ultra-low emittance rings is to target the highest beam intensities 
within the smallest dimensions, at least in the transverse plane. The additional complication 
in the case of damping rings (DRs) for linear colliders is that they aim to produce low 
longitudinal emittances, as well. The output beam dimensions are largely dominated by IBS. 
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Even space-charge effects become important, especially in the vertical plane. A careful 
optimization of the optics parameters is crucial for reducing these effects and obtaining a 
solid conceptual design [19].  

Due to the fact that the IBS growth rates but also the equilibrium emittances vary with 
energy, it is important to find their interdependence, when the IBS effect is included [20]. 
Evaluated through a modified version of the Piwinski method [21], and for constant 
longitudinal emittance, the dependence of the steady state transverse emittances of the CLIC 
DRs on the energy is plotted in Fig. 2 (left). A broad minimum is observed around 2.6 GeV 
for both horizontal (blue) and vertical planes (green). The IBS effect becomes weaker with 
the increase of energy, as shown in Fig. 2 (right), where the emittance blow-up for all beam 
dimensions is presented. Although higher energies may be desirable for reducing further 
collective effects, the output emittance is increased above the target value, due to the 
domination of quantum excitation. In this respect, it was decided to increase the CLIC DR 
energy to 2.86 GeV, already reducing the IBS impact by a factor of two, as compared to 
earlier designs at 2.42 GeV [20].  

 

     
Figure 2: Steady-state emittances (left) and their blow-up (right) due to IBS, as a function of the 
energy [19]. 

 
In modern low emittance rings, Theoretical Minimum Emittance (TME) arc cells or 

multi bend achromats are employed. In order to reach minimum emittance, the horizontal 
beam optics is quite constrained, whereas the vertical one is free, but also completely 
determined by the two quadrupole families of the cell. It turns out that the vertical beta 
function reaches a minimum at the same location as the horizontal, which is the worst case 
for IBS. A way to reverse this tendency is to use a combined function dipole with a low 
defocusing gradient. Although this gradient does not provide a significant effect to the 
emittance reduction, it reverses the behavior of the vertical beta function at the middle of the 
dipole, maximizing the vertical beam size at that location, and thus reducing IBS growth 
rates [22].  

A crucial step in the optimization of the TME cell with respect to its impact on 
collective effects is the analytical derivation of the two quadrupole focal lengths, in thin lens 
approximation, depending only on the horizontal optics functions at the center of the dipole 
and the drift space lengths [19, 23]. Using this representation, the dependence of various 
parameters on the cell phase advances in the case of the CLIC DRs are presented in Fig. 3, 
including the average IBS growth rates, the detuning from the minimum emittance, the 
momentum compaction factor, the vertical space-charge tune-shift and the horizontal 
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chromaticity. This parameterization permitted to find the best compromise for the phase 
advances (between 0.4 and 0.5) where the IBS growth rates, the horizontal and vertical 
chromaticities and the Laslett tune shift are minimized, while the momentum compaction 
factor is maximized. These low phase advances correspond to emittances that deviate from 
the absolute minimum by a factor of around 15. A similar study was performed in order to 
find the optimal wiggler field and wavelength, while minimizing the IBS effect [19, 24]. 
Based on these studies, the highest field within the limit of technology would be desirable, 
but a moderate wavelength is necessary for reducing IBS. These specifications were used 
for the super-conducting wiggler prototype under development for the CLIC DRs [24]. 

 

  

  
Figure 3: Analytical parameterization of the TME cell phase advances with the IBS horizontal (top, 
left) and longitudinal (top, middle) growth rates, the detuning factor (top, right), the momentum 
compaction factor (bottom, left), the Laslett tune shift (bottom, middle) and  
the horizontal chromaticity (bottom, right) [19]. 

 High-Brightness Synchrotrons 2.26.5

Hadron collider injectors need to achieve the highest brightness with the smallest 
possible losses. A typical example is the CERN SPS whose performance limitations and 
their mitigations for LHC beams are the subject of a study group [25], in view of reaching 
the required beam parameters for the high luminosity LHC (HL-LHC). The upgrade of the 
main 200 MHz RF system will solve beam loading issues for reaching higher intensities, but 
a variety of single and multi-bunch instabilities remain to be confronted. The Transverse 
Mode Coupling Instability (TMCI) in the vertical plane and E-Cloud Instability (ECI) for 
25 ns beams are the most prominent transverse problems, especially for HL-LHC intensities. 
Longitudinal instabilities necessitate the use of a higher harmonic 800 MHz RF system for 
providing Landau damping and the application of controlled longitudinal emittance blow-up 
throughout the ramp. For constant longitudinal bunch parameters and matched RF-voltage, 
higher intensity thresholds for the above instabilities are expected when increasing the phase 
slip factor.  
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Figure 4: Slippage factor η relative to the value of the nominal SPS optics (nominal γt = 22.8) as a 
function of γt [26]. 

 
In the nominal SPS optics (called Q26), the phase advance per FODO cell is close to p/2, 

resulting in betatron tunes between 26 and 27. Low dispersion in the long straight sections is 
achieved setting the arc phase advance to 4×2p. In the case of the nominal SPS optics, the 
LHC-type proton beams are injected at 26 GeV/c (γ=27.7), i.e. above transition (γt=22.8). 
By reducing γt, the slippage factor is increased throughout the acceleration cycle with the 
largest relative gain at injection energy, as shown in Fig. 4, where η normalized to the value 
in the nominal SPS optics (ηnom) is plotted as a function of γt, for injection and extraction 
energy. Significant gain of beam stability can be expected for a relatively small reduction of 
γt, especially in the low energy part of the acceleration cycle. In 2010, alternative optics 
solutions for modifying γt of the SPS were investigated [26]. Based on the fact that in a 
regular FODO lattice the transition energy is approximately equal to the horizontal tune, γt 
can be lowered in the SPS by reducing the horizontal phase advance around the ring. One of 
the possible solutions, with low dispersion in the long straight sections, is obtained by 
reducing the arc phase advance by 2p, i.e. µx, µy ≈ 3×2p so that the machine tunes are close 
to 20 (“Q20 optics”). In this case, the transition energy is lowered from γt = 22.8 in the 
nominal optics to γt = 18 and η is increased by a factor 2.85 at injection and 1.6 at extraction 
energy (Fig. 4). Note that the maximum β-function values are about the same in both optics, 
whereas the minima are increased by about 50%. The optics modification is mostly 
affecting peak dispersion, which is almost doubled. The fractional tunes have been chosen 
identical to the nominal optics in order to allow for direct comparison in experimental 
studies. A series of measurements with high-intensity single bunches were conducted during 
the last years [27, 28], in order to quantify the benefit of the Q20 optics with respect to 
TMCI. In the nominal optics, the threshold with nominal longitudinal emittance and close to 
zero chromaticity is found at 1.6×1011 p/b, as shown in Fig. 5 (left). In order to         
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Figure 5: Examples of the intensity evolution as a function of time after injection in the Q26 optics 
(left) and the Q20 optics (right). Green curves correspond to stable beam conditions,  
red traces indicate cases above the TMCI threshold [28]. 

pass this threshold with the Q26 optics, the vertical chromaticity has to be increased so 
much that the losses are excessive due to single-particle effects. In the Q20 optics, it was 
demonstrated that up to 4×1011 p/b could be injected with no sign of the TMCI and low 
chromaticity, as shown in Fig. 5 (right) [28]. Such high intensity single bunches were 
already sent to the LHC for beam studies [29].  

The ECI threshold scales with the synchrotron tune [30]. Therefore a clear benefit from 
the larger η in the Q20 optics is expected. Numerical simulations were performed, assuming 
that the electrons are confined in bending magnets [31]. The expected threshold electron 
density rc for the ECI instability in the nominal (red) and the Q20 optics (blue), as a 
function of the bunch intensity Nb at injection energy, for matched RF voltages, is presented 
in Fig. 6. Clearly, higher thresholds are predicted for Q20.  
 

 
Figure 6: ECI thresholds for various intensities comparing the nominal (red) with the low γt SPS 
optics (blue) [28]. 

To stabilize the LHC beam at flattop in the Q26 optics from longitudinal instabilities, 
controlled longitudinal emittance blow-up is performed during the ramp. The maximum 
voltage of the 200 MHz RF system is needed in order to shorten the bunches for beam 
transfer to the LHC 400 MHz bucket. Due to the limited RF voltage, bunches with the same 
longitudinal emittance at extraction will be longer in the Q20 optics. In fact, for the same 
longitudinal bunch parameters of a stationary bucket, the required voltage would need to be 
scaled with η. However, the longitudinal instability threshold at 450 GeV/c is about 50% 
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higher in the Q20 optics and therefore less or no controlled longitudinal emittance blow-up 
is required compared to the nominal optics, for achieving the same beam stability. Figure 7 
shows a comparison of the beam stability (bunch length and bunch position) in the two 
optics, for a single 50 ns LHC batch with 1.6×1011 p/b. The Q20 optics is stable even in the 
absence of emittance blow-up, with a mean bunch length of around τ =1.45 ns at flattop, 
which is compatible with injection into the LHC.  

