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Foreword

This book fulfills two purposes which have been neglected for a long time. It delivers
the proper credit to a physicist, Rolf Hagedorn, for his important role at the birth of
a new research field, and it describes how a development which he started just 50
years ago is closely connected to the most recent surprises in the new experimental
domain of relativistic heavy ion physics.

These developments, focused on the first 20 years 1964–1983, are faithfully and
competently described in this book, prepared by Johann Rafelski, a close collabora-
tor and co-author of Hagedorn. Its contents include much of the material they devel-
oped in close collaboration, including little known and even secret manuscripts.

I got to know Rolf Hagedorn in the 1960s when I did my first experiment
at CERN. In contrast to many other theorists working at that time often on
abstract and fundamental problems, Hagedorn was accessible to an experimental
physicist. He explained to me his main ideas concerning the heating up of strongly
interacting matter in high energy collisions in a way easily understandable for an
experimentalist. The concept that the energy content of strongly interacting matter
could increase without surpassing a certain temperature was matured in the head of
Hagedorn over several years. It was refined and finally found its definite formulation
in the form of the Statistical Bootstrap Model (SBM).

Of course, along this path he recognized that the energy content can only be
increased without increasing the temperature if new degrees of freedom become
available. As to their nature, at first Hagedorn could only speculate. Quarks and
gluons were not yet known and the theory of strong interactions QCD which could
justify the new phase of matter, a quark-gluon plasma, did not exist. But as these
new concepts arose they were incorporated into Hagedorn’s description of hot and
dense nuclear matter.

On the experimental side, in the 1970s and 1980s, the study of heavy ion
reactions grew out of the nuclear physics and eventually became an interdisciplinary
field of its own that is presently achieving new peaks. Hagedorn can rightly be
considered as one of the founding fathers of this field, in which the ‘Hagedorn
Temperature’ still plays a vital role.

The rapid progress was due not only to such new theoretical ideas, but also
to experiments at increasing energies at laboratories like Brookhaven National
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vi Foreword

Laboratory in the USA, Dubna in Russia, and CERN in Europe. At CERN
difficulties arose in the 1980s, because in order to build LEP at a constant and
even reduced budget, it became necessary to stop even unique facilities like the
ISR collider at CERN. Some physicists considered this an act of vandalism.

In that general spirit of CERN physics program concentration and focus on LEP
it was also proposed to stop the heavy ion work at CERN, and at the least, not to
approve the new proposals for using the SPS for this kind of physics. I listened
to all the arguments of colleagues for and against heavy ions in the SPS. I also
remembered the conversations I had with Hagedorn 15 years earlier. In the end,
T.D. Lee gave me the decisive arguments that this new direction in physics should be
part of the CERN program. He persuaded me because his physics argument sounded
convincing and the advice was given by somebody without a direct interest.

I decided that the SPS should be converted so that it could function as a heavy
ion accelerator, which unavoidably implied using some resources of CERN. But
the LEP construction and related financial constraints made it impossible to provide
direct funds for the experiments from the CERN budget. Heavy ion physicists would
have to find the necessary resources from their home bases and to exploit existing
equipment at CERN.

This decision was one of the most difficult to take since contrary to the practice
at CERN, it was not supported by the competent bodies. However, the reaction of
the interested physicists was marvelous and a new age of heavy ion physics started
at CERN. After a series of very successful experiments at the SPS, it is reaching a
new zenith in the ALICE experiment at the LHC, which is mainly devoted to heavy
ion collisions. Other LHC experiments (ATLAS and CMS) are also contributing
remarkable results.

Since the first steps of Hagedorn and his collaborators, a long path of new insights
had to be paved with hard work. The quark-gluon plasma, a new state of matter, was
identified at last in the year 2000. This new state of matter continues to surprise us:
for example, at the newly built RHIC collider at BNL, it was determined that at the
extreme conditions produced in high energy collisions, nuclear quark-gluon matter
behaves like an ideal liquid.

I remember Hagedorn as a lively colleague fully dedicated to physics but also
fond of nature and animals, especially horses. He was original, and able to explain
his novel ideas and in doing this he was laying the foundations that had led to the
development of the study of nuclear matter at extreme conditions at CERN.

At first, Hagedorn’s research interests were somewhat outside the mainstream
and he could not find many colleagues to join his efforts. However, with remarkable
persistence, he followed up his ideas and it is very sad that he could not see the
main fruits of his concepts during his lifetime. How happy would Rolf Hagedorn
have been if he could have learned what wonderful new world of nuclear matter at
extremely high temperatures came out of his relatively simple and original ideas he
formulated 50 years ago!

Geneva, Switzerland and Hamburg, Germany Herwig Schopper



Preface

Half a century ago, Rolf Hagedorn pioneered the field of research that this book
describes: the interpretation of particle production in hadronic interaction in terms
of statistical and thermal methods. While several before him, including E. Fermi
and L. Landau, provided seminal contributions, Hagedorn was the first to devote his
career to the subject, and to recognize the pivotal importance of the hadronic mass
spectrum which led him to propose the Hagedorn temperature.

The appearance of the Hagedorn Temperature governing elementary hadronic
interactions and particle production has been and remains a surprise. It could be that
a full understanding of the Hagedorn temperature hides within the vacuum structure
and the related quark-confinement mechanism, or, that it is still beyond our current
paradigm of the laws of nature.

When our understanding was evolving, ideas were developing so quickly that
there was no time to enter the cumbersome process of assembling ongoing work
into refereed papers. The conference reports were often the only place where novel
work was published, building progress on earlier presentations. Therefore many of
the steps taken in creating this knowledge may have not been seen by the following
scientific generation. Some of the evolving insights supersede earlier work which
today’s generation uses in their research, an example being the precise form of the
Hagedorn mass spectrum. The republication here of these pivotal reports is therefore
of scientific as well as historical interest.

In the timeline of the subject, there were two pivotal milestones. The first
milestone occurred in 1964/1965, when Hagedorn, working to resolve discrepancies
of the statistical particle production model with the experimental pp reaction data,
produced his “distinguishable particles” paper. Due to a twist of history, this work
is published here for the first time; that is, 50 years later. Hagedorn then went on to
interpret the observation he made. Within a time span of a few months, he created a
model of how the large diversity of strongly interacting particles could arise, based
on their clustering properties, and in the process invented the Statistical Bootstrap
Model.

The second milestone followed a decade later when we spearheaded the devel-
opment of an experimental program to study ‘melted’ hadrons, and the boiling
quark-gluon plasma phase of matter. The diverse roots of this program go back
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to the mid-1970s, but the intense theoretical and experimental work on the thermal
properties of strongly interacting matter, and the confirmation of a new quark-gluon
plasma paradigm started in 1978 when the SBM mutated to become a model for
melting nuclear matter. This development motivated the experimental exploration
in the collisions of heavy nuclei at relativistic energies of the phases of matter in
conditions close to those last seen in the early Universe.

This volume has three parts. In the first part through personal recollections and
historical documents, the developments culminating in the discovery of quark-gluon
plasma are described, focused often on the role of Rolf Hagedorn in making this
happen. It would be, however, inappropriate to present in this part only the scientific
side. I have included testimonials about Hagedorn, a man of remarkable character.

The second part contains the original pivotal documents that describe the emer-
gence of the Hagedorn temperature concept, and the Statistical Bootstrap Model
as a new scientific field, paving the way for the understanding of the dissolution
of hadrons into quark-gluon matter. The third part is devoted to the heavy ion
collision path which led to the new paradigm of locally deconfined, hot quark-gluon
plasma phase of matter, and strangeness as its observable. Quark-gluon plasma is
the primordial stuff filling the Universe before matter as we know it was created.

This volume then provides the reader both a scientific and a historical perspective
on melting nuclei and boiling quarks; on Rolf Hagedorn; and of how CERN, despite
its initial disinterest, became the site where this new physics happened. Looking
back, I can say that events in Fall 1964–Spring 1965 marked the beginning of the
path to quark-gluon plasma discovery, which CERN announced as a “New State of
Matter” in February 2000.

Rolf Hagedorn was the person with whom I interacted most intensely in these
formative years of the field. I thank other senior, contemporary, and junior theorists
directly or indirectly involved in our effort: Peter Carruthers, John W. Clark, Michael
Danos, Walter Greiner, Joseph Kapusta, Peter Koch, Jean Letessier, István Montvay,
Berndt Müller, Krzysztof Redlich, Helmut Satz, and Ludwik Turko. Their role
is acknowledged in individual chapters. This being a book about, and with Rolf
Hagedorn, he is the main focus.
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Acronyms

An effort is made in this volume to avoid excessive use of acronyms. However,
when appropriate we follow the use in original articles of the following universally
recognized abbreviations which have acquired proper name character.

Laboratories
BNL Brookhaven National Laboratory, Long Island, New York
CERN Derived from French language, Conseil Europén pour la Recherche

Nucléaire, and maintained as the proper name for the International
Particle Physics Laboratory located across French-Swiss Border near
to Geneva

Dubna International laboratory in Russia named after the location, providing
beams of near relativistic heavy ions

GSI German acronym for “Gesellschaft für Schwerionenforschung”, trans-
lates as Center for Heavy Ion Research, at Darmstadt suburb Wixhausen
close to Frankfurt

LBNL Lawrence Berkeley National Laboratory; earlier name LBL
LPI (Moscow) Lebedev Physical Institute

Accelerators, Experiments
AFS Axial Field Spectrometer, an ISR experimental area 1977–1982
AGS Alternate Gradient Synchrotron, used today as injector for RHIC at

BNL, formerly a fixed target relativistic heavy ion source
ALICE LHC experiment dedicated to study of QGP
Bevalac Two accelerators at LBL connected with transfer line, delivering a beam

of near relativistic heavy ions at LBL
ISR Intersecting Storage Ring, the first hadron collider ever built, located at

CERN
LEP Large Electron–Positron collider was housed in the same tunnel as the

LHC today
LHC Large Hadron Collider
NAxy NA refers to the experimental ‘North Area’ located in France, for-

merly the CERN-II campus, while ‘xy’ is a sequential number like
35, 49, 61, etc.

xv



xvi Acronyms

PS Proton Synchroton, the first high energy particle accelerator at CERN,
served as injector to ISR, remains the injector of SPS and thus LHC

PHENIX One of two ‘large’ experiments at RHIC, see also STAR
RHIC Relativistic Heavy Ion Collider
SPS Super Proton Synchroton, an accelerator ring used today mainly as

injector to LHC, but still providing heavy ion beams for fixed target
experiments

STAR One of two ‘large’ experiments at RHIC, see also PHENIX
WAxy WA refers to the main CERN campus experimental ‘West Area’ while

xy is sequential number like 85, 94, 97, etc.

Scientific Abbreviations
AA Nucleus–nucleus, used as in ‘heavy ion collision’ between nuclei of

nucleon number A
BE Bootstrap Equation
BES Beam energy scan: RHIC experimental program where RHI collisions

in a wide energy range are explored, reaching to lowest accessible
energy

BeV Old for ‘GeV’ when a ‘billion’ was used in sense of ‘giga’
CM Center of mass or, in relativistic context, center of momentum
fm 10�15 meter named after Enrico Fermi, nearly the radius of the proton
GeV Giga (109) electron Volt, a particle physics unit of energy about 1.07

times energy equivalent of the proton mass
HG Hadron gas: same as HRG, often used in this simplified name form
HRG Hadron (also, equivalently, Hagedorn) resonance gas
LQCD Lattice-QCD as in numerical solution of QCD represented on a lattice

space-time
MeV Mega (106) electron Volt, there are a 1,000 MeV in a GeV, see above
pA Proton–nucleus, used as in ‘collision’ with a nucleus of nucleon

number A
pp Proton–proton, used as in ‘collision between’
RHI Relativistic heavy ion—typically ‘collisions’, distinct from RHIC, the

collider
QCD Quantum chromo-dynamics
SBM Statistical Bootstrap Model
QGP Quark-gluon plasma
SHM Statistical Hadronization Model
TH Hagedorn temperature, T0 in Hagedorn’s and other contemporary work

Other Abbreviations
DG The CERN Director General is often referred to as ‘DG’
SPIRES ‘Stanford Physics Information Retrieval System’; bibliographic data

base about literature in the field of HEP (High Energy Physics) and
related areas, originating at SLAC (Stanford Linear Accelerator Center)
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2 I Reminiscences: Rolf Hagedorn and Relativistic Heavy Ion Research

The year 1964/1965 saw the rise of several new ideas which have shaped
fundamental physics for the past 50 years. Quarks and the Higgs particle were
invented, and the limiting Hagedorn temperature TH , the melting point of hadrons,
was recognized. Of course back in Fall 1964—Spring 1965, if someone were asked
how these new ideas could turn into the standard model of particle physics; or lead
to the discovery of a new phase of matter: quark-gluon plasma—the response would
have been stupendous silence.

The simple question—why cannot quarks be put on open display?—
demonstrates that there is more to understanding the laws of physics than the
classification of the standard model particle zoo and the measurement of its many
parameters. The manifestation of all laws of physics and especially of strong
interactions require incorporation of the response of the vacuum state, the modern
day quantum and relativity compatible ‘æther’. This is a shift in the paradigm, and
thus we have to work much harder at explaining the advance in our understanding
that is being made.

Rolf Hagedorn was the scientist whose dedicated, determined personal commit-
ment formed the deep roots of this novel area of physics. I can say with certainty
that in Fall 1964 he had no clue what would happen to his TH in the next 20 years.
This book, especially Part I, shows how from a humble beginning a path to the
new paradigm of strong interactions emerged, as well as how this research program
found its way onto the menu of major laboratories, in particular CERN, where the
quark-gluon plasma first became experimental reality.

Rolf Hagedorn’s work in the field of hot hadronic matter dominated this research
field during the first 15 years: his talks and publications often gave the decisive
turn to events. In order to fully appreciate the physics of Melting Hadrons, Boiling
Quarks, one must explore the thinking of this man. It is appropriate to ask his
former collaborators and those involved in the research program today to make
contributions describing past events and/or their present status. In doing this one is
naturally led to invite each contributor to write about Hagedorn, both as a scientist
and an extraordinary human being.

Fifteen essays by 17 authors offer reflections on Rolf Hagedorn, his science, and
the growth of Hagedorn’s ideas to the current quark-gluon plasma experimental
program. These contributions show the only place where Hagedorn worked,
CERN, from its creation to the present day, as seen through eyes of Hagedorn
and his contemporaries—it so happens that Hagedorn was one of the first CERN
employees. Some contributions are drawn from material presented on Hagedorn’s
75th birthday—updated and refreshed by the authors, with the exception of the
essay by Maurice Jacob which is printed posthumously; hence I adapted it to the
current format.

I believe that these first 125 pages give an accurate picture of how Hagedorn’s
journey in science brought CERN to the opportunity to pursue the quark-gluon
plasma discovery. Each contribution is the work of its author: I did not act as a
referee but as a friend and colleague, guiding when possible the author to what
I did not yet see in the contents. But how it is said is entirely the doing of each
contributor—in that way I believe a sincere, personal and complemental account
has emerged. I thank all for their kind and understanding cooperation.



Chapter 1
Spotlight on Rolf Hagedorn

Johann Rafelski

Abstract I describe several events that characterize my work with and my personal
relationship with Rolf Hagedorn himself, closing with biographical remarks.

1.1 Working with Hagedorn

Meeting Hagedorn

I had the privilege of interacting closely with Rolf Hagedorn during the last 25
years of his life. The pivotal role that Hagedorn played in my development was as
my teacher of relativistic statistical and thermal physics, and of particle production.
The timing of our collaboration was singular due to the coincidence with the
scientific rise of quark-gluon plasma research. Though we published only about
half-a-dozen papers together, we worked together on many of publications that
were later published by us independently, an approach consistent with the unique
personality of Hagedorn that will emerge from these pages. In my work, I could
build on the personal strengths and scientific achievement of Hagedorn in helping to
develop a new research area, the formation and observation of quark-gluon plasma.

I first met Rolf Hagedorn, Fig. 1.1, in the winter 1975/1976 when I attended
his Colloquium on the Statistical Bootstrap Model presented at the University
Frankfurt. Hagedorn offered a fascinating description of thermal multiparticle
physics, and after his talk he found a way to answer all questions. At that time
I knew little about subjects such as the Statistical Bootstrap Model, or relativistic
statistical mechanics, or about the experimental data in which Hagedorn was so
deeply interested. In fact I even lacked a thorough understanding of thermal physics,
not unusual in the particle or the nuclear context in the early 1970s.

After the talk I privately asked Hagedorn a few naive questions. Hagedorn took
everything seriously, and gave clear explanations to the questions which could be
answered. At that time I was working on the quark structure of hadrons and it
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4 J. Rafelski

Fig. 1.1 Rolf Hagedorn (center), with Johann Rafelski June 30, 1994. CREDIT: CERN Photo
1994-06-064-024

seemed to me that the work of Hagedorn should connect with this topic, as well
as with another topic shaping my scientific background at the time, the field of
heavy ion collisions. It became clear to me that I could learn what I needed from
Hagedorn. I asked if I could visit him at CERN and he suggested I consider a short-
term position application. I arrived as a CERN-Fellow on September 1, 1977.

From our first meeting, my personal impression was that Hagedorn was a modest,
determined person. Important for the success of our collaboration was that he was
remarkably structured in organizing his work and in presenting the outcome of his
research: Hagedorn did not need to make a draft in order to create an immaculate
write-up of a manuscript. All his work, personal or professional, was from the first
to the last word clear and presentable. His letters rarely had corrections, and if so,
he made these visible and readable—to show that he changed his mind. In seminars
his questions were precise and thus could be answered. All this went along with the
perfect arrangement of his desk and the office in general; everything had a place, as
can be seen in Fig. 1.2.

Our collaboration was in the first years that of a teacher and a student: Rolf
Hagedorn presented his ideas and theoretical work slowly, repeating details until,
in his eyes, I understood everything. Sometimes we sat in his office for hours, from
the morning till evening. I occasionally worried that I was wasting too much of his
time, and tried out other collaborations. But I always returned, attracted to both the
person and the subject. I can say that Hagedorn taught me in a year what took him
nearly 20 years to discover. This has been a gigantic advantage that still marks my
abilities to this day.

I think our different career paths, different fields of expertise, and different
approaches to physics, meshed in a special way: for example when Hagedorn began
his formal physics education at Göttingen his age was the same as mine upon
my arrival at CERN. We were curious about each other’s research, which was
complementary. Hagedorn was a natural teacher looking for a student, and I wanted
to learn what Hagedorn knew. Hagedorn liked a structured classroom—as we shall
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Fig. 1.2 Rolf Hagedorn at his office desk, 1978. Photo: Johann Rafelski

see, he even attended a class on retirement; I like jumps into deep water—leaving
me no other choice but to swim. As I ‘swam’ along with Hagedorn, he strongly
influenced my development as a physicist. Meeting him helped me in my choice of
research field, and I worked for many years in the field that he pioneered.

A Short Story About Hagedorn Temperature

On 3 February 1978, Rolf Hagedorn handed me a copy of his unpublished
manuscript, “Thermodynamics of distinguishable particles”. This original had a
big red dot-mark, showing it was the original, not to be lost, with the number “0”
meaning less than “1” (see below). Hagedorn kept just one red-marked copy and
mentioned that another was in the CERN archives. He told me that I was to keep
a copy to myself—a promise I can now break having found the document on the
CERN Document Server (CDS). This was the initial unpublished paper proposing
an exponential hadron mass-spectrum and the limiting (Hagedorn) temperature.

Discussing with me this first paper, see Chap. 19, on limiting temperature—
CERN preprint TH-483 dated 12 October 1964 Hagedorn recollected: “After Léon
van Hove (see Fig. 1.3) read the manuscript, he asked me to compute requirements
for the hadron mass-spectrum. This led me to recognize that not every, even
exponential, mass-spectrum produces limiting temperature.” Hagedorn made it clear
that did not like this ad-hoc fine-tuning. By October 27, 1964 Hagedorn concluded
that his result was too model-dependent to publish and placed the justification for
his decision in the CERN archives, see Chap. 18.
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Fig. 1.3 Rolf Hagedorn (on left) in discussion with Léon van Hove (on right), December 1968.
Image credit: CERN Image 68-12-143

The CERN-TH 520 preprint dated 24 January 1965, “Statistical Thermodynam-
ics of Strong Interactions at High Energies”—marked with a big “1” in the Hagedorn
collection is today the renowned “Hagedorn paper”. It is relevant to recollect what
dates on CERN-TH preprints meant: In those days, a hand-written manuscript was
handed to Tania Fabergé, the Theory Division (TH) secretary, Fig. 1.4; it received a
sequential TH-preprint number and the day’s date, as recorded in the TH log-book.

During my days at CERN after 1977 a normal length paper sat in the typing
queue in the TH office until it reappeared in my mailbox or I got it back from
Marie-Noëlle Fontaine, see Fig. 1.4, with date and number clearly visible on the
front page. Somewhere along the line a senior member of TH would look at the
work. This was a mild internal refereeing that also helped a young fellow like me
to meet senior division members. This is how I made new friends in the Theory
Division including John Bell, Maurice Jacob, and Jacques Prentki. I do not mention
here Rolf Hagedorn or Léon van Hove, both of whom I met before my arrival at
CERN. It is quite possible that the interaction between van Hove and Hagedorn that
caused the withdrawal of the ‘0’ paper was just such an internal refereeing exercise.

Another point in this story is that between the CERN-TH date and the actual
mailing out of the paper to publishers, and the distribution as a CERN preprint,
perhaps 8 weeks had to pass. Hagedorn’s article was received by Nuovo Cimento
Supplemento on 12 March 1965, and the issue no. 2 of vol. III, 1st series (1965), was
printed on 28 January 1966. This was an average delay for the journal.1 Hagedorn’s
monumental work received, as I believe its first citation in an experimental Physical
Review Letters submitted in March 1967 and printed in July 1967.

The contents of the paper ‘1’ was widely available by means of CERN preprint
distribution to most particle physics libraries in Spring 1965. Thus more than 2
years had passed between the report of the birth of Hagedorn limiting temperature,
and someone distant noticing this new idea and the citation itself being visible. By

1I thank Tullio Basaglia of CERN library for careful log of the time line of publications published
in NC Supplemento.
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Fig. 1.4 Top: Tania Fabergé, bottom Marie-Noëlle Fontaine talking with Gilbert Lévrier at their
CERN-TH desks, Fall 1978; Photos: Johann Rafelski

our contemporary measure, absence of a citation in the first 2 years means that
Hagedorn’s monumental invention of limiting temperature had ‘impact’ zero. Even
so, within a decade, Hagedorn (limiting) temperature had become a household term
in the physics community and the SBM paper was cited several hundred times.
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Hot Nuclear Matter in the Statistical Bootstrap Model

After I settled at CERN in Fall 1977, we immediately turned to our joint project:
Hagedorn remembered our Frankfurt discussions and resumed my education about
particle production and the statistical bootstrap as if we had never been interrupted.
I brought into the collaboration my know-how about heavy ion collisions, confine-
ment, and quarks. Within a few weeks we saw the scope of the work that would
emerge from our discussions in the coming years.

Our collaboration had clear objectives: to develop an understanding of both, the
hot and dense baryon-rich hadronic matter, see Chap. 23, and to determine particle
spectra emanating from the hot fireball of hadronic matter created in relativistic
heavy ion collisions, see Chaps. 26 and 27. Considered after the fact, perhaps we
should have established our priority by publishing on dissolving hadrons into quark
matter in collisions of heavy ions a few weeks after we started. However, what we
knew in Fall 1977 was not good enough for Hagedorn, who desired a fully consistent
model, see Hagedorn’s retrospective on our work in Sect. 25.4 on page 299 ff.

Hagedorn wanted a solid theoretical model of hot nuclear matter, fully consistent
with all he knew about particle production, something the world could trust for years
to come. Building such a ‘good’ model is an iterative, time-consuming process. We
had to explore alternatives and needed to identify potential inconsistencies. Slowly
we progressed towards a fully comprehensive SBM based model of hot nuclear
matter. Looking back at those long sessions in the Winter of 1977/1978 I see a
blackboard full of clean, exactly formed equations—and a sign instructing that no
one should clean the board; Hagedorn expected we would resume next morning.
One day I took a few pictures of Hagedorn in his office as is shown in Fig. 1.5.

As I learned from Hagedorn to recite by heart all the results of relativistic
thermodynamics, days of work became weeks, and weeks became months, and the
word about our effort spread ever wider. Our daily discussions helped the iterative

Fig. 1.5 Rolf Hagedorn at
the blackboard Fall 1978.
Photo: Johann Rafelski
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discovery process. It was the arrival of István Montvay, see Chap. 5, that sped up the
paper writing; he joined in our discussions, contributed many important insights,
and was helpful in making us appreciate how much we knew and how important it
was to share our insights with our colleagues. So by early Summer 1978 we started
as a team of three the writing up of the SBM model of hot nuclear matter.

Our results were ready for presentation in late Summer 1978, and we made two
extensive conference presentations of our effort. In mid-October 1978 Hagedorn
presented at the Erice workshop, an event organized also to remember his 60th
birthday by Helmut Satz and Luigi Sertorio,2 while I presented in January 1979
at the Bormio series of Winter meetings, see Chap. 23. Given that many people
tracked the widely distributed CERN preprints, and Hagedorn was a name that many
followed, our results were soon well known. We made no effort to prepare a formal
publication. ‘Everybody’ knew of our work; the meeting proceedings (often printed
by an University Press e.g. the Bormio 1979 volume) and CERN preprints were just
what the Internet provides today, a free flow of scientific information.

Higher Level Computer Language

When we started to convert our ideas into results that would lead to publications, one
could imagine that this was the moment when a younger collaborator would carry
the load of the work. In fact before my arrival at CERN I had plenty of practice
working with teletype terminals (who still remembers these?), programming in
Fortran, and drawing results by hand. It turned out that for Hagedorn this was ancient
technology. Rolf Hagedorn enjoyed tremendously the moment, and was resolved to
prove to me how much simpler and faster it was possible to make the required
computations with SIGMA (System for Interactive Graphical and Mathematical
Applications).

This was the computer language he had helped develop for use in direct
interaction with the computer, working at its console, see Fig. 1.6, or by the time
we worked together, at a remote terminal. Indeed, Hagedorn was able to complete
the required calculations rapidly, and to obtain the graphic representation of our
results on screen and to print these out practically ready for publication.

Development of a user-friendly computer interface, and of an easy-to-use higher
level language was another pioneering idea that Hagedorn spearheaded at CERN.
Arguably, this development at CERN by Hagedorn and a few collaborators (Carlo
Vandoni and Juris Reinfelds in particular) of direct user-computer interactive
approach, and user-oriented language, spearheaded in the CERN Computer Depart-
ment the traditions which seeded the birth of the Internet at CERN 20 years later.

2Proceedings Hadron Matter at Extreme Energy Density were edited by N. Cabibbo and L.
Sertorio as Volume 2 in a new Ettore Majorana International Science Series, published by Plenum
Press (New York 1980).
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Fig. 1.6 Rolf Hagedorn,
seen here working at CERN
at a computer console in
1968, when the GAMMA
(Graphically Aided
Mathematical MAchine), a
precursor to SIGMA
computer language, he helped
develop was launched;
Credit: CERN photo
68-12-141

Relativistic Heavy Ion Collisions

In the 1970s the emerging European center for the new field of relativistic heavy ion
collisions was GSI, the German Heavy Ion laboratory located between Frankfurt
and Darmstadt in the village of Wixhausen, today part of suburban Darmstadt. In
1977 the experimental work was carried out in the US at the Lawrence Berkeley
Laboratory’s Bevalac, see Chaps. 12 and 13. GSI was the site where the experiments
were prepared and data was processed, and many researchers called it home.

On the way to CERN in Spring and Summer 1977 I was able to spend some of
my time at GSI. During this short period I made friends who were later important
in developing the relativistic heavy ion program at CERN. Particularly relevant was
meeting Rudolph Bock, who was the pre-eminent force for relativistic heavy ion
physics in Europe. His experimental group worked at the Bevalac, many of these
individual researchers would later shape the CERN research program, see Chap. 13.

Due to the prior meeting with Hagedorn that left such a deep mark, I recognized
a scientific opportunity to merge my interest in quarks and heavy ion collisions
with Hagedorn’s statistical particle production model. The visit to GSI reinforced
this viewpoint. By pursuing our collaborative goals Hagedorn and I ‘discovered’
theoretically the phase boundary to quark-gluon plasma (QGP) right before the
relativistic heavy ion collision experimental program, see Chap. 25.

When Hagedorn and I started our collaboration, it was based on the intersection
of our common capabilities and interests, without direct concern for a possible
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CERN heavy ion experimental program which seemed to be set to happen at GSI
or/and LBL. Seminars and corridor discussions spread the word of our effort. In
particular, the cafeteria in the main CERN building has been and is a place where
people come and go, and where stories are told. Our effort to capture the physics
of hot nuclear matter in the perspective of particle production and the detailed
understanding of its boundary with hot quark-gluon matter formation was soon
known to many, as was our view of the relevance of our work to relativistic heavy
ion collision physics.

We made an effort to let the world know what we were doing. Hagedorn, in
charge of several lecture series at CERN, asked me to bring in a few people who
could tell him and everyone interested about the potential for experiments with
relativistic heavy ion collisions. This created the opportunity to speak in private
to those directly interested in our work. We could see how these visiting experts
react. I suggested inviting several experimentalists from GSI and LBL; among them
was Hans Gutbrod, who soon found a lasting home at CERN, see Chap. 13.

In this line of thought, Maurice Jacob connected us with the CERN experimental
groups working at the Intersecting Storage Rings (ISR), see Chap. 28. Bill Willis
and many others were convinced that nuclear collisions within the ISR experimental
program could provide access to new physics. This interest awakened CERN
management to the new ‘heavy ion’ scientific opportunity, although at first the
general community’s reception was pretty frosty. A different way to achieve the
same scientific goal was found, made possible by Herwig Schopper, by using SPS
as a heavy ion machine, see Chap. 29. This approach was compatible with CERN
pushing ahead into the LEP era, and preparing the technology and building the large
underground tunnel that today houses the LHC.

In late 1979, while our heavy ion effort was going on, I moved from CERN to
Frankfurt. Following tradition I was invited to present an inaugural lecture, which
was scheduled for June 18, 1980. The translation of the German abstract I submitted
reads: “Quark Matter–Nuclear Matter: The fusion of constituents of protons and
neutrons—quarks—into quark matter is expected to form a new phase of nuclear
matter. Based on our recent theoretical work this is expected to occur at temperature
and density accessible to experimental study.”

This lecture was a preliminary version of the presentation I would give in a
few months at the Bielefeld workshop in August, and a few weeks later at the
GSI-Laboratory, see Chap. 27. At this meeting for the first time a discussion of
experimental signatures was a keynote topic and thus it has been since designated
to be the first of the “Quark Matter” meeting series. My proposed strange particle
signature of QGP was a major component of this presentation. In the following
months and years I developed the strange particle signatures of the new QGP phase,
see Chaps. 31 and 32, while Hagedorn focused his own work soon on models of this
transition, see Chap. 24. Even though we published a lot of our work in separate
publications, we exchanged our manuscripts and heeded mutual advice.
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Strangeness and the Discovery of Quark-Gluon Plasma

Upon arrival at CERN on September 1, 1977 Tania assigned me to a three-
person office, and one of my office mates was CERN-Fellow from the UK, Brian
Combridge. Brian enters the annals of physics by being the first to correctly evaluate
the production of charm quarks in pp collisions. This process turned out to be
dominated by the two-gluon fusion reactions.

My time with Brian as an office mate was pivotal in two ways: I learned much
about the working of perturbative QCD, and about the importance of glue in
the production of heavy quark flavor. When Rudolph Bock asked me to present
how QGP can be discovered at the GSI workshop in October 1980, I placed
emphasis on strangeness flavor as a possible signature. Looking back, I believe I
turned to strangeness because Brian Combridge primed me with the story of charm
production. This was a natural step given that the temperature of QGP formation
Hagedorn and I computed was close to strange quark mass estimates.

The first strangeness signature of QGP arguments seen at the end of Chap. 27
rely on the assumption of a strangeness abundance equilibrium. One of participants
at the GSI workshop, József Zimányi, went home to work out if this hypothesis
could be true. Within a few months I learned that the outcome of this investigation,
involving Tamás Biró (see Chap. 5), challenged my strangeness chemical equilibra-
tion hypothesis in QGP.

Unfortunately, I missed the Summer 1981 seminar József Zimányi gave in
Frankfurt; I saw his work only after it was written up and circulated as a preprint
in November 1981. I was interested in technical details of Biró and Zimányi work
since rumors were spreading that Zimányi had shown in his lecture that the Rafelski-
Hagedorn work was wrong. Indeed, the results of Hagedorn-Rafelski showing the
dominance of particle production process in relativistic colliding nuclear matter
were in plain contradiction to the thrust of the relativistic heavy ion collision
work by some of my colleagues in Frankfurt. They assumed that the collision
energy was flowing into hydrodynamic compression of nuclear matter. Later
experiments established that Hagedorn-Rafelski results showing particle production
were correct.

The Frankfurt nuclear matter compression hypothesis also derailed, as noted at
the end of this paragraph, much of the work of Biró-Zimányi. However, the real
issue with this work was elsewhere. From a first view of their preprint it was clear
to me that the input from the all-important Brian Combridge’s work on QCD flavor
production was not present: the Feynman diagram figure showed that the kinetic
model for production of strangeness flavor included only light quark annihilation on
antiquarks. Thermal antiquarks are themselves quite rare in the baryon dense QGP
under consideration in Frankfurt, and this antiquark based process was thus very,
very slow. What was missing was the two-gluon fusion process.

The QCD-glue strangeness chemical equilibration paper was prepared in collab-
oration with Berndt Müller before the end of 1981 and published soon after. These
critical results are described in Chap. 31 and also in Chap. 32. For the following
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several years I worked out many details of strangeness and strange antibaryon
signature working with Berndt, and with a student, Peter Koch. These results
stimulated the experimental work described in Chap. 15 by Emanuele Quercigh,
with some results shown in Chap. 33. The large 20-fold enhancement found was, in
my eyes, the cornerstone of the CERN February 2000 QGP discovery story.

Among my favorite of Hagedorn’s letters is the one dated 19 September 1995. It
was written upon reception from publishers of a copy of the proceedings volume of
a meeting.3 I had placed Hagedorn’s name on the distribution list, hoping he would
enjoy the contents, but not expecting that he would read it front to back, which he
did.

Hagedorn writes: “I just received here Strangeness in Hadronic Matter thank you
sincerely. So much has happened since you told me for the first time about your ideas
and considerations of strangeness in QGP.4 Your idea has proved itself to be fruitful,
exciting and—hopefully!—at the end decisive. Shall I live to see the unambiguous
evidence and prove of the existence of quark-gluon plasma? Maybe this does not
matter, I am anyway fully convinced, where else can the phase transformation
(which surely is present) otherwise lead?”

This event was followed by continued discussion between us about the rapidly
emerging results from CERN strangeness experiments. Hagedorn especially
appreciated—in the historical perspective of his own work—the universality
of strange particle and antiparticle transverse energy spectra showing that both
particles and antiparticles had a common thermal source. In the following few years
we agreed that the observed patterns of strange antibaryon enhancement, and the
universal nature of evaporation spectra of particles confirm QGP discovery, a point
more thoroughly described by Emanuele Quercigh in Chap. 15.

Retirement

Another impression that I wish to place under the spotlight, as it also has affected
many others at CERN since, concerns Rolf Hagedorn planning his retirement. I
worked closely with him while he was 58–64 years old, and at CERN the retirement
age was then, and still is today, 65. One day Hagedorn told me that he took a course
on ‘How to Retire’. He became convinced that he must follow one piece of his
classroom advice: he ought to reduce his work load gradually even before reaching
the age of 65, so that when he reached 70 he would approach near zero level of
scientific activity; the time lost to CERN before his retirement age could be more
than made up by his work after retirement.

3J. Rafelski, Strangeness in Hadronic Matter AIP Conference Proceedings 340, American Institute
of Physics (New York 1995).
4Hagedorn proposes the date “1983(?)” but it must have been sometime 1979/1980.
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Hagedorn believed that the worst scenario for him would be to work full steam
till the age of 65, and then to completely drop the pen. He thought this was
unhealthy and for most scientists anyway impossible, as it is difficult for aged men
to work full steam but also for a scientist to stop thinking. Hagedorn would never
proceed without proper agreement with CERN; in other words, he saw the need
to create an emeritus status which allows continuation in the research program for
retired personnel. Maurice Jacob says in Chap. 3 a few things about the ensuing
negotiations that have led to the recognition of the Emeritus Scientist status at
CERN. According to Maurice, Hagedorn was the first to receive this recognition
upon his retirement.

Rolf Hagedorn retired on 31 July, 1984, after more than 30 years of service
to CERN. On 30 July, 1984, the Director General (Herwig Schopper) addressed
Hagedorn in his letter: “Following a proposal made by your Division Leader
(Maurice Jacob), I am happy to grant you the possibility of continuing your
research activities at CERN on an unremunerated basis. . . . I should like to take this
opportunity to congratulate you on your recent completion of 30 years of service
and thank you for the contribution you have made to the success of this Laboratory.
Wishing you good health and a happy retirement I remain, Mit allen guten Wünschen
Yours sincerely, Herwig Schopper.”

I should add that while the initial plan Hagedorn had was to phase out by the
age of 70, he changed the formula: on one hand our collaboration progressed and
the topic of heavy ion collisions turned hot in 1979 just as he planned to begin to
work less, while at the same time, CERN was still working towards developing
the emeritus status. In essence the onset of the plan was postponed to the date
of his formal retirement in 1984. Thus in 1994 Hagedorn still remained hard at
work—“The long way to the Statistical Bootstrap Model” is his 1994 account of the
development of SBM, see Chap. 17.

From personal correspondence I know that Hagedorn followed scientific devel-
opments with great interest until a few months before his death. To be specific his
last long typed letter (with many attachments) which we worked through at CERN
in person, dated 25 August, 2002, he apologizes about typing as handwriting was
becoming difficult. He comments on several recent contributions I made with his
usual precision “. . . a few typos are marked in red” in the attached preprint he read
and annotated. In another comment on a recently published book5 he says “I read
the section on H(adronic)-Gas, I could not write it better”. I believe he meant every
word.

Hagedorn turns then to the main topic of his letter and our meeting: I passed
on to him the entire draft volume (800 pages!) of the material selected, and
commentaries written for the annotated reprint volume Quark-Gluon Plasma:
Theoretical Foundations which I was working on with Joseph Kapusta and Berndt
Müller. Hagedorn made many comments which were incorporated in the final

5J. Letessier & J. Rafelski, Hadron and Quark-Gluon Plasma, (Cambridge, UK, 2002).
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version of the volume. However, our volume was not finished until after Hagedorn’s
death, and thus we dedicated this work to him.6

As just noted, the health of Hagedorn was failing. At the end of the August 2002
2-day meeting he came out to say that he did not expect to meet me again; he already
had been told about an aggressive cancer. Indeed I could not visit him before he
passed, a little more than 6 months after this meeting.

1.2 The Righteous Man

There was a clear sense of absolute morality around Hagedorn. He would not leave
a stone unturned to correct an error or an injustice. When reviewing the work of
others he did not hide in anonymity; instead he sought permission of the editors to
contact the authors to explain to them in person any required corrections, or to sign
the positive reviews. But there were other expressions of his strong convictions:

Helping Those in Need

Rolf Hagedorn was always ready to help those in need. When a colleague and
collaborator arrived from beyond the iron curtain, and told him that he had decided
not to return home, becoming a refugee, Hagedorn spent weeks looking for a place
that would take him. When the state of war in Poland made life there difficult in the
early 1980s, and one of our friends and collaborators was imprisoned, Rolf worked
incessantly to ease the burden on his friend in Poland. Hagedorn, a former prisoner
of war, knew well what internment meant to a scientist.

Similarly, the fate of the prominent Soviet dissidents Andrei Sakharov and Youri
Orlov preoccupied him much of the time, and he left nothing undone to further their
cause. Certainly the Soviet empire was not brought down by Rolf Hagedorn, but
he was definitely an important force that helped our colleagues in the East fight for
their freedom: knowing that people like Rolf were there to stand behind them in bad
times was a great support for their cause.

When the cards turned and the iron curtain fell, a different type of injustice
attracted Hagedorn’s attention. Now Hagedorn stood up for the rights of those that
the revolution in the East suddenly left in limbo: before curtain’s fall some scientists
were among the ‘privileged’; overnight they became jobless, and were scorned as
collaborators of the communist regime. Hagedorn knew better, and had the moral
privilege by having stood in for the freedom and the truth at earlier time. His cause

6J. Kapusta, B. Müller & J.Rafelski, Quark-Gluon Plasma: Theoretical Foundations; An annotated
reprint collection, Elsevier, (Amsterdam 2003).
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was again the right one, and he prevailed in his battles, for example for the rights of
his close collaborator Johannes Ranft.

Le Chambon: A Short Story Outside the Physics Context

Nobody asked who was Jewish and who was not. Nobody asked where you were
from. Nobody asked who your father was or if you could pay. They just accepted
each of us, taking us in with warmth, sheltering children, often without their parents-
children who cried in the night from nightmares; by Elizabeth Koenig-Kaufman, a
former child refugee in Le Chambon.7

As years passed I have become more aware of the relation that Hagedorn must
have had with Le Chambon. What I learned about begins in Fall 1963, when, as
Maurice Jacob describes it in Chap. 3 they met in India; at that time, Hagedorn
had enrolled his young daughter at the Boarding School Le Collége-Lycé Cv́enol
International in Le Chambon. A school at the time filled with children associated
with the holocaust survivors, a school located in a small village 4.5 h long hours by
car from CERN, just about ‘nowhere’ in the midst of France. If you were not aware
what happened in Le Chambon, this school is hard to find and for this reason the
school is about to close today. However, this is a place Hagedorn and his wife liked
to ride horses in the hills of the French Central Plateau, a place he turned to within
a relatively short time after his arrival at CERN, at a time at which the story of this
remarkable place was not yet told. Is this just a coincidence?

Let me tell the rest of the story. Aside of music which Hagedorn loved as is
also described by Maurice Jacob in Chap. 3, Hagedorn liked “. . . a little History of
Arts and related topics” which is a quote from his 1954 personal short biography
as printed below. This in turn led to his interest in photography, a topic also raised
by Maurice. Once he had time, in retirement, Hagedorn learned to create his own
color prints. He mentioned this to me, later I realized, as a warning. In September
1989—about 10–11 years after taking me, along with his wife and mine, on a long
weekend trip to Le Chambon-Sur-Lignon—he had sent a set of A4 large prints from
this event, which he was keen to tell me, he made himself. As Maurice Jacob ably
describes Hagedorn liked photography, so there are many more pictures he could
print besides the Le Chambon event, but he did not.

I kept these prints on my desk while developing a plan to thank Hagedorn
appropriately. In the interim the photographs reminded me of our visit to Le
Chambon-Sur-Lignon a decade earlier, and the name of this village, long forgotten,
was in consequence in my mind. I did recall that these photographs were taken at
local spots important to Hagedorn who took us to these places and who set up the
photo shots in detail.

7Opening of the entry “Le Chambon-sur-Lignon” at web-based “Holocaust Encyclopedia”.
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Reading my Tucson daily paper on October 16, 1990, nearly a year after
receiving the photo prints, I noticed that this rural French Village Le Chambon-
Sur-Lignon, where we had spent a memorable weekend with the Hagedorns, was
subject of a long report: “. . . entire town will be honored on October 22, 1990 at
the Yad Vashem holocaust memorial in Jerusalem.” What, an entire village? That
was a circumstance out of the ordinary. I shipped this article shown in Fig. 1.7
to Hagedorn. Since I was sending the original to Hagedorn, I copied the article,
fortunately along with a short pertinent note to keep the details in memory.

My note said (in German) Dear Hagedorn, Is this your Le Chambon-Sur-Lignon?
With best regards, your family Rafelski. On the right in Fig. 1.7, in return mail Dear
Family Rafelski, many thanks for your greetings and the photo. Yes, this is “our” Le
Chambon-Sur-Lignon. Should you want to know more, a book addressing the entire
story will be waiting for Johann at the time of his next visit to CERN (but only on
loan). Yours very sincerely Hagedorns. I was not to come to CERN for some time
and when I returned I did not raise the matter of Le Chambon, and Hagedorn did not
either, as I am sure today, he waited for me to step forward. The book he mentions

Fig. 1.7 Included with my annual Holiday Greetings 1990/1991 was a photo I prepared for
Hagedorn, Fig. 6.4 on page 48, and the article from our daily paper I noted by accident in Tucson
local paper, The Arizona Daily Star of October 16, 1990
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must have been: Lest Innocent Blood Be Shed (Story of the Village of Le Chambon)
by Philip Hallie—first printed in 1978.

As I write this down, I further recollect how we were having breakfast one
morning in Le Chambon, I realize today that these middle-aged people of Le
Chambon who in a collective act of valor saved maybe 3,000–5,000 Jewish refugees
from certain death, were serving us coffee. At the time I noted that the Hagedorns
had a strong personal connection in the hotel we were staying. When we visited
Le Chambon-Sur-Lignon, Hagedorn was among people with the same mentality
as his own. People who did the right thing, even in face of punishment by death.
I believe today that the people of Le Chambon-Sur-Lignon, and Hagedorns, were
more deeply connected.

It is known that the activities of the population of Le Chambon benefited from a
mole among Nazis sending out timely warnings, and preventing adverse encounters
which would have tragic consequences for the refugees, and the entire population of
Le Chambon. I can only speculate that Hagedorn knew about Le Chambon before
he arrived at CERN; perhaps someone told him during his years in Africa, or while
he was in the war prison camp in US. But judging by the way the Hagedorns took
us around the hills of Le Chambon, in depth of my heart I think that a more direct
involvement of Hagedorns in the war story of Le Chambon is possible.

1.3 Rolf Hagedorn: Biographical Information

Rolf Hagedorn Curriculum Vitae8 1954

I was born in 1919 at Wuppertal-Barmen. My parents, Max and Linda Hagedorn
(born Reinecke), are both alive today. At the age of six I entered the elementary
school and 4 years later the “Städtisches Realgymnasium Wuppertal-Barmen”
where I passed the final examination (Abiturium) Easter 1937. Thereafter I joined
the Reichsarbeitsdienst9 and in November 1937 the Armed Forces since I intended
to complete my military service before beginning the university course in order not
to interrupt it. But at the end of 1939, when I was to be released, the war began and
I had to stay with the Luftwaffe. During the war, I spent a long time in North Africa
where I was captured May 1943 and was brought to the USA. There in the prisoner-
of-war Camp Crossville (Tennessee) I began studying Mathematics, Physics and
also a little History of Arts and related topics. Further I had to teach a high school
class in Physics on a basic level. After having returned in January 1946, I continued
my studies in Göttingen, where I decided to become a theoretician. Consequently
I was a pupil of Prof. R. Becker. In 1950 I passed the diploma-examination with a

8CERN job application form dated January 1954.
9Translated: Reich Labor Service. From June 1935 onwards, men aged between 18 and 24 had to
serve 6 months before entering their military draft service.
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work on the theory of Lamb-shift in nonrelativistic Quantum electrodynamics (not
published). This was followed by a paper in the theory of Barium-titanate as a thesis
in spring 1952. Since June 1952 I have been working at the Max-Planck-Institute für
Physik, Göttingen, on nuclear physics, especially on the evaporation stars in nuclear
emulsions.

CERN Appointment

Hagedorn began his CERN appointment on 1 April, 1954 in the “Proton Syn-
chrotron (PS) Division”. He was offered a permanent appointment on 28 September
1960 effective 1 January, 1961 working in the “Theoretical Studies (TH) Division”.
His job description: “The main activity of Dr. Hagedorn should concern theoretical
investigations and computations of direct importance to the planning and inter-
pretation of experiments in the CERN high energy physics program, in particular
the investigations based on the use of statistical models for particle production; or
other similar studies as may become of interest in the evolution of this subject.
In addition he should devote a reasonable fraction of his time to the study of
other parts of theoretical physics so as to be prepared to adjust the orientation
of his work to the unpredictable needs of the future development of high energy
physics”.

CERN Obituary10: Rolf Hagedorn 1919–2003

This official CERN document was drafted by Torleif Ericson and Johann Rafelski
and published by CERN Courier, and in abbreviated format in the official CERN
bulletin, this shorter version follows (with added precise birth and death data):

Rolf Hagedorn, the theorist who introduced the concept that hadronic matter has
a melting point, died on 9 March, 2003 in Geneva. He was born 20 July, 1919 in
Wuppertal, Germany.

After studies in Göttingen he came to CERN in Geneva in 1954 as an accelerator
theorist. He joined the CERN Theory Group after its transfer in 1957 from
Copenhagen to Geneva (Fig. 1.8) and he was a senior physicist in the Division when
he retired in 1984.

He continued his research after retirement, and up to very recently he made per-
tinent contributions in developments in the field of relativistic heavy ion collisions.

As an accelerator physicist he developed the theoretical predictions for the
particle spectra initially observed when the CERN PS first began operation, which

10Copyright CERN 2014—CERN Publications, DG-CO; Bulletin Issue 14/2003, http://cds.cern.
ch/record/46337.

http://cds.cern.ch/record/46337
http://cds.cern.ch/record/46337
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Fig. 1.8 Rolf Hagedorn 1964, (on left), in conversation with Victor Weisskopf, Director General
of CERN; Credit: CERN photo 64-11-103

was important for the optimization of secondary beams. He then developed the
statistical theory of meson production in considerable detail up to very high
energies. It was a consequence of these studies that he found that one should expect a
limiting temperature in hadronic collisions, the Hagedorn temperature. This picture
has had a major impact on theoretical thinking and on our understanding of the
properties of hot hadronic matter, which is important now in the heavy ion program.
Since the picture is applicable to any exponentially rising particle mass spectrum it
is also influencing the development of string theories.

Among contributions to CERN, Hagedorn developed one of the earliest user-
friendly interactive computing programs for algebraic manipulations, the SIGMA.

Rolf Hagedorn was a person of the highest scientific integrity and standards of
reasoning. He was always willing to help colleagues and his comments were usually
penetrating and deep.

He will be much missed by friends and colleagues.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 2
Rolf Hagedorn: The Years Leading to TH

Torleif Ericson

Abstract On the occasion of Rolf Hagedorn’s 75th birthday it gives me a special
honor and pleasure to have this opportunity to add these remarks about the seminal
influence Hagedorn has had on the scientific community.

2.1 CERN Theory Division in 1960s

Having been friends and office neighbors at CERN for more than 35 years (Fig. 2.1)
I want here to recall the atmosphere at CERN when I first met Hagedorn in 1960
and some episodes that I remember from our time together at CERN. I will also say
a few words about the miraculous events that brought Rolf Hagedorn into physics
in the first place, and soon after to CERN.

Rolf Hagedorn brings to my mind a particular word: fortuitous. The word
‘fortuitous’ has several meanings. First of all fortuitous means something that
happens by chance, it’s statistical, and the word statistical of course brings Rolf
Hagedorn to mind immediately. But fortuitous has also the overtone of something
of good fortune, good luck, and that again is very much what I associate with Rolf’s
impact on all of us. It also applies very much to his path into science and choice of
research area, which has also been associated with a couple of steps of chance and
good fortune.

I first met Hagedorn, when I arrived at CERN as a postdoc in 1960. CERN was a
quite different place at the time, not at all like CERN today. It was considerably
smaller, although Rolf probably would say it had already become a very large
organization before and during the time he was there. But in 1960, when I came

Adapted from: Hot Hadronic Matter: Theory and Experiment, NATO ASI Series B: Physics Vol
346, Jean Letessier, Hans. H. Gutbrod and Johann Rafelski, Plenum Press (New York 1995).
With kind permission of © Plenum Press, New York, 1995.
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CERN-TH, 1211 Geneve 23, Switzerland

© The Author(s) 2016
J. Rafelski (ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature
to Ultra-Relativistic Heavy-Ion Collisions at CERN,
DOI 10.1007/978-3-319-17545-4_2
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Fig. 2.1 Torleif Ericson (left) and Rolf Hagedorn listen to an after dinner lecture. Across the table
Tatjana Fabergé is onlooking. CREDIT: CERN Photo 1994-06-067-031

to CERN, the Theory Division had only some 30 people or so and now we are 170.
So everybody knew everybody and we discussed our research with everybody else.

I had the good fortune to be assigned an office next door to Rolf’s, and luckily,
fortuitously, even in later years we have always had offices side by side, so we have
been in very close contact. I had been working myself on statistical reactions in
nuclear physics, and in particular on compound nuclei and related topics, and it was
of course interesting to see what this could mean in particle physics. I knew before
I arrived about Hagedorn, at least vaguely.

Once at CERN I quickly wanted to know what Rolf Hagedorn was up to. I
immediately found out that he was a true strong interaction man—I recall that when
I first went to his office, I did not look at his door. I just knocked and stepped in—
ignoring a huge sign on the door saying ‘Ne pas déranger’—‘Do not disturb’! I did
not know that Rolf had the habit of taking a nap for an hour or so at noon, and I
just barged in there. As you can imagine, there was a pretty strong interaction! I was
a newly arrived, fresh postdoc, while he was a staff member fast asleep. But ever
since I only had very pleasant interactions with Rolf.

What was the Theory Division at this time? Let us look at the people who were
around. Many of these friends came to celebrate Hagedorn’s 75th birthday. There
was one important fixture of the Theory Division through all the years, our beloved
Tatiana Fabergé, see Fig. 1.4. She was already then running the TH-division, and
has done it ever since, independent of whoever happened to be the division leader.

The late Léon Van Hove came to take up the leadership of the Theory Division
on nearly the same day I arrived and he was already a major physics figure. He had
been on and off at CERN before, but that was about the time he started to take care
of us. He is unfortunately no longer with us, but his wife Jenny is here. I am very
happy about that, since Léon was a very old and dear friend of Rolf’s.
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Jacques Prentki was member of the division from the early days. John and Mary
Bell had arrived at CERN about a year before—Mary was not part of the Theory
Division, but was in close contact with it. Since Hagedorn also was interested in
accelerators, the Bells were also in close contact with him. André Martin had shown
up the year before and was like me a fellow in the Theory Division as was Daniele
Amati. Both became staff members a couple of years later. Roland Omnès had left
just before I arrived, as did Frans Cerulus who had interacted very strongly with
Rolf. André Petermann was busy with calculating QED corrections.

Another staff member was the late Vladimir Glaser, who was a very brilliant
abstract theoretician, who had been earlier a postdoc along with Rolf in Germany.
He was a staff member for many years and a great specialist in finding ingenious
counter-examples to theoretical conjectures. That covers the staff members, and
most of the remainder were fellows, with a few visitors from the USA. It was really
quite a small group, very different from the 170 postdocs and senior people who are
in the group today.

2.2 Hagedorn’s Path to and at CERN

The War Years

Let me now tell a few words about the scientific career of Rolf Hagedorn (Fig. 2.2),
and about how he got into physics in the first place. This is a very interesting story,
which I have heard from Rolf Hagedorn in various forms at various times throughout
the years. Until rather late in his life there was little that indicated that Rolf would
make an exceptional career as a scientist.

Hagedorn’s life as a young man was deeply marked by the upheavals of the war
years in Europe and the greater evils that took place at that time. He graduated
from high school not long before the war, was immediately drafted into the army,
and soon after the WWII started shipped off into North Africa as an officer in the
Rommel Afrika Korps. He has told me how much he enjoyed the vast spaces and
the quiet, pitch dark nights with brilliant stars in the desert.

As you know the Afrika Korps was captured following the Allied invasion of
North Africa in 1943 and Rolf spent the rest of the war in an officer prison camp in
the United States. They were all very young people in the camp and there was not
much to do, so they set up their own ‘university’. There were of course no senior
professors, so these young men taught each other what they happened to know.
Presumably this was similar to Viki Weisskopf’s saying: ‘Physicists are persons
who explain to each other what they do not know’. So maybe that was when Rolf
Hagedorn became a physicist. At first he got training not so much in physics, but
in other subjects such as mathematics, since he met an assistant of Hilbert’s, who
knew a lot of mathematics.
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Fig. 2.2 In midst of the
experimental advances in
heavy ion physics, Summer
1994, a workshop on “Hot
Hadronic Matter: Theory and
Experiment” was held at
Divonne, France. The
proceedings were published
as: Hot Hadronic Matter:
Theory and Experiment,
NATO ASI Series B: Physics
Vol 346, Jean Letessier, Hans.
H. Gutbrod and Johann
Rafelski, Plenum Press (New
York 1995). The picture
shows Rolf Hagedorn, on
June 30, 1994 thanking those
attending. CREDIT: CERN
Photo 1994-06-065-004

At Göttingen

When Hagedorn returned to Germany in January 1946, German universities had
been destroyed. In fact the students usually had to start at the universities literally
carrying bricks to build up the institutes. Rolf in his mid-late-twenties following
nearly 9 years of service, war and prison camp was not a very young student.
Because of his training in the prison camp he succeeded, after some non-trivial
effort, to be accepted as a fourth semester student at the university of Göttingen—
one of the few left standing and at the same time a university with a great tradition in
physics and mathematics. After having completed his studies with the usual diploma
and doctorate with a thesis under Richard Becker on solid-state physics, he was
accepted at the Max Planck Institute for Physics as a postdoc.

This was still located at Göttingen at the time, and not yet in Munich, and
the director was Werner Heisenberg. Hagedorn was a member of an excep-
tional group and I think some names might interest you: Bruno Zumino, Harry
Lehmann, Wolfhart Zimmermann, Kurt Symanzik, Gerhard Lüders, Reinhard
Oehme, Vladimir Glaser, Carl Friedrich von Weizäcker and a couple more. I
suppose at the time Hagedorn thought that this was a pretty normal group, but there
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was something very special at Göttingen at that time, for all of them have made
important marks on physics in the following years.

In 1954 Hagedorn got the opportunity to go for some months to CERN, this very
new place coming up in Geneva, which was not yet well known, and in fact not even
formally and totally approved. He arrived at CERN to help with accelerator design
problems, to calculate non-linear oscillations in particle orbits. The pioneering work
on linear orbit theory had just been completed by Gerhard Lüders, who wished to
go back to Göttingen.

Lüders asked Heisenberg to send somebody to replace him, and Heisenberg
asked Rolf if he was interested in going for a couple of months. Being paid only
300 DM per month at the Max Planck Institute (not much for a family of three)
Hagedorn jumped at the occasion. Important events in life happen like that: you
come for a couple of months but you end up staying for the rest of your life. That’s
exactly what happened to Rolf.

At CERN

During this early period Hagedorn calculated non-linear orbital oscillations of the
CERN–PS with some clever novel approximation techniques extended from one
dimension to two dimensions. When the CERN theory group came to Geneva from
Copenhagen, where it had been located at first, Rolf joined it, and it was how we met
in 1960. In the small CERN environment of the time, it was easy to move between
very varied activities and he had of course been a theoretical physicist all the time.

I want to emphasize that it is this unusual background that has marked Rolf
deeply in his scientific evolution; a Ph.D. in theoretical solid state physics, followed
by work on cosmic ray interaction in Heisenberg’s institute, on to orbit theory at
CERN and finally, to the CERN theoretical physics division, he has seen most of
the physics of the day. Without such a varied experience he may have had a very
different and probably less original impact on physics.

In these early years I had many discussions with Hagedorn about statistical
hadronic physics and its basis, but I never quite got into the field. He explained to
me repeatedly the background of the Fermi statistical model and its assumptions.
I always thought I understood it, when he explained it, but afterwards I never
completely understood it. I do not know today if I understood it or did not; it was
on and off.

While I did not quite personally get involved into Hagedorn’s research line,
I followed it closely. I speculated if the kind of statistical fluctuations effects I
worked on in low energy nuclear physics could be applied to these high energy
situations. Steve Frautschi developed some of these ideas later on. I instead turned
to intermediate energy physics, which took off just then.

One day, which I remember vividly, some time in late 1964, I encountered
Hagedorn who was just bubbling over to a degree I have never seen before or since.
His eyes were quite bright describing to me all these fireballs: fireballs going into
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fireballs living on fireballs forever and all in a logically consistent way. This must
have been only a few days after the invention of the statistical bootstrap picture. I
had the impression of a man who had just found the famous philosopher’s stone,
and that must have been how Hagedorn felt about it. Clearly, he recognized the
importance of his novel idea.

2.3 Appreciation

We all know that Rolf Hagedorn was not a physicist who shot from the hip in face
of a new problem. He took his time; he worked it over; he wanted to absorb it.
Maybe this reflects the thoughts of long nights in the desert and the prison camp,
in which time of reflection is a great virtue. I am sure that this pattern was a
mark of this background, being brought up in an environment with plenty of time
for informal discussions, with few formal classes pounding down your neck and
professors pushing you to produce something very quickly. As result you learn to
absorb a problem slowly, and, in case of Hagedorn, you do it profoundly.

Maybe that is why, in a strange way, Hagedorn differed from a large number
of other prominent physicists I have met during my life. Most of the physicists are
recognized rapidly after their contribution. After that quick recognition, their impact
as time goes on gets disseminated and integrated, and people often notice it less and
less. With Hagedorn, the opposite happened. It is like the best of wines. It is not
so palatable in the early years, but as time goes on, it becomes more and more
remarkable.

Statistical Bootstrap was looked upon with considerable skepticism in the
beginning, at least within the CERN Theory Division. But as time has gone on, it has
taken on bigger and bigger dimensions and has become more and more important.
This is the sign of truly original work, of something that had real influence on our
thinking.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 3
Music and Science: Tribute to Rolf Hagedorn

Maurice Jacob

Abstract I present here Rolf Hagedorn as a man, and present his achievements as a
physicist. He has made several very important contributions: to particle and nuclear
fields of research: The Hagedorn Temperature and the Statistical Bootstrap Model
are concepts that are here to stay, and which have stimulated much further research.
But Rolf Hagedorn is also a wonderful person and, saying that, does not require a
specialist.

3.1 Personal Remarks

Visit to India

I first met Rolf Hagedorn (Fig. 3.1) in Madras in the fall of 1963. I had only seen
him briefly earlier, and knew of him as a member of the CERN theory group.
Madras, where we spent three full months together, is the place where I really got to
know him. We had independently responded to the call of Alladi Ramakrishnan and
were each giving a one-term lecture course at Matscience. Hagedorn was teaching
relativistic mechanics based on his CERN lectures and a book which he had recently
written on the subject.

We spent plenty of time together, sharing this fantastic Indian experience, and I
greatly appreciated the friendship which he extended to me despite our difference
in age. I strongly felt the sensitivity with which he was reacting to everything. I was
impressed by his thoughtful kindness and his benevolent understanding in front of

Presented in 1994 by Maurice Jacob, deceased 2 May 2007.
Adapted from: Hot Hadronic Matter: Theory and Experiment, NATO ASI Series B: Physics Vol
346, Jean Letessier, Hans. H. Gutbrod and Johann Rafelski, Plenum Press (New York 1995).
With kind permission of © Plenum Press, New York, 1995.
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Fig. 3.1 Maurice Jacob (in right of center back part of picture) flanked by Ms Jenny (Léon) Van
Hove on his left, and by Ms Mary (John) Bell on his right, observes Hagedorn’s reaction to his 75th
birthday gift, photo taken shortly before this address; CREDIT: CERN Photo 1994-06-067-018

many features of Indian life which were bringing a complicated mixture of great
admiration and some of the times feelings of revulsion to our western eyes. His long
war years had shaped up his compassion for humankind.

Rolf was a magnificent traveling companion and the great pleasure which he
had in discovering these gorgeous temples of southern India was communicative. I
remember him summarizing his visits saying, “Now I have seen something beau-
tiful. I am happy”. He was a zealous photographer and he collected a magnificent
series of photographs which I admired later. He had clever ways to take close-up
pictures of people without embarrassing them. I admired his skills.

I never saw Rolf lose his temper. His only strong reaction which I can recall
was during a night which we spent in a guest house in an Indian wildlife reserve
at Bandipur. This was during a wonderful 4-day trip which Lise and I shared with
him through the magnificent Mysore area. During the middle of the night the guest
house, where we had been alone in the evening, was invaded by a very noisy group
of visitors who stormed it past midnight as if it was their own. I still remember Rolf
shouting, “Since it is a guest house you should have realized that there could be
guests inside”.

Art and Music

I recall his appreciation for the magnificent Indian music which we heard in
Madras. We listened together to “monuments” such as M.S. Subulakshmi and Ravi
Shankar. The carnatic music of Subulakshmi is very different from our classical
western music but Rolf would say, “Music can take many forms but one can always
recognize and fully appreciate great music”.

If I may at this point venture a hypothesis, I would say that music may have even
played a role in Rolf joining the CERN Theory group. Rolf Hagedorn had come
in 1954 to CERN to be at first an accelerator physicist, working with Schorr on
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accelerator theory. But his office was next to that of Jacques Prentki and Bernard
D’Espagnat.

Jacques and Rolf could share their love for music during many discussions and
also talk physics. Jacques told me that he remembers Rolf talking in a seminar about
“an ensemble of accelerators”. We notice here the influence of thermodynamical
concepts! But, back to music: I was told that they were surprised to discover a
common appreciation for Heinrich Schütz.

A student of Monteverdi, Schütz is considered by the experts as the initiator of
Baroque music. He may not compare to the many giants who followed him and
in particular to Bach but Rolf would say, “Bach is like the Alps when Schütz is
rather like the Jura, and . . . I like the Jura”. This we know he does, living in the
countryside where the slope of the Jura starts to rise sharply, and sharing with his
wife this pleasant and quite country life with cats, horses and lots of music.

3.2 Contribution to Research

Torleif Ericson, for many years his neighbor in the TH Division, has told us about
Rolf Hagedorn’s place at CERN. I will turn now to the difficult task of trying to
summarize in a few phrases Hagedorn’s contributions to our field of research.

First with generalities, one may say that it is in the line with the brilliant
Germanic tradition in statistical thermodynamics and Rolf may find well-deserved
pride in having his name associated with a temperature. It is also in line with the
phenomenological approach whereby one tries to understand and predict according
to models. It is finally in line with the desire of any theorist to achieve a powerful
synthetic view, providing a rationale for the observed phenomena. The Statistical
Bootstrap Model, which is Hagedorn’s brain child, fits perfectly the latter point.

Thermal Particle Production

Particle production processes are now so well known that they are taken for
granted. Nevertheless the fact that very high energy collisions generally result in the
production of many secondaries first came as a surprise to many. Having admitted
that this is the case, the idea to try to apply the wide body of knowledge of statistical
thermodynamics to such production processes may naturally come to mind.

However, difficulties quickly speak for themselves. Great minds like Fermi and
Landau indeed made clever attempts but with unsatisfactory results. Particle physics
and statistical physics were long separated. This is no longer the case! In particular,
we now know of the great successes that were later met at the interface of statistical
physics and field theory.

The contribution of Rolf Hagedorn concerns the application of statistical physics
to the phenomenology of hadronic interactions, a field of research in which at CERN
Léon Van Hove was also much interested, and which he described as follows: “A
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meeting ground between particle and statistical physics, a dialog between theory
and experiment”.

Rolf Hagedorn’s work started long before I came to CERN. My understanding is
that Bruno Ferretti, who was head of the Theory Division when Hagedorn joined it,
asked him to try to predict particle yields in the accelerator high energy collisions
of the time. This he started with Frans Cerulus. There were few clues to begin with,
but they made the best of the fireball concept which was then supported by cosmic
ray studies and used it to make predictions about particle yields and therefore the
secondary beams to be expected from the machine beam directed at a target.

Many key ingredients brought soon afterward by experiment helped refine the
approach. Among them one should quote the limited transverse momentum with
which the overwhelming majority of the secondary particles happen to be produced.
They show an exponential drop with respect to the transverse mass. One should
also quote the exponential drop of elastic scattering at wide angle as a function of
incident energy. Such exponential behaviors strongly suggest a thermal distribution
for whatever eventually comes out of the reaction and it is to Rolf’s great credit
to have clung to this thermal interpretation and to have used it to build production
models which turned out to be remarkably accurate at predicting yields for the many
different types of secondaries which originate from high energy collisions.

Limiting Temperature

What could actually be “thermalized” in the collisions? Many objections were raised
at the time. Applying straightforward statistical mechanics to the produced pions
was indeed giving the wrong results. But, even if there was a thermalized system at
all, why was the temperature apparently constant? Shouldn’t one have expected it to
rise with incident energy or with the mass of the excited fireball?

It was Rolf’s great merit to interpret the apparently limiting temperature which
could be associated with the transverse mass distribution of the secondaries as
resulting from an exponential mass spectrum for the many resonant states in which
hadrons can be excited into before these resonance would fragment into less massive
ones to eventually give, at the end of the line, the observed secondary particles.

The rise of the temperature is associated with the population of higher and higher
energy levels by the elements of a system. If there is an exponentially increasing
number of level offering themselves to be filled, the temperature saturates. It is the
entropy which eventually increases with the collision energy but the temperature
gets then stuck to a limiting value. This is the Hagedorn temperature. It is of the
order of 150 MeV, close to the pion mass.

The impressive number of states which have now to be considered at the
same time leads to a new writing of equations based on statistical physics. The
factorial n factor, which was plaguing statistical calculation focusing on pions only
and which was introduced to rightfully avoid multiple counting in phase space
integrals, now had to be dropped, since each one of the many states was unlikely
to have a population exceeding one. Agreement between experiment and statistical
calculations prevailed at long last.
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In his popular book, “The Quark and the Jaguar”, Murray Gell Mann explains
how progress in physics often results from the dropping of a condition which was
long considered as mandatory and which had not been properly challenged. This
applies very well to this 1=nŠ factor which as Rolf concluded for the hadronic system
effectively had not to be there after all.

Statistical Bootstrap Model

Despite the great success of the Hagedorn approach at predicting particle yields,
we may still have reservations at speaking about a temperature in collisions among
elementary particles but, as we shall see later, this applies to heavy ion collisions
which are attracting an increasing interest and attention. But now comes Rolf’s great
achievement in pioneering the development of the Statistical Bootstrap Model. Rolf
has beautifully described its genesis in The Long Way to the Statistical Bootstrap
Model see Chap. 17 in this volume.

To put it in a nutshell, one may say that each of the many resonant states in which
hadrons can be excited through a collision is itself a constituent of a still heavier one
while being also composed of lighter ones. What Hagedorn showed is that when one
puts logic and hard work into the idea one cannot escape an exponential spectrum
of resonant states. The temperature of such a system is then limited from above.

This limit is the Hagedorn temperature. If one takes a more global view, talking
about “fireballs” (in the old language) or “clusters” (in the more modern vernacular)
rather than of resonances, the conclusion is that the temperature of such objects
is independent of their mass. One can then also understand why the limiting
temperature is of the same order as the mass of the smallest mass state, the pion.

The concept of an exponential spectrum is now part of our understanding of
hadron phenomena. It has been reached through different approaches such as that
offered by dual models. It fits beautifully the hadronic level counting which can now
be followed up to over 4,000 cataloged resonances Rolf was first at pinning it down
through his Statistical Bootstrap Model. The Statistical Bootstrap Model has been
at the origin of many further works which have refined it. Rolf was thus at the origin
of an important and very fruitful line of research.

Can one go beyond the limiting temperature set by Hagedorn? The answer is yes,
but one has to consider a phase transition whereby one leaves the hadronic phase to
reach a new phase where the hadron constituents, the quarks and the gluons, are no
longer confined. The limiting temperature becomes a phase transition temperature
which can be calculated by means of lattice gauge theory method.

The ongoing experimental and theoretical work bears witness to all the fascinat-
ing activities which now go on applying statistical and thermodynamical concepts
to heavy ion collisions. Rolf Hagedorn can take fully justified pride in having
pioneered and followed this line of approach for a long time and this despite the
many stumbling blocks which he had to overcome. We can rejoice with him that
many of his views have been vindicated by recent and promising developments.
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3.3 Active Retirement

We can also rejoice with him that his “pro forma” retirement in 1984, which has
kept him close to CERN and we enjoy his frequent visits. We are happy to see him
following closely and participating in present research. His talk at this conference
bears magnificent witness to that.

In connection with Rolf “pro forma” retirement, I should conclude by saying
that I was thrilled to have Rolf as a test case when pushing through the Management
Board, together with Adolf Minten and Allan Wetherell, a special status for “retired
scientists willing to continue research”.

Rolf Hagedorn was the first person at CERN to be granted the new status. Great
was my joy when I could leave with him the letter from the CERN director general
Erwin Schopper written to that effect which had followed by a mere few days the
approval of the new scheme.

Let me try to summarize Hagedorn’s research through a modest limerick
(Fig. 3.2):

There are many hadrons with strong interaction

Which behave thermally in their curious motion

Rolf Hagedorn showed long ago

How S-B-M can make it go

Exponential spectrum is the explanation.

Fig. 3.2 Maurice Jacob (center) follows Rolf Hagedorn accompanied by Ms Mary (John) Bell.
CREDIT: CERN Photo 1994-06-065-026
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Chapter 4
On Hagedorn

Luigi Sertorio

Abstract Theoretical physics is not based on dogmatic truths. It is the search
for ever improving formal constructions that can agree with the new experimental
discoveries. At each step new unknowns appear, new domains are opened. This is
the immense fascination of fundamental research.

4.1 In Times Past

When CERN was created 60 years ago I was a student of physics. The technology
applied in the creation of the CERN particle accelerator and the super powerful
computers was the frontier of excellence in the years after the second world war.
The nucleon-nucleon collision in the region of the GeV per particle is the creation in
the laboratory of processes not existing on planets and on stars. In the Earth we have
molecular interactions in the range of fractions of eV, from extremely cold to fire.
In the Sun we have nuclear interactions in the range of MeV, inside the core. With
collisions in the GeV region we explore interactions that are beyond the dynamics of
the known island of permanence, stars and planets, therefore we explore something
that belongs to cosmology. The transition from nuclear to subnuclear physics is
not only the search for high energy scale of interactions, or small space scale of
structures, but is a new challenge to the dualism microscopic and macroscopic,
quantum theory and gravitation.

I met Hagedorn at CERN in the years 1970–1973. He was a great man who loved
the truth, not the authority. His mind was rigorous, calm, curious, and wide. He did
not sit on his success but continuously extended his horizon of research. His name
was connected to the concept of fireball and limiting temperature. Fermi was the first
to apply the language of statistical physics for the subnuclear interactions. Hagedorn
extended Fermi’s approach, taking into account the multitude of hadron resonances.

With kind permission of © CERN, 2003.
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He obtained a very satisfactory description of the experimental particle production
data produced at CERN. The discovery of Hagedorn’s limiting temperature in 1964
happened just in exactly the same year which brought cosmology and the Big Bang
to the experimental realm by the observation of the cosmic background thermal
photons.

At that time three theoretical approaches coexisted, the analytic S matrix, the
Hamiltonian model, and thermodynamics, the work of Hagedorn. The S matrix
approach needed a simplicity in the domain of resonances that was not compatible
with the experimental data. The Hamiltonian theory developed into the construction
of an Hamiltonian with an ever increasing number of discrete symmetries. Cosmol-
ogy is facing a triple dilemma: gravitation for the understanding of the large scale
morphology, quantum formalism for the microscopic world, and thermodynamics
that acts in between. Thermodynamics contains the arrow of time, while gravitation
and Hamiltonian quantum mechanics contain time reversal symmetry. This is the
problem of future physics. Finally notice that the terrestrial biosphere also contains
the arrow of time through the immensely complex link of the interaction between
the living organisms and the inorganic molecular thermodynamics. I turned my
interest to the study of the biosphere. Not easy, not immediate. Other physicists
of my generation followed this course. Among the senior scientists that encouraged
such turn I can mention Bethe and Hagedorn.

I had the fortune of interacting with Hagedorn in the three years at CERN and
also later on. But at this point let me open a parenthesis.

Every important step in the advancement of physics has two articulations: the
broader theoretical horizon that is opened, and the technology that is implied in the
research itself. Technology has in its turn military and civilian consequences. This is
true since the time of Archimedes and his offensive concave mirrors, solar weapons.
Each scientific advance leads to a new weapon: the birth of metallurgy moved
from swords to guns; modern molecular thermodynamics and exothermic reactions
among molecules nourished the development of all kinds of explosives. Then arrives
quantum mechanics with the discovery of nuclear reactions, very rapidly exploited
in the creation of the fission bomb, and a little later the fusion H-bomb. On the
civilian use side, the thermodynamic control of the nuclear exothermic reactions
was achieved in the domain of fission, not yet for fusion.

What does this have to do with Hagedorn? In the second half of the twentieth cen-
tury both the USA and the Soviet Union developed high level laboratories devoted
to nuclear weapon research and production. The dream was the subnuclear bomb, a
thousand times more powerful than the H-bomb. The eyes were focused on particle
accelerators where protons are smashed. The message coming from Hagedorn was
very clear: no exothermic reactions, but instead particle fragmentation. Stop to the
bombardiers. The impact of these events that I summarize, and that are unknown to
the general public, has been very important for the large scale international financing
of research. We understand that several young scientists turned their energies to the
understanding of complex systems. This phenomenon was particularly relevant in
USA and Soviet Union. In particular the research on the biosphere takes strength in
those years.
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4.2 Wide Field of Interests

I had several conversations with Hagedorn on general subjects which are my
preeminent field of interest today: these are the life in the Universe and the
understanding of time and evolution. What is life? In some sacred ancient books
is a gift of God; later we find the concept of evolution, further on with the birth
of quantum photochemistry the concept of biosphere and the deep complexity of
genetics can be formulated. This immense domain of problems fascinated Hagedorn
and was the attraction of my interaction with him.

Consider the process of star formation and the new stars of second generation
which come with planets. The planets are, in the universe, the tiny domains of
permanence for the existence of inorganic molecules, and possibly the existence of
the fragile complex organic molecules. We are born within the terrestrial biosphere;
no wonder if along the millennia we have developed a geocentric vision of life. But
modern cosmology forces us to rethink our place in the Universe. Hagedorn’s mind
was fascinated by these questions.

In 1994 I gave Hagedorn (Fig. 4.1) a copy of my book Thermodynamics of
Complex Systems. Months later we had a meeting at CERN and he returned the
book to me covered with corrections, recalculations, plus handwritten pages and
pages of remarks and proposals. The size of the book was doubled. He said: “you

Fig. 4.1 Standing: Rolf Hagedorn—Across of Maurice Jacob and Luigi Sertorio; Between Luigi
and Maurice: Ms Mary Bell, next to Maurice Jacob: Mrs Van Hove; On Hagedorn Side Torleif
Ericson (left edge) and Chris Lewellyn Smith (bottom edge) Mrs Helga Rafelski on left of
Hagedorn and Mrs. Zinoviev on right. Image credit: CERN Image 199406-066-018
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should rewrite it, there is much more to say, I will help with my criticism”. Several,
also personal, difficulties stepped in, and I was unable to continue in the way he was
suggesting. However, the light of his encouragement was extremely important for
the continuation of my work since.

This is an example of my personal experience with Hagedorn. This was not
the exception but the rule how Hagedorn interacted with his friends, and with his
colleagues, even those he had not yet met but who sent him their work asking for
his opinion.

My friendship with Hagedorn was deep, and it was with very great personal
satisfaction that I organized The Erice meeting in October 1978, where we
celebrated his work and his 60th birthday. I could also be present and support in
many essential ways the 1994 Divonne meeting where we celebrated Hagedorn’s
75th birthday, a splendid fest of science supported by NATO Scientific Affairs
Division.

Hagedorn was always available to discuss physics, in every situation. Once, I
don’t remember the year, we met in his office at CERN and at the end of the
afternoon we moved to the parking lot. He was going to drive to his home nearby
in France; I was on the way to take my return trip to Torino driving my loved Alfa
Romeo. The parking area goodbye developed into a conversation on the definition of
boundary for the complex system biosphere, that lasted over one hour. The problem
is still open today. And that was the last time I talked with Hagedorn.

4.3 Retrospective

When Hagedorn made his path breaking discovery, CERN was young, about ten
years of age, a concentration of talent, creative interactions. Today CERN is 50 years
older, has grown to be a revered international organization from which we expect
a leadership of excellence. The present work on relativistic heavy ions collision is
inspired by the revolutionary ideas of Hagedorn. A flow of ideas and new problems
were originated in those beautiful years, and are a challenge for our future.

It is a great honor for me to be able to write these notes in memory of the
50th birthday of the creation of the paradigm of limiting temperature of hadrons,
and in this way to contribute to the lasting memory of Hagedorn’s path breaking
contribution made at CERN. As I have tried to explain the work of Hagedorn had a
broad impact, not only limited to the CERN community. I can certainly say that the
time of Hagedorn was a great time.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 5
Hungarian Perspective

István Montvay and Tamás Biró

Abstract Rolf Hagedorn is introduced from the personal perspective of two
Hungarian physics generations. A colleague (IM) and a student (TB) recount
memories and events from the early-70-s to mid-80-s, and evaluate Hagedorn’s
impact on present particle and nuclear Hungarian physics community.

5.1 Influence Spreads to Hungary

The Statistical Bootstrap Model was presented by Rolf Hagedorn in the proceedings
of the 1974 Balatonfüred Symposium on High Energy Hadron Interactions co-edited
by one of us (IM). However, to the best of our memory, Hagedorn never was able
to actually visit Hungary. Yet when we look around today, a disproportionately
large fraction of Hungarian Physics is engaged in the fields he pioneered. Both the
emigrees, as well as those who made their lives in Hungary behind the iron curtain
have espoused the soft hadron production and related fields. This mystery has many
origins and the best way to address this is by taking under the microscope a few
momentary events reported by key eyewitnesses. Maybe our two complementary
contributions do not completely answer this question but we make a first step.

Hungary joined CERN in 1992, but Hungarian groups have participated in
numerous experiments at CERN almost since its foundation. These collaborations
were coordinated by the KFKI Research Institute for Particle and Nuclear Physics
(RMKI) and Institute of Nuclear Research (ATOMKI) of the Hungarian Academy of
Sciences, of the Departments of Atomic and Theoretical Physics of Loránd Eötvös
University in Budapest and the Institute of Experimental Physics of the University
of Debrecen. Hungarian research groups have contributed to many experiments
at CERN. And, indeed, some theorists including István Montvay could also visit
CERN for extended periods of time.

I. Montvay (�)
DESY, Hamburg, Germany

T. Biró (�)
Wigner RCP, Budapest, Hungary
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5.2 Memories by István Montvay

I met Rolf Hagedorn in 1972 when I was the first visiting scientist from Hungary
invited for one year at CERN. This visit was for me an outstanding possibility to
work at one of the leading research institutes of the world. First, I wrote papers on
quark and parton models but I was soon fascinated by the theories of multiparticle
production in high energy hadron collisions, in particular, by the statistical bootstrap
model of fireballs and hadron thermodynamics of Hagedorn which predicted a
highest temperature of hadronic matter due to the exponentially increasing density
of states.

This “Hagedorn temperature” showed up in the experimentally observed uni-
versal transverse momentum distribution of the produced hadrons (mainly pions) at
high collision energies. Under the guidance of Hagedorn, I discovered the possibility
to explicitly solve the integral equations for fireball decay. (I. Montvay, Phys. Lett.
B 42 (1972) 466; Nucl. Phys. B 53 (1973) 521.) With time my collaboration with
Hagedorn became more intensive. At the end of my visit at CERN we wrote a
paper together on a model study in hadron statistical bootstrap. (R. Hagedorn and I.
Montvay, Nucl. Phys. B 59 (1973) 45.)

During the time at CERN and in Geneva I learned a lot, especially on topics
related to statistics and thermodynamics. Hagedorn’s help was invaluable—not only
in physics but also in everyday life in the “western world” to a large extent unknown
until then by me and by my wife. At the time the situation in Europe was very differ-
ent. For example our visas were valid only for Switzerland but not for France where
much of CERN is located. Hagedorn had a solution to the problem: i remember
how he smuggled us in his car through the French border at Saint-Genis. This was
very exciting for us both because we could enjoy Hagedorn’s hospitality in Sergy-
Haut, and several times in the excellent French restaurants in the surroundings. We
realized that though these deeds were somewhat illegal, should we be caught we
would not serve time in a gulag. That was a very different world compared to home.

The second time I had the opportunity to work with Hagedorn was in 1978 when
stopping at CERN on my way out of Hungary going on “vacation”, and I soon settled
down together with my family at first in Bielefeld and then in Hamburg at DESY.

I rejoined Hagedorn’s team at CERN. We were, three of us together with Johann
Rafelski, a very intense and enjoyable collaboration addressing different questions
of the thermodynamics of nuclear matter within the framework of the statistical
bootstrap model. We worked out a detailed picture of high temperature hadronic
phases: a gaseous phase at low nucleon density and a liquid phase at high density.
In our work Hagedorn’s concept of “highest temperature” was evolving from an
absolute highest temperature towards the “highest temperature of hadronic form of
matter”. In a study of the properties of Hagedorn singularity, Cabibbo and Parisi
considered the possibility of its interpretation as a phase transition. This feature,
however, was absent in the original Hagedorn’s Statistical Bootstrap Model (SBM)
they considered.

Our effort extended and modified physical ideas of the SBM allowing us the
study of phase boundary. A detailed description of the outcome of our lively
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discussions at the blackboard in Hagedorn’s office at CERN was written down in
a nascent format (R. Hagedorn, I. Montvay and J. Rafelski, CERN-TH-2605, Dec
1978, 99 pp) for the Proceedings of the Erice Workshop held in October 1978 on
“Hadronic Matter at Extreme Energy Density” (edited by Nicola Cabibbo and Luigi
Sertorio, Plenum 1980). This work developed soon into a complete and consistent
model description of the phase transition from hadronic to quark-gluonic phase.

While I enjoyed the phenomenological approach taken by Hagedorn and Rafel-
ski, my interest grew in more exact, numerical lattice characterization of the
properties of strong interactions. This work took me via Bielefeld to DESY in late
1978. In my work I continued the Hagedorn legacy, but in a very different, much
more abstract setting, much different from the intuitive Hagedorn work.

5.3 Tamás Biró Grows up with Hagedorn

I came to strong interaction physics and the nascent field of QGP just when
István was moving out of Hagedorn circle to pursue a more exact description of
fundamental interaction on lattice. I joined the field and was noticed right away
because of my interest in understanding strangeness production, an observable of
the quark-gluon plasma phase that appeared in the proposals for relativistic heavy
ion experiments made by Hagedorn and Rafelski in 1980. Under supervision of my
advisor J. Zimányi I received my diploma in 1980, and my Ph.D. in 1982. To be able
to pursue the hot hadron and quark matter with strangeness I had to read the relevant
papers and thus I had gained the 1970s view of thermal strong interaction physics.

Although I never met Rolf Hagedorn personally, I was growing up in physics with
his ideas spreading wide over particle and nuclear physics. A statistical, horrible
dictu thermodynamical approach to high energy elementary systems and the very
notion of a quark-gluon plasma became widespread in the 1980s and has only grown
and matured since then.

The young Hungarian particle physicists, István Montvay, Peter Hasenfratz,
Julius Kuti and Zoltan Kunszt—and a few others, mainly former students of George
Marx, led the theory research in Budapest in the 1970s, but after their departure from
Hungary their influence dispersed onto the international stage. Nuclear physicists
took over introducing the new fields, the heavy ion experiment and quark-gluon
phase production, the quest for this Holy Grail of matter exceeding the Hagedorn
temperature. The noteworthy participants were József Zimányi, István Lovas and
Judit Németh in Budapest and soon also in Debrecen. As relations of Hungary
with western countries gradually eased, more and more physicists visited western
institutes and our research ideas developed much in parallel with the world’s leading
institutes.

Being a student of József Zimányi I remember a paper from 1979, which he
co-authored with his former colleague in Budapest, István Montvay, discussing
nuclear reactions in terms of hydrodynamics of hot nuclear matter (I. Montvay
and J. Zimányi, NPA 316 (1979) 490). My same-generation-colleague Anna
Hasenfratz next door to my office was working on the connection of lattice
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QCD renormalization with more conventional schemes together with her brother
(A. Hasenfratz and P. Hasenfratz, PLB 93 (1980) 165). As early as 1981 Julius Kuti
headed the first lattice SU(2) calculation on an East-German computer in Hungary
(J. Kuti, J. Polonyi and K. Szlachanyi, PLB 98 (1981) 199).

These examples show that the thermal interpretation of strongly interacting bulk
hadronic, later quark, matter and the thinking in terms of a phase transition became
ubiquitous as I entered the field of physics in the 1980s. The initiation and
renaissance of experimental relativistic heavy-ion programs for decades to come
followed this development. It triggered anew theoretical work in terms of thermo-
dynamics and hydrodynamics. The phrases ‘hydrochemistry’ and ‘quarkchemistry’
were coined for the study of the time evolution of hot nuclear matter, and lattice
gauge theory, followed by lattice QCD conquered the world of computing with
theoretical physics purposes.

To date the physical picture has been refined: it turned out that QCD describes
a crossover type transition between the hadronic and quark-gluon plasma stages
of elementary matter; even signs of the finite heat bath have been rediscovered
in the curving of particle spectra and number distribution. Yet, the transition still
occurs near to the temperature obtained by Hagedorn in his model in 1964: around
TH � 160MeV.

In my own work I recently was able to pick up the thread of Hagedorn limiting
temperature, within the newly rising context of non-extensive statistical physics and
quark coalescence (T.S. Biró and A. Peshier, PLB 632 (2006) 247). This work
was motivated by the earlier studies, including one by Hagedorn (R. Hagedorn,
La Revista del Nuovo Cimento, 6 (1983) 1), that a cut power-law distribution is a
much better fit to particle spectra than the exponential—used in the original limiting
temperature considerations. We studied production of hadrons arising from power-
law tailed distribution of massless partons formed in coalescence. We found that
this generates an exponential growth of the multiplicity of hadrons with mass m.
The cut power-law distribution leads to a nonlinear equipartition formula, E=N �
T=.1 � T=T0/C T=.1 � 2T=3T0/ C T=.1 � T=3T0/, showing that T < T0 even at
infinite energy.

5.4 Hagedorn Remembered

Rolf Hagedorn’s impact on physics is farther reaching in the indirect than in the
direct way. At first he was pretty much alone, but persisted in the application of
thermodynamics in the field of particle production and strong interaction physics.
However, within a decade, in the late 1970s and 1980s of the twentieth century,
the thermal and hydrodynamical models of high energy nuclear collisions became
worldwide fields of interest and helped to successfully interpret bulk features of soft
strongly interacting matter phenomena in CERN and BNL experiments.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 6
The Tale of the Hagedorn Temperature

Johann Rafelski and Torleif Ericson

Please note the Erratum to this chapter at the end of the book

Abstract We recall the context and impact of Rolf Hagedorn’s discovery of
limiting temperature, in effect a melting point of hadrons, and its influence on the
physics of strong interactions.

6.1 Particle Production

Collisions of particles at very high energies generally result in the production of
many secondary particles. When first observed in cosmic-ray interactions, this effect
was unexpected for almost everyone,1 but it led to the idea of applying the wide body
of knowledge of statistical thermodynamics to multiparticle production processes.
Prominent physicists such as Enrico Fermi, Lev Landau, and Isaak Pomeranchuk
made pioneering contributions to this approach, but because difficulties soon
arose this work did not initially become the mainstream for the study of particle
production. However, it was natural for Rolf Hagedorn to turn to the problem.

Hagedorn had an unusually diverse educational and research background, which
included thermal, solid-state, particle, and nuclear physics. His initial work on
statistical particle production led to his prediction, in the 1960s, of particle yields at
the highest accelerator energies at the time at CERN’s proton synchrotron. Though
there were few clues on how to proceed, he began by making the most of the
‘fireball’ concept, which was then supported by cosmic-ray studies. In this approach,
all the energy of the collision was regarded as being contained within a small space-
time volume from which particles radiated, as in a burning fireball.

Adapted from an article which appeared in the September 2003 issue of CERN Courier.
1Expected for example by W. Heisenberg, see Z. Phys. 126, 569 (1949) and references therein. We
thank H. Satz for bringing this work to our attention.
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Several key ingredients from early experiments helped him to refine this
approach. Among these observations, the most noticeable was the limited transverse
momentum of the overwhelming majority of the secondary particles. Also, the
elastic scattering cross-section at large angles was found to drop exponentially as a
function of incident energy. Such behavior strongly suggested an inherently thermal
momentum distribution.

However, many objections were raised in these pioneering days of the early
1960s. What might actually be ‘thermalized’ in a high-energy collision? Applying
straightforward statistical mechanics gave too small a yield of pions. Moreover,
even if there was a thermalized system in the first place, why was the apparent
temperature constant? Should it not rise with incident beam energy?

It is to Hagedorn’s great credit that he stayed with his thermal interpretation,
solving the problems one after another. His particle-production models turned
out to be remarkably accurate at predicting yields for the many different types
of secondaries that originate in high-energy collisions. He understood that the
temperature governing particle spectra does not increase, because as more and more
energy is poured into the system, new particles are produced.

It is the entropy that increases with the collision energy. If the number of particles
of a given mass (or mass spectrum) increases exponentially, the temperature
becomes stuck at a limiting value. This is the Hagedorn temperature TH. The
value of TH is hard to pin precisely, as it depends also on other parameters of
the strongly interacting particles still evolving in our understanding today as exact
mathematical tools, such as lattice gauge theory, mature. Hagedorn gave its value as
TH ' 150MeV, but it may be as low as the mass of the lightest hadron, the pion,
TH � m  � 140MeV and as high as 160 MeV.

The impressive number of distinguishable hadronic states which now have to be
considered at the same time leads to a rewriting of equations based on statistical
physics, and introducing numerous massive hadron resonances which eventually
fragment into less massive ones to yield the observed secondary particles. At the
‘bottom line’, this solved the problem of the pion yield. The factor 1=nŠ, which
originated in the quantum indistinguishability of identical particles, had plagued the
statistical calculations that focused only on pions. Now it had become unimportant
as each one of the many states was unlikely to have a population, n, exceeding 1. At
long last agreement between experiment and statistical calculations prevailed.

6.2 The Statistical Bootstrap Model

Once these physical facts had been assembled, explanation of the observed hadron
production was at hand. However, the implementation of the model required
considerable fine-tuning of parameters and mathematical equations, a situation
which Hagedorn in the end did not like. Hagedorn turned his attention to improving
the theoretical and conceptual interpretation, in particular to present a natural
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Fig. 6.1 An illustration of the statistical bootstrap idea. When a drop comprising hadronic
particles and resonances is compressed to the ‘natural volume’, it becomes another more massive
resonance. This process then repeats, creating heavier resonances, which consist of hadron
resonances, which in turn consist of resonances, and so on. Picture: CERN Courier September
2003 p. 30

mechanism generating the numerous hadronic resonances which dominate the
scattering cross-section. He proposed the statistical bootstrap model (SBM).

In a nutshell, in the SBM, each of the many resonant states into which hadrons
can be excited through a collision is itself a constituent of a still heavier resonance,
whilst also being composed of lighter ones. In this way, when compressed to its
natural volume, a matter cluster consisting of hadron resonances becomes a more
massive resonance with lighter resonances as constituents, as shown in Fig. 6.1. One
day in late 1964, one of us (TE) ran into Hagedorn: this must have been soon after he
had invented the statistical bootstrap. He gave the impression of a man who had just
found the famous philosopher’s stone, describing how fireballs turn into fireballs
forever and all in a logically consistent way. Visibly, Hagedorn was aware of the
importance his ideas. It was interesting to observe how deeply he felt about it from
the very beginning.

Using the SBM approach for a strongly interacting system, Hagedorn obtained
an exponentially rising mass spectrum of resonant states. As time progresses and
new data emerges, experimental results on hadronic level counting reveal ever
greater number of cataloged resonances. They agree beautifully with theoretical
expectations from the SBM. As our knowledge has increased, the observed mass
spectrum has become a better exponential, as illustrated in Fig. 6.2. The solid blue
line in Fig. 6.2 is the exponential fit to the smoothed hadron mass spectrum of the
present day, which is represented by the short-dashed red line. Note that Hagedorn’s
long-dashed green line of 1967 was already a remarkably good exponential. One
can imagine that the remaining deviation at high mass in the top right corner of the
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Fig. 6.2 The smoothed mass spectrum of hadronic states as a function of mass. Experimental data:
long-dashed green line with the 1,411 states known in 1967; short-dashed red line with the 4,627
states of mid 1990s. The solid blue line represents the exponential fit yielding TH D 158MeV.
Depending on the preexponential factor, a range TH D 150˙ 15MeV is possible. Picture: CERN
Courier September 2003 p. 30

figure originates in the experimental difficulties of discovering all these high mass
states, which have a much less obvious experimental signature.

The important physics message of Fig. 6.2 is that the rising slope in the mass
spectrum is the same as the falling slope of the particle momentum spectra. The
momentum spectra originate in the thermalization process and thus in reaction
dynamics; the mass spectrum is an elementary property of strong interactions.
The SBM provides an explanation of the relationship between these slopes, and
explains why the hadron gas temperature is bounded from above. Moreover, since
the smallest building block of all hadronic resonances is the pion, within the SBM
one can also understand why the limiting temperature is of the same magnitude as
the smallest hadron mass TH � m .

As time has passed since the discovery of the limiting temperature, this Hagedorn
temperature TH turned into a brand name. The concept of an exponentially rising
mass spectrum is part of our understanding of hadron phenomena. However, con-
sidering the historical perspective, when first proposed the SBM was viewed with
considerable skepticism, even within the CERN Theory Division where Hagedorn
worked. Over the years, the understanding of the particle-production process that
Hagedorn brought about has grown in significance and his work has become the
standard model. Such is the sign of truly original work, of something that really
influenced our thinking. Hagedorn’s refereed article2 presented 50 years ago for the

2R. Hagedorn, Nuovo Cim. Suppl. 3 147 (1965).
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first time and which introduced the statistical bootstrap model of particle production
and placed the maximum temperature in the vocabulary of particle physics, has
found a place among the most cited physics papers.

The accurate description of particle production, through the conversion of energy
into matter, has numerous practical implications. Even in the very early days,
Hagedorn’s insight into the yields and spectra of the produced secondaries showed
that neutrino beams would have sufficient flux to allow a fruitful experimental
program, and this gave a theoretical basis for the planning of the first neutrino beams
constructed at CERN.

6.3 Quark-Gluon Plasma

At the same time that the SBM was being developed, the newly discovered quarks
were gaining acceptance as the building blocks of hadrons. While Hagedorn saw a
compressed gas of hadrons as another hadron, in the quark picture it became a drop
of quark matter. In quark matter at high temperatures gluons should also be present
and as the temperature is increased asymptotic freedom ensures that all constituents
interact relatively weakly. There seems to be nothing to stop a dense assembly of
hadrons from deconfining into a plasma of quarks and gluons. It also seems that
this new state of matter could be heated to a very high temperature, with no limit in
sight. So what is the meaning of the Hagedorn temperature in this context?

In the SBM as conceived before quarks, hadrons were point particles. A subtle
modification is required when considering quarks as building blocks. Hadrons made
of quarks need a finite volume that grows with hadron mass. One of us (JR), upon
his arrival at CERN at the end of the 1970s and into the early 1980s, worked on this
extension of the SBM with Hagedorn. Much of this work is reported in this volume.
We discovered that at the Hagedorn temperature, finite-size hadrons dissolve into
a quark-gluon liquid. Both a phase transition and a smoother transformation are
possible, depending on the precise nature of the mass spectrum.

The most physically attractive alternative was a first-order phase transition. In
this case the latent heat is delivered to the hadron phase at a constant Hagedorn
temperature TH. A new phase is then reached wherein the hadron constituents—
the quarks and the gluons—are no longer confined. The system temperature can
now rise again. The presence of a true phase transition including its mathematical
properties turned out to be of no deeper relevance to this concept, as long as the
actual physical properties of the system change according to the model described.
Therefore we chose to speak of ‘transformation’ of strongly interacting phases of
matter.

Within the study of hot hadronic matter today, the Hagedorn temperature is
understood as the phase boundary temperature between the hadron gas phase and
the deconfined state of mobile quarks and gluons (see Fig. 6.3). Several experiments
involving high-energy nuclear collisions at CERN’s Super Proton Synchrotron
(SPS), at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National
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Fig. 6.3 The different regions of the statistical parameter plane (temperature, T, and the bary-
ochemical potential �), according to the statistical bootstrap model of hadronic matter. Picture:
CERN Courier September 2003 p. 30

Laboratory, and at CERN’s Large Hadron Collider (LHC) are testing these new
concepts. Nuclei, rather than protons, are used in these experiments in order to
maximize the volume of quark deconfinement. This allows a clearer study of the
signature of the formation of a new phase of matter, the quark-gluon plasma (QGP).

In past years both CERN and RHIC communities have presented clear evidence
for the formation of the deconfined QGP state in which the hadron constituents are
dissolved. The current experimental objective is the understanding of the physical
properties of this new phase of matter. This requires the use of novel probes, which
respond to a change in the nature of the state within the short time available.
More precisely, the heating of hadronic matter beyond the Hagedorn temperature
is accompanied by a large collision compression pressure, which is the same in
magnitude as the pressure in the very early Universe. In the subsequent expansion,
a collective flow velocity as large as 60 % of the velocity of light is exceeded. The
expansion of dense QGP phase occurs on a timescale similar to that needed for light
to traverse the interacting nuclei.
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In the expansion—cooling process of QGP formed in nuclear collisions, the
Hagedorn temperature at which hadrons emerge is again reached after a time
that corresponds to the lifespan of a short-lived hadron. A break up—that is,
hadronization—then occurs and final-state hadrons emerge. Hagedorn was par-
ticularly interested in understanding the hadronic probes of QGP produced in
hadronization. He followed closely the initial exploration of the strangeness flavor
as a signal of QGP formation.

Looking back, already in February 2000 the totality of intriguing experimental
results obtained at the SPS over several years was folded into a public announcement
stating that the formation of a new phase of matter was their best explanation.3

More on this subject is said in this volume. The key experimental results, including,
in particular, strangeness and strange antibaryon enhancement, agreed with the
theoretical expectations that were arrived at when one assumes that the QGP state
was formed. To this day these signatures are the cornerstone of the QGP discovery.

Other signatures of QGP have been since detected. For example, over the past
decade it became evident that this deconfined phase of matter is highly non-
transparent to fast quarks. The majority of researchers today are convinced that
the deconfined phase has been formed at the SPS, at RHIC and at the LHC. The
thrust of current research depends on the range of accessible relativistic heavy ion
beams. At lower energy, at SPS, and in special effort at RHIC, research addresses
threshold conditions that are necessary for the onset of QGP, and the study of the
phase boundary as function of baryon density. At the LHC we seek to understand
the initial reaction conditions in dense matter and QGP in conditions similar to those
present in the early universe is studied.

In the next few years, the study of hadronic matter near the Hagedorn temperature
will also dominate experimental efforts in the field of nuclear collisions, in particular
at the new international experimental facility FAIR under construction today at the
GSI laboratory in Darmstadt, Germany and at the planned experimental facility
NICA in Dubna, Russia. The richness of the physics at hand over the coming years
is illustrated in the phase diagram in Fig. 6.3, which was obtained from the study of
the SBM. Here, the domain is spanned by the temperature, T, and the baryochemical
potential, �, which regulates the baryon density.

In past 50 years the understanding of the physics related to the Hagedorn
temperature has changed. In the beginning it was the maximum temperature seen
in proton–proton collisions. It then became the SBM inverse slope of the mass
spectrum. Today, it denotes the phase boundary between hadron and quark matter.
Moreover, as recent work in string theory has shown, Rolf Hagedorn (Fig. 6.4) will
not only be remembered for the physics of hot hadronic matter: his name is already
attached to a more general family of elementary phenomena that originate in the
methods he developed in the study of strong interaction physics.

3CERN Courier April 2000: Harping on About Hadrons; CERN Courier May 2000: Opening the
Door to the Quark-Gluon Plasma.
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Fig. 6.4 Rolf Hagedorn in his garden Fall 1978; Photo: Johann Rafelski
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Chapter 7
The Legacy of Rolf Hagedorn: Statistical
Bootstrap and Ultimate Temperature

Krzysztof Redlich and Helmut Satz

Abstract In the latter half of the last century, it became evident that there exists
an ever increasing number of different states of the so-called elementary particles.
The usual reductionist approach to this problem was to search for a simpler
infrastructure, culminating in the formulation of the quark model and quantum
chromodynamics. In a complementary, completely novel approach, Hagedorn
suggested that the mass distribution of the produced particles follows a self-similar
composition pattern, predicting an unbounded number of states of increasing mass.
He then concluded that such a growth would lead to a limiting temperature for
strongly interacting matter. We discuss the conceptual basis for this approach, its
relation to critical behavior, and its subsequent applications in different areas of
high energy physics.

A prophet is not without honour,
but in his own country.

The New Testament, Mark 6,4.

7.1 Rolf Hagedorn

The development of physics is the achievement of physicists, of humans, persisting
against often considerable odds. Even in physics, fashion rather than fact frequently
determines judgment and recognition.

When Rolf Hagedorn (Fig. 7.1) carried out his main work, now quite generally
recognized as truly pioneering, much of the theoretical community not only ignored
it, but even considered it to be nonsense. “Hagedorn ist ein Narr”, he is a fool,
was a summary of many leading German theorists of his time. When in the 1990s
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Fig. 7.1 Rolf Hagedorn (on right) in conversation with Helmut Satz (on left), 30 June 1994.
Hagedorn holds a birthday gift from Krzysztof Redlich. Image credit: CERN Image 1994-06-64-
022

the question was brought up whether he could be proposed for the Max Planck
Medal, the highest honor of the German physics community, even then, when his
achievements were already known world-wide, the answer was still “proposed,
yes. . . .”

At the time Hagedorn carried out his seminal research, much of theoretical
physics was ideologically fixed on “causality, unitarity, Poincaré invariance”: from
these three concepts, from axiomatic quantum field theory, all that is relevant to
physics must arise. Those who thought that science should progress instead by
comparison to experiment were derogated as “fitters and plotters”. Galileo was
almost forgotten. . . . Nevertheless, one of the great Austrian theorists of the time,
Walter Thirring, himself probably closer to the fundamentalists, noted: “If you want
to do something really new, you first have to have a new idea”. Hagedorn did.

He had a number of odds to overcome. He had studied physics in Göttingen under
Richard Becker, where he developed a life-long love for thermodynamics. When he
took a position at CERN, shortly after completing his doctorate, it was to perform
calculations for the planning and construction of the proton synchrotron. When that
was finished, he shifted to the study of multihadron production in proton-proton
collisions and to modeling the results of these reactions. It took a while before
various members of the community, including some of the CERN Theory Division,
were willing to accept the significance of his work. This was not made easier by
Hagedorn’s strongly focused region of interest, but eventually it became generally
recognized that here was someone who, in this perhaps similar to John Bell, was
developing truly novel ideas which at first sight seemed quite specific, but which
eventually turned out to have a lasting impact also on physics well outside its region
of origin.
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We find that Rolf Hagedorn’s work centers on two themes:

• the statistical bootstrap model, a self-similar scheme for the composition and
decay of hadrons and their resonances; for Hagedorn, these were the “fireballs”.

• the application of the resulting resonance spectrum in an ideal gas containing
all possible hadrons and hadron resonances, and to the construction of hadron
production models based on such a thermal input.

We will address these topics in the first two sections, and then turn to their roles
both in the thermodynamics of strongly interacting matter and in the description of
hadron production in elementary as well as nuclear collisions. Our aim here is to
provide a general overview of Hagedorn’s scientific achievements. Some of what
we will say transcends Hagedorn’s life. But then, to paraphrase Shakespeare, we
have come to praise Hagedorn, not to bury him; we want to show that his ideas are
still important and very much alive.

7.2 The Statistical Bootstrap

Around 1950, the physics world still seemed in order for those looking for the
ultimate constituents of matter in the universe. Dalton’s atoms had been found
to be not really atoms, indivisible; Rutherford’s model of the atom had made
them little planetary systems, with the nucleus as the sun and the electrons as
encircling planets. The nuclei in turn consisted of positively charged protons and
neutral neutrons as the essential mass carriers. With an equal number of protons
and electrons, the resulting atoms were electrically neutral, and the states obtained
by considering the different possible nucleus compositions reproduced the periodic
table of elements. So for a short time, the Greek dream of obtaining the entire
complex world by combining three simple elementary particles in different ways
seemed finally feasible: protons, neutrons and electrons were the building blocks of
our universe.

But there were those who rediscovered an old problem, first formulated by the
Roman philosopher Lucretius: if your elementary particles, in our case the protons
and neutrons, have a size and a mass, as both evidently did, it was natural to ask
what they are made of. An obvious way to find out is to hit them against each
other and look at the pieces. And it turned out that there were lots of fragments,
the more, the harder the collision. But they were not really pieces, since the debris
found after a proton-proton collision still also contained the two initial protons.
Moreover, the additional fragments, mesons and baryons, were in almost all ways
as elementary as protons and neutrons. The study of such collisions was taken up by
more and more laboratories and at ever higher collision energies. As a consequence,
the number of different “elementary” particles grew by leaps and bounds, from tens
to twenties to hundreds. The latest compilation of the Particle Data Group contains
over a thousand.
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Fig. 7.2 The Sierpinski triangle

Let us, however, return to the time when physics was confronted by all those
elementary particles, challenging its practitioners to find a way out. At this point, in
the mid 1960s, Rolf Hagedorn came up with a truly novel idea [1–6]. He was not so
much worried about the specific properties of the particles. He just imagined that a
heavy particle was somehow composed out of lighter ones, and these again in turn
of still lighter ones, and so on, until one reached the pion as the lightest hadron.
And by combining heavy ones, you would get still heavier ones, again: and so on.
The crucial input was that the composition law should be the same at each stage.
Today we call that self-similarity, and it had been around in various forms for many
years. A particularly elegant formulation was written a 100 years before Hagedorn
by the English mathematician Augustus de Morgan, the first president of the London
Mathematical Society:

Great fleas have little fleas upon their backs to bite’em,
and little fleas have lesser still, and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on,
while these again have greater still, and greater still, and so on.

Hagedorn proposed that “a fireball consists of fireballs, which in turn consist
of fireballs, and so on. . . .” The concept later reappeared in various forms in
geometry; in 1915, it led to the celebrated triangle, see Fig. 7.2 devised by the Polish
mathematician Wacław Sierpinski: “a triangle consists of triangles, which in turn
consist of triangles, and so on. . . ,” in the words of Hagedorn. Still later, shortly after
Hagedorn’s proposal, the French mathematician Benoit Mandelbroit initiated the
study of such fractal behavior as a new field of mathematics.

Hagedorn had recalled a similar problem in number theory: how many ways
are there of decomposing an integer into integers? This was something already
addressed in 1753 by Leonhard Euler, and more than a century later by the
mathematician E. Schröder in Germany. Finally G.H. Hardy and S. Ramanujan
in England provided an asymptotic solution [7]. Let us here, however, consider a
simplified, easily solvable version of the problem [8], in which we count all possible
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different ordered arrangements p.n/ of an integer n. So we have
1 D 1 p.1/ D 1 D 2n�1
2 D 2 ,1C 1 p.2/ D 2 D 2n�1
3 D 3, 2C 1, 1C 2, 1C 1C 1 p.3/ D 4 D 2n�1
4 D 4, 3 C 1, 1 C 3, 2 C 2, 2 C 1 C 1, 1 C 2 C 1, 1 C 1 C 2, 1 C 1 C 1C 1
p.4/ D 8 D 2n�1

and so on. In other words, there are

p.n/ D 2n�1 D 1

2
en ln 2 (7.1)

ways of partitioning an integer n into ordered partitions: p.n/ grows exponentially
in n. In this particular case, the solution could be found simply by induction. But
there is another way of reaching it, more in line with Hagedorn’s thinking: “large
integers consist of smaller integers, which in turn consist of still smaller integers,
and so on. . . .” This can be formulated as an equation,

�.n/ D ı.n�1/C
nX

kD2

1

kŠ

kY

iD1
�.ni/ ı.˙ini�n/: (7.2)

It is quite evident here that the form of the partition number �.n/ is determined by a
convolution of many similar partitions of smaller n. The solution of the equation is
in fact just the number of partitions of n that we had obtained above,

�.n/ D z p.n/ (7.3)

up to a normalization constant of order unity (for the present case, it turns out that
z ' 1:25). For Hagedorn, Eq. (7.2) expressed the idea that the structure of �.n/
was determined by the structure of �.n/—we now call this self-similar. He instead
thought of the legendary Baron von Münchhausen, who had extracted himself
from a swamp by pulling on his own bootstraps. So for him, Eq. (7.2) became his
bootstrap equation.

The problem Hagedorn had in mind was, of course, considerably more complex.
His heavy resonance was not simply a sum of lighter ones at rest, but it was a
system of lighter resonances in motion, with the requirement that the total energy of
this system added up to the mass of the heavy one. And similarly, the masses of the
lighter ones were the result of still lighter ones in motion. The bootstrap equation
for such a situation becomes

�.m;V0/ D ı.m�m0/C
X

N

1

NŠ

�
V0
.2�/3

�N�1Z NY

iD1
Œdmi �.mi/ d3pi� ı

4.˙ipi � p/;

(7.4)
where the first term corresponds to the case of just one lightest possible particle,
a “pion”. The factor V0, the so-called composition volume, specified the size of
the overall system, an intrinsic fireball size. Since the mass of any resonance in
the composition chain is thus determined by the sum over phase spaces containing
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lighter ones, whose mass is specified in the same way, Hagedorn called this form of
bootstrap “statistical”.

After a number of numerical attempts by others, W. Nahm [9] solved the
statistical bootstrap equation analytically, obtaining

�.m;V0/ D const: m�3 expfm=TH g: (7.5)

So even though the partitioning now was not just additive in masses, but included
the kinetic energy of the moving constituents, the increase was again exponential in
mass. The coefficient of the increase, TH

�1, is determined by the equation

V0TH
3

2�2
.m0=TH /

2K2.m0=TH / D 2 ln 2 � 1; (7.6)

in terms of two parameters V0 and m0. Hagedorn assumed that the composition
volume V0, specifying the intrinsic range of strong interactions, was determined
by the inverse pion mass as scale, V0 ' .4�=3/m�3

� . This leads to a scale factor
TH ' 150MeV. It should be emphasized, however, that this is just one possible
way to proceed. In the limit m0 ! 0, Eq. (7.6) gives

TH D Œ�2.2 ln 2 � 1/�1=3 V�1=3
0 ' 1=rh; (7.7)

where V0 D .4�=3/r3h and rh denotes the range of strong interactions. With rh '
1 fm, we thus have TH ' 200 MeV. From this it is evident that the exponential
increase persists also in the chiral limit m� ! 0 and is in fact only weakly dependent
on m0, provided the strong interaction scale V0 is kept fixed.

The weights �.m/ determine the composition as well as the decay of
“resonances”, of fireballs. The basis of the entire formalism, the self-similarity
postulate—here in the form of the statistical bootstrap condition—results in an
unending sequence of ever-heavier fireballs and in an exponentially growing number
of different states of a given mass m.

Before we turn to the implications of such a pattern in thermodynamics, we note
that not long after Hagedorn’s seminal paper, it was found that a rather different
approach, the dual resonance model [10–12], see Chap. 8, led to very much the
same exponential increase in the number of states. In this model, any scattering
amplitude, from an initial two to a final hadrons, was assumed to be determined by
the resonance poles in the different kinematic channels. This resulted structurally
again in a partition problem of the same type, and again the solution was that the
number of possible resonance states of mass m must grow exponentially in m, with
an inverse scale factor of the same size as obtained above, some 200 MeV. Needless
to say, this unexpected support from the forefront of theoretical hadron dynamics
considerably enhanced the interest in Hagedorn’s work.
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7.3 The Limiting Temperature of Hadronic Matter

Consider a relativistic ideal gas of identical neutral scalar particles of mass m0

contained in a box of volume V , assuming Boltzmann statistics. The grand canonical
partition function of this system is given by

Z .T;V/ D
X

N

1

NŠ

�
V

.2�/3

Z
d3p expf�

q
p2 C m2

0 =Tg
�N

; (7.8)

leading to

lnZ .T;V/ D VTm2
0

2�2
K2.m0=T/: (7.9)

For temperatures T � m0, the energy, and the particle density of the system become,
respectively

".T/ D � 1
V

@ ln Z .T;V/

@ .1=T/
' 3

�2
T4; n.T/ D @ ln Z .T;V/

@V
' 1

�2
T3;

(7.10)

and so the average energy per particle is given by

E

N
' 3 T: (7.11)

The important feature to learn from these relations is that, in the case of an ideal gas
of one species of elementary particles, an increase of the energy of the system has
three consequences. It leads to:

• a higher temperature,
• more constituents, and
• more energetic constituents.

If we now consider an interacting gas of such basic hadrons and postulate that the
essential form of the interaction is resonance formation, then we can approximate
the interacting medium as a non-interacting gas of all possible resonance species
[13, 14]. The partition function of this resonance gas is

lnZ .T;V/ D
X

i

VTm2
i

2�2
�.mi/ K2.mi=T/ (7.12)

where the sum begins with the stable ground state m0 and then includes the possible
resonances mi; i D 1; 2; : : : with weights �.mi/ relative to m0. Clearly the crucial
question here is how to specify �.mi/, that is how many states there are of mass
mi. It is only at this point that hadron dynamics enters, and it is here that Hagedorn
introduced the result obtained in his statistical bootstrap model.
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As we had seen above in Eq. (7.5), the density of states then increases expo-
nentially in m, with a coefficient TH

�1 determined by Eq. (7.6) in terms of two
parameters V0 and m0. If we replace the sum in the resonance gas partition function
Eq. (7.12) by an integral and insert the exponentially growing mass spectrum
Eqs. (7.5) and (7.12) becomes

lnZ .T;V/ ' VT

2�2

Z
dm m2�.mi/ K2.mi=T/ � V

�
T

2�

�3=2Z dm

m3=2
e�

h
m
T � m

TH

i

:

(7.13)

Evidently, the result is divergent for all T > TH : in other words, TH is the highest
possible temperature of hadronic matter. Moreover, if we compare such a system
with the ideal gas of only basic particles (a “pion” gas), we find:

pion gas resonance gas

n� � "3=4 nres � "
!� � "1=4 !res � const:

Here n denotes the average number density of constituents, ! the average energy of
a constituent. In contrast to the pion gas, an increase of energy now leads to

• a fixed temperature limit, T ! TH ,
• the momenta of the constituents do not continue to increase, and
• more and more species of ever heavier particles appear.

We thus obtain a new, non-kinetic way to use energy, increasing the number of
species and their masses, not the momentum per particle. Temperature is a measure
of the momentum of the constituents, and if that cannot continue to increase, there
is a highest possible, a “limiting” temperature for hadronic systems.

Hagedorn originally interpreted TH as the ultimate temperature of strongly
interacting matter. It is clear today that TH signals the transition from hadronic
matter to a quark-gluon plasma. Hadron physics alone can only specify its inherent
limit; to go beyond this limit, we need more information: we need QCD.

As seen in Eq. (7.5), the solution of the statistical bootstrap equation has the
general form

�.m;V0/ � m�a exp.m=TH /; (7.14)

with some constant a; the exact solution of Eq. (7.4) by Nahm gave a D 3. It
is possible, however, to consider variations of the bootstrap model which lead to
different a, but always retain the exponential increase in m. While the exponential
form makes TH the upper limit of permissible temperatures, the power law
coefficient a determines the behavior of the system at T D TH . For a D 3, the
partition function Eq. (7.13) itself exists at that point, while the energy density as
first derivative in temperature diverges there. This is what made Hagedorn conclude
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that TH is indeed the highest possible temperature of matter: it would require an
infinite energy to reach it.

Only a few years later it was, however, pointed out by N. Cabibbo and G. Parisi
[15] that larger a shifted the divergence at T D TH to ever higher derivatives. In
particular, for 4 > a > 3, the energy density would remain finite at that point,
shifting the divergence to the specific heat as next higher derivative. Such critical
behavior was in fact quite conventional in thermodynamics: it signaled a phase
transition leading to the onset of a new state of matter. By that time, the quark model
and quantum chromodynamics as fundamental theory of strong interactions had
appeared and suggested the existence of a quark-gluon plasma as the relevant state
of matter at extreme temperature or density. It was therefore natural to interpret the
Hagedorn temperature TH as the critical transition temperature from hadronic matter
to such a plasma. This interpretation is moreover corroborated by a calculation of
the critical exponents [16] governing the singular behavior of the resonance gas
thermodynamics based on a spectrum of the form Eq. (7.14).

It should be noted, however, that in some sense TH did remain the highest
possible temperature of matter as we know it. Our matter exists in the physical
vacuum and is constructed out of fundamental building blocks which in turn have
an independent existence in this vacuum. Our matter ultimately consists of and can
be broken up into nucleons; we can isolate and study a single nucleon. The quark-
gluon plasma, on the other hand, has its own ground state, distinct from the physical
vacuum, and its constituents can exist only in a dense medium of other quarks—we
can never isolate and study a single quark.

That does not mean, however, that quarks are eternally confined to a given part
of space. Let us start with atomic matter and compress that to form nuclear matter,
as it exists in heavy nuclei. At this stage, we have nucleons existing in the physical
vacuum. Each nucleon consists of three quarks, and they are confined to remain
close to each other; there is no way to break up a given nucleon into its quark
constituents. But if we continue to compress, then eventually the nucleons will
penetrate each other, until we reach a dense medium of quarks. Now each quark
finds in its immediate neighborhood many other quarks besides those which were
with it in the nucleon stage. It is therefore no longer possible to partition quarks
into nucleons; the medium consists of unbound quarks, whose interaction becomes
ever weaker with increasing density, approaching the limit of asymptotic freedom
predicted by QCD. Any quark can now move freely throughout the medium: we
have quark liberation through swarm formation. Wherever a quark goes, there
are many other quarks nearby. The transition from atomic to quark matter is
schematically illustrated in Fig. 7.3.

We have here considered quark matter formation through the compression of cold
nuclear matter. A similar effect is obtained if we heat a meson gas; with increasing
temperature, collisions and pair production lead to an ever denser medium of
mesons. And according to Hagedorn, also of ever heavier mesons of an increasing
degeneracy. For Hagedorn, the fireballs were point like, so that the overlap we had
just noted simply does not occur. In the real world, however, they do have hadronic
size, so that they will in fact interpenetrate and overlap before the divergence of
the Hagedorn resonance gas occurs [17]. Hence now again there will be a transition
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(a) (b) (c)

Fig. 7.3 Schematic view of matter for increasing density, from atomic (a) to nuclear (b) and then
to quark matter (c)

from resonance gas to a quark-gluon plasma, now formed by the liberation of the
quarks and gluons making up the resonances.

At this point, it seems worthwhile to note an even earlier approach leading to
a limiting temperature for hadronic matter. More than a decade before Hagedorn,
I.Ya. Pomeranchuk [18] pointed out that a crucial feature of hadrons is their size,
and hence the density of any hadronic medium is limited by volume restriction: each
hadron must have its own volume to exist, and once the density reaches the dense
packing limit, it’s the end for hadronic matter. This simply led to a temperature
limit, and for an ideal gas of pions of 1 fm radius, the resulting temperature was
again around 200 MeV. Nevertheless, these early results remained largely unnoticed
until the work of Hagedorn.

Such geometric considerations do, however, lead even further. If hadrons are
allowed to interpenetrate, to overlap, then percolation theory predicts two different
states of matter [19, 20]: hadronic matter, consisting of isolated hadrons or finite
hadronic clusters, and a medium formed as an infinite sized cluster of overlapping
hadrons. The transition from one to the other now becomes a genuine critical
phenomenon, occurring at a critical value of the hadron density.

We thus conclude that the pioneering work of Rolf Hagedorn opened up the field
of critical behavior in strong interaction physics, a field in which still today much is
determined by his ideas. On a more theoretical level, the continuation of such studies
was provided by finite temperature lattice QCD, and on the more experimental side,
by resonance gas analysis of the hadron abundances in high energy collisions. In
both cases, it was found that the observed behavior was essentially that predicted by
Hagedorn’s ideas.

7.4 Resonance Gas and QCD Thermodynamics

With the formulation of Quantum Chromodynamics (QCD) as a theoretical frame-
work for the strong interaction force among elementary particles it became clear
that the appearance of the ultimate Hagedorn’s temperature TH , signals indeed
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the transition from the hadronic phase to a new phase of strongly interacting
matter, the quark-gluon plasma (QGP) [21] (and reference therein). As QCD is
an asymptotically free theory, the interaction between quarks and gluons vanishes
logarithmically with increasing temperature, thus at very high temperatures the QGP
effectively behaves like an ideal gas of quarks and gluons.

Today we have detailed information, obtained from numerical calculations in the
framework of finite temperature lattice Quantum Chromodynamics [22, 23], about
the thermodynamics of hot and dense matter. We know the transition temperature to
the QGP and the temperature dependence of basic bulk thermodynamic observables
such as the energy density and the pressure [24, 25]. We also begin to have results
on fluctuations and correlations of conserved charges [26–28].

The recent increase in numerical accuracy of lattice QCD calculations and their
extrapolation to the continuum limit, makes it possible to confront the fundamental
results of QCD with Hagedorn’s concepts [2, 6], which provide a theoretical
scenario for the thermodynamics of strongly interacting hadronic matter [28–30].

In particular, the equation of state calculated on the lattice at vanishing and finite
chemical potential, and restricted to the confined hadronic phase, can be directly
compared to that obtained from the partition function Eq. (7.13) of the hadron
resonance gas, using the form Eq. (7.14) introduced by Hagedorn for a continuum
mass spectrum. Alternatively, as a first approximation, one can also consider a
discrete mass spectrum which accounts for all experimentally known hadrons and
resonances. In this case the continuum partition function of the Hagedorn model is
expressed by Eq. (7.12) with �.mi/ replaced by the spin degeneracy factor of the ith

hadron, with the summation taken over all known resonance species listed by the
Particle Data Group [31].

With the above assumption on the dynamics and the mass spectrum, the
resonance gas partition function introduced by Hagedorn [2, 6], can be calculated
exactly and expressed as a sum of one-particle partition functions Z1i of all hadrons
and resonances,

ln Z.T;V/ D
X

i

Z1i .T;V/: (7.15)

For particles of mass mi and spin degeneracy factor gi, the one-particle partition
function Z1i , in the Boltzmann approximation, reads

Z1i .T;V/ D gi
VTm2

i

2�2
K2.mi=T/: (7.16)

Due to the factorization of the partition function in Eq. (7.15), the energy density
and the pressure of the Hagedorn resonance gas with a discrete mass spectrum, can
also be expressed as a sum over single particle contributions

" D
X

i

"1i ; P D
X

i

P1i ; (7.17)
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Fig. 7.4 The normalized
pressure P.T/, the energy
density ".T/ and the entropy
density s.T/ obtained in
lattice QCD calculations as a
function of temperature. The
dark lines show predictions of
the Hagedorn resonance gas
for a discrete mass spectrum,
Eqs. (7.17)–(7.20). The lattice
results are from [25]

with

"1i
T4
D gi

2�2

�mi

T

�3 �3 K2.ˇmi/

ˇm
C K1.ˇmi/

�
(7.18)

P1i
T4
D gi

2�2

�mi

T

�3
K2.ˇmi/; (7.19)

where ˇ D 1=T and K1 and K2 are modified Bessel functions. At vanishing chemical
potentials and at finite temperature, the energy density ", the entropy density s and
the pressure P, are connected through the thermodynamic relation,

" D �PC sT: (7.20)

Summing up in Eq. (7.17), the contributions from experimentally known hadronic
states; constitute the resonance gas [2, 6] (for a review, see e.g. [32]) for the thermo-
dynamics of the hadronic phase of QCD. Taking e.g. contribution of all mesonic and
baryonic resonances with masses up to 1.8 GeV and 2.0 GeV, respectively, amounts
to 1,026 resonances.

The crucial question thus is, if the equation of state of hadronic matter introduced
by Hagedorn can describe the corresponding results obtained from QCD within
lattice approach.

In Fig. 7.4 we show the temperature dependence of the energy density, pressure
and the entropy density obtained recently in lattice QCD studies with physical
masses of up, down and strange quarks [25]. The bands in lattice QCD results
indicate error bars due to extrapolation to the continuum limit. The vertical band
marks the temperature, Tc D .154˙9/MeV, which within an error, is the crossover
temperature from a hadronic phase to a quark-gluon plasma [33]. These QCD results
are compared in Fig. 7.4 to the Hagedorn resonance gas model formulated for a
discrete mass spectrum in Eqs. (7.17) and (7.20).
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There is a clear coincidence of the Hagedorn resonance model results and the
lattice data on the equation of states. All bulk thermodynamical observables are very
strongly changing with temperature when approaching the deconfinement transition.
This behavior is well understood in the Hagedorn model as being due to the con-
tribution of resonances. Although Hagedorn’s model formulated for a discrete mass
spectrum does not exhibit a critical behavior, it nevertheless reproduces remarkably
well the lattice results in the hadronic phase. This agreement has now been extended
to an analysis of fluctuations and correlations of conserved charges as well.

In summary of this section we note that a remarkably good description of lattice
QCD results on the equation of states by the Hagedorn thermal model justifies, that
resonances are indeed the essential degrees of freedom near deconfinement. Thus,
on the thermodynamical level, modeling hadronic interactions by formation and
excitation of resonances, as introduced by Hagedorn, is an excellent approximation
of strong interactions.

7.5 Resonance Gas and Heavy Ion Collisions

Long before lattice QCD could provide a direct evidence that strong interaction
thermodynamics can be quantified by the resonance gas partition function, Hage-
dorn’s concept was verified phenomenologically by considering particle production
in elementary and heavy ion collisions [34–37] (for a review, see e.g. [32]). In
a strongly interacting medium, one includes the conservation of electric charge,
baryon number and strangeness. In this case, the partition function of Hagedorn’s
thermal model depends not only on temperature but also on chemical potential �,
which guarantees, that charges are conserved on an average. For a non vanishing �,
the partition function Eq. (7.15) is replaced by

ln Z.T;V;�/ D
X

i

Z1i .T;V;�/; (7.21)

with � D .�B; �S; �Q/, where �i are the chemical potentials related to the baryon
number, strangeness and electric charge conservation, respectively.

For particle i carrying strangeness Si, the baryon number Bi, the electric charge
Qi and the spin–isospin degeneracy factor gi, the one particle partition function,
reads

Z1i .T;V;�/ D
VgiTm2

i

2�2
K2.mi=T/ exp

�
Bi�B C Si�S C Qi�Q

T

�
: (7.22)

For � D 0 one recovers the result from Eq. (7.16).
The calculation of a density ni of particle i from the partition function Eq. (7.21)

is rather straightforward [46]. It amounts to the replacement Z1i ! �iZ1i in Eq. (7.21)
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Fig. 7.5 The ratio of the total
density of positively charged
pions, nR

�C from Eq. (7.24),
and the density of thermal
pions, nth

�C from Eq. (7.23).
The calculations are done in
the Hagedorn resonance gas
model for �B D250 MeV and
�B D550 MeV at different
temperatures

and taking a derivative with respect to the particle fugacity �i, as

ni D hNiith
V
D @ ln Z

@�i

ˇ̌
ˇ̌
�iD1

; (7.23)

consequently, ni D Z1i =V with Z1i as in Eq. (7.22).
The Hagedorn model, formulated in Eq. (7.21), describes bulk thermodynamic

properties and particle composition of a thermal fireball at finite temperature and
at non vanishing charge densities. If such a fireball is created in high energy heavy
ion collisions, then yields of different hadron species are fully quantified by thermal
parameters. However, following Hagedorn’s idea, the contribution of resonances
decaying into lighter particles, must be included [2, 6].

In Hagedorn’s thermal model, the average number hNii of particles i in volume
V and at temperature T that carries strangeness Si, the baryon number Bi, and the
electric charge Qi, is obtained from Eq. (7.21), see [2, 6]

hNii.T;�/ D hNiith.T;�/C
X

j
�j!ihNjith;R.T;�/: (7.24)

The first term in Eq. (7.24) describes the thermal average number of particles of
species i from Eq. (7.23) and the second term describes overall contribution from
resonances. This term is taken as a sum of all resonances that decay into particle i.
The �j!i is the corresponding decay branching ratio of j! i. The multiplicities of
resonances hNjith;R in Eq. (7.24), are obtained from Eq. (7.23).

The importance of resonance contributions to the total particle yield in Eq. (7.24)
is illustrated in Fig. 7.5 for charge pions. In Fig. 7.5 we show the ratio of the total
number of charge pions from Eq. (7.24) and the number of prompt pions from
Eq. (7.23). The ratio is strongly increasing with temperature and chemical potential.
This is due to an increasing contribution of mesonic and baryonic resonances. From
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Eq. (7.5) it is clear, that at high temperature and/or density, the overall multiplicity
of pions is mostly due to resonance decays.

The particle yields in Hagedorn’s model Eq. (7.24) depend, in general, on five
parameters. However, in high energy heavy ion collisions, only three parameters are
independent. In the initial state the isospin asymmetry, fixes the charge chemical
potential and the strangeness neutrality condition eliminates the strange chemical
potential. Thus, on the level of particle multiplicity, we are left with temperature T
and the baryon chemical potential �B as independent parameters, as well as, with
fireball volume as an overall normalization factor.

Hagedorn’s thermal model introduced in Eq. (7.24) was successfully applied to
describe particle yields measured in heavy ion collisions. The model was compared
with available experimental data obtained in a broad energy range from AGS up to
LHC. Hadron multiplicities ranging from pions to omega baryons and their ratios,
as well as composite objects like e.g. deuteron or alpha particles, were used to
verify if there was a set of thermal parameters .T; �B/ and V , which simultaneously
reproduces all measured yields.

The systematic studies of particle production extended over more than two
decades, using experimental results at different beam energies, have revealed a clear
justification, that in central heavy ion collisions particle yields are indeed consistent
with the expectation of the Hagedorn thermal model. There is also a clear pattern
of the energy,

p
s-dependence of thermal parameters. The temperature is increasing

with
p

s, and at the SPS energy essentially saturates at the value, which corresponds
to the transition temperature from a hadronic phase to a QGP, as obtained in LQCD.
The chemical potential, on the other hand, is gradually decreasing with

p
s and

almost vanishes at the LHC.
In Fig. 7.6 we show, as an illustration, a comparison of Hagedorn’s thermal

model and recent data on selected particle yields, obtained by ALICE collaboration
in central Pb–Pb collisions at midrapidity at the LHC energy [38]. At such high
collision energy, particle yields from Eq. (7.24) are quantified entirely by the

Fig. 7.6 Yields of several
different particle species per
unit rapidity normalized to
spin degeneracy factor as a
function of their mass. Data
are from ALICE
collaboration taken at the
LHC in central Pb–Pb
collisions. The line is the
Hagedorn thermal model
result, Eq. (7.25), see [38]

< N > / (2J +1)
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temperature and the fireball volume.1 Thus, there is transparent prediction of
Hagedorn’s model Eq. (7.24), that yields of heavier particles hNii with no resonance
decay contributions, normalized to their spin degeneracy factor gi D .2J C 1/,
should be quantified by

hNii
2J C 1 ' VT3

� mi

2�T

�3=2
exp.�mi=T/; (7.25)

where we have used Eq. (7.23) and the asymptotic expansion of the Bessel function,
K2.x/ � x�1=2 exp.�x/, valid for large x.

In Fig. 7.6 we show the yields of particles with no resonance contribution, like
	, ˝ , the deuteron ‘d’, 3He and the hypertriton 3


He, normalized to their spin
degeneracy factor, as a function of particle mass. Also shown in this figure is the
prediction from Eq. (7.25) at T ' 156 and for volume V ' 5;000 fm3 [38]. There is
a clear coincidence of data taken in Pb–Pb collisions at the LHC and predictions of
the Hagedorn model Eq. (7.25). Particles with no resonance contribution measured
by ALICE collaboration follow the Hagedorn’s expectations that they are produced
from a thermal fireball at common temperature. A similar agreement of Hagedorn’s
thermal concept and experimental data taken in central heavy ion collisions has been
found for different yields of measured particles and collision energies from AGS,
SPS, RHIC and LHC (for a review, see e.g. [32]).

7.6 Particle Yields and Canonical Charge Conservation

The Hagedorn thermodynamical model for particle production, was originally
applied to quantify and understand particle yields and spectra measured in elemen-
tary collisions—there were no data available from heavy ion collisions.

Initial work on particle production by Hagedorn began in 1957 in collaboration
with F. Cerulus when they applied the Fermi phase space model, see Sect. 25.2.
In this microcanonical approach, conservation laws of baryon number or electric
charge were implemented exactly. Almost 15 years later the production of complex
light antinuclei, such as anti-He3, preoccupied Hagedorn [2, 6]. He realized and
discussed clearly the need to find a path to enforce exact conservation of baryon
number to describe the anti-He3 production correctly within the canonical statistical
formulation.

Indeed, applying in pp reactions the thermal model without concern for conser-
vation of baryon number overestimates the production of anti-He3 in proton-proton
collisions by seven orders of magnitude [2, 4, 6]. The reason was that when the
number of particles in the interaction volume is small, one has to take into account
the fact that the production of anti-He3 must be accompanied by the production

1The chemical potential � in Eq. (7.24) vanishes, since at the LHC and at midrapidity particles and
their antiparticles are produced symmetrically.
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of another three nucleons with energy EN , in order to exactly conserve the baryon
number. Thus, in case the production of anti-He3 is not originating from reservoir
of many antiquarks or antinucleons already present in a large volume, but is
rather originating from some small volume Vpp that is present in pp collisions, the
abundance of anti-He3 will not be proportional to the single standard Boltzmann
factor, as in Eq. (7.25)

n
He

3 � exp
�
�m

He
3=T

�
; (7.26)

but is accompanied by additional Boltzmann factors that characterize the production
of the associated nucleons, needed in order to conserve baryon number [2, 6]

n
He

3 � exp
�
�m

He
3=T

� �
Vpp

Z
d3p

.2�/3
exp

�
�EN

T

��3
: (7.27)

This suppresses the rate and introduces a strong power-law dependence on volume
Vpp for the anti-He3 yield.

The problem of exact conservation of discrete quantum numbers in a thermal
model formulated in early 1970s by Hagedorn in the context of baryon number
conservation remained unsolved for a decade. When the heavy ion QGP research
program was approaching and strangeness emerged as a potential QGP signature,
Hagedorn pointed out the need to consider exact conservation of strangeness
(Rafelski, private communication). This is the reason that the old problem of
baryon number conservation was solved in the new context of strangeness con-
servation [39–41], see also Sect. 27.6. A more general solution, applicable to all
discrete conserved charges, abelian and non-abelian, was also introduced in [42]
and expanded in [43–48]. Recently, it has become clear that a similar treatment
should be followed not only for strangeness but also for charm abundance study in
high energy eCe� collisions [49, 50].

To summarize this section, we note that the usual form of the statistical model,
based on a grand canonical formulation of the conservation laws, cannot be used
when either the temperature or the volume or both are small. As a rough estimate,
one needs VT3 > 1 for a grand canonical description to hold [39, 46]. In the
opposite limit, a path was found within the canonical ensemble to enforce charge
conservations exactly.

The canonical approach has been shown to provide a consistent description of
particle production in high energy hadron-hadron, eCe� and peripheral heavy ion
collisions [32, 45, 49, 50]. As noted in the context of developing strangeness as
signature of QGP, see Sect. 27.6, such a model also provides, within the realm of
assumed strangeness chemical equilibrium, a description of an observed increase of
single- and multi-strange particle yields from pp, pA to AA collisions and its energy
dependence [40].
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7.7 Concluding Remarks

Rolf Hagedorn’s work, introducing concepts from statistical mechanics and from
the mathematics of self-similarity into the analysis of high energy multiparticle
production, started a new field of research, alive and active still today. On the theory
side, the limiting temperature of hadronic matter and the behavior of the Hagedorn
resonance gas approaching that limit were subsequently verified by first principle
calculations in finite temperature QCD. On the experimental side, particle yields
as well as, more recently, fluctuations of conserved quantities, were also found to
follow the pattern predicted by the Hagedorn resonance gas. Rarely has an idea in
physics risen from such humble and little appreciated beginnings to such a striking
vindication. So perhaps it is appropriate to close with a poetic summary one of us
(HS) formulated some 20 years ago for a Hagedorn-Fest, with a slight update.

HOT HADRONIC MATTER
(A Poetic Summary)

In days of old
a tale was told

of hadrons ever fatter.
Behold, my friends, said Hagedorn,

the ultimate of matter.

Then Muster Mark
called in the quarks,

to hadrons they were mated.
Of colors three, and never free,

all to confinement fated.

But in dense matter,
their bonds can shatter

and they freely move around.
Above TH, their colors shine

as the QGP is found.