 

        

        
 

Figure 7: Bunch length (top) and bunch position oscillations (bottom), at flattop, for a single batch 
50 ns LHC beam, for Q26 (left) and for Q20 (right) [27]. 

The low transition energy optics in the SPS became operational on September 2012. The 
switch to this new optics was very smooth, allowing very high brightness beams to be 
delivered to the LHC providing record luminosities [29]. This optics opens the way for 
ultra-high brightness beams to be delivered in the HL-LHC era for protons and eventually 
for ions [32].  

 Summary 2.26.6

Using analytical and numerical methods, linear optics parameters, which have a direct 
impact on collective effects, were optimized for specific examples of high-intensity, high 
brightness, hadron and lepton rings. These approaches allowed a solid conceptual design of 
ultra-low emittance damping rings and permitted to break intensity limitations in an existing 
LHC injector, without any cost impact or hardware change. It is certain that there is a 
growing need for the optics designer to transcend the single-particle dynamics mentality and 
apply such optimization procedures for reaching the optimal performance of rings, in design 
or operation. 
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3 Workshop and Conference Reports 

3.1 The 7th International Particle Accelerator Conference, IPAC’16 

Won Namkung,  
Pohang Accelerator Laboratory (PAL) 

Mail to: Namkung@postech.ac.kr 
 

 
The 7th International Particle Accelerator Conference, IPAC’16, was held at the BEXCO 

Convention Center, Busan, Korea, from May 8 to 13, 2016. There were more than 1,200 
attendees from 36 countries, 540 from Asia, 490 from Europe and 190 from Americas. It 
was hosted by the Pohang Accelerator Laboratory (PAL), the Korea Multi-purpose 
Accelerator Complex (KOMAC), the Korea Heavy Ion Medical Accelerator (KHIMA), and 
the Rare Isotope Science Project (RISP). It was organized under the auspices of the Asian 
Committee for Future Accelerator (ACFA), the European Physical Society Accelerator 
Group (EPS-AG), and the American Society of Physics Division of Physics of Beams 
(APS-DPB). 

The traditional student poster session was held on Sunday. Seventy-six students from all 
over the world were able to attend the conference through the sponsorship of societies, 
institutes and laboratories worldwide. The organizers of IPAC’16 are grateful to all sponsors 
for their valuable support. 

Won Namkung (PAL), Chair of the Organizing Committee (OC), In Soo Ko (PAL), 
Chair of the Scientific Program Committee and Kyung-Ryul Kim (PAL), Chair of the Local 
Organizing Committee (LOC), opened the conference. Mr. Byung Soo Suh, Busan City 
Mayor, and Mr. Tae-min Bae, an official from Ministry of Science, ICT & Future Planning, 
both addressed the conference attendees.  

Sachio Komamiya (ICEPPE) opened the scientific program with a presentation on The 
International Linear Collider, the Latest Status towards Realization. An inspiring closing 
presentation was delivered by Wen-Long Zhan (CAS, Beijing) on Accelerator Driven 
Sustainable Fission Energy. 

Ninety-eight invited and contributed oral presentations of very high quality were made 
during the week, including an unusual “Entertainment” presentation by Zev Handel 
(University of Washington, Seattle) entitled Learn to Read Korean: An Introduction to the 
Hangul Alphabet. 

The conference program spanned four and a half days, with plenary sessions on Monday 
and Friday mornings, and Thursday afternoon. All other sessions were composed of two 
oral sessions in parallel, with the poster sessions scheduled alone at the end of each 
afternoon. There were 47 invited talks and 51 contributed oral presentations; 1300 posters 
were scheduled during the lively afternoon poster sessions.  

An industrial exhibition took place during the first three days of the conference. Industrial 
exhibitors from 86 companies occupied 92 booths with additional 16 booths from non-profit 
organizations. They presented their high technology products and services to the delegates 
in an excellent atmosphere conducive to discussions.  

During the Accelerator Awards Session, the ACFA/IPAC’16 best student poster prizes 
were awarded to Mattia Checchin (Fermilab) and Claudio Torregrosa (CERN).  The Mark 
Oliphant Prize, awarded to a student or a trainee accelerator physicist or engineer for the 
quality of work and promise for the future, was awarded to Spencer Jake Gessner (SLAC).  

mailto:Namkung@postech.ac.kr
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The Hogil Kim Prize for a recent, significant, original contribution to the accelerator field, 
awarded to an individual in the early part of his or her career was awarded to Sam Posen, 
Fermilab, USA.  

The Nishikawa Tetsuji Prize for a recent, significant, original contribution to the 
accelerator field, with no age limit was awarded to Gwo-Huei Luo, NSRRC, Taiwan.  

The Xie Jialin Prize for outstanding work in the accelerator field, with no age limit was 
awarded to Derek Lowenstein, BNL, USA. Wolfram Fischer, BNL, received the prize on 
behalf of the Derek Lowenstein who was unable to attend due to the recent extensive 
flooding in Texas.        

The proceedings of IPAC’16 were published on the JACoW site (www.jacow.org). The 
processing of the electronic files of contributions prior to, during, and immediately after the 
conference was achieved by the JACoW "seasoned experts". Thanks to the work of this 
dynamic team and the careful preparations and guidance of Christine Petit-Jean-Genaz 
(retired, CERN), Kyung-Sook Kim (PAL) and Dong-Eon Kim (PAL).  

The high levels of participation and enthusiasm shown at IPAC’16, the third IPAC taking 
place in Asia, clearly indicate the strong mandate for the International Particle Accelerator 
Conference series from the worldwide accelerator community. May future events be even 
more successful than this one. The eighth IPAC will return to Europe and take place in 
Copenhagen, Denmark. We are convinced that the collaboration among the three regions, 
steadily enhanced in recent years, will continue to grow to the benefit of IPAC and the 
accelerator community worldwide.  

3.2 The 57th ICFA ABDW on High-Intensity and High-Brightness 
Hadron beams, HB2016 

Mamad Eshraqi, ESS 
European Spallation Source, Lund, Sweden 

Mail to: mamad.eshraqi@esss.se 
 

The 57th Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness 
Hadron Beams, HB2016, hosted by ESS, was held at the Scandic Hotel Triangeln in Malmö, 
Sweden from 2016 July 3 to July 8. The venue is 20 km south of the construction site of the 
European Spallation Source. The workshop was co-sponsored by EuCARD and ISA. More 
than 200 experts participated in this event, making it the largest gathering of the high 
intensity hadron beam experts so far.  

The workshop started with a day of plenary talks, providing an overview of the high 
intensity accelerators under construction, improvement or operation. The first day ended 
with a two-hour poster session where lively discussions could continue without any time 
constraints. 

The delicate tasks of setting the scientific program, selection of the plenary talks and 
selection of the conveners were performed by the International Organizing Committee 
(chaired by Mamad Eshraqi). Conveners of working groups carefully selected the speakers 
of their sessions, set the program of the parallel sessions, chaired them and mediated the 
discussion sessions. 

There were five working groups each with special focus on a certain aspect of high 
intensity beams, their simulation, analysis, production or measurement. These working 
groups were: 

http://www.jacow.org/
mailto:mamad.eshraqi@esss.se
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a) Beam Dynamics in Rings (Conveners: Giuliano Franchetti, Yong Ho Chin, and 
Wolfram Fischer) 

b) Beam Dynamics in Linacs (Conveners: Alessandra Lombardi, Yuan He and Ikegami 
Masanori) 

c) Accelerator systems(Conveners: Sarah Cousineau, Jean-Luc Biarotte, Shinian Fu, 
Luc Perrot and Sheng Wang) 

d) Commissioning and Operations (Conveners: Fernanda Garcia, Hideaki Hotchi and 
Angelina Perfenova) 

e) Instrumentation and Beam Interactions (Conveners: Michiko Minty, Hee Seock Lee 
and Tom Shea) 

The last day of the workshop started with the summary talks of the five sessions and 
continued with an out of the box talk on ion acceleration by plasma wake field and the day 
and the workshop ended by a bus tour to the ESS construction site in the afternoon. 

More information about the workshop and future HB workshops could be found on the 
webpage of HB2016 (www.hb2016.esss.se). The proceedings of the workshop are already 
published on the JACoW servers.  
 

 
Figure 1: Participants of the HB2016. 

 

http://www.hb2016.esss.se)/
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Figure 2: HB2016 workshop postcard. 