Said Hagedorn,
when quarks were born

they had different advances.
Today they form, as we can see,

a gas of all their chances.
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Chapter 8
The Hagedorn Spectrum and the Dual
Resonance Model: An Old Love Affair

Gabriele Veneziano

Abstract In this contribution I recall how people working in the late 1960s on the
dual resonance model came to the surprising discovery of a Hagedorn-like spectrum,
and why they should not have been surprised. I will then turn to discussing the
Hagedorn spectrum from a string theory viewpoint (which adds a huge degeneracy
to the exponential spectrum). Finally, I will discuss how all this can be reinterpreted
in the new incarnation of string theory through the properties of quantum black
holes.

Preamble

My first (virtual) “encounter” with Rolf Hagedorn dates back, I think, to my
University studies when I read his CERN yellow report on relativistic kinematics
and phase space. I remember finding his notes particularly clear and instructive.
Much later, I had the privilege of being his colleague in the TH-Division at CERN,
and of benefiting from his insight into physics for many years, even after his
retirement, when he would still attend regularly the theory seminars. But I was
particularly pleased by one of our last (real this time) encounters:

Shortly after the 1994 Divonne Conference we met each other at CERN. He
thanked me for my contribution and added something like this:

The dual resonance model (or string theory) gives a microscopic explanation for the spec-
trum I arrived at using my bootstrap arguments. There is an amusing analogy here to what
statistical mechanics does to thermodynamics by providing a microscopic interpretation of
entropy.
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8.1 A Surprise That Should Not Have Been One

There is a simple (a posteriori!) physical argument for the necessity of a Hagedorn-
like spectrum of excited states in any model that satisfies duality (possibly including
QCD itself). Let me remind you that, by definition of (Dolen-Horn-Schmit) duality,
the asymptotic behavior of (the imaginary part of) any scattering amplitude should
be correctly described by either Regge pole exchange in the t-channel or by
resonance formation and decay in the s-channel.

The Regge-pole description gives a power-like behavior, hence, if we work
to exponential accuracy, a constant amplitude at high energy. The resonance
description yields instead (say, for an elastic two-body collision):

ImAel ' 1

E

X

R

� R
2b D

X

R

� R
T

E
BR

2b � N.E/ � B2b ; (8.1)

where � R
2b is the partial width of the resonance ‘R’ in the chosen two-body channel

‘2b’, and we have assumed the total width � R
T to be smaller than the mass MR � E.

This gives a bound on ImAel in terms of the number of states N.E/ at energy E
and of their average branching ratio NB2b into the particular two-body channel under
consideration. By asking for consistency of the two descriptions we thus find, to
exponential accuracy:

N.E/ � B
�1
2b (8.2)

Making now the (reasonable) assumption that B2b behaves like the ratio of
two-body phase space to total phase space, and using the fact that the latter
becomes exponentially small at high energy, we arrive at the “prediction” of an
exponentially growing spectrum for duality-fulfilling resonances. The (crucial)
power of E appearing in the exponent is not fixed, however, by this argument.

We may ask why this conclusion was not immediately reached in the very early
days of duality. The reason was, I believe, that one was accustomed to associate
each resonance with a separate pole in the scattering amplitude; now, the number of
poles occurring in the dual-model amplitudes was not growing exponentially with
increasing energy. All one could see was that the Nth pole contained resonances of
spin up to N, a fact that, in itself, could only account for a power-like growth of the
number of states, not for an exponential one.

Of course we know very well now (and for at least 45 years!) the answer to
this apparent paradox. The exponential growth of the number of states in the dual
resonance model is hidden behind an exponential degeneracy! This degeneracy,
which is neither predicted by Hagedorn’s arguments, nor implied by the duality-
based reasoning given above, is the truly new ingredient brought in by the dual
resonance model. As I shall now argue this degeneracy is directly related to an
underlying string picture for the resonances appearing in dual models.



8 The Hagedorn Spectrum and the Dual Resonance Model 71

8.2 From TH to the String

When, in the summer of 1968, I first told Sergio Fubini in Torino about my new
ansatz for the scattering amplitude his reaction was: “very nice, but. . . .what about
negative norm states?” Two months later, I had barely landed in Boston/MIT that
we started counting and labeling states, clearly a necessary preliminary step before
we could compute their norm.

By early 1969 we had learned how to count (it took longer to answer Sergio’s
original question about the norm, but eventually people proved, under certain
restrictions, the celebrated no-ghost theorem). The rather unexpected result that
Sergio and I (and independently Bardakci and Mandelstam) found was that the
individual states were labeled by a set of integers fN1;N2; : : : g with the mass of
the state given by the simple formula:

˛0M2

„ D N D
1X

nD1
n � Nn ; (8.3)

where ˛0, the universal Regge-slope parameter, sets the energy scale of the theory
at 
 	p„=˛0.

The Hagedorn spectrum then simply comes from the observation that a given
(allowed) mass M D p

N=˛0 can be obtained via Eq. (8.3) in as many ways as
the number of ways in which the integer N can be written as a sum of integers.
This “partitio numerorum” number is known to grow like exp.c

p
N/ (with c a

known constant) hence like exp.c
p
˛0=„E/. This gives immediately a Hagedorn

temperature TH D c �1
.
In the operator reformulation of the dual resonance model the mass-square

operator can be written as

˛0M2

„ D
1X

nD1
na�nan ; (8.4)

where a�n; an are an infinite set of ordinary harmonic oscillator creation and
destruction operators satisfying the usual commutation relations:

Œan; a
�
m� D ın;m : (8.5)

The high degree of degeneracy of the spectrum obviously comes from the
presence of the higher harmonics (n D 2; 3 : : : in Eq. (8.4)), but this is just what
characterizes a vibrating string!

We conclude that the combination of the Hagedorn spectrum and of degeneracy
leads straight into strings. Conversely, if a string picture is assumed for hadrons, one
immediately predicts:

(a) duality as implied by drawing (duality) diagrams in which string splitting and
joining are the basic processes underlying hadronic reactions.
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(b) a linear relation between mass and entropy (another way of defining Hagedorn’s
spectrum) coming from the fact that the energy stored in the string is propor-
tional to its length (l D ˛0 � E), while there is a unit of entropy per bit of length.

The unit (bit) of length, �s, is a quantum object and is related to ˛0 by:

�s D
p
˛0„ : (8.6)

For the hadronic string �s is of the order of 10�13 cm: there is about one bit of
information for every fermi of string length.

8.3 Crisis, Reinterpretations

One of the main motivations (successes) behind Hagedorn’s model was the expo-
nential fall-off of the transverse spectrum of produced particles in high energy
collisions:

d=dp? ' exp.�p?=TH / : (8.7)

This holds well in a sizable region of p?. Not surprisingly, a similar behavior was
found to occur in the dual model (in string theory).

The discovery of hard constituents inside the hadron, revealing themselves, e.g.,
through the power-like drop of jet (or exclusive) cross sections, came as a serious
blow to both Hagedorn’s model and to the hadronic string.

Amusingly, they both survived, with some reinterpretation, in the emerging new
theory of strong interactions, QCD. The Hagedorn temperature was reinterpreted as
a deconfining phase transition (rather than as an ultimate) temperature, while strings
become an effective description of hadrons as composite systems of quarks which
are kept together by a thin tube of chromoelectric field.

Around the time that QCD took over, Joel Scherk and John Schwarz came
up with the daring proposal that fundamental strings should be relevant for
describing all fundamental interactions (including gravity) at much shorter scales
than 10�13 cm. The natural scale for the new string is simply the Planck length:

�P D
p

GN„ ; (8.8)

where GN is Newton’s constant. Numerically, �P � 10�33 cm.
Obviously, also the new string has a Hagedorn temperature: it is simply shifted

upward by some 18 orders of magnitude to about 1017–1018 GeV. In the last part of
this talk I shall give one example of some new uses of Hagedorn’s temperature in
this new context: I shall argue that, in analogy with the reinterpretation of the old TH

as deconfining temperature, the new TH will play the role of a limiting temperature
for Black holes, a kind of gravitational-deconfinement temperature, if you like.
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8.4 Many Years Later . . .

There is a (so far undisproved) conjecture by J. Bekenstein that the entropy S of any
physical system of energy E and size R cannot be arbitrarily large, i.e.

S � SBB 	 E � R
„ : (8.9)

This is called the Bekenstein bound. Let us consider now a black hole, i.e. a system
of energy E contained in a spherical region of space of radius R < GN � E (this is
just the definition of a collapsed state in gravity).

Let us now compare the entropy of the black hole,

SBH D GNE2

„ ; (8.10)

with SBB in Eq. (8.9), allowing the maximal size for R, R D GN � E. We see that the
bound is precisely saturated, something suggesting that a black hole maximizes the
entropy of a system of given energy and spatial extension.

We may now ask if a string of energy E satisfies the Beckenstein bound. As said
before

Sstring D ˛0 � E
�s

; (8.11)

which satisfies the Beckenstein bound Eq. (8.9) only if the size of the string is larger
than �s, a conclusion that can be reached also by independent considerations.

I have told you that �s is of the same order as �P, but the more precise relation is
actually

�P D ˛1=2gut �s ; (8.12)

expressing the physical fact that, in string theory, gravitational and gauge interac-
tions become identical at the (distance) scale �s.

We can finally compute the ratio between the string and black hole entropies and
find

SBH

Sstring
D GNE�s

˛0„ D E

MP
� �P

�s
D ˛

1=2
gut � E
MP

: (8.13)

This ratio becomes 1 at E D ˛
�1=2
gut MP. At this energy both entropies are of order

˛�1
gut , thus probably between 10 and 100. Above this energy, entropy considerations

favor the black hole while below a string state is favored. It is easy to see that such
a state is not collapsed at all since its physical size, as we argued above, has to be
larger than �s which, in turn, is larger than the gravitational radius GN � E of the
system.
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As Hawking has shown, black holes evaporate, losing mass while increasing
their temperature. In ordinary gravity this process would continue, until a curvature
singularity (and an infinite temperature) is reached. The arguments given above (and
due to several people) suggest that, in string theory, black hole evaporation should
stop at a certain point, leaving behind a non-collapsed string system of entropy
O.˛�1

gut /.
The Hawking temperature of the black hole at this point is just the Hagedorn

temperature of the string theory under consideration. We can thus say that an
interpretation of TH in the new incarnation of string theory is that of a “decollapse”
temperature if you allow me to use such a word for the gravitational analogue of
deconfinement. On the other hand, the analogue of the quark-gluon-plasma phase
of QCD in quantum string gravity is still clouded with mystery (is space-time itself
“melting”?).

There could be also a cosmological analogue of the limiting temperature for
black holes, as it is known that there is a (Hawking) temperature associated with
the event horizon of inflationary cosmologies and easily expressible in terms of the
Hubble parameter during inflation. This could lead to new insights in the way string-
Hagedorn models deal with the very beginning of the Universe.

Conclusion

The love affair between dual and Hagedorn models is still well and alive after many
years: and it seems it will last forever (Fig. 8.1).

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.

Fig. 8.1 A love affair to one is reincarnation to another



Chapter 9
Hadronic Matter: The Moscow Perspective

Igor Dremin

Abstract I describe studies done by the theory group of Lebedev Physical Institute
in Moscow and point out the cross-influence of some of our work with that of
Rolf Hagedorn, and show how this research continued and evolved up to the
present.

9.1 The Beginning

Cosmic Rays and Landau

High energy hadron interactions were always one of the main topics of research
at the Moscow Lebedev Physical Institute. On the experimental side, cosmic ray
studies which started already in the 1930s were quite successful. The interest in high
energy studies further increased after construction of first accelerator at the Institute
with active participation of V.I. Veksler who soon proposed the autofocusing
concept (1944) and moved to Dubna with many collaborators to realize his visions
and build accelerators.

In parallel, theoretical work became more intense. Many researchers became
excited seeing L.D. Landau paper on the hydrodynamic model of hadron interac-
tions in 1953 [1]. Landau used to say that the work on it was the most hard, and
time-consuming compared to all other of his papers. Actually, it was the first one
which contained the detailed calculations ascribing the macroscopic features to the
microscopic objects along the line of thought initiated by E. Fermi in 1950. At that
time, in my 3rd graduate year, I devoted several days to studying Landau’s paper in
the Moscow Polytechnic library.

Landau’s approach was widely discussed by theorists at LPI. Hydrodynamic
equations were further analyzed by E.L. Feinberg, D.S. Chernavsky and G.A.
Milekhin. They published a series of papers on this topic in the 1950s. This
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work appeared in Russian journals and is unfamiliar to Western scientists. The
activity was strongly slowed down after the tragic death of Milekhin. At the
same time, some experimentalists (e.g., G.T. Zatsepin) in our Institute dealing
with high energy particles in cosmic rays insisted—mainly based on intuition—
that beside drastic central collisions, as we call them nowadays, they observed
another class of interesting events which cannot be described by the hydrodynamic
approach.

Multiperipheral Collisions

I was impressed by these statements and at the very end of 1958 calculated first the
one-pion exchange graph of peripheral truly inelastic collisions where both colliding
hadrons get excited and produce new particles. This was just at the time when
experimental data from the newly constructed Dubna accelerator about inelastic
collisions at the laboratory energy 9 BeV (now GeV) became available and were
argued about even though not yet published.

Many leading Russian theorists were gathered at our department by I.E. Tamm
for a discussion of experimental results and their description by our model. The
publication with D.S. Chernavsky appeared in JETP January 1960 [2] issue and
initiated a large series of papers on peripheral and multiperipheral models.

The early contributions of D. Amati et al. reviewed in [3] were especially
important. However, they got the total cross section decreasing with energy increase.
To improve their model we proposed that heavier blobs (which we called fireballs
and later—clusters) should be created at each vertex, for a review see [4]. At
that time such guesses originated from cosmic ray observations, especially those
presented by M. Miesowich from Krakow.

In our model, the cluster decay was treated by statistical laws, and that appealed
to R. Hagedorn. I do not remember exactly when I first visited CERN, there were
so many visits since then. Surely, it was very soon after Hagedorn published his
study of particle production. After my CERN seminar and several discussions at the
theory department, Hagedorn invited me to his home and we spent a wonderful long
evening chatting on many topics including science, literature, theater, politics, and
surely, he proudly showed me his horses!

In my conversations with him I gained the feeling that he was very glad to get
support from our group and to be able to discuss with all those who could understand
his ideas. His work was at the time still little appreciated. This was also true at the
CERN Theory Division.

Nowadays, the concept of clusters could be somewhat related to jets numerously
created at the LHC. The cluster concept is revived also by studies of AA collisions
at RHIC. As we say in Russia “Horses run along the rings” and “People come to use
old galoshes sometimes!”
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9.2 Hot Hadron Matter

Photons and Leptons

E.L. Feinberg actively promoted the statistical and hydrodynamical concepts and at
the 1970 Kiev conference he first proposed [5] the photon and dilepton signatures
(the so-called direct photons and dileptons) of the early stage of the quark-
gluon matter (see his summary of 1976 [6]). Namely, these particles could escape
from hadronic medium being in comparison almost non-interacting and, therefore,
provide important information about its properties.

Many experimental papers aiming to detect such radiation and to confront its
properties with theoretical prediction appeared afterwards. The theory was extended
to include parton based processes and production of psions (cNc D� ) [7].

E.L. (as we called him) often corresponded with Rolf Hagedorn, and also with
Peter Carruthers, discussing with them statistical and hydrodynamic approaches
which were out of the mainstream of theory research at that time. One had to
wait long for experimental data on AA collisions before this approach to strong
interactions was recognized.

Quark-Gluon Plasma

Soon two other papers dealing with properties of hadronic matter appeared indepen-
dently. The work by Kalashnikov-Klimov [8] contained QCD calculations of quark
and gluon interactions in matter. At Lebedev (as LPI is often called in the West)
we used to speak about the quark-gluon medium without specifying how free are
quarks and gluons inside. Thus the term QGP was not widely used here. Earlier, I.Y.
Pomeranchuk of ITEP used to call this yet-to-be-identified state of matter, verbatim
translated, “the boiling operator liquid”.

Cherenkov Radiation

At the same time in 1979 I proposed [9] the idea about Cherenkov gluons which
could produce jets (collimated groups of particles) in high energy collisions. That
happened after our experimentalists showed me the emulsion plate with the newly
registered cosmic ray event where distinct rings formed by secondary hadrons
reminding us of the ordinary Cherenkov rings were easily seen.

That new property could also serve as a signature of the properties of the
medium. In analogy to the permittivity of the ordinary medium, the term “chromo-
permittivity” was coined to describe the hadronic medium containing colored quarks
and gluons. Its value was directly determined by the positions of the rings. For
further work of our group, and in particular, on comparison with the data of RHIC
experiments I refer to papers [10, 11] where our approach has been reviewed.
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Correlations and Fluctuations

Since then a lot of work was done on correlations and fluctuations of characteristic
distributions of particles created from such a medium. More recently, some work
on kinetic properties of the quark-gluon medium has been done as reviewed in [12].
The instabilities and time evolution of the newly created state of matter are the main
topics of recent research [13].

Charm

The abundant production of charm related to hadron medium properties was noticed
in cosmic rays as an effect of the long-flying cascades (for the review see [14]).

9.3 Open Questions

Another direction is represented by my recent attempts to visualize the geometric
picture of hadron collisions. By comparison of ISR and LHC data it appears that
protons become more dark (absorbing), and larger in size with an increase of
energy. Analysis of elastic pp scattering data with use of the irrefutable unitarity
condition gives rise to a speculative conclusion about very dense (absolutely black
at the center) state of matter created at LHC energies in pp collisions [15]. A new
critical regime of full absorption and rather wide spatial extension has perhaps been
reached at the LHC. This could imply that a limiting temperature regime advocated
by Hagedorn has been reached, and spatial expansion with increasing number of
degrees of freedom prevails. That could correspond to the constancy of this new
Hagedorn temperature.

Further implications for pA and AA collisions should be studied to learn what
kind of possibly new matter is produced in these processes. Highest LHC energies
can lead to new completely unexpected features also discussed in [15].

Appreciation

These remarks are in the spirit of my friends and mentors, Feinberg and Hagedorn,
see Fig. 9.1, who always were looking for new frontiers and applying new methods
in the area of multiparticle production. They certainly would be strongly involved
in this present day research. I am very glad to join E.L., (Fig. 9.2), in toasting
Hagedorn, and to pay a tribute to these two giants of science who inspired our
investigations and paved the path we are walking on today.
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Fig. 9.1 Front row: E.L. Feinberg (on left) with Rolf Hagedorn (right), June 27, 1994. In second
row behind Feinberg: T.E.O. Ericson, and centered A. Martin of CERN-TH. CREDIT: CERN Photo
1994-06-063-003

Fig. 9.2 E.L. Feinberg (on left) toasts Rolf Hagedorn on occasion of his 75th Birthday. Sitting:
Tania Fabergé, onlooking J. Rafelski, June 30, 1994. CREDIT: CERN Photo 1994-06-066-015
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Chapter 10
Hagedorn Model of Critical Behavior:
Comparison of Lattice and SBM Calculations

Ludwik Turko

Abstract The Statistical Bootstrap Model and the related concept of the limiting
temperature began the discussion about phase transitions in the hadronic matter.
This was also the origin of the quark-gluon plasma concept. We discuss here to
which extent lattice studies of QCD critical behavior at non-zero chemical potential
are compatible with the statistical bootstrap model calculations.

10.1 Rolf Hagedorn: Some Personal Impressions

“A fireball consists of fireballs, which in turn consist of fireballs, and so on . . . ”—
that was the leading sentence from the famous CERN Yellow Report 71-12 where
Rolf Hagedorn presented in detail the leading ideas and results of his Statistical
Bootstrap Model (SBM) [1]. I met this report in the late 1970s having yet some
scientific experience both in quantum field theory as well as in the theory of high
energy multi production processes.

Starting from the beginning I realized that I was reading something unusual.
I was impressed by the elegance and precision of the presentation. It was quite
obvious to me that the author had spent a lot of time on discussions to clarify
his arguments. Some questions were answered before I could even think about
them. All was achieved without overuse of mathematical formalism, although all
presentation was mathematically very rigorous. The author, however, used as simple
and natural mathematical tools as possible, without going into the complex jungle
of formulae and multilevel definitions. It was also clearly visible that the model, all
its architecture and equipment was a one man project—Rolf Hagedorn.

And the most important point—a new idea was presented. I was not sure at that
time—is this idea right or wrong—but that it was an idea not to be ignored. It was
a nice answer to the long-standing question—how to effectively describe the basic
structure of matter, i.e. here hadronic matter. We knew the whole hierarchy—nuclei,
nucleons, elementary particles, quarks. Any of those ‘levels’ pretended at some time
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82 L. Turko

to be the ‘real’ elementary one. The SBM didn’t try to answer the question about
basic constituents. It just pointed out that this would be a wrong question.

About 2 years later I met Rolf Hagedorn at CERN in 1979. I was quite convinced
at that time about the idea of statistical bootstrap. I saw SBM as a good topic to
explore—at least as a way of thinking, and, I wanted to gain a deeper knowledge
about statistical physics which in the domain of strong interactions had been to me
a rather obscure subject. I also convinced my Ph.D. student at that time, Krzysztof
Redlich, that this mixture of statistical physics and theory of elementary particles
could be a very fruitful and interesting subject.

Traveling to CERN I was quite excited to meet the physicist whose papers
were giving me not only scientific but also quite aesthetic experience. In short:
personal meetings with Hagedorn were even more interesting then reading his
papers. He was a man of great general culture, very polite but also expecting well-
prepared arguments in discussions. From the other side he was very open to share
his reasoning, his calculations—even those that still were at a preliminary level
of development. His handwritten notes were famous—in an almost calligraphic
script, nicely written formulae, alternative arguments. He handed those notes to
collaborators—it was just like received a chapter of an advanced textbook.

After 2 years our relationship rapidly changed. The martial law, introduced in
Poland in December 1981, not only made impossible my stay at CERN expected
in Spring 1982, but also put me first in an internee camp, then in jail. I was not the
only scientist at that time who found himself in such an unexpected surrounding.
And it was Rolf Hagedorn, who without any delay in the very first days of martial
law, co-initiated at CERN a campaign to free interned or jailed physicists in Poland.
Posters with photos and names were posted on walls of TH division, signatures of
protest were collected, and letters of protest were sent to Polish officials.

When we met again in 1989 we still kept our relationship, not only on a scientific
but also on a friendly level. Looking now back I must admit that Rolf Hagedorn was
among those who shaped my profile—not only as a scientist, but also as a man. He
was definitely worth following—in any respect. I am happy I had the possibility to
be close to such an exceptional scientist and an exceptional man. A man of honor.

10.2 Critical Behavior of Hadronic Matter

Quantum chromodynamics (QCD) gauge theory is an excellent tool for description
of single hadronic events in vacuum. However, for the dense and hot hadronic
matter the most reliable theoretical results, based on first principles, can be obtained
only through lattice gauge theory calculations. In particular, a phase transition or
crossover phenomena are expected. This critical behavior is related to peculiarities
in standard lattice QCD quantities as the Polyakov loop or susceptibilities.

From the other side, a surprisingly simple resonance gas model provides a good
description of particle yields in the relativistic heavy ion collisions in the broad
energy range [2, 3]. The clue to this result is in the exponential-like behavior of the
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particle mass spectrum. This model, slightly extended [4], also reproduces results
of the transition between a hadron resonance gas phase and the quark gluon plasma
obtained in course of QCD lattice simulation.

The concept of the limiting temperature of the hadronic matter has appeared in
the SBM [5–8]. An introduction of the baryonic chemical potential transforms this
critical temperature into the critical curve, see Chap. 23. Higher internal symmetries
lead to an appearance of the critical surface [9, 10]. The hadronic matter, above the
critical curve, is interpreted nowadays as a QGP phase.

I will compare here calculations of critical curves obtained in the � � T plane
from lattice Monte Carlo simulations with analogous critical curves obtained with
the same input from the SBM. It was shown [11, 12] that a gas of non-interacting
resonances provides a good description of the low temperature phase of lattice QCD.
As the hadronic mass spectrum is similar to the exponential mass spectrum expected
from the SBM, it is interesting to check if the critical behavior obtained from the
SBM resembles Monte Carlo results of lattice QCD.

We are interested here in the region of the .�B;T/ plane covered by ultrarel-
ativistic heavy ion collisions where the phase transition is expected i.e. the high
temperatures and low baryonic densities. The efficient method of lattice simulation
proceeds here via a Taylor expansion with respect to the baryonic chemical potential
at �B D 0 [13, 14]. This lattice technique, supplemented with other technical tools
specific for QCD lattice simulations, was used to obtain the phase transition curve
Tc.�/ for 2-flavor and 3-flavor QCD [15–19].

Critical Curve from the Lattice Calculations

In order to compare the SBM with lattice results one should take into account that
the latter are not obtained from calculations performed with the physically realized
quark mass spectrum. One finds [20–22] that the quark mass dependence is well
parameterized through the relation

.mHa/2 D .mHa/2phys C b.m�a/2 ; (10.1)

where .mHa/phys denotes the physical mass value of a hadron expressed in lattice
units and .mHa/ is the value calculated on the lattice for a certain value of the quark
mass or equivalently a certain value of the pion mass.

The lattice constant a can be treated as a specific ultra-violet regularization which
is removed in the continuous limit a! 0. The value of the critical temperature Tc is
dependent on the pion mass [17]. Pion here is understood as the lowest pseudoscalar
mesonic state qNq of the mass mPS. This mass decreases to its physical pion mass
m� D 0:140GeV in the continuous limit along with the critical temperature.

Critical curves for 2-flavor and 3-flavor QCD were obtained at some assumed
quarks masses (in lattice constant a units): mq D 0:1 on the left-hand figure and
mq D 0:1; mq D 0:005 on the right-hand plots. Corresponding mPS masses were
0:770GeV, 0:190GeV and 0:170GeV, respectively.
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Critical Curve from the Statistical Bootstrap Model

Let us start from the bootstrap equation taken for the system with pions and nucleons
taken as basic constituents. The bootstrap input function is given as, compare
Eq. (27.19) on page 352

'n� ;nN .�;T/ D 2H�T
h
n�m�K1

�m�

T

�
C nNmNK1

�mN

T

�
cosh

��B

T

�i
;

(10.2)

I restricted the set of input particles for a given valence quark input to the
lightest mesonic and baryonic states respectively. n� and nN are their numbers, spin
degeneration and antibaryons are taken into account here. They form an input for
the SBM. So for two quark flavors there are n� D 3 mesonic states and nN D 8

baryonic states. For three quark flavors with the threefold quark mass degeneracy
one gets n� D 8 and nN D 32, respectively.

The bootstrap constant H is written as

H D A
2m�mN

.2�/3
1

B
(10.3)

where B1=4 � 0:190MeV is the bag constant to reproduce critical energy density
" � 0:6GeV/fm 3 and the parameter A is chosen so to get the critical temperature
Tc at �B D 0 from the corresponding QCD lattice simulation.

The Statistical Bootstrap Model used on the QCD lattice system has its basis
components such as they appear in lattice QCD simulation. It means, particularly,
nucleon mass expressed by pion mass (all in GeV) as

mN.m�/ D 0:94C m2
�

0:94
(10.4)

The critical curve for incompressible hadrons is obtained directly from the
bootstrap equation

2˚ D ' C e˚ � 1 ; (10.5)

which is meaningful only for

' � ln 4 � 1 :

So the critical curve Tc.�/ is given on the �B � T plane by the condition

'n� ;nN .�;T/ D ln 4 � 1 : (10.6)
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Fig. 10.1 The transition temperature Tc, as a function of baryonic chemical potential for 2-flavor
lattice, bootstrap system (left-hand figure). The critical temperature 2-flavor lattice bootstrap sys-
tem, compared with result of corresponding lattice simulation (right-hand figure), both considered
in power law approximation

Comparison of SBM and Lattice-QCD

I consider the lattice bootstrap system as described above. The exact result is shown
in left panel of Fig. 10.1, corresponding to Hagedorn’s result Fig. 25.3 on page 303.
This result should be compared to the 2-flavor QCD lattice simulation, indicated
with vertical error line domain in the right panel in Fig. 10.1.

As the critical curves Tc.�q/ from the QCD lattice calculations were obtained
up to O..�q=Tc.0//

2/ term, so the similar approximation should be used for the
critical curves obtained from Eq. (10.6). This means that the expression coshŒ

�
�B
T

	
�

in Eq. (10.2) should be replaced by the corresponding Taylor expansion truncated to
the first two terms. The result of this procedure is presented on the Fig. 10.1—right
panel.

10.3 Conclusions

Results presented on Fig. 10.1 show that the Statistical Bootstrap Model reproduces
at least qualitatively basic properties of the critical curve obtained in the course
of QCD lattice simulation. We have quantitative agreement for smaller values of
baryonic chemical potential, not exceeding 0:7GeV. This is rather natural taking
into account that the method used in the simulations was based on the idea of
analytical continuation in the chemical potential variable, starting from the point
� D 0.
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The statistical bootstrap model, created by Rolf Hagedorn half a century ago, at
a time when quarks were still a bold hypothesis, remains a very inspiring research
tool of hadronic matter. Based on Hagedorn’s deep knowledge and great intuition,
the Statistical Bootstrap Model has still some unknown and unexpected properties,
waiting to be discovered.
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Chapter 11
Hagedorn’s Hadron Mass Spectrum and
the Onset of Deconfinement

Marek Gaździcki and Mark I. Gorenstein

Abstract A brief history of the observation of the onset of deconfinement—the
beginning of the creation of quark-gluon plasma in nucleus–nucleus collisions with
increasing collision energy—is presented. It starts with the measurement of the
hadron mass spectrum and Hagedorn’s hypothesis of the limiting temperature of
hadronic matter (the Hagedorn temperature). Then the conjecture that the Hagedorn
temperature is the phase transition temperature was formulated with the crucial
Hagedorn participation. It was confirmed by the observation of the onset of
deconfinement in lead–lead collisions at the CERN SPS energies.

11.1 Hadron Mass Spectrum and the Hagedorn Temperature

A history of multi-particle production started with the discoveries of hadrons, first
in cosmic-ray experiments and soon after in experiments using beams of particles
produced in accelerators. Naturally, the first hadrons, discovered in collisions of
cosmic-ray particles, were the lightest ones, pion, kaon and
. With the rapid advent
of particle accelerators new particles were uncovered almost daily. About 1,000
hadronic states are known so far. Their density in mass �.m/ increases approxi-
mately exponentially as predicted by Hagedorn’s Statistical Bootstrap Model [1]
formulated in 1965:

�.m/ D const m�a exp.b m/ : (11.1)
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In the case of point-like hadron states this leads to a single-particle partition
function:

Z.T;V/ D V

2�2

Z 1

m�

dm
Z 1

0

k2dk exp

 
�
p

k2 C m2

T

!
�.m/ ; (11.2)

where V and T are the system volume and temperature, respectively. The m-integral
exists only for T < 1=b. Thus, the hadron gas temperature is limited from above.
Its maximum temperature TH D 1=b (the so-called Hagedorn temperature) was
estimated by Rolf Hagedorn based on 1965 data to be TH Š 160MeV. More recent
estimates of the Hagedorn temperature(s) can be found in [2], for further discussion
see Chaps. 20 and 21.

The first statistical model of multi—hadron production was proposed by
Fermi [3] in 1950. It assumes that hadrons produced in high energy collisions
are in equilibrium and that the energy density of the created hadronic system
increases with increasing collision energy. Soon after, Pomeranchuk [4] pointed
out that hadrons cannot decouple (freeze-out) at high energy densities. They will
rather continue to interact while expanding until the matter density is low enough
for interactions to be neglected. Pomeranchuk estimated the freeze-out temperature
to be close to pion mass, �150 MeV. Inspired by this idea Landau [5] and his
collaborators formulated a quantitative hydrodynamical model describing the
expansion of strongly interacting hadronic matter between the Fermi’s equilibrium
high density stage (the early stage) and the Pomeranchuk’s low density decoupling
stage (the freeze-out). The Fermi-Pomeranchuk-Landau picture serves as a base for
modeling high energy nuclear collisions up to now [6].

Hagedorn’s conjecture concerning the limiting temperature was in contradiction
to the Fermi-Pomeranchuk-Landau model in which the temperature of hadronic
matter created at the early stage of collisions increases monotonically with collision
energy and is unlimited.

11.2 Discovery of the Onset of Deconfinement

The quark model of hadron classification proposed by Gell-Mann and Zweig in 1964
starts a 15 years-long period in which sub-hadronic particles, quarks and gluons,
were discovered and a theory of their interactions, quantum chromodynamics
(QCD) was established. In parallel, conjectures were formulated concerning the
existence and properties of matter consisting of sub-hadronic particles, soon called
the QGP and studied in detail within the QCD [7].

Ivanenko and Kurdgelaidze [8], Itoh [9] and Collins and Perry [10] suggested
that quasi-free quarks may exist in the centre of neutron stars. Many physicists
started to speculate that the QGP can be formed in nucleus–nucleus collisions at
high energies and thus it may be discovered in laboratory experiments. Questions
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concerning QGP properties and properties of its transition to matter consisting of
hadrons were considered since the late 1970s.

Cabibbo and Parisi [11] pointed out that the exponentially increasing mass
spectrum proposed by Hagedorn may be connected to the existence of the phase
in which quarks are not confined. Then Hagedorn and Rafelski [12], see Chap. 23,
Gorenstein et al. [13] suggested that the Hagedorn massive states are not point-
like objects but quark-gluon bags. These picture leads to the interpretation of
the upper limit of the hadron gas temperature, the Hagedorn temperature, as the
transition temperature from the hadron gas to a quark-gluon plasma. Namely, at
T > TH the temperature refers to an interior of the quark-gluon bag, i.e., to the
QGP.

In the mid-1990s the Statistical Model of the Early Stage (SMES) was formu-
lated [14] as an extension of Fermi’s statistical model of hadron production. It
assumes a statistical production of confined matter at low collision energies (energy
densities) and a statistical QGP creation at high collision energies (energy densities).
The model predicts a rapid change of the collision energy dependence of hadron
production properties, that are sensitive to QGP, as a signal of a transition to QGP
(the onset of deconfinement) in nucleus–nucleus collisions. The onset energy was
estimated to be located in the CERN SPS energy range.

Clearly, the QGP hypothesis and the SMES model removed the contradiction
between Fermi’s and Hagedorn’s statistical approaches. Namely, the early stage
temperature of strongly interacting matter is unlimited and increases monotonically
with collisions energy, whereas there is a maximum temperature of the hadron
gas, TH � 160MeV, above which strongly interacting matter is in the QGP
phase.

Rich data from experiments at the CERN SPS and LHC as well as at the BNL
AGS and RHIC clearly indicate that a system of strongly interacting particles
created in heavy collisions at high energies is close to, at least local, equilibrium. At
freeze-out the system occupies a volume which is much larger than a volume of an
individual hadron. Thus, one concludes that strongly interacting matter is created in
heavy ion collisions [6].

The phase transition of strongly interacting matter to the QGP was discov-
ered within the energy scan program of the NA49 Collaboration at the CERN
SPS [15, 16]. The program was motivated by the predictions of the SMES model.
The discovery was based on the observation that several basic hadron production
properties measured in heavy ion collisions rapidly change their dependence on
collisions energy in a common energy domain [17], see Fig. 11.1.
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Fig. 11.1 Recent results on the observation of the phase transition in central Pb+Pb (Au+Au)
collisions [18]. The horn (left) and step (right) structures in energy dependence of the KC=�C

ratio and the inverse slope parameter of K� m? spectra signal the onset of deconfinement located
at the low CERN SPS energies

Fig. 11.2 Marek Gaździcki (facing to right off center) at Hagedorn Divonne Fest, June 30, 1994.
Photo: Lucy Carruthers

The first ideas which resulted in formulation of the SMES model were presented
by one of us [19] (Fig. 11.2) at the Workshop on Hot hadronic matter: Theory and
experiment, which took place in Divonne, France in June 1994. The workshop was
dedicated to 75th birthday of Rolf Hagedorn.
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Fig. 11.3 The letter of Rolf Hagedorn to Marek Gaździcki commenting the first talk on the onset
of deconfinement in nucleus–nucleus collisions at the low CERN SPS energies [19] presented in
June 1994 at the Divonne workshop dedicated to Rolf Hagedorn on occasion of his 75th birthday

Hagedorn’s letter on the presentation is reprinted in Fig. 11.3 in lieu of a
summary.
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Chapter 12
Begin of the Search for the Quark-Gluon Plasma

Grazyna Odyniec

Abstract LBL has been the cradle where relativistic heavy ion physics began, and
where the Hagedorn Statistical Model was first connected to relativistic heavy ion
physics. The early program of research at the Bevalac and its development into an
international program at CERN, paying tribute to the seminal effort by Howel Pugh,
is described.

12.1 The Beginning

Bevalac and ISR

By the early 1970s the Lawrence Berkeley Laboratory (LBL, now LBNL—
Lawrence Berkeley National Laboratory) became the leading force in the nascent
field of relativistic heavy ion physics, with the Bevalac providing beams of
relativistic heavy ions for fixed target experiments. At that time very little was
known about quark-gluon plasma. The word “quark” does not even appear in any
document related to the Bevalac. Experimental interest was focused on ultra dense
nuclear matter proposed by Lee and Wick and on the related possibility to create
a pion condensate. Instead, abundant hot particle production was observed which
entailed interest in Hagedorn’s physics, see Chap. 13.

It was generally agreed that in the near future more energetic nuclear beams
would be used in the search for new physics. Quarks soon came onto the menu
of these new plans. The potential of relativistic heavy ion collisions became fully
apparent and very important to the nuclear physics community. These collisions
required at least ten times higher center of mass (CM) energy than was available at
the Berkeley Bevalac, which at that time was the world’s highest energy heavy ion
machine. Several laboratories in the world showed interest in this program.

CERN had instrumental capability and interest at the time and became the
first center of this new physics. At CERN, the synergy of nuclear physics and

G. Odyniec (�)
LBNL, Berkeley, CA 94720, USA

© The Author(s) 2016
J. Rafelski (ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature
to Ultra-Relativistic Heavy-Ion Collisions at CERN,
DOI 10.1007/978-3-319-17545-4_12

93



94 G. Odyniec

high-energy physics was a key factor in these rapid developments. This synergy was
entirely absent in other places, where particle physics did not have the Hagedorian
soft hadron physics tradition.

The path to the heavy ion physics program at CERN was, however, not easy.
In 1975, Howel Pugh (then at the University of Maryland) was advocating putting

nuclear beams into the CERN Intersecting Storage Rings (ISR) to reach ten times
the Bevalac CM energy, so that experiments could investigate the hypothetical quark
deconfinement matter. The ISR, a proton-proton collider, could accelerate nuclear
beams at about CM energy of 30 GeV per nucleon pair for light nuclei and about
12 GeV for the typical case of the heavier ones (Au, Pb, U).

The experimental program involving nuclear collisions at ISR was limited to
alpha particles (4He), not for lack of interest, see also Chap. 28, but because no
appropriate heavy ion source was as yet available at CERN. Howel Pugh and James
Symons of LBL became involved in the 4He program. Results were, however,
rather disappointing as also the experimental capabilities were limited, and, 4He
was simply too light a nucleus to demonstrate collective fireball-like effects at even
the top ISR energy.

When the ISR was set to be closed in 1983, the future of the heavy ion program
at CERN became uncertain. These early initiatives, however, in the end and with the
help of the CERN DG Herwig Schopper (1981–1988), paved the way for a strong
SPS Heavy Ion Program at CERN in the coming decades, see Chap. 29.

SPS and RHIC Programs Take Shape

In 1979 Howel Pugh arrived at LBL to assume the post of Bevalac Scientific
Research Director. He was attracted by the unique physics opportunities of the
Bevalac, with which he was familiar from regularly attending Bevalac Program
Advisory Committee meetings in his capacity as an NSF official. He saw LBL as
the best place to push the ultra-relativistic heavy ion physics program forward to
higher collision energies.

The next years were marked by a vigorous development of several proposals at
LBL, all meant to reach the higher energies required for the formation of quark-
gluon plasma. They began to appear on the agendas of the various committees.
Howel Pugh was the principal author of the VENUS (Variable Energy Nuclear
Synchrotron) proposal, which envisioned a large synchrotron plus stretcher ring
that would fill LBL’s entire hillside. This facility was never built, but the VENUS
proposal served as the prototype for the future RHIC collider concept.

The next development, also led by Howel Pugh, was the TEVALAC, a fixed
target program which would increase the energy of the Bevalac. This idea followed
somewhat similar proposals, which had been in discussion at CERN since 1973.
Finally Howel turned his attention to the design of the “Mini-Collider”, which would
take the heavy ion beams from the Bevalac and collide them in a circular accelerator.
In a way it was a stepping-stone for future projects at RHIC and LHC. If it had been
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funded, this “Mini-Collider” would have been the shortest path to the discovery of
QGP.

During this period, CERN moved forward as well. The next step, after ISR, was
establishing the heavy ion program to the SPS, a proton synchrotron that would
provide nuclear beams at 20 GeV CM energy. In 1984 a heavy ion CERN high
energy SPS scientific program was approved. External resources needed to be found
to generate the required heavy ion beams and to realize the multi-purpose usage of
PS-SPS synchrotron as both, LEP injector and heavy ion accelerator. GSI and LBL
agreed to build a special heavy ion injector for the CERN synchrotron. LBL was to
build the novel RFQ pre-accelerator. Howel Pugh was the driving force behind LBL
participation in the SPS program.

At the same time, the availability of the half-built and abandoned ISABELLE
pp collider civil structure at BNL generated a strong push for the development of a
heavy ion collider there. This project replaced the heavy ion options considered at
LBL. However, the decision to start with heavy ions afresh at BNL meant that one
had to develop heavy ion beam transfer line to the AGS, train a new generation
of experts, and carry out within this new environment the collider technology
development of what ultimately became RHIC and its experiments. All this was
going to take much precious time—gambling that SPS energy was too low to matter
in the search for, and discovery of, the new phase of matter, quark-gluon plasma.

12.2 Quark-Gluon Plasma Discovered

New Instrumentation

Moving to the higher energies required not only new accelerators but also new,
modern, high-capability detectors. Howel Pugh proposed using a time projection
chamber electronic detector (TPC) and recognized that such modern detectors
would make a large difference for the Bevalac experiments. A TPC for heavy
collisions was a new and quite revolutionary concept at the time and many were
skeptical that this could be done. It had the advantage of allowing a 3-dimensional
analysis of complex heavy ion collisions.

Pugh with three LBL collaborators (G. Odyniec, G. Rai and P. Seidel) provided
all the necessary calculations and simulations (“EOS: A Time Projection Chamber
for the Study of nucleus-nucleus collisions at the Bevalac”, LBL-22314, UC-34C).
He named this new detector EOS TPC (after Equation Of State, but also after the
Greek goddess of the dawn). Working on this project was the most exhilarating
experience available to a young physicist. We were astonished by the amount of
“impossible” or “unsolvable” problems we encountered. They seemed like brick
walls, but, in fact, they were only temporary. Under Howel’s direction we were able
to overcome each of them.

EOS TPC was built in LBL under H. Wieman’s leadership, and installed in
1991 into the HISS magnet to be used in the Bevalac heavy ion program. It was
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a tremendous success and the credit goes to Howel Pugh’s vision of the program
necessary to pursue the physics of heavy ion collisions. The EOS TPC opened a
totally new way of analyzing data and was a precursor for the future CERN SPS-
NA49 TPC, BNL RHIC-STAR TPC and CERN LHC-ALICE TPC.

One can say that this contribution was the preeminent legacy of Howel Pugh in
the field of relativistic heavy ion physics.

Experiments

The BNL-RHIC did not become operational for many years. In the interim, from
1986 to 1993, LBL teams worked at CERN SPS in the experiments NA35, NA36
and WA80. The initial success of these experiments catalyzed a wider group of new
international CERN experiments. The earlier beams consisted of Oxygen (16O) and
Sulfur (32S) nuclei, which are rather light. They were not massive enough to assure
QGP formation and the CERN Heavy Ion Program needed to proceed to a mass 200
nuclei. An injector complex for Lead ions (208Pb) was completed in 1994. For these
beams a totally new TPC experiment, NA 49, based on the LBL experience with the
EOS TPC, was built. There was also a highly developed spectrometer facility, the
˝-spectrometer that was readied to take data, see Chap. 15. CERN had a wide and
diverse relativistic heavy ion physics program.

In the mid-1990s the early results from this successful program, including the
NA35/49 experiment in which I participated, indicated most interesting changes
in the energy dependence of hadron production, particularly hadrons containing
strange quarks, in Pb+Pb collisions, see Chap. 11. Within the statistical model,
which was extensively developed by Rolf Hagedorn and his collaborators, the
observed changes could be interpreted as the onset of the deconfinement of the phase
transition to the quark-gluon plasma state.

In a locally thermalized fireball of particles created in the collisions, the apparent
temperature is related to the thermal motion of the particles and their collective
expansion velocity. From the composition of hadrons resulting from the decay of
the fireball, the temperature at which the transition takes place can be estimated to
be below T ' 1:8 
 1012 K D 155MeV, a value near to the limiting temperature,
i.e. the temperature where hadronic matter dissolves into quark matter. Introduced
earlier by Rolf Hagedorn, the limiting temperature following from the exponential
slope of the mass spectrum is TH ' 155–160 MeV, see Chap. 21.

This observation of the QGP formation at SPS in strange particle production,
see Chaps. 11 and 15, was followed by strong and irrefutable results confirming
the quark-gluon plasma in heavy ion collisions at the higher RHIC energies, see
Chap. 14, and the present day results at yet much higher energies at the LHC agree.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 13
The Path to Heavy Ions at LHC and Beyond

Hans H. Gutbrod

Abstract My appreciation of Rolf Hagedorn motivates me to look back at my more
than 40 years of trial and error in relativistic heavy ion physics. More than once,
wise colleagues helped me move forward to new and better understandings. Rolf
Hagedorn was one of these important people. At first, I met him anonymously in the
mid 1970s when reading his 1971 Cargèse Lectures in Physics, and later in person
for many years in and around CERN. I wonder what this modest person would
say about his impact on physics in this millennium. As he is not here to answer,
I and others give our answers in this book. I focus my report on the beginning of
the research program with relativistic heavy ions, the move to CERN-SPS and the
development of the heavy ion collaboration at the CERN-LHC.

13.1 Work at the Bevalac

For more than four decades, I have studied relativistic collisions of heavy nuclei
with the goal to create matter at extreme density and temperature, as it may exist
in Supernovae implosions, or in the Early Universe. It began in 1975, when I was
working at the Lawrence Berkeley National Laboratory (LBL) Bevalac accelerator
complex, using beams of 0.2–2 GeV/c medium heavy ions.

Would nuclei be dense enough to create a compressed fireball in relativistic
nuclear collisions, or would they just pass through each other, producing nuclear
shock waves in each other? In 1974, an experiment with AgCl detectors claimed
to have seen the shock waves, although with very low statistics and little particle
identification for the reaction products.

My group wanted to measure nuclear shock waves employing electronic detec-
tors of many sorts, but we did not find them. Instead we found coalescence of
nucleons forming light clusters due to high density in phase space of the collisions.
The inclusive proton spectra looked very thermal. This led to the formulation of the
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nuclear fireball model, a very simple one. For a while our little model was the best
in describing the experimental inclusive spectra.

Coming from low energy physics, the fireball was for me at first just a hot
‘compound nucleus’, but I learned quickly that at these relativistic energies particle
and resonance production had to be included. This was when I ‘met’ Rolf Hagedorn
through his 1971 Cargèse Lectures in Physics and that is how this story began.
Our Bevalac collaboration drew the attention of Léon Van Hove, who was then
director of CERN. In 1977, he visited me at LBL and listened to me, the youngster,
explaining to him our experiment and our understanding at that time. I was proud
to tell him that at the Bevalac we knew the work of a CERN theorist, named Rolf
Hagedorn.

However, by 1977/1978, I was also very frustrated: We had not seen any
experimental proof that heavy ion collisions were more than just an ensemble of
nucleon-nucleon collisions, as described in intra-nuclear cascade models of that
time. I recognized fairly quickly that our small detector system was only able to
measure a fraction of the particles coming from one collisions and that we needed
a 4� coverage to measure each event fully to see possible collective phenomena in
these nuclear collisions.

With beams of ions of mass up to 40, the measured signals of the first experiments
were not much different from proton-proton collisions and an added value for the
complexity and difficulties in the acceleration of heavy ions was not clear. Later,
in Helium–Helium (mass 4 C 4) collisions at the ISR collider at CERN, no new
physics was discovered either. All beginnings are difficult but this situation was
outright catastrophic.

Then I came on invitation of Johann Rafelski and Rolf Hagedorn in early 1978
to visit CERN. Johann, a young nuclear theorist educated in Walter Greiner’s group
in Frankfurt, worked at CERN with Rolf Hagedorn and under the tutelage of Leon
van Hove, Maurice Jacob and John S Bell. I saw that he recognized the striking
opportunity that the CERN system of accelerators offered to the field of relativistic
heavy ion physics. He was also the first nuclear theorist I met who recognized the
paradigm shift of the new quark-gluon plasma (QGP) physics, carrying with his
ideas his teacher and mentor of statistical and thermal physics, Rolf Hagedorn.

Through his Frankfurt-GSI (the heavy ion laboratory in Darmstadt) connection,
Johann heard of my work and wanted to learn more about the experimental potential
of Bevalac and the results obtained in my first experiments. During this visit, I
learned about Hagedorn-Rafelski’s recent work, the theory of finite size hadron gas.
I did not yet in full realize that a revolution of the established particle physics wis-
dom was in the making. It certainly lifted my morale to learn that someone in a major
laboratory of particle physics was paying attention to work by a few nuclear exper-
imentalists who were struggling to find anything interesting in their Bevalac data.

Not anything interesting? I should note that at that time one of our Bevalac
experimental competitors did announce a large entropy production in these nuclear
collisions, which would have meant production of some new phase of matter
produced at these low energies. However, my group could resolve this entropy
puzzle by our detection of large amount of light nuclear clusters like deuterons,
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tritons, 3He, and 4He, which lowered the entropy production to ‘normal’ values.
So, yes, at that time, not interesting.

Fortunately, thanks to generous support from our division leader Rudolf Bock
at our home institute at GSI Darmstadt, my Bevalac collaboration could move
quickly, reaching new heights. From 1978 to 1981, I constructed the “Plastic Ball”
experiment at the Bevalac, the first electronic detector in relativistic nuclear physics
with 4� coverage and particle identification. In 1982–1984, Bevalac employed
beams of Niobium (mass 93) and later of Gold ions (mass 197) at fixed-target
energies from 200 MeV to 1 GeV per nucleon.

We promptly discovered two nuclear matter flow phenomena in the emission
pattern of these collisions: the ‘side-splash’ and the ‘squeeze-out.’ The side splash
was in the reaction plane, whereas the squeeze out was perpendicular to it. Inelastic
scattering of spectator particles determined the reaction plane. These discoveries
gave evidence for collective phenomena in relativistic heavy ion collisions, which
could not be explained by standard nucleon-nucleon cascades in the collision.

Today these phenomena are called directed flow (v1) and elliptical flow (v2).
These flow phenomena support the assumption that in the collision zone the nuclear
participants interact with each other, building up pressure and thus, one surmises,
matter of high density and temperature has been formed. These experimental data
allowed us to extract first information of the equation of state of nuclear matter
when compressed to near 2–3 times nuclear densities. In these initial experiments
at the Bevalac, the energy available was comparable to Supernovae explosions,
although our collisions were also generating a lot of heat, and thus, we believe,
the compressed nuclear matter in these nuclear collisions was much hotter than in
most extreme Supernovae.

Furthermore, the pion, and strange hadron, kaon and lambda production changed
in these heavy ion collisions compared to proton-proton collisions, pointing to an
ongoing hadron-chemistry inside this hot matter. At low energies, nucleons play the
dominant part in the collision, therefore one talks of a ‘nuclear fireball’. Perhaps
the key lesson learned in these experiments was that one needs very large, massive
heavy ions to form a dense nuclear fireball.

These results had established the relativistic heavy ion physics as a field where
nuclear collisions produced collective features not known from pp collisions. Hot
compressed matter had been discovered and it was clear that very heavy nuclei
were needed to form and study its behaviour. These results opened the path to go to
higher energies; that is, higher compression and temperatures. Only at a bit higher
collision energies, Hagedorn and Rafelski suggested, quarks and gluons inside the
nucleons start participating in the collision. This is how the actual push towards the
experimental discovery of the QGP came to be—in my opinion this happened at
CERN and one of the important forces was this theoretical work in the late 1970s.

Questions arose where and how to get heavy ion beams of much higher energies
than at the Bevalac. We developed new ideas for accelerators at GSI, Darmstadt
and at LBL, Berkeley. At Berkeley, we came up with the VENUS collider proposal,
where head on collisions of 20 C 20A GeV gold beams would go to very high
densities and temperatures. This project was cancelled when the ISABELLE
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200C 200GeV pC pcollider made space for the SSC project, the superconducting
super collider which itself fell victim of US-national politics. However at BNL, the
ready circular tunnel plus superconductor cooling system were left for further use.
This ultimately became the collider project RHIC in 1983.

While all this was going on, Rudolf Bock, Reinhard Stock and I proposed to the
German government to build a synchrotron with 100 T meter rigidity (SIS 100) at
GSI, similar in design and specifications to the AGS at Brookhaven and the PS at
CERN. When looking back, one must say that fortunately for the field of relativistic
heavy ions, our proposal was turned down and GSI built just a ‘modern Bevalac’. I
say fortunately since our physics objective, the discovery and study of QGP, meant
that the SIS 100 was too small, and its demise meant that we were encouraged to
seek elsewhere the required experimental capability.

13.2 . . . and at the SPS

With Reinhard Stock and 40 others I proposed a heavy ion program at the CERN
accelerator complex. I offered to move our collaboration and our detector, the Plastic
Ball, from LBL to CERN, and Reinhard Stock offered to bring his Bevalac Streamer
Chamber group to CERN. In 1982 a memorandum of understanding was signed
by the GSI, CERN and LBL to get heavy ions to CERN. The terms were that
GSI promised to bring an electron cyclotron resonance (ECR) ion source, LBL a
radio frequency quadrupole (RFQ) linear accelerator to the CERN site. Rudolf Bock
(GSI), Herrmann Grunder (LBL), Reinhard Stock (Uni Marburg), and many others
including myself, we proposed at first experiments with heavy ions at the CERN PS.

Our view was strongly supported by the director of CERN non-LEP research
programs, Robert Klapisch, who, however, saw the higher energy potential of the
SPS as much more adequate. A decision had to be made by CERN at the time that
LEP program constraints were already putting the entire plan for the CERN heavy
ion program at risk. In the end a miracle happened and we got heavy ions at the SPS.
This was an excellent development, offering us access to the high energy range, and
clearly separated our program from the AGS program at Brookhaven, which was
proposed shorty after ours at CERN.

At the beginning of the SPS heavy ion program (with Oxygen and Sulphur
beams) very few scientists expected to see similar matter flow features like at the
Bevalac. Again the question was if nucleons in nuclei would be dense enough to
allow the formation of a QGP. In fact quite a few thought that at SPS energies
there would be transparency in nucleon flow, ruling out collective effects and the
formation of a quark-gluon fireball. This thinking was of course not what Hagedorn
and Rafelski saw as the most likely outcome of heavy ion collisions at SPS.

The first runs with Oxygen ions in SPS took place in Fall of 1986. One year later,
we had Sulphur ions and more than 400 scientists participated in six experiments
at CERN. There were several predictions for exciting physics discoveries: (a)
Johann Rafelski’s strangeness enhancement, for which initially three experiments
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(NA35, NA36 and WA85) were specifically equipped, (b) high temperatures,
which my experimental collaboration WA80 took on to measure via direct photon
spectroscopy, (c) J/psi suppression which NA 38 set out to measure. Experiment
NA34 addressed spectra of dileptons, a signature of dense hadronic matter.

All experiments had to master measuring the global event character, like impact
parameter, multiplicity of charged particles, transverse energy flow, etc., which
some did only after many years of trial and error. Hope was that we should find
in the QGP temperatures above ‘Hagedorn’s limiting temperature’, recognized as
the freeze-out temperature for hadrons from a cooling down QGP. In nearly all SPS
experiments, Rolf Hagedorn’s limiting temperature was found in various measured
hadron spectra.

The strangeness QGP signature was particularly successful. Strangeness and
more specifically strange antibaryons were recognized and developed by J. Rafelski,
at times in collaborations involving R. Hagedorn, B. Muller, M. Danos, as the key
to the QGP discovery. In the early years, both QGP and abundant strangeness,
were very “exotic” topics. As an example, Johann’s strangeness presentation was
relegated to the “exotica” section of the LBL conference proceedings in 1983 in
company of ‘Anomalons’, a long forgotten false discovery. With a strong experi-
mental program and clear objectives at SPS, very strong and diverse evidence for
QGP was discovered in study of strange hadrons, in particular strange antibaryons.

My WA93 collaboration discovered flow phenomena in 200 A GeV S+Au col-
lisions at a level of 5–10 times weaker than at the Bevalac. As mentioned earlier,
this became then a real industry of v1 and v2 measurements, now extended to much
higher orders.

My group’s experimental series WA80/93/98 was keen to measure direct pho-
tons, developed exquisite technologies and methods to do so. Some predicted
QGP-temperatures of up to 1 GeV in early stages of the SPS collisions. In retrospect
we can say that this was impossible, as this would require huge compressed energy
densities and very short thermalisation times. This is indeed impossible to achieve
even at the LHC. In our initial optimism we hoped to measure these extreme
conditions, but were realistic enough to prepare for low thermal photon yields of
�thermal=�

0 ratios of a few percent only. However, the extreme values never showed
up, and we could only measure an upper limit for thermal photons from a plasma
with a temperature of about 220 MeV. At RHIC, our WA98 photon spectrometer
was employed again and could measure indeed direct photons telling a temperature
of about 280 MeV of the QGP.

13.3 How Heavy Ions Got into LHC and the ALICE
Was Born

I must admit that I like to create and build new things when physics asks for it and
no other existing device can be scavenged or reused. So, as the research program
at SPS evolved towards the announcement of the QGP discovery, some of my
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interests were already focused on future opportunities. As always, chance helps
at the beginning: In 1983 at the relativistic heavy ion meeting at Brookhaven, I
discussed with Carlo Rubbia topics of the future heavy ion collider at BNL, later
called RHIC, when he told me: ‘You will get your collider at CERN, with enough
energy for your physics case’. During all this discussion we were walking very
swiftly back and forth through the corridors of BNL physics department, as swiftly
as Carlo’s thoughts were rushing in.

At first, I did not understand what he was talking about. He argued that the
quark physics signals became much clearer at the high energies of the SpNpS collider
compared to the smaller collider at CERN, the ISR. He kept his promise once he
was Director of CERN and installed the heavy ion option into the LHC project
from early on, among many things by insisting on a two-in-one magnet solution for
the LHC allowing matter on matter collisions instead of a cheaper pNp mode that is
matter-antimatter beams sharing only one vacuum chamber.

Fast forward to the Aachen meeting in 1990: a small group (Ch. Fabian, H.
Gutbrod, H. Specht, W. Willis et al.) sketched a detector concept comprising a large
solenoid, coupled with one dipole at each end with full particle tracking. This was
similar to the smaller 4� detector the group had proposed several years earlier for
the BNL collider.

From 1991 on, a small group of initially about 20 persons met at CERN regularly
to work on a proposal for a dedicated heavy ion experiment at the LHC. In parallel
we had to build and run our lead beam experiments at the SPS. From the start of
discussing the concept of a dedicated heavy ion experiment at the LHC we had two
concepts, one having a silicon tracker inside of a superconducting thin solenoid,
pushed by Jürgen Schukraft, and one having all detectors inside of a large solenoid,
pushed by myself.

Our consensus was that the large magnet solution required a much larger budget,
but that the small magnet risked producing unwanted tracks in the detectors in the
outside field free region with worse resolution due to multiple scattering in the
magnet material. I must add further, that we had little guidance about the multiplicity
of produced particles. Theoretical predictions ran from dN=dy D 2;000 to 8,000
charged particles and of course as history has shown these as function of energy
and collision centrality were only a bit off the actual result. So we needed to be
prepared for the worst, ten thousand particles to be recognized and identified. I did
not hesitate to push for the more expensive solution: At Berkeley I learned that one
had to make adequate investments on the experimental side in order to make proper
use of the costly beam time of the accelerator system itself.

At the LHC meeting at Evian-les-Bains in March of 1992, Jürgen Schukraft
presented the small magnet project. The omission of the big magnet solution was
due to the simple fact that there was no money to create a big detector from scratch.
In the following months, I tried to find a cost effective solution: seeking a large
magnet I looked first at the DEPLPHI solenoid magnet, which was unfortunately
too small for the track density we anticipated in nuclear collisions.

Then, one late Spring day in 1992 in the CERN cafeteria when having lunch
with Johann Rafelski I outlined to him in the presence of Paulo Giubellino and Lars
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Leistam and a few others what I saw as the real opportunity, the implementation
of heavy ions in the L3 experiment. Its huge magnet was perfect for our purpose.
At that time Sam Ting was proposing his own L3P experiment, i.e. an upgraded L3
setup for the LHC program. It was to me obvious to name my proposed set-up L3
H.I., hoping to interest the L3 team in the H.I. program from the beginning.

On July 2nd 1992, in one of our ‘H.I. at LHC’ proto-collaboration meetings at
CERN, the question was raised: Should we have two parallel simulations, one for
the small magnet and one for the large magnet? The decision was ‘yes’, we should
follow both paths, and I was preparing the large magnet project, interacting with
L3. Sam Ting asked me to present this proposal only after a decision was clear
about L3P. In the Fall of 1992, the fate of L3P was clear, and Sam invited me to
give a talk to his collaboration. I started my presentation saying: ‘I feel somewhat
awkward coming here wanting to steal your beautiful experiment.’ From then on we
got strong support from the L3 team as well as from the CERN management.

On February 1, 1993 the small magnet scenario was dropped and the L3
H.I. concept was adopted. The transfer of ownership of the L3 magnet and the
infrastructure of the L3 site from the L3 collaboration to the H.I. collaboration
was performed at a seafood dinner hosted by Jürgen Schukraft in a restaurant
at Ferney-Voltaire and in March 1993, the Letter of Intent for ‘A Large Ion
Collider Experiment’ (ALICE, see Fig. 13.1) was submitted as CERN/LHCC/93-

Fig. 13.1 ALICE at CERN explains itself in the 2004 outreach brochure—the backpage. Cartoon-
ist: Jordi Boixader; Scenario and text: Federico Antinori, Hans de Groot, Catherine Decasse, Yiota
Foka, Yves Schutz and Christine Vanoli
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16–LHCC/I4 on the basis of L3 H.I.. Jürgen Schukraft pushed it ahead towards
completion and to many years of successful operation with striking new results and
discoveries, published in a large number of publications.

One must note with delight, that the heavy ion physics at LHC has seen
a tremendous strengthening due to the successful participation of the two pp
experiments ATLAS and CMS in the heavy ion runs. Competition in science is
always good!

13.4 Future Facilities

Complementary to the scientific programs at RHIC and LHC, where the thrust is
to create a fireball with vanishing baryon chemical potential, a new scientific push
has been undertaken to study in detail the equation of state of highly compressed
baryon-rich matter. In highly compressed ‘cold’ nuclear matter—as it may exist
in the interior of neutron stars—the baryons lose their identity and dissolve into
quarks and gluons. The critical density at which this transition occurs, however, is
not known. The same is true for the entire high-density area of the phase diagram.
At very high densities and low temperatures, beyond the deconfinement transition, a
new phase is expected: the quarks are correlated and form a color superconductor. At
the “critical point” the deconfinement/chiral phase transition is predicted to change
its character.

I can say that Rolf Hagedorn’s work on dense nuclear and hadron matter is
pursued today with more vigor than ever before. Starting about 3 years ago, two
new facilities have been under construction, and we are witnessing renewed interest
in this energy range at CERN-SPS:

• At Darmstadt, Germany, the international FAIR facility is focusing on hadrons
in compressed baryonic matter in the CBM experiment, and on hadron struc-
tures in proton-anti-proton reactions in the PANDA experiment. High precision
measurements will allow the determination of the lifetime and mass of hadrons
to new precisions. (Additional FAIR scientific programs are in nuclear structure
and astrophysics, atomic physics, plasma physics and applied physics. I had the
pleasure to lead this project until 2008.)

• At Dubna, Russia, the project NICA is going to study baryon rich systems in a
fixed target experiment BMN and in an ion collider experiment MPD at NICA.

• At CERN SPS a pilot program uses the full available low energy range exploring
the discovery potential of the above two new experimental facilities.

• We recall the AGS at BNL before RHIC came on-line nearly reached this energy
domain, albeit with limited instrumental detector capacity and very limited beam
time.

The heavy-ion collisions at FAIR and NICA energies permit the exploration
of the “terra incognita” of the QCD phase diagram in the region of high baryon
densities. At both facilities FAIR and NICA, fully dedicated research with nuclear
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collisions of highest intensities will allow us to create highest baryon densities,
to explore the properties of super-dense nuclear matter, to search for in-medium
modification of hadrons, the confinement of quarks in hadrons, to shed light on the
restoration of chiral symmetry, to give insight into the origin of hadron masses, to
look for the transition from dense hadronic matter to quark-gluon matter, and for the
critical endpoint in the phase diagram of strongly interacting matter, and finally to
provide ‘hopefully’ understanding of the structure of neutron stars and the dynamics
of core-collapse supernovae.

13.5 Epilogue

In 1993/1994 I worked with Johann Rafelski to organize in Divonne, not too far
from CERN, the fest to celebrate Hagedorn’s 75th Birthday (Figs. 13.2 and 13.3),
with his consent. Johann invited me to join forces with the otherwise theoretical
team he formed with other friends and admirers of Hagedorn: Steven Frautschi, Jean
Letessier and Helmut Satz. He explained, he wants the meeting and the dedicated
book volume to have the subtitle “Theory and Experiment” in the spirit of Hagedorn.
After a splendid celebration week at the end of June 1994, we worked together
to publish ‘Hot Hadronic Matter’, a thick 550 pages volume dedicated to Rolf
Hagedorn with the cornerstone observables discussed in depth. In fact the first
extensive discussion of the design of the LHC ALICE experiment is presented in
this volume on my behest.

I have spent the last 20 years at three laboratories directing, leading, and building
many instruments that today form the backbone of the world-wide effort to study
and explore the QGP phase of matter. I have seen the first step of the heavy ion
program of research at CERN completed with the announcement of the discovery
of the new state of matter in early 2000. As predicted by Carlo Rubbia, the high

Fig. 13.2 Forefront Standing: left Rolf Hagedorn received his 75th anniversary gift from the
organizers of the Divonne Conference, represented by Hans H. Gutbrod standing on right. Next to
Hagedorn’s right standing Maurice Jacob. Left of Hagedorn sitting at image edge: Luigi Sertorio,
Image credit: CERN Image 199406-067-014



106 H.H. Gutbrod

Fig. 13.3 Hans Gutbrod lecturing at Divonne on future high energy collider AA experiments. We
note on the screen the results of Klaus Geiger, see Fig. 14.2. Credit: CERN Image 1994-06-068-008

energies at LHC have given through ALICE, ATLAS and CMS, deep insight into
this new deconfined phase of matter.

Every year exciting results appear due to instrumental advances: We gain a
greater capability to observe and evaluate the large and diverse particle multiplicity.
Thus we can address today more precisely and convincingly the established
observables of the plasma phase and in doing this we begin to understand plasma
properties, evolution history, and the mechanisms governing the hadronization
process. We seek also to understand in detail the thresholds in volume size and
energy that govern formation of the new deconfined state of matter.

It is abundantly clear to me that the program of research as it is constructed
and executed presently relies on principles and ideas that were recognized in the
first years at CERN, when the SPS program was developed, and which relies in a
great measure on the legacy of Rolf Hagedorn. It is a great pleasure for me to have
contributed a little bit to establishing a future for young scientists to go much further
than we could do in the past. Rolf Hagedorn has built the base for this physics.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 14
A New Phase of Matter: Quark-Gluon Plasma
Beyond the Hagedorn Critical Temperature

Berndt Müller

Abstract I retrace the developments from Hagedorn’s concept of a limiting temper-
ature for hadronic matter to the discovery and characterization of the quark-gluon
plasma as a new state of matter. My recollections begin with the transformation
more than 30 years ago of Hagedorn’s original concept into its modern interpretation
as the “critical” temperature separating the hadron gas and quark-gluon plasma
phases of strongly interacting matter. This was followed by the realization that
the QCD phase transformation could be studied experimentally in high-energy
nuclear collisions. I describe here my personal effort to help develop the strangeness
experimental signatures of quark and gluon deconfinement and recall how the
experimental program proceeded soon to investigate this idea, at first at the SPS,
then at RHIC, and finally at LHC. As is often the case, the experiment finds more
than theory predicts, and I highlight the discovery of the “perfectly” liquid quark-
gluon plasma at RHIC. I conclude with an outline of future opportunities, especially
the search for a critical point in the QCD phase diagram.

14.1 From Hagedorn to Quark-Gluon Plasma

Deconfinement of Quarks and Gluons

While successfully describing many features of multiparticle production at the
energies accessible in the late 1960s, Hagedorn’s Statistical Bootstrap Model [1]
with its exponentially growing mass spectrum of hadrons posed a quandary for
cosmology [2]. The discovery of the cosmic microwave background in 1965 had
provided unambiguous evidence for the hot Big Bang model. By tracing back the
cosmic evolution to very early times it was possible to conclude that the universe
must have experienced temperatures in excess of 200 MeV at times less than 10�s
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after the initial Big Bang. But what was the structure of the matter that filled the
Universe at such early times? What was its equation of state?

An exponential mass spectrum implied that the equation of state of hadronic
matter has a singularity at the Hagedorn temperature, with empirical values in
the range 150 MeV < TH < 200 MeV. Asking what the structure of matter at
temperatures greater than TH is was meaningless in the Statistical Bootstrap Model.
The resolution of this quandary began with Collins and Perry’s observation [3] in
early 1975 that the asymptotic freedom of QCD implies that quarks are weakly
interacting at short distances and therefore matter at very large quark densities
should be composed of unconfined quarks. However, although they note that this
argument should apply to matter in the early universe, their discussion is mostly
focused on cold QCD matter.

Later in the same year, Cabibbo and Parisi [4] proposed an interpretation to the
singularity in the equation of state of Hagedorn’s hadronic resonance gas as the
point where strongly interacting matter changes from a gas of hadrons to a colored
plasma of quarks and gluons. The Hagedorn temperature thus acquired the meaning
of the critical temperature Tc at which the composition of strongly interacting matter
undergoes a discontinuous transition.1 Quantitative predictions were impossible in
the 1970s because of the lack of reliable mathematical or numerical techniques to
solve QCD.

Lattice QCD Results

Starting in the early 1980s, Monte-Carlo simulations of the partition function of
lattice QCD, first for the pure gauge theory and later for full QCD, made it possible
to calculate the equation of state of strongly interacting matter ab initio. These
calculations, which have recently converged to a definitive result [5–7], showed
that matter composed of hadronic resonances is not separated from the quark-
gluon plasma by a discontinuous phase transition in the absence of a baryon
excess. However, a quasi-critical temperature Tc � 155MeV can be defined as the
temperature at which the chiral susceptibility—the susceptibility associated with the
scalar quark density h N  i—peaks. The smooth cross-over is expected to turn into
a first-order phase transition in the traditional sense of statistical physics for matter
with a large baryon excess.

The lattice simulations showed that Hagedorn’s model of a hadron resonance
gas with an exponentially growing mass spectrum describes the equation of state of
QCD matter and many other observables very well for temperatures below Tc. The
precision of the lattice QCD simulations is now good enough to distinguish between

1We now know that the exponentially growing mass spectrum of QCD is not related to a second
order phase transition, as Cabibbo and Parisi surmised, but connected with the fact that QCD has
an (approximate) string dual. In fact, lattice QCD has conclusively shown that the equation of state
of QCD at zero or small net baryon density does not exhibit a singularity.
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the equation of state of a hadron gas made up of the resonances tabulated in the
Particle Data Book or that of a Hagedorn resonance gas. The numerical results point
to a continuation of the exponential growth of the hadron mass spectrum beyond
the reach of direct detection of resonances and thus support Hagedorn’s hadronic
bootstrap model [8]. The implied existence of many unknown hadron resonances
may also be present in the strange baryon sector [9].

Above Tc the density of states grows much less rapidly and eventually approaches
that of a perturbatively interacting quark-gluon plasma composed of massive
quasiparticles, confirming the notion that the Hagedorn temperature signals the
transition from a hadron resonance gas to a new state of matter.

Hot Nuclear Matter

The next critical step was the realization, arising most prominently from discussions
in the CERN Theory Division,2 that temperatures in the range of Tc and even beyond
could be created in the laboratory by colliding heavy atomic nuclei at sufficiently
high energies.

The experimental study of relativistic heavy ion collisions with stationary targets
had commenced at the Bevalac in the mid-1970s, but the energies available there
were recognized to be insufficient to reach Tc. The CERN SPS could provide much
higher energies, and back-of-the-envelope calculations suggested that temperatures
near and above Tc would be reached if the nuclear matter in the colliding nuclei
thermalized rapidly. Hagedorn and Rafelski extended the Statistical Bootstrap
Model to matter with a baryon excess and found that under certain assumptions
the equation of state exhibited a first-order phase transition [12].

I had the good fortune of meeting Hagedorn during several visits with Johann
at CERN during this formative period in the late 1970s. My conversations with
them inspired my own interest in hot QCD and soon thereafter resulted in our joint
work on the thermal properties of the QCD vacuum [13] and on particle production
with exact symmetry in proton-antiproton annihilation [14]. What impressed me
most on these occasions was Hagedorn’s willingness to share his thoughts with a
young scientist without imposing on him. One puzzling aspect of the experimental
observation of thermal particle emission that is still occupying theorists today—
how a large fraction of the kinetic energy carried by the incident particles could
be thermalized within a time of order 1 fm/c—led to my interest in the chaotic
properties of non-abelian gauge theories. I vividly recall Hagedorn’s excitement
after he listened to my talk about our numerical studies of dynamical chaos of the
Yang-Mills field at the workshop in Divonne [15], see Fig. 14.1.

2What distinguished these discussions from other theoretical speculation in the mid-1970s was
that the focus was on thermal properties of strongly interacting matter, rather than properties of
compressed baryonic matter (see e.g. Lee [10, 11]).
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Fig. 14.1 Berndt Müller at Divonne Hagedorn Fest 1994. Photo: Lucy Carruthers

14.2 Path to Discovery of the QGP

QGP Observables

The biggest challenge on the way to discovery was finding signatures that could
provide evidence that nuclear matter had made the transition to a quark-gluon
plasma for a brief period during the collision. One either had to look at penetrating
probes, such as photons and lepton pairs [16], that could escape from the hot fireball,
or at probes that retained their identity under the action of the strong interactions in
the final state, such as quark flavor.

Shuryak took the matter further by evoking quark and gluon degrees of freedom
in pp reactions and focusing on electromagnetic probes and charm quarks as
signatures for the formation of a thermal QCD plasma [17, 18]. Rafelski, in
collaboration with Hagedorn, Danos, and myself, focused on strange quarks whose
mass is sufficiently low for them to be produced thermally in the quark-gluon
plasma [19] (see Chaps. 27, 31–33).

The strangeness argument was not simply that strange quarks and antiquarks
would be produced abundantly at temperatures above Tc, but that baryons containing
multiple strange quarks would be produced copiously and in chemical equilibrium
when the quark-gluon plasma hadronizes by recombination of the deconfined quarks
into hadrons. A calculation of thermal strange quark pair production in the quark-
gluon plasma [20] confirmed that flavor equilibrium could, indeed, be reached on
the time scales of a relativistic heavy ion collision and showed that thermal gluons
played a crucial role in the flavor equilibration process.

Following on the recognition of the abundant strangeness in quark-gluon plasma,
Johann and I embarked on the task of developing a bulk hadronization model
that would enable us to make quantitative predictions for the strange antibaryon
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Fig. 14.2 Klaus Geiger (on
right) in conversation with
Berndt Müller, at the Divonne
Hagedorn Fest, June 1994.
Klaus had the bad luck to take
on Wednesday, 2 September
1998, the Swissair flight 111
from JFK to Geneva. The
aircraft crashed into the
Atlantic Ocean. Shuttling
between BNL and CERN,
Klaus gave his life to heavy
ions, hadrons and QGP. Photo
Credit: Lucy Carruthers

signature of the quark-gluon plasma, see Fig. 33.5. Our effort grew over 2 years,
in collaboration with Peter Koch, into a Physics Reports article [21]. Among the
highlights of this work is the development of the recombination and fragmentation-
recombination models of quark-gluon hadronization that in slightly modified
form remain in use today [22]. We enforced conservation laws, assured increase
of entropy, and quantified the production of strange (anti-)baryons with their
strangeness content. These developments set clear experimental goals for the
forthcoming SPS strangeness experiments which are further discussed below and
in the contribution of Emanuele Quercigh, Chap. 15.

SPS Results

The heavy ion experiments at the SPS, which commenced in 1986/1987, impres-
sively confirmed these ideas. The chemical composition of the hadrons emitted
from the collisions can be well described by a chemical near equilibrium gas at
a temperature close to Tc and a baryon chemical potential that varies strongly with
the collision energy [23]. The strong enhancement and full chemical equilibration of
baryons and anti-baryons containing multiple strange quarks [24, 25] could only be
explained if hadrons containing valence quarks of all three light flavors were “born”
into thermal abundances [26–28].

However, the SPS data did not provide other corroborating evidence for the
existence of a thermal phase of matter at temperatures above Tc from which these
hadrons formed by statistical emission. The (unpublished) CERN announcement
of a new state of matter [29] in 2000 was thus greeted with skepticism by many
physicists. Experiments with heavy ion collisions at much higher energies were
needed to resolve this issue.



112 B. Müller

Experiments at RHIC

Commencing at RHIC in year 2000, these experiments allowed access to a new
kinematic domain, in which the interactions among quarks and gluons contained
in the colliding nuclei (see: Ref. [30], Fig. 14.2) cause the produced matter to be
imprinted from the start with a nearly boost invariant longitudinal flow profile. An
analytical solution of relativistic hydrodynamics for this initial condition had been
found by Bjorken [31], and it provided the basis for a systematic investigation of
the collective properties of the matter formed in the nuclear collisions [32–35].
The fact that the transverse geometric profile of the reaction zone and the initial
energy density fluctuations from event to event could be correlated with the patterns
observed in the collective flow of the emitted hadrons made it possible to pin
down the transport properties of the expanding matter, which was shown to have
an extraordinarily low shear viscosity, relative to its entropy density [36–38]. The
matter was thus shown to be a liquid at temperatures well above Tc.

A detailed study of the subtle variations of the flow profile between different
hadron species revealed that these variations disappeared when all hadrons were
assumed to be formed by recombination of deconfined, collectively flowing quarks
when the matter cooled below Tc [39]. Together, these observations provided strong
evidence for the notion that the matter formed in nuclear collisions at RHIC is,
indeed, a plasma of deconfined quarks and gluons, which behaves as a nearly
inviscid liquid and decays by the emission of hadrons in chemical and thermal
equilibrium. Because the matter is already expanding very rapidly when the tran-
sition to a hadron gas occurs, many observables are nearly unaffected by final-state
interactions among hadrons. The low viscosity of the liquid quark-gluon plasma
implies that the interactions among quarks and gluons contained in it are strong.
Other observations, such as the strong suppression of high-momentum hadrons and
of charmonium, support this conclusion (for early reviews, see: [40, 41]).

Experiments at LHC

Experiments at even higher energies at the LHC have impressively confirmed
the nature of QCD matter above Tc as a strongly coupled, liquid quark-gluon
plasma [42]. A careful analysis of the LHC data revealed that the average strong
coupling at the higher energy density reached at LHC is slightly weaker than at
RHIC [43], in accordance with the running of ˛s with temperature. The reduced
coupling is also reflected in a somewhat larger shear viscosity-to-entropy density
ratio [44].

In addition to consolidating the insights gained at RHIC, the much higher energy
available at LHC permit more detailed studies of the event-by-event fluctuations
of the collective flow pattern, which reflect the quantum fluctuations of the initial
energy density distribution. Enabled by the design of the LHC detectors, the higher
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energy also allows for precise studies of the phenomenon of jet quenching that was
first discovered at RHIC. And finally, the large yield of primordially produced charm
quarks at LHC results in abundant late-stage recombination of charm-anticharm
quark pairs into charmonium, providing additional evidence for the deconfinement
of quarks in the QCD plasma phase.

Beam Energy Scan at RHIC

How far down in beam energy does the phenomenology discovered and established
at RHIC persist? Where is the threshold below which no quark-gluon plasma is
formed? Did the SPS experiments produce a quark-gluon plasma? In order to
address these open questions, RHIC has recently collided heavy ions at lower
energies, down to

p
sNN D 7:7GeV. An extensive analysis of the data gathered in

this beam energy scan is now available [45, 46]. It shows that the matter produced
in collisions down to the top SPS energy,

p
sNN D 19:6GeV, exhibits some of the

same characteristics as that produced at the top RHIC energy,
p

sNN D 200GeV.
However, there are noticeable differences. Matter produced at the lower beam

energies contains a larger excess of baryons resulting in a different chemical
composition of the emitted hadrons; energetic hadrons are no longer suppressed at
lower energies; and no direct photon signal has been observed. Thus it is quite likely
that the CERN experiments succeeded in breaking through the thermal barrier of the
Hagedorn temperature, but it is still unclear what kind of baryon-rich matter they
produced and whether it exhibited collective behavior at the parton level. Theoretical
models that can more reliably describe nuclear reactions at these lower energies will
be needed to finally address this issue.

Next Steps

Where do we go from here? Two major questions remain to be answered: (1) Is
there a critical point in the phase diagram of QCD matter where the cross-over from
hadron resonance gas to the quark-gluon plasma turns into a true phase transition,
and where is it located in T and �? (2) What are the effective constituents of the
liquid quark-gluon plasma?

The first question will be addressed in a second, high statistics beam energy scan
that is planned to be carried out in 2019–20 at RHIC after a luminosity upgrade
of the collider at low beam energies. Physicists will then look for telltale signs of
a phase transition, including critical fluctuations in baryon number or large event-
by-event fluctuations caused by spinodal decomposition of the matter at the phase
boundary. A recent discussion of the theoretical and experimental challenges of
locating the QCD critical point can be found in [47].
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Addressing the second question requires probes that are sensitive to the structure
of the quark-gluon plasma at shorter than thermal length scales. Two such probes
are heavy quarks and jets. The experiments at LHC and now at RHIC are equipped
with powerful vertex detectors that can identify hadrons containing heavy quarks.
They will study the transport of c and b quarks in the plasma in great detail and
hopefully detect clues to its internal structure. Jets explore multiple length scales as
they develop inside the matter after the initial hard scattering event. Extensive jet
measurement programs, which are already underway at the LHC, are planned for
RHIC in the decade ahead [48].

14.3 Outlook and Conclusions

Our understanding of the structure and properties of hadronic matter at high energy
density has made tremendous progress since the days when the question first arose
in full urgency in the late 1960s, and remarkable discoveries have been made along
the way. We have established that Hagedorn’s gas of hadron resonances turns into
a liquid quark-gluon plasma when heated above 155 MeV, quite an extraordinary
phenomenon in itself. We have discovered a liquid that comes very close to the
quantum bound on the shear viscosity imposed by unitarity. And we have learned
that the statistical and collective properties of the flowing quark-gluon plasma get
imprinted onto the emitted hadrons in a characteristic way that makes it possible
to experimentally determine the thermal and chemical properties of the QCD phase
boundary. Rolf Hagedorn would surely be satisfied to witness that the questions he
helped pose 50 years ago have proved to be so extraordinarily fertile.
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Chapter 15
Reminscenses of Rolf Hagedorn

Emanuele Quercigh

Abstract This is a personal recollection of the influence that Rolf Hagedorn had
on the launch of the CERN heavy-ion program and on the physics choices made by
my colleagues and myself in that context.

15.1 Many Years Ago

In 1964, as a CERN Fellow I started doing research on hadron physics, using at
first bubble chambers and then electronic detectors. Like many other Fellows I was
able to benefit from the vigorous CERN academic training program and from its
teachers, all of whom were excellent physicists. There I met Rolf Hagedorn for
the first time and enjoyed his lectures as well as his “Yellow Reports”. His lectures
were deep and clear. His reasoning was precise and very rigorous, yet he was patient
with us and had a sense of humor. For example, once at the beginning of a lecture,
he told us about a competition between ethologists of various nationalities for the
best essay about “the elephant”. While all the others described some facet of the
elephant‘s personality, such as its character, its mental and physical capabilities as
well as its elegance or its love-life, the German competitor‘s essay was entitled:
“On the definition of the elephant”. Hagedorn then continued: “at the end of this
lecture, you will not have the slightest doubt about my nationality!” . Fifteen years
later, during a discussion on a possible heavy ion experiment, I reminded him of the
elephant’s joke; he smiled and forgave a somewhat imprecise definition of mine.

In the 1960s, Hagedorn developed a statistical approach to describe particle
production which led to the concept of a finite limiting temperature for hadronic
matter—the Hagedorn temperature—and to the formulation of the statistical boot-
strap model [1] in which the exponentially rising hadron mass spectrum occurred
naturally. This major discovery, however, had to wait a few years before being
fully appreciated, since at the time there was no fundamental theory of the strong
interaction—and no consensus on how to construct one.
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© The Author(s) 2016
J. Rafelski (ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature
to Ultra-Relativistic Heavy-Ion Collisions at CERN,
DOI 10.1007/978-3-319-17545-4_15

117



118 E. Quercigh

The first clear formulation of the theory that we know today as QCD appeared in
1973. Two years later Cabibbo and Parisi [2] were the first to take up the challenge
of the Hagedorn’s limiting temperature and pointed out that it could be a critical
temperature, at which hadronic matter could turn into a new state of unbound quarks
and gluons. Such a possibility raised considerable interest since head-on collisions
of high energy nuclei appeared then as a way to obtain such a new state in the
laboratory, albeit for a very short time. It was discussed in several meetings (Erice
1978, Bielefeld 1980) and workshops (LBL Berkeley 1979, GSI Darmstadt 1980).

By 1980, Hagedorn and his close collaborator Johann Rafelski introduced a
finite size for hadrons in the Statistical Bootstrap Model, and were able to show
that the limiting temperature marked indeed a phase transition from hadronic
matter to a quark-gluon plasma phase (QGP) [3]. At the same time Rafelski was
the first, together with Hagedorn, to suggest that an excess of strangeness in the
hadronic fireball from a nucleus-nucleus collision would be a natural signature of the
formation of a de-confined phase [4]. His idea was then explored and developed with
Berndt Müller[5]. The key prediction was that the onset of QGP should enhance,
with respect to the case of proton-proton collisions, the final state abundance of the
rare multistrange hadrons on account of the relatively higher phase space density
of strangeness in the plasma. Detailed predictions—such as an increase of strange
baryon and antibaryon enhancements with their strangeness content—were later
published in a Physics Reports [6]. These predictions prompted many people, myself
included, to start thinking of the possibility of detecting the decay of strange and
multistrange hadrons amongst the large number of tracks produced in high energy
heavy ion collisions.

15.2 The Heavy Ion Era at CERN Begins

In 1980, the time was ripe for action! A Letter of Intent [7] to study Ne-Pb reactions
at the CERN Proton-Synchrotron, was submitted by a GSI-LBL Collaboration.
This initiative triggered a long and eventually successful approval process [8], that
resulted in a new CERN program involving ion beams at the CERN-SPS, at energies
much larger therefore than those initially envisaged. However, a few years went by
before the ion beams from the SPS became available!

Maurice Jacob, head of the CERN Theory Division from 1982 to 1988 and a
strong supporter of ion beam experiments at CERN, played an important role in
orchestrating interest among, particle and nuclear physics groups to work together
in this new field. In preparation of the possible SPS program, Maurice organized,
together with Torleif Ericson, Helmut Satz and Bill Willis, the Quark Matter
meeting in Bielefeld 10–14 May 1982. All key participants from both sides of the
Atlantic attended and the meeting prepared in six working groups the future CERN
experiments. More on this topic is reported in Chap. 29.

At the time, CERN’s top priority was to build LEP with a constant yearly budget.
At the initiative of Robert Klapisch, nominated in 1981 Director of Research for all
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Fig. 15.1 Hadronic collisions family picture October 1988: the first report from WA85 experiment
on strange antibaryon production was presented by Emanuele Quercigh at the Tucson Hadronic
Matter in Collision workshop, October 1988; This picture was taken on this occasion. Those
appearing in the book are in bold, all from left: back row: M. Danos, M. Gaździcki, J. Whitmore,
E. Quercigh, F. Navach, G. Zinoviev, M. Kalelkar, T. Awes, B. Barrett, D. Lodwick, R. Hwa,
W. Geist; middle row: D. Slansky, I. Sarcevic, S. Stampke, M. Tannenbaum, R. Glauber, R. Thews
(covered), M. Shupe, H. Gutbrod, D. Harley, M. Gorenstein, K.B. Luk, B. Muller, J. Sunier,
S. Oh, W. Greiner, M. Jacob, T. Carey, S. Frenkel; front row: A.R. White, H. Eggers, T. Tranh
Van, K. Goulianos, E. Friedlander, C. Quigg, I. Derado, P. Carruthers, W. Walker, J. Pancheri,
J. Rafelski (who activated photo self timer), J. Rutherford, L. Van Hove, W. Busza, P. Stevenson,
P. Koch, C. Chiu. Rolf Hagedorn was invited but could not come for personal reasons. Photo:
Johann Rafelski

Non-LEP activities, a Workshop on the Future of Fixed Target Physics at CERN was
held in December 1982: a group “Nuclear Beams and Targets” was convened by Bill
Willis and summarized by Mike Albrow [9]. While initially the idea to use the PS
energy range was explored, the greater opportunity both in terms of experimental
capability as well as higher energy offered by CERN SPS became evident. Hence,
the SPS community began to take an active interest in heavy-ion physics.

As a result in 1983, a collaboration between CERN, the GSI nuclear-physics
laboratory in Darmstadt and the US Lawrence Berkeley Laboratory, started a
pilot program at CERN to accelerate in the SPS oxygen nuclei and then sulfur
nuclei, up to energies of 200 GeV per nucleon. These beams arrived in 1986 and
1987 respectively (Fig. 15.1). Following an upgrade of the accelerator complex
by a collaboration between researchers from CERN, the Czech Republic, France,
Germany, India, Italy, Sweden and Switzerland, a fully fledged CERN-SPS program
with lead beams—up to 158 GeV per nucleon—arrived in 1994 (Fig. 15.2).

The concrete possibility of nuclear beams at the CERN-SPS, raised much interest
and several experimental proposals were submitted to the CERN Committee. Two
of them, NA35 and WA80, being the direct descendants of the 1980 Letter of Intent.
The atmosphere was one of enthusiasm despite the severe budgetary constraint,
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Fig. 15.2 Divonne 1994: during presentation of CERN DG Chris Llewellyn-Smith at Hagedorn’s
75th birthday: front row from left to right E.L. Feinberg, J. Rafelski (leaning forward), to
right recessed the leaders of Omega Prime Spectrometer Experiments: E. Quercigh, F. Antinori,
K. Safarik; second row: R. Bock, R. Hagedorn (behind Rafelski). Credit: CERN Image 199406-
068-024

which did not permit any large investment in the building of new detectors.
Experiments had then to be assembled by recycling existing detectors and magnets.
For an overview of the CERN heavy-ion experiments active from 1986 to 2006, see
for example [10], while the four experiments on which I shall focus here (WA85,
WA94, WA97, NA57) are summarized in [11] (and references therein).

15.3 Experiments WA85–WA94–WA97–NA57

My collaborators and I decided to use the Omega Prime Spectrometer [12] which
we had already used for hadron spectroscopy. However, in order to analyze events
of unprecedentedly high track multiplicity we had to upgrade its Multi-Wire
Proportional Chambers. These could only handle up to about fifteen tracks per
event and not hundreds as expected for experiments with high energy sulfur beams.
Thus we modified all of them into the so-called “butterfly chambers”, only sensitive
to particles emitted in a restricted phase space region at central rapidity. Later, to
cope with the even larger event multiplicities expected in lead-beam experiments,
we built the first telescope of silicon pixel detectors. This development began in
the framework of the CERN-LAA RD program and continued in the CERN RD19
project [13]. Such a telescope allowed us to determine the space points on a track
directly and, because of its high granularity, it could be placed near the target, thus
easing the detection of the short-lived strange baryons.

Of course, the beginnings were not simple. Apart from the delicate hardware
modifications needed and people’s fear that these could permanently damage the
Omega chambers, there were several open physics questions. We needed to guess
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what the events from high energy nucleus-nucleus interactions would look like.
What, also, would the multiplicities of the secondaries be? And how would these
be distributed in phase space? Furthermore, how could we recognize the existence
of a QGP during the interaction and how valid would an enhancement of strange-
particle production be as a diagnostic tool for QGP? Which effects could distort the
measurement and simulate a phase transition?

At that point we went for advice to Hagedorn, who had studied those sub-
jects [14]. He patiently discussed these matters with us and gave much useful advice.
For the questions about strangeness, however, Hagedorn suggested that we contact
directly Johann Rafelski who, he said, would be delighted to discuss that issue with
us! This echoed the advice we got from Léon Van Hove, a former CERN director
general, also a strong supporter of the new research program. Indeed, Johann was
delighted and this was the start of a long and friendly collaboration.

Our first two experiments, WA85 and WA94, took data at 200 A GeV in a sulfur
beam, using the “‘butterfly chambers”. They were followed by two lead-beam
experiments WA97 and NA57. The latter was a North-Area experiment with a
new spectrometer and a new spokesperson: Federico Antinori. Both the latter two
experiments made use of the Silicon Pixel telescope as their main tracking device.

The experiments confirmed our hopes. We found that the abundances of mul-
tistrange baryons and anti-baryons produced in heavy-ion collisions were indeed
enhanced [15]. Moreover, these enhancements increased with the strangeness
content of the produced baryon [15, 16]. For example, in central lead-lead collisions,
the rare ˝� particles carrying three units of strangeness were enhanced by a factor
twenty! A behavior expected to ensue from the appearance of a deconfined phase
during the interaction [6]. Similar results were subsequently obtained by many
other experiments. These results constituted one of the main pieces of evidence
for the formation of a new state of matter at the CERN-SPS energies, which CERN
announced in a press release in February 2000. More on this topic is reported in
Chap. 33.

Another interesting finding, suggesting a thermal production for s and Ns
quarks [17] was the similarity of the slopes of the transverse mass spectra between
strange baryons and corresponding antibaryons [18]. An observation which did
indeed please Hagedorn! With this last example, I conclude my brief review of the
influence that Rolf Hagedorn, together with his disciples and continuators, had on
the CERN heavy-ion program and on our physics choices.

15.4 The Other Hagedorn

There is, however, another aspect of Hagedorn’s activity which should not go
unmentioned, namely his involvement in the defense of human rights. I here cite
only the case of Yuri Orlov, a founder of the Moscow group set up to monitor
the Helsinki Accords, who was arrested in 1978. Hagedorn, together with several
other physicists working at CERN, took up his case and founded the Yuri Orlov
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Committee to campaign on the matter. This the Committee did consistently, even
directly approaching the governments of all CERN member states. Finally, during
the Gorbachev years, Orlov was able to leave the Soviet Union for the United States
and, in 1991 spent one year at CERN as a guest professor. As many of us know,
however, Hagedorn’s involvement in Orlov’s defence was only one example of his
readiness to help people whom he felt to be unfairly discriminated against!

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Part II addresses properties of hot hadronic gas (HG) matter and the proposal and
characterization of the phase transformation between HG and quark-gluon plasma
(QGP).

The opening Chap. 16 is a long-lost review, appearing for the first time in
English. It describes the meaning of limiting (Hagedorn) temperature TH , the
Statistical Bootstrap Model (SBM), and its role in the Big Bang and Universe
evolution. Chapter 16 can be read by a general science-versed reader. Hagedorn’s
comprehensive technical 1995 retrospective of the experimental and theoretical
developments that compelled introduction of TH and SBM follows in Chap. 17.

Chapter 18 is a commentary on Chap. 19, Hagedorn’s first unpublished 1964
paper introducing TH and the exponentially growing mass spectrum �.m/. Chap-
ter 20 presents the experimental 1968 data for �.m/, and Chap. 21 offers a
contemporary discussion of this central result. Chapter 22 is Hagedorn’s unpub-
lished 1972 guide to SBM literature.

Chapter 23 is a 1979 unpublished conference paper which presents SBM in
its covariant form, introducing finite sized hadrons, and allowing for finite baryon
density characterized by a chemical potential. This work shows the transformation
from hadron gas to a collapsed single fireball drop that we call QGP today.

This phase transformation is made mathematically more precise in the following
Chap. 24. This is Hagedorn’s 1981 unpublished resolution of a critisism of
Chap. 23 as extended with the concept of the available volume, discussed further
in the following Chap. 27. Chapter 25 is Hagedorn’s 1984 retrospective about
development of the SBM leading on to our work on the phase transition to quark-
gluon plasma. Hagedorn explains in plain language and resolves many questions
that arise in the study of the material of this book. Noteworthy for Part II are the
two paragraphs below Eq. (25.16) which discuss the relation of the phase limit
temperature with a limiting temperature.

A short quote from Chap. 16 explains this further: Hagedorn draws the parallel
between boiling hadronic matter and boiling water: “. . . with increasing temperature,
it becomes ever easier for a molecule to free itself from the liquid, and when the
temperature approaches the boiling point, it is so easy for them to leave, they all
want out and actually escape in a rapid manner. They absorb all the heat made
available and leave the molecules still remaining behind no energy to increase their
temperature.” Hagedorn places emphasis on the fact that water cannot get hotter
but vapor in principle, could. However the 1968 view was: “. . . boiling HG matter
can never overcook, because it is the supplied energy itself which materializes and
so ensures that more new particles are always being born. Therefore there can
never arise the process corresponding to the continued heating the water vapor.
. . . TH D 1:8 
 1012 K is the highest ever possible temperature in a stationary
thermodynamic equilibrium.”

This position evolved with the development of the nuclear bootstrap model for
the gas phase, incorporating a finite hadron volume, see Chap. 23. With the rise
of QGP as the new phase of matter, the meaning of TH expands to be the phase
transformation condition. The new phase, QGP, can be heated—quark and gluon
tempeature rises without limit, T > TH .



Chapter 16
Boiling Primordial Matter: 1968

Rolf Hagedorn

Abstract This introductory article presents in popular language how the view of
the early Universe was evolving through 1968 under the influence of than new and
recent insights about the thermodynamic properties of strongly interacting matter
(by JR, editor).

16.1 The Large and the Small in the Universe

Even though no one was present when the Universe was born, our current
understanding of atomic, nuclear and elementary particle physics, constrained by the
assumption that the Laws of Nature are unchanging, allows us to construct models
with ever better and more accurate descriptions of the beginning. We begin to
understand the composition and abundance distribution of nuclei, and we understand
the origin of the energy which drives the Sun and countless other stars. We would
have never understood these things if we had not advanced on Earth the fields of
atomic and nuclear physics.

To understand the great, we must descend into the very small. The objects,
which will be discussed here, are incomprehensibly different in their size. In our
daily lives a centimeter-sized object is a visible and reasonable magnitude; our
direct experience ranges from “very thin”—a sheet of cellophane (10�3 cm)—
to one hundred meters (104 cm); below and above these limits we no longer
experience lengths directly through our senses, but indirectly with the assistance
of our intellect—for example we imagine 100 km as one hour on the freeway. Even
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with these tricks we can only go so far, because in order to express how small an
elementary particle is and how large the currently observable part of the Universe
is, we must use numbers that are again beyond our direct comprehension. There
are as many protons in a centimeter as there are for example centimeters in the
diameter of Earth’s solar orbit, and as another example consider the many Earth
orbit’s diameters needed to reach from here to the furthest visible spiral nebula—
that is to say, somewhere between 1013 and 1014.

Who can comprehend the number 1013? With an effort I can have a feeling for
one million, 106: a million teaspoons of water is about one cubic meter. But even
109—a billion—is difficult. Do you want to be a billionaire? Put aside a Swiss Franc
every second for 32 years—then you’ll be one. One million years yields 3 
 1013 s.
String protons together, one each second—in a million years you’ll have a chain
barely 3 cm long; string together centimeter-sized pearls, one each second, and in
a million years the chain will reach from here to the sun. Lay together an Earth
orbit every second, and after a couple million years you will reach the furthest
visible spiral nebula (or to be precise, where that spiral nebula was a couple billion
years ago, when its light started in our direction). And a last example, which we all
know: on a distant island is a diamond mountain, and every hundred years a bird
sharpens its beak on the mountain. When the mountain has been whetted away, the
first moment of eternity will be finished. Mont Blanc would be whetted away after
1040 s (the Milky Way is only 1017 s old!) and for just as long must one lie proton
next to proton—one each second—to reach the furthest spiral nebula.

After this attempt, to make the incomprehensible more comprehensible, I
propose my assertion:

In order to explore the enormously gigantic (1014 diameters of the earth’s orbit),
we must apply our knowledge of the extremely small (10�13 cm).

In large things the Universe follows the laws of macrophysics: mechanics,
electrodynamics, thermodynamics, relativity and hydrodynamics. For most part we
encounter conditions that differ vastly from those surrounding us. They are more
akin to those present in a nuclear experiment carried out at a cosmic scale. How
can the inner structure of matter—the extremely small—be the building principle
of the Universe, determining for the large part the emergence of galaxies and stars
and the course of their lives? All this originates and depends nevertheless on these
so unusual circumstances to which matter is subjected—or perhaps one should say,
conventional conditions, a statement allowing for the fact that the conditions under
which we live are extraordinary.

Under these circumstances one can anticipate that each new step in understanding
the extremely small develops new relationships in the extremely large and leads us
further on the way, which we hope, succeeds in bringing us to a new theory capable
to explain simultaneously the functioning of the Universe in both the very large and
the very small.

The most recent step into the very small began a few years ago, and it leads
today to few if any consequences for our conceptual understanding of the Universe;
I believe, however, that these will come soon. With the last step I am referring to the
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field of high energy physics. Those who prefer precise wording might criticize the
use of the expression “last step” because it could be easily misunderstood: namely
as the last possible instead of the latest accomplished, as I meant to say here.

But there is no mistake in expression. I meant both and especially the last
possible step. Instead of an error of style it has to do with a hypothesis, which
is being described by this lecture. It appears that we have reached, in elementary
particle physics a completely new paradigm, a kind of a terminal situation, in
which the question about the composition of matter receives an unforeseen and
satisfying answer. This is actually surprising, because we still can’t overcome the
old difficulties. Whenever someone says to me, that he has now found the true atom,
the building block of all matter, I always ask him, then what is this thing made from?
One can just read Kant, to see in what sort of cul-de-sac that leads. And now I claim
that high energy physics—perhaps!—offers a final solution to this dilemma? I do
not want to be misunderstood: first, I am making a claim, which is not accepted
by all of my colleagues, and second, I do not claim that we are about to understand
everything about elementary particles. But this new approach seems—at least from a
particular perspective—to offer us the view, which could be used to take the picture.

The New Situation: Multiparticle Production
in High Energy Physics

I want to show you first why the situation is new.
The question, “How is matter created?” is a challenge for scientists studying

nature. This also invites them to take ‘it’ apart, to study the building blocks and
the forces binding these building blocks together, to apply the already known laws
of physics as much as possible, to postulate new laws only when unavoidable and
to attempt to bring everything together consistently. The importance of conceptual
theoretical insight is that this lets us understand how the whole may be more than
the sum of the parts, remembering that the first and the last word is spoken by
experiment. To study this question, this is what the experiment dictates: break apart
particles into their building blocks and measure the forces acting between them that
do so for sub building blocks, then break down the sub sub building blocks and
again study the forces and so forth, without end. Without end?

We want to follow this continuing decomposition and pay attention to how much
energy we must use, in order to break down a given material into its components.
The “new situation” will become clearest when we compare the requisite energy
with the total energy that is stored within the given material.

Relativity teaches us in that a piece of material with mass m contains the energy
equivalent E D mc2 (c is the speed of light).

This proposition has been confirmed experimentally. The energy E D mc2 is
enormously large in comparison to familiar energy scales. We will see that soon.



128 R. Hagedorn

We consider some everyday matter—some cooking salt—and break it down into
its elementary building blocks and with each step compare the energy released in the
decomposed material to the energy in the material as a whole. So let’s take a piece of
cooking salt (NaCl), about the size of a fist. How do we decompose it? First we let
it fall to the Earth; with a hard floor and a falling distance of about a meter, it breaks
into about a hundred smaller pieces—but those splintered pieces are still cooking
salt. In order to break apart the smallest piece of salt—a molecule of NaCl—into
sodium Na and chloride Cl elements, we must turn to chemical processes.

For centuries, the futile efforts of alchemists demonstrated that one could not go
beyond the decomposition of NaCl into Na and Cl. The belief set in that atomic
elements are truly the indivisible elementary building blocks. Yet the question
remained: why are there 90 different atomic species? If they are different, then their
structures must be different, so they must have subparts.

Soon we found a way to break elements apart too: one throws them on the
floor—but this time somewhat harder—or rather one bombards them with very fast
projectiles. From this we learned that atoms are composed of three different building
blocks: protons and neutrons, which are the nuclear building blocks, and electrons,
which are needed to create the atomic shells. The very weakly bound electrons are
responsible for chemical processes, for which the tightly bound nuclei can have
nothing in common—hence the failure of alchemy. Only the energy rich projectiles,
which modern particle accelerators shot at the nuclei being studied, enabled these
nuclei to be broken apart. When this was accomplished, one attempted the next step,
breaking apart the nucleons (the shared name for protons and neutrons, which are
similar to each other) with a collision using another nucleon—and this approach
failed—but in a way suggesting that something fundamentally new happened.

Now we turn to take a look at a chart which shows what fraction of the energy is
required to break mater down into components:

– Mechanical decomposition of a cooking salt crystal into fragments by letting it
fall from a height of one meter: 1 
 10�16 of the total energy of the crystal.

– Chemical decomposition NaCl!Na+Cl: 7
 10�10 of the total energy of a NaCl
molecule.

– Nuclear decomposition Na!23 nucleons: 8 
 10�3 of the total energy of the
Na-nucleus.

– Decomposition of the nucleon? 5
 the total energy does not suffice!

These numbers show how enormous the binding forces become, when the decom-
posed objects become smaller. To achieve the chemical binding energy of the
cooking salt crystal I need to throw it 7,000 km high (assuming that Earth’s gravity
remains the same). However, the energy in the nuclei is still ten million times
higher—and yet this is but barely 1 % of its total stored energy as shown in E D mc2.

With so comparatively tiny—albeit growing—fractions of the total energy, we
can break down all the known substances into their electron and nucleon building
blocks.

It was foreseeable that one would have to bombard the nucleon with an even
larger fraction of its total energy in order to get the nucleon to break down into its
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components. Therefore we have built high energy particle accelerators and smashed
nucleons together with higher and higher energies so that now, at the most recently
built Soviet accelerator (70 GeV) we are not achieving just a fraction, but five times
the energy E D mc2 contained in a nucleon.

The nucleons remain intact!
When the highest energy cosmic rays hit an atom, the collision energy up to a

few hundred times greater than that in the nucleon is achieved—and so far there
is no evidence that this will break apart the nucleons. Just the opposite. In such
experiments a large number of new material particles including even nucleons (and
antinucleons) are created. Most of these newly generated particles are certainly
unstable—they decay in an unbelievably brief time, nevertheless slowly enough,
that one can experiment with them.

I do not want to go now into the detailed properties of these particles nor to
describe the astounding way in which their properties can be classified in a simple
scheme. What this scheme suggests is that the nucleons as well as all the other
newly formed material particles are composed of only a few fundamental building
blocks, the so-called quarks. Quarks have never been observed as free particles
and might not exist in this form. These insights have been described in a manner
understandable for non-specialists in many other popular-scientific articles, thus I
do not dwell further on this matter.

My objectives are different. First, I will try to make clear that the above finding
suggests that something radically new is really present; and second, let me explain
why I believe that we are in a ‘final’ situation, which nevertheless does not signify
an ending of our search for the ultimate building blocks of matter.

First: imagine that through decomposing and decomposing and decomposing,
the matter is finally pushed to small, incredibly hard spheres, say the size of a pea,
which can neither be destroyed nor differentiated from each other in any manner.
We collide such spheres onto one another and thereby expend energies that were
greater than the mass energy of the spheres. However, instead of breaking up, they
divided into four such peas (including an anti-pea)—each just as big, just as heavy
and just as hard as the two originals—therefore two brand new peas were created.
In the process appeared also a lot of splinters and sparks of a previously unknown
material, all of which almost instantly shattered with a bang and disappeared, while
adding some more peas to the type of peas described above. Such a situation should
be correctly viewed as a new phenomenon.

For physicists this was not however unexpected: relativity and quantum physics
have long taught that energy and mass are equivalent and can spontaneously change
into each other; set energy free with an impact, it can reappear as matter, subject
only to the constraint that the amount of energy is greater than the mass energy
equivalent E D mc2 of the particle to be generated. Other conservation laws such as
that of baryon number deserve mention here as well.
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Black Body Radiation

I now need to introduce another concept that has played an influential role by
undermining classical physics. This idea forced Planck to postulate the quantum
hypothesis initiating a radical conceptual change which culminated in the formu-
lation of quantum theory. Arguably, there has not been anything of comparable
importance discovered since. I present to you “Black Body Radiation”.

If you place a completely empty box—a cavity—in a heat bath of temperature
T, it does not remain empty; it fills with electromagnetic radiation, whose spectral
distribution, i.e. the composition of different wavelengths (radio waves, heat, light,
ultraviolet light, X-rays), is described accurately by Planck’s radiation law. This
spectral distribution is a function of temperature; in fact, we measure temperature
of very hot and/or far and distant bodies (stars), by studying the radiation spectral
distribution. Aside of the spectral distribution dependence on the temperature, the
intensity of the radiation is also temperature dependent. Namely, the total radiated
energy is proportional to T4. Or said differently, the way I prefer: the temperature is
proportional to the fourth root of the radiation energy content. When the temperature
just doubles, the radiation energy is increased 16 times.

From daily life experience, by and large, (that is, apart from chemical and phase
changes, such as melting, boiling), we are accustomed to thermal energy being
approximately proportional to temperature increases; that is, 16 times the thermal
energy also means 16 times the temperature. This is because heat is nothing more
than the random motion of molecules and that, as their number (usually) remains
constant, all energy supplied again finds itself as heat and the temperature increases
proportionally: temperature is defined as a measure of the average kinetic energy
per molecule. However, in the radiation field—also called photon gas—the number
of “molecules,” that is to say, the number of photons, is not at all constant: ever
more and more of them are created as the temperature is increased, as I supply
ever more energy. This larger number of photons, many more than were originally
available, must share the newly supplied energy; therefore each photon takes only a
minor portion for itself, than it would have received, had their number been constant.
The temperature = average energy per photon rises more slowly than in the case of
constant particle number; in consideration that a large part has just been invested
in the creation of new photons. In a more careful evaluation we find the Stefan–
Boltzmann law which I introduced, the temperature is proportional to the fourth
root of energy density: T D Const: 
 4

p
E

What does this have to do with our indestructible nucleons and the newly created
particles?

All we need is to generalize the concept of black body radiation: who says that
the radiation must consist only of photons? There is no law in physics prohibiting
material particles forming from radiation. In fact, relativity and quantum theory
claim it outright: if E � mc2, a particle of mass m can arise spontaneously (there
are certain constraining conservation laws, but in principle this detail changes
nothing). So if we increase the temperature of our box on and on, it is inevitable
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that in principle within the cavity particle radiation of any sort of matter (and
antiparticles) sometimes occur. Admittedly, the probability of finding a particle of
mass m, decreases extremely rapidly with increasing mass (that is, exponentially).

Considering very high energy collision processes quantitatively one finds that
the newly created particles have just the same energy and angular distribution,
which they would have if they were emitted by a black body source of a very high
temperature as first argued by Enrico Fermi. Although not of immediate interest
in our present context, the black body radiation cavity source is also in motion.
As argued, we can measure the source temperature by generalizing the Planck’s
radiation law to include the radiation of material particles. To each Planck’s spectral
energy distribution corresponds a certain temperature value T. All we need to do
is to measure the energy spectral distribution of the newly generated particles in
a given collision process to learn which temperature was reached in the collision
between the two projectiles.

By this procedure we can deduce the temperature that prevailed during the
incredibly short collision time .10�23/ s in the incredibly small domain of space
.10�13/ cm—in the time .10�23/ s the light travels the distance .10�13/ cm. Using
the same method we can make an equally reliable statement about the temperature
of the surface of Sirius or in the interior of a blast furnace. As the collision energy is
a multiple of the mass energy of the colliding particles, it is not surprising that the
temperatures measured in these collisions far surpass all the temperatures known
on Earth and in the sky above. Created daily at CERN in billions of collisions
these temperatures are of the order 1012 K. To imagine this number, consider this:
a furnace that becomes hotter by one degree every second, would bring water to a
boil in 1.5 min; and after 1.5 h it will be as hot as the surface temperature of the
sun; after a year we would reach the interior temperature of the Sun but only after
100,000 years would we reach the temperature of which we speak in high energy
physics!

16.2 Highest Temperature D
The Boiling Point of Primordial Matter?

I claim that it is not surprising that the temperature seen in high energy collisions is
that high—in fact, one would have expected it to be much higher and in particular
that it should grow with the energy of the colliding particles. Namely, as one knows
from the black body radiation law—and that is what we are dealing with here—
temperature should grow at about the fourth root of the energy. Instead, it remains
a simple constant, apart from some not yet quite understood exceptions. More
precisely, as the particle collision energy grows, the temperature T0 approaches a
finite limit of 1:8 
 1012 K corresponding to 160 MeV.

It appears that this fact is extremely significant indicating that in the decompo-
sition of matter, we have reached an unexpected end, which is, nevertheless, not
an end.
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Namely: the temperature of ordinary black body radiation only grows with the
fourth root of energy, that is, relatively slowly, because a large part of the available
energy is used to produce new photons instead of being used to increase the
temperature. Considering the case of material particle black body radiation present
in high energy physics we have available not only photons but all new types of
particles. Each type of particle demands a part of the available energy. Each particle
component needs this energy to participate fully. The more such particle fractions
are present, that is the more different types of such “elementary particles” are
present—the less energy that can be vested in each type of component and thus
less energy remains available to raise the temperature.

In fact today there are many different types of particles that can be produced in a
high energy collision—-one already knows about 100 new “elementary particles”—
and all these have distinct mass. Thus we are led to, and we need to characterize
the concept of the mass spectrum. To this end I would like to introduce a
seemingly absurd but valid comparison, namely books. There are many different
titles, each with a fixed price (if two have the same price, one can introduce
another distinguishing property). In this approach let me compare the book title
with a particle type, and book price with particle mass; the print number with the
probability of finding this sort of particle. Even without looking at the content of the
books we can generate a spectral price distribution by asking: how many books are
there in each price interval (such as between Fr 10 and Fr 11 or between Fr 31.50
and Fr 36.75). Similarly, one can arrange the various types of elementary particles
without considering their individual properties—by specifying how many species
there are in each mass interval. This distribution we call mass spectrum, just as one
speaks of the price distribution counting books.

Clearly, the radiation equilibrium within our black body source will now depend
on material particle mass spectrum. The more different particle types there are, the
less is the temperature rise given the same input energy. The precise terms “mass
spectrum” and “radiative equilibrium in cavity” permit a precise mathematical
treatment of the problem.

The outcome is that if the mass spectrum of the participating “elementary
particles” increases immensely strongly and in a very specific way, the temperature
may never grow beyond a pre-established limiting value. This limiting temperature
T0 emerged as a characteristic constant in the mathematical description of the
mass spectrum: each equal length mass steps �m D 2:4 
 T0 moving up the
mass spectrum, brings into the picture ten times more new types of particles as
compared to all previous steps taken together. It is said that the mass spectrum grows
exponentially as em=T0 .

This we can verify experimentally: in high energy experiments for a temperature
characterized by the limiting value T0 one would further experimentally observe
new types of “elementary particles” that can be sorted into a mass spectrum from
which it is possible to read off the constant T0 again. Of course it is possible to
study a small mass spectrum domain of the low-mass to mitigate the effect that for
the larger masses few particles are produced: that is, in our book example at high
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price only “Limited Editions” are produced, which limits the printed number of
copies; this reduction is again exponential. One finds in such a study:

The nearly fully known mass spectrum grows in exactly the way that is required
for the existence of a limiting temperature, and the constant T0 is numerically
consistent with the upper bound of the temperatures measured in high energy
collisions.

Now, a few limiting temperatures are familiar to us from our daily lives, perhaps
the best known being the boiling point of water: no matter how hot I make the stove,
at normal atmospheric pressure water boils at exactly 100 ıC. Why? Because all of
the additional heat energy is used to lift water molecules out of the liquid. Generally,
any additional energy is divided between two competing mechanisms: increase in
temperature, and evaporation. Since molecules do not have a sharp temperature
controlled energy but a distribution, some can cross over from liquid into vapor
at practically any temperature. However, with increasing temperature, it becomes
ever easier for a molecule to free itself from the liquid, and when the temperature
approaches the boiling point, it is so easy for them to leave, they all want out and
actually escape in a rapid manner. They absorb all the heat made available and leave
the molecules still remaining behind no energy to increase their temperature.

The limiting temperature appears in the high-energy collisions in analog fashion.
You have only to replace the words “leave the liquid” with “make the leap from non-
being into being.” To make this transition a particle of mass m needs the energy E D
mc2, and when there are as many different particle types as described above, then
the all-particle birth rate will eventually be so great with increasing temperature, and
the many required mc2 amounts will use up all energy supply such that already-born
particles will have nothing left to increase their common temperature. Because of
this analogy I speak of “boiling primordial matter.”

Of course, once all the water has evaporated, additional energy will further
increase the temperature of the steam. Moreover, all the water can boil away,
given that a fixed amount of water has a fixed number of molecules. Our boiling
primordial matter can never overcook, because it is the supplied energy itself which
materializes and so ensures that more new particles are always being born. Therefore
there can never arise the process corresponding to the continued heating the water
vapor.

If these considerations are correct: that is, we were not lured by nature into a trap
of following the correspondence between the experimental limiting temperature
T0 and the shape of the growing mass spectrum (which in principle can never
be ruled by these experiments), then T0 D 1:8 
 1012 K is the highest ever
possible temperature in a stationary thermodynamic equilibrium. Occasional
exceedances of T0 likely correspond to the familiar phenomenon of superheating
leading to an increased boiling point.
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16.3 Is the Question About
the “Final Building Block” Meaningless?

There is the final question that remains: suppose, that everything were correct;
there is an infinite number and an exponential mass spectrum of new types of
particles and a corresponding limiting temperature—what does that have to do
with the here presented end situation, which nevertheless does not mean an end?
Here we enter into a theoretical construction wherein one abstracts a general rule
from a limited number of experimental data, which is then tentatively postulated
as a universal principle. This introduces us to the usual practical circumstance of
theoretical physics: we have a model whose other properties are analytically derived
using established methods of mathematics and the assumptions that generally
apply to the already known laws of nature. In this way we obtain experimentally
testable predictions as derived from known or later verifiable behavior. Agreement
of these predictions with the facts is necessary, but not sufficient, to ensure that the
theoretical model is correct. This applies especially to the model I will now describe.

In order to introduce the model in words, I will characterize the situation far less
exactly than the technical tools of theoretical physics would allow me to do this. I
proceed in this way as I seek at all cost to avoid technical jargon.

In a high-energy collision new material particles are copiously produced (events
with a multiplicity of a hundred or more have been observed). In our terminology,
these particles emerge from the collision-produced boiling primordial matter. In
a certain and physically quite precise sense they were all contained in this piece
of boiling primal matter. Taking one of these newly generated particles under the
microscope (which is not easy: lifespan '10�23 s), we observe that it behaves
itself as boiling primordial matter; namely it can decay further into many particles.
The greater its mass, the greater is this tendency. Such a particle with a large
mass thus has a dual nature: on the one hand, it can be used as an “elementary
particle” contributing to radiative energy equilibrium, on the other hand it can
itself create other “elementary particles” which contribute to the radiative energy
equilibrium. Seen from this perspective, none of these produced particle types can
be viewed as an elementary particle, given that other particles can emanate from
any of the produced particles, which are again no more elementary since each can
be simultaneously created out of the other, and in this way all these particles have
undetermined building block composition.

Nothing in this picture changes if one day quarks should be confirmed as the
primordial building blocks. In our approach they would play a preferential role,
being the stuff from which “everything is built.” As an aside, it is the virtue of
our approach that the statement “composed of” does not characterize the number
and the character of the fundamental building blocks. The composition and nature
of the source of produced particles can remain cloaked in mystery; it can remain
undetermined.

The model aims to overcome the limited number of presently known types
of particles by continuing the observed behavior of the mass spectrum at low
mass to higher mass, (where we experimentally know nothing yet). Once this is
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done, much of what follows can be found ready to use in textbooks of statistical
thermodynamics. The surprising extrapolation result is:

The mass spectrum grows in exactly the manner (exponential) as is required for
the presence of an absolute maximum temperature.

With this the circle closes:

– The property of the new “elementary particles” is that each is simultaneously in
ever-changing ways being created from all the others,

– with the tremendously (exponentially) increasing mass number distribution of
different types of such “elementary particles”,

– leading to the existence of a “boiling point” for primordial matter.

These three seemingly different things are actually different manifestations of a
single underlying physics principle—provided that you take any one of these three
as a general postulate valid beyond the currently experimentally studied range.

A theoretical model, such as this one, which is introduced as a postulate, where
the behavior is extrapolated to infinity from the finite domain that is known,
cannot be proved. Its consistency, its formal simplicity and the fact that its detailed
quantitative predictions agree in the currently accessible experimental range, makes
it interesting and credible until further notice. Should it be correct, then the old
question of the ultimate constituents of matter disappears all by itself: this issue
merges into the endless circle. Let’s return to the analogy we developed with books:
there is no “elementary book” from which all others are made. Yet when two
books collide with each other violently enough, many new are produced—and each
contains every other somehow in itself.

Before answering the last question: what does all this have to do with the
“evolution of matter?” I offer a few remarks.

(a) The situation described is typical of the physics of strong interactions, involving
all nucleons and other particles responsible for the mediation of the nuclear
forces. The electron is in this context irrelevant. The reason is that in such
a short collision only the strong interactions can participate in formation of
radiation equilibrium. There is no time for the electro-magnetic and weak forces
to act; before they awake and can respond, everything is as if the collision had
happened a few million years earlier.

(b) The model described here relies on a speculation which posits what should hap-
pen for infinitely large particle masses by extrapolating what is observed at finite
particle masses. There is another approach founded in similar yet very different
more technical concept, namely the extrapolation towards stable “elementary
particles”, i.e. nucleon, mesons (stable under strong interactions). We attempt
a description in which each such elementary particle emerges simultaneously
from all the others: this is our so-called “Bootstrap-Theory,” originating in the
well-known “Baron Münchhausen” bootstraps. The gentleman is trying to pull
himself out of the swamp by yanking on his own hair. Despite this analogy I
think our particle bootstrap model is in principle correct—it’s practically the
same model as the one I introduced above. However, it has, I believe, due to a
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technical defect, so far not functioned quite right: one has usually introduced
only the few lowest mass particles in self-consistent bootstrap circles; the more
stable particles one takes, the better the particle bootstrap should function, so
all stable particles need to be included, after this is done there can no longer
be an objection. On the lighter side, we recall that only when Münchhausen has
yanked very strongly at his hair, was he able to move, and then not only himself,
but taking with him the swamp, and the Earth—the whole world.

(c) It is noteworthy that in the realm of today’s particle physics (or High Energy
Physics—we have seen that these two terms mean the same) no evidence is
found that the existing principles of relativity and of quantum theory need to be
corrected or extended in any way; even though we are in a new situation.

(d) After my report, it might seem as if the end of elementary particle physics has
come. However, what I have presented arises from speculative hypothesis. And
even if everything were correct, we would not come to an end, but find ourselves
at a new beginning: in all the above considerations only strong interactions were
considered, and not in terms of particular form of forces, but only in terms of
the ever-changing composition of the “elementary particles,” and we have never
spoken about their individual characteristics—therefore our conclusions were
completely independent of all these additional known particle properties. Thus
we have described the average behavior, the statistical behavior. But the main
focus of high energy physics is precisely on all these more detailed individual
properties of the new particles and the forces acting between them. And there is
the question, why these forces? In this regard we stand at a new beginning.

(e) Many physicists still believe in the possibility of exploring deeper and further to
ever more elementary building blocks. One must follow this line experimentally
and cannot be misled by intellectually satisfying speculation into believing that
the scientific question is settled.

(f) I have tried to describe everything in everyday language, in words, that we
physicists use, when we talk about such things at tea. To you, the reader, every-
thing must look very mysterious, especially the claim that each “elementary
particle” in different ways has been created from all the others. Take it to be ‘as-
if-speech’, as a blurry image of what can be formulated much more precisely
with the help of mathematics or technical jargon.

With this report I also, as an aside, hope I have made you understand why we high
energy physicists yearn so much for the next European 300-GeV accelerator, which
will now probably be built.

Possible Consequences in the Large?

What does this all have to do with the creation of matter? At least a few theories
about the beginning of the Universe assume a Big Bang, that is to say a creation
explosion. Following previous ideas—based on traditional black body radiation—
the Universe began with infinite energy density, with energy density proportional to
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the pressure, and infinitely high temperature. Under such extreme conditions, tradi-
tional black body radiation no longer remains, but rather the conditions are found
akin to the high-energy collisions of nucleons. And then when strongly interacting
matter is present the temperature cannot be infinite, but only about 1012 K, and the
pressure is not anymore proportional to the energy density but only proportional to
its logarithm. This is a different scenario of the beginning of the Universe than was
previously thought. A beginning is seen in experiments at CERN, where a proton
melts with another for 10�23 s into boiling primordial matter. Moreover, it cannot be
excluded that even entire stars consist of boiling primordial matter.

We can wonder if this Big Bang, the origin of everything, including the beginning
of time is an equally unsatisfactory assumption as is the existence of the very final
building blocks of matter. Just as you can ask: and how did that building block come
about?, so you can ask: and what was before Big Bang? How did it happen? We do
not know. Maybe we will find one day that this question in a similar way is irrelevant
as—possibly—the one about the final building blocks.

I close with an anecdote: on the bulletin board of a German university the
following could once be read among lecture announcements: Tuesdays 9–11 AM,
free for all discussion session about the structure of the Universe—only for the
advanced. signed X. We will, alas, always be beginners (see Fig. 16.1).
In 1992 a Summer School took place that united experts and students working
on hadron production and quark-gluon plasma in laboratory and cosmology. The
meeting was organized by G. Belletini, H.H. Gutbrod and J. Rafelski with the
principal sponsor being the NATO Scientific Affairs Division. Next page presents in
abridged format the meeting poster.

Fig. 16.1 Within a year of this popular level lecture, Hagedorn presented a scientific account of
his views as shown here (Astron. & Astrophys. 5 184–205 (1970) ). In doing this he contributed
decisively to the establishment of the ‘Hot Big Bang’ as the standard cosmological model. The
recognition of the phase boundary between boiling-quark and melting-hadron primordial universe
arrived a decade later
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Chapter 17
The Long Way to the
Statistical Bootstrap Model: 1994

Rolf Hagedorn

Abstract I describe the long way from the first theoretical ideas about multiple
particle production up to the situation in which constructing of a statistical model
of strong interactions seemed natural. I begin in 1936, and argue that the statistical
method came to be from a large network of observations and theoretical ideas. I shall
pick up only a few primary lines, chosen for their common end point: the statistical
bootstrap model of 1964/65.

It is the nature of a hypothesis when once a man has conceived it, that it assimilates
everything to itself, as proper nourishment; and, from the first moment of your begetting
it, it generally grows the stronger by everything you see, hear, read or understand. This is of
great use. [1]

17.1 Introduction

The Statistical Bootstrap Model (SBM) is a statistical model of strong interactions
based on the observation that hadrons not only form bound and resonance states
but also decay statistically into such states if they are heavy enough. This leads to
the concept of a possibly unlimited sequence of heavier and heavier bound and
resonance states, each being a possible constituent of a still heavier resonance,
while at the same time being itself composed of lighter ones. We call these states
clusters (in the older literature heavier clusters are called fireballs; the pion is the
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lightest ‘one-particle-cluster’) and label them by their masses. Let �.m/dm be the
number of such states in the mass interval fm; dmg; we call �.m/ the ‘SBM mass
spectrum’. Bound and resonance states are due to strong interactions; if introduced
as new, independent particles in a statistical model, they also simulate the strong
interactions to which they owe their existence. To simulate all attractive strong
interactions we need all of them (including the not yet discovered ones), that is,
we need the complete mass spectrum �.m/. To simulate repulsive forces we may
use proper cluster volumes à la van der Waals. In order to obtain the full mass
spectrum, we require that the above picture, namely that a cluster is composed of
clusters, be self-consistent. This leads to the ‘bootstrap condition and/or bootstrap
equation’ for the mass spectrum �.m/. The bootstrap equation (BE) is an integral
equation embracing all hadrons of all masses. It can be solved analytically with
the result that the mass spectrum �.m/ has to grow exponentially. Consequently,
any thermodynamics employing this mass spectrum has a singular temperature T0
generated by the asymptotic mass spectrum �.m/ � exp.m=T0/. Today this singular
temperature is interpreted as the temperature where (for baryon chemical potential
zero) the phase transition hadron gas ! quark-gluon plasma occurs.

The main power of the SBM derives from the postulate that the strong
interaction—as far as needed in statistical thermodynamical models—is completely
simulated by the presence of clusters with an exponential mass spectrum and
with mass-proportional proper volumes. This postulate implies that in SBM the
strongly interacting hadron gas is formally replaced by a non-interacting (i.e.,
ideal) infinite-component cluster gas with van der Waals volume corrections and
exponential mass spectrum, which can be handled analytically without recourse to
perturbative methods.

The story of how this model was first conceived in the language of the
grand canonical ensemble, reached maturity in the language of the microcanonical
ensemble (i.e., phase space), and was finally equipped with finite particle volumes in
order to become applicable to heavy-ion collisions and to the question of the phase
transition is presented in Chapter 25 [2].

Here I describe the long way from the first theoretical ideas about multiple
particle production up to the situation in which constructing SBM seemed natural.
The story starts in 1936, and in my record I omit everything that did not lie on or near
the way leading to SBM. What I wish to show is that SBM did not suddenly appear
in 1965 as a deus ex machina, but was rather the logical consequence of a history of
almost 30 years. Thus, from a large network of observations and theoretical ideas, I
shall pick up only a few lines, chosen for their common end point: SBM. A complete
and impartial picture of this history up to 1972 is presented by E.L. Feinberg in his
exhaustive and instructive report [3], which is an indispensable complement to the
present biased lecture.

I will try to be as non-technical as possible. Formulae are meant merely as
illustrations (often oversimplified); for hard information the reader should consult
the quoted literature. Units are „ D c D k (Boltzmann) = 1; energy in MeV or GeV.
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17.2 From 1936 to 1965

We list here experimental facts and theoretical concepts which were important and
instrumental to the construction of SBM.

Fireballs

How did we come to believe that ‘fireballs’—the things called ‘clusters’ in SBM—
exist?

Multiple Production: Heisenberg (1936)

Before Yukawa’s paper postulating the pion [4], one tended to believe that the
particles produced in cosmic ray events were electron–positron pairs. The only
field theory then known, quantum electrodynamics (as yet without a consistent
renormalization scheme), suggested that events with many secondaries should have
vanishingly small cross-sections [proportional to .e2/n]. This led many theoreticians
to the interpretation that such events must be the result of many interactions with
different nucleons in the same heavy nucleus, each single interaction producing
just one pair, a point of view [5–7] persisting even after the advent of meson
theory and in spite of growing experimental evidence in favour of multiple
production. Heisenberg—still unaware of Yukawa’s paper—was the first to claim
that, in a single elementary interaction, many secondaries might be produced [8],
which at that time was a heretical idea—the pion was discovered 11 years later!
Heisenberg followed this idea through many years (until �1955) and devised
different theoretical approaches to it, all invoking strong non-linearities and/or
diverging field theories. The final, irrevocable decision between his views and his
opponents’ only came with the first hydrogen bubble chamber pictures: Heisen-
berg’s revolutionary idea had been right.1 We summarize this line of thought in
‘Lesson 1’:

Lesson One (L1). In a single elementary hadron–hadron
collision, many secondaries can be produced.

Today this is so obvious that calling it a ‘lesson’ seems ridiculous, but seen in a
historical perspective, it challenged a strong prejudice.

1Although the various theoretical models he constructed, and which he himself considered as
preliminary, did not give final answers to the why’s and how’s.
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Dulles–Walker Variables (1954)

Assume a source of particles (a ‘fireball’) moving with velocity ˇ [Lorentz factor
� D .1 � ˇ2/�1=2] as seen from the lab and assume further that this source emits
particles with velocities ˇ0

i isotropically in its own rest frame. We put the z-axis
in the direction of motion and call �i the polar angle under which particle i is
emitted. Quantities in the fireball’s rest frame are primed, those in the lab frame
are not. In any book on relativistic kinematics, one finds the formula for the angle
transformation:

tan �i D 1

�

sin � 0
i

cos � 0
i C ˇˇ0

i

� 1

�
tan

� 0
i

2
; (17.1)

where the last approximation is true when ˇ and ˇ0
i are both near 1, which will be

assumed from now on.
The fraction F of particles emitted inside a cone of polar angle � 0 is, from

elementary geometry, in the fireball’s frame:

F D 1

2
.1 � cos � 0/ D sin2

� 0

2
; (17.2)

while in the lab the same particles—and the same fraction F—will be found inside
the cone of angle [see Eq. (17.1)]

tan � Š 1

�
tan.� 0=2/ (17.3)

so that in the assumed approximation

�2 tan2 � Š F

1 � F
: (17.4)

Hence

log
F

1 � F
Š 2 log � C 2 log tan � : (17.5)

We note in passing that, with F D 1=2, we find the angle �1=2 of the cone into which
half of the particles fall:

tan �1=2 D 1

�
: (17.6)

Now define for each particle i the fraction Fi of particles falling inside the cone of
polar angle �i (i.e., those having an angle smaller than or equal to that of particle i)
and plot the points yi D log Fi=.1 � Fi/ versus xi D log tan �i. These points will—
under the supposed conditions ˇ1ˇ0

i � 1 and isotropy—scatter about the straight
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Fig. 17.1 Relativistic
particles .ˇ0

i � 1/ emitted
isotropically in the ‘fireball’
frame, which itself moves
with ˇ � 1 as seen from the
lab, will scatter about a
straight line with slope 2 and
y intercept 2 log � when
plotted with Dulles–Walker
variables

2 log γ

log tan θ 

log F
1-F

line given by Eq. (17.5) with slope 2 and intercepts

x.y D 0/ D � log � ; y.x D 0/ D 2 log � ; (17.7)

as depicted in Fig. 17.1.
The discovery of these variables by Dulles and Walker [9] proved of great

importance for the analysis of cosmic ray events: if the points are plotted according
to the above rule, then if anything similar to a straight line emerged, an isotropically
emitting centre had to be conjectured and its Lorentz factor � could be read off.
Although things were not that simple, the method revealed a lot of information, as
we shall soon see.

‘Constant’ Mean Transverse Momentum (1956)

The invariance of the transverse momenta (of the produced particles) under a
Lorentz boost in the z-direction made them interesting from the beginning. The
amazement was therefore great when it gradually turned out that their average hp?i
seemed to be practically independent of the primary energy of the collision from
which they emerged. This was reported in so many papers over so many years that
I cannot quote all of them. Probably J. Nishimura was the first to have pointed it
out [10]. The result was by 1958 rather well confirmed [11] and remained so until
the ‘large transverse momenta’ were discovered in 1973 [12], which—important as
they were—corrected this result only slightly. We write down ‘Lesson 2’:

Lesson Two (L2). Secondaries emerging from high-energy hadron
collisions have mean transverse momenta of order hp?i � 500 MeV/c,
rather independently of the collision energy.
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The Two-Centre Model (1958)

The most prominent qualitative feature of the particle tracks in emulsions and/or
cloud chambers was that they were arranged in two cones: a wide one and,
inside it, a narrow one. No measurements were needed to see this and to guess a
simple mechanism that would produce it: two ‘centres’, one moving slowly and
another moving fast2 along the collision line, both emitting particles isotropically
and with rather small, energy-independent momenta [Lesson 2] in their respective
rest frames. I do not know whether one could say that a particular physicist had
this idea first (it might have been Takagi [13], but I am not sure): it must have
appeared obvious to anyone who saw pictures of these events. It was another
thing to analyse such pictures quantitatively. The pioneers were the Cracow–Czech
collaboration [14] and Cocconi [11]. They exploited the powers of the Dulles–
Walker representation.

The story went like this: one applied the Dulles–Walker plot to the available
events [11, 14] and, instead of finding the points representing the tracks scattering
about a straight line—as expected for a single ‘fireball’—one found something very
different. The result is show in Figs. 17.2 and 17.3 which I copy from Cocconi’s
paper [11]. The spirit of Cocconi’s paper is so well concentrated in a few original
passages that I repeat them here. Cocconi says:

It is evident from an examination of Fig. 2 [our Fig. 17.2] that in most cases the relativistic
secondaries are separated into two groups as if they were emitted, in the CM centre of the
collision, not by a single centre but by two bodies, as described in Section II(d).3 The
evidence is so striking that we are going to analyse these events in a slightly different
manner, more adjusted to the model.
Instead of considering all the relativistic particles produced in the collision together, let us
divide them into two groups: the forward group, b1 , and the backward group, b2 (the narrow
and wide cones).
Let n1 and n2 be the number of particles falling in each group and let us analyse them in
terms of log tan � versus logŒF1=.1 � F1/� and versus logŒF2=.1 � F2/�. The results are
plotted in Fig. 3 [our Fig. 17.3].

Figures 17.2 and 17.3 and Cocconi’s remarks need no further comment. It should be
noted, however, that he is aware of the possibility of other interpretations, in which
not individual ‘fireballs’, but a two-jet structure produces much the same effect.

The two-centre model was popular for a long time, as witnessed by the review
paper written by Gierula [15] in 1963, 5 years later, and based on more than 100
events with Elab & 103 GeV. If I remember well from those years, the model did
not always work—sometimes three or more fireballs had to be invoked—but on
the whole it was rather successful. That it seems never to have been disproved
came perhaps from the shift of interest to other questions arising from working with
accelerators, where single events were analysed mostly in the hope of discovering

2In the lab; in the CM frame, one forward, one backward.
3Cocconi proposes a two-centre model in Section II(d) of his paper (with two ‘leading nucleons’
not contained in the ‘fireballs’).
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Fig. 17.2 Experimental data plotted in Dulles–Walker variables
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new particles, but not to prove or disprove a two-centre model. The famous ‘flat
rapidity plateau’ was, of course, no argument against a two- (or few-) centre model,
as it arose from averaging over the impact parameter in many collisions contributing
to the measured inclusive distributions. We thus draw ‘Lesson 3’:

Lesson Three (L3). Secondaries produced in elementary hadron
collisions seem to be emitted from few (�2) ‘fireballs’ rather
isotropically with small momenta in the fireball’s rest frame.

Conclusion: Fireballs with Limited hpi Exist

We conclude that ‘fireballs’, decaying with limited momenta, do exist. In other
words, lumps of highly excited hadronic matter keep together for a very short time
before they decay in a very specific and—on this level—not yet understood way.

Statistical and Thermodynamical Methods

Having collected, in the previous section, the arguments in favour of the existence
of ‘fireballs’, we now turn to their description. The methods and the models used
eventually for this description were developed long before the existence of their final
objects was established. In fact, the story goes back to two early theoretical ideas:

• the compound nucleus of Bohr in 1936,
• the incorporation of interaction in statistical thermodynamics via scattering phase

shifts by Beth and Uhlenbeck in 1937.

Bohr’s Compound Nucleus (1936)

Bohr [16] proposed the following picture for a certain class of nuclear reactions:
if a heavy nucleus is hit by a nuclear particle, then the strong interaction among
the constituents and with the projectile can often lead to a complete dissipation of
the available energy, so that no single nucleon gets enough of it to escape at once.
This excited ‘compound nucleus’ will then live a rather long time before it decays by
emitting nucleons which accidentally obtained sufficient kinetic energy to overcome
the binding force. Of course, this picture cries out for a statistical description.