3.3 The 28th International Linear Accelerator Conference, Linac 2016 

Yoshishige Yamazaki 
Facility for Rare Isotope Beams Laboratory, Michigan State University 

Mail to:  yamazaki@frib.msu.edu 
 

The 28th Linear Accelerator Conference (LINAC 16) hosted by Facility for Rare Isotope 
Beams (FRIB) took place from 25-30 September at Michigan State University (MSU) 
located in East Lansing, Michigan, USA. The conference is held biennially and is the largest 
international conference dedicated to linear accelerators. The last conference (LINAC 14) 
was hosted by the European Organization for Nuclear Research (CERN) and took place in 
Geneva, Switzerland, and LINAC 12 was held in Tel-Aviv, Israel. The conference is 
organized by the International Organizing Committee, chaired by Yoshishige Yamazaki 
(FRIB, MSU), the scientific program was set up by the Scientific Program Committee, 
chaired by Alberto Facco (FRIB and INFN), and the Local Organizing Committee was 
chaired by Yan Zhang (FRIB).  

The conference is unique because all of the oral presentations are plenary and the 
participants are encouraged to stay in the same hotel in order to further continue technical 
discussions. Four-hundred and twenty delegates attended the conference from seventeen 
countries. In particular, LINAC 16 supported a significant number of students, who will be 
soon major players in the LINAC community. The student poster session was scheduled one 
day before the conference, and more than forty students presented their posters. Among 
three awarded posters, two are regarding Superconducting RF (SRF) cavities. 

The conference started with two invited talks in the opening session, reporting FRIB and 
European XFEL statuses, followed by four invited talks in the electron linac session. 
Among these six talks, five were reporting SRF linacs. 
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FRIB hosted this year’s conference partly because FRIB is under construction at the 
cutting edge of the linac technology. Accordingly, a tour of FRIB was one of the main 
conference events. 

The next conference (LINAC 18) will be hosted by the Institute of High Energy Physics 
(IHEP) in Beijing, China, and LINAC 20 will take place at Liverpool, UK, to be hosted by 
Cockcroft Institute. 
 

 
 

Figure 1: LINAC 16 poster. 
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Figure 2: Participants of LINAC 16. 

3.4 3rd ICFA Mini Workshop on High Order Modes in Superconducting 
Cavities 2016, HOMSC16 

Thomas Flisgen and Ursula van Rienen 
Institute of General Electrical Engineering, 

University of Rostock, 
Albert-Einstein-Str. 2, 18059 Rostock, Germany 

Mail to: Ursula.van-Rienen@uni-rostock.de 
 

High order modes (HOM) excited by the beam in superconducting cavities can create 
excessive heat load on the cryogenic system and dilute beam quality giving rise to a beam 
break up instability in the worst case. The objective of HOMSC16 was to bring together 
researchers studying high order mode suppression in superconducting cavities in the fields 
ranging from energy recovery linacs, light sources and linear collider applications. The 
workshop was hosted by the University of Rostock and took place from August 22 to 24, 
2016 in Warnemünde at the Baltic Sea. In total, 36 participants representing Asia, Europe 
and America attended the workshop. HOMSC16 followed HOMSC12 at the Cockcroft 
Institute, Daresbury, UK and HOMSC14 at Fermilab, Batavia, USA. In order to support 
young academics, the conference fees of six PhD students were waived. The CST AG / 
Darmstadt sponsored the workshop and equipped the participants with pens, badges and 
paper blocks. Additionally, CST AG provided funding for the coffee breaks. 

The scientific program of the workshop was generated by the Scientific Program 
Committee and the Local Organizing Committee (LOC). Both committees were chaired by 
Ursula van Rienen. She was supported by Thomas Flisgen and Dirk Hecht of the LOC. 

mailto:Ursula.van-Rienen@uni-rostock.de
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During the two and a half days, 24 oral presentations were given. The talks covered a 
wide range of topics such as HOM-based diagnostics, Numerical Simulation for 
Superconducting Radio Frequency Cavities, Measurements of HOMs and HOM Damping 
schemes. Two student sessions were organized in order to give young scientists the 
opportunity to present their work. Based on the six student talks, the Scientific Organizing 
Committee awarded the HOMSC16 student prize to Franziska Reimann (University of 
Rostock) for her contributions to passive wakefield dechirper structures. Moreover, 
HOMSC16 Scientific Organizing Committee invited two speakers: Johann Heller 
(University of Rostock) presented his work related to the numerical investigation of external 
losses in superconducting radio frequency structures. Payagalage Subashini Uddika de Silva 
(Old Dominion University) gave a talk about HOMs in deflecting and crab cavities. The 
invitation of both speakers was supported by EuCARD II. Apart from the oral presentations, 
the delegates had the opportunity to gather in subgroups and to discuss about pending issues. 
The participants extensively made use of this possibility. 

A special highlight of the entire event was the workshop dinner. In order to support the 
informal character of the workshop, a barbecue party was organized on a terrace with a 
fantastic view to Warnemünde beach. The delegates used the party to socialize in a pleasant 
atmosphere. 

A detailed program and the talks are available via the workshop website 
http://indico.cern.ch/event/465683, where also some more photos are to be found. All 
HOMSC16 presenters were invited to submit articles to a Special Edition of the online 
journal Physical Reviewed Accelerators and Beams. 

 

 
 

Figure 1: HOMSC16 Workshop poster. 
 

http://indico.cern.ch/event/465683
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Figure 2: Participants of the HOMSC16 Workshop. 

3.5 Workshop on the Frontiers of Intense Beam Physics Modeling 

Stephen Webb 
RadiaSoft, LLC, Boulder, Colorado, USA 

Mail to: swebb@radiasoft.net 
 
On October 3-5, a small workshop was held in Boulder, Colorado to discuss the current 

code capabilities, future machines, and algorithms. The workshop was sponsored by 
RadiaSoft, LLC with support from the ICFA Beam Dynamics Panel, and organized by 
Stephen Webb (RadiaSoft), Oliver Boine-Frankenheim (TU-Darmstadt), Chris Prior 
(Oxford Univ.), and Jean-Luc Vay (LBNL). The attendees came from across the beam and 
plasma modeling spectrum, with talks discussing electron and hadron linacs, high space 
charge rings, algorithms for plasma accelerators, low energy rf modeling, and on. 
Discussion was lively, with a diversity of perspectives on the topic of self-consistent 
modeling of beams and plasmas. 

Three main questions emerged from our discussions: (1) to what extent can we rely on 
simulations to predict exact behavior? (2) is it possible to quantify in a meaningful way the 
non-symplecticity of a simulation? and (3) what does the particle-in-cell picture converge 
to? 

An early discussion in the first day of the workshop was centered on the extent to which 
we can rely on simulations to predict the exact behavior of a machine. This is an important 
question for high current hadron machines, where beam halo at even a small fraction of a 
percent of the beam can cause machine protection issues. The dominant perspective that 
emerged is that simulations cannot be relied on at the level of precision required to say with 
certainty what the loss rates will be for two reasons: (1) the simulations themselves only 
model an approximate machine, and (2) we do not have adequate control over our machines 
to build the exact machine we set out to build. Instead, we should use simulations to decide 
whether or not a particular design of a machine is stable, so that when the actual machine 
deviates from the design machine, the actual machine is at least stable enough for tuning 
later. 

mailto:swebb@radiasoft.net
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Several of the talks discussed the growing field of symplectic self-consistent algorithms. 
Talks discussed this in the context of both space charge in conventional linacs and rings and 
for modeling plasma accelerators. Existing space charge algorithms in existing codes are not 
all symplectic. Is it possible to quantify the level of non-symplecticity in a meaningful way? 
Several ideas were discussed, from computing the change in the symplectic two-form due to 
the algorithm to computing the Jacobian matrix of the algorithm numerically and 
determining if it satisfies the symplectic condition. The attendees seemed to all agree that 
quantifying non-symplecticity would be an interesting and important research project. This 
would be interesting as both a theoretical exercise, and as a practical way of determining 
cutoffs for when we can no longer rely on the data of a simulation. 

During the workshop, there was a talk concerning Vlasov algorithms and quantifying 
various sources of noise and other numerical artifacts. This talk drew a distinction between 
three sources of what is colloquially referred to as "PIC noise". There are time discretization 
errors, field discretization errors, and Monte Carlo or particle statistical noise. The first two 
are intrinsic to the algorithms, while the third can be adjusted by changing the number of 
particles used in a PIC simulation. This led to some discussion about what, exactly, the 
particle-in-cell approach converges to. It was pointed out that it converges neither to Vlasov 
nor Klimontovich pictures. This is not an issue with direct Vlasov algorithms, which 
converge to the coupled Maxwell-Vlasov equations. Because PIC does not necessarily 
converge to either the N-body problem or the fluid limit, we must be careful how we use the 
approach and how we draw conclusions from the data it produces. 