The Weisskopf Evaporation Model (1937)

We did not have to wait long for it. Weisskopf [17] writes, in his famous paper on
nuclear evaporation:
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Qualitative statistical conclusions about the energy exchange between the nuclear con-
stituents in the compound state have led to simple explanations of many characteristic
features of nuclear reactions. In particular the use of thermodynamical analogies has proved
very convenient for describing the general trend of nuclear processes. The energy stored in
the compound nucleus can in fact be compared with the heat energy of a solid body or a
liquid, and, as first emphasized by Frenkel [18],4 the subsequent expulsion of particles is
analogous to an evaporation process.

Weisskopf is cautious. He does not claim right away that thermodynamics is
applicable to nuclei; he rather derives first from elementary quantum mechanics a
formula for the emission of a neutron by the excited nucleus A, leaving another
excited nucleus B behind. For this he uses the principle of detailed balance by
considering the inverse reaction BC n! A, of which the cross-section is supposed
to be known. From this, the emission probability can be calculated; it is a very
simple expression containing the above cross-section, the level densities !A.EA/

and !B.EB/ of nuclei A and B, at their respective energies, and the phase space
available for a neutron of given kinetic energy �. Then he introduces quite formally
an ‘entropy’, viz.,

S.E/ D ln!.E/ ; (17.8)

and a ‘temperature’, viz.,

T.E/ D .dS=dE/�1 : (17.9)

In these variables, the derived formula for the emission probability assumes the
usual form of an evaporation probability with a Boltzmann spectrum:

W.�/d� � � exp.��=T/d� : (17.10)

The rest of the paper discusses when the formula is valid and what corrections are
necessary. What interests us here is that this is (to my knowledge) the first time that
it was shown quantitatively that thermodynamics might be applied to such a tiny
system as a nucleus. The reason is the enormous level density of heavy nuclei at
high excitation energy. Note also that the formula was derived for the emission of a
single neutron with only a few degrees of freedom (phase space). We conclude with
‘Lesson 4’:

Lesson Four (L4). Thermodynamics and/or statistics might be
(cautiously!) applied to very small systems, provided these have
a very large level density (whatever that means).

4Our list of references.
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When Weisskopf wrote his paper, not much was known about the level densities of
nuclei, and he proposed to learn about them from the observed emission spectra,
taking his formulae for granted.

Koppe’s Attempt and the Fermi Statistical Model (1948/1950)

Although traditionally all credit for the invention of a statistical model for particle
production goes to Fermi (see below), it was actually H. Koppe who proposed, in
fact 2 years earlier, the essence of such a model. He wrote [19]

In a recent paper [20],5 a simple method has been given for the calculation of the yield
of mesons produced by the interaction of light nuclei. It was based on the assumption of
strong interaction between mesons and nucleons which should make it possible to treat a
nucleus as a ‘black body’ with regard to meson radiation and to calculate the probability for
emission of a meson by statistical methods.

At that time, available energies were not high (Berkeley: ˛-particles of�380 MeV)
and consequently the temperatures remained small (�15 MeV), well below the pion
rest mass. Yet the model did not work too badly. Note that (for him) the high
level density justifying the treatment was located not in the meson field but in the
interacting nuclei (‘black body’).

Fermi [21] then takes the important step of considering the pion field itself as
the thermal (or better, statistical) system without the need for a background ‘black
body’ à la Koppe. Thus he claims that, e.g., a proton–proton collision could be
treated statistically. He writes [21]:

When two nucleons collide with very great energy in their CM system, this energy will
be suddenly released in a small volume surrounding the two nucleons. We may think
pictorially of the event as of a collision in which the nucleons with their surrounding
retinue of pions hit against each other so that all the portion of space occupied by
the nucleons and by their surrounding pion field will be suddenly loaded with a very
great amount of energy. Since the interactions of the pion field are strong, we may
expect that rapidly this energy will be distributed among the various degrees of freedom
present in this volume according to statistical laws. One can then compute statistically
the probability that in this volume a certain number of pions will be created with a
given energy distribution. It is then assumed that the concentration of energy will rapidly
dissolve and that the particles into which the energy has been converted will fly out in all
directions.

After some further discussion he writes down his basic formula for the production
of n pions (in modern notation):

S.n/ D 1

nŠ

�
V0
.2�/3

�n Z
ı

�
E �

nX

iD1
Ei

� nY

iD1
4�p2i dpi ; Ei D

q
p2i C m2 ;

(17.11)

5Our reference; the paper is written in German.
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where V0 is the ‘interaction volume’ [order .4�=3/m�3
� and Lorentz-contracted or

not, according to taste], E the total centre-of-mass (CM) energy, and m the pion
mass (or that of another species if considered).

The rest of his paper discusses applications at low, medium, and very high
energies; in the latter case a thermodynamic formulation is proposed, where the
temperature is proportional to E1=4—that is, a Stefan–Boltzmann gas of (massless)
pions is assumed. The way to this is already prepared when he discusses medium
energies, where a good number of pions are produced: in order to use the only
existing analytical expressions for n-body momentum space (namely for m D 0

and/or for m ! 1), he treats pions as massless and nucleons as non-relativistic.
At this time (1950), these assumptions were reasonable. The discovery of ‘limited
transverse momenta’ [10], which of course would invalidate them, was to come
only 6 years later. He also mentions angular momentum conservation, but only to
argue that it is unimportant; he soon comes back to this question in an attempt
to explain the observed anisotropy in CM [22], which failed. We pass over these
details.

What is important for us is that Fermi actually tries to describe the disintegration
of what we called above ‘fireballs’—8 years before they were discovered experi-
mentally [11, 14].

While the model fails quantitatively (Heisenberg [23] quotes a measured event
with an estimated primary energy of 40 GeV, where about 27 pions were actually
produced, in contrast to 2.7 predicted by Fermi in the thermodynamic version), it is
nevertheless the starting point for the development leading to the SBM.

Looking back we see a line of thought that leads from the Bohr compound
nucleus directly to the theoretical concept of a hadronic fireball and its statistical
(thermodynamical) description.

Beth–Uhlenbeck, Belenkij (1937/1956)

At the beginning of this section two main theoretical ideas were said to be essential
for a statistical description of fireballs. One was the Bohr compound nucleus,
leading directly to the Fermi model. The second is found in a paper by Beth and
Uhlenbeck [24]. The authors incorporate interaction in statistical thermodynamics
quantum mechanically via scattering phase shifts. We shall only sketch the idea.
Details may be found in [25, 26].

Suppose you have an ideal gas consisting of N non-interacting particles with
masses m1;m2; : : : ;mN at total energy E enclosed in a volume V . Let the level
density of this gas be N.E;V;m1; : : : ;mN). If a force acts between particles
numbered 1 and 2, they may form a bound state m12, and (if nothing else
happens) the level density of this new system becomes N�1.E;V;m12;m3; : : : ;mN).
The interaction has changed the level density and the system with interaction
would be described as a mixture of two ideal gases with and without bound
states.
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Beth and Uhlenbeck extend this argument to the case where the interaction leads
not to a bound state but only to scattering. Single out from our gas two particles
that are to scatter on each other, and take as normalization volume a sphere of
radius R centred at the point of impact of the two particles. The density of states
of this two-particle subsystem will be affected by the scattering process in that
the ` th partial wave of the common wave function of our two particles will be,
asymptotically:

 `.r; p/ � 1

pr
sin

�
pr � `�

2
C �`.p/

�
; (17.12)

where p is their relative momentum, r their distance, and �`.p/ the scattering phase
shift. The wave function should vanish at r D R :

pR � `�
2
C �`.p/ D n� ; n D 0; 1; 2; : : : : (17.13)

Thus n labels the allowed (discrete in R) two-body momentum states fp0; p1; : : :g.
For a fixed p0, there are n.p0/ states below p0, the density of states near p0 is

dn

dp0 D
R

�
C 1

�

d

dp0�`.p
0/ : (17.14)

Without interaction, �`.p/ 	 0. Hence, the interaction changes the two-particle
density of states by .1=�/d�`=dp. Of course this argument has to be repeated for
all partial waves and all particle pairs with the final result that the sum over ` gives
a contribution to the partition function containing the derivative of the scattering
amplitude [25, 27]. The formal extension of this method to include all interactions
is due to Bernstein et al. [28].

For the following argument of Belenkij [29], the simple equation Eq. (17.14) is
most illustrative. Let the two-body subsystem have a sharp resonance at relative
momentum p�. Then the phase shift rises there by � within a short interval, so that
.1=�/d�`.p/=dp � ı.p � p�/. Such a ı-function appearing in the density of states
is equivalent to introducing an additional particle with mass m� D m.m1;m2; p�/
into the system, very much as a bound state would be introduced. The actual proof
is somewhat complicated due to the switching between different sets of momenta.
Belenkij does this in detail. We state ‘Lesson 5’:

Lesson Five (L5). If in a statistical–thermodynamical system two-
body bound and resonance states occur, then they should be treated
as new, independent particles. Thereby a corresponding part of the
interaction is taken into account.

Note that after doing so, the system is still formally an ‘ideal gas’, but now with
some additional species of particles (simulating part of the interaction).
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Belenkij’s motivation for his work had been the known fact that Fermi’s model
gave wrong multiplicities: “This discrepancy may be as high as 20 times.” He had
hoped that his new remedy [expressed by (L5)] would cure the disease of the Fermi
model; it did so only partially, for reasons to become clear soon.

When we adopted Belenkij’s argument for including resonances, we did so
because it was intuitively obvious that resonances should be included even when
the formal derivation could not be directly invoked, as for instance in a process
A C B ! resonance ! n particles, where a phase shift increasing by � is not
defined. Incorporating resonances quite generally was later justified by Sertorio via
the S-matrix approach to statistical bootstrap in an important paper [30].

The CERN Statistical Model (1958–1962)

When in 1957 the CERN PS was near completion, planning of secondary beam
installations required estimates of particle production yields and momentum spectra.
Bruno Ferretti, our division leader at that time, asked Frans Cerulus and me to do
some calculations with the Fermi model (“just a fortnight of easy work : : :”, he
said), not surmising that by that request he triggered a new development. In fact, we
soon found out that the Fermi model, as it was, could not be used:

1. In the fireball rest frame, neither were pions ultrarelativistic nor nucleons non-
relativistic; indeed Lesson 2 (limited transverse momenta) excluded this, so
there were no analytic formulae available to calculate momentum space integrals
[Eq. (17.11)].

2. Interaction between the produced particles might be important; the ideal gas
approximation could lead to large errors.

For the second problem Belenkij had already given the solution: include all known
particles and resonances (Lesson 5). For the rest, we were confident: fireballs
seemed to exist (Lesson 3 was known to us by hearsay) and their statistical
description in principle possible (Lesson 4). We earnestly hoped that an improved
Fermi model would do. Problem 2 being trivial (thanks to Belenkij), once problem 1
was overcome, we concentrated on the calculation of momentum space integrals.
Cerulus had the idea to use the Monte Carlo method and we worked it out. At that
time this was a new method, not familiar to physicists; moreover the first CERN
computer was only to come in a year or so. So we had tried our new methods
[31] with the help of the Institute of Applied Mathematics at Darmstadt, where
an IBM computer was available (not very powerful in 1958!) and we had found
that momentum space integrals with up to �15 particles could be computed in
reasonable time and reliably with prescribable error (5–10 %).

I then took it over to write a program (my first!) for the expected CERN computer,
a Ferranti Mercury. It was an adventure: I had to learn to program a non-existing
machine, still under development, with no possibility of checking written parts of
the program. Everything was to be expressed in machine code—a simple addition
required four lines of code and all store addresses were absolute. One had to keep
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account of where each number (including intermediary results) was stored—and
there were thousands of them (momentum spectra of some 15 species of particles).

After half a year I had finished the program (so I thought) and went to Saclay
in France to test it on the first delivered Mercury machine. It failed beyond all
expectation. Correcting was even more tricky than writing the program (which
consisted of thousands of lines of numbers—no letters, no symbols; find the error!).
It even required manual skill: input and output was via punched paper tape and one
had to find the erroneous part (reading the tape by eye had to be learned, too), cut
it out, and replace it carefully by the corrected piece, gluing everything together
properly in case the teletape reader refused it or tore it to pieces.

In short, it was a mess, but finally it came to work, and in hundreds of hours we
produced kilometers of tape with our precious results: the first accurate evaluations
of the Fermi model including some interaction (all known particles plus some
resonances) at several primary energies from 2 to 30 GeV (lab) and for pp and
 p collisions. Cerulus [32] had used a very elegant group theoretical method to
solve the problem of charge distribution, and then employed the same method to
implement angular momentum conservation in phase space [33], in the hope of
reproducing the known anisotropy. It failed (because it required more computing
than was then possible and also) because the process was not so statistical as we
had hoped: angular momentum conservation could not produce the pronounced
anisotropy found in cosmic ray events and well accounted for by two-centre models
[11, 14]—a fact strongly suggesting that phase relations between partial waves
survived the statistical mixing assumed in the Fermi model. In principle we had the
tools to build and correctly evaluate a two-centre model, but it would have required
at least ten times more computing (summing over impact parameters with varying
fireball energies), which was impossible (we had already spent several years to do
all the computing for single fireballs). Thus the angular distribution could not be
described adequately.

But we had a more important success [34]: from the calculated momentum
spectra it followed that the mean kinetic energy of all particles was practically
independent of the primary lab energy (6–30 GeV). Thus the model more or less cor-
rectly produced the empirical fact stated in Lesson 2 (limited transverse momenta).
However, this was only a numerical result, due to the large number of species of
particles entering our calculations: counting spin, isospin, and antiparticles of the
included ones ( , ρ, ω, K, N, �, Λ, Σ, Ξ), we came to 83 different particle states,
equivalent to 83 species. This proved important in the following development, where
it was the key opening the door to the statistical bootstrap model, when we tried to
understand this mechanism analytically.

We state ‘Lesson 6’:

Lesson Six (L6). A properly evaluated Fermi model with some
interaction (resonances; L5) produces, in a limited interval of
primary energy, practically constant mean kinetic energies of
secondaries and reasonable multiplicities.

A review of our work is given in [34]. See also [35].
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The Decisive Turn of the Screw: Large-Angle Elastic Scattering

Early in 1964 evidence was growing that the elastic pp cross-section around
90ı (CM) decreased exponentially with the total CM energy, at least in the then
known region 10 � E � 30GeV of primary energies (lab). Many experiments
contributed to this, and we cannot list them all here. The situation—theoretical and
experimental—is well described in a paper by Cocconi [36], where references to the
original experiments are given.

One can include angles a little below and above 90ı by using transverse
momentum p? D p sin � . Orear [37] obtained in this way an impressive fit to large-
angle elastic scattering (in what follows, E is always the total CM energy and d! is
the solid angle, frequently denoted d˝):

E2
d

d!

ˇ̌
ˇ̌
e`

D const: 
 exp
�
� p?
0:158

�
; (17.15)

which is shown in Fig. 17.4. The cross-section follows this empirical formula over
nine orders of magnitude in the interval 1:7 � p0 � 31:8GeV/c (primary lab
momentum). Moreover, the reaction pCp!  Cd, as well as  p elastic scattering,
showed the same behaviour. In particular the exponential decrease had the same
slope as in pp elastic scattering [37].

It is tempting to interpret Eq. (17.15) as a thermal Boltzmann spectrum. In
that case 0.158 GeV would be the ‘temperature’ at which the two nucleons were
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emitted.6 It thus seemed that there was something statistical, a suspicion strangely
corroborated by the observation that the same law (with slightly different ‘tem-
perature’) was obeyed by secondaries in inelastic processes [36]. Almost 2 years
before the Orear plot was published, L.W. Jones had already proposed a statistical
interpretation: the two colliding particles would sometimes form a fireball—in
analogy to the compound nucleus—which would decay into many channels, among
them the two-body channel containing the original particles. This two-body decay
could only be observed far outside the diffraction peak, that is, at large angles. He
asked me whether such a picture could be described quantitatively by our statistical
model.

Statistical Model Description of Large-Angle Elastic Scattering

For some obscure reasons, we had archived all results obtained since 1958,7 and
even included the two-body channel. It was simple to analyse them again and to
find the amazing result

E2
de`

d!

ˇ̌
ˇ̌
90ı

� E2
P0P
b Pb
Š const: 
 E exp.�3:17E/ ; (17.16)

where P0 is the probability of the two-body channel and ˙Pb the sum over the
probabilities of all channels. P0 and all the Pb were numerical results from hundreds
of phase-space calculations as described above. When we established Eq. (17.16),
no free parameters were available, everything was in our archived data. This result
[38] agreed reasonably well with early experimental data [36], but when the Orear
fit [37] was published, the agreement became perfect: the number 3.17 in the
exponent of Eq. (17.16) corresponds to a temperature T D 0:158 if E D 2p? (at
90ı) is inserted; then Eq. (17.15) results (the factor E in front of the exponential is
negligible).

Thus L.W. Jones’ proposal was immensely successful. An independent confir-
mation by the observation of Ericson fluctuations [39] would have been desirable,
but I do not know if it was ever tried. It was probably too difficult.

Thermal Description

Our results were so convincing to me (unfortunately not to most others; among
the few exceptions was G. Cocconi) that I firmly believed that in Eq. (17.16) we

6If E is used at 90ı instead of p? Š E=2, the exponent becomes �E=0:31, which was sometimes
misinterpreted as T � 0:3GeV.
7Several people had contributed to the accumulation of statistical model results: J. von Behr, F.
Cerulus, H. Faissner, G. Fast, K.H. Michel, J. Soln, and myself.
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really had an exponential function and not something approximately exponential.
This belief (which was directly leading to the statistical bootstrap model) had to be
justified better than by Eq. (17.16), which was merely a numerical result established
in a rather small range of energy� 2:4 � E � 6:8GeV.

However, the belief was seriously challenged by Białas and Weisskopf [40] who
had given a thermodynamical description based on assumptions that I considered
unsuitable, but which nevertheless also gave a good fit to the data. What were these
assumptions? Mainly these:

• The compound system is a hot gas.
• As constituents only pions are considered. K mesons and resonances are assumed

to be unimportant.
• Pions are taken as massless.

These were exactly the assumptions that Fermi [21] had already made and that had
led to wrong multiplicity estimates [23, 29].

From the above assumptions, it follows immediately that the gas is at the black-
body temperature (Stefan–Boltzmann law)

T.E/ D const: 
 E1=4 : (17.17)

Therefore a Boltzmann spectrum for elastic scattering at 90ı would be of the form

exp

�
� p?

T.E/

�
D exp.�const: 
 E3=4/ ; (17.18)

instead of our result � exp.�const: 
 E/ as given in Eq. (17.16). For .d=d!/90ı ,
the authors derive an expression that contains Eq. (17.18) as the essential part, the
rest being algebraic factors.

The difference is in principle fundamental, but it is numerically insignificant in
the range of energies then available. Apparently the Orear plot [37], which might
have pleaded in favour of a pure exponential, was not yet available to the authors
(as seen from the dates of reception of the two papers).

Exponential or Not?

This question was so important that I wish to formulate it in two different ways:

1. Our result was [see Eq. (17.16)] that ˙Pb grows exponentially with E (the other
factors being algebraic). Now, a given phase-space integral for b particles is the
density of states of the b-particle system at energy E; thus˙Pb is the total density
of states of the ‘fireball’ at energy E. If our result Eq. (17.16) were true, it would
mean that the density of states of hadronic fireballs would grow exponentially
with their mass .D E/ up to at least m = 8 GeV.
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2. The second formulation is a consequence of the first. The entropy is the logarithm
of the density of states, hence the entropy of a fireball would be

S.E/ D const: 
 E (17.19)

and therefore its ‘internal temperature’ would be

T D .dS=dE/�1 D const: (17.20)

In words, if our result Eq. (17.16) were true, it would mean that the internal
temperature of hadronic fireballs would be independent of their mass .M 	 E/.

This would also explain (in a thermodynamic language) why our phase-space
calculations had given ‘constant’ mean kinetic energies [Lesson 6]: particles were
emitted with a Boltzmann spectrum at an energy-independent temperature. We had
suspected that this behaviour was due to our including interaction by admitting all
relevant species of particles and resonances known to us, but that had remained a
speculation up to then.

Cocconi had clearly seen what was going on. He writes [36]:

If the dependence of S on E is of the form S D aEn, it follows that d=d! D const: �
exp.�aEn/ and that the temperature of the compound system is T D .naEn�1/�1. The
value of n characterizes the ‘gas’ of the compound system [: : :]; n D 1 corresponds to
the case of a system in which, for E increasing, the number of possible kinds of particles
increases so as to keep the energy per particle, and hence the temperature, constant.8

Commenting on our phase-space results [34], he wrote:

This model produces an essentially ‘constant temperature’ because, in the compound
system, beside the nucleons and mesons, also the known excited states are counted
separately.

All this can be conveniently summarized in Lesson 7:

Lesson Seven (L7). The exponential decrease in the elastic pp
cross-section at large angles up to a CM energy of about 8 GeV
had empirically established the existence of ‘fireballs’ (clusters;
compound states) up to at least m D 8GeV. Moreover, their density
of states had to grow exponentially as a function of their mass up
to at least m D 8GeV, which means that, if the level density is
interpreted as a mass spectrum, there were an unexpectedly large
number of resonance-like states above those few then explicitly
known.

The question now was: could a reasonable analytical model for fireballs be
constructed, which would lead to an exponentially growing density of states and,
consequently, to an energy-independent temperature?

8The italics are mine.
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Asymptotics of Momentum Space

The question just formulated was in the mind of several people who therefore
investigated the asymptotic behaviour of momentum space integrals for E ! 1
[41–43]. They all consider essentially a pion gas and show that for E ! 1 the
masses become negligible and that the asymptotics can be evaluated there. All
authors agree that (in general) the density of states for E ! 1 then grows like
exp.const: 
 E3=4/, just as for a gas of particles with m D 0. Vandermeulen as well
as Auberson and Escoubès consider also the pathological case where the usual factor
1=nŠ in front of the phase-space integral is omitted. They discover the amazing fact
that, if the factor 1=nŠ in front of the phase-space integral is omitted, then the density
of states for E ! 1 grows like exp.const: 
 E/. I give here a simple derivation of
this result, taking all masses m D 0 from the outset and passing over subtleties such
as the difference between hEi and E in thermodynamics.

For zero masses, the particle energies equal their momenta and the n-body phase-
space integral (= n-body density of states at energy E) with spatial volume V
becomes

n.E;V/ D 1

nŠ

�
V

.2�/3

�n Z
ı

�
E �

nX

iD1
pi

� nY

iD1
4�p2i dpi : (17.21)

The n-body partition function is then the Laplace transform of  :

Zn.T;V/ D
Z 1

0

n.E;V/e�ˇEdE D 1

nŠ

�
V

8�3

�n �Z 1

0

e�ˇp4�p2dp

�n

;

(17.22)

where ˇ D 1=T (we use ˇ and T for convenience). The last integral equals 8�T3,
so that

Zn.T;V/ D 1

nŠ

�
VT3

�2

�n

D 1

nŠ
Z1.T;V/

n : (17.23)

Summing over n gives the partition function for our gas with particle number not
fixed:

Z.T;V/ D ˙Zn.T;V/ D exp


Z1.T;V/

�
;

ln Z.T;V/ D Z1.T;V/ D VT3

�2
D �F

T
D � 1

T
.E � TS/ D S � ˇE ;

(17.24)

where F is the free energy and S the entropy. It follows that

E D � d

dˇ
ln Z D 3VT4

�2
; (17.25)



158 R. Hagedorn

which is the Stefan–Boltzmann law for Boltzmann statistics. Further

S D ˇE C ln Z D 4VT3

�2
: (17.26)

If S is expressed as a function of E (as it should be), we have

S D
�
256V

27�2

�1=4
E3=4 ; (17.27)

and the density of states becomes, as derived more rigorously in the above papers,

.E;V/ D eS D exp.const: 
 E3=4/ : (17.28)

But the situation changes drastically if the factor 1=nŠ is omitted. Go back to
Eqs. (17.23) and (17.24) and drop 1=nŠ there. The sum now gives

Z.T;V/ D 1

1 � Z1
D 1

1 � VT3=�2
D T30

T30 � T3
; T0 D .�2=V/1=3 :

(17.29)

For T ! T0 the partition function diverges. Hence T0 is a singular temperature for
this gas.

Now the miracle happens. Assume V to be the usual ‘interaction volume’ of
strong interactions [21] (without Lorentz contraction):

V � 4�

3
m�3
� gives T0 Š

�
3�

4

�1=3
m� Š 0:184 GeV : (17.30)

This is almost the mysterious ‘constant’ temperature so often encountered in this
report. Following the standard procedure, we calculate the energy and entropy. Both
become simple for T ! T0 :

E � 3T40
T30 � T3

; S � E

T0
C ln

E

3T0
: (17.31)

The energy diverges for T ! T0 (therefore T0 is the maximum temperature for this
gas). For the level density, we obtain

.E;V/ D eS Š E

3T0
exp

E

T0
; (17.32)

that is, omitting the factor 1=nŠ leads to a maximum temperature and to an
exponentially growing density of states. Equation (17.31) implies that, for E �
10T0, one always finds a temperature 0:9T0 � T < T0, hence practically constant.
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This result brought me—me, but nobody else—to a state of obsession. Did it not
explain one of the most intriguing features of strong interaction processes? And was
it not obviously wrong because of its unrealistic assumptions? Yet, there was an
interpretation that opened the way to a better model.

Interpretation: Distinguishable Particles and Pomeranchuk’s Ansatz

The factor 1=nŠ in front of the phase-space integral Eq. (17.21) serves to compensate
for ‘double’ counting: given a set of fixed momenta fp1; p2; : : : ; png, all nŠ
permutations of this set occur during the integration over p1; p2; : : : ; pn. If the
particles are indistinguishable, one has therefore to divide by nŠ. If all n particles
are different from each other, one should not divide. This was exactly the point: in
our statistical model calculations we had used �80 different particle states and had
therefore to replace

1

nŠ
! 1

˘nkŠ
; k D 1; : : : ; 80 ; (17.33)

in front of the phase-space integrals. However, since the number of produced secon-
daries remained far below 80, the values nk remained, for all essentially contributing
phase-space integrals, either 0 or 1. Hence, practically all nkŠ D 1, and 1=nŠ was
effectively replaced by 1. If this situation was to be simulated analytically by a
solvable model [namely all masses = 0 (for E!1/�, then in order to come near to
reality, the factor nŠ should be dropped, as if the particles were distinguishable.

This argument led Auberson and Escoubès to look at the case where 1=nŠ is
dropped. They also considered a scenario corresponding to Eq. (17.33), namely
where there are r different species of particles, while inside each species, particles
are indistinguishable. They are cautious in the interpretation of their results [41]:

If it is probable that the discernibility hypothesis is the most realistic at low energies, one
cannot very well locate the energy at which this hypothesis must be abandoned (if at all).

And later:

Clearly r could be larger than 3, to take into account the resonances at high energies.9 (If,
however, in reality the strongly interacting particles should have an infinity of excited states
[: : :] we fall back essentially on discernible particles.)

They leave the question open.
In the present context, a paper by Pomeranchuk [44] must be mentioned. He

proposes to improve the Fermi model by admitting that real pions are not pointlike.
Therefore n pions would not find room in a volume V0 .� 4�m�3

� =3/, but need
at least a volume nV0. Thus the space volume factor in front of the integral

9r is the above number of different species of particles, roughly 80 in our old phase-space
calculations.



160 R. Hagedorn

in Eq. (17.21) would be ŒnV0=8�3�n instead of the one appearing in Eq. (17.21).
However, for large n,

nŠ � p2�n nne�n ; (17.34)

the factor nn arising from the corrected volume will essentially cancel the factor
1=nŠ, and one thus arrives effectively at a model with ‘distinguishable’ particles in
a volume eV0. In this way, Pomeranchuk also obtains a maximal temperature of
the order of m� , that is, a practically constant temperature. His paper came about
13 years too early—or at least five, since the constant mean transverse momenta
became popular only after 1956 [10] (the decisive large-angle scattering took shape
around 1964).

While the model of distinguishable particles was useful because it produced the
surprise that motivated the investigations described in the following section, it was
clear that all further efforts had to be made on the realistic basis of massive particles
with Bose and/or Fermi statistics. The principal lesson to be kept in mind was that
there should be many, many different species of particles.

17.3 The Statistical Bootstrap Model (SBM)

Up to here we have collected everything that helped to motivate the construction of
SBM. We now describe this construction. For what follows, a few formulae need to
be recalled; although everybody knows them, it is necessary to have them ready
at hand in order not to interrupt the argument. We use Boltzmann statistics for
simplicity (the first paper on SBM used correct statistics [45]).

A Few Well-Known Formulae

We go back to Eq. (17.21), rewrite it for relativistic massive particles, and follow the
same derivations as there. The density of states of n particles of mass m enclosed in
a volume V at energy E is then

n.E;V;m/ D 1

nŠ

�
V

.2�/3

�n Z
ı

�
E �

nX

iD1
Ei

� nY

iD1
4�p2i dpi ; Ei D

q
p2i C m2 :

(17.35)

Its Laplace transform is the n-particle partition function:

Zn.T;V;m/ D 1

nŠ

�
V

.2�/3

�n �
4�

Z
e�ˇ
p

p2Cm2p2dp

�n

; (17.36)
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and the integral is

Z
e�ˇ
p

p2Cm2p2dp D m2TK2.m=T/ ; (17.37)

where K2 is the second modified Hankel function [which for m � T goes as
.�T=2m/1=2 exp.�m=T/ and for m� T as .T=m/2].

We obtain

Zn.T;V;m/ D 1

nŠ

�
V

.2�/
m2K2.m=T/

�n

D Z1.T;V;m/
n=nŠ ; (17.38)

by which the ‘one-particle partition function’ Z1 is defined. Summing over n gives
the (grand canonical) partition function for an unfixed particle number:

Z.T;V;m/ D
1X

nD0

1

nŠ
Zn
1 D exp

�
VT

2�2
m2K2

�m

T

��
: (17.39)

For a mixture of two gases with particles of masses m1 and m2, respectively, we
have Z.T;V;m1;m2/ D Z.T;V;m1/Z.T;V;m2/. We generalize this to a mixture of
gases of many different sorts of particles by introducing the (as yet unknown) mass
spectrum �.m/:

�.m/dm D number of different species of particles in fm; dmg ; (17.40)

and obtain

Z.�/.T;V/ D exp

�
VT

2�2

Z 1

0

m2K2
�m

T

�
�.m/dm

�
: (17.41)

On the other hand, any Z.T;V/ can be written as

Z.T;V/ D
Z 1

0

.E;V/ exp

�
�E

T

�
dE : (17.42)

Given Z.T;V/, the energy spectrum (density of states) .E;V/ can be calculated,
and vice versa.

Doing the same steps, i.e., summing over n and introducing a mass spectrum
without, however, executing the Laplace transformations, yields the phase-space
analogue of Eqs. (17.41) and (17.42):

.�/.M;V/ D
1X

nD0

1

nŠ

�
V

.2�/3

�n Z
ı

�
M �

nX

iD1
Ei

� nY

iD1
4�p2i �.mi/dpidmi ;

(17.43)
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where Ei D .p2i C m2
i /
1=2. Note the enormous difference between the two densities

of states, �.m/ and .M;V/. Suppose there is a single species with mass m0; then
�.m/ D ı.m�m0/ is zero everywhere except at m D m0, while .M;V/ grows (for
M� m0/ as exp.const: 
M3=4/ as shown in Eq. (17.28).

Introducing the Statistical Bootstrap Hypothesis

From an article that does not otherwise concern our subject, R. Carreras [46] picked
up a bon mot which may serve very well as a motto for this section:

[: : :] all of these arguments can be questioned, even when they are based on facts that are
not controversial.

Here are these arguments:

• If anything deserves the name ‘fireball’, then it is the lump of hadronic matter in
the state just before it decays isotropically into a two-body final state, as observed
in large-angle elastic [pCp! pCp,  Cp.n/!  Cp.n/� or two-body inelastic
scattering [pC p!  C C d].

• This fireball answers, within experimental accuracy, to the description by an
improved Fermi statistical model, as witnessed by the agreement of our phase-
space results with the Orear plot (Fig. 17.4).

• We therefore postulate that fireballs describable by statistical models do exist,
provided that in such models interaction is taken into account by including known
particles and resonances (Lessons 5, 6, and 7).

• While practically a limited number of sorts of particles and resonances was
already sufficient to describe, within experimental accuracy, fireballs up to a mass
of 8 GeV, we should in principle include all of them with the help of an as yet
unknown mass spectrum �.m/.

• Recalling Eqs. (17.41)–(17.43), we observe that there are two mass spectra
appearing in the statistical description:

1. .M;V0/dM is the number of states (of species) of fireballs (volume V0) in
the mass interval fM; dMg.

2. �.m/dm is the number of species of possible constituents (of such fireballs)
having a mass in fm; dmg.

• A glance at the Review of Particle Properties [47] informs us, under the headings
Partial Decay Modes that heavy resonances [to be counted in �.m/] have many
decay channels, some of them containing resonances once again. Thus, heavy
resonances ‘consist’ (statistically) of particles and lighter resonances—just as
fireballs do.

• Therefore there is no principal difference between resonances and fireballs: the
states counted in .M;V0/ should also be admitted as possible constituents of
fireballs of larger mass—that is, they should be counted in �.m/.

• We conclude that �.m/ and .m;V0/ count essentially the same set of hadronic
masses and that therefore they must be—up to details—the ‘same’ function.
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• They cannot be exactly equal, because �.m/ starts with a number of ı-functions
(�; K; p; : : :) while .m;V0/ is continuous above 2m� .

• Leaving the door open for such differences and others, we postulate only that the
corresponding entropies should become asymptotically equal:

log .m;V0/

log �.m/
�!

m!1 1 : (17.44)

We call this the ‘bootstrap condition’ [45], which is a very strong requirement in
view of the great difference between � and  in ‘ordinary’ thermodynamics (see
the remark at the end of the last section).

The Solution

The rest is mathematics (and the above motto no longer applies). It could be
shown [45] that � and  have to grow asymptotically like const: 
 m�˛ exp.m=T0/,
while possible solutions growing faster than exponentially are inadmissible in
statistical thermodynamics. Nahm [48] proved that, by adding certain refinements,
the condition Eq. (17.44) could be sharpened and that the power of the prefactor is
then ˛ D 3. He also derived sum rules, which allowed him to estimate T0 to lie in the
region of 140–160 MeV, results which agreed with Frautschi’s (and collaborators)
numerical results [49]. Thus the question put after Lesson 7 had been answered in
the affirmative: SBM was born.

It is a self-consistent scheme in which the ‘particles’—i.e., clusters or resonances
or fireballs, call them what you like—are at the same time:

• the object being described,
• the constituents of this object,
• the generators of the interaction which keeps the object together.

Thus it is a ‘statistical bootstrap’ [49] embracing all hadrons.

Further Developments

Everything that happened to SBM after its birth is reported in some detail, and with
all references known to me, in the review Chapter 25 [2], which I shall not try to
sum up here.

Even so, a few more important steps must be mentioned:

• The thermodynamic description of fireballs is so simple that it can be combined
with collective motions (as in two-centre models [11]) and summed over impact
parameters. Leading particles and conservation laws are easily taken care of. In
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this way, Ranft and myself constructed the so-called ‘thermodynamical model’,
which proved useful for predicting particle momentum spectra [50].

• Frautschi, in a most important paper [49], had written down and solved the first
phase-space formulation of SBM. His work triggered an avalanche of further
papers reviewed in Chapter 25 [2], see also Chapter 22, leading to a new
development. His ‘bootstrap equation’ (BE) is much stronger and more elegant
than our above ‘bootstrap condition’ Eq. (17.44). Later it was put in a manifestly
Lorentz invariant form and analytically solved by Yellin [51]. This formulation
has become standard. The Laplace-transformed BE is a functional equation for
the Laplace transform of the mass spectrum. This equation was already known10

in 1870 [52] and independently rediscovered by Yellin. All this was so important
that I cannot resist illustrating it with the help of a simple toy model, in which
clusters are composed of clusters with vanishing kinetic energy. In this limit the
Frautschi–Yellin BE reads

�.m/ D ı.m� m0/C
1X

nD2

1

nŠ

Z
ı

 
m �

nX

iD1
mi

!
nY

iD1
�.mi/dmi : (17.45)

In words, the cluster with mass m is either the ‘input particle’ with mass m0

or else it is composed of any number of clusters of any masses mi such that
˙mi D m. We Laplace-transform Eq. (17.45):

Z
�.m/ exp.�ˇm/dm D exp.�ˇm0/C

1X

nD2

1

nŠ

nY

iD1

Z
exp.�ˇmi/�.mi/dmi :

(17.46)

Define

z.ˇ/ WD exp.�ˇm0/ ; G.z/ WD
Z

exp.�ˇm/�.m/dm : (17.47)

Thus Eq. (17.46) becomes G.z/ D zC expŒG.z/� �G.z/ � 1 or

z D 2G.z/� expŒG.z/�C 1 ; (17.48)

which is the above-mentioned functional equation for the function G.z/, the
Laplace transform of the mass spectrum. This function proved most important
in all further development. For instance, the coefficients of its power expansion
in z are directly related to the multiplicity distribution of the final particles in
the decay of a fireball [53]. It is most remarkable that the ‘Laplace-transformed
BE’ Eq. (17.48) is ‘universal’ in the sense that it is not restricted to the above

10In another context, as one might guess.
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Fig. 17.5 (a) z.G/ according to Eq. (17.48). (b) G.z/, the graphical solution of Eq. (17.48)

toy model, but turns out to be the same in all (non-cutoff) realistic SBM cases
[49, 51]. Moreover, it is independent of:

– the number of space-time dimensions [54],
– the number of ‘input particles’ (z becomes a sum over modified Hankel

functions of input masses),
– Abelian or non-Abelian symmetry constraints [55].

What is wanted is of course G.z/, given implicitly by Eq. (17.48). Solutions
are reviewed in Chapter 25 [2]. Simplest is its graphic solution: we draw
z.G/ according to Eq. (17.48) and exchange the axes (see Fig. 17.5). One sees
immediately that (universally!)

zmax.G/ DW z0 D ln 4 � 1 D 0:3863 : : : ; G0 D G.z0/ D ln 2 :

The parabola-like maximum of z.G/ implies a square root singularity of G.z/ at
z0, first remarked by Nahm [48]. Upon inverse Laplace transformation, this leads
to �.m/ � m�3 exp.ˇ0m/ where (in our present case, not universally!):

ˇ0 D � 1

m0

ln z0 D 0:95

m0

Œsee Eq. (17.47)� : (17.49)

Putting m0 D m , we find a reasonable value for T0 D ˇ�1
0 :

T0.toy model/ D 0:145 GeV : (17.50)

Thermodynamics of a gas of the above clusters Eq. (17.45) has T0 as a singular
temperature. Thus, the simple toy model already yields all essential features of
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SBM. For a very short representation of the more realistic case of pion clustering
in full relativistic momentum space, see [53, Sect. 2].

• Much work was done by groups in Bielefeld, Kiev, Leipzig, Paris, and Turin to
clear up the relation of SBM to other trends in strong interaction physics (Regge,
Veneziano, etc.) and to the theory of phase transitions; this is reviewed in Chapter
25 [2].

• In the mid-1970s J. Rafelski arrived at CERN and immediately began pushing
me: SBM should be polished up to become applicable to heavy-ion collisions.
There were two problems: baryon-number (and, eventually, strangeness)
conservation and proper particle volumes—pointlike heavy ions would be
nonsense. Thus we introduced baryon (strangeness) chemical potential and—
less trivially—proper particle volumes, first in the BE [56], then in the ensuing
thermodynamics [57]. We found that particle volumes had to be proportional
to particle masses with a universal proportionality constant. The argument was
the following. Let a cluster (fireball) of mass m and volume V be composed of
constituents with masses mi and volumes Vi. In contrast to standard assumptions
in thermodynamics, the cluster is not confined to an externally imposed volume;
rather it carries its volume with it (as already stressed by Nahm [48]), and so
does each of its constituents. Let any one of them have four-momentum p�i . Then
its volume moves with four-velocity p�i =mi. With Touschek [58], we define a
‘four-volume’

V�
i D

Vi

mi
p�i : (17.51)

The constituents’ volumes have to add up to the total cluster volume and their
momenta to the total momentum:

V

m
p� D

nX

iD1

Vi

mi
p�i ; p� D

nX

iD1
p�i : (17.52)

This is possible for arbitrary n and p�i if and only if

V

m
D Vi

mi
D const: D 4B ; (17.53)

where the proportionality constant is written 4B in order to emphasize the
similarity to MIT bags [59], which have the same mass-volume relation.
Moreover, as the energy spectrum of SBM clusters and MIT bags is the same
even in the detail [60, 61], one is led to consider these two objects to be the same,
at least in the sense that statistical thermodynamics of MIT bags is identical to
that of SBM clusters. This ‘identity’ is interesting, because MIT bags ‘consist
of’ quarks and gluons, SBM clusters of hadrons: it suggests a phase transition
from one to the other.
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• The thermodynamics of clusters with proper volumes still had a singularity at
T0, but a weaker one: while in the old (point-particle) version of SBM the energy
density diverged at T0 (thus making T0 an ‘ultimate’ temperature), the energy
density was now finite at T0, making a phase transition (already anticipated by
Cabibbo and Parisi [62]) to a quark-gluon plasma possible [57, 63, 64].

• Technical problems in handling the particle volumes explicitly could be elegantly
solved [65–69] by using the ‘pressure (or isobaric) partition function’ invented
by Guggenheim [70]. This technique allows one to treat the thermodynamics
of bags with an exponential mass spectrum (pioneered by Baacke [71]) in a
beautiful way: Letessier and Tounsi [72–74] succeeded, following the methods
of the Kiev group [65–69], in describing with a single partition function the
hadron gas, the quark-gluon plasma, and the phase transition between the two in
a realistic case. This opens the way to solving a number of problems connected
with proving (or disproving?) the actual presence of a quark-gluon phase in the
first stage of relativistic heavy-ion collisions.

17.4 Some Further Remarks

The Difficulty in Killing an Exponential Spectrum

The most prominent feature of SBM is its exponentially increasing mass spectrum.
Many objections to it were put forward: symmetry constraints would forbid a
number of the states counted in it; correct Bose–Einstein and Fermi–Dirac statistics
would also reduce the number of states; and in composing clusters of clusters and
so on, one should take into account the Pauli principle, which again might eliminate
many states. Furthermore, the original argument for including resonances was based
on the Beth–Uhlenbeck method [see Eq. (17.14) and Lesson 5], which invokes phase
shifts and their sudden rise by � when going through a resonance. But then the
phase shifts should go to zero for infinite momentum and the Levinson theorem
states that ı`.0/ � ı`.1/ D N`� , with N` D number of bound states with angular
momentum `. Therefore phase shifts cannot go on increasing by � for each of our
(exponentially growing number of) resonances—they must decrease again. That is,
each and every one of the masses added somewhere to the mass spectrum must be
(smoothly) subtracted later on. How then can an exponential mass spectrum survive?

All these objections turn out to leave the mass spectrum intact, because the
exponential function is extremely resistant to manipulations: multiplication by
a polynomial of any (positive or negative) order, squaring, differentiating, or
integrating it will not do much harm (consider the leading term of its logarithm!)—at
most change its exponential parameter .T0 ! T 0

0/.
Therefore, once our self-consistency requirement—crude as it may be—has led

to this particular mass spectrum, it is difficult to get rid of it. Incidentally, in the first
paper on SBM [45], correct Bose–Einstein/Fermi–Dirac statistics was employed
(easy in the grand canonical formulation, awful in phase space [75–79]) and the
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result was that the mass spectrum �.m/ D �Bose.m/ C �Fermi.m/ had to grow
exponentially. The role of conservation laws has been dealt with in the literature
(see references in Chapter 25 [2]). None of these explicit attacks killed the leading
exponential part of the mass spectrum.

It remains, as an illustration of the resistance of �.m/, to assume that, for
whatever reason, every mass once added to it, has to be eliminated again. (I do
not know of any serious argument which would require this. The Levinson theorem
derived in non-relativistic potential scattering [80] cannot be invoked in a situation
where all kinds of reactions between constituents take place—but assume it had to
be so.) Then, arriving at mass m, we subtract everything that had been added at
m ��m, whence

�.m/ �! �.m/� �.m ��m/ � eˇ0m


1� e�ˇ0�m

�
;

and the leading exponential remains untouched (a kind of differentiation).

What is the Value of T0?

The most fundamental constant of SBM, namely T0, escapes precise determination.
There are several ways to try to fix T0:

1. Theoretically,

(a) inside SBM,
(b) from lattice QCD.

2. Empirically,

(a) from the mass spectrum,
(b) from the transverse momentum distribution,
(c) from production rates of heavy antiparticles (He3, d),
(d) from the phase transition to the quark-gluon phase.

We obtain the following.

1a. T0 from Inside SBM
The crude model of Eq. (17.45) yields with pions only T0 � 0.145 GeV
If K and N were added to the input T0 � 0.135 GeV

The unrealistic model of distinguishable, massless particles
as described by Eq. (17.31) gives T0 � 0.184 GeV

A more realistic model (pions + invariant phase space)
yields [81] T0 � 0.152 GeV
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Table 17.1 T0 from lattice QCD

nf T0 from
p
 T0 from m� Tc from mN

0 239 ˙ 13 239 ˙ 23 225 ˙ 30

2 – 145 ˙ 7 113 ˙ 9

4 160 ˙ 22 130 ˙ 7 105 ˙ 9

T0 � 0:145 or 0.130 GeV.
p
 D 0:42˙ 0:02GeV is the string tension and nf the number of light

flavors, nf = 2 or 4 being the most physical choice. Taken from [83], for contemporary results see
Chaps. 7, 10, 14, and 21.

Hamer and Frautschi [82] solve their BE by numerical
iteration and read off T0 � 0.140 GeV

Nahm derives a sum rule from which he found, under different
assumptions (which particles are admitted?) [48]: T0 � 0.154 GeV

or 0.142 GeV

1b. T0 from Lattice QCD The determination of T0 from lattice QCD is still ham-
pered with difficulties. First estimates using pure gauge gave rather high T0, while
the introduction of quarks pose their own problems. Nevertheless compromises have
been devised which circumvent these problems and provide a way of dealing with
quarks (but paying a price depending on what one is after). Table 17.1 is taken from
a review article by F. Karsch, where the methods are described and references to
original work are given [83, Table 2] (see also [84]).

It is believed that the value ‘T0 from m�’ is the most realistic. It agrees rather
well with the above-listed estimates of T0 from inside SBM [except the one for
distinguishable massless particles which—accidentally?—lies nearer to the pure
gauge (nf = 0) value].

2a. From the Mass Spectrum Here the difficulty is that approximate completeness
of the empirical mass spectrum ends somewhere around 1.5 GeV, because the
density of mass states increases and the production rate decreases (both exponen-
tially, as predicted by SBM), and the identification of all masses rapidly becomes
impossible. On the other hand, we know only the asymptotic form of the mass
spectrum � m�3 exp.m=T0/ and have to guess an extrapolation towards lower
masses, which does not diverge for m! 0. Various attempts (after 1970):

Hagedorn and Ranft [85] obtain, with large uncertainties T0 Š 0:148GeV

Letessier and Tounsi [86] find T0 Š 0.155 GeV

See also [87] T0 Š 0:158GeV

2b. From the p? Spectrum

Large-angle elastic scattering. Orear [37] finds an
apparent temperature T = 0.158 GeV, which should
lie near to T0. Hence T0 & 0.158 GeV
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Folklore has it that the p? distribution in the soft region
is exp.�6p?/. The exact formula for the distribution is
[88] quite different from exp.�p?=T/, but for p? � m 

one might generously accept exp.�6p?/. Then T � T0 Š 0:167GeV

A serious attempt to fix T0 from the p? distribution is
reported in [89]. In a region where pk is very small (no
integration over pk), the authors fit the p? distribution
to a Bose–Einstein formula and obtain the surprisingly
low result T0 > T � 0:117GeV

They give reasons why they identify this with T0, although the primary momentum
is only 28.5 GeV (Brookhaven), so that T0 could still lie somewhat higher (as I
believe).

Remark The determination of T from p? suffers from a number of perturbing
effects, which have been discussed in detail in [88]: resonance .ρ; �; : : :/ decay,
leakage of ‘large p?’ down to the soft region, etc. It seems that none of these effects
influence the two-body large-angle scattering, so that the value found by Orear [37]
might be more trustworthy than the values obtained by fitting the soft p? distribution
by various formulae (partly not well justified).

2c. From Production Ratios of Heavy Antiparticles Production rates of anti-3He,
antitritium .t/, antideuteron .d/, and of many other particles have been measured
[90].11 By taking ratios we avoid (at least in part) problems coming from the pion
production rate, not well known theoretically, and from (not very) different momenta
and target materials. From the quoted paper [90], we take ratios 3He=d and t=d and
average the values [all around (0.8 to 2) 
10�4]. We find

�
3He or t

d


D .1:4˙ 0:7/ 
 10�4 : (17.54)

From SBM—taking into account the fact that, for each produced antibaryon, another
baryon must be produced along with it—one easily works out (spin, etc., factors
included)

�
3He or t

d


D V

�
3

2

�3=2 �mNT

2�

�3=2
8

3
exp.�2mN=T/ : (17.55)

The exponential is easily understood: 3He or t require production of six nucleon
masses, while d requires 4, and in the ratio, four of the six cancel out.

11I am grateful to P. Sonderegger (CERN) for making me aware of this work.
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Putting in numbers, one finds that the experimental values 17.54
are obtained with a temperature between 0.15 and 0.16 GeV
when for V we assume the usual 4�=3m3

� . Hence (at a
primary momentum of �200 GeV/c) T0 & 0:155GeV

2d. From the Phase Transition to the Quark-Gluon Phase As the existence of
the quark-gluon phase is still hypothetical, no direct measurement is available. A
theoretical estimate was proposed by Letessier and Tounsi [91]: they require that
the curves P D 0 for an SBM hadron gas and for a quark-gluon phase coincide “as
well as can be achieved”. They find T0 � 0.170 GeV

Remark 1 The collective motions expected in the expansion and decay of the
‘fireballs’ produced in relativistic heavy-ion collisions will ‘Doppler-shift’ the tem-
peratures read off from transverse momentum distributions. Too high temperatures
will result if the collective transverse motion is not corrected for. Thus in our
early work on heavy-ion collisions [92], we (erroneously?) assumed a value T0 �
0.19 GeV, which does not seem, in view of all the other estimates, to be realistic.

Remark 2 While no precise value can yet be assigned to T0, it is satisfying that so
many different methods yield values which differ typically by less than 20 %. An
average over all values listed above gives12: T0 D 0:150˙ 0:011GeV

Where Is Landau, Where Are the Californian Bootstrappers?

History as told above makes it evident that Landau’s model [93] is orthogonal
to our approach and did not influence its development. There was, however, one
moment after the formulation of SBM, namely when we tried to combine it with
collective motions to obtain momentum spectra of produced particles, when we
considered a combination of Landau’s hydrodynamical approach with SBM—only
to discard it almost immediately. Landau dealt with ‘prematter’ expanding after a
central collision, while we needed the evolution of hadron matter after collisions
averaged over impact parameter. We had to take into account various sorts of final
particles ( , K, N, hyperons, and antiparticles) obeying conservation laws (baryon
number and strangeness). We had to care for leading particles, etc. All that forced
us to pursue the semi-empirical ‘thermodynamical model’ [50] whose aim was not
theoretical understanding, but practical predictions for use in the laboratory.

Moreover there was a psychological obstacle which I never overcame: namely
the Lorentz-contracted volume from which everything was supposed to start. True,
when two nucleons hit head on, then just before the impact they are Lorentz-

12The two extreme values 0.117 and 0.184 were omitted; the error quoted is the mean standard
error arising from the listed values (without taking their individual errors into account).
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contracted (seen from the CM); then they collide, heat up, and come to rest. When
they start to expand, they are at rest and hence no longer Lorentz-contracted. On
the other hand, one can conceive that the mechanical shock has indeed compressed
them. But into what state would be another complicated hydro-thermodynamical
problem in which their viscosity, compressibility, specific heat, and what-not would
enter.13 Why should this state of compression, which constitutes the initial condition
for the following expansion, be exactly equal to the Lorentz ‘compression’ before
the shock? Since nobody among the people working on this model shared my
uneasiness, I guessed it was my fault—but it somehow prevented me from ever
becoming enthusiastic about the Landau model.

This is the place to mention another Russian physicist whose work would have
inspired us, had we been aware of it. In 1960, 5 years before SBM, Yu.B. Rumer
[94] wrote an article with the title Negative and Limiting Temperatures, in which
he states the necessary and sufficient conditions for the existence of a limiting
temperature—namely an exponential spectrum—and gives an example: an ideal gas
in an external logarithmic potential. Unfortunately, he remained essentially on the
formal side of the problem and did not connect it with particle production in strong
interactions. Otherwise, who knows?

Now for the Californian bootstrappers. Even a most modest account of what has
been done in the heroic effort of a great number of theoreticians on the program
of ‘Hadron Bootstrap’ or ‘Analytic S-Matrix’ would fill a whole book. For me
the question is: did it in any way help the conception of SBM in 1964? And the
answer is negative. To realize that, one only has to remember the above-reported
history up to 1964 and hold it against the best non-technical expositions of the basic
ideas and the general philosophy of ‘Hadron Bootstrap’, namely, the two articles
by G.F. Chew: ‘Bootstrap’: A scientific idea? [95] and Hadron bootstrap: Triumph
or frustration? [96]. After 1964, however, the influence was enormous, although
not technically. But it was of great value for all those who worked on SBM to see
their philosophical basis shared with others. Most influential, of course, was that
S. Frautschi, one of the leading Californian bootstrappers, joined our efforts, not
only lending his prestige, but indeed giving SBM a turn that upgraded it (he also
coined its name ‘statistical bootstrap’) and made it acceptable to particle physicists:
the phase-space formulation and its numerous consequences.

The Californian bootstrappers credo was the analytic S-matrix: Poincaré invari-
ant, unitary, maximally analytic (with crossing, pole-particle correspondence),
which was believed—or hoped—to be uniquely fixed by these requirements.
Another aspect was that it should generate the whole hadron spectrum, where each
hadron “plays three different roles: it may be a ‘constituent’, it may be ‘exchanged’
between constituents and thereby constitute part of the force holding the structure
together, and it may be itself the entire composite” [95].

13These are problems now occupying theoreticians working on relativistic heavy-ion collisions—
could these problems be trivial? See, however, the Post Scriptum at the end of this paper.
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I know of only two realizations of this aspect: the �–� system [97, 98] and
SBM—both remaining infinitely far behind the ambitious bootstrap program. In
spite of a large number of other achievements obtained in and around the program
(dispersion relations, Regge poles, Veneziano model, even string theories), one sees
today a strong resurrection of Lagrangian field theories, which have now taken
the lead in the race toward a ‘theory of everything’. I believe that the bootstrap
philosophy and the Lagrangian fundamentalism must complement each other. Each
one alone will never obtain complete success.

17.5 Conclusion

Had I been asked to speak only 5 min, my review might have been much better. Here
it is. On the long way to SBM, we stopped at a few milestones:

• The realization that in a single hadron–hadron collision, many secondaries can
be produced (1936).

• The discovery of limited hp?i (1956).
• The discovery that fireballs exist and that a typical collision seems to produce

just two of them (1954–1958).
• The concept of the compound nucleus and its thermal behaviour (1936–1937).
• The construction of simple statistical/thermodynamical models for particle pro-

duction in analogy to compound nuclei (1948–1950).
• The introduction of interaction into such models via phase shifts at resonance

(1937, 1956).
• The discovery that large-angle elastic cross-sections decrease exponentially with

CM energy (1963).
• The discovery that a parameter-free and numerically correct description of this

exponential decrease existed already, buried in archived Monte Carlo phase-
space results (1963).

The birth of SBM in 1964 was but the logical consequence of all this. Between 1971
and 1973 the child SBM became a promising youngster, when it was reformulated
and solved in phase space. It became adult in 1978–1980, when it acquired finite
particle volumes. Today, another 14 years later, it shows signs of age and is ready
for retirement: in not too long a time, all of its detailed results will have been derived
from QCD, maybe from ‘statistical QCD’.

So then, was that all? I believe that something remains: SBM has opened a (one-
sided but) intuitive view of strong interactions, revealing:

• their ‘thermal behaviour’ and thus their accessibility to statistical thermodynam-
ical descriptions,14

14Many-body systems can often be described statistically, with final states emerging from single
two-body collisions only in strong interactions.
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• the existence of clusters (fireballs),
• the production rates of particles and their typical multiplicity distributions,
• large-angle elastic scattering,

• the ‘universal’ soft-p? distribution (plotted against
q

p2? C m2, please!), and
• the existence of a singular temperature T0 where a phase transition takes place.

In fact, all these are nothing else than obvious (and calculable) manifestations of
one single, fundamental property of strong interactions, namely the fact that they
possess an exponential mass spectrum �.m/ / exp.m=T0/.

And most remarkably, the constant T0 is roughly equal to the lowest hadron
mass, m� . I believe the simple interpretation to be that strong interactions are as
strong as they can possibly be, before becoming too strong. Too strong, that is,
if they caused the mass spectrum to grow only a little faster than exponentially,15

say, �.m/ � exp


.m=m0/

1C˛�, ˛ > 0, the ‘entropy’ of its clusters would be
Sc � ln � � .m=m0/

1C˛. Then clusters would swallow each other up (if in reach) to
become giant superclusters—a sort of hadronic black holes—which could not live
in thermal equilibrium with each other while they remained cold inside:

Tinterior.m/ D
�

dS

dm

��1
D const: 


�m0

m

�˛ �!
m!1 0 :

Maybe, even, the combined forces of gravitation and superstrong interactions might
have stopped the expansion of the Universe at some early state. Anyway, we can
save the effort of working out all the consequences of superstrong interactions: the
state of the world seems not to favour such a hypothesis.

Don’t ask me why strong interactions are actually as strong as permissible—this
will have to be answered by some future unified theory (maybe the only possible
one?) not yet known (to me). In the meantime, I would like to know the reaction
of a physicist who, in 50 years, comes accidentally upon this review and takes the
trouble to read it. He might quote [99]

How finely we argue upon mistaken facts!

Acknowledgements J. Rafelski has initiated and largely organized this workshop (Fig. 17.6). I
wish to thank him for this opportunity to deliver a paper which otherwise would not have been
written, and I wish to thank Marie-Noëlle Fontaine (Fig. 1.4) for the beautiful typescript and her
infinite patience with it (and with me).

15In view of the ‘stability’ of the exponential function (Sect. 17.4), this might require a superstrong
interaction which could be much stronger than the actual one.
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Fig. 17.6 Poster of the Divonne 1994 meeting where this lecture was presented

Post Scriptum

As kindly pointed out to me by E.L. Feinberg, my uneasiness about Lorentz
contracted interaction volumes mentioned under the leading Where Is Landau and
. . . is indeed due to my fault, or rather to my ignorance about some fundamental
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ingredients of Landau’s model. The relevant points are put forward in E.L.
Feinberg’s beautiful paper Can the relativistic change in the scales of length and
time be considered the result of action of certain forces? [100]. I wish to thank him
for bringing it to my attention.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Chapter 18
About ‘Distinguishable Particles’

Johann Rafelski

Abstract I present the context in which Hagedorn withdrew his first work on
limiting temperature, show his withdrawal note, and discuss what was lost from
view for 50 years while the manuscript shown in Chap. 19 lingered in the archives.
I close describing the contemporary meaning of Hagedorn temperature.

18.1 Withdrawn Manuscript

In early 1978 Rolf Hagedorn shared with me a copy of his unpublished manuscript
‘Thermodynamics of Distinguishable Particles: A Key to High-Energy Strong
Interactions?’, a preprint CERN-TH-483 dated 12 October 1964. He said there were
two copies; I was looking at one; another was in the CERN archives. A quick glance
sufficed to reveal that this was, actually, the work proposing a limiting temperature
and the exponential mass spectrum. Hagedorn explained that upon discussions of
the contents of his paper with Léon Van Hove, he evaluated in greater detail the
requirements for the hadron mass spectrum and recognized a needed fine-tuning.
Hagedorn concluded that his result was therefore too model-dependent to publish,
and in the CERN archives one finds Hagedorn commenting on this shortcoming of
the paper. These comments are printed below, and can be appreciated in full after
reading Chap. 19.

However, Hagedorn’s ‘Distinguishable Particles’ is a clear stepping stone on
the road to a better understanding of strong interactions and particle production.
The insights gained in this work allowed Hagedorn to rapidly invent the Statistical
Bootstrap Model (SBM). The SBM paper ‘Statistical Thermodynamics of Strong
Interactions at High Energies’, preprint CERN-TH-520 dated 25 January 1965, was
published in Nuovo Cim. Suppl. 3, pp. 147–186 (1965).

In the SBM model, a hadron exponential mass spectrum with the required
properties is a natural outcome. However, it took time for the SBM model to be
recognized. Arguably, this was so because the stepping-stone ‘Distinguishable Parti-
cles’ manuscript had not seen the light of day. The need for the ‘right’ mass spectrum
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was not evident to the reader of the SBM paper. SBM is presented in this book
both conceptually and with mathematical detail as relating to hot nuclear matter in
Chap. 23, and the relation to phase transition to quark matter is further developed
in Chap. 27. A historical SBM perspective that discusses the role of distinguishable
particles is offered in Chap. 17. The unpublished ‘Distinguishable Particles’ paper,
motivating SBM, is published here for the first time in the following Chap. 19.

18.2 Note by Rolf Hagedorn of 27 October 1964

The logical difficulty mentioned on p. 213 has been removed as follows, and the
result is disappointing. Let ˛ and ˇ label possible momenta (in a two-dimensional
box of volume V2=3

0 ) and kinds of particles, respectively. Then

log Z D
X

˛;ˇ

log

�
1 � e

�
q

p2˛Cm2ˇ=T
��1

:
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X

˛

�! V2=3
0

2�

Z 1

0

pdp : : : ;
X

ˇ

�!
Z 1

0

�.m/dm : : : ;

and expand the logarithm:

log Z D V2=3
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1
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�
1C nm

T

�
e�nm=T :

Now everything depends on the asymptotic behaviour of the mass spectrum �.m/:

1. If �.m/ grows faster than exponentially, log Z diverges for all T > 0. No
thermodynamics is possible.

2. If �.m/ grows � em=T0 , then log Z diverges for T > T0. Whether it diverges for
T D T0 and if so, how it diverges for T D T0 depends on the detailed behaviour
of �.m/. In any case, an upper bound T0 exists.

3. If �.m/ grows less than exponentially, no upper bound T0 exists; if �.m/ grows
exponentially up to some large M and afterwards grows less than exponentially,
then the system would—over some energy range which depends on M—behave
as if a highest temperatures existed.

4. In the ‘distinguishable particles’ model, Z diverges as T0=.T0 � T/ for T ! T0
(two-dimensional case). Such behaviour can be obtained from a particular choice
of �.m/, e.g.,

�.m/ �! 1

1C m=T0

2

m
sinh

m

T0
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and with V0 D .2�/3=2=T30 . It is seen, therefore that every type of exponential
growth leads to an upper bound T0, but only a very particular type leads to a
behaviour which, for T ! T0, coincides with that of our model. The model
describes therefore a highly singular case1 and should be abandoned. Its main
point, the highest temperature T0 has still a chance to survive, maybe only as an
apparent ‘highest temperature’ in a large energy range (this, at least, is suggested
by the experiments).

5. As the upper bound T0 does not depend on the volume any more the simple
description by means of a longitudinal and a transverse temperature must be
abandoned.

18.3 From Distinguishable Hadrons to SBM

The beginning of a new idea in physics often seems to hang on a very fine thread:
was anything lost when ‘Thermodynamics of Distinguishable Particles’ remained
unpublished? And what would Hagedorn do after withdrawing his first limiting-
temperature paper? My discussion of the matter with Hagedorn suggests that his
vision at the time of how limiting temperature could be justified evolved very
rapidly. Presenting his final insight was what interested Hagedorn and motivated
his work. Therefore, he opted to work on the more complete theoretical model.

While the withdrawal of the old, and the preparation of an entirely new
paper seemed to be the right path to properly represent the evolving scientific
understanding, today’s perspective is different. In particular the insight that the
appearance of a large number of different hadronic states allows to effectively
side-step the quantum physics nature of particles within statistical physics became
essentially invisible in the ensuing work. Few scientists realize that this is a key
property in the SBM, and the fundamental cause allowing the energy content to
increase without an increase in temperature, as Hagedorn explains in the withdrawal
note, see also the end of Sects. 17.2 and 19.1.

The loss of relevance of quantum physics in hot hadronic matter is the scientific
fact that we lost sight of after ‘Distinguishable Particles’ was withdrawn. To the best
of my knowledge the dense, strongly interacting hadronic gas is the only physical
system where this happens. Normally, the greater the density of particles, the greater
the role of quantum physics. After surfacing briefly in Hagedorn’s withdrawn
‘Thermodynamics of Distinguishable Particles’ paper, this finding faded from view.
This indeed was a new idea in physics hanging on a very fine thread which ripped.

On the other hand, the Hagedorn limiting temperature lived on. Within a span
of only 90 days between the withdrawal of his manuscript, and the date of his
new CERN-TH preprint, Hagedorn formulated the Statistical Bootstrap Model. Its
salient feature is that the exponential mass spectrum arises from the principle that

1Editor’s note: today called ‘fine-tuned’.
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hadrons are clusters comprising lighter (already clustered) hadrons. The key point
of this second paper is a theoretical model based on the very novel idea of hadrons
made of other hadrons. Such a model bypasses the need to identify constituent
content of all these particles.

Models of this type are employed in other areas of physics. The simplest one
is the statement that while atomic nuclei are made of individual nucleons, a great
improvement in the understanding of nuclear structure is achieved if we cluster
four nucleons (two protons and two neutrons) into an ˛-particle introducing the
˛-substructure, and so on. Hagedorn simply made all hadrons be clusters of lightest
mesons, pions. The difference to the nuclear ˛-model is that the number of pions
and more generally of all strongly interacting particles is not conserved. That turns
out to have a big consequence and is the origin of the limiting temperature behavior.

Clustering pions into new hadrons and then combining these new hadrons
with pions, and with already preformed clusters, and so on, turned out to be a
challenging but soluble mathematical exercise. The outcome in this new Statistical
Bootstrap Model (SBM) was that the number of states of a given mass was growing
exponentially. Thus, in SBM, the exponential mass spectrum required for the
limiting temperature arose naturally ab-initio. Furthermore the model established
a relation between the limiting temperature, the exponential mass spectrum slope,
and the pion mass, which provides the scale of energy in the model.

18.4 Hagedorn Temperature as a General Physics Concept

The presentation of the original limiting temperature article Chapter 19 is in part
motivated by the reccent developments which adopt the concept in domains of
physics that are entirely unrelated; it is the physics principle that leads the way.
Examples taken from search of the name ‘Hagedorn’ in title of a publication
unrelated to the domain of physics in which Hagedorn worked are for example:

• T. Biswas, T. Koivisto and A. Mazumdar, “Atick-Witten Hagedorn Conjecture,
near scale-invariant matter and blue-tilted gravity power spectrum,” JHEP 1408,
116 (2014) [arXiv:1403.7163].

• A. Arslanargin and A. Kaya, “Open Strings on D-Branes and Hagedorn Regime
in String Gas Cosmology,” Phys. Rev. D 79, 066013 (2009) [arXiv:0901.4608].

• R. H. Brandenberger, A. Nayeri, S. P. Patil and C. Vafa, “Tensor Modes from a
Primordial Hagedorn Phase of String Cosmology,” Phys. Rev. Lett. 98, 231302
(2007).

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 19
Thermodynamics of Distinguishable Particles:
A Key to High-Energy Strong Interactions?

Rolf Hagedorn

Abstract A new kind of thermodynamical model for strong interactions at high
energies is proposed. We start from the fact that strong interactions produce so many
possible particle states (from   over its resonances to nucleons, strange particles
and their resonances, up to highly excited ‘fireballs’) that in an actual process each
of these states practically never occurs more than once. We use this in order to
treat the very first instant of a high-energy collision by statistical thermodynamics
of a system of an illimited number of distinguishable particles. The model shows
surprising properties: there exists a universal highest possible temperature T0 of
the order of 150–200 MeV (corresponding to �1012 K) which governs all high-
energy processes of strongly interacting particles, independently of the actual energy
and independently of the particle number, from cosmic ray jets down to elastic
scattering. If a Lorentz contracted volume is introduced, the transverse momentum
distribution in jets as well as in elastic scattering is described in agreement with
experimental results. Paradoxically, this distribution is independent of whether or
not ‘thermal equilibrium’ is reached. If it is not reached—in the majority of cases it
is not reached—then the jet structure for production processes is the consequence.
If the model turns out to be as good as present experiments indicated, then the
existence of a highest temperature is very likely; it implies that, from higher and
higher energy experiments, not much new can be learnt about the structure of strong
interactions, since the mode of excitation (which depends on the dynamical details
we would like to know) has no influence on what is finally observed. The situation
would then be similar to that in ordinary thermodynamics, where no experiment
could possibly reveal how a certain system was brought into its thermodynamical
state. In astrophysics, the method of thermodynamics of distinguishable particles
may have important consequences for the treatment of the highly compressed
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interior of heavy stars (‘neutron stars’) where Fermi statistics would have to be
replaced by the one used here.

19.1 Introduction

In the past 10–15 years, it has become a more and more established (and more
and more accepted) habit to publish conjectures, models, speculations—no matter
whether:

• the foundations are safe,
• or all features have been worked out and compared with experiments,
• or even the correct physical interpretation of the resulting formulas is understood.

The model presented here suffers from all these deficiencies—and so far it is in good
company. This is the first excuse to publish it. The second is that it shows some very
remarkable features agreeing with some experimental facts and that there is a hope
that it can be brought into a state where it becomes a theory. Whether it will survive
this development is an open question. The few striking features to be presented
below seem to make it interesting enough to publish it and initiate a discussion.

There are two roots of the present model:

1. Root one is a well-known observation already made by Fermi [1] in his first
paper on the statistical model: the statistical model of particle production starts
from expressions for channel probabilities (final channel fj with Nj particles):
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where
QNj

kD1 Ck and
QNj

kD1 ˝k stand for the mean values of the squared matrix
element with respect to the invariant or non-invariant phase space, respectively,
and Fstat takes into account spin and isospin weight and contains 1=niŠ when ni

particles of type i are present. It was then observed by Fermi that a statistical
model starting from Eq. (19.1) fits smoothly into a thermodynamical model
once the energy E and thus the particle number become large enough. Thus, in
discussing high-energy limits, one will use conveniently the methods of statistical
thermodynamics which are far easier to handle than the expressions in Eq. (19.1).
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2. The second root of the present model is the observation that a very particular
kind of statistical thermodynamics is necessary to fit the actual behaviour of the
statistical model of type (19.1): it was found by evaluating numerical calculations
made at CERN (1958–1962) at various c.m. energies (using the non-invariant
phase space) that the ratio of the probability P0 for the elastic channel to the sum
over all probabilities behaves like an exponential function of the c.m. energy over
a fairly large range [2] (3 � E � 7:6):

p0P
pj

ˇ̌
ˇ̌
pp

D e�3:10.E�2/ ; (19.2)

with units such that „ D c D k D Mp D 1, k is Boltzmann’s constant. This, and
a similar result for  p collisions, was used to predict large angle elastic [2, 3] and
exchange scattering, i.e., pC p! ACB, etc. [4]. The predictions for pp elastic
scattering at about 90ı fit the experiments qualitatively over a range where the
cross-section changes by 5 powers of ten.

It was natural to ask the question whether the exponential behaviour could be
understood analytically since Eq. (19.2), being the result of hundreds of hours of
computer time, is practically an empirical result. This question was attacked by
several authors [5–8]. Bialas and Weisskopf [6] obtained1

p0P
pj
� e�˛.E�2/3=4 ; ˛ a constant ; (19.3)

starting directly from statistical thermodynamics. Satz [8] considered the asymptotic
behaviour for E!1 of

P
pj with pj in the form of Eq. (19.1) and found

p0P
pj
� e�aE2=3 : (19.4)

Vandermeulen [7] considered a special case of Eq. (19.1), namely the one where all
masses are neglected (which can be justified), and found

p0P
pj
� e�bE : (19.5)

All the authors mentioned so far started from definite assumptions and obtained
definite results which do not all agree with Eq. (19.2), although in one case it could
be shown that, in the limited range where Eq. (19.2) was computed, expressions
Eqs. (19.2) and (19.3) deviate little numerically from each other (see Fig. 4 of Bialas
and Weisskopf [6]).

1Here and in the following quotations, we consistently neglect algebraic expressions in E as
compared to the exponential.
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For our present discussion, the most interesting paper is that by Auberson and
Escoubès [5], because these authors discuss various different assumptions and find
different forms, namely,

p0P
pj
� e�cE˛ ; ˛ D 1

2
;
2

3
;
3

4
; 1 ; (19.6)

according to what the assumptions are. In order to be close to the calculations
leading to Eq. (19.2), they work with the non-invariant phase space. An overall result
is, whatever the particular assumptions are, that the masses of the particles produced
can be neglected when E ! 1. (Except if the main contributions come from ever
new ‘particles’ with higher and higher mass values as E increases, such that Em
remains constant, m being the mean value of the masses produced. This is not at
all likely in view of the purely geometrical fact that the phase space for small or
negligible masses is so much bigger than for masses such that Em is constant; only
some very peculiar dynamical properties, which so far we have no reason to expect,
would be able to counteract this tendency of phase space.) A particular result is that
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tends asymptotically to ecE only if the factor of 1=nŠ is omitted, in other words, if
the particles are considered to be distinguishable.2

This is not as unreasonable as it first sounds. And since it is the main point
of the model which will be presented below, we must explain this more carefully.
Auberson and Escoubès seek an asymptotic formula for the statistical model which
fits the detailed numerical calculations at moderately high energies. In these detailed
calculations, many different particles were considered (Ξ�, Ξ0, ΣC, Σ0, Σ�, Λ, p, N,
N�
3=2, K0, KC, K�,  C,  0,  �, and in some calculations ρ, ω, and η). It turned

out that the calculated average particle numbers hardly exceeded the value one, and
even for the pions they remained below two (per charge state). Had we included all
the presently known resonances, then all average occupation numbers of the various
states of the particles would have remained below one. Now in those calculations the
factor 1=nŠ actually takes the form 1=n1Šn2Š : : :, where n1, n2, etc., are the numbers
of particles of type 1, type 2, etc.3 Since then hnii actually turns out to be .1, it
follows that mainly those channels contribute to

P
pj, where the ni are either 0 or

1, in other words, where the whole factor 1=n1Šn2Š : : : equals one.

2In fact, ˝ must also be kept independent of E, contrary to what was done in the numerical
calculations leading to Eq. (19.2). But there the masses were not neglected, and one sees easily
that at moderate energies this will have the effect of increasing the power of E in the exponential
(the details are difficult).
3Here,  C,  0, and  �, etc., are of course considered to be different particles.
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Since we presently know many more states of the fundamental particles, and
since it seems likely that higher and higher excited states may be found, we expect
that feeding them into the statistical model will have the effect that, even at very high
energies, the main contributions will come from channels in which the ni are zero or
one. If therefore a simplified model of the type given in Eq. (19.7) with particles of
equal masses is used to find out the asymptotic behaviour, then one should omit the
factor 1=nŠ in order to come as near as possible to reality. It is reassuring that just in
doing that one finds the exponential behaviour which is indicated by our numerical
result (19.2) and which fits the experiment [9].

As one should expect, statistical thermodynamics of massless particles—all
distinguishable from each other!—leads then to the same behaviour. The main
formulas for such a statistics were worked out by Escoubès and the present author
and included in the paper by Auberson and Escoubès [5].

In the following, we shall therefore discuss the model ‘statistical thermodynam-
ics of distinguishable particles’ in some detail and try to understand its physical
meaning. It should be clear from our considerations that the mechanism, which we
imagine to take place, is the following. In the first instant of the collision, a certain
number of particles—ranging from pions over kaons, nucleons, hyperons and their
resonances to highly excited ‘fireballs’—is produced according to the statistics
of distinguishable particles. Then resonances decay according to their mode and
‘fireballs’ decay again according to the statistics of distinguishable particles, each
one forming such a system. At the end of this chain of decays we arrive at pions,
kaons, nucleons, and hyperons, where now the number of pions may be much larger
than one without invalidating our treating the particles as distinguishable.

In Sect. 19.2, we present the simplest possible model of this kind. In Sect. 19.3,
we speculate on its physical interpretation which, sometimes, is rather obscure. In
Sect. 19.4, we discuss its weak points and possible improvements, and in Sect. 19.5,
we sum up and draw a few general conclusions.

19.2 Statistical Thermodynamics of Distinguishable Particles

We write down the assumptions:

1. We consider a system of particles enclosed in a volume V in a temperature bath
T. [We put the Boltzmann constant k D 1, the temperature T is then measured in
nucleon masses: T D 1 (D 939MeV) in those units corresponds to 1:1
1013 K.]

2. The number of particles is not limited.
3. All particles are distinguishable, i.e., can be labelled.
4. All particles have mass zero (we shall later consider massive particles) and no

internal (mechanical) degrees of freedom (the 2sC 1 possible orientations of a
particle with spin s are considered as 2sC 1 different particles).

Let "1, "2, . . . , "˛, . . . , be the possible energy levels of one particle in the volume
V . If we give a set of numbers .n/ D .n1; n2; : : : ; n˛; : : :/ indicating by n˛ how
many particles of energy "˛ are present, then, in the usual case of indistinguishable
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particles, .n/ would completely specify a quantum state of our gas. But as we
consider the particles to be distinguishable, .n/ stands for

NŠ

n1Šn2Š : : : n˛Š : : :

different states of the same energy E DP˛ n˛"˛ , with N DP˛ n˛. For N particles,
the partition function will then be
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We shall use the shorthand notations

x˛ 	 e�"˛=T ; z 	
X

˛

e�"˛=T D
X

˛

x˛ : (19.9)

We calculate z for a massless particle (p D ") in the usual way:

g.p/d p D g."/d" D 4�p2d pV

h3

as density of states gives in our units
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�2
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We now drop the assumption that N is fixed and find
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1 �P x˛
D 1

1 � VT3=�2
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for the partition function of our system. We observe here the striking feature, which
will be of fundamental importance and indeed the very heart of our model, namely,
that the partition function of our gas exists only if the temperature

T < T0 D
�
�2

V

�1=3
: (19.12)

We now calculate the expectation values of the energy E and particle number N of
our system (as the system is in thermal contact with a temperature bath T, its energy
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is not fixed: our system is a member of a canonical, not microcanonical ensemble).
We find from Eq. (19.11) that

E D T2
@

@T
log Z D 3VT4

�2
1

1 � VT3=�2
D Z

3VT4

�2
: (19.13)

(Note that ordinary Bose statistics would give

1

2

�
V�2

15
T4
�

per internal degree of freedom, i.e., the Stefan–Boltzmann law. Our gas would, for
T ! 0 thus behave like a light quantum gas with a slightly changed radiation
constant.) We thus see that E diverges when T ! T0.

The average occupation number of the energy level "˛ becomes with Eq. (19.11)

n˛ D x˛
@
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1 � VT3=�2
D Ze�"˛=T : (19.14)

This also determines the energy (= momentum) spectrum (see below). The expecta-
tion value of the particle number is

N D
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D Z

VT3

�2
(19.15)

and the average energy (= momentum) of a particle is

" D E

N
D 3T : (19.16)

We observe that, in Eqs. (19.13)–(19.15), the relevant quantities all contain Z and
therefore diverge when T ! T0. Since we will be concerned throughout this paper
with large energies, we consider the behaviour near T D T0. Then in the slowly
varying factors, T may be replaced by T0 and we obtain the simple expressions

E ! 3T0
T30

T30 � T3
; N ! Z D T30

T30 � T3
; n˛ ! e�"˛=T0

T30
T30 � T3

(19.17)

Let us draw E (or Z) as a function of T, or better, T as a function of E. We obtain the
behaviour shown in Fig. 19.1, where we omit the unphysical temperatures T > T0
which lead to negative E. This figure has obviously to be intepreted as follows: as
soon as T comes very near T0, we may achieve any (large) values of E, N, Z by only
infinitesimal changes in the temperature. Consequently, as the mean values E and
N suffer enormous changes for infinitesimal changes in T, we no longer expect the
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Fig. 19.1 Temperature T=T0 as a function of the energy E=3T0 for particles of zero mass

distributions of E and N over our canonical ensemble to have the sharp peaks we are
used to in statistical thermodynamics. On the contrary, these distributions become
flat and tend to a constant when T ! T0. Indeed, as follows from the definition of
Z [see Eqs. (19.8) and (19.11)], we have

T2
dE

dT
D E2 � E2 ; z

dN

dz
D N2 � N2 ; (19.18)

which gives, when evaluated for T ! T0 and z! 1,

E2 � E2

E2
�! 1 ;

N2 � N2

N2
�! 1 : (19.19)

It is easily seen that the distribution of N becomes a constant. Writing

N D
P

NzN

P
zN

gives at once the probability of finding N particles as

W.N/ D zN

P
zN
D zN

Z
: (19.20)

Since z ! 1 and Z ! 1 when T ! T0, we obtain W.N/ ! 0. In other
words, when T ! T0, the energy and particle number of our system become
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undetermined.4 Thus, from the point of view we have adopted so far, namely
to consider our system as a member of a canonical ensemble (or as being in a
temperature bath), we have failed to achieve anything and would be obliged to stop
here. We shall see, however, in the next section, that just those circumstances which
make it impossible to follow further the lines of the usual interpretation will serve
to allow a new interpretation, if only by brute force.

19.3 The Interpretation of the Model

If, in statistical thermodynamics, we encountered a case where the mean energy of
a system in a temperature bath T were undetermined, we would say that the system
considered were not suited for a statistical treatment. A similarly unfavourable
situation would, for instance, arise if a system contained, say, only two atoms: their
total energy would be rather badly determined—or, if we fixed its energy in an ad
hoc manner and considered it as a member of a microcanonical ensemble, we could
hardly speak of its temperature.

In our present model, however, the situation is different: the very fact that for
T ! T0 the system can have any energy and that E becomes very large can be
reinterpreted as follows. Whenever a system is given—whose energy E is fixed and
sufficiently large, namely E � T0—then we may think of it as a former member
of (and now isolated from) the canonical ensemble embedded in a temperature bath
T ! T0. We may then forget about the canonical ensemble and simply postulate that
we can ascribe to any system of sufficiently large energy the temperature T0, even
if the system chooses to have a small number of particles. By inverting Eq. (19.17),
we have T as a function of E :

T D T0

�
1 � T0

E
C � � �

�
; (19.21)

so that T � T0 whenever E � T0. Although this holds for the dependence of T
on E and although we have seen that for T ! T0 we might expect any, even small,
energies, we play safe when we say that we ascribe to the system the temperature T0
if it has an actual energy E� T0; if the energy is small, it still could have belonged
to the ensemble of temperature T0, but it could as well have belonged to a lower
temperature.

Next we observe that only E and N are (via T) coupled to each other, but not
the actual energy E and particle number N of a system. Thus, once we have fixed
E � T0 and ascribed the temperature T0 to the system, we may still expect any
number N of particles; indeed, all N values become equally likely for T ! T0.

4The relative fluctuations of the occupation probabilities W˛ D .n˛=N/ vanish, however. Hence,
W˛ becomes ‘sharp’ when T ! T0 (see Appendix 1).
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By the reinterpretation of our model, we have of course abandoned the point of
view of the canonical ensemble of temperature T and have obtained the description
of a single system of given energy E. This system must no longer be thought of as
being in contact with its surroundings—which would be hard to imagine for a high-
energy collision—but, thanks to the peculiar behaviour of E.T/, it has a temperature
T ! T0 in its own right.

As for the value of T0 D .�2=V/1=3, it must be chosen such that, at least,
the system itself conserves the main features of a thermodynamical system: the
particles must be able to interact with each other. As we wish to describe high-
energy collisions of strongly interacting particles, where the particles produced will
escape radially from the region of interaction, they will cease to interact once their
mutual distances become much larger than the range of forces, i.e., the Compton
wavelength of the pion. Thus the volume V is to be taken as

V D 4�

3

�
a

m 

�3
; (19.22)

where a � 1 is an adjustable parameter. With Eq. (19.12), we obtain

T0 D m 
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1:35

a
	 bm  ; (19.23)

where b D 1:35=a is again of order one.
We now formulate the new interpretation in the following postulate.

Postulate To every high-energy collision of strongly interacting particles (hadrons) of total centre-
of-mass (kinetic) energy E � m , and also to every highly excited hadron (‘fireball’) with
excitation �E � m , we ascribe the temperature T ! T0 D bm  with b � 1. (19.24)

We can consider this temperature T � 140MeV (corresponding roughly to 1012 K)
as the ‘highest possible temperature’ which, as a fundamental constant, governs all
high-energy processes of strongly interacting particles. [Of course, this goes as far
as the present simplified model is valid—introduction of masses and of a particular
shape of the volume of interaction and other refinements may change this conclusion
somewhat (see below).] Apart from such, we hope, minor changes, we would predict
on this basis that T0 will come into play whenever at least one strongly interacting
particle takes part in a collision. Therefore high-energy reactions with initial states
like eC p, ” C p, � C p, and those in which p is replaced by any other hadron, will
show certain features similar to pC p collisions at high energies. The reason is that,
whenever a sufficient amount of excitation energy (�E � T0) is transferred to a
hadron, the excited hadron falls under the above postulate. This holds even for such
reactions as e C e ! e C eC hadrons. For two reasons, this does not apply to the
weakly or electromagnetically interacting partners of the reaction:

• They have no reason to feel the temperature T0 which has its origin in the range
of strong interactions.
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• They do not interact strongly enough to produce the many resonances required
for a statistics of distinguishable particles. For indistinguishable particles, no T0
exists.

It is interesting to compare these immediate consequences of our model (and of the
above postulate) with recent speculations by Wu and Yang [10]. They assume that
the sharp decrease with energy of differential cross-sections at large angles is due to
a mechanism independent of the method of excitation and discuss the consequences
of such a possibility. Our present model provides a natural basis for their assumption
and leads to the same consequences (which were also partly drawn by the present
author [4]).

We shall now draw some quantitative conclusions of our postulate and try to see
how our system will behave experimentally. First we remark that, since we now
consider the energy E to be given, and work in the centre-of-mass frame, we have
to impose energy–momentum conservation, at least when the number of particles is
small. In particular, we should extend the summation Z DP

zN from N D 1 to1
and not—as we did above—from N D 0 to1. We shall keep this point in mind. It
does, however, not change our conclusions about the gross features of the system.
Since we work at T D T0, the partition function diverges and it does not matter, in
general, whether or not the first term is included.

Secondly, we remark that, putting all masses equal to zero is an oversimplifica-
tion in some cases. For instance, the total energy E has then often to be interpreted as
kinetic energy. Our assumption that the particles be distinguishable is based on the
experimental fact that so many particle states (resonances, charge, hypercharge) are
known and that the list of them grows steadily. Of course, the newly added particles
have a tendency to have higher and higher mass values—it may well be that the
‘fireballs’ of cosmic ray events are the asymptotic form of them where the widths of
the resonances are larger than their spacing. We shall consider here everything from
a pion over kaon, nucleon, hyperon, and resonances up to the fireballs, as possible
‘particles’ appearing in our system, and this would force us to take the mass of such
a particle into account. But presently, we shall simply put m D 0 and T D T0 (if
necessary, limT!T0 is understood).

We shall consider:

• the number of particles produced (first generation),5

• the momentum spectrum of the particles (first generation).

These two are related to each other and treated together. From Eq. (19.14), we have
for the expectation value of the number of particles with energy "˛ ,

n˛ D Ze�"˛=T0 ;

5‘First generation’ means the distinguishable particles (produced in the first instant) which later,
by a chain of further ‘generations’, decay into the observed pions, nucleons, etc.
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and from this

N D
X

n˛ :

Now, however, we must insist on energy conservation, that is, these formulas are
subject to the condition

X
"˛n˛ D E : (19.25)

The usual definition of E, which we used in Eq. (19.13), namely

E D T2
@

@T
log Z ;

can be derived from the requirement
P
"˛n˛ D E with n˛ defined by Eq. (19.14).

We are thus forced, if we insist on energy conservation which leads to Eq. (19.25),
to identify the expectation value E of the old interpretation (canonical ensemble)
with the given sharp value E of the energy in our new interpretation. Consequently,
wherever Z and E appear explicitly, we shall replace them by

E �! E ; Z �! E
�2

3VT40
D E

3T0
; (19.26)

as suggested by Eqs. (19.10), (19.12), (19.13), and (19.25). Then with (19.21), the
temperature T becomes

T D T0

�
1 � T0

E
C � � �

�
� T0 ; (19.27)

and the number of particles with energy "˛ is

n˛ D E

3T0
e�"˛=T0 ; N D

X
n˛ D E

3T0
: (19.28)

Our conclusion that the distribution of N values becomes constant remains true. We
can even see how it tends to the constant z D VT3=�2 and T from Eq. (19.27) gives
z.Z/ ' 1 � 3T0=E (E � T0). Hence, for the probability W.N/ of finding just N
particles, Eq. (19.20) yields

W.N/ Š 3T0
E

�
1 � 3T0

E

�N

� 3T0
E

exp

�
�N

3T0
E

�
	 1

N
e�N=N �! 0 :

(19.29)

Now this seems to be in spectacular disagreement with experiments: neither—as
we know from cosmic ray evidence—does the number N of particles produced
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increase proportionally to E, nor is the distribution of the observed particle number
constant. The way out of this apparent disagreement is again provided by the model
itself: the N particles found in a particular case are by no means the final particles
observed in photographic emulsions (mainly pions)—speaking of distinguishable
particles, we have to consider them to be anything between a pion and a ‘fireball’.
Equation (19.29) gives us the probability of just finding N such not further specified
objects. It states that all values of N are (for N � N) practically equally likely. The
question how probable is it to find N specified particles is quite another one, as we
shall see in a moment when we discuss large angle elastic scattering. Presently, we
note that, interpreting the N particles as ‘fireballs’ of unspecified excitation energy,
Eq. (19.29) tells us that a ‘two-fireball model’ would never work,6 as there will be
contributions of almost the same weight from 3, 4, 5, . . . , fireballs, a situation similar
to that in the multiperipheral model of Amati et al. [12] and in considerations by
Wilson [13].

But if this is so, then the number of pions and other final particles observed
in experiments should even be larger than N D E=3T0, since these particles are
produced in a chain of decays starting from the first N ‘fireballs’ and going into
smaller and smaller ones. Here the answer is that introducing the masses and a
contracted volume will bring that in order: we shall come back to this problem in
Sect. 19.4, where it will be shown that N, the number of ‘fireballs’, tends to�5 and
becomes energy independent for E!1.

Let us now consider the energy spectrum of our particles. First we treat the
case where the question of how many particles we expect and the question of what
their energies might be are intimately connected: large angle elastic and exchange
scattering. In that case, we have two definite final particles, each with energy E=2,
and from Eq. (19.28), we conclude that the probability of finding a particle in the
energy level "˛ D E=2 is given by

w˛ D n˛
N
D e�"˛=T0 D e�E=2T0 : (19.30)

This is then also the probability of finding two specified particles. They may be
the initial (elastic scattering) or some definite other ones, e.g., p C p ! A C B.
Between Eq. (19.30) and the differential cross-section come, of course, some further
considerations (flux factors, centrality condition, influence of the actual masses of
A and B), which have been treated in another paper [4]. The main point is that,
if we compare Eq. (19.30) with the numerical result of Eq. (19.2) which fits the
observed large angle scattering well [4], we find that T0 should have a value such
that 1=T0 D 6:2. Thus in this case,

T0 D 1:1m  D 151MeV : (19.31)

6This is in fact the experimental situation [11].
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This agrees well with our postulate Eq. (19.24). One could argue that this is a lucky
accident, but then it will be hard to explain how this accident leads to a formula
which fits the experiment well in a region where the observed cross-section varies
over five orders of magnitude [4]. There are in fact not many formulas of physics
which cover such a range.

The probability of finding two specified particles [see Eq. (19.30)] is indeed
very different from that of finding any two particles: W.2/ D .3T0=E/e�6T0=E. The
obvious interpretation is that there is a large number of two-body final states, each
with a probability of order e�2T0=E, ranging from elastic scattering to two heavy
fireballs, all contributing to W.2/. One can even estimate the number of two-body
final states. It is of the order

n.2/ � eE=2T0W.2/ D 3T0
E

eE=2T0�6T0=E : (19.32)

Putting E D 5:6, i.e., the c.m. energy minus 2 in a 25 GeV p p collision, one finds
n.2/ � 3 
 106. This would mean that between the pion7 and the heaviest (here
possible) fireball (�E � 5:4) lie some 3 
 106 different states. (The question of the
mass spectrum of fireballs is treated below see page p. 200.) Similar considerations
will apply to other few-particle channels, and seen from this angle, it no longer
seems surprising that W.2/ � W.3/ � W.4/ � : : :.

We now turn to the energy spectrum in general. The density of states in the
volume V was, in our units,

g."/ D V"2

2�2
D "2

2T20
;

and the number of particles to be expected in the level "˛ was given in Eq. (19.28).
The number of particles between " and "C d" then becomes

w."/d" D E

6T40
"2e�"=T0d" :

We do not believe that the normalization factor E=6T40 , which makes
R

w."/d" D
N D E=3T0, is very meaningful because N itself is to be rather different in a more
realistic model. We simply write

w."/d" � "2e�"=T0d" : (19.33)

Remembering that we put m D 0, we may as well replace " by p, the momentum.
Then Eq. (19.33) reads

w.p/d p � p2e�p=T0d p ; (19.34)

7Since p C p ! fireball C   leads to the smallest mass (m ) of one of the final particles.



19 Thermodynamics of Distinguishable Particles: 1964 197

or, if we assume an isotropic distribution (as, so far, we are obliged to), we obtain

w.p/d3p � e�jpj=T0d3p : (19.35)

It is a remarkable fact that a formula of this type applies apparently to all high-
energy processes, if only we replace jpj by the transverse momentum p? D jpj sin � .
Let us simply do that and leave the question of how to justify it and get rid of the
isotropy to later speculations. Then, if we write

w.p?/ � e�p?=T0 ; (19.36)

conservation of total energy could be left to the longitudinal component. Thus
Eq. (19.36) would hold true whatever the actual number of particles is. We would
expect such a law to govern, not only processes like p C p ! A C B, but also
the transverse momentum distribution of the many particles produced in cosmic ray
jets. Our model would thus explain the hitherto obscure fact that experimentally the
transverse momentum distribution in high-energy events is independent not only of
the primary energy, but even of the number of particles involved. Since T0 depends
only on the range of interaction, cosmic ray jets and large angle scattering must
show the same behaviour There might, of course, be some slowly varying factors
(powers of p and/or E) in front of the exponential which differ from case to case,
but the asymptotic behaviour should be dominated by Eq. (19.36). Orear [14] points
out that Eq. (19.36) is a rather good fit to many processes. He quotes experimental
results on p p elastic scattering, pC p !   C d,   C p !   C p, and finds that
they are all well fitted [the   C p data are rather meagre and can only be said not
to disagree with Eq. (19.36)] by our Eq. (19.36) if one takes T0 D 158MeV (p p
elastic), 160 MeV (pC p!  C d).

Figure 19.2 may illustrate how good the fit actually is. Orear (from whose paper
[14] the figure is taken) plots E2del=d!

ˇ̌
pp as a function of p? D p sin � . The fit

E2
d

d!

ˇ̌
ˇ̌
pp

D const: 
 e�p?=T0 ; T0 D 158MeV ;

is really excellent if one keeps in mind that it covers a range of the primary (lab)
momentum between p0 D 1:7GeV/c and p0 D 30:7GeV/c and a range of d=d!
of eight powers of 10. As an aside, we mention that the factor E2, which seems
necessary to make the fit so good, is predicted from a simple ‘centrality condition’
and is contained in the formula for large angle elastic and exchange scattering
recently proposed by the present author [4].

The above values of T0 agree well with our postulate T � m� . Furthermore,
Cocconi, Koester, and Perkins [15] and Fowler and Perkins [11] find from high
energy nucleon–nucleon collisions that the transverse momentum distribution of
pions is given by Eq. (19.36) with an apparent value of T0 � 170MeV, a somewhat
broader distribution than the one with T0 � 150MeV. This broadening is to
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Fig. 19.2 E2del=d!
ˇ̌
pp as a function of the transverse momentum. Taken from [14]

be expected if we remember that the pions observed experimentally are not the
particles produced in the first instant: they are the end-products of a chain of decays,
each of which is governed by a law like Eq. (19.36), and the broadening is simply a
kinematical effect. If one wishes to calculate this effect quantitatively, then one must
no longer put the masses equal to zero. A very simple example is carried through
in Appendix 2. We assume that a fireball of mass m� � T0 emits a particle of
mass m` (not � T0) and we consider only one-dimensional (transverse) motion:
the momentum distribution of m� in the c.m. system is w.p�/ D exp.�"�=T0/,
while that of m` in the rest frame of the fireball is w.p`/ D exp.�"`=T0/. Then the
momentum distribution of the emitted lighter particle in the c.m. frame becomes
W.p/ � const: 
 ." C m�/�1=2 exp.�"=Teff/, where Teff increases monotonically
and slowly with " : for " D m`, it equals T0 and for " ! 1, it reaches 2T0. For a
fireball of mass m� D 1 and for " � p D 1GeV, one finds Teff � 4T0=3, and a
fireball with m� D 2 would, for the same ", lead to Teff � 6T0=5.

We stress once more (see Appendix 1) that, although the relative fluctuation .N2�
N2/=N2 tends to one, this is not so for .w2�w2/=w2. In other words, notwithstanding
the flatness of the distribution of multiplicities, we should find a sharp distribution
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Fig. 19.3 Relation between the mass m� and the temperature T0
?

Fig. 19.4 Experimental distribution of multiplicities in 64 events at primary energies 6 � 103 �
Ep � 4� 104 GeV. Taken from [11]

about the predicted momentum spectrum. It is instructive to look at the experimental
Figs. 19.3 and 19.4. They show the sharp distribution about the predicted spectrum
and the flat distribution of multiplicities.

We conclude this section by admitting that our reinterpretation of the original
model was not always very convincing. In particular, the step from the energy dis-
tribution n D e�"˛=T0 to the transverse momentum distribution w.p?/ � e�p?=T0 is
mainly suggested by the experimental evidence. But even with these inconsistencies
in mind, we believe that the model contains some truth. We shall now try to
strengthen this optimism by some speculations about possible improvements.
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19.4 Speculations on a More Realistic Model

Our model of massless distinguishable particles in an energy independent volume V
was worked out in such detail because of its simplicity. We shall now try to improve
the model. Convincing improvements have not yet been carried through. Only an
essay will be given. We discuss in turn:

• Angular distribution and multiplicity, see p. 200
• The case of nonzero masses, see p. 206
• A speculation on the mass spectrum of fireballs, see p. 209
• Elastic (and exchange) scattering, see p. 210
• A logical difficulty of the model, see p. 213

Angular Distribution and Multiplicity

Fermi, in his paper initiating the statistical model [1], consider the possibility
of a Lorentz contracted interaction volume. Assuming such a volume, we would
already obtain from the uncertainty relation a suggestion of the character of
the momentum distribution: the spherical volume V D .4�=3/.1=m /

3 would
become a flat rotational ellipsoid with a transverse half-axis of length 1=m  and
a longitudinal (with respect to the collision axis) half-axis of length 1=�m , where
� D .1 � ˇ2cm/

�1=2 (D E=2 for p p collisions). The uncertainty relation requires
a particle which has been kept in such a volume and which is suddenly set free
to have momenta of the order of p? � m =2, p? � �m =2. We would expect a
similar effect for our model. However, one sees immediately that merely Lorentz
contracting this interaction volume will have no other result than to replace V in all
our formulas by V=� and consequently T0 by T0�1=3. In such a contracted volume,
the energy levels will be of the type

"˛ D c
q
˛22 C ˛21 C �2˛23 ; ˛1;2;3 D 0; ˙1; ˙2; : : : ; (19.37)

where c D m .6�
2/1=3 for a rectangular box of volume

l1l2
l3
�
D 1

�

4�

3

�
1

m 

�3
;

and our z DP e�"˛=T becomes as usual

z.�; T/D
Z

d˛1d˛2d˛3 exp

�
�C

T

q
˛22 C ˛21 C �2˛23

�
D V0
��2

T3 ; (19.38)
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where V0 D 4�=.3m3
 /. From here, all the machinery of Sect. 19.2 runs as before,

only V0=� replaces V everywhere. Therefore, not only is nothing gained from the
angular distribution, but we even have to accept the unpleasant fact (in view of the
experimental findings) that T0 would no longer be constant �150MeV, but instead
would increase with energy:

T0 D
�

E

2

�1=3 �
�2

V0

�1=3
�
�

E

2

�1=3

 150 MeV :

In order to overcome this difficulty, we now make the drastic assumption that
the longitudinal and transverse motion can be treated independently (we shall try
afterwards to give it a shade of justification). In that case, we again consider a
rectangular box with volume V0=� , where V0 � .4�=3/.1=m /

3 is our old V . We
choose the sides to be

l1 D l2 D V1=3
0 ; l3 D 1

�
V1=3
0 : (19.39)

Then we have two independent problems of statistical thermodynamics, viz.,

• in a one-dimensional volume Vk D V1=3
0 =� (longitudinal),

• in a two-dimensional volume V? D V2=3
0 (transverse).

The densities of the energy levels become in our units

gk.pk/d pk D Vkd pk
h
D V1=3

0

2��
d pk ;

g?.p?/d p? D V?2�p?d p?
h2

D V2=3
0

2�
p?d p? ;

(19.40)

and with

z D
X

˛

e�"˛=T �!
Z

g.p/e�p=Td p ;

we obtain

zk D V1=3
0 Tk
2��

; Zk D 1

1 � zk
diverges for T0k D

2��

V1=3
0

D 2��1=3T0 ;

z? D V2=3
0 T2?
2�

; Z? D 1

1 � z?
diverges for T0? D

p
2�

V1=3
0

D
p
2��1=3T0 :

(19.41)

As we decided to treat the longitudinal and the transverse motion independently,
there is no reason to insist that the two temperatures associated with these motions
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should be equal. Since our old T0 equals .�2=V0/1=3, we see that T0? � T0 and
Tk � �3T0. To every high energy collision in which both energies Ek and E? are
large (i.e., where total c.m. energy and momentum transfer are� m ), we would
again ascribe a temperature � T0. We would, however, associate this temperature
with the transverse motion only and provide another temperature � 3�T0 for the
longitudinal one.

Is this picture justified? It is well known (see, e.g., [16]) that a consistent
description of scattering should employ wave packets—aimed at each other—rather
than plane wave states. A plane wave state would be non-localized and T would be
zero (it would be zero for every completely non-localized state, whether or not p is
sharp), but a scattering experiment is equivalent to a position measurement of the
colliding particles with the high precision of the linear dimensions of the order of
1=m . In that case we could ascribe a temperature T . T0 to the localized wave
packets before the collision. Let us then make the rather unconventional speculation
and imagine that we could—on the basis of our considerations in Sect. 19.3—
ascribe to the (localized) incoming particle (in its rest system) a temperature T . T0,
which depends, as we saw, neither on the number of particles in a volume nor
on the energy, but only on the volume. The (localized) hadron would then have a
‘temperature’ T . T0 and only the conservation laws forbid it to radiate off mesons
and nucleon–antinucleon pairs, etc. We may think of T . T0 being the temperature
of the cloud of virtual particles. The conservation laws would play the role of a box
with rather rigid walls in which the virtual particles are enclosed and which they
cannot leave. In the rest system of the nucleon, the energy spectrum of these virtual
particles is isotropic; for the momentum distribution in the forward direction of the
incoming nucleon, one has

w.p�
k / � e�jp�

k
j=T0 ;

where the star indicates the rest system of the nucleon. [This distribution is very
different from that in a Newton–Wigner localized state [17]. This is not surprising
as we are dealing with the localized state of a physical particle, whereas the Newton–
Wigner state describes a bare localized (Klein–Gordon) particle. It may be possible
to relate our philosophy to the ‘bootstrap’ model of hadrons.] Consider those virtual
particles which go in the forward half-space. The p�

k will appear in the c.m. system
with momentum pk D �.p�

kCˇE�/, where ˇ is the velocity of the nucleon seen from
the c.m. system of the collision. As ˇ � 1 and E� & p�

k (still neglecting masses),
we have pk � 2�p�

k . Seen from the c.m. system, the momentum distribution of the
virtual particles around the incoming nucleons with then be roughly

wk.pk/ � e�pk=2�T0 C contribution from backward going particles ;
w?.p?/ � e�p?=T0 .unchanged/ :

(19.42)

The collision, which now takes place, will ‘carry out the position measurement’
and loosen the constraints imposed by the conservation laws. In other words, the
collision breaks the rigid walls of the volume V and the virtual particles can become
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real. They would escape with momentum spectra of the type (19.42), where wk.pk/
contributes e�pk=2�T0 to the forward and backward directions—each nucleon to
one of these directions. [The contributions from the particles which were emitted
backward in the nucleon rest frame have low average momenta and do not follow
the distribution wk.pk/.]

We see that such a picture would rather naturally lead to an effective longitudinal
temperature Tk being about � times larger than T? (and indeed the two Lorentz
contracted incoming particles will, when they get into touch with each other, look
like one Lorentz contracted volume at rest in the c.m. system). We only have to
assume that, in most cases, the collision time is so short that a thermal equilibrium
(Tk � T?) cannot be reached. The simple model described in [4] shows that the
fraction of collisions in which thermal equilibrium may be reached, is about 1=�2

of all inelastic ones.8 That means that in roughly 1 � 1=�2 D ˇ2 � 1, i.e., in
nearly all collisions, the thermal equilibrium is not reached and the longitudinal and
transverse temperatures can be different and the volume of interaction looks Lorentz
contracted. Then our above treatment would be justified. If, however, in the very few
remaining collisions ( � inel=�

2) thermal equilibrium is (more or less) reached,
then we would come back to our model of Sect. 19.2 and we would obtain the unique
temperature Tk � T? � T0 in a volume which is no longer Lorentz contracted. The
emission of particles would have a tendency to become isotropic. The interesting
point is, however, that then again the transverse (and, incidentally, the longitudinal)
momentum distribution would be described by� e�p?=T0 , since T0 does not depend
on the amount of energy transferred to the transverse degree of freedom. We thus
come to the following conclusion:

Conclusion Whenever in a collision—no matter whether central or not—total
energy and momentum transfer are both much larger than m , we expect the
transverse momentum distribution to be independent of the total energy, of the
momentum transfer, and of the particle number, and to be approximately of the form
w.p?/ � exp.p?=T0/. The longitudinal momentum distribution will be roughly of
the form w.pk/ � exp.pk=˛�T0/, ˛ � 1, except for very central collisions, where it
becomes similar to the transverse distribution.
Having succeeded or failed (as the reader may decide) to justify the independent
treatment of longitudinal and transverse motion, we go back to Eq. (19.41) and draw
a few further conclusions.

First of all, the distributions of particles with pk and p? become

nk.pk/ D N

T0k
e�pk=T0

k ; T0k � 3�T0 ;

n?.p?/ D N

T0?
2

p?e�p?=T0
? ; T0? � T0 � m  ;

(19.43)

8There is of course a continuous range of intermediate situations between ‘central’ and ‘periph-
eral’.
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which is just what we said in the above conclusion. Of course, we cannot expect
these two independent distributions to be exact in cases of low multiplicity,
where energy–momentum conservation imposes severe restrictions. In particular, in
large angle elastic and exchange scattering, the transverse momentum distribution
uniquely fixes the longitudinal one. It remains to explain why, when at most one
of the two given distributions can hold, nature apparently chooses the transverse
one (for evidence, see Fig. 19.2). In cases of large multiplicity, the two distributions
describe a ‘jet’. It is most interesting to learn from experiments [11, 15] that our
formula actually fits9 the transverse momentum distribution in jets up to at least
p? � 1:2GeV/c and for primary energies between 25 GeV and 106 GeV with the
one constant T0 value of�160MeV.

Although we decoupled the two directions of motion, we should require that the
mean particle number be the same in both systems since we wish after all to describe
actual events (in which of course the particles having longitudinal momentum
components are just the same as those which have transverse ones). Since from
Eq. (19.15) we have N D z=.1� z/, it follows that

N D zk
1 � zk

D z?
1 � z?

; zk D z? ; (19.44)

and consequently, the relation between the temperatures is

Tk D �V1=3
0 T2? ; (19.45)

which (only) for T ! T0 can be written

T0k D �
p
2�T0? : (19.46)

Next let us consider energy conservation. We can write down the energies contained
in the longitudinal and transverse motion, respectively (remembering that m D 0):

Ek D
Z

pknk.pk/d pk D NT0k � 3N�m  ;

E? D
Z

p?n?.p?/d p? D 2NT0? � 2Nm  :
(19.47)

But is the total energy E the sum of these two? We might say so if the two belonged
to two really independent systems—but it is just energy–momentum conservation
which makes them not completely independent. We could think of defining the total
energy by

1

N

Z q
p2? C p2kn?.p?/nk.pk/d p?d pk ; (19.48)

9An apparent slow increase in T0 with primary energy can be understood as a kinematical effect
(see Appendix 2).
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where the correct energy for a particle with p D .p?; pk/ is now summed up. But
again, multiplying the two, supposedly independent, distributions does not yield the
correct distribution n.p?; pk/ of the particles: it may only tend to the correct one for
large multiplicities. We may leave the details and use the fact that, for large E (in
p p collisions � D E=2), Eq. (19.42) shows that almost all energy is contained in
the longitudinal component, which contains � times more than the transverse one.
We thus identify Ek with E for E very large (� � 1 means E � 1, that is, much
more than our usual condition E� m ). We obtain

E � 3N�m  ;

and therefore,

N � E

3�m 

�
D 2

3m 

� 5 for p p collision

�
: (19.49)

This low and energy independent multiplicity does not of course concern the final
one of pions, etc. In fact, N is the average number of more or less excited particles
formed in the first instant (resonances and/or fireballs) which afterwards decay.
The actual increase in multiplicities, which is experimentally observed, must be
interpreted as an increase in the excitation of the fireballs. The energy independence
of N and T0? implies immediately [by Eq. (19.47)] that the average kinetic energy
stored in the transverse motion is itself independent of the primary energy [although
strongly fluctuating from event to event, see Eq. (19.19)].

Since the probability of finding just N particles is

W.N/ D zN

P
zN
; z D zk D z? ; (19.50)

and since zk ! 1 for Tk ! T0k , it follows that here also all N values become equally

probable in the limit (in such a way, however, that N ! �5). Although the average
number of fireballs is� 5, the actual number can therefore hardly be predicted. The
introduction of masses will, of course, suppress very large N values. Nevertheless,
even then we have to expect enormous fluctuations in the multiplicities of final
particles produced in collisions at (fixed!) high energy.10

Although the present treatment of the problem of the angular distribution is
certainly not yet fully correct, it may indicate the direction in which one has to
go. Nevertheless, we find quite satisfying results:

• The transverse momentum distribution is independent of:

10This is actually found [11] at cosmic ray energies: the r.m.s. fluctuation in multiplicity is � ns

(where ns is the charged multiplicity) (see Fig. 19.4). From the experimental angular distribution
follow large fluctuations in the number of fireballs.
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– the total energy,
– the number of particles,
– the centrality of the collision,

and always has the form � exp.�p?=T0/, T0 � m� (vanishing fluctuations).
This holds whenever the total energy and momentum transfer are both� m . In
that case, thermal equilibrium may or may not be attained. It is irrelevant.

• Almost all the energy is contained as kinetic energy in the longitudinal com-
ponent (jet) and the (strongly fluctuating) transverse energy is on average
independent of the primary energy.

• The multiplicity of the first generation of particles (fireballs) fluctuates strongly
but is not large. The average value is of order 5 and independent of the primary
energy. The strongly fluctuating multiplicity of the last generation (final pions,
nucleons, hyperons) will on average increase very slowly, as most of the total
energy is contained in the kinetic energy of the fireballs and only a little in their
excitation.

These rather—for a statistical model—unusual features explain also in a most
natural way why the conventional (Fermi) statistical model of particle produc-
tion works so much better than one could (in view of the rareness of central
collisions) reasonably expect: the mere existence of the ‘highest temperature’ T0
guarantees, so to speak, an everlasting pre-established thermal equilibrium inside
the incoming (localized) particles—the collision itself has only to break off the
volumes (= conservation laws) in which the clouds were enclosed. Even in non-
central collisions, this pre-established thermal distribution reveals itself, namely in
the transverse momenta. Central collisions only help to transfer longitudinal energy
into the transverse motion, without effect for the latter, except for an increase in
multiplicity. Only in most central collisions can a thermal equilibrium be obtained
in the usual sense, and then T0k � T0?.

The Case of Nonzero Mass

We return to Eq. (19.41) and remark that with � D 1, i.e., for a cubic box, we
obtain T0k D �1=32T0 and T0? D

p
2=�1=3T0, where T0 is the value for the three-

dimensional problem in the same volume. Since
p
2=�1=3 D 1:17, we see that

T0? � T0. We also expect the two temperatures to be nearly equal in the case m ¤ 0.
We shall therefore discuss mainly T0?.

We first consider briefly T0k and then in more detail T0?, assuming now that all
particles have the same mass m� (to be thought of as the average mass):

1. For the longitudinal component, we have

z.m�;T/ D
X

˛

e�"˛=T �!
Z

g.p/e�
p

p2Cm�2=Td p :
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Then gk.pk/ taken from Eq. (19.40) gives

zk.m�;T/ D V1=3
0

2��

Z 1

0

e�
p

p2Cm�2=Td p

D V1=3
0 m�

2��

Z 1

0

e�m�
p
1Cx2=Tdx (put x D sinh y)

D V1=3
0 m�

2��

�
�dK0.�/

d�

�

�Dm�=T

: (19.51)

The condition that Zk diverges is that zk D". Hence

2�

m�V1=2
0

� D � dK0.�/

d�

ˇ̌
ˇ̌
�Dm�=T0

k

D K1.m
�=T0k/ : (19.52)

Now the Bessel function K1.x/ is a smooth, steadily decreasing function of x,
with the asymptotic behaviour

K1.x/ �!

8
ˆ̂̂
<

ˆ̂̂
:

r
2

�x
e�x ; x!1 ;

1

x
; x! 0 :

(19.53)

Since the left-hand side of Eq. (19.52) goes to 1 when E ! 1, we conclude
that x! 0. Then we use the second line of Eq. (19.53) to obtain, for E!1,

2�

m�V1=3
0

� D T0k
m� ; T0k D 2��1=3T0 : (19.54)

This agrees with the value found for m� D 0, as expected. In the longitudinal
component, the mass of a fireball is practically always negligible compared to its
momentum.

2. The transverse component is treated similarly. We arrive at

z?.m�;T/ D V2=3
0

2�

Z 1

0

pe�
p

p2Cm�2=Td p

D V2=3
0 m�2

2�

Z 1

0

xe�m�
p
1Cx2=Tdx (19.55)

D V2=3
0 T2

2�

�
1C m�

T

�
e�m�=T ;
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and the highest temperature T0? is defined implicitly by

1 D V2=3
0 T0`?
2�

�
1C m�

T0?

�
e�m�=T0

? : (19.56)

The numerical value of T0? is not very relevant, because we are largely uncertain
about the value of m� [= average of masses produced at the given energy = very
slowly varying function of the energy (?)] to be put in. Indeed, we should not use
a single value for m� but rather a mass spectrum (see below). What is relevant is
that the m� ¤ 0 case does not change the basic fact that a highest temperature
exists. Therefore, all our conclusions drawn so far remain at least qualitatively
valid.

Let us nevertheless make a little numerical analysis of Eq. (19.56). For the average
mass of ‘fireballs’, we may expect a value of perhaps the nucleon mass. This
is in accordance with our observation that most of all energy in jets must be
contained in the kinetic energy of the longitudinal component and only a little in
the excitation (= mass) of fireballs. We rewrite Eq. (19.56), putting x0 D m�=T0?
and V0 D .4�=3/.a=m /

3:

1

2�

�
4�

3

�2=3 �m�a

m 

�2
D x20
1C x0

ex0 : (19.57)

In Fig. 19.3 we plot

m�a

m 

D p2�
�
3

4�

�1=3 x0ex0=2

p
1C x0

(19.58)

as a function of x0.
Put m� D 1 and T0? D 170MeV so that x0 � 6. We read off

m�a

m 

D a

m 

� 60 ;

or a � 9. This is certainly disappointing. It would mean that the volume in which
interaction still takes place would have linear dimensions of the order of nine times
the pion Compton wavelength.

It seems, however, that there is a way out, maybe even two ways. The value
T0? which we inserted is taken from the fit of e�p?=T0

? to experiments. Taking
the masses to be nonzero, one should not expect p? in the Boltzmann law, but

rather
q

p2? C m2. Let p? be of the order m  and consider the pion transverse

momentum (m D m  in the Boltzmann law). Then roughly
q

p2? Cm2
  �
p
2p?.

If one fitted the experiments with exp.�
q

p2? C m2
 =T/ instead of with e�p?=T0

? ,
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one would expect a T value which is roughly
p
2 times larger than the old one.

Thus, for consistency, we should put T0? � 240 MeV � 0:25. Then x0 � 4 and
am�=m  � 20, a � 3 for m� D 1. Actually, if m� were somewhat smaller than the
nucleon mass, say �0:75, we would arrive at x0 � 3 and am�=m  D 10, a � 2.
This is already quite reasonable.

The other way out of the difficulty may lie in introducing a mass spectrum of
excited states.

A Speculation on the Mass Spectrum of ‘Fireballs’

If �.m�;T/dm� is the mass spectrum, the true z.T/ would be given by [see
Eq. (19.55)]

z?.T/D
Z 1

0

�.m�; T/z?.m
�; T/dm�D V2=3

0 T2

2�

Z 1

0

�.m�;T/

�
1C m�

T

�
e�m�=Tdm� :

(19.59)

Since under no circumstances can z?.T/ become large than one, the integral must
converge. This puts a limit on the asymptotic behaviour of �.m�;T/:

The mass spectrum of highly excited hadrons (fireballs) must grow less than em�=T , where
T is of the order of m .

That it will indeed grow almost that fast is seen when we consider that
�.m�;T/dm� is the total number of states between m� and m�C dm� of a ‘fireball’.
But such a fireball itself is again described by our model—an unspecified number
of distinguishable particles in a volume Vc with a total energy E D m�. The density
of states of such a system is roughly eS, where S.E;V/ is the entropy. Since the
temperature of the system (at sufficiently high energy) becomes T0 D const:, it
follows that asymptotically [namely when .log m�/=m� ! 0],

S.E;V0/ �! E

T0
; �.m�;T/ �! em�=T0 : (19.60)

We may then put

�.m�;T/ 	 1

T
f .m�=T/em�=T ; (19.61)

and obtain for z? D 1,

2�

V2=3
0

D T0?
2
Z 1

0

f .x/.1C x/dx : (19.62)
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As experimental evidence shows that T0? is of the order of m , it is required that

Z 1

0

f .m�=T0/

�
1C m�

T0

�
d.m�=T0/ � 1 ; f .m�=T0/ 	 T0�.m

�;T0/e�m�=T0 :

(19.63)

It is not clear whether Eq. (19.63), which puts a condition on the mass spectrum,
is compatible with the fact that the mass spectrum should follow from the theory
itself. It could be that this leads to an interesting self-consistency problem with
further consequences (a kind of ‘bootstrap’ at high temperature).

In any case, we see that the introduction of a mass spectrum �.m�;T/ may
resolve the apparent difficulty in reconciling the numerical value of T0?, as found
experimentally, with the requirement m� ¤ 0 (and not too small). We may presently
at least hope that the value of the integral in Eq. (19.63) is near to one and
consequently neither T0? nor V0 have to have unreasonable values.

Elastic and Exchange Scattering

Whatever the actual value of T0 may turn out to be, we know that it exists. Let us
then assume that it is indeed of the order of m . Taking the masses seriously and
still treating the transverse and longitudinal motion as independent, we expect the
transverse momentum distribution to have the form [see Eq. (19.43)]

w.p?/ � p?e�
p

p2
?

Cm�2=T0 ; (19.64)

where strictly speaking m� is the mass of that type of fireball whose distribution we
wish to describe. Since actually mostly pions are observed, and these come from a
chain of decays, the observed distribution will be somewhat different, and in fact
broader (see Appendix 2). But, experimentally [11, 14, 15], it definitely is of the
form given in Eq. (19.64) with T0 � 160MeV. Experimentally, the T0 used to fit the
distribution by p?e�p?=T0 , seems to increase (very slowly) with the primary energy
[11]. This can be due to the slowly increasing mean excitation of the fireballs which
then, on average, decay in a number of steps into the final particles. This number of
steps will increase with the mass m� of the fireball. Each of these steps will broaden
the spectrum resulting from the preceding decay. If one tries nevertheless to fit with
p?e�p?=T0 , then T0 must obviously increase somewhat (see Appendix 2).

The situation is different if we apply this formula to elastic scattering of nucleons,
for instance. There m� really means the nucleon mass and then the differential
elastic cross-section should obey

del

dw
� e�
p

p2
?

Cm2=T0 : (19.65)
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There will be kinematical factors in front of this expression, which are not too easily
worked out, because conceptually w.p?/ and d=dw are somewhat different: d=dw
applies to a system with fixed total energy, whereas w.p?/ applies to a system where
the energy of a single particle is not fixed. Indeed, w.p?/d p? shows how many there
might be in the interval given by d p?. If we applied this w.p?/ literally to elastic
scattering, we would then have

d p? D d.p sin �/ D sin � d pC p cos � d� D p cos � d� ; (19.66)

because d p D 0 for fixed total energy. We see then that, for geometrical reasons,
w.p?/d p? D 0 for � D �=2 and hence that at 90ı,

del

dw
2� sin � d� ¤ w.p?/d p? ; (19.67)

since the left-hand side is nonzero. However, for smaller angles such a formula looks
most natural. We may then tentatively simply replace d p? by pd� , which somehow
compensates for our disregarding the strong correlations between longitudinal and
transverse distributions in a two-body case. Then, using

w.p?/ D const: 
 p?e�pp2
?

Cm2=T0 ;

the result is11

del

dw
D const: 
 p2e�

p
p2

?
Cm2=T0 (angles not near �=2) ; (19.68)

whereas for angles near 90ı, some other factor should replace p2.
This other factor may involve an extra condition: centrality. The point is this:

the distribution w.p?/ is, as we saw, independent of the extent to which thermal
equilibrium (between longitudinal and transverse motion) is reached. This holds
certainly only for systems of many particles where a large value of p? does not then
require the collision to have been central. In the two-body case a large value p? !
p implies a central collision and consequently we expect this further condition to
modify w.p?/. As shown in [4], the centrality condition can be taken into account
by multiplying the relevant total inelastic cross-section by 1=�2 D 4=E2. Then, for
larger angles, we should expect

del

dw
� const: 
 e�pp2

?
Cm2=T0 �!

near 90ı
const: 
 e�p?=T0 : (19.69)

11Note that d=dw is a function of the two independent variables E and � . Our formulas (19.68)
and (19.69) claim to describe the differential elastic cross-section as a function of both of these
variables.
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Perhaps the ‘constant’ still varies with E. In fact, the best fit is obtained by putting
it equal to 1=E2 (see Fig. 19.2).

The most interesting property of our new formula is that, for p? ! 0 (forward
direction), it gives

del

dw
� const: 
 p2 exp

�
� 1

T0

p2?
2m

�
�!

near 0ı
const: 
 p2 ; (19.70)

which is required by the optical theorem together with the empirical facts that the
scattering amplitude tends to become purely imaginary and tot ! const: Even
the functional form coincides with that of the observed diffraction peak—for small
angles, p2 ! �t (invariant square of the momentum transfer) and Eq. (19.70) reads

d

dt

ˇ̌
ˇ̌
t!0

D const: 
 et=2mT0 : (19.71)

Experimentally, it is of the form eCbt with b � 10GeV�2. However, if T0 were of
the order of m  � m=6:8, this would give b � 3:4=m2 D 3:9GeV�2. This value is
much too small. Conversely, in our present model, it would mean that, as p? ! 0,
a temperature of

T�
0 � 0:4T0 (19.72)

would be needed to fit the data. Now our model by no means excludes a temperature
lower than T0 and indeed we cannot even justly require that T0 should be reached
when the momentum transfer is extremely small. [Remember the conclusion on
p. 203.] This may be interpreted as saying that the temperature of that cloud of
virtual particles, which constitutes what we call a localized nucleon, is here about
one half of T0, because at this small momentum transfer, it was not so well localized.
The temperature reaches T0 only if a sufficient amount of energy is transferred to the
transverse motion. (It would be interesting to see what our model has to say about
peripheral collisions pC p! N� C N! NC NC  , etc.)

Whatever the reason, as a matter of fact (Orear, private communication),

del

dw
� e�
p

p2
?

Cm2=T0

seems to fit the experimental data with T0 � 50MeV in the diffraction region and
with T0 � 150MeV outside the diffraction region. The temperature required for the
fit changes rather rapidly from one value to the other. If one puts

�E? D
q

p2? C m2 � m ;
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then�E? is the energy transferred to the transverse motion. It then happens that, in
the diffraction region, �E? < 0:3, and in the region where T0 � 150MeV gives a
good fit, �E? > 0:7. Tentatively using Fig. 19.1 with E 	 �E?, one sees that, in
the diffraction region, T < 0:75T0, and in the other region, T > 0:9T0 would result.
This is not of course to be taken too seriously, because in Fig. 19.1 it was supposed
that the masses could be neglected. Anyway, the tendency is right.

It is probably not just to demand from our model that it should give even the
numerical behaviour in the diffraction region correctly. Indeed, in that region the
neglected strong geometrical correlation between the longitudinal and transverse
momenta should again become as important as near 90ı.

The present remarks are largely just guesswork. It remains to clear up the relation
of our model to elastic scattering and peripheral collisions.

A Logical Difficulty of the Model

We have employed statistical thermodynamics of distinguishable particles. This is
strictly speaking inconsistent, since nature certainly does not work this way. Indeed,
even if we are right in saying that most contributions come from states in which all
particles (resonances, fireballs) are different, there are certainly states in which, for
instance, five  C are already present in the first generation.

To be really consistent, we should have worked out a statistics of, say, M different
species of particles. Particles of the same species must then be considered to be
indistinguishable (and a statistics, Bose or Fermi, to be prescribed) and the number
Ni of particles of each kind, as well as the total number N DP

Ni of particles, has
to be left open as before. Finally, one lets M ! 1. One sees immediately that the
number of particles of each single kind would then tend to zero and we should come
back to our model.

In the case of zero masses one finds, however, that this does not work.
One simply obtains



Z.V;T/

�M
, where Z.V;T/ is the usual partition function of

indistinguishable particles, and in fact that of a massless Fermi or Bose gas, as the
case may be. With M ! 1, everything diverges at any temperature. That is easily
understood if one realizes that, for M ! 1, there is an infinity of states of our
gas even if the total number N of particles in it is kept fixed: each single particle
may be removed from the gas and be replaced by one of another species. From that
operation, a new state with the same energy results, whence the sum over states is
infinite.

The situation becomes different if the particles have a mass. Then replacing a
particle by one of another species means changing the energy of the system, and
one cannot generate an infinity of different states of the same energy. Again, with the
number M of kinds of particles going to infinity, one would find that the number of
particles of a given kind tends to zero. It is hoped that such a statistics will become
equivalent to our present model. This, however, has not yet been worked out. It
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seems to be an urgent problem in view of the success of the present model. Work is
in progress.

19.5 Summary and Conclusions

Our model uses only three basic experimental facts:

1. The strong interactions are strong enough to produce many resonances and even
fireballs. We assume that the latter are only an ‘extrapolation’ of the resonances
to very high energies.

2. The strong interactions have a range of the order of the Compton wavelength of
the pion.

3. In high-energy collisions, the duration of contact is in general so short that a
thermodynamical equilibrium (in the sense of Fermi’s statistical theory) cannot
be reached.

From (1) it follows that particles are to be considered as (quasi) distinguishable,
while (2) determines the volume in which the system is enclosed, and (3) allows one
to treat the longitudinal and transverse motion as (nearly) independent. All the rest is
straightforward and simple statistical thermodynamics with the following results:

• A universal highest temperature T0 � m  (corresponding to�1012 K) governs all
high-energy processes involving strong interactions (and only these; no highest
temperature exists for gravitational, weak, and electromagnetic interactions
since they do not produce the many resonances which make the particles
distinguishable).

• The transverse momentum distribution in high-energy collisions of hadrons is a
Boltzmann distribution with constant temperature T0 � m  independent

– of the primary energy (1 � Elab � 106 GeV),
– of the number of particles involved—for two particles it gives elastic scatter-

ing, for many particles the jets,
– of the centrality (= degree of thermal equilibrium) of the collision.

• Almost all energy is contained in the longitudinal component as kinetic energy.
Only a small fraction is used for the excitation of fireballs. The total transverse
energy fluctuates strongly but is on average practically independent of the
primary energy.

• The multiplicities of particles produced fluctuate strongly (dispersion of order
1) about a slowly increasing mean value, whereas the fluctuations about the
Boltzmann law for transverse momenta tend to zero for high primary energies.

• An apparent increase with primary energy of the temperature T0 needed to fit
the experimental distributions of transverse momenta between 1 and 106 GeV is
qualitatively explained to be a kinematical effect due to a chain of decays leading
from the fireballs of the ‘first generation’ to the observed pions and others.
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• Taking the masses into account, the Boltzmann law becomes e�pp2
?

Cm2=T0 . For
elastic scattering at high energies and outside the diffraction region, this fits
the experimental differential cross-section well. If one stresses the formula, one
gets into the diffraction region, where the form e�p2

?
=2mT0 is correct, but where

T0 � m  should be replaced by � 0:4T0. If one accepts that, the fit of the
diffraction peak is also good. This lower temperature is not inconsistent with
the present theory.

These are the results of our paper.
Let us now add some speculations (= wishful thinking). It is possible that the

most interesting consequences of our model lie not in explaining so simply the
well known but so far completely obscure characteristics of high-energy interactions
above 1 GeV—it is possible that the most interesting consequences are to be found
in astrophysics and in elementary particle physics. For astrophysics, it is rather
obvious: whenever under the influence of gravitational pressure, strong interactions
and kinetic energies per particle of the order of m  come into play in the centre
of a star, the appropriate statistics for a thermodynamical treatment is not Fermi
statistics, but the statistics of distinguishable particles. The picture of a ‘neutron
star’ would be inadequate. No work on this question has been done, however. (I
thank Dr. G. Cocconi for drawing my attention to this point.)

For elementary particle physics, the following possibility arises. We have seen

that the Boltzmann distribution e�pp2
?

Cm2=T fits even the diffraction peak if we
have T � 0:4m . Since this holds down to p? ! 0, where no energy is transferred
to the transverse motion and where the collision constitutes a very bad ‘position
measurement’, we feel tempted to conjecture that the incoming particles might
already have an ‘a priori temperature’ (of the order of 0:4m  for protons) T . T0
and only a sufficient energy transfer would raise the temperature (for the transverse
motion in the c.m. of the collisions) to T0. Since the differential elastic cross-section
and the total cross-section are related by the optical theorem and since all total
cross-sections of hadrons are of the same order at high energies, we would conclude
that they all have an ‘a priori temperature’ of the same order. Then the pion, kaon,
nucleon, and hyperons would be thermodynamical systems with a temperature
� m =2. The immediate question is why, if they are hot, they do not radiate. Why
are they all stable against strong decay and the proton even against electromagnetic
and weak decay? There are the conservation laws, of course, but they merely state
the known facts. They do not explain them. That the proton is stable is not the result
of any theory. It has been built in as a postulate in all theories from the beginning.
Considering the family of all states with nucleon number 1 and charge 1, the proton
is the ground state of that family not because the results of field theory teach us
so, but because we put it in by defining the operators of asymptotic fields that way.
Therefore, whether the nucleon is hot or cold, we do not understand why it is stable.
Let us therefore ignore this difficulty, which is not typical to the picture which we
wish to try.
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We would then have a sequence of different states  , K, pion resonances, K
resonances, N, nucleon resonances, hyperons and their resonances, and so on,
leading with ever increasing mass into a continuum called ‘fireballs’. All of these
systems are more or less well described by thermodynamics of distinguishable
particles with temperatures between roughly 0:5m  and m . For the lowest tem-
peratures, we obtain the stable particles (‘strongly’ stable) and some new unknown
principle is necessary to explain why these states are stable. The missing new
principle is analogous to Bohr’s quantum condition, which ‘explained’ why the
electrodynamical system called the hydrogen atom had a stable ground state in
which the rapidly circulating electron did not radiate—in contradiction to all
the then known laws. What we need would be a ‘quantum condition’ which
‘explains’ similarly why the thermodynamical system called the proton does not—in
contradiction to all the now known laws of the present quantum mechanics—
radiated off the rapidly moving particles of which it consists. Maybe the statement
that the proton is stable is already the proper form of that postulate, but maybe it
could be stated in a more illuminating form as deep as Bohr’s

H
p'd' D nh. In

any case we cannot be content with that postulate. Bohr’s quantum condition for the
stability of the proton may later be explained by some generalization of quantum
mechanics. It is clear that this condition should give us the mass spectrum of the
hadrons, whether the condition itself can be derived from present quantum theory
(which is not likely) or from a future generalization of it. It is rather puzzling that not
only the spectrum of masses is known to us, but even what corresponds to Wigner’s
classification of states by group theory, namely, the symmetry schemes SU3, etc.,
of strong interactions—and in this respect we are far beyond Bohr’s

H
p'd' D nh

—but the quantum condition proper is still unknown.
The proton, if our picture should turn out to be true, would then seem to be

a straightforward extrapolation of ideas which have been familiar for quite some
time. In the early days of renormalization theory, Welton [18] proposed a very
intuitive picture of how the vacuum fluctuations shuttle the electron and lead to
the observable Lamb shift. It was there considered to be essentially the result of
statistical vacuum fluctuations. The interaction, however, is not strong and the ”
quanta have no mass—the same result could be calculated more exactly with the
first few orders of perturbation theory.

In the case of strong interactions, ordinary perturbation theory would not suffice.
The large manifold of resonances and fireballs and the short range cause the proton
(and all other hadrons) to behave like a thermodynamical system of a rather high
(almost the maximal possible) temperature. The ‘bootstrap’ mechanism would then
correspond to a new type of perturbation treatment, in which only the few lowest
masses of the unlimited number of interaction ‘fireballs’ constituting the hadrons
are taken into account. It would be a ‘first approximation to thermodynamics’.

It is, of course, possible that the picture drawn here is wrong and that the circum-
stance that our model works even in the diffraction region is purely accidental. But
if it is not wrong, then it would follow that we have basically all the information
we can hope for in our hands: the mass spectrum, the selection rules (SU3, etc.), the
decay modes of the lower unstable states (ρ, ω, etc.), and that going to higher and
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higher collisions energies would be comparable to attempting to learn something
about the structure of the hydrogen atom by studying the properties of a highly
ionized H gas at higher and higher temperatures.

This latter remark has a good chance to hold even if the above picture of ‘a priori
hot’ hadrons is wrong. The good agreement of our results with experiments indicates
that, at least in all collisions with a momentum transfer above � m , the colliding
particles are heated up to the maximal temperature T0 � m . We have therefore
little chance of learning much more about the structure of hadrons and about the
details of their interaction than we could learn about the structure and interaction
of atoms from high-temperature thermodynamics (ideal gases). On the contrary,
when we have learnt such things from thermodynamics, it was at low temperatures
(condensation, frozen degrees of freedom, superconductivity). If we draw a parallel,
we would think that our present laboratory energies below 100 GeV would be the
most interesting ones for strong interactions. (We stress once more that not a single
one of our conclusions applies to weak and electromagnetic interactions.) One
extremely interesting question, however, remains to be answered by high-energy
experiments, namely, whether basic triplets for SU3 exist. None of our arguments
excludes their being found, e.g., in a p p collision with several 100 GeV in the centre
of mass.
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Appendix 1

In the main text [Eqs. (19.18) and (19.19)], it was shown that the relative fluctuations
in the number of ‘fireballs’ tend to one:

N2 � N2

N2
�! 1 for T ! T0 : (19.73)

If one defines

w˛ D n˛
N
; (19.74)

then w˛ is the probability that a given particle has energy "˛. We wish to show here
that

w2˛ � w˛2

w˛2
�! 1 for T ! T0 : (19.75)
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First we note without proof (it is simple) that, if we considered the fluctuations
in n˛, they would tend to one. This is not due to the fluctuations with respect
to the Boltzmann law, but to the large fluctuations in their normalizing factor N.
Therefore, we have to consider the fluctuations in w˛ . It is these latter fluctuations
which indicate how much we should expect experimental points to scatter about the
Boltzmann distribution of transverse momenta.

We write [see Eq. (19.9)]

z D
X

x˛ ; Z D
X

N

(
X
P

nDN

NŠ

n1Š : : :

Y

˛

xn˛
˛

)
	
X

N

zN : (19.76)

In order to get nˇ in front of
Q
˛ xn˛ , we should multiply by xˇ@=@xˇ . This operator

can be written outside Z. Thus .nˇ=N/ is given by

�nˇ
N

�
D 1

Z
xˇ

@

@xˇ

X

n

zN

N
D xˇ

z
; (19.77)

where @=@xˇ D @=@z has been used. Similarly,

�nˇ
N

�2D 1
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�X

n

zN
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D 1

Z
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X

N

zN�1

N
C xˇ

X

N

N � 1
N

zN�2
!
:

(19.78)

Here the first term in the round bracket is .log Z/=z and the second tends to xˇZ=z2.
For T ! T0, we can neglect .log Z/=Z to obtain

�nˇ
N

�2 �!
�

xˇ
z

�2
: (19.79)

This, together with Eq. (19.77), proves Eq. (19.75).
A glance at Figs. 19.3 and 19.4 shows that our result agrees with experiment:

large fluctuations about the mean multiplicities and small ones about the Boltzmann
distribution of transverse momenta.

Appendix 2

We wish to consider here the broadening of the spectrum due to the decay of a
fireball. The problem is straightforward as far as kinematics is concerned. Its general
treatment offers, however, great computational difficulties. We therefore treat a
simple one-dimensional model case.
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We suppose a fireball with mass m� � T0 moving along the x axis with a
(positive or negative) ‘four-velocity’12 V D .�; ˇ�/. This fireball can emit another
particle with mass m`, again only in the ˙x direction, with a ‘four-momentum’
which is described by P` D ."`; p`/ in the fireball’s rest frame F�, by P D ."; p/ in
the c.m. frame.

We suppose that the momentum distributions of m� in the c.m. frame and the
momentum distribution of m` in F� are of our standard form for one-dimensional
motion [masses fully taken into account, see Eq. (19.51)]:

w.p�/d p� D e�"�=T0d p� (in c.m. frame) ;
w.p`/d p` D e�"`=T0d p` (in F� frame) :

(19.80)

The four-velocity of the mass m� is given by

V D .u0; u/ D .�; ˇ�/ D ."�=m�; p�=m�/ ; u0 D
p

u2 C 1 : (19.81)

To the momentum distribution of m� corresponds a velocity distribution

v.u/ D w.p�/
d p�

dm
D m�e�m�

p
u2C1=T0 :

We normalize this distribution to
R1
0
v.u/du D 1 and obtain

v.u/ D 1

K1.m�=T0/
e�m�

p
u2C1=T0 ; (19.82)

where K1 is as before a Bessel (modified Hankel) function. For m� � T, we have

K1.m
�=T0/ �!

r
2T0
�m� e�m�=T0 :

Hence v.u/ behaves for small u like e�m�u2=2T0 and for large u like e�m�u=T0 . Since
m� � T0 was supposed, v.u/ drops very fast. Its maximum at u D 0 increases
roughly as .m�=T/1=2.