There is a tentative plan to host this workshop again in Europe in two years, with a 
commitment to bringing together an interdisciplinary group to share new ideas and build 
collaborations that might not arrive in workshops more focused on a single field. A more 
detailed summary of the individual talks will be posted on arXiv. 
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4 Recent Doctorial Theses 

4.1 Space Charge Effects and Advanced Modelling for CERN Low 
Energy Machines 

Adrian Oeftiger 
CERN, 1211 Geneva 23, Switzerland 

Mail to: adrian.oeftiger@cern.ch  
 
Graduation date: 07.12.2016 
University:   École polytechnique fédérale de Lausanne (Switzerland) 
Supervisors:   Prof. Rivkin Leonid, Dr. Rumolo Giovanni  
 
Abstract: 

The strong space charge regime of future operation of CERN’s circular particle 
accelerators is investigated and mitigation strategies are developed in the framework of the 
present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) 
prepares the particle accelerators to meet the requirements of the High-Luminosity LHC 
project. Producing the specified characteristics of the future LHC beams imperatively relies 
on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream 
Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased 
brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields 
which can lead to harmful interaction with betatron resonances. Possible beam emittance 
growth and losses as a consequence thereof threaten to degrade the beam brightness. These 
space charge effects are partly mitigated by the upgrade of the PSB and PS injection 
energies. Nevertheless, the space charge tune spreads of the future injector beams are found 
to exceed the values reached by present LHC or other intense fixed target physics beams. 

This thesis project comprises three key tasks: detailed modelling of space charge effects, 
measurement at the CERN machines and mitigation of space charge impact. Throughout the 
course of this thesis, the simulation tool PyHEADTAIL has been developed and extended to 
model 3D space charge effects in circular accelerators across the wide energy range from 
PSB to SPS. The implementation for hardware-accelerating GPU architectures enables 
extensive studies, especially when employing the self-consistent particle-in-cell algorithm. 
The implemented models have been benchmarked with analytical results for space charge 
beam dynamics. In particular, the spectra of quadrupolar pick-ups – which provide a direct 
measurement method for the space charge tune shift – have been simulated and compared 
with the derived theory. The space charge situation at the SPS injection plateau has been 
extensively investigated in the course of comprehensive measurement studies, resulting in 
the identification of an optimal working point region for the SPS. The interplay of space 
charge and the horizontal quarter-integer resonance has been scrutinised in measurement, 
theory and simulation. Last but not least, a new LHC beam type with a hollow longitudinal 
phase space distribution has been developed for the PSB and proved to substantially 
mitigate space charge impact on the PS injection plateau. 

mailto:adrian.oeftiger@cern.ch
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4.2 Development of a High-Precision Low-Latency Position Feedback 
System for Single-Pass Beamlines Using Stripline and Cavity Beam 
Position Monitors 

Neven Blaskovic Kraljevic 
Mail to: neven.blaskovickraljevic@physics.ox.ac.uk 

 
Graduation date: 16 July 2016 
University:   University of Oxford, United Kingdom 
Supervisors:  Prof. Philip Burrows (University of Oxford, United Kingdom) 
 
Abstract: 

The FONT beam-based, intra-train feedback system has been designed to provide beam 
stability at single-pass accelerators, such as at the interaction point (IP) of the International 
Linear Collider. Two FONT feedback systems have been commissioned at the Accelerator 
Test Facility (ATF) at KEK, Japan, and the operation, optimisation and performance of 
these systems is the subject of this thesis. For each system, the accelerator is operated with 
two-bunch trains with a bunch separation of around 200 ns, allowing the first bunch to be 
measured and the second bunch to be subsequently corrected. 

The first system consists of a coupled-loop system in which two stripline beam position 
monitors (BPMs) are used to characterise the incoming beam position and angle, and two 
kickers are used to stabilise the beam. A BPM resolution of about 300 nm has been 
measured. On operating the feedback system, a factor ~3 reduction in position jitter has 
been demonstrated at the feedback BPMs and the successful propagation of this correction 
to a witness BPM located 30 m downstream has been confirmed. 

The second system makes use of a beam position measurement at the ATF IP that is used 
to drive a kicker to provide a local correction. The measurement is performed using a high-
resolution cavity BPM with a fast decay time of around 20 ns designed to allow multiple 
bunches to be resolved. The linearity of the cavity BPM system and the noise floor of the 
electronics are discussed in detail. The performance of the BPM system under standard ATF 
operation and with the beam waist at the BPM is described. A BPM resolution of about 50 
nm has been measured. This IP feedback system has been used to stabilise the beam 
position to the 75 nm level. 

4.3 Beam Measurements of the Longitudinal Impedance of the CERN 
Super Proton Synchrotron 

Alexandre Lasheen 
CERN, 1211 Geneva 23, Switzerland 
Mail to: alexandre.lasheen@cern.ch 

 
Expected graduation date: 13/01/2017 
University:    Université Paris-Saclay (France) 
Supervisors:    Prof. Petrache Costel, Dr. Chapochnikova Elena 
 
Abstract: 
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One of the main challenges of the future projects in physics based on particle accelerators 
is the need of high intensity beams. However, collective effects are a major limitation which 
can deteriorate the beam quality or limit the maximum intensity due to losses. The SPS at 
CERN, which is the injector for the LHC, is presently not able to deliver the specifications 
for future projects due to longitudinal instabilities. 

The numerous devices in the machine (accelerating RF cavities, injection and extraction 
magnets, vacuum flanges…) lead to a variation of the geometry of the chamber in which the 
beam is travelling. The electromagnetic interaction of the beam with its environment, 
described as a coupling impedance, alters the motion of the particles and eventually leads to 
instabilities for high intensities. Consequently, the critical impedance sources need to be 
identified and solutions assessed. To do so, a survey of all the devices was done and their 
contribution was evaluated from electromagnetic simulations and measurements. 

In this thesis, the beam itself is used to probe the machine impedance by measuring its 
altered motion as a function of intensity. It includes the measurement of the synchrotron 
frequency shift with intensity and longitudinal emittance, as well as the measurement of the 
modulation of long bunches in absence of RF voltage. These were compared with particle 
simulations and demonstrated to be in good agreement. The remaining discrepancies were 
used to further refine the impedance model. 

The next step consisted in testing the ability of the simulation model to reproduce 
measured instabilities for a single bunch during acceleration, in single and double RF 
system operation. As measurements and particles simulations were in good agreement, it 
eventually permitted to better understand which mechanisms were at stake, from microwave 
instabilities to loss of Landau damping, for proton and ion beams. 

Finally, as the simulation model was shown to be trustworthy, it was used to estimate 
what beam characteristics could be expected in the future with realistic machine upgrades 
considerations. The outcome of this thesis was the adjustment of the baseline of various 
projects at CERN, including HL-LHC and AWAKE. 

4.4 Studies of Longitudinal Coupled-Bunch Instabilities in the LHC 
Injectors Chain 

Letizia Ventura 
CERN, 1211 Geneva 23, Switzerland 

Mail to: letizia.ventura@cern.ch  
 
Expected graduation date: February 2017 
University:    La Sapienza, Università di Roma 
Supervisors:    Prof. Migliorati Mauro, Dr. Sterbini Guido 
 
Abstract: 

Among several challenging objectives of the LHC Injectors Upgrade project, one aim is 
to double the beam intensity of the CERN Proton Synchrotron (PS) in order to achieve the 
integrated luminosity target of the High-Luminosity LHC project. A known limitation to 
reach the required high intensity is caused by the longitudinal coupled-bunch (CB) 
oscillations developing above the PS transition energy. The unwanted oscillations induce 
large bunch-to-bunch intensity variations not compatible with the specifications of the 
future LHC-type beams. In 2014 a new longitudinal kicker cavity has been installed, the 
Finemet cavity, as a part of the new digital coupled-bunch feedback (FB) system. The 
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Finemet cavity allows with its large frequency bandwidth, to damp all the expected 
oscillation modes simultaneously. 

In the framework of this PhD study the impedance contribution of this equipment has 
been analyzed starting from the present knowledge of the machine impedance. A model of 
both the 10 MHz and the Finemet has been developed as a sum of resonant modes. From 
simulations it has been possible to show that the 10 MHz system is the main source of 
instabilities and to confirm that the contribution of the Finemet cavity to the couple-bunch 
instability is negligible compared to the stronger effect of the 10 MHz cavities. 

The complete prototype feedback chain of pick-up, digital processing and Finemet kicker 
has been installed and commissioned in 2014 and 2015. A dedicated measurement campaign 
was performed to qualify both the wide-band damper cavity as well as the new digital 
coupled-bunch low-level RF feedback system. Excitation measurements with FB in open 
loop showed that the Finemet cavity interacts with the different beam trains as expected and 
that the coupled-bunch oscillation modes can be individually excited. 

An original algorithm has been developed and proposed to analyze the bunch train and to 
perform the mode analysis of the system in order to study its stability. This approach allows 
sub-nanosecond detection of the bunch oscillation. Due to the symmetry of the system, for 
equidistant bunches covering the full azimuthal length of the PS, the eigenmodes of the CB 
oscillations do not depend upon the machine impedance. In practice this conditions is not 
verified. In this work we show a numerical approach to define the eigenmodes of the system 
for a generic impedance and bunch pattern. 

Tests during 2016 showed that coupled-bunch oscillations can be damped by the new 
feedback system up to an intensity of 2 1011 protons per bunch at extraction. 

4.5 Fast Luminosity Monitoring Using Diamond Sensors for 
SuperKEKB 

Dima El Khechen 
LAL Orsay, France 

Mail to: elkheche@lal.in2p3.fr  
 
Expected graduation date: 16 December 2016 
Institutions:   Laboratoire de l’Accelerateur Lineaire, Orsay (France) 
Supervisors:   Dr. P. Bambade, Dr. C. Rimbault  (LAL) 
 
Abstract: 

SuperKEKB is a very high luminosity collider dedicated to the Belle II experiment, it 
consists of a Low Energy Ring (LER) of 4 GeV positrons and a High Energy Ring (HER) of 
7 GeV electrons. The commissioning of this machine is split into three phases: Phase 1 
(single-beam phase) is dedicated to vacuum scrubbing, where beams circulate without 
focusing at the collision point. Phase 2, for which the major part of the Belle II detector will 
be installed, will enable the tuning of the final focus system to achieve a luminosity of 
1034 cm-2s-1. During Phase 3, Belle II physics runs will start with an aimed luminosity up to 
8x1035 cm-2s-1. In this context, the aim of the thesis is to develop and install a fast luminosity 
monitoring system, which is required for on-line correction of beam instabilities and 
maintenance of optimal luminosity. To reach the aimed relative precision of 10-3 in 1 ms, 
the measurement will be based on the radiative Bhabha process at zero photon scattering 
angle, whose cross-section is large and well-known. These particles will be detected using 
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diamond sensors, resistant to radiation and enabling very fast signal acquisition, to be placed 
outside of the beam-pipe and downstream of the interaction point. 

 The first part of this work is dedicated to the investigation of the best locations for the 
diamond sensor positioning in both rings. Using detailed simulations, we studied the 
dynamics of Bhabha particles during their tracking in the rings and their interaction with the 
beam pipe material. This led to the identification of two positions, at 11.9 m in LER and at 
30 m in HER, and to considering a new geometry for the vacuum pipe in the LER. 

The second part is related to the Phase 1 of the SuperKEKB commissioning and concerns 
the measurements performed with the diamond sensors that were installed. Single beam loss 
processes (Bremsstrahlung, Touschek, beam-gas Coulomb scattering) were studied in detail 
with respect to the LER beam and ring parameters (current, pressure, transverse beam sizes). 
The results of this study were then compared to the data collected from February to June 
2016. We found good qualitative and quantitative agreement between our simulations and 
measurements. From this we could estimate that the level of background to be expected 
during luminosity monitoring will be two orders of magnitude smaller than the rate of the 
radiative Bhabha scattering signal. 

4.6 Development of Diamond Sensors for Beam Halo and Compton 
Spectrum Diagnostics after the Interaction Point of ATF2 

Shan Liu 
Mail to: shan.liu@desy.de 

 
Graduation date:  02 July 2015 
Institution:   Laboratoire de l'Accélérateur Linéaire (LAL), Orsay, France 
Supervisor:   Dr. Philip Bambade 
 
Abstract: 

The investigation of beam halo transverse distributions is an important issue for beam 
loss and background control in ATF2 and in Future Linear Colliders (FLC). A novel in 
vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for 
the investigation of beam halo transverse distributions and also for the diagnostics of 
Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) 
prototype of the final focus system for ILC and CLIC linear collider projects. 

  This thesis presents the beam halo and Compton recoil electrons studies as well as the 
characterization, performance studies and tests of the diamond sensors (DS) both at PHIL, a 
low energy (<10 MeV) photo-injector at LAL, and at ATF2. First beam halo measurement 
results using wire scanners (WS) and DSv at ATF2 are also presented and compared in this 
thesis.  

  Simulations using Mad-X and CAIN were done to estimate the rate of the beam halo 
and Compton recoil electrons. Simulation results have indicated that a large dynamic range 
of more than 106 is needed for a simultaneous measurement of the beam core, beam halo 
and Compton recoil electrons. A single crystalline Chemical Vapor-Deposition (sCVD) 
based DSv was developed for this purpose.  

  Prior to the diamond detector installation, first attempt of beam halo measurements have 
been performed in 2013 using the currently installed WS. With a limited dynamic range of 
~103, the beam halo distribution was measured only up to ~±6σ in the extraction (EXT) line. 
Parameterizations of the measured beam halo distribution showed a consistent distribution 
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with previous measurements done in 2005 at the old ATF beam line. Meanwhile, an 
asymmetric vertical beam halo distribution was observed for the first time using the post-IP 
WS, the origin of which is currently under investigation using the DSv. 

  Studies to characterize in air DS pads with dimensions of 4.5×4.5×0.5 mm3 were 
carried out using the α and β sources. Charge carrier transport parameters (lifetime, 
saturation velocity etc.) were obtained using the transient-current technique (TCT).  
Furthermore, the linearity of the DS response was tested at PHIL with different beam 
intensities in air: a maximum signal of 108 electrons was measured with a linear response up 
to 107 electrons. Similar linearity studies were done for the DSv at ATF2, where we have 
successfully demonstrated and confirmed for the first time a dynamic range of ~106 by a 
simultaneous beam core (~109) and beam halo (~103) measurement using the DSv. Present 
limitations due to signal pick-up and saturation effects, which prevent the DSv from 
reaching a dynamic range higher than 106, were also studied. 

  First measurements of the horizontal beam halo distribution using the DSv were 
performed up to ±20σx, where the beam halo was proved to be collimated by the apertures. 
A consistent horizontal beam halo distribution with the 2005 and 2013 parameterizations 
was confirmed. The possibility of probing the Compton recoil electrons has been 
investigated and different ways to increase their visibility have been proposed. 
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5 Forthcoming Beam Dynamics Events 

5.1 59th ICFA Advanced Beam Dynamics workshop on Energy 
Recovery Linacs (ERL17)  

Erk Jensen 
CERN, 1211 Geneva 23, Switzerland 

Mail to: erl17@cern.ch 
  
We are pleased to announce that the 59th ICFA Advanced Beam Dynamics Workshop on 

Energy Recovery Linacs (ERL17) will be held at CERN, Geneva, Switzerland from June 
18th to 23rd, 2017. This will be the 7th in the series of international workshops covering 
accelerator physics, technology and applications of Energy Recovery Linacs. The workshop 
will serve as a forum for scientists and engineers from around the world to review the latest 
developments in ERL physics, technologies and applications, to exchange ideas and to 
discuss “hot topics” of this field of research. Among the issues to be addressed are: beam 
stability in multi-pass ERLs, design of photoemission electron injectors, superconducting 
RF systems, beam optics, instrumentation, alignment, emittance requirements and test 
facilities. The talks will cover commissioning and operations experience, ERL applications 
and status presentations from different projects. Proceedings will be published on JACoW. 

 
Workshop organizers:   
    Erk Jensen (erk.jensen@cern.ch), IOC Chair 
    Oliver Brüning (oliver.bruning@cern.ch), SPC Chair 
    Laurie Hemery (laurie.hemery@cern.ch), LOC Chair 
  

Registration and abstract submission will open on 9 January 2017. 
  

Details of the workshop are available at: www.cern.ch/ERL17. 

5.2 International Conference on RF Superconductivity (SRF2017)  

Jens Knobloch 
Institute of SRF Science and Technology Helmholtz-Zentrum, Berlin, Germany 

Mail to: jens.knobloch@helmholtz-berlin.de 
  
The 18th conference in this series will take place from July 17 – 21, 2017 in Lanzhou, 

China. Every two years, the SRF conference provides a platform for scientists, engineers, 
students, and industrial partners to present and discuss the latest developments in the science 
and technology of superconducting RF systems for particle accelerator applications. 

The International Conference on RF Superconductivity was first established as a 
workshop in 1980, when it was hosted by Kernforschungszentrum Karlsruhe, Germany.  As 
RF superconductivity in accelerators has matured, the conference attendance has also grown 
dramatically. At the most recent events in Whistler, Canada (2015) and Paris, France (2013) 
about 350 delegates were registered.  