Now let u be fixed for a moment. Then the number of m` particles with positive
momentum fp; d pg in the c.m. frame is given by

Wu.p/d p D w.p`/d p` ; (19.83)

where p` has to be chosen accordingly:

p` D p
p

u2 C 1 � "u ; "` D "
p

u2 C 1 � pu : (19.84)

12Strictly speaking, we should say ‘two-velocity’.
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Hence, with d p=d p` D "`=",

"Wu.p/ D "`.u/e�"`.u/=T0 : (19.85)

This has now to be multiplied by v.u/du and integrated from�1 to1 (the negative
u values take care of the cases in which the fireball moves in the �x direction and
emits a ‘meson’ in the Cx direction with sufficient energy to overcompensate the
velocity in the�x direction and to obtain a positive direction of flight). Disregarding
the normalization factors, we obtain

"W.p/ D
Z 1

�1
du
h
e�m�

p
u2C1=T0e�."pu2C1�up/=T0

�
"
p

u2 C 1 � up
	i
: (19.86)

We know that the first exponential drops first like a Gaussian, later simply
exponentially. The exponent in the second exponential is "`.u/ with the following
behaviour:13

"`.u/ �!

8
ˆ̂<

ˆ̂:

juj."C p/ for u! �1 ;

" � up for u � 0 ;
m` .minimal/ for u D p=m` ;

u."� p/ for u!C1 :

Therefore expŒ�"`.u/=T� has a maximum at u D p=m` and drops exponentially
on both sides. We shall assume that m� is large enough to ensure that the term
exp

� � m�pu2 C 1=T
	

can be considered to vary more rapidly than expŒ�"`.u/=T�,
whence the main contributions to the integral will come from u � 0. Then in
the algebraic factor "`.u/ which multiplies the exponentials, we put u D 0. We
expand the square roots in the exponentials and integrate these expressions since
the resulting error for large juj is negligible. Thus omitting all constant factors,

"W.p/ � "e�"=T0

Z 1

�1
exp

�
�u2

"C m�

2T0
C u

p

T0

�
du

and

W.p/ �
r

2�T0
"C m� e�"=T0ep2=2T0."Cm�/ ;

or again,

W.p/ � const:p
"C m� exp

�
� "

T0

2."C m�/ � p2="

2."Cm�/

�
:

13"`.u/ has the maximum possible value m�=2, namely, when m� ! m` C m`. In general, "` is
much smaller. In the integral, we forget about this fact, since large u values contribute nothing.
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We may then write

W.p/ � const:p
"C m� e�"=Teff ; (19.87)

where

Teff."/ D T0
2."C m�/

2."C m�/ � p2="
; p2 D "2 �m2

` : (19.88)

When " varies between m` and1, Teff."/ varies between T0 and 2T0, the latter value
is approached only for " values� m�.

In cosmic ray jets, transverse momenta of pions up to the order p D " D 1 to
1.2 have been reliably measured [11]. Assume then p D " D 1 and m� D 1. Then
Teff D 4T0=3 and with m� D 2, we find Teff D 6T0=5. This is at the upper end of
the measured spectrum. At the lower end, Teff ! T0.

The present analysis is very rough and incomplete. It illustrates only the
mechanism. It is not inconsistent with the assumption that nothing serious would
happen in reality (the two-dimensional case). If that turned out to be so and if the
general case gave a similar result, then it would allow one to conclude from the
transverse momentum distribution [namely, the deviations from a pure exp.�"=T0/]
something about the average or most frequent mass m� of fireballs. The heavier
the fireballs, the less the actual distribution will deviate from an exponential. On
the other hand, the chain of decays will then contain more members and this may
increase the deviations again. In any case it will at least cause a larger effective
temperature. Actually, the T which is needed to fit the spectra seems to increase
somewhat with the primary energy, although not more than by a factor of two, when
the primary energy varies by a factor of one million.

In spite of this very crude analysis, we believe that it is sufficient to make it very
likely that the apparent increase in the temperature is entirely due to kinematics and
that our T0 is indeed independent of the primary energy.

A more careful and more realistic (two-dimensional) discussion of this problem
is highly desirable.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source and credited.
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Chapter 20
On the Hadronic Mass Spectrum

Rolf Hagedorn

Abstract We argue that the sole requirement of a self-consistent bootstrap includ-
ing all hadrons up to infinite mass leads to asymptotically exponential laws for the
hadron mass spectrum, for momentum distributions, and for form factors (and to a
highest temperature).

Over the last few years an increasing number of hadron mass formulas and, recently,
of speculations about the whole hadronic mass spectrum have been published, all
of them based on group theoretical considerations, quark models, or the like. We
present here a different approach, a kind of asymptotic bootstrap, resulting from
the ‘thermodynamical model’ and dealing only with the spectral density �.m/. The
model has been described in three papers [1] entitled Statistical Thermodynamics
of Strong Interactions at High Energies I, II, and III. The present consideration is a
small but basic part of it.

In the thermodynamical model we describe highly excited hadronic matter by
relativistic quantum statistical thermodynamics, allowing arbitrary absorption and
creation of hadrons (and antihadrons) of all kinds, including all resonances. As the
spectrum of resonances cannot be limited, we take into account all of them, even
the not yet discovered ones. It goes as follows: we introduce one common name
‘fireballs’ for all hadrons and postulate (the feedback arrow is most important!).
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Postulate. A fireball is

! a statistical equilibrium of an undetermined number of all

" kinds of fireballs, each of which is in turn considered to be !
" #
             

(20.1)

We forget about complications like collective motions (in non-central collisions)
and imagine ideal equilibrium (realistic fireballs are discussed in Part II of [1]). One
writes down the partition function Z.V;T/ for a gas consisting of an undetermined
number of all kinds of particles (fireballs) which must be labeled, for instance, by
their mass m. In calculating Z, one has to sum over all single-particle momentum
states, over all possible numbers of particles (bosons 0,. . . ,1, fermions 0,1), and
over all possible kinds of particles (hadrons and anti-hadrons). The latter is done by
introducing the number of hadron states between m and mC dm, namely, �.m/dm.
With this (unknown) function �.m/, the partition function becomes (see Part I of [1])

Z D exp

�Z 1

0

�.m/F.m;T/dm

�
; (20.2)

with a known function F.m;T/. On the other hand, Z can be written (see any book
on statistical mechanics)

Z D
Z 1

0

.E/e�E=T dE ; (20.3)

where .E/ is the number of states between E and ECdE of the fireball considered.
As for this fireball E D m (we stay in its rest frame), we can say as well that we have
for our ‘main’ fireball .m/dm states in the mass interval fm; dmg. Now �.m/ is the
number of hadron states in the interval fm; dmg and if our postulate (20.1) above is
applied, it follows that asymptotically �.m/ and .m/ must somehow become the
same. A detailed discussion (see Part I of [1]) reveals that one cannot require more
than that

log �.m/

log .m/
�!

m!1 1 ; (20.4)

which says that, for m ! 1, the entropy of a fireball is the same function of its
mass as the entropy of the fireballs of which it is composed. This implies that all
fireballs are on an equal footing.
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We now equate the two expressions (20.2) and (20.3) and require simultaneously
that Eq. (20.4) should be valid. It is shown in Part I of [1] that F.m;T/ falls off
asymptotically as m3=2 exp.�m=T/ and that therefore

Z �! exp

�Z 1

0

m3=2�.m/e�m=Tdm

�
 !

Z 1

0

.m/e�m=T dm : (20.5)

This is consistent with the bootstrap requirement (20.4) if and only if1

�.m/ �!
m!1

const:

m5=2
em=T0 : (20.6)

It follows that T0 is the highest possible temperature—a kind of ‘boiling point of
hadronic matter’ in whose vicinity particle creation becomes so vehement that the
temperature cannot increase further, no matter how much energy is fed in.

An immediate consequence is a Boltzmann-type momentum distribution [asymp-
totically � exp.�p?=T/] with T . T0, but never larger than T0! This explains
why the transverse momentum distribution in high energy jets is practically energy
independent (for all details and possible deviations, see Part II of [1]).

Back to the mass spectrum: �.m/ counts each state (spin, etc.) separately and
includes antiparticles. If one smooths out the experimental mass spectrum [2],
one obtains Fig. 20.1, in which an exponential increase is seen in the region
.1,000 MeV, i.e., in that region where we know almost all resonances. Extrapolating
the experimental curve with an expression having the required asymptotic behavior,
Eq. (20.6) yields

T0 D 160˙ 10MeV ; (20.7)

and with this value, excellent fits (ranging over ten orders of magnitude) to the
momentum spectra and multiplicities in high energy production processes are
obtained (see Part II of [1]). It is then only natural to expect [3] the form factors
to decrease as � exp

� � jt2j1=2=4T0
	
.

We treat hadrons as self-consistently infinitely composed of all other hadrons—
this is what the postulate (20.1) says. If all hadrons are virtually contained in each
of them, it is natural to assume that all phase relations between the infinitely many
contributing amplitudes wash out and that therefore statistical thermodynamics
is adequate to treat this asymptotic bootstrap. Although the technique is uncon-
ventional, it is not so far from the usual ones as one might think. An intimate
relation between the mass spectrum and the momentum distribution in multiparticle
production seems unavoidable in any theory, and the Gibbs ensemble description

1It is not possible to have this �.m/ cut off somewhere because this would imply two types
of essentially different fireballs: one with almost exponential density of states, the other with
asymptotically vanishing density of states, and both would contribute and exist on an equal footing.
This is inconsistent.
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Fig. 20.1 The experimental mass spectrum smoothed by Gauss functions as indicated in figure,
experimental spectra for three (1964, 1966, 1967) sets of particle data, and a fit by a simple
function with the asymptotic behavior required by Eq. (20.6). The normalization constant c is a
fitted parameter, m0 is an estimated value

with fixed T somehow resembles off-shell effects because the masses of fireballs
present at temperature T extend to infinity (with exponentially falling weight).

It will be impossible to prove or disprove our mass density in Eq. (20.6) by
direct experiments, because the density increases exponentially and the production
cross-section for each individual resonance decreases exponentially with m—the
two mechanisms act in common against the experimenter.
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Any ‘proof’ of Eq. (20.6) will be indirect, but the internal consistency of the
thermodynamic model and the good agreement of its predictions with an enormous
amount of experimental data (see Parts II and III of [1]) provides strong indirect
support. In this respect, it is relevant that, in the applications of the model (see
Parts II and III of [1]), the asymptotic mass spectrum is used explicitly in integrals
over m extending to infinity.

Recently, two papers [4] have been presented which use conventional quantum
mechanical techniques to construct infinitely composed, self-consistent hadrons. A
variety of different model assumptions were shown to lead to one common behavior:
the form factors fall off asymptotically as exp.�const:
 jtj1=2/ in complete analogy
with our result on momentum spectra. It seems then that the sole requirement of
self-consistent infinite compositeness is sufficient to produce these asymptotically
exponential laws for mass spectra, momentum distributions, and form factors—at
least this is strongly suggested by the fact that the thermodynamical model does
not make any other assumption and that, in the papers by Stack and Harte, this
assumption was the only one common to their various models.

In future, one should distinguish the ‘vicinity of the boiling point of hadronic
matter,’2 where T ! T0 and E ! 1, and where literally all hadrons merge into
each other. It follows from the small value T � 160MeV (1:86 
 1012 K) that
E!1means in this respect E above 10 GeV (for quantitative relations, see Part II
of [1]).

We conclude this letter with a curiosity—or perhaps not a curiosity. Consider
a class of fireballs f .i/n with roughly equal mass m.i/

n , composed of quarks and
antiquarks (n of them altogether, with n large). As the quark has 12 states
[SU.3/
SU.2/
 antiparticle conjugation], this class of fireballs will have 12n states
(i D 1; : : : ; 12n) if one assumes that each quark is in the ground state relative to all
others (contrary to current models where, e.g., orbital momenta are discussed: here
too they might be built in if one tries harder). Assume further that (as in nuclear
physics) each of them contributes roughly the same and N independent amounts
�m to the average mass hmin of these fireballs. Then,

hmin D �m 
 n : (20.8)

For large n, the number of fireballs of mass� hmin becomes

z.m/ D 12n D exp.n log 12/ D exp

�
hmi log 12

�m

�
: (20.9)

2For symmetries, etc., one had better look at the ‘vicinity of the freezing point’, so to speak, namely,
where most channels are frozen in.
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The quantity �m can be estimated by using the meson 35-plet and/or the baryon
56-plet, taking the average mass of each of these multiplets

�m D hm35i
2
D hm56i

3
: (20.10)

We find with hm35i � 700MeV and hm56i � 1,050 MeV,

z.m/ D exp
hmi
140

(hmi in MeV) : (20.11)

It might be an accident that this is the leading term of Eq. (20.6) with a reasonable
value of T0. (It might be no accident.)

There is no contradiction in considering a fireball as built of fireballs and at the
same time as built of quarks—superfluid helium is understood only if considered
as a boson liquid, but after all it ‘really’ consists of fermions. Such pictures are
complementary.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Chapter 21
On the Hadronic Mass Spectrum: 2014

Johann Rafelski

Abstract The understanding of Hagedorn’s pivotal discovery, the exponential mass
spectrum, evolved rapidly. Some of the insights have since been lost from view—I
recall the relevance of the preexponential power index a. Moving forward to current
lattice QCD computation of QGP properties I describe an emerging relationship.

21.1 Data and Hadron Mass Spectrum

Fits of Hadron Mass Spectrum

The number of known hadronic states more than tripled since Hagedorn performed
his analysis of the shape of the mass spectrum, see Chap. 20. This provides an
opportunity for an important cross-check of the Hagedorn analysis. I will now
briefly describe the key new insights.

The Krakow group [1, 2] considered the integrated (‘accumulated’) spectrum

R.M/ D
Z M

0

�.m/dm (21.1)

and they also break the large set of hadron resonances into different classes, e.g.
non-strange/strange hadrons, or mesons/baryons. While Hagedorn-type approach
requires smoothing of the spectrum, adopting an effective Gaussian width for all
hadrons, the integrated spectrum Eq. (21.1) allows one to address directly the step
function arising from integrating the discrete hadron mass spectrum, i.e. avoiding
the Hagedorn smoothing.

One could think that the Hagedorn smoothing process loses information that is
now available in the new approach. However, it turns out that a greater information
loss comes from the consideration of the integrated ‘signal’. This is seen in the
results of Krakow group by noting that the fitted value of TH is strongly varying
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Fig. 21.1 Contemporary
mass spectrum fit (short
dashed) compared to 1968 fit
of Hagedorn (long dashed):
the case of power law scaling
a D 3 is shown for
parameters and also other
values of a see Table 21.1

in dependence on supplementary hypotheses made about the procedure, with the
value of TH changing by 100s MeV. This probably means that the integrated mass
spectrum Eq. (21.1), aside of the physical parameter fit, also has other good fits.
The likely cause of the TH instability is that these artifacts produce the best fit at
an unphysical parameter set. This situation is not uncommon when considering any
integrated signal function.

My own work [3, 4] has been more modest, an ‘almost’ redo of the original
Hagedorn fit and is shown in Fig. 21.1. A comparison of the original Hagedorn fit,
long dashed line in Fig. 21.1, with an analysis involving more than 5,000 hadron
states; short dashed line suggests that results are highly compatible. However, there
are a few caveats. The hadron mass spectrum that was fitted is

�.m/ D c
em=TH

.m2
0 C m2/a=2

(21.2)

All three parameters TH ;m0; c are varied and find their best value. Hagedorn fixed
m0 D 0:5GeV as he was working in the limit m � m0, and this is clearly not
the case as the mass spectrum available experimentally is limited to a range m <

1:7GeV. The introduction of a fitted value m0 is necessary to improve the spectrum
for low values of m.

The pre-exponential power value a D 2:5 in Eq. (21.2) corresponds to Hage-
dorn’s original work, Eq. (20.6). However, several years later following further
developments described below in Chap. 23, the value a D 3 was obtained.
Moreover, a D 2:5 leads to divergent energy density and excludes the phase
transformation of HG to a new phase. Thus it must not be used considering existence
of QGP.
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Table 21.1 Parameters of Eq. (21.2) fitted for a prescribed pre-exponential power a results from
[4]. Note that the value of c for a D 2:5 corresponds to c D 2:64 � 104 MeV3=2 in excellent
agreement to the value shown in Fig. 20.1

a c.GeVa�1/ m0.GeV/ TH.GeV/

2.5 0.83479 0.6346 0.16536

3 0.69885 0.66068 0.15760

3.5 0.58627 0.68006 0.15055

4 0.49266 0.69512 0.14411

The results shown in Fig. 21.1 are thus given for a D 3. The requirement that TH

is a transformation temperature between phases favors larger values of a and thus a
range a 2 Œ2:5–4� is presented in Table 21.1; fits obtained in 1994 were for a slightly
smaller set of hadrons [4] than is available today. We see that as the pre-exponential
power law a increases, the fitted value of TH decreases.

The Value of the Power Index ‘a’

In the first Hagedorn mass spectrum paper Chap. 20, in Eq. (21.2) the values
m0 D 0:5GeV and the power index a D 2:5 are assumed in the fit presented in
Fig. 20.1. Upon the exact solution of the bootstrap equation it was recognized that
the precise form of singularity that SBM condition generates requires a D 3, for
references see Chap. 22, entries in Fig. 22.2, bottom left square and presentation
of SBM, Eq. (23.12). A further requirement is imposed in order to assure that the
Hagedorn Temperature is a phase transition temperature. For this to be true the
energy density must remain finite when �T 	 T � TH ! 0, and this requires
a � 7=2, see Table 23.1 and comments below this table, as well as the discussion
below Eq. (25.16). Inspection of the Table 21.1 shows that the condition a � 7=2

corresponds to TH � 151MeV.
Given the extensive literature within the SBM context pointing at a D 3 and

the phase transition studies which require a � 7=2, it is hard to understand why
modern studies of the mass spectrum have all focused on a D 2:5, a value which
is obsolete. This assumption produces the highest value of TH but is inconsistent
with the physics pictures that emerged in regard to SBM, and later of a phase
transformation of HG to QGP.

Elaborate lattice-QCD numerical computations of QGP to HG transformation
regime are available today [5–7]: the Hot-QCD collaboration [6] converged for 2C1
flavors towards Tc D 154 ˙ 9MeV. One of the works of the Wuppertal-Budapest
collaboration [8] suggests a low Tc ' 145MeV. However, this low value depends
on the choice of the phase transformation tracking observable. The latest report of
this group [7] mentions Tc ' 150MeV. All current lattice-QCD TH results are thus
according to tabulation in Table 21.1 favoring a D 3:5, which is the lowest value
allowing for a finite energy density near HG phase boundary, see Table 23.1.
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In the above Table 21.1, a value of a is not preferred experimentally: all fits
shown are of comparable quality when all three model parameters TH ;m0; c are
allowed to vary. If, however, a fixed value of m0 is arbitrarily prescribed, as was
done by Hagedorn who was compelled half a century ago by limited experimental
information, the quality of the fit to the present day data will diminish. For example
[9] fixes m0 D 0:5GeV at a D 2:5, i.e. Hagedorn’s 1968 parameter choices.
Applying the Krakow group method approach, this fit produces with present day
data TH D 0:174GeV. We keep in mind that the assumed value of a is incompatible
with SBM, while the assumption of a relatively small m0 D 0:5GeV is forcing a
relatively large value of TH .

21.2 Quarks and QCD

Lattice-QCD Trace Anomaly Constraint

Arguably, the most important recent step forward in regard to improving the
Hagedorn mass spectrum analysis is the realization that one can infer impor-
tant information about the hadron mass spectrum from lattice-QCD numerical
results [10]. The lattice-QCD effort has a relatively easy numerical access to the
trace anomaly of the energy-momentum tensor expressed in units of T4, the so called
‘interaction measure’

I.T/ D � � 3P

T4
: (21.3)

This quantity vanishes in scale invariant theory, for example for (effectively)
massless and free gas of quarks and gluons. For interacting gas of quarks and
gluons the QCD scale parameter generates a non-vanishing result, but asymptotic
freedom implies that interaction effects decrease with increasing temperature of
QGP. Accordingly, I.T/, Eq. (21.3) is seen to decrease from a relatively high value
achieved when quarks and gluons turn into hadrons, see the high T domain shown
in Fig. 21.2. For low temperature, where we do not expect a deconfined quark-
gluon phase, the rise of I.T/ with T indicates that with increasing temperature more
massive hadron states become relevant.

At temperatures below QGP formation I.T/, Eq. (21.3) is derived from the
contribution of each hadron species folded into the hadron mass spectrum. In the
Boltzmann limit Eq. (10.60) in [11] reads

IBoltz.T/ D
Z

dm�.m/
x3

2�2
K1.x/; x D m=T; (21.4)

where the degeneracy g of each state of mass m is renamed �.m/ and the continuous
integral, rather than discrete sum, is introduced.
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Fig. 21.2 The comparison of
interaction measure with
hadron resonance gas, latest
lattice-QCD results, after [7]

The Boltzmann limit is, however, not accurate as the power law expansion of the
quantum distribution shows. Adopting Eq. (10.68) in [11], the result is

IQ.T/ D
Z

dm�.m/
1X

nD1

.f /nC1

n

x3

2�2
K1.nx/; x D m=T; (21.5)

where f D �= C 1 for Fermions=Bosons. The temperature domain of interest for
us is T < 175MeV. The presence of the relatively light boson, the pion, with a
mass within this temperature domain means that we must include bosonic quantum
corrections. While the results of [10] suggested the need for some additional
undiscovered resonances, the comparison shown in [7], see Fig. 21.2, suggests that
agreement between hadron resonance gas (HRG, dashed line in the figure) and
current lattice-QCD results (uncertainty domains shown, techniques will not be
discussed here) is achieved just with the known hadron set of states.

In the context of the search for a better understanding of the hadron mass
spectrum and the determination of Hagedorn Temperature TH , the trace anomaly
can fill a very important information gap. Given a parametrized mass spectrum
shape, such as is Eq. (21.2), one must fit both, the experimental hadron mass
spectrum, as well as the numerical lattice-QCD trace anomaly. Such a joint approach
could produce a more unique phenomenological determination of both TH and favor
a value for the pre-exponential power a.

Quark Bags and the Hadron Mass Spectrum

There are additional challenges arising from the prophetic work on the hadron mass
spectrum by Hagedorn, Chap. 20. Hagedorn’s paper closes with remarks about the
possibility that the multitude of quark bound states could relate to an exponential
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mass spectrum. This indeed is the case. Several quantitative implementations of
this idea appeared in literature beginning in 1976 [12]. In 1981 Joe Kapusta [13]
writes in his abstract: “A statistical evaluation of the mass spectrum in the (quark)
bag model is made . . . (which) behaves asymptotically as �.m/ / c m�3exp.m=TH/,
. . . this model satisfies the strong bootstrap condition. . . . The thermodynamics of
a system of such composite hadrons naively exhibits a maximum temperature T0.
However, . . . first-order phase transition to a gas of free elementary fields is found at
a temperature Tc D 1:05TH.”

This work has stimulated continued interest in evaluation of hadron mass
spectrum based on quark bag model. However, given that the naive bag model is
known to predict hadron states not found in experimental searches, this path cannot
be trusted to produce in quantitative terms a result of phenomenological importance.
Cohen and Krejcirik [14] criticizes also in this context the current widely accepted
Hagedorn approach and Hagedorn Temperature. For reasons already described, and
in particular in consideration of the loss of information for the integrated mass
spectrum, we do not share in any of the views presented in this work.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Chapter 22
SBM Guide to the Literature as of June 1972

Rolf Hagedorn

Abstract A large number of research papers motivated Rolf Hagedorn to prepare
a guide to the Statistical Bootstrap Model literature in mid-1972; he wanted to
show the reader a) which publications best prepare the uninitiated, b) how different
publications relate to each other, and c) he aimed to connect similar developments
into groups. The two figures classify in this fashion the research works, providing in
the rendition the relevant Refs. [[1]–[70]]. The editor updated all preprint citations
for the 2015 printing.

This guide contains two figures and a list of references. It is neither complete nor
unbiased.

Figure 22.1 gives the recommended reading sequence. After reading the intro-
ductory lectures (partly overlapping), the reader should be able to enter the lower
boxes at any place, though it might be advantageous to follow the given sequence.
The reader will notice overlaps and inconsistencies, because the reading sequence
does not coincide with the historical development.

Figure 22.2 tries to picture the logical (and roughly the historical) connections.
The isolated box with the name Koppe indicates that he was the first to contemplate
statistical and thermodynamical interpretations of pion production. Unfortunately,
his two papers came too early and went unnoticed. When two years later Fermi
elaborated the same idea in great detail, he obviously had no knowledge of Koppe’s
work.

In both figures, the sequence goes along top to bottom lines of connection, unless
indicated otherwise by an arrow.

Preprint CERN-TH 1535, dated 20 July 1972, see: http://cds.cern.ch/record/961894?ln=en
not intended as formal publication.
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Fig. 22.2 Logical connections with reference numbers
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Chapter 23
Thermodynamics of Hot Nuclear Matter: 1978
in the Statistical Bootstrap Model

Johann Rafelski and Rolf Hagedorn

Abstract We formulate the statistical bootstrap model for nuclear matter, and study
its resulting thermodynamic properties at nuclear densities below the saturation
density. We discuss the relevance of limiting temperature and the phase transition
gas–‘liquid’ when the volume of the fireball grows with its energy.

Editor’s comment: The numerical results shown are obtained neglecting anti-
baryons. In obtaining these results we did find that as temperature rises this effect
causes an unphysical rise of baryon density for 120MeV � T � T0 MeV. Moreover,
the net baryon density does not vanish along with baryon chemical potential. Within
months we solved the problem numerically without this approximation; the results
are presented in Chap. 27 “Extreme States of Nuclear Matter”, and in [1]. However,
this report is the most detailed available document describing the theory behind the
statistical bootstrap model of hot nuclear matter. Being distracted by the rise of the
relativistic heavy ion research program, this more theoretical work was shelved to
be part of a Physics Reports article, and was never formally published, not even as
a TH-preprint. It is, however available (see footnote) as a CERN library archived
document. The Physics Reports review that would have contained this material was
never completed.

Presented by JR at the XVIIth International Winter Meeting on Nuclear Physics, Bormio, Italy,
22–27 January, 1979, pp. 531–563 in ‘home’ press proceedings: Editor: I. Iori, Instituto di Fizica
Universita Milano, available at: http://cds.cern.ch/record/134674/files/CM-P00055555.pdf.
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23.1 Introduction

Properties of nuclear matter have inspired much of the theoretical work in many-
body theory during the last decades. While initially attention was focused on the
saturation properties of cold nuclear matter, more recently the advent of high-energy
heavy ion accelerators has stimulated work on the high temperature and density
domain of the phase diagram.

There exist several main lines of approach to this complicated theoretical
problem in which substantial simplifications of the actual physical circumstances
are supposed. We will not review these approaches here except to say that they
can be divided into two categories: (1) the nuclear matter is considered to be a
non-interacting ideal gas; or (2) nuclear interactions are considered at the level of
classical particle scattering.

It is immediately apparent that the interesting features of nuclear matter, such as
density isomerism at high temperatures, phase transitions, condensation phenom-
ena, etc., can hardly be discussed in the framework of the ideal gas equations of
state. The fact that some kind of agreement of inclusive particle spectra in heavy
ion collisions is found between theory and experiment is in fact only indicative
that a thermal equilibrium is achieved in a fireball created in the collisions. To find
out more about the properties of these fireballs, one has to perform more refined
experiments and consider a more elaborate theory. This aim is achieved in a non-
thermodynamical way in the approaches that deal with the A1 C A2 many-body
problem, in which each particle is followed during the collision; but it becomes
virtually impossible to identify the relevant collective motion that is characteristic
of phase transitions and critical phenomena.

In order to derive the physical properties of hot nuclear matter which are
independent of a particular choice of the two-body and multibody interaction, we
employ a technique (‘bootstrap’) developed for similar problems in elementary
particle physics—here, however, sufficiently modified to suit the different physical
environment. An additional motivation in this direction is the recent recognition that
the understanding of nuclear matter at the saturation point depends very sensitively
on the character of the two-body potential at short distances, which is not well
defined by two-body reactions. It is possible to view the bootstrap technique only as
a convenient way of introducing the relevant physical properties which cannot be so
easily defined by the choice of a specific potential, but which globally might even be
more important than details of the two-body force. We will concentrate on the gross
features of nuclear matter that follow when we incorporate into the description the
following aspects of nuclear interactions:

(i) conservation of baryon number and clustering of nucleons (i.e., attractive
forces leading to many-body clusters with well-defined baryon number);

(ii) nucleon (isobar) excitations and internal cluster excitations (i.e., internal
degrees of freedom that can absorb part of the energy of the system at finite
temperature, thus transforming kinetic energy into mass);
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(iii) approximate extensivity of nuclear matter (volume roughly proportional to
baryon number, i.e., effectively a short-range repulsion);

(iv) co-existence of a pion gas when the temperature is not equal to zero (and
behaving properly even in the presence of nuclear matter);

(v) baryon–antibaryon pair creation;
(vi) ‘chemical’ equilibrium between all constituents of the system (nucleons,

isobars, clusters, pions, etc.).

Our present work [2] should be most trustworthy in the domain of high temperatures
and moderately high density, where details of the interaction, of Fermi and Bose
statistics, as well as of the quark structure of nucleons, are most likely negligible.
Also not considered explicitly here is the isospin of the nuclei.

An important new feature of the Statistical Bootstrap Model as we introduce it
here is that the energy density in fireballs,

"FB WD m

V.m/
DW A ; (23.1)

is finite, constant, and of the order of the rest-energy density of a proton. Therefore
it occurs to us that it is not reasonable to apply the thermodynamics derived from
the ‘bootstrap equation’ beyond the point where the energy density ".T/ becomes
much larger than 1=A.

Plan of the Paper

Section 23.2. We discuss the bootstrap hypothesis first in the context of a strongly
interacting pion gas. The bootstrap equation of the pion gas is solved and
discussed. We write down, discuss, and solve the bootstrap equation for nuclear
matter. It is much richer than that of the pion gas, which it contains as a special
case.

Section 23.3. The mass spectrum and its Laplace transform are used to obtain a
thermodynamic description of the system. We compute the partition functions
for clustered nuclear matter.

Section 23.4. We study the properties of nuclear matter in the thermodynamic
limit. Two main properties of our model are:

(a) there exists a maximum temperature, which is of the order of that of the pion
gas (T0 � m );

(b) there exists at all temperatures 0 � T � T0 a critical baryon number density
separating a low-density ‘gas phase’ from a state where a condensate and its
vapor exist in equilibrium.

A numerical study is presented in which the simplest non-trivial input spectrum
is assumed; the corresponding model is solved explicitly and the results are
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displayed graphically. This case shows all essential features, but it is still too
far from reality to be taken as more than a qualitative prediction.

Section 23.5. Summary.

Our notation and units:

• „ D c D k (Boltzmann constant)D 1;
• the only dimensional unit is 1 GeV = 1,000 MeV� 5 fm�1;
• metric: a � b 	 a�b� 	 a0b0 � a � b .

Thus for example m2 WD p2 D p20 � p2 D E2 � p2.

Remark. Throughout this paper we use only Boltzmann statistics. As the bootstrap
approach leads to an extremely rich mass spectrum, it is almost irrelevant whether a
particular cluster or particle is a boson or a fermion or a Boltzmannion: it (almost)
never happens that two equal clusters occupy the same state.

23.2 The Statistical Bootstrap Method in Particle
and Nuclear Physics

The Statistical Bootstrap Model in Particle Physics

The motivation for a statistic bootstrap model in particle physics comes from two
sources:

(a) the abundant production of particles in high-energy pp collisions, and a
momentum distribution of these particles which suggests that there might be
some analogy to black-body radiation emitted from moving sources;

(b) the apparent existence of intermediate states in which lumps of highly excited
hadronic matter (‘fireballs’) are staying together before decaying.

Thus it was tempting to describe the particle production process as pion black-body
radiation emitted from one or several fireballs with a volume v0 � 4�=3m3

 . This
idea was first proposed by Koppe [3] and it is called the Fermi statistical model
[4]. As for a statistical–thermodynamical description, the density of states .E/ is
necessary and sufficient; we may express the Koppe–Fermi approach as follows:

v00.E/

.2�/3
D

1X

nD1

1

nŠ

Z
ı

�
E �

nX

iD1

q
p2i C m2

 

�
ı3
� nX

iD1
pi

� nY

iD1

v0d3pi

.2�/3
: (23.2)

This is nothing else than the phase-space density of a pion gas with free particle
creation. If we put m D 0 and multiply by 2 for the two helicity states of a light
quantum, we obtain from Eq. (23.2) all the usual formulas of the electromagnetic
black-body radiation (Planck’s law) in the Boltzmann limit.
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The next important idea was to admit particles other than just pions, and in
particular resonant states of pions, just as if they were stable particles [5]. Not
knowing which ones should be admitted and how many there are, we might put
them in a mass spectrum of admissible input particles �in.m/. The pion contributes
to �in.m/ a ı-function ı.m � m /; resonances contribute smeared-out ı-functions.
For the moment, �in.m/ is a function which represents our (incomplete) knowledge
of the true mass spectrum �.m/.

Introducing also relativistically invariant notation with a four-volume V� D
v0u�, u2 D 1, and ı0.p2 � m2/ D ı.p2 � m2/�.p0/,

.p2; p � V/ D 2p � V
.2�/3

ı0.p
2 �m2

 / (23.3)

C
1X

nD2

1

nŠ

Z
ı4
�
p�

nX

iD1
pi
	 nY

iD1

2pi � V
.2�/3

�in.mi/ı0.p
2
i � m2

i /d
4pidmi :

This is a relativistically invariant equation for the density of states .p2; p � V/ in
fp; d4pg of a gas in which the interaction manifests itself via creation and absorption
of Boltzmann pions and their excited states contained in �in.m/.

Note that we have restricted the one-particle state to have the pion mass. Higher
mass ‘one-particle states’ are already contained in the sum, namely when in any
of its terms all pi ! mi. Our new equation for .p2; p � V/ describes the density
of states of a many-component gas: each species of particle contained in �in.m/ is
present in the gas. All these components are in ‘chemical’ equilibrium; neither the
total particle number nor that of any of the various components is fixed.

The key idea that leads to the hadronic bootstrap is the observation that the
quantity .p2; p � V/ can be related to the mass spectrum �.m/. Suppose we could
insert the true mass spectrum �.m/ into Eq. (23.3). Then .p2; p � V/ would be the
density of states of a ‘fireball’ of hadronic dimension built up from all strongly
interacting particles in statistical equilibrium. Such a fireball is itself a highly excited
hadron with mass m D p

p2. For reasons of consistency, it should then be admitted
as a constituent particle in fireballs of larger mass. Hence it should already be
present in the true �.m/. As both .p2; p � V/ and �.m/ are densities of states, it
follows that if �.m/ is the true mass spectrum, .p2; p �V/ is itself (apart from some
minor kinematical differences) the true mass spectrum at m D pp2. This statement
establishes a new relation between � and  , leading to an integral equation, the
bootstrap equation. Physically, it is equivalent to the postulate that resonances and
fireballs are one and the same and that fireballs consist of fireballs.

In order to find the precise relation between �.m/ and .p2; p�V/, we consider the
conceptual differences between them as exhibited by Eq. (23.3): while �.m/ counts
all hadrons (as given, for example, in the tables of the Particle Data Group [6]) as
being at rest in their own confining volume, .p2; p �V/ is the density of states of an
object with mass m D p

p2 allowed to move freely in its confining volume instead
of being at rest. This fact is also reflected by the dependence of  on the scalar
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product p � V . Thus  counts more states than � (and contains more information). In
order to relate  to �, we restrict this freedom by requiring that p� and V� be parallel
four-vectors, i.e., have a common rest frame. Then .p2; p � V/ ! .p2 D m2; v0/

and the left-hand side represents the internal density of states of a system of mass
m at rest in its own volume v0; this density begins with Œv0=.2�/3�ı.m � m / and
has a continuum for m > 2m . It therefore might be considered as proportional to
an averaged mass spectrum (the true one is not yet continuous at m � 2m ), which
asymptotically becomes physically equivalent to �.m/. We thus have

.p2; p � V/
ˇ̌
ˇ
pkV
D .m2; v0/ WD v0

.2�/3
�av.m/ �!

m!1
v0

.2�/3
�.m/ : (23.4)

The precise relationship between �av, �in, and � will not concern us here—indeed,
taking �av D �in D �, we will find, solving Eq. (23.3), the result

�.m/ �
m!1

c

ma
em=T0 ; T0 � m  ;

3

2
< a <

7

2
; (23.5)

where T0 is a ‘limiting temperature’ and where the values of a and T0 depend
on the version of Eq. (23.3) chosen. We will now show how to solve bootstrap
equations (23.3) and (23.4) and prove Eq. (23.5).

Solution of the Bootstrap Equation

For illustrative purposes, let us here consider the bootstrap equation in its simplest
form, as proposed by Yellin [7]:

B�.p2/ D Bı0.p
2 � m2

 /C
1X

nD2

1

nŠ

Z
ı4
�
p �

nX

iD1
pi
	 nY

iD1
B�.p2i /d

4pi ; (23.6)

where the relation between � and � is

�.m2/dm2 D �.m/dm ; (23.7)

and B is a parameter of the model, related to the volume v0 by a dimensional relation
B � v0m .

The standard method of solving Eq. (23.6) is by Laplace transformation. We
introduce two Lorentz-invariant functions:

˚.ˇ/ WD
Z

B�.p2/e�ˇ�p�d4p (23.8a)

'.ˇ/ WD
Z

Bı0.p
2 � m2

 /e
�ˇ�p�d4p D 2�Bm2

 

K1.ˇm /

ˇm 

; (23.8b)

where ˇ0 > 0, ˇ D .ˇ�ˇ�/1=2 .
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Taking the Laplace transform, as defined by Eq. (23.8), of Eq. (23.6), we obtain

˚.ˇ/ D '.ˇ/C e˚.ˇ/ �˚.ˇ/ � 1 : (23.9)

Equation (23.9) can be written

' D 2G� eG C 1 ; (23.10)

and the problem is to invert this equation; that is, to find G.'/ D ˚.ˇ/. The easiest
way to do this is a graphical solution by first plotting '.G/ and then considering the
curve as G.'/. By expanding exp.G/, we see that '.G/ D G C � � � ; with growing
G, the exponential function takes the lead and '.G/ goes exponentially to �1.
The maximum lies at G0 D ln 2 and has the value '0 D ln 4 � 1; ' 00.G0/ ¤ 0

(see Fig. 17.5a). The graphical solution is presented in Fig. 17.5b. From the figure
and ' 00.G0/ ¤ 0, it follows that G.'/ has a square root branch point at '0 and
is complex for ' > '0 [8]. We note that '0 D ln 4 � 1 corresponds to the value
ˇ0 � 1=m  in Eq. (23.8b); we also note that ' increases monotonically with 1=ˇ1.

Thus in Fig. 17.5b, the interval ' 2 f0; '0g corresponds uniquely to ˇ 2 f1; ˇ0g.
Given ', we could invert Eq. (23.8a); however, we can obtain the physically
interesting information about � without an explicit inversion.

Since
R
ı0.p2 �m2/dm2 D 1, we may write

˚.ˇ/ D
Z
�.m2/dm2

Z
Bı0.p

2 � m2/e�ˇ�p�d4p

D 2�B

ˇ

Z
�.m2/mK1.ˇm/dm2 : (23.11)

As we have just seen, G.'/ has a square root branch point at '0, and so has ˚.ˇ/ at
ˇ0, since ' is monotonic in ˇ. Since K1.mˇ/ behaves like exp.�ˇm/ for m ! 1,
Eq. (23.11) can yield a singularity of ˚.ˇ/ only if �.m2/ grows asymptotically like
exp.ˇ0m/; a square root branch point requires

�.m2/ � c

m3
eˇ0m ; (23.12)

which illustrates the relation (23.5) for a D 6=2.
From Eq. (23.10), a Taylor expansion for G around ' D 0 can be found, with the

convergence radius '0:

G.'/ D
1X

nD1
gn'

n ; (23.13)

1The surprisingly complex analytical structure of this seemingly simple bootstrap function is
further explored in: R. Hagedorn and J. Rafelski, “Analytic Structure and Explicit Solution of
an Important Implicit Equation,” Commun. Math. Phys. 83, 563 (1982).
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which leads to an analytic form of �.p2/:

B�.p2/ D
1X

nD1
gn˝n.p

2;B/ ; (23.14)

where˝n is the n-pion invariant momentum space (IMS) integral

˝n.p
2;B/ WD

Z
ı4
�
p �

nX

iD1
pi
	 nY

iD1
Bı0.p

2
i �m2

 /d
4pi : (23.15)

The IMS integrals are well-known functions for which powerful computer programs
exist. Therefore, Eq. (23.15) is very useful at not too large p2, since the sum has
actually only a finite number of terms—it is cut off at n � p

p2=m  by the
momentum ı4-function and by the condition p0 � m .

Had we used the IMS measure in Eq. (23.3), the density of states of the pion gas
would have read

IMS.p
2/ D

1X

nD1

1

nŠ
˝n.p

2;B/ ; (23.16)

while now we have Eq. (23.14).
It can be seen that the rapidly decreasing 1=nŠ has been replaced by the

(exponentially increasing!) gn. Thus the ˝n in Eq. (23.16) have been multiplied by
nŠgn, which is the total number of possible ways to cluster n objects recursively
(admitting clusters of clusters).

It remains to determine the coefficients gn. This is done most simply by
considering the first-order differential equation that G satisfies:

1 D dG

d'
.' C 1 � 2G/ : (23.17)

Inserting Eq. (23.13), we find the recursion relation

gn D �n � 1
n

gn�1 C
n�1X

kD1
gkgn�k ; g0 D 0 ; g1 D 1 : (23.18)

Given Eqs. (23.13), (23.14), and (23.18), the bootstrap equation (23.6) can be
considered as solved.
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The Nuclear Matter Bootstrap Equation

According to the aims described in Sect. 23.1, we now generalize the bootstrap
equation (23.6) to the case of nuclear matter. We postulate the following bootstrap
equation for the level density of ‘nuclear clusters’ with baryon number b 2
.�1;1/:

2p � V
.2�/3

.p; v; b/ D ı4.V � Vb/Cb
2p � Vb

.2�/3
ı0.p

2 �M2
b/
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.2�/3
.pi;Vi; bi/d4pid4Vi :

(23.19)

Equation (23.19) is not a single bootstrap equation, but a member (with baryon
number b) of an infinite set of coupled integral equations, each having its own
input term. The .kŠ/�1 is necessary for correct counting. The non-vanishing pion
and nucleon mass ensure that, for any finite p2, the set (23.19) has only a finite
number of equations: jbmaxj �

p
p2=mp. Therefore the solutions for any finite p2

can (in principle) be built up iteratively by starting with 4m2
  � p2 � m2

p and by
increasing this interval stepwise to include higher and higher jbj. This, incidentally,
also allows us to prove that, for any p;V; b, Eq. (23.19) have a physical solution.

This equation fulfills the requirements set up in Sect. 23.1:

1. Conservation of baryon number and clustering of nucleons. The baryon number
(number of baryons minus number of antibaryons) is conserved with the help
of the Kronecker ıK.b �P bi/ function. The infinite set of density functions
.p;V; b/ corresponds to the admission of nucleon clusters with any baryon
number b, four-momentum p, and four-volume V .

2. Nucleon (isobar) excitation and internal cluster excitation. Internal cluster
excitation is contained in the p2 D m2 dependence of .p;V; b/, and single-
nucleon (isobar) excitation is contained in the same way in .p;V; b D 1/.

3. Extensivity of nuclear matter. This is ensured by the volume ı4-function.
4. Co-existence of a pion gas. This is contained in the equation with b D 0, and in

all others by the presence of factors .pi;Vi; bi D 0/ on the right-hand side.
5. Baryon–antibaryon pair creation (and annihilation). This is built in by allowing
�1 < bi; b < 1. Then on the right-hand side an arbitrary number of clusters
.
P

bi/ and anticlusters .�P bi/ may occur.
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6. ‘Chemical equilibrium’ between all constituents. This is expressed by the infinite
set of coupled integral equations (23.19), which allows all multibody reactions
between clusters Qi,

Q1 C Q2 C � � � C Qn � Q0
1 C Q0

2 C � � � C Q0
n

compatible with b and p conservation.

The input terms, except that for b D 0 (pion) and for b D 1 (nucleon), specify
particular features of the model, namely:

(a) Details of nuclear interaction may be represented by giving clusters (e.g., alpha
particles) a special weight.

(b) Equation (23.19) deal with Boltzmann particles without charge and spin.
Introducing spin, isospin, and statistics would be possible but complicated. We
can obtain a similar physical effect by assigning to an input nucleus of baryon
number b and volume Vb a mass Mb which is different from b � mp.

The Mass Spectrum for Nuclear Matter

We introduce

2p � V
.2�/3

.p;V; b/ D ı4
�

V � V.m; b/
p

m

� QB.p2; b/ Q�.p2; b/ ; (23.20)

where the function QB describes the p2; b dependence of the V � p term, while Q�
describes that of  . We now rewrite Eq. (23.19), integrate over the

Q
d4V , and

require that all volume ı4-functions have the same argument. We find the condition

nX

iD1

�
V.mi; bi/

mi
� V.m/

m

�

�

p�i D 0 ; (23.21)

from which it follows that, for all i,

V.mi; bi/ D A mi : (23.22)

The constant A is independent of i and is therefore a parameter of the theory; A �1
is the constant energy density in the natural volume V: thus it is about 1=7mN/fm3 D
130MeV/fm3. We further find that

QB.m2; b/ WD 2V.m; b/

.2�/3
m D 2A m2

.2�/3
D QB.m2/ (23.23)

is independent of b.
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The volume ı4-function can now be factored out on both sides of Eq. (23.19),
and what remains is a new bootstrap equation for the function QB � Q�.p2; b/:
QB.p2/ Q�.p2; b/ D Cb QB.M2

b/ı0.p
2 �M2

b/ (23.24)
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The essential step now consists in the proper extraction of the mass spectrum
�.p2; b/ from the function Q� . Motivated by the form (23.6) of the bootstrap equation,
we chose here

�.p2; b/ WD QB.p2/
QB.M2

b/
Q�.p2; b/ ; (23.25)

since we can write the bootstrap equation for the mass spectrum as

Bb�.p
2; b/ D CbBbı0.p
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b/ (23.26)
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where

Bb WD QB.M2
b/ D

2A M2
b

.2�/3
:

We would like to emphasize that the choice (23.25) leading to Eq. (23.26) is
arbitrary. Another very likely choice is to take Q� as the physical mass spectrum.
As we have found recently, this significantly simplifies our final formula but
complicates the numerical evaluation. Throughout this paper, we will constrain our
work to the mass spectrum defined through Eq. (23.25).

The bootstrap equation (23.26) is much richer than that for the pion gas; we
have allowed the presence of arbitrarily complicated clusters characterized by the
baryonic number bi. For b D 0, we have a description of meson fireballs; but in order
to understand these fireballs properly, especially when baryon–antibaryon clusters
are among their constituents, we have to obtain a solution for the function � for all
values of b.
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Laplace and L-Transforms of the Mass Spectrum

In order to solve the nuclear bootstrap equation, a treatment of the b dependence is
necessary. This is done by defining the ‘L-transform’2:

L


f .b/

� WD
1X

bD�1
�bf .b/ WD f�.�/ : (23.27)

Hence f�.�/ D L


f .b/

�
is the generating function of f .b/. We multiply the entire

bootstrap equation by �b and sum over b. Defining the L-transform of �.p2; b/ and
of the input term, respectively,

BN��.p
2; �/ WD

1X

bD�1
�bBb�.p

2; b/ ; (23.28a)

BN�0�.p
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 /C
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b C ��b/ı0.p
2 �M2

b/;

(23.28b)

where

B1 D BN ; M1 D mN ;

we find that the bootstrap equation takes the form of the pion bootstrap equa-
tion (23.6), but with a much more involved input function �0�,
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That illustrates the general bootstrap philosophy that the input function characterizes
the ‘raw material’, while the integral equation imposes the dynamics on it. The
dynamics should be more or less independent of what the raw material is (but it will
depend on kinematics, statistics, etc.).

In order to solve Eq. (23.29), we introduce the Laplace transforms of �� and �0�:

˚.ˇ; �/ WD
Z

BN��.p
2; �/e�ˇ�pd4p DW

1X

bD�1
�b˚b.ˇ; b/ ; (23.30)

2We use the expression ‘L-transform’ to stress the formal analogy with the Laplace transform: L is
the discrete counterpart of L .
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'.ˇ; �/ WD
Z

BN�0�.p
2; �/e�ˇ�pd4p : (23.31)

In analogy with the case of pionic bootstrap, we now find the bootstrap equation
[see Eq. (23.9)] considering the Laplace transform of Eq. (23.29):

˚.ˇ; �/ D '.ˇ; �/C exp


˚.ˇ; �/

� �˚.ˇ; �/ � 1 : (23.32)

For the input function ', we have explicitly

'.ˇ; �/ D
1X

bD�1
�b'b.ˇ; b/ ; (23.33)

'b.ˇ; b/ D 'b.ˇ;�b/ D CbBb2�M2
b

K1.ˇMb/

ˇMb
: (23.34)

In Fig. 23.1, we give a short summary of the relations between the functions arising
from � through application of L and L-transforms.

The bootstrap equation (23.32) for the doubly transformed function ˚.ˇ; �/ has
a real solution wherever in the .ˇ; �/ plane the input function ' < '0 D ln 4 � 1
(see Fig. 17.5a, b). Thus along a curve ˇc D f .�c/ in the .ˇ; �/ plane defined as
the boundary of this domain .ˇc; �c/ D '0, a qualitative change in the behavior of
the properties of nuclear matter may occur. Quite aside from the physical questions,
we have to ask for a mathematical solution of the bootstrap equation beyond this
boundary line. As we have previously argued by a recursive argument, a physical
solution for �.p2; b/ exists for any p2. Our ˚.ˇ; �/ is the Laplace-L-transform of
Bb�.p2; b/, which does not exist in this form everywhere in .0 � ˇ < 1/˝ .1 �
� <1/. However, once defined in a domain where it does exist, it fulfills Eq. (23.4),
which then permits analytical continuation of ˚.ˇ; �/ beyond the limit ' D '0 in

Fig. 23.1 Relations between
the mass spectrum �.p2; b/
and its Laplace (L ) and
L-transforms
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the whole .complex ˇ/˝ .complex �/ domain. Thus using the methods of complex
analysis, we will be in a position to study the new phases in the future.

We remark here that the analytical continuation beyond '0 has never been
considered in the case of pionic bootstrap, since there this limit on ' led to a limiting
temperature; the energy of fireballs diverged at this point and made a transition from
our world to the new domain impossible. Now the presence of baryons changes
this—the introduction of � leads to the existence of a new region with T < T0 but
' > ln 4 � 1. We will find in our present model again a boundary T D T0, at which
the energy density diverges—but this limit is not at ' D ln 4 � 1, except when
� D 1.

23.3 Thermodynamics

In Sect. 23.2, we solved the bootstrap equation with the help of the Laplace trans-
formation. The same mathematical procedure is used in statistical thermodynamics
to obtain the partition function from the density of states. This coincidence has the
effect that the Laplace transform ˚.ˇ/ of the mass spectrum �.p2/ and the Laplace
transform Z.ˇ;V/ of the density of states of a thermodynamical system containing
particles with the mass spectrum �.m2/ can easily be confounded. We expect a
relation between˚.ˇ/ and Z.ˇ;V/—and we will exploit it below—but conceptually
these two quantities are different.

The Partition Functions of the One-Component Ideal Gas

Consider an ideal relativistic Boltzmann gas with one sort of particle of mass m
enclosed in an arbitrary, macroscopic external volume Vex

� . The number of states
fp; d4pg of one particle in the four-volume Vex

� is

2Vex
� p�

.2�/3
ı0.p

2 � m2/d4p :

Thus the one-particle partition function Z.0/1 (in which the superscript denotes ‘non-
interacting’) is defined by

Z.0/1 .ˇ;V
ex/ WD

Z
2Vex

� p�

.2�/3
ı0.p

2 � m2/e�ˇ�p�d4p : (23.35)
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Here the four-volume Vex
� is an arbitrary external parameter3 [a box of arbitrary

volume Vex D .V�V�/1=2 having an arbitrary four-velocity], while before, in
Sect. 23.2, we took the volume to be the dynamically determined proper comoving
volume of the particle. ˇ� has now the meaning of the inverse temperature four-
vector, where (the Lorentz invariant) T D .ˇ � ˇ/�1=2 is the temperature in the rest
frame of the thermometer. Z.0/1 is by construction a function of the invariants ˇ2,
V2

ex, and ˇ�Vex
� . As it seems not very useful to consider a description where the

thermometer moves (fast) with respect to the container of a gas, we take here ˇ�

parallel to V�
ex. We then obtain in the common rest frame of ˇ� and V�,

Z.0/1 .ˇ;V/ D
Vm3

2�2
K2.ˇm/

ˇm
: (23.36)

[Notice the difference with Eq. (23.8b).]
From the one-particle partition function, the N-Boltzmann-particle partition is

found:

Z.0/N .ˇ;V/ D 1

NŠ
Z.0/1 .ˇ;V/

N : (23.37)

The grand canonical partition function is then

Z.0/.ˇ;V; �/ WD
1X

nD0
�nZ.0/n .ˇ;V/n D e�Z

.0/
1 .ˇ;V/ ; (23.38)

with � being the fugacity. From Z.0/.ˇ;V; �/ nearly all relevant quantities can be
found by logarithmic differentiation, in particular

".0/.ˇ;V; �/ WD � 1
V

@

@̌
ln Z.0/.ˇ;V; �/ D energy density ;

P.0/.ˇ;V; �/ WD T

V
ln Z.0/.ˇ;V; �/ D pressure ; (23.39)

n.0/.ˇ;V; �/ WD �

V

@

@�
ln Z.0/.ˇ;V; �/ D particle number density ;

and so on. We introduce the relativistic chemical potential (equal to �non-relCm) by
� D eˇ�; � D 0 .� D 1/ corresponds to black-body radiation of quanta with rest
mass m.

3We will often drop the superscript ‘ex’ on V when the meaning is unambiguous.
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The Strongly Interacting Pion Gas

The basic hypothesis is that in many instances an assembly of strongly interacting
particles (of one kind4) enclosed in an arbitrary volume at arbitrary temperature and
chemical potential may be described

• either as a multitude of particles of one kind with a complicated interaction,
• or as a non-interacting phase consisting of an infinity of different species with a

mass spectrum appropriate to the interaction in question.

This implies that, if the mass spectrum of the interaction is known, replacing
the interacting particles by an ideal infinite-component phase and weighting the
different components according to the mass spectrum generates the same distortion
of phase space as the interaction would do. An example is, for instance, a dilute
He gas. Usually, this is not described as an assembly of protons, neutrons, and
electrons with a Hamiltonian containing QED and strong interactions; instead, one
uses the mass spectrum (here essentially one state with mass, spin, etc., of 4He) and
calculates the properties of an ideal Bose gas of He atoms, considering the latter as
elementary.

Taking now the attitude that the statistical bootstrap model has provided us
with the correct spectrum, the corresponding statistical thermodynamics of strongly
interacting particles follows from the formulas of the ideal gas given in Sect. 23.3,
now generalized to include the mass spectrum. The one-particle phase-space
measure (23.35) now becomes the ‘one-fireball’ phase-space measure:

d4p1.p;V/ D
2Vex

� p�

.2�/3
d4p

Z
dm2�.m2/ı0.p

2 � m2/ D 2Vex
� p�

.2�/3
�.p2/d4p :

(23.40)

Accordingly, we find the ‘one-fireball’ partition function

Z1.ˇ;V/ D
Z
2Vex

� p�

.2�/3
�.p2/e�ˇ�p�d4p : (23.41)

Recalling Eq. (23.8a), we find in the common rest frame of Vex
� and B�,

Z1.ˇ;V/ D � 2Vex

B.2�/3
@˚.ˇ/

@̌
: (23.42)

We can now proceed in the same manner as in Eqs. (23.37)–(23.39), which follow
now for the interacting particles, dropping the upper index .0/. However, in
Eq. (23.39), n is now the average number of fireballs present. For this n.ˇ;V; �/,

4The generalization to several different species is straightforward.
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we have the ideal gas equation (due to the linearity of ln Z in �):

P D nT ; (23.43)

while the corresponding equation in terms of the average number of pions
(contained in all these fireballs together) would look horribly complicated. This
result (23.43), which in the framework of this model is exact, shows once more how
simple things become once the interaction is hidden in the mass spectrum.

Physics Near T0

We have seen how the bootstrap equation provides us with the function ˚.ˇ/, from
which Z1.ˇ;V; �/ D ln Z.ˇ;V; �/ can be calculated; Z1.ˇ;V; �/ then serves as the
generating function for physical quantities. In all versions of the statistical bootstrap
model, we find an exponential mass spectrum

�.m/ � C

ma
em=T0 ; (23.44)

with T0 of order m . While the small variation of T0 � m  from version to version is
of no physical importance, the nature of the system when T ! T0 depends critically
on the power a of m in Eq. (23.44). We now study this in order to determine how the
behavior of � determines the physical properties of fireballs.

Inserting 1 D R
ı0.m2 � p2/dm2 and replacing �.m2/dm2 by �.m/dm in

Eq. (23.41), we find

Z1.ˇ;V/ D VexT

2�2

Z
m2�.m/K2.mˇ/dm : (23.45)

As we are interested in the behavior at T ! T0 (ˇ ! ˇ0), we denote all quantities
which are constant in this limit by the symbol C (at each place where it occurs, C
may have a different value and/or dimension). Using Eq. (23.44) and the asymptotic
formula K2.x/ �

p
�=2x e�x, we obtain

Z1.ˇ;V/ �
T!T0

C
Z 1

M
m3=2�ae�.ˇ�ˇ0/mdmC C : (23.46)

Here M is a mass large enough to justify the use of the asymptotic form of K2
and Eq. (23.44), while CC stands for the non-singular integral from m  to M. With
ˇ � ˇ0 � C.T � T0/ D C�T, we find

Z1.ˇ;V/ �
T!T0

8
<

:
CC C�Ta�5=2 ; a ¤ 5=2 ;
C � ln

�T

T0
; a D 5=2 : (23.47)
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Table 23.1 Thermodynamic quantities calculated from Eq. (23.47)

a P n " •"=" CV D d"=dT

1/2 C=�T2 C=�T2 C=�T3 C C C�T C=�T4

1 C=�T3=2 C=�T3=2 C=�T5=2 C C C�T3=4 C=�T7=2

3/2 C=�T C=�T C=�T2 C C C�T1=2 C=�T3

2 C=�T1=2 C=�T1=2 C=�T3=2 C C C�T1=4 C=�T5=2

5/2 C ln.T0=�T/ C ln.T0=�T/ C=�T C C=�T2

3 P0 � C�T1=2 n0 � C�T1=2 C=�T1=2 C=�T1=4 C=�T3=2

7/2 P0 � C�T n0 � C�T "0 C=�T1=2 C=�T

4 P0 � C�T3=2 n0 � C�T3=2 "0 � C�T1=2 C=�T3=4 C=�T1=2

In Table 23.1, we list the most interesting quantities for a D 1=2; 2=2; : : : ; 8=2,
namely, pressure P, fireball number density n, energy density ", mean relative
fluctuations •"=" of ", and specific heat CV D d"=dT. We notice that, as T ! T0
(�T ! 0), the energy density diverges for a < 7=2. Thus only for a < 7=2 can
we expect T0 to be a maximum temperature. For all cases we find for the velocity of
sound: v2s WD dP=d� / �T.

Thermodynamics of Clustered Matter

Let us consider a cluster with baryonic number b enclosed in an ‘external’ four-
volume Vex

� . Then the one-cluster partition function Z1;b.ˇ;V; b/ is given by
Eq. (23.41), the only change being the dependence of the mass spectrum on the
baryonic number b. When n such clusters are present, but each with the same
b, we find for the n cluster function the usual expression (23.37). When clusters
with different b are present, then we have to compute the product of the different
contributions. Assume that l clusters are present. Then the sum over all possible
partitions of b nucleons into l clusters gives us the partition function of b baryons
assembled into l clusters:

Zb.ˇ;V; b; l/ WD
.lIb/X

fnjg

1Y

jD�1

1

njŠ
Z1;b.ˇ;V; j/

nj : (23.48)

The sum is over all partitions of b baryons into l clusters, with nj being the number
of clusters having baryon number j:
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nj 2
(

nj � 0 ;
1X

jD�1
nj D l ;

1X

jD�1
jnj D b

)
:

In order to obtain the partition function of an arbitrary number of clusters having
together b baryons, we have to compute in Eq. (23.48) the sum over all possible
numbers of clusters l, since each such configuration is possible. This has the net
effect that the restriction

P
nn D l is removed:

Zb.ˇ;V; b/ D
X

fnjg
ık
�
b �

1X

jD�1
jnj
	 1Y

jD�1

1

njŠ
Z1;b.ˇ;V; j/

nj : (23.49)

We have made the constraint on baryonic number explicit.
The grand canonical partition function Z is the L-transform of Zb in Eq. (23.49):

Z.ˇ;V; b/ D
1X

bD�1
�bZb.ˇ;V; b/ : (23.50)

It is straightforward to carry out the sum over b when Eq. (23.49) is inserted into
Eq. (23.50), and we obtain

Z.ˇ;V; b/ D
X

fnjg

1Y

jD�1

1

njŠ

h
�jZ1;b.ˇ;V; j/

inj

: (23.51)

All values of nj are allowed and the set fnj � 0g depends on j only through the fact
that there are j members of the set. Since all j are permitted, the order in which the
infinite sum and product are evaluated is irrelevant, provided that the sum converges.
Under this assumption, we obtain

Z.ˇ;V; b/ D
1Y

jD�1

1X

nD0

1

nŠ

h
�jZ1;b.ˇ;V; j/

in

D exp

" 1X

jD�1
�jZ1;b.ˇ;V; j/

#
;

which very much resembles the results of Sects. 23.3 and 23.3 [see Eq. (23.38)]:

ln Z.ˇ;V; �/ D Z1.ˇ;V; �/ ; (23.52a)

Z1.ˇ;V; �/ D
1X

jD�1
�jZ1;b.ˇ;V; j/ : (23.52b)
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Note that the existence of Z1.ˇ;V; �/, the one-cluster grand canonical partition
function, is not assured. In fact, often only the canonical partition function Zb in
Eq. (23.49) exists. When an analytical expression for Z can be found, then we can
recover the physically relevant quantity Zb by the inverse L-transform.

Partition Function of Nuclear Matter

Thus we see that we need only to compute the one-cluster grand canonical partition
function Z1 to determine the grand canonical partition function Z in Eq. (23.52).
This is an easy task—we recall the definition of the function ˚b in Eq. (23.30) and
find

Z1;b.ˇ;V; �/ D � 2Vex

Bb.2�/3
@

@̌
˚b.ˇ; b/ (23.53)

in the common rest frame of the volume and the ‘thermometer’, in complete analogy
to Eq. (23.42). Consequently,

Z1.ˇ;V; �/ D � V

.2�/3
@

@̌

1X

bD�1

�b

Bb
˚b.ˇ; b/ : (23.54)

Were it not for the b dependence of the function Bb [see Eq. (23.26)], Bb � M2
b , we

would already have the analogue of Eq. (23.42).
In order to proceed further, we have to make an assumption about the b

dependence of the cluster mass Mb. For the present, we choose to consider the case

Mb D
�

bmN ; jbj � 1 ;
m  ; b D 0 ; (23.55)

where m  and mN are the pion and nucleon masses, respectively. Here we have
assumed that the mass of a ground-state cluster is proportional to the baryonic
number. We now find for the grand canonical partition function

ln Z.ˇ;V; �/ D Z1.ˇ;V; �/

D � V

A

1

m2
 

@

@̌
˚b.ˇ; 0/� V

A

1

m2
N

@

@̌

X

b¤0

�b

b2
˚b.ˇ; b/ : (23.56)

In order to sum the expression (23.56), we can generate b�2 in the sum by a double
integral over �.

While we can sum the general formula (23.56), we will be interested here in
properties of bulk nuclear matter: that is, the case when a certain number of nucleons
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is already present in a given volume. Unless T � T0, we expect only moderate
contributions from baryon–antibaryon pair production, since mN � T0. Therefore
we further simplify our model and neglect now antibaryon production. We can
implement this by restricting b to be positive in Eq. (23.56). We note that in doing so
we allow uncompensated baryon production, which is, for T � T0, a small effect,5

since mN=T0 & 7.
The bootstrap equation is then as it was before, viz., (23.9), but the input term

that describes only ‘raw’ pions and nucleons takes the form

'.ˇ; �/ D ' .ˇ/C �'N.ˇ/ : (23.57)

The sum in Eq. (23.56) can now be obtained by integrating from zero to �:

� A

V
ln Z.ˇ;V; �/ D 1

m2
 

@

@̌
˚b.ˇ; 0/ (23.58)

C 1

m2
N

@

@̌

Z �

0

d�0

�0

Z �0

0

d�00

�00
h
˚.ˇ; �00/� ˚b.ˇ; 0/

i
:

Given the grand canonical partition function Z.ˇ;V; �/, we want to obtain the
quantities of physical interest for nuclear matter. The energy density, pressure, and
baryon number density are, respectively,

".ˇ;V; �/ D � 1
V

@

@̌
ln Z.ˇ;V; �/ ; (23.59a)

P.ˇ;V; �/ D T

V
ln Z.ˇ;V; �/ ; (23.59b)

hbi
V
DW �.ˇ;V; �/ D �

V

�

@�
ln Z.ˇ;V; �/ : (23.59c)

Of further physical interest is the energy per baryon "b D "=�.
In the next section, we illustrate our model by some numerical results obtained

by studying Eqs. (23.57)–(23.59).

23.4 Properties of Nuclear Matter in the Bootstrap Model

The Different Phases

In this section, we will study the physical properties of our model. We begin by
considering in more detail the point '0 D ln 4 � 1, where the function G.'/ [see

5However, we did find that as temperature rises this effect causes the rise of baryon density, a
complete solution is presented in Chap. 27.
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Eq. (23.10)] has a square root singularity. This point corresponds to a curve �c D
f .ˇc/ in the .�; ˇ/ plane, defined implicitly by the equation

'0 D ln 4 � 1 D ' .ˇc/C �c'N.ˇc/ :

Thus,

�c D ln 4 � 1 � ' .ˇc/

'N.ˇc/
; 'i.ˇ/ D A m4

i

2�2
K1.ˇmi/

ˇmi
; i D  ;N : (23.60)

We introduce the chemical potential � by � D eˇ� and consider the function �c D
f .Tc/, where Tc D ˇ�1

c , as follows from Eq. (23.60). As shown in Fig. 23.2, this
line divides the .�;T/ plane into two parts. For � < �c.Tc/, we have ' < '0 and
we know that the grand canonical description is valid there. At ' D '0, we are
on the critical curve corresponding to a singularity of ln Z. We record the interesting
behavior of�c.Tc/ for small Tc (large ˇc). This can be found analytically, employing
the asymptotic expansion for the Hankel functions; but we will not pursue this point
here. From Fig. 23.2, we see that �c increases initially as a function of Tc. Beyond
a certain point it drops continuously until �c D 0 at Tc D T0. Here A was chosen
to give T0 � 150MeV, which is a phenomenologically good value for a hadronic
bootstrap. We note that the behavior of the chemical potential for T ¤ T0 is similar
even when the pion term is switched off entirely (dashed line in Fig. 23.2).

The limiting temperature T0 is now a solution of Eq. (23.60) with �c D 1.
However, since the nuclear term is exponentially small at ˇc � 1=m  � 1=T0,
we expect that the limiting temperature is but little changed from that of pionic
bootstrap. The change of T0 induced by the possible baryon production is obtained
by expanding Eq. (23.60) around ˇ0. We find that the change of T0 is negative:
the limiting temperature is slightly lowered (by about 10 MeV) by the presence of
nucleons.

There are three domains shown in Fig. 23.2. In domain I, enclosed by the function
�c.Tc/, the grand canonical description is valid; in domain II, above the critical
curve, we have ' > ln 4 � 1, but T < T0. In this region, the description of physical
quantities should be canonical, since the grand canonical partition function does not
exist for ' < '0. It is possible, however, to consider the analytical continuation
of the grand canonical function into this domain—inverse L-transform can then be
used to find the canonical quantities. Henceforth, we will call region I the gaseous
phase (because it contains the region of small density), and region II the ‘liquid’
phase (because it is approached if at fixed temperature the baryon density, i.e., �
or �, increases). Region III, characterized by T > T0, is a domain that cannot
be reached from the physical phases in those bootstrap models that give divergent
energy density at T D T0. We have found, however, other versions of the nuclear
bootstrap model which allow a transition even to this region—however, we will not
discuss this possibility here.

We cannot exclude that, in models with more general input functions ', a further
phase develops for large baryon densities. However, this is not so within our simple
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Fig. 23.2 The critical curve �c D �c.Tc/ in the .�; T/ plane, separating the gaseous phase (I)
from the ‘liquid’ phase (II). The dot-dashed line would be the critical curve if pions were excluded.
Region III is inaccessible (T > T0): infinite energy density. For T D 0, the critical chemical
potential equals the nucleon mass; note that this is not its maximum value

model of pions and nucleons, where we neglect most of the details of nuclear
structure. In particular, for T ! 0 and for � corresponding to �=�0 � 1, we might
need more detailed input than we have considered in the present simplified study.

Baryon Density in the Gaseous Phase

We begin with a short description of the numerical methods. We need to compute
the different derivatives with respect to ˇ and � of Eq. (23.58). Since ˚.ˇ; �/ D
G


'.ˇ; �/

�
, we need only to have the function G.'/ and its derivatives with

sufficient precision in order to calculate the quantities of physical interest. This is
done by considering the expansion of G.'/ at '0:

G.'/ D G0 � .'0 � '/1=2 � 1
6
.'0 � '/2=2 � 1

36
.'0 � '/3=2 C�G.'/ : (23.61)

This equation defines the remainder�G, which can be taken to have the polynomial
form. Since we know the inverse function ' D '.G/, we can easily fit �G. We
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find that, even for a quite small degree of the polynomial N (D 3), already a very
satisfactory result is obtained. This is partly due to the fact that Eq. (23.61) with�G
neglected is, in itself, a very good approximation of G since the maximum error
occurs at ' D 0 and is �G.'/ D 5:7 
 10�4. Also, at ' D '0, the proper analytic
behavior is obtained from Eq. (23.61) for G.'/ and its first and second derivatives.
Thus to one per mile accuracy, the expansion (23.61) is already quite adequate;
however, in numerical calculations, we have included the remainder �G in order
to achieve a relative accuracy of 10�8. Another merit of the expansion (23.61)
is its analytical integrability in Eq. (23.58). Thus we have succeeded in obtaining
ln Z in terms of known functions. The computation of the different physical
quantities, though tedious, is an elementary exercise now. The results were obtained
and graphically processed by the CERN Interactive Computing System SIGMA
[9]. An independent check of our calculations has been done with the Yellin
expansion (23.13), wherever this was possible.