The 2017 Conference will be hosted by the Institute of Modern Physics at the 
International Conference Center of Lanzhou University. The program covers a combination 
of fundamental research and technical aspects.  It includes new SRF accelerator projects and 
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their challenges, novel cavity designs for a wide variety of accelerator applications, cavity 
fabrication and processing techniques, as well as fundamental developments and new 
materials for SRF to push beyond the state of the art.  The format consists of plenary invited 
talks, poster sessions and several “hot topic” discussion sessions. Importantly, the 
conference includes three days of tutorials prior to the main program for newcomers to the 
field (July 14–16) to provide a solid foundation on subjects as varied as superconductivity, 
cavity design techniques, RF loss mechanisms and cryogenic systems. 

Lanzhou, located in the heart of China, is a charming city on the Yellow River featuring 
a long history and fascinating culture. For 2,000 years it was an important landmark on the 
Silk Road which played a crucial role in connecting the East and the West. The Institute of 
Modern Physics is located in the immediate vicinity of the conference site. It operates the 
largest heavy ion accelerator facility and high-power superconducting proton Linac in China 
and delegates will be given a chance to tour the facility.  Several cultural events round off 
the program of what is guaranteed to be an exciting week.  

 
The conference web site can be found at http://srf2017.csp.escience.cn. 

5.3 Advanced and Novel Accelerators for High Energy Physics 
Roadmap Workshop 2017 (ANARW2017)  

Brigitte Cros 
Laboratoire de Physique des Gaz et Plasmas, Université Paris-Sud, France 

Mail to: brigitte.cros@u-psud.fr    
  
The ANARW2017 will take place from April 25 to 28, 2017 at CERN. 
Organized at the initiative of the ICFA panel for Advanced and Novel Accelerators 

(http://www.lpgp.u-psud.fr/icfaana), the ANARW2017 aims at discussing issues to be 
addressed in the near future to be in a position to identify promising technologies for future 
advanced accelerators, and to establish an international scientific and strategic roadmap. The 
general goal is to define an international roadmap toward colliders based on advanced 
accelerator concepts, including intermediate milestones, and to discuss the needs for 
international coordination. 

The workshop is open to the scientific community at large. It is organized around 
working groups that will examine the various schemes that are currently under active 
investigation as well as those that need to be addressed in the near- mid- and long-term to 
reach parameters relevant to a high-energy collider. 

The last part of the workshop will be dedicated to discussion of the working group results 
and to the strategy to push forward the development of advanced accelerators in the context 
of the next international project at the TeV scale.  

The program and useful information can be found at the workshop website: 
https://indico.cern.ch/event/569406/. 
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5.4 International Conference on Accelerators and Large Experimental 
Physics Control Systems (ICALEPCS2017)  

David Fernández  
ALBA, Barcelona, Spain 

Mail to: icalepcs17-chair@cells.es  
 

The 16th International Conference on Accelerator and Large Experimental Control 
Systems (ICALEPCS 2017) will take place at the Palau de Congressos de Catalunya in 
Barcelona, Spain, from the 8th to the 13th of October 2017 and will be hosted by the ALBA 
Synchrotron.   

The conference takes place every two years with the most recent events being held in 
Melbourne / Australia (2015) and San Francisco / United States (2013).  

The ICALEPCS series of conferences is intended to: 
• Provide a forum for the interchange of ideas and information between control system 

specialists working on large experimental physics facilities around the world 
(accelerators, particle detectors, fusion reactors, telescopes, etc.); 

• Create an archival literature of developments and progress in this rapidly changing 
discipline; 

• Promote, where practical, standardization in both hardware and software; 
• Promote collaboration between laboratories, institutes and industry. 

The program covers the hardware and software technologies of the complex control and 
data acquisition systems, including a wide number of aspects from the user experience, 
machine protection, data management, timing and synchronization to the project and service 
management of the operational installations. The list of topics can be consulted at the 
conference website: http://icalepcs2017.org, which will be regularly updated to include the 
latest information as it becomes available. 

Barcelona, the capital of Catalonia, is one of the major Mediterranean cities and the 
second largest city in Spain. There are many reasons which explain why it has attracted 
visitors from all over the world for many years. There are many places, architecture, 
districts and artworks to be explored: the old town with Roman walls, the gothic district 
with palaces and churches from the 16th, 17th and 18th centuries, the well-structured 
Eixample district, the heart of Modernism, and the new Olympic Barcelona. The 
synchrotron ALBA is located about 25 km from the venue and the participants will have the 
opportunity to visit the facilities. 

5.5 Workshop on the “Status of Accelerator Driven Systems Research 
and Technology Development” 

Giulia Bellodi 
CERN, 1211 Geneva 23, Switzerland 

Mail to: Giulia.Bellodi@cern.ch  
  
It is our pleasure to announce a workshop on the “Status of Accelerator Driven Systems 

Research and Technology Development”, organized in the framework of the EuCARD2 
WP4 (Accelerator Applications) activities. 
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The workshop will take place at CERN (Geneva) on February 7-9, 2017 with the aim to 
give a critical overview of the current state of the art of ADS programmes, addressing in 
particular subjects like: 

•   Critical aspects for operation in accelerators 
•  Accelerator-target interface challenges 
•  Status of ADS programmes around the world 
•  ADS coupling experiments 
•  Social and economic perspective of ADS 
•   Lessons learned and future R&D 

AccApplic is a networking activity with the funded EUCARD2 European project on 
particle accelerators, addressing the applied areas of industry, healthcare, energy production 
and security. Amongst its objectives is to” determine the requirements for high power 
accelerator applications, in particular for Accelerator Driven Systems (ADS)”. 

The website of the workshop is now available in Indico , along with registration details 
and important practical information. 

We are presently in the process of defining the programme, and more details of the 
invited talks will be communicated soon. Please check the website for regular updates. 

We invite you to attend and contribute actively to the workshop, and we would be very 
grateful if you could forward this announcement to all potentially interested colleagues. 

5.6 ICFA Mini-Workshop on Impedances and Beam Instabilities in 
Particle Accelerators 

Stefania Petracca (University of Sannio, Benevento, Italy)  
and Giovanni Rumolo (CERN, 1211 Geneva 23, Switzerland) 

Mail to: Petracca@unisannio.it  
  
On behalf of the Organizing Committee, we are pleased to announce the ICFA Mini- 

Workshop on Impedances and Beam Instabilities in Particle Accelerators, to be held in 
Benevento (Italy) from September 19 to 22, 2017.     

The workshop continues the tradition of dedicated conferences on beam coupling 
impedances, initiated with the 2014 ICFA Mini-Workshop on “Electromagnetic Wake 
Fields and Impedances in Particle Accelerators” held in Erice, organized by Vittorio 
Vaccaro, Iaia Masullo (INFN Naples) and Elias Métral (CERN). The aim of the new 2017 
edition is to present an up-to-date review of the subject, and widen its scope to include 
recent advances on beam instabilities.  

The workshop will be hosted by the University of Sannio at Benevento, under the 
auspices of INFN, SIF and CERN. Benevento is a world heritage city in Southern Italy, 
where you will find remarkable monuments and fine pieces of arts, in a unique cultural and 
natural environment. Benevento is easily reached (two hours from Rome by train, one hour 
from Naples airport, by bus). The conference venue is in the heart of the city center, in a 
short walking distance from all attractions, Hotels and Restaurants. 

For more information, visit the workshop webpage 
http://workshopwakefields.weebly.com, which will be regularly updated to include the latest 
information, as it becomes available.  

For any questions please contact: imped2017@unisannio.it   
We look very much forward to welcoming you in Benevento, to contribute to a 

stimulating and memorable workshop! 

https://mmm.cern.ch/owa/redir.aspx?C=3pdGejCzt37jChb11ouZF0Og8ipodKSiWFVp_KGpU5rxozf-6h3UCA..&URL=http%3a%2f%2feucard2.web.cern.ch%2factivities%2fwp4-accelerator-applications-accapplic
https://indico.cern.ch/event/564485/
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5.7 International Beam Instrumentation Conference (IBIC 17) 

Steve Lidia 
Facility for Rare Isotope Beams, East Lansing, MI, USA 

Mail to: lidia@frib.msu.edu 
  
The 6th conference in this series will take place from 20-24 August, 2017 in Grand 

Rapids, Michigan. IBIC is a fruitful and successful gathering of the world's beam 
instrumentation community and it reflects the maturity of international collaboration in the 
field of beam instrumentation for accelerators. IBIC merged in 2012 from the Beam 
Instrumentation Workshop (BIW) and Diagnostics and Instrumentation for Particle 
Accelerators Conference (DIPAC) series. 

IBIC is dedicated to exploring the physics and engineering challenges of beam diagnostic 
and measurement techniques for particle accelerators worldwide. The conference program 
will include tutorials, invited and selected talks, as well as poster sessions. An industrial 
exhibition and a tour to the Facility for Rare Isotope Beams (FRIB) will also be included. 

 IBIC 17 is hosted by the Facility for Rare Isotope Beams (FRIB) which is scheduled for 
completion in 2022.  FRIB will be a scientific user facility for the Office of Nuclear Physics 
in the U.S. Department of Energy Office of Science (DOE-SC) and is funded by the DOE-
SC, Michigan State University (MSU) and the State of Michigan.  Supporting the mission of 
the Office of Nuclear Physics in the DOE-SC, FRIB will enable scientists to make 
discoveries about the properties of rare isotopes, nuclear astrophysics, fundamental 
interactions, and applications for society, including in medicine, homeland security, and 
industry. 

Grand Rapids, the second largest city in Michigan, is located on the Grand River about 
30 miles east of Lake Michigan. An international airport, regional train service from 
Chicago, and local bus routes serve the conference venue and local attractions. The 
conference website http://indico.fnal.gov/event/ibic2017 will be updated regularly to 
include the latest information as it becomes available. 

5.8 ICFA Mini-Workshop on “Beam Dynamics meets Vacuum, 
Collimations, and Surfaces” 

Cristina Bellachioma (GSI, Darmstadt, Germany), Sara Casalbuoni (KIT IBPT, 
Karlsruhe, Germany) and Giuliano Franchetti (GSI, Darmstadt, Germany) 

Mail to: G.Franchetti@gsi.de  
  

The ICFA Mini-Workshop on "Beam Dynamics meets Vacuum, Collimations, and 
Surfaces” is scheduled on 8-10th March 2017 at Karlsruhe, Germany.  

    This workshop is an XRING event.  EuCARD-2 is an Integrating Activity Project for 
coordinated Research and Development on Particle Accelerators, co-funded by the 
European Commission under the FP7 Capacities Programme; see http://cern.ch/eucard-2. 
“Extreme Rings” (XRING) is a networking task of EuCARD-2 Work Package 5” Extreme 
Beams” (XBEAM; http://cern.ch/xbeam), targeted at creating synergies between different 
accelerator communities in order to enhance accelerator R&D at the forefront of global 
research.  

      The 2017 workshop "Beam Dynamics meets Vacuum, Collimations, and Surfaces” 
follows earlier successful XRING events. The purpose of the workshop is to bring together 
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in the same place experts of beam dynamics, vacuum, collimation, and surfaces. All these 
disciplines are together forming the foundation of present accelerators, although each of 
them is a science of its own. The interplay of these areas of R&D as well as the interaction 
of particles with surfaces is complex.  Sometimes the lack of proper communications due to 
unavoidable jargons and conceptual distances makes the working together more difficult. 
The workshop is constructed to overcome barriers, prejudices, and it is a good occasion to 
highlight open issues and unsolved controversies. The Karlsruhe Institute of Technology 
(KIT) hosts the XRING and jointly with the University provides the venue for the workshop.   

       All details of the workshop are available on the web page, which will be regularly 
updated: https://indico.gsi.de/conferenceDisplay.py?confId=5393. 

5.9 8th International Particle Accelerator Conference, IPAC’17, 
Copenhagen, Denmark, 14-19 May 2017 

Gianluigi Arduini 
CERN, 1211 Geneva 23, Switzerland 
Mail to: Gianluigi.Arduini@cern.ch  

 
The 8th International Particle Accelerator Conference, IPAC’17, will take place at the 

Bella Center Copenhagen, Denmark, from May 14 – 19, 2017. IPAC is the main annual 
event for the worldwide accelerator community and industry, with presentations of the latest 
results from accelerator R&D and on the progress in existing, planned and future accelerator 
facilities. 

Copenhagen has long been an attractive destination, largely due to the city’s location as a 
Scandinavian hub, unique combination of architecture, exquisite gastronomic experiences 
and characteristic Scandinavian design. The world has also discovered Copenhagen’s 
potential as a meeting place, placing it among the top 10 congress and convention cities in 
Europe. With streamlined infrastructure, excellent service and a wealth of modern 
venues, Copenhagen offers everything it takes for a successful conference. On top of all that, 
Denmark was ranked (again) number 1 in the list of the world’s happiest countries, 
according to the UN World Happiness Report 2016. 

IPAC’17 is hosted by the European Spallation Source ERIC (Lund, Sweden) and 
supported by both MAX IV (Lund, Sweden) and Aarhus University (Denmark). 

The ESS construction site and MAX IV are within a one-hour ride of the conference 
venue. Tours to visit both facilities will be offered. Aarhus University offers a tour to the 
ISA high brilliance synchrotron storage ring, ASTRID2. 

 
                                                        https://ipac17.org/. 

5.10 Future Circular Collider Week 2017 

Michael Benedikt and Frank Zimmermann 
CERN, 1211 Geneva 23, Switzerland 
Mail to: Michael.Benedikt@cern.ch 

 
Initiated by the 2013 Update of the European Strategy for Particle Physics, the Future 

Circular Collider (FCC) study – http://cern.ch/fcc  – is developing various options for a 

https://indico.gsi.de/conferenceDisplay.py?confId=5393
mailto:Gianluigi.Arduini@cern.ch
https://ipac17.org/
mailto:Michael.Benedikt@cern.ch
http://cern.ch/fcc
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post-LHC research infrastructure. The primary focus of the FCC study is the design of a 
100 TeV proton-proton collider housed in a new 100 km tunnel. The FCC study also 
includes a high-luminosity electron-positron collider (FCC-ee), with a range of c.m. 
energies between 90 and 360 GeV – serving as Z, W, Higgs and top factory – as a potential 
intermediate step. In addition, a lepton-hadron collider option (FCC-he) is being explored, 
whose 60 GeV electrons would come from an Energy Recovery Linac. The FCC study 
finally comprises an energy upgrade of the LHC, the so-called High-Energy LHC (HE-
LHC), which would be realized by installing the FCC-hh’s 16 Tesla magnets in the existing 
LHC tunnel   

Over the past two years the FCC Collaboration has grown to a worldwide community 
with about 100 institutes from 30 countries. To share the latest results, to advance the vision 
of a circular post-LHC particle-collider research infrastructure and to strengthen our links 
and communication, we are preparing the next collaboration week.  

The Future Circular Collider Week 2017 will take place in Berlin, Germany from 29 May 
to 2 June 2017. The meeting is jointly organized by CERN and DESY, with co-sponsorships 
from the HORIZON2020 programme of the European Commission (EuroCirCol Project), 
the German Physical Society, and IEEE. 

The scientific program will be complemented by public engagement activities and by 
opportunities for leading high-tech companies to put their visionary R&D on show. 

The FCC Week 2017 will conduct a major review of the study, discuss the possible 
impact of latest LHC Run 2 results, and allow for scientific exchanges between new and 
older members of the FCC collaboration. The associated FCC research efforts will 
culminate in a Conceptual Design Report (CDR) by 2019. 

Further continually updated information is available on the conference web site 

http://fccw2017.web.cern.ch 

Registration and abstract submission are open. Hotels may be booked at preferred rates. 
Participants can apply for the FCC Innovation Award via a poster submission. We are also 
excited to offer, together with the IEEE, limited travel support to attend the conference for 
traditionally underrepresented groups in STEM, through the FCC Accelerating Diversity 
Prize. Please kindly note the deadlines 12 December 2016 for early abstract submission, and 
2 February 2017 for late abstract submission. 

 We are looking forward to seeing you in Berlin! 
 

5.11 CLIC Workshop 2017 

The CLIC Workshop 2017 will be held from Monday 6th to Friday 10th March 2017 at 
CERN, in Geneva, Switzerland. This is the 11th event in a series started in 2007 and taking 
place every year at CERN. It is dedicated to design and physics of the Compact Linear 
Collider (CLIC) study of an electron/positron collider with multi-TeV energy reach.  

The CLIC Workshop covers Accelerator as well as the Detector and Physics studies, 
with its present status and programme for the coming years. For the Accelerator studies, the 
workshop spans over 5 days: 6th - 10th of March. For CLIC Detector and Physics, the 
workshop is scheduled from Tuesday afternoon 7th to lunchtime on Friday 10th. The 
Scientific Programme includes an open plenary session giving an overview of the CLIC 
project (accelerator, physics/detector), placed in the context of LHC results and addressing 

http://fccw2017.web.cern.ch/
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the use of CLIC-related developments in other applications, as well as a session covering 
High-Efficiency RF Power sources developments for CLIC and for other accelerator 
applications, e.g., ESS, FCC and high-power electron and proton linacs.  