We begin the discussion of our results by considering the baryon number density
� [see Eq. (23.59c)] along the gas–‘liquid’ phase limit. As a unit of V , we will
choose the ‘elementary’ volume of one baryon, VN D mNA, as introduced in
Eq. (23.22), along with the constant A (not related to atomic and/or baryon number
here denoted as b). The baryon number contained in the elementary volume VN now
follows from Eqs. (23.59c) and (23.58):

VNv D � 1

mN

@

@̌

Z �

0

d�0

�0
h
G.'  C �0'N/� G.' /

i
: (23.62)

We find, upon differentiation,

VN� D � 1

mN

@' 

@̌

@

@' 

Z �

0

d�0

�0
h
G.'  C �0'N/ �G.' /

i
(23.63)

� 1

mN

@'N

@̌

1

'N

h
G.'  C �'N/ �G.' /

i
:

At the critical line, we just have '  C �'N D '0, so

VN�
ˇ̌
ˇ
crit
D �
 ln 2 � G.' /

� 1
m 

@

@̌
ln'N

ˇ̌
ˇ
crit

(23.64)

� 1

mN

@' 

@̌

@

@' 

Z �

0

d�0

�0
h
G.'  C �0'N/ �G.' /

iˇ̌
ˇ
crit
:

The first term is the only one remaining in the absence of pions and is shown as a
dash-dotted line in Fig. 23.3. Since for T � T0 we have mN=T � 1, the asymptotic
form for the Bessel function in 'N can be used to determine �. Therefore, we find
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Fig. 23.3 Critical baryon number per nucleon volume VN as a function of the temperature. The
dot-dashed line results if pions are excluded. The unexpected shape of the critical curve is seen to
be due to the coexistence of pions and nucleons. Region I is gaseous, while region II is fluid

VN�
ˇ̌
ˇ
crit; no pions

D
�
1C 3T

2mN

�
ln 2 : (23.65)

Even including pions, this expression is correct for low temperatures since, as
before, ' ; crit � �crit'N; crit. The values obtained from Eq. (23.64) are shown in
Fig. 23.3. We see that the onset of the pion component lowers the phase transition
density, but at high temperatures, the density again increases sharply.6

We notice that, for T < T0�ı (with ı a few MeV), the transition from gaseous to
‘liquid phases’ occurs always below one (one baryon per unit volume is by definition
the normal nuclear density). This justifies a posteriori our choice for the names of
the different phases.

In Fig. 23.4, we show the baryon density in the gaseous phase: in Fig. 23.4a as a
function of chemical potential with temperature being the parameter (isotherms), in
Fig. 23.4b as a function of temperature, with the chemical potential as a parameter.
In Fig. 23.4c, d, we have eliminated the chemical potential from Fig. 23.4a and
replaced it by the pressure [see Eq. (23.59b)] in units of P0 D mN=VN D A �1.
In Fig. 23.4a, � D 0 implies a finite baryon density, particularly noticeable for
T & 120MeV.7

6This mirrors the behavior of the rapidly changing factor expŒ.m��/=T�; hadronic matter at phase
boundary is meson dominated for T > m�=2MeV. Moreover, after we allowed for antimatter
production (see solution presented in Chap. 27) the net baryon density continues to decrease for
T ! T0.
7This is another artifact of the approximation to ignore antibaryons.
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Fig. 23.4 Baryon number per nucleon volume VN in various representations up to the critical
curve: (a) against chemical potential with isotherms, (b) against the temperature with � as
parameter, (c) against the pressure with isotherms, (d) against the pressure with � as parameter.
P0 D A �1 � proton rest energy density (‘internal proton pressure’). The dash-dotted curve is
the critical curve, and region II the liquid phase. The white lower right corner in (c) is due to the
impossibility of having antibaryons at high temperature (asymmetry of our input term)

Baryon Energy in the Gaseous Phase

The energy contained in the unit volume VN can easily be obtained from
Eqs. (23.59a) and (23.58):

VN".ˇ; �/ D mN

m2
 

@2

@̌ 2
G.' /C 1

mN

@2

@̌ 2

Z �

0

d�0

�0

Z �0

0

d�00

�00
h
G.' C�00'N/�G.' /

i
:

(23.66)
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Fig. 23.5 Energy per
nucleon volume VN as a
function of baryon number
per nucleon volume.
Isotherms up to the critical
curve separating gas (I) from
liquid (II). As the rest mass is
included in the energy per
nucleon volume, the lower
part of the diagram remains
empty

Both Eqs. (23.66) and (23.62) are functions of � and T, and we can eliminate
numerically either one of these physical parameters in Eq. (23.66) and replace it
by � [see Eq. (23.62)]. Since T has a better intuitive meaning, we eliminate the
chemical potential from Eq. (23.66) and consider

".ˇ; �/ D "�ˇ; �.ˇ; �/	 D "�.ˇ; �/ : (23.67)

dropping henceforth the lower subscript �. The results are shown in Fig. 23.5. Here
the isotherms T D constant are shown for VN" as a function of VN�. We record
the nearly linear behavior (in the gas phase) of the energy density: " � C1 C C2�,
with temperature-dependent constants C1;C2. We recall that, for very small �.T/,
our neglect of antibaryons is not justified. But above VN� D 0:1 and T . 120MeV,
our results should be independent of this approximation.

Even better insight can be obtained by inspecting the energy per baryon,
excluding the rest mass,

E nr
b WD

".ˇ; �/

�
� mN D Eb �mN ; (23.68)

shown in Fig. 23.6. For small temperatures and densities, this should be just the
usual 3T=2, which we actually find for T D 20MeV. For higher temperatures,
as we can see in Fig. 23.6b, this is the lower limit of the thermal and interaction
energy E nr

b 	. For T D 50MeV and higher, we have a large pion component; thus
the energy per baryon (total energy divided by total baryon number), which also
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Fig. 23.6 Energy per baryon minus rest mass E nr
b D E=b � mN as a function of baryon number

per nucleon volume VN�: (left: from 0 to 10 GeV; right: from 0 to 1 GeV) with isotherms up to the
critical curve separating gas (I) from fluid (II)

includes the energy of the pions, stays high above the lower limit 3T=2. We note
that our interaction energy is, by definition, positive. Our nuclear mass mN for the
input nucleon should, in principle, include all the binding effects at saturation, and
thus be really mN�EB. Therefore, at densities lower than the saturation density in the
gaseous phase, the thermal energy 3T=2 is the lower limit on the energy per baryon.
Furthermore, we note that, within our model, the thermal energy dominates the
picture between �20 and �60MeV, at which point the onset of pion and resonance
excitation becomes important.

It is a straightforward matter to isolate the thermal term from Eq. (23.66). In fact,
recalling the rules of chain differentiation, we obtain from Eqs. (23.59a), (23.59c),
and (23.58),

" D � 1
V

@' 

@̌

@

@' 
ln Z � � @

@̌
ln'N : (23.69)

The first term expresses the pion–nucleon interacting component and, as discussed
in Sect. 23.4, it is small at temperatures below 60 MeV. The second term is just
the ‘free’ nucleon term at density �, which in the non-relativistic limit gives us the
usual 3T�=2.
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23.5 Summary

We have generalized the Statistical Bootstrap Model in a suitable way, which allows
for the description of clustering hadron matter with constant energy density and a
conserved quantum number. We apply our theory to the particular case of nuclear
matter which, in the thermodynamic equilibrium, consists at finite temperature of
nuclear clusters and their excitations, pions, and mesonic and baryonic resonances.
Although in the general theoretical part of our work we have maintained baryon
number conservation, in the numerical part, we study the properties of nuclear
matter, neglecting the antibaryon production.

At many stages of our model, relatively arbitrary assumptions have been made,
which can only be justified a posteriori by a comparison with the experimental
results; or, perhaps, by the beauty and simplicity of the theoretical relation and
intuition and experience. In particular:

1. we assume an ad hoc ansatz for the bootstrap equation for the nuclear level
density [see Eq. (23.19)];

2. we assume a relation of  with the mass spectrum [see Eqs. (23.25) and (23.20)];
3. we take the proper volume as being parallel to the momentum of the fireball;
4. we assume that the natural volumes of the input particles grow with their mass.

As a consequence of (iii) and (iv), we have found that the energy density of fireballs
is constant [see Eq. (23.22)] and equal to A �1, which is the only arbitrary parameter
of our model. Although our calculations are more in the nature of an exploratory
study than a final result, we believe that some of the general features we find in our
model are relatively model-independent and could survive further elaboration.

1. Considering the grand canonical partition function, depending on the chemical
potential and temperature, we find three different situations:

(i) a gaseous state (containing the empty vacuum for � ! 0, T D 0),
characterized by the presence of easily movable but strongly interacting
nuclei and pions, all in arbitrary states of excitation;

(ii) a ‘liquid’ phase at larger baryon densities; and
(iii) a supercritical (unphysical) region above T D T0 D 150MeV, where the

energy density becomes infinite.

2. The transition to the ‘liquid’ phase occurs at about 0.65–0.75 of the normal
nuclear number density and at finite energy density, except when T approaches
T0, where the pure gaseous phase persists through high density and where the
energy density becomes very large. We would like to mention now that what
we have called throughout this paper the ‘liquid’ phase is really the coexistence
of two phases, vapor and liquid, in equilibrium. We are currently working on a
description of the high density region beyond the phase transition from gas to
liquid.

3. In our actual description, we find a limiting temperature T0 � 150MeV. At this
temperature, the energy density diverges. We have noted, however, that this is a
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subtle point which touches on the limits of validity of our present interpretation
of the mass spectrum. In this respect, we recall that the volume of fireballs now
grows with the fireball mass—thus the average density should be finite for T !
T0. In a consistent model, we expect a finite energy density at T0, so that the
presently forbidden region beyond T0 will now become accessible.

4. Below 60 MeV, we find that the energy per baryon obeys roughly the simple
relation � 3T=2; however, below 20 MeV, our model includes too little nuclear
structure to have enough predictive power. Above 60 MeV, we find that pion
degrees of freedom absorb an increasing amount of the total energy, so that the
‘energy per baryon’ (the total energy/number of baryons) exceeds more and more
the energy which the baryons themselves carry.

Looking ahead, we hope to enlarge our model by making the input more elaborate,
by maintaining the particle–antiparticle symmetry, and by considering the particular
importance of alpha clusters. It seems that a profound study of the ‘liquid’ phase will
be rewarding since much of the structure of the liquid (maybe even the existence of
a new ‘solid’ phase) depends on the amount of nucleon structure we include in the
input terms. An obvious first step in this direction is the possible introduction of
effective masses (< free masses) of the bound nucleons, a feature that is very likely
relevant to the understanding of the saturation of nuclear matter in the bootstrap
description. We must also incorporate Fermi and Bose statistics and investigate
models leading to a finite energy density at T0.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Chapter 24
On a Possible Phase Transition Between
Hadron Matter and Quark-Gluon Matter: 1981

Rolf Hagedorn

Abstract We employ the technique of the analytically continued grand canonical
pressure partition function to show that, under physically meaningful boundary
conditions (non-existence of external confining vessels, i.e., no fixed volumes),
the energy density and similar intensive quantities do indeed have, in a statistical
bootstrap model of extended hadrons (van der Waals type volume corrections), the
singularity claimed in previous papers. Earlier results obtained with an entirely
different technique (which had been criticized) are recovered and shown to be
correct. The technique used here is useful in all cases where the volume is not
imposed from the outside but results from the internal dynamics of the system, as is
generally the case in high energy physics and astrophysics.

24.1 Introduction

Hadrons have finite sizes and consist internally of quarks, antiquarks, and gluons,
though none of these constituents has ever been observed as a free particle. They
seem to be confined to the inside of hadrons.

Consider a hadron gas at temperature T. At low T, it behaves more or less as an
ideal gas, if T increases to the order of . 100MeV, pion creation sets in and if T
is increased further, heavier resonances and baryon–antibaryon pairs are produced.
When T becomes sufficiently large, particle production becomes so strong that the
energy density of the ‘gas’ reaches the value of the internal energy density of its
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constituents. In other words, the hadrons (having finite volume) begin to overlap and
finally might form one single hadron. At that stage we have no longer to do with
a hadron gas, but with an interacting quark-gluon gas. Increasing the temperature
further would lead to a free quark-gluon gas confined to a macroscopic hadron [1].

The following question arises: is this transition from a hadron gas to a quark-
gluon gas a smooth transition (like ionization) or a phase transition? There are
two approaches to this problem: experimental and theoretical. Experimental facts
suggest a phase transition: mean transverse momenta of particles produced in high
energy hadron collisions may be interpreted in terms of a temperature which, with
increasing collision energy, rapidly reaches a limit of the order of 160 MeV [2] (the
exact value is difficult to determine because many secondary effects arising from
the spacetime history of a collision disturb the ideal picture of a phase transition at
a certain critical temperature). Limiting temperatures indicate phase transitions.

The theoretical approach is suffering from lack of a theory. We only have models.
There is a choice of models describing the hadron side and another choice of models
for the quark-gluon side, but no analytical model which contains both [3]. A single,
closed and consistent analytical model unifying both aspects would be ideal. If we
had one which described hadronic as well as quark-gluon systems, we could use it
to find theoretical support for either a phase transition or for a smooth transition. A
phase transition would be indicated by a singularity (pole, branch point) in the grand
canonical partition function at some real temperature, while a smooth transition
would require the absence of singularities on the real T axis.

In this situation, the general habit is to take some hadron gas (or nuclear matter)
model and some quark-gluon model and try to fit them together. This procedure
leads then to two different partition functions, one for low T (hadron side) and one
for high T (quark-gluon side). If the two pressure curves thus obtained cross at some
temperature, it is often claimed that a phase transition has thereby been established
and located. This is unjustified, as one easily sees from a counterexample: a dilute
hydrogen gas might, according to this philosophy, be described as an ideal gas of
2N protons plus 2N electrons. The pressure curves do cross, but we know that,
in this system, there is no phase transition; instead a smooth shift of the chemical
equilibrium between molecules, atoms, ions, and electrons takes place when the
temperature changes.

Only the explicit exhibition of a singularity (in at least one of the two models to
be fitted together) proves that the model under consideration has a phase transition
(in the vicinity of the singularity).

The statistical bootstrap model of hadronic matter in its most recent form has
been claimed to have a singular curve in the �;T diagram, along which the energy
density is constant and equal to the bag energy density, i.e., the energy density of the
hadronic clusters constituting the gas, while the pressure vanishes there [4]. Taking
this singularity as indicating a phase transition to a quark-gluon phase [5] seems
most natural; the more so as the description of the other side, in terms of a free
quark-gluon gas with perturbative corrections [6], leads to vanishing pressure and
to the usual bag energy density in the same �;T region where the hadron critical
curve lies.
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The model of [4] is a statistical bootstrap model with baryon number conser-
vation and proper volumes of the constituent hadrons and hadron clusters. These
proper volumes grow in proportion to the cluster mass. As the strong interaction
is in this model represented by all possible particle reactions (hadron chemistry),
the number of particles is not conserved and, in calculating the partition function,
summed from 0 to infinity. The mass spectrum (listing all possible hadrons and
clusters) turns out to be exponentially increasing with the cluster mass. It is this
exponential increase which generates the singularity via an integration over masses
up to infinity.

In a recent paper [7], the results of [4] were criticized on the basis of the
following argument: if particle volumes grow in proportion to the mass, the mass
integration is necessarily cut off when the sum of all particle volumes reaches the
externally given volume V . Likewise the sum over particle numbers is cut off. Thus,
trivially, no singularity can occur. What is not trivial is that, as the authors show, the
thermodynamic limit

lim
V!1

1

V
ln Z.ˇ;V/ (24.1)

exists for all ˇ. Hence, even in this limit, still no singularity exists in spite of the
exponential spectrum and in spite of the fact that now integrations and sums do
go to infinity. This proof does not, however, apply to the situation under which the
singularity was found. In [4], the limit was not taken in the usual way, viz., as in
Eq. (24.1): first calculate ln Z for fixed V , then let V ! 1. Instead, the ‘available
volume’� D V �PVi, where Vi is the proper volume of the i th particle, was used
as a volume parameter and kept constant. Thus V D �CPVi, so that, when sums
over particle numbers and integrals over masses were done, V was pushed to infinity.
Then expectation values hV.ˇ;�; �/i, hE.ˇ;�; �/i, etc., could be calculated and
densities could be defined by hE.ˇ;�; �/i=hV.ˇ;�; �/i, etc., which did indeed
show a singularity. Since therefore the existence of a singularity depends on the
limiting procedure, it seems important to clear this up.

A simple example shows that there is nothing like a universally ‘correct’ limiting
procedure, but that different limiting procedures correspond to different physical sit-
uations. Imagine a high pressure container of volume V filled completely with water
at room temperature and atmospheric pressure and then hermetically closed. One
may heat it up to any temperature and the water will not boil; putting infinitely many
such boxes together and removing interior walls (V !1) will change nothing. If,
on the other hand, one closes the vessel by a movable piston, one sees the water
boil if pressure and temperature fall in a certain interval. In this last case, the water
pushes the volume to ever larger values similarly to the situation considered in [4].

We believe that at temperatures and densities where hadron matter changes into
quark-gluon matter, no fixed volumes should be used in theoretical considerations,
since boxes do not exist in this regime. Forces keeping a system together (the
tendency to cluster is just such an internal force, while gravity might be considered
as an external one) control pressure and densities rather than volume.
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The method of the ‘available volume’� used in [4] seems therefore to be adapted
to reality. Nevertheless, one may argue that even such a � cannot be controlled and
therefore should not be used as an external variable.

In this paper, the results of [4] will be rederived in a different way which does
not make use of a volume-like variable. The technical tool is the grand canonical
pressure partition function.

Our units are „ D c D k D 1, mass unit MeV, metric .1;�1;�1;�1/. Notation
is as in [4].

24.2 The Grand Canonical Pressure Partition Function

Introduction

Given the grand canonical partition function Z.ˇ;V; �/, where ˇ D 1=T, V a fixed
external volume, and � D exp.�=T/ a fugacity ensuring the conservation of some
charge-type quantum number Q, the grand canonical pressure partition function
˘.ˇ; �; �/ is defined by [8]

˘.ˇ; �; �/ WD
Z 1

0

dVe��VZ.ˇ;V; �/ ; (24.2)

where � is a new, intensive parameter related to the volume in a similar way as ˇ is
related to the energy and � to some conserved quantity. The larger �, the stronger is
the exponential volume suppression in the integral of Eq. (24.2). Thus � is a measure
for the pressure and hence the name of this partition function.

Rewriting Eq. (24.2),

˘.ˇ; �; �/ D
Z 1

0

dVe�V


��ln Z.ˇ;V;�/=V

�
; (24.3)

we can read off for which values of � the integral converges, provided that the
thermodynamic limit

lim
V!1

1

V
ln Z.ˇ;V; �/

exists:

� > �0.ˇ; �/ WD lim
V!1



ln Z.ˇ;V; �/=V

� 	 ˇP.ˇ; �/ ; (24.4)

where P is the pressure.
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We define a function g.ˇ;V; �/ as the difference between ln Z=V and its limit:

g.ˇ;V; �/ WD �0.ˇ; �/ � 1

V
ln Z.ˇ;V; �/ : (24.5)

It can be shown under very general conditions [8, item (d)] that, if the thermo-
dynamic limit exists, this limit commutes with the differential operators @=@̌ and
@=@�. We assume these conditions to be fulfilled. Thus,

lim
V!1 g.ˇ;V; �/

lim
V!1

@g

@̌
.ˇ;V; �/

lim
V!1

@g

@�
.ˇ;V; �/

9
>>>>=

>>>>;

D 0 : (24.6)

˘.ˇ; �; �/ has a singularity at �0.ˇ; �/. Its nature (pole, branch point) depends on
g.ˇ;V; �/. In principle, it is possible to continue the analytic function ˘.ˇ; �; �/,
defined by the integral representation in Eq. (24.2) for Re � > �0, into the whole
complex plane beyond the convergence domain of the integral. Therefore it might
well be possible that quantities derived from˘.ˇ; �; �/ have a physical meaning for
� values where the integral representation of ˘.ˇ; �; �/ does not exist.

That this is indeed the case and that the singularity at �0 is absent in meaningful
physical quantities will now be shown. It implies that the singularity at �0 has
nothing to do with a phase transition, in contradistinction to singularities of
Z.ˇ;V; �/.

It is convenient to define a new function whose limit is ˘.ˇ; �; �/:

˘W.ˇ; �; �/ WD
Z W

0

dVe��VZ.ˇ;V; �/

D
Z W

0

dVe�V.���0/�Vg.ˇ;V;�/ ; (24.7)

lim
W!1˘W.ˇ; �; �/ D ˘.ˇ; �; �/ :

We now calculate the energy density. First we define the expectation value of the
total energy:

˝
EW.ˇ; �; �/

˛ WD � 1

˘W

@˘W

@̌
D

Z W

0

dVe��VZ.ˇ;V; �/
˝
E.ˇ; �; �/

˛

Z W

0

dVe��VZ.ˇ;V; �/

; (24.8)
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where hE.ˇ; �; �/i D �@ ln Z.ˇ;V; �/=@̌ was used. Similarly, we define the
expectation value of the volume:

˝
VW.ˇ; �; �/

˛ WD � 1

˘W

@˘W

@�
D

Z W

0

dVe��VVZ.ˇ;V; �/

Z W

0

dVe��VZ.ˇ;V; �/

: (24.9)

The energy density is then

E .ˇ; �; �/ WD lim
W!1

˝
EW.ˇ; �; �/

˛
˝
VW.ˇ; �; �/

˛ : (24.10)

Similarly, if Q is the quantum number conserved by �, the quantum number density
q.ˇ; �; �/ is

q.ˇ; �; �/ WD lim
W!1

˝
QW.ˇ; �; �/

˛
˝
VW.ˇ; �; �/

˛ ;
˝
QW.ˇ; �; �/

˛ D � 1

˘W
�
@˘W

@�
: (24.11)

In this formalism, the usual thermodynamic limit is replaced by the limit W !1.
We now use the explicit form given by the last member of Eq. (24.7) to calculate

E .ˇ; �; �/:

E .ˇ; �; �/ D lim
W!1

@˘W=@̌

@˘W=@�
;

@˘W

@̌
D
Z W

0

V

�
@�0

@̌
� @g

@̌

�
e�V.���0/�VgdV ; (24.12)

@˘W

@�
D �

Z W

0

Ve�V.���0/�VgdV :

Since �0 is independent of V , we have

E .ˇ; �; �/ D �@�0.ˇ; �/
@̌

C lim
W!1

Z W

0

e�V.���0/�VgV
@g

@̌
dV

Z W

0

e�V.���0/�VgVdV

: (24.13)

We now recall Eq. (24.4), viz., �0 D ˇP. Hence, if the second term of Eq. (24.13)
were absent, we would recover the usual thermodynamic limit definition

E D �@.ˇP/

@̌
D � @

@̌

�
lim

V!1
ln Z.ˇ;V; �/

V

�
:
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Next we observe that, for � > �0, the integrals in Eq. (24.13) converge in the limit so
that, unless g.ˇ;V; �/ D 0, the second term is a non-vanishing function C.ˇ; �; �/.
Indeed, � > �0 implies exponential suppression of large volumes. Therefore this
function C.ˇ; �; �/ represents the corrections to the energy density coming from
finite volume effects.

If finite volume effects are neglected already in defining Z.ˇ;V; �/, then g 	 0.
In that case ˘ D 1=.� � �0/ has a simple pole at �0 which cancels out in E .ˇ; �; �/
and the second term of Eq. (24.13) is absent. Furthermore, both E .ˇ; �; �/ and
q.ˇ; �; �/ are trivial analytic functions of �, namely, constants in the whole � plane.
This particularly simple case is a good illustration of what happens. While hEi and
hVi both have a pole at �0 and become negative at � < �0, the energy density does
not care: the pole cancels and with it the whole � dependence. The E calculated
from Eq. (24.13) is just the usual one obtained from �@Œln Z=V�=@̌ .

In the more general case where finite volume effects are not neglected, i.e.,
g.ˇ;V; �/ ¤ Q, the correction term in Eq. (24.13) is present for � > �0. It vanishes,
however, identically for � � �0 due to our assumption that limV!1 @g=@̌ D 0 [see
Eq. (24.6)]. The simple proof is by de l’Hôpital’s rule. Thus, if finite volume effects
are included in the definition of Z.ˇ;V; �/, we recover the usual thermodynamic
limit results for E .ˇ; �; �/ for all � � �0 [there E .ˇ; �; �/ becomes independent
of �], while for � > �0, finite volume corrections appear explicitly. All this is
physically obvious: for � < �0, large volumes have an exponentially increasing
weight in the integration, whence the main contributions come from ‘infinite’
volumes where finite volume effects are absent by definition. Once this happens,
it does not matter how fast the exponential weight increases. Therefore, E .ˇ; �/
is independent of � for � � �0. Again, E .ˇ; �; �/ defined by Eq. (24.13) is a
meaningful physical quantity which may be evaluated at any �, while the individual
integrals in Eq. (24.13) go to infinity in the limit W !1.

This introduction thus results in two useful conclusions:

• Whatever the singularity of ˘.ˇ; �; �/ at �0 may be, it has no significance for
quantities like E .ˇ; �; �/ and q.ˇ; �; �/. While hE .ˇ; �; �/i and hV.ˇ; �; �/i do
have a singularity at �0 and may become meaningless for � � �0, the singularity
(pole, branch point, cut) cancels in calculating the above densities, which may be
evaluated at any �.

• If one wishes to obtain explicit finite volume corrections, one must evaluate
densities at � > �0. If, on the other hand, one evaluates at � � �0, it is irrelevant
whether or not finite volume terms, or more precisely, surface terms, have been
included in the definition of Z.ˇ;V; �/: they are suppressed by the exponentially
increasing weight of large volumes.

The real power of the pressure partition function formalism is this: it may happen
that ˘.ˇ; �; �/ can be calculated explicitly as an analytic function of �, while the
direct analytic calculation of Z.ˇ;V; �/ is impossible. In that case, we can obtain
exact results from ˘.ˇ; �; �/ which we could not obtain from Z.ˇ;V; �/. This is
precisely what happens in our problem of the van der Waals statistical bootstrap
model.
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In applying the technique introduced here to our explicit problem, the situation
will be slightly different from the above, already fairly general case. However,
our main conclusion that E .ˇ; �; �/ and q.ˇ; �; �/ can be continued beyond the
singularity �0 remains valid. As this will be seen explicitly, we kept this additional
complication out of our discussion above.

How Shall We Use ˘.ˇ; �; �/?

Having decided that the usual thermodynamic limit—which requires, at least in
a gedanken experiment, the existence of rigid boxes with a fixed volume—does
not correspond to the situation where hadron matter goes over to quark matter, we
shall not evaluate ˘.ˇ; �; �/ at �0.ˇ; �/, but rather consider � as an independent
thermodynamic variable on the same footing as ˇ and �.

As the only relevant quantities to be calculated are densities which, as we
have seen, ignore the existence of the singularity at �0, we adopt the following
philosophy. If we can obtain an analytic expression for˘.ˇ; �; �/, then we proceed
to calculate from it expressions for the interesting densities which then are also
analytic functions (not containing the singularity at �0). We consider these functions
as analytic continuations of the functions defined via the integral representation of
Eq. (24.2) beyond the region of convergence of the latter. We then evaluate these
functions at a � value appropriate to the physical situation.

Before we turn to the application to our specific problem, we have to generalize
Eq. (24.2) relativistically, since it will be used with a relativistic formulation of
Z.ˇ;V; �/. In this formulation, V is a timelike four-vector, so � must also be written
as a timelike four-vector. Hence the generalization of Eq. (24.2) is

˘.ˇ; �; �/ D
Z

dV���p
����

e���V�Z.ˇ;V; �/ ; (24.14)

where Z.ˇ;V; �/ is already a Lorentz invariant. The integration in Eq. (24.14) goes
over the forward cone V0 � 0. Going to the rest frame of � leads back to Eq. (24.2).

24.3 The Hadron Gas

Introduction

The grand canonical partition function of the strongly interacting hadron gas
described by statistical bootstrap is written [4]

Z.ˇ;V; �/ D
1X

ND0

1

NŠ

Z NY

iD1

�
2.V �A p/�p�i

.2�/3

�

C
�.p2i ; �/e

�ˇ�p
�
i d4pi : (24.15)
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Here V� is the external volume (to be integrated away), A p� is A D 1=4B times
the sum of all four-momenta

P
p�i , with 4B being the bag energy density [9],

�.p2; �/ is the hadron cluster mass spectrum with baryon number conservation as
follows from the bootstrap equation, and ˇ� is the inverse temperature four-vector.
The whole expression is written as a Lorentz invariant, following Touschek [10].

Attractive forces are represented by the mass spectrum, repulsive forces by the
van der Waals type correction to the volume: from the total volume, the proper
volumes of all particles are subtracted1:

V� �A p� D V� �A
NX

iD1
p�i D V� �

NX

iD1
V�

i ; (24.16)

which is the covariant generalization of what would be V � A
P

mi in a non-
relativistic formulation. That A p�i is the proper four-volume of the i th particle is
a byproduct obtained in formulating the bootstrap equation [11]. It agrees (in the
particle’s rest frame) with the nuclear physics, where the volume is proportional to
the mass, and with the bag model [9]. For further information, see [4] and references
therein.

The subscript C on the square bracket in Eq. (24.15) indicates that each single
bracket is to be � 0. This is guaranteed if

p2i > 0 ; .V �A p/2 � 0 ;
p0i > 0 ; .V �A p/0 � 0 : (24.17)

The first two are trivial requirements since we are dealing with physical particles.
The last two ensure positivity. Implicitly, they define the limits of the sum over N
and of the integrations over pi.

It is this van der Waals correction in Eq. (24.16) which prevents the integrations
in Eq. (24.15) from factorizing into N independent integrals and which, moreover,
makes the boundary of the sum and the integrals so complicated that it seems
hopeless to calculate Z.ˇ;V; �/ without using drastic approximations. Introducing
the pressure partition function ˘.ˇ; �; �/ is not only suggested by the physical
situation (no boxes), but it also solves the technical problem just mentioned.

Digression: The Pointlike Hadron Gas

For later use, we need to consider the pointlike case. If no volume correction is
applied in Eq. (24.15), the integrations factorize. Moreover the sum and integrals

1The factor of 4 multiplying the proper volumes of the constituents in the usual van der Waals
correction is omitted, since it is specific to a gas of identical hard spheres, while here the clusters
are deformable and of different sizes.
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are unrestricted. We introduce under the integrals the identity

�.p2i ; �/ 	
Z
ı0.p

2
i � m2

i /�.m
2
i ; �/dm2

i : (24.18)

The N identical integrals, evaluated in the common rest frame of the volume [V� D
.V; 0; 0; 0/] and of the thermometer [ˇ� D .1=T; 0; 0; 0/], can then be summed up
over N and yield an exponential function, so that

1

V
ln Zpt.ˇ;V; �/ WD

Z 1

0

�.m2; �/e�ˇ
p

p2Cm2dm2 p2dp

2�2
; (24.19)

where Zpt is the ‘point particle partition function’. Note that the expression in
Eq. (24.19) is independent of the volume V . The remaining integral is, in the
Statistical Bootstrap Model, simply related to the ‘bootstrap function’ 	.ˇ; �/
[4, 11]:

1

V
ln Zpt.ˇ;V; �/ D � 2

H.2�/3
@	.ˇ; �/

@̌
DW f .ˇ; �/ ; (24.20)

where f .ˇ; �/ is a shorthand notation for later use. The function 	.ˇ; �/ is
analytically and numerically well known [12] and easy to compute. Thus f .ˇ; �/
may be considered as a known function.

The function 	.ˇ; �/ has, for given �, a square root singularity at some ˇ�.�/,
namely [4, 12]

	.ˇ; �/ �!
ˇ!ˇ�

ln 2 � h.�/
p
ˇ � ˇ�.�/ : (24.21)

The curve ˇ�.�/would thus be a singular curve of the point particle model. We shall
see that it will also be a singular curve of the model with nonzero particle volumes.
From Eqs. (24.20) and (24.21), we infer

ln Zpt.ˇ; �/ �!
ˇ!ˇ�

� 1
p
ˇ � ˇ� �! 1 : (24.22)

Consequently, we obtain for the energy density

Ept.ˇ; �/ D � 1
V

@ ln Zpt

@̌
�!
ˇ!ˇ�

� 1
p
ˇ � ˇ�3

; (24.23)

for the baryon number density

�pt.ˇ; �/ D 1

V
�
@ ln Zpt

@�
�!
ˇ!ˇ�

� 1
p
ˇ � ˇ�3

; (24.24)
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and for the pressure

Ppt.ˇ; �/ D 1

ˇV
ln Zpt �!

ˇ!ˇ�
� 1p

ˇ � ˇ� : (24.25)

The Real Hadron Gas

The pressure partition function of the real hadron gas is given by the defini-
tion (24.14) with Z.ˇ;V; �/ taken from Eq. (24.15):

˘.ˇ; �; �/D
Z

dV���p
����

e���V�
1X

ND0

1

NŠ

Z NY

iD1

�
2.V �A p/�p�i

.2�/3

�

C

�.p2i ; �/e
�ˇ�p

�
i d4pi :

(24.26)

We make the change of variables

.V �A p/� DW x� : (24.27)

Positivity then requires [see Eq. (24.17)]

x�x� � 0 ; x0 � 0 : (24.28)

With this substitution and with the identity in Eq. (24.18), we obtain

˘.ˇ; �; �/D
Z

dx���p
����

e���x�
1X

ND0

1

NŠ

Z NY

iD1

2x�p�i
.2�/3

e�.ˇCA �/�p
�
i �.m2

i ; �/dm2
i

d3pi

2p0i
;

(24.29)

where p� D P
p�i has been used. Now the positivity condition is automatically

satisfied by integrating over the forward light cone of x. The explicit p dependence
due to the volume correction in Eq. (24.15) has disappeared from the volume factors
x�p�i and is shifted as ��p�i to the exponent where it factorizes. Thus the integrals
over the pi are again all identical and unrestricted, as if we had a pointlike gas.

We assume the temperature to be measured in the rest frame of the expectation
value of the volume hV�i, whence ˇ k �. As ˘.ˇ; �; �/ is a Lorentz scalar, we
evaluate in the common rest frame of ˇ and �.

One of the N identical integrals in Eq. (24.29) is then2

Z
2.x0p0 � x � p/

.2�/3
e�.ˇCA �/

p
p2Cm2�.m2; �/dm2 d3p

2
p

p2 C m2
; (24.30)

2From now on, we write ˇ WD p
ˇ�ˇ� and � WD p

����.



282 R. Hagedorn

where x � p vanishes upon angular integration, so that, with x WD x0, the integral
reduces to [see Eqs. (24.19) and (24.20)]

x
Z
�.m2; �/e�.ˇCA �/

p
p2Cm2dm2 p2dp

2�2
D xf .ˇ C �A ; �/ : (24.31)

Thus Eq. (24.29) becomes

˘.ˇ; �; �/ D
1X

ND0

1

NŠ

Z 1

0

e��xxNdx


f .ˇ C �A ; �/

�N
: (24.32)

The x integration yields NŠ=�NC1, so that finally,

˘.ˇ; �; �/ D 1

� � f .ˇ C �A ; �/

� ; (24.33)

where f .ˇC�A ; �/ is the point particle expression of Eq. (24.19) taken at ˇC�A .
As mentioned earlier, f .x; y/ is a perfectly known function, both numerically and
analytically. Thus, within the framework of the Statistical Bootstrap Model with
extended particles, we have obtained a simple analytical expression for ˘.ˇ; �; �/
defined in the whole � plane [the difference from the case discussed in Sect. 24.2 is
that � appears in f .ˇ C �A ; �/].

Interpretation

The Usual Thermodynamic Limit with Fixed V ! 1

From Eq. (24.4), we know that the singular point �0.ˇ; �/ of ˘.ˇ; �; �/ is equal to
ˇP.ˇ; �/ with the usual thermodynamic limit prescription

ˇP.V/ D �0 D lim
V!1

1

V
ln Z.ˇ;V; �/ ;

�0.ˇ; �/ D root of equation � D f .ˇ CA �; �/ :

(24.34)

Finding this root is a simple numerical exercise, which we shall not execute here
since we are not interested in this pressure, which is irrelevant for our physical
problem.

We can now give a simple proof (without using any approximations) of the state-
ment [7] that, in the usual thermodynamic limit procedure, the singularity at ˇ�.�/
cannot be reached by any ˇ > 0, or in other words, that limV!1 ln Z.ˇ;V; �/=V has
no singularity on the real T axis. We must show only that �0.ˇ; �/ has no singularity.
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Equation (24.34) states that

�0.ˇ; �/ D f
�
ˇ CA �0.ˇ; �/; �

	
: (24.35)

The singularity f .x; �/ � 

x � ˇ�.�/

��1=2
[see Eq. (24.22)] cannot be reached.

Assume that indeed x D ˇ C A �0.ˇ; �/ ! ˇ�.�/. Then by Eq. (24.35), �0 ! 1
and ˇ CA �0 !1, contradicting the assumption. This holds for all ˇ > 0. Hence
limV!1 ln Z.ˇ;V; �/=V is analytic along the whole T axis, together with all its
derivatives.

Having already decided that in our problem the usual thermodynamic limit does
not correspond to reality, we do not pursue this line further.

Hot Hadron Matter: No Fixed Volume

According to our philosophy stated in Sect. 24.2, we now evaluate ˘.ˇ; �; �/ and
its derivatives at fixed ˇ; �; �. Applying the definitions of Sect. 24.2 to Eq. (24.33),
we immediately find

E .ˇ; �; �/ D hEihVi D
Ept.ˇ CA �; �/

1CA Ept.ˇ CA �; �/
; (24.36)

�.ˇ; �; �/ D hbihVi D
�pt.ˇ CA �; �/

1CA Ept.ˇ CA �; �/
; (24.37)

where, bearing in mind Eq. (24.20),

Ept.ˇ CA �; �/ D � @

@̌ 0 f .ˇ0; �/
ˇ̌
ˇ
ˇ0DˇCA �

; (24.38)

�pt.ˇ CA �; �/ D � @
@�

f .ˇ CA �; �/ : (24.39)

The energy density and baryon number density no longer contain the pole at �0.
They are analytic functions of ˇ; �; � for all real values

1 � � <1 ; ˇ C �A > ˇ�.�/ : (24.40)

As � is now an independent variable [and no longer related to ˇ and � by an equation
like (24.35)], the singularity ˇ C �A D ˇ�.�/ can be reached. There Ept and �pt

go to infinity [see Eqs. (24.23) and (24.24)] and thus E .ˇ; �; �/crit D 1=A , while
�.ˇ; �; �/crit ¤ 0;1.

As any � > 0 corresponds to an external force trying to compress the system
[see Eq. (24.2)], we consider � D 0 to be the appropriate value for a system which
determines its own volume dynamically. Thus for the hadron gas without external
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forces

E .ˇ; �/ D Ept.ˇ; �/

1CA Ept.ˇ; �/
; (24.41)

�.ˇ; �/ D �pt.ˇ; �/

1CA Ept.ˇ; �/
; (24.42)

which are the results already derived in [4] with the ‘available volume’ technique.
In astrophysical applications, � can be used to take gravitational pressure into

account. This has the effect of replacing the singular curve ˇ�.�/ by a singular
surface ˇ�.�; �/. The limiting values of E and � on this critical surface can then be
calculated. For E , it is again 1=A D const., as seen from Eq. (24.36).

A small conceptual problem arises with the pressure. We have stated often
enough that the usual definition (24.34) is useless here. We must therefore define
the pressure as in kinetic gas theory: there it is the result of the stochastic cannonade
of the wall of the vessel by the gas particles. The pressure is found to be proportional
to the average normal component of the momenta of the particles hitting the wall.
Here, where we do not have material walls, we may define the pressure as being
proportional to the average normal momentum component of particles passing
through an imaginary surface from left to right. Then, going through the usual
textbook derivation, we find that

ˇP D hNihVi ; (24.43)

where all the dynamics is hidden in hNi, the average number of clusters, and hVi,
the volume chosen by the system. One should not expect here a van der Waals type
of equation, because there N and V are fixed external parameters, so that the ideal
gas equation has to be corrected. Here this is not necessary. In the second paper of
[4], Eq. (24.43) was indeed derived in the ‘available volume’ formalism. Here we
take it as the definition of the pressure.

It remains to calculate hN.ˇ; �; �/i. In Eq. (24.32), we multiply f by a fugacity �
and obtain, instead of Eq. (24.33),

˘.ˇ; �; �; �/ WD 1

� � �f .ˇ CA �; �/
: (24.44)

Obviously,

˝
N.ˇ; �; �/

˛ D �

˘

@˘.ˇ; �; �; �/

@�

ˇ̌
ˇ̌
�D1

: (24.45)
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Thus, with Eq. (24.20),

hNi
hVi D

�f .ˇ CA �; �/

1C �AEpt.ˇ CA �; �/

ˇ̌
ˇ̌
�D0;�D1

D ˇPpt.ˇ; �/

1CA Ept.ˇ; �/
: (24.46)

Hence, with Eq. (24.43),

P.ˇ; �/ D Ppt.ˇ; �/

1CA Ept.ˇ; �/
; (24.47)

which is the same as in [4].
From Eqs. (24.23) and (24.25), we see that Ept diverges more strongly than Ppt on

the critical curve. Thus P.ˇ; �/crit D 0. This is not surprising, since on the critical
curve our ‘gas’ has coalesced into one single ‘particle’ of infinite volume which
does not move. In a complete model unifying the hadron side and the quark side,
the pressure should not go to zero. In our case, where two different models have to be
fitted together at the singularity, the pressure on the quark-gluon side rises steeply.
The usual Maxwell construction then gives a region of constant vapour pressure
along an isotherm [6, item (d)].

24.4 Conclusions

It has been shown how the thermodynamic limit procedure must be adapted to the
real physical situation. Different procedures may give different results: one may
exhibit a singularity while the other does not, and yet both are correct—they simply
apply to different physical boundary conditions. In the particular problem of the
transition from hadron to quark-gluon matter, the usual grand canonical partition
function does not lead to a singularity. We consider it (in the context of extended
particles and a van der Waals type volume correction) as badly suited to describe our
problem, because it assumes that a rigid volume containing the system can exist. At
the transition from hadron matter to quark matter, this assumption is principally
wrong. In an earlier attempt to do better [4], we introduced the ‘available volume’
as a new, independent variable in place of the volume. The result was that the thus
modified grand canonical partition function had a singularity indicating a phase
transition. In the present paper, we have confirmed the results of [4] using the grand
canonical pressure partition function, which seems to be tailored to our specific
problem. It can be stated that, in the Statistical Bootstrap Model with extended
hadrons (volume proportional to mass), a phase transition does occur as claimed
earlier [4] and that the objections raised in [7], though correct in themselves, do not
apply to physical reality in the temperature and density regime considered here.

Furthermore, we do not accept the conclusions of a recent paper [13], namely
that it is important which singularity of ˘.ˇ; �; �/ is reached first, the (trivial) one
at �0.ˇ; �/ or some other at ˇ�.�/ originating from Z.ˇ;V; �/. These conclusions
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disregard the disappearance of the singularity at �0 from densities. (We do not claim,
however, that there might not be cases to which the analysis presented in [13] is
relevant.)
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Chapter 25
How We Got to QCD Matter
from the Hadron Side: 1984

Rolf Hagedorn

Abstract Rolf Hagedorn reminisces in 1984 about limiting temperature, the
development of the statistical bootstrap model (SBM). He argues that consideration
of hadrons of finite size allowed the generalization of SBM into a sophisticated
relativistic van der Waals-type gas, leading on to a theory of phase transformation
from melting hadrons to boiling quarks.

25.1 Introduction

I have 50 min and 25 pages of print available to describe the origin and development
of work which took 27 years and was done by perhaps more than 200 people in
perhaps more than 300 papers. This leaves me about 2 min of talk per year of work
and about three lines of print per paper.

You, and hopefully even those whose work is not reported here, will understand
my dilemma: I have to concentrate on the essentials and skip all technical details.

I hope to be able to let you participate in retrospection in the ups and downs of
this adventure, which started from a simple statistical model of hadron production
without any attempt to understand the underlying dynamics and without any idea of
what finally it would lead to: a phase transition to QCD matter.

This whole history can be squeezed into one sentence coined by Helmut Satz [1]:
“Hadron thermodynamics defines its own limits.” But how, and why? To realize and
formalize that took a long time, as I shall now describe.
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25.2 Pre-bootstrap

In 1957, F. Cerulus and I were asked by the then CERN-TH-Division leader, B.
Ferretti, to do a few calculations (“just a fortnight”) of particle production at the
future CERN 30 GeV proton synchrotron. We used the Fermi statistical model [2]
and realized at once that the phase space integrals could not be calculated with the
known approximations (m ! 0 and m ! 1) since, on the average, the particles
(mostly pions) would be neither relativistic nor non-relativistic. We heard of the
Monte Carlo method and adapted it to our problem [3]. We thus were able to
compute reliably hundreds of phase space integrals with all the then known hadrons
and resonances. We even included two-body phase spaces and archived all our
results for some reason or another. This proved fortunate when, 5 years later, L.W.
Jones proposed to compute large-angle elastic pp scattering and asked us whether
we had any possibility to do so. The idea was that there might be a statistical
intermediate state decaying into two protons isotropically. The cross-section for
this process (visible, if existing, only far outside the diffraction region) should be
proportional to the ratio

d

dE

ˇ̌
ˇ̌
q0

� 2-body phase spaceP
n n-body phase spaces

: (25.1)

We dug out our old numerical results and found [4] an energy dependence
� exp.�3:3Ecm ŒGeV�/, in agreement with experiments. This numerical result
could, in simple analytical models (equal particles) only be reproduced if one
suppressed there the factor 1=NŠ in front of the phase space integrals, otherwise
one would obtain exp.�const:E˛/ with ˛ < 1 [5–7]. But omitting 1=NŠ amounted
to considering the particles to be distinguishable—a most important observation
which triggered all the rest, but which was greeted with pitiful smiles by those to
whom I talked about it, although I tried to argue that indeed the particles should be
effectively distinguishable, since the factor was 1=NŠ only for like particles, whereas
when there were several different kinds, then

1

NŠ

Z
: : : �! 1Q

i NiŠ

Z
: : : ; (25.2)

where i goes over all types of particles. We had in our earlier numerical computa-
tions used some 40 or 50 different types of particles (including some resonances and
counting each state: spin, isospin, antiparticle, etc., as a new kind), and it so hap-
pened that, on the average, all hNii � 1, so that the main contributions to Eq. (25.1)
had come from integrals whose factor 1=

Q
i NiŠ D 1. We then worked out a model

of massless distinguishable particles [5] which was so simple that I present it here.
Let N massless, distinguishable particles be enclosed in a box of volume V and let

�1; �2; : : : ; �i; : : : denote the single-particle energy levels with occupation numbers



25 How We Got to QCD Matter from the Hadron Side: 1984 289

n1; n2; : : : ; ni; : : :. Then there will be

NŠ

n1Šn2Š : : :
states of total energy E D

X
ni�i ; N D

X
ni : (25.3)

If particles can be freely created, the partition function will be

Z D
1X

ND0

X
P

niDN

NŠQ
i niŠ

exp

�
� 1

T

X
ni�i

�
D

1X

ND0

�X

i

exp
�
��i

T

� �N

: (25.4)

Replacing as usual

exp
�
��i

T

�
�! V

2�2

Z
p2 exp

�
� p

T

�
dp D VT3

�2
; (25.5)

we find

Z D
1X

ND0

�
VT3

�2

�N

D 1

1� VT3=�2
; (25.6)

which has a pole at Tc D .�2=V/1=3, where the energy density would also diverge,
implying that Tc is the maximum temperature for this system. Now comes the
miracle: putting V D Vhadron D .4�=3/.1=m�/

3 gives Tc � 185MeV, very near
a ‘temperature’ that has been familiar for many years from cosmic ray physics (p?
distribution).

25.3 Early Bootstrap

Quite apart from hadrons not being massless, the above model is pure cheating if
you only look at it a little closer. But it had enough cheating power to convince me
that something in it must be true. The next move had thus to be to build a better
model with real, massive, hadrons while keeping the idea of many different types of
them being involved.

For the sake of clarity, I present now a simplified version (Boltzmann statistics,
non-relativistic approximation) of the original paper [8]. Consider a mixture of ideal
gases, each gas belonging to one species of particle with mass mi ; all particles can
be freely created and absorbed. The total partition function is the product of the
partition functions of the individual gases labelled by i. We have

ln Zi.T;V/ D V

.2�/3

Z
e�
p

p2Cm2i =Td3p D VT

2�2
m2

i K2.mi=T/

� V

�
T

2�

�3=2
m3=2

i e�mi=T : (25.7)
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Thus in this approximation,

ln Z D
X

i

ln Zi D V

�
T

2�

�3=2X

i

m3=2
i e�mi=T ; (25.8)

where the sum over i goes over all hadron species which can in principle participate,
including resonances and counting each spin and isospin state separately. Assuming
most possible particles to be as yet unknown, it is convenient to introduce the mass
spectrum �.m/, where

�.m/dm D number of different hadron states in fm; dmg ; (25.9)

which, of course, is also unknown (except for a few ı-functions at low-lying stable
masses and Breit–Wigner functions at the established resonances). We then replace
the sum over i by an integral over �.m/ and obtain

Z.T;V/ D exp

"
V

�
T

2�

�3=2 Z 1

0

�.m/m3=2e�m=T dm

#
: (25.10)

For the exact relativistic expression with Fermi and Bose statistics, see [8].
What now? We have a formula which tells us exactly nothing as long as �.m/,

i.e., the complete �.m/, is not given. Here comes the key idea: statistical bootstrap.

The Bootstrap Idea

We can present this in four steps:

• We are after the description of ‘fireballs’, i.e., highly excited and decaying
hadronic systems of hadronic size V0, composed of hadrons. Our earliest
results (phase space, large-angle elastic scattering) had suggested that the set
of constituent hadrons should also include all resonances, which therefore must
be counted in �.m/.

• The hadronic system of size V0 (fireball) is, however, itself a highly excited
hadron and is therefore not essentially different from a resonance: there should
be just one set of hadrons, viz.,

˚
 , K, resonances, N, Λ, Σ, more resonances, . . . , fireballs ad infinitum

�
;

and all should appear in �.m/.
• The partition function Eq. (25.10) can be written down, using the density of states

of the system it describes (a fireball if V � V0 is the hadron volume!):

Z.T;V0/ D
Z 1

0

.V0;m/e�m=Tdm ; (25.11)
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where .V0;m/ is the density of states of the fireball at mass m.
• Since �.m/ should include fireballs and since � and  are densities of states of

essentially the same objects, the two functions should be essentially the same, at
least for large m. A weak requirement (‘equal entropy’) of this sort was

log �.m/

log .V0;m/
�!

m!1 1 : (25.12)

On the other hand, one has the identity of Eqs. (25.10) and (25.11):

Z 1

0

.V0;m/e�m=Tdm D exp

"
V

�
T

2�

�3=2 Z 1

0

�.m/m3=2e�m=Tdm

#
:

(25.13)

The two Eqs. (25.12) and (25.13) together form the bootstrap condition. In words,

fireballs

! consist of fireballs, which !
" #
" #
             

Consequences

From the bootstrap condition, it can be proved that the mass spectrum must grow
exponentially (for large m):

�.m/ �!
m!1

const:

ma
eCm=T0 : (25.14)

Together with its low mass (empirical) part, this then constituted the so far unknown
mass spectrum �.m/.

Inserting this into (25.10) shows that the integral does not converge if T > T0 :
the partition function has a singularity at T0 whose nature depends on the value of a.
Thus there were three predictions:

• for sufficiently high collision energy, the p? distribution should be (very
approximately)� exp.p?=T/ with T . T0 [often called the exp.�6p?/ law],

• the mass spectrum should grow exponentially,
• T0 in the p? distribution and in the mass spectrum should be the same.

I presented these predictions and the whole model in a theory seminar in the fall of
1964. The result was disastrous. Nobody would believe it and I was shouted at: “but
the mass spectrum does not grow exponentially”.
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True enough, I had not yet even checked it. The next morning, I did so with
beating heart and found what is depicted in Fig. 20.1 as the October 1964 situation.
The p? distribution for 90ıC elastic pp scattering [9] looked as in Fig. 17.4, where
the slope required that T0 D 158MeV, while for the mass spectrum, it was T0 D
160˙ 10MeV. After the depressing seminar and an equally depressing night, this
was such a relief that I never forgot this experience and henceforth was convinced
that, all imperfections notwithstanding, the model was essentially right and that I
should continue to work on it no matter what people would say (and they said a lot,
mostly based on the misunderstanding that, in the model, a maximal temperature
and/or an exponential spectrum were postulated, while these were in fact the results
I was so proud of). The general rejection had one immense advantage: those few
who worked with me (and myself) could proceed without fear of competition and
without hurry.

After this anecdotal digression, consider now the energy density of such a
system:

EDT2

V

@ ln Z

@T
D
�

T

2�

�3=2 �
3T

2

Z 1

0

�.m/m3=2e�m=TdmC
Z 1

0

�.m/m5=2e�m=Tdm

�
:

(25.15)

With �.m/! const:m�a exp.m=T0/ and at T D T0, we find

E .T0/ D const:

�
3T0
2

�
m5=2�a

	1
M
C �m7=2�a

	1
M
C finite parts

�
; (25.16)

where M is assumed so large that the asymptotic expression Eq. (25.14) is valid for
m � M.

The point I wish to make here is that, from Eq. (25.16), it follows that the energy
density E is finite at T0 if a > 7=2 and infinite otherwise. This could have been
interpreted as indicating that, since for a > 7=2 one could reach the temperature
T0 at finite energy density, one could also pass over it into a region which would
need another description. In other words, for a > 7=2, there would be a phase
transition, because all the usual features of a phase transition, in particular a critical
temperature T0, were present.

Unfortunately, and at that time for good reasons, I discarded this choice of a and
preferred a D 5=2, giving infinite energy density at T0, which therefore should be
the highest temperature, approachable only asymptotically. And thus the discovery
of the phase transition to the quark-gluon plasma, alas, escaped me (it was a bit early
for that though!).

Difficulties

The model was still unsatisfactory in two respects:

• Inconsistency. While the fireball described by the partition function Z.V0;T/
had a volume V0, its constituents were treated as pointlike, although they were
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hadrons and fireballs, too. This inconsistency was not removed until 1978–1980.
Then, however, with striking results (see below).

• Difficulty. No reason was given for treating resonances and fireballs as if
they were particles. This obstacle was removed a few years later by using the
arguments of Beth and Uhlenbeck [10] and Belenkij [11]. In fact these arguments
put the somewhat shaky bootstrap idea (Sect. 25.3) on rather firm ground and
allowed us to state that a strongly interacting hadron gas can be described
alternatively as a mixture of infinitely many ideal gases listed in the complete
mass spectrum.

These arguments were given in extenso in three places and cannot be repeated here
[12–14].

Early Developments

The model could not immediately be applied to hadron collisions, but it was
important to do so in order to convince the non-believers (all theoreticians except
for a set of measure zero) that it did work. Thus J. Ranft and myself worked out
the so-called ‘thermodynamical model’ in which (see Fig. 25.1) collective velocity
distributions were combined with bootstrap thermodynamics in local rest frames
[15]. This mammoth paper of 141 pages was too long to be read by anybody,
with the consequence that even today people rediscover (independently) results and
techniques buried in it. For us, it was a kind of handbook used in further work on
the model. In particular, J. and G. Ranft and their collaborators in Leipzig developed
it and confronted it with experiment (see later). We produced an ‘Atlas of Particle
Spectra’ (Fig. 25.2) [16], in which we reproduced measured momentum spectra and
predicted unmeasured ones up to p0 D 800GeV/c [for p-nucleus (Be, Al, Cu, Pb) up
to 70 GeV/c] and discovered that the model obeyed ‘Feynman scaling’ and ‘limiting
fragmentation’ [12].

Fig. 25.1 Bootstrap thermodynamics is applied to each bubble in its rest frame. Lorentz trans-
formation to the laboratory (or centre of mass) frame and integration over all possible impact
parameters and velocities gives realistic predictions of particle momentum spectra
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Fig. 25.2 Predicted and measured momentum spectra of  � and p. Figures taken from the ‘Atlas
of Particle Spectra’ [16]. On left the  �-angular spectra computed starting at zero (upper right)
in steps of 20 mrad, data are for 15, 96, and 160 mrad. On right the p-angular spectra computed
starting at zero (upper right) in steps of 10 mrad, data are for 18, 41, 60, 100, and 160 mrad

While all these years much talk was about quarks, but experimental searches did
not reveal any; confinement and QCD were still far in the future. It was speculated
that maybe quarks are so heavy that they would be practically unobservable.
Bootstrap thermodynamics was presumably the best way to calculate qq production
rates as a function of their mass (applying perturbation theory to this problem was
a then fashionable nonsense). The model was used to predict [17] KK, pp, dd, and
qq pair production with the result that the production rates of the first three agreed
with experiment and that for quarks a mass of 4–5 nucleon masses would make
them practically unobservable (with the techniques known at that time), even if they
could, in principle, exist as free particles. If anyone had suggested to me then a qq
plasma, I would have declared it impossible (alas, again).

One often-heard objection to the model was that resonances (inside a fireball)
would not live long enough to justify treating them as ‘particles’. Matthiae [18]
proved, using the principle of detailed balance, that they might just live long enough.

It was tempting to apply the model to astrophysics: the Big Bang and neutron
stars [19]. This triggered a number of papers, notably the one by Huang and
Weinberg [20] and by Wheeler [21]. The then proposed ‘limited temperature (T0)
Big Bang’ depended entirely on the (at that time reasonable) interpretation of the
model as yielding an infinite energy density at T0.

For an easily readable summary of the situation up to 1972, see [14], where no
prior knowledge about statistical bootstrap is required.
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Microcanonical Bootstrap

The invention of Veneziano’s dual resonance model and the discovery that it
also predicted an exponential mass spectrum [22, 23] added to the credibility the
statistical bootstrap model had won in the meantime by successful applications. A
number of people became interested and the following few years saw the appearance
of some important papers.

S. Frautschi, who also coined the name ‘Statistical Bootstrap Model’ (SBM) [24],
made a great breakthrough by reformulating the model (grand) microcanonically,
instead of (grand) canonically. (Roughly, the original model was the Laplace trans-
form of Frautschi’s.) His bootstrap equation (BE) reads in invariant notation [25]

H�.p2/ D H
X

min

ı0.p
2 � m2

in/C
1X

nD2

1

nŠ

Z
ı4
�

p �
nX

iD1
pi

� nY

iD1
H�.p2i /d

4pi ;

(25.17)

where �.m2/dm2 	 �.m/dm, H is a universal constant, and min runs over the low
mass stable hadrons (often only the pion). The philosophy was the same as before
(with slight differences): �.p2/ on the left-hand side of Eq. (25.17) was the density
of states of the fireball with mass m D pp�p� to be described, while the right-hand
side expressed that it was either just one of the input particles or else composed of
particles i having mass spectra �.p2i /.

Frautschi, Hamer, and Carlitz [24, 26–30] drew many important conclusions
which would have been impossible to draw in the earlier canonical language.
The new language used a vocabulary familiar to particle physicists (phase space),
while the canonical one was repellent to them at that time. (Today, knowledge of
thermodynamics is more widespread among high energy physicists.) Some of the
new results were:

• Fireballs would predominantly decay into two fragments, one heavy and one
light.

• By iterating their BE with realistic input, they found numerically T0 � 140MeV
and a D 2:9˙ 0:1 (which ruled out the until then adopted value a D 5=2).

• Each imposed conservation law implemented by fixing a quantum number, e.g.,
baryon number �.B;m/, in the mass spectrum, increases the value of a by 1/2.

• The microcanonical description gives a detailed account of what happens near T0
(clustering, overshooting T0, etc.).

Nahm [31] had meanwhile proved analytically that a must be exactly 3. This and
the Frautschi–Hamer numerical result strengthened everyone’s belief that T0 must
be a limiting temperature, since the energy density tends to infinity when T ! T0.
Thus, there was no indication of a phase transition to a new state of matter (alas,
once more).

More checks with experiments were made (pp annihilation, pair production,
correlations, heavy particle production, ISR secondary spectra, Ericson fluctuations
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[32], and so on), which cannot be reviewed here. Instead I refer to the excellent
review papers by Ilgenfritz, Kripfganz, and Möhring [33] and by Tounsi [34], in
which the current technical improvements of the model (carried out in Leipzig,
CERN, and Paris) are also described.

During these years, a group around L. Sertorio was busy relating the SBM to S-
matrix theory [35–37] and clearing up many of the main open questions. This work
is so extensive that I must refer to Sertorio’s very complete and important review
paper [38], which gives a full account of the more theoretical aspects up to 1978.

Other work included attempts, some successful, some less so, to equip the model
with the following:

• Bose and Fermi statistics (present in the original canonical formulation [8],
but extremely difficult to formulate in Frautschi’s microcanonical one); Bose
statistics was achieved [39–42], not Fermi.

• Internal symmetries [charge, isospin, SU(3), etc.] using group theoretical meth-
ods (based on early pioneering work by Cerulus [43]) [44–50].

• Angular momentum conservation [51, 52].

Much attention was given to the relation between SBM and dual resonance, string,
and Regge pole models with the result that there was indeed a close resemblance, but
not identity of the models [53–57]. Related to this question was a reconsideration of
large-angle elastic scattering and Ericson fluctuations [32, 58–63].

Nucleon–antinucleon annihilation received new interest [64–68].
The description of particle production (momentum spectra, production rates, and

so on) was improved [69–75] and extended to non-symmetrical collisions ( N, KN,
etc.) [76] and even to p-nucleus collisions [77].

Exact Analytical Solutions of the BE

During the same years, our analytical understanding of the BE Eq. (25.17) advanced
and solutions were constructed. The pioneer was J. Yellin, who had proposed
Eq. (25.17) and solved it formally by Fourier transform (strictly speaking, not
existing) and, via Eq. (25.22), by expansion in terms of phase space integrals [25].
This triggered a series of papers in which the BE was solved by Laplace transform
(which does exist). The decay integral equation (sum over all possible decay modes)
and its identity with the BE were discovered and a number of formal properties
derived [45, 78–84]. Even a second quantized SBM was constructed, which led to
the strange discovery that the creation and destruction operators of hadron clusters
obey a non-associative (and, of course, non-commutative) algebra [85].
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The Bootstrap Function

The analytical solution of the BE via Laplace transform mentioned above was so
important for further development that I present it here. It goes as follows. Define
the Laplace transforms

˚.ˇ/ WD
Z

e�ˇ�p�H�.p2/d4p ; (25.18)

'.ˇ/ WD
Z

e�ˇ�p�Hı0.p
2 � m2

in/d
4p ; (25.19)

where .ˇ�ˇ�/�1=2 D T is the temperature in the rest frame of the system. Laplace
transforming Eq. (25.17) then gives

˚.ˇ/ WD '.ˇ/C e˚.ˇ/ � ˚.ˇ/ � 1 : (25.20)

Writing

G.'/ WD ˚.ˇ/ ; (25.21)

this yields the equation

' D 2G� eG C 1 ; (25.22)

which has been solved for the ‘bootstrap function’ G.'/ by power expansion [25]
and by an integral representation exploiting the analytical structure of Eq. (25.22)
[86]. Most illuminating is the graphical solution of Eq. (25.22): draw the curve x D
2y � ey C 1 on left in Fig. 17.5 and interpret it as the graph of the inverse function,
on right in Fig. 17.5.

It follows that, for physical systems,

' � '0 D ln 4 � 1 ; (25.23)

˚ � ˚0 D ln 2 : (25.24)

In the simple case of one input mass, we have from Eq. (25.19)

'.ˇ/ D 2�Hm2
in

K1.ˇmin/

ˇmin
;

and the condition Eq. (25.23) reads

2�Hm2
in

K1.ˇ0min/

ˇ0min
D ln 4 � 1 ; (25.25)
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which fixes a maximal temperature T0 D 1=ˇ0 � min. Thus, in this version of the
model, T0 is calculable (depending on H and min).

Furthermore, one recovers the earlier result of Nahm [31] that the singularity of
G.'/ at '0 is of the square-root type: G.'/ D ˚0 � const:

p
'0 � ' C � � � , from

which it follows by inverse Laplace transformation of Eq. (25.18) that �.m2/ �
const:m�3 exp.m=T0/ [80], confirming once more that the energy density at T0 is
infinite and hence T0 is a limiting temperature which might be attained or even
exceeded only in transient states of superheating, but never in true equilibrium: so
still no phase transition to a new regime (alas, for the fourth time).

It is important to observe that the same Eq. (25.22) is obtained indepen-
dently of:

• the number of spacetime dimensions [83],
• the number of input particles (trivial),
• Abelian or non-Abelian symmetry constraints [50].

What changes is only the function ', which may become very complicated,
depending on various input masses and chemical potentials besides the temperature,
while the relation between ˚ and ' is always given by Eq. (25.22). Therefore,
the ‘bootstrap function’ G.'/ has a sort of invariant significance for SBM and it
will also govern the discussion of the phase transition to which we will eventually
come. [Note, however, that changing the BE by truncating it [80, 87, 88] or by
making the volume n-dependent [89] will also change Eq. (25.22).] This invariance
of the Laplace transformed BE suggests that it may appear in other contexts, and
indeed it does: in renormalization theory, in nonlinear differential equations, and in
combinatorics (references given in [86]). In this latter field, Eq. (25.22) was already
discovered in the last century by Schröder [90]. He was solving a combinatorial
problem which he explained in the following words (free translation):

Given n elements, e.g., material points freely movable in space, one divides the set of n
elements arbitrarily into subsets; some possibly containing only one element, some with
two, three, etc., elements. Each set of more than one element is to be surrounded by a
closed surface, which, together with its content, shall be considered as a new element on
an equal footing with all the others. This new set of (obviously fewer than n) elements is
submitted to the same procedure as long as one likes or until it ends because the next step
would result in a single element. We wish to find the number of different complexions which
can be generated by this procedure.

This is indeed SBM in its most abstract form. He terminates his paper with the
prophetic words:

Considerably more difficult would be the solution of the above problems in the case where,
among the original elements, several are identical.

As if he had already known that, more than 100 years later, we would have
difficulties with Bose and Fermi statistics!
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The State of Affairs up to 1978

The bootstrap equation (various versions) had been solved and the ensuing ther-
modynamics had been applied in particle physics, astrophysics, and cosmology. For
particle physics applications, further assumptions about collective motions had been
necessary [15], assumptions that had nothing to do with bootstrap thermodynamics,
but contributed to the successes of the model. These and the confirmations coming
from the dual models strengthened the belief that the model was basically right. The
only challenge, large p?, was interpreted as (at least partly) due to pre-equilibrium
processes [15, 91] and/or angular momentum [52].

The picture was then as follows:

• Fireballs consist of fireballs (still pointlike, which is inconsistent, but bothered
nobody).

• As a consequence, there is a limiting temperature T0 which cannot be reached at
finite energy density.

This picture seemed to provide a non-perturbative, analytically soluble model of the
many-body aspects of strong interactions, running against a ‘phase transition’ whose
other side would, however, be a forbidden land. It turned out later that removing
the inconsistency of pointlike constituent fireballs would drastically change the
situation and make the ‘phase transition’ a true transition with the other side no
longer forbidden.

The state of affairs through 1978 is reviewed in the articles:

• Hagedorn [14] of 1973 for a heuristic introduction, ideology, and general results;
• Tounsi [34] of 1973 and Ilgenfritz et al. [33] of 1977 for a critical discussion and

confrontation with experiment, and
• Sertorio [38] of 1978 for more formal questions, the relation to the S-matrix, and

so on.

Each of these needs the others for complementation.

25.4 The Phase Transition: Hadron Matter–Quark Matter

A phase transition has two sides. In our particular case, only lattice-QCD is so far
able to handle both sides simultaneously; all other approaches (including ours) treat
them separately and join them in hybrid models. That a quark-gluon matter phase
might exist has been speculated since as early as 1969 [92] (maybe earlier1) and the
first theoretical paper really devoted to it seems to be Carruthers’ in 1973 [93]. From

1I have reviewed Ref. [92] and find no mention of quark or parton phase, or for that matter, phase
transition in this well-known publication. The very first mention of matter made of quarks that I
know today about is by Ivanenko and Kurdgelaidze in 1965, see Ref. [8] in Chap. 11 on page 91.
(JR).
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about 1975 on, so many papers appeared that I must refer to the articles collected in
the Bielefeld proceedings of 1980 and 1982 [94, 95], where references are given.

In the present context, the approach from the hadron side is of interest. The
obvious argument—who did invent it?—would be: if you compress hadron matter
sufficiently, hadrons will overlap and cease to exist as such. You then have a quark-
gluon soup. The ideas was used in many papers and got much support from the MIT
bags [96], which are quark-gluon matter inside, hadrons outside. As many of the
properties of bags strangely resemble the clusters (formerly called fireballs) of the
SBM, one might expect that bootstrap thermodynamics would be equivalent to the
thermodynamics of a bag gas. Indeed, an explicit model constructed by Baacke [97]
made a phase transition very likely to happen near T0. Two years earlier, Cabibbo
and Parisi [98] had already proposed that the singularity found in SBM at T0 should
be related to the transition to the quark-gluon phase. These two arguments supported
each other beautifully: SBM would provide for the singularity necessary for a true
phase transition, while the bag gas model produced the crossing of the pressure
curves of the plasma and the hadron gas near T0.

Unfortunately, SBM was still in an underdeveloped stage in which two arguments
spoke against Cabibbo and Parisi’s interpretation:

• The energy density E !1 when T ! T0.
• Quarks and gluons did not appear anywhere in SBM.

Therefore, how could a singularity, which could not be reached at finite energy
density, indicate a transition to a phase whose constituents did not appear in the
model? I felt strongly this way.

Some people, however, felt—rightly—that these objections would be overcome
by technical development without touching the essential features of SBM. Thus a
number of papers, originating mostly in the fertile and critical soil of Bielefeld,
investigated the various aspects of a phase transition, in the presence of an
exponential spectrum: critical