We are looking for the widest possible participation and encourage in particular the 
involvement of young colleagues. The workshop website 
https://indico.cern.ch/event/577810/ 
will be regularly updated to include the latest information as it becomes available. 
 
Roberto Corsini – CERN, on behalf of Philip Burrows, Lucie Linssen and Steinar Stapnes, 
CLIC Workshop Chairpersons. 

 
  

https://indico.cern.ch/event/577810/
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6 Announcements of the Beam Dynamics Panel 

6.1 ICFA Beam Dynamics Newsletter 

 Aim of the Newsletter 6.1.1

The ICFA Beam Dynamics Newsletter is intended as a channel for describing unsolved 
problems and highlighting important ongoing works, and not as a substitute for journal 
articles and conference proceedings that usually describe completed work. It is published by 
the ICFA Beam Dynamics Panel, one of whose missions is to encourage international 
collaboration in beam dynamics. 

Normally it is published every April, August and December. The deadlines are  
15 March, 15 July and 15 November, respectively. 

 Categories of Articles 6.1.2

The categories of articles in the newsletter are the following: 

1. Announcements from the panel. 

2. Reports of beam dynamics activity of a group. 

3. Reports on workshops, meetings and other events related to beam dynamics. 

4. Announcements of future beam dynamics-related international workshops and 
meetings. 

5. Those who want to use newsletter to announce their workshops are welcome to do 
so. Articles should typically fit within half a page and include descriptions of the 
subject, date, place, Web site and other contact information. 

6. Review of beam dynamics problems: This is a place to bring attention to unsolved 
problems and should not be used to report completed work. Clear and short 
highlights on the problem are encouraged. 

7. Letters to the editor: a forum open to everyone. Anybody can express his/her opinion 
on the beam dynamics and related activities, by sending it to one of the editors. The 
editors reserve the right to reject contributions they judge to be inappropriate, 
although they have rarely had cause to do so. 

The editors may request an article following a recommendation by panel members. 
However anyone who wishes to submit an article is strongly encouraged to contact any 
Beam Dynamics Panel member before starting to write. 

 How to Prepare a Manuscript 6.1.3

Before starting to write, authors should download the template in Microsoft Word 
format from the Beam Dynamics Panel web site: 

 
http://icfa-bd.kek.jp/icfabd/news.html 

 
It will be much easier to guarantee acceptance of the article if the template is used and 

http://icfa-bd.kek.jp/icfabd/news.html
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the instructions included in it are respected. The template and instructions are expected to 
evolve with time so please make sure always to use the latest versions. 

The final Microsoft Word file should be sent to one of the editors, preferably the issue 
editor, by email. 

The editors regret that LaTeX files can no longer be accepted: a majority of contributors 
now prefer Word and we simply do not have the resources to make the conversions that 
would be needed. Contributions received in LaTeX will now be returned to the authors for 
re-formatting. 

In cases where an article is composed entirely of straightforward prose (no equations, 
figures, tables, special symbols, etc.) contributions received in the form of plain text files 
may be accepted at the discretion of the issue editor. 

Each article should include the title, authors’ names, affiliations and e-mail addresses. 

 Distribution 6.1.4

A complete archive of issues of this newsletter from 1995 to the latest issue is available 
at 

http://icfa-usa.jlab.org/archive/newsletter.shtml. 
 

This is now intended as the primary method of distribution of the newsletter. 
 
Readers are encouraged to sign-up for electronic mailing list to ensure that they will hear 

immediately when a new issue is published. 
The Panel’s Web site provides access to the Newsletters, information about future and 

past workshops, and other information useful to accelerator physicists. There are links to 
pages of information of local interest for each of the three ICFA areas. 

Printed copies of the ICFA Beam Dynamics Newsletters are also distributed (generally 
some time after the Web edition appears) through the following distributors: 

 
John Byrd jmbyrd@lbl.gov North and South Americas 
Rainer Wanzenberg rainer.wanzenberg@desy.de  Europe++ and Africa 
Toshiyuki Okugi toshiyuki.okugi@kek.jp  Asia**and Pacific 
++ Including former Soviet Union. 
** For Mainland China, Jiu-Qing Wang (wangjq@mail.ihep.ac.cn) takes care of the distribution with Ms. Su Ping, 

Secretariat of PASC, P.O. Box 918, Beijing 100039, China. 

To keep costs down (remember that the Panel has no budget of its own) readers are 
encouraged to use the Web as much as possible. In particular, if you receive a paper copy 
that you no longer require, please inform the appropriate distributor. 

 Regular Correspondents 6.1.5

The Beam Dynamics Newsletter particularly encourages contributions from smaller 
institutions and countries where the accelerator physics community is small. Since it is 
impossible for the editors and panel members to survey all beam dynamics activity 
worldwide, we have some Regular Correspondents. They are expected to find interesting 
activities and appropriate persons to report them and/or report them by themselves. We hope 
that we will have a “compact and complete” list covering all over the world eventually. The 
present Regular Correspondents are as follows: 

http://wwwslap.cern.ch/icfa/
mailto:rainer.wanzenberg@desy.de
mailto:wangjq@mail.ihep.ac.cn


 310 

Liu Lin Liu@ns.lnls.br LNLS Brazil 
Sameen Ahmed Khan Rohelakan@yahoo.com SCOT, Middle East and Africa 

We are calling for more volunteers as Regular Correspondents. 

6.2 ICFA Beam Dynamics Panel Members  

Name eMail Institution 

Rick Baartman baartman@lin12.triumf.ca TRIUMF, 4004 Wesbrook Mall, Vancouver, 
BC, V6T 2A3, Canada 

Marica Biagini marica.biagini@lnf.infn.it INFN-LNF, Via E. Fermi 40, C.P. 13, 
Frascati, Italy  

John Byrd jmbyrd@lbl.gov Center for Beam Physics, LBL, 1 Cyclotron 
Road, Berkeley, CA 94720-8211, U.S.A. 

Yunhai Cai yunhai@slac.stanford.edu SLAC, 2575 Sand Hill Road, MS 54 
Menlo Park, CA 94025, U.S.A. 

Swapan 
Chattopadhyay swapan@fnal.gov  Northern Illinois University, Dept. of Physics, 

DeKalb, Illinois, 60115, U.S.A. 

Yong Ho Chin yongho.chin@kek.jp KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 
305-0801, Japan 

Yoshihiro Funakoshi yoshihiro.funakoshi@kek.jp KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 
305-0801, Japan 

Jie Gao gaoj@ihep.ac.cn Institute for High Energy Physics, 
Yuquan Road 19, Beijing 100049, China 

Ajay Ghodke ghodke@cat.ernet.in RRCAT, ADL Bldg. Indore, Madhya 
Pradesh, 452 013, India 

Ingo Hofmann i.hofmann@gsi.de  High Current Beam Physics, GSI Darmstadt, 
Planckstr. 1, 64291 Darmstadt, Germany 

Sergei Ivanov sergey.ivanov@ihep.ru 
Institute for High Energy Physics of National 
Research Centre “Kurchatov Institute”, 
Protvino, Moscow Region, 142281 Russia 

In Soo Ko  isko@postech.ac.kr Pohang Accelerator Lab, San 31, Hyoja-
Dong, Pohang 790-784, South Korea 

Elias Metral  elias.metral@cern.ch CERN, CH-1211, Geneva 23, Switzerland 

Yoshiharu Mori mori@rri.kyoto-u.ac.jp Research Reactor Inst., Kyoto Univ. 
Kumatori, Osaka, 590-0494, Japan 

George Neil neil@jlab.org TJNAF, 12000 Jefferson Ave., Suite 21, 
Newport News, VA 23606, U.S.A. 

Toshiyuki Okugi toshiyuki.okugi@kek.jp KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 
305-0801, Japan 

Mark Palmer mpalmer@bnl.gov  Brookhaven National Lab, Upton, NY 11973, 
U.S.A. 

Chris Prior chris.prior@stfc.ac.uk 
ISIS Accelerator Division, STFC Rutherford 
Appleton Laboratory, Harwell Campus, 
Chilton, Didcot, Oxon OX11 0QX, U.K. 

Yuri Shatunov Yu.M.Shatunov@inp.nsk.su Acad. Lavrentiev, Prospect 11, 630090 
Novosibirsk, Russia 

Jiu-Qing Wang wangjq@ihep.ac.cn 
Institute for High Energy Physics, 19B 
YuquanLu, Shijingshan District, Beijing 
100049, China 

Rainer Wanzenberg rainer.wanzenberg@desy.de DESY, Notkestrasse 85, 22603 Hamburg, 
Germany 

The views expressed in this newsletter do not necessarily coincide with those of the editors.  
The individual authors are responsible for their text. 
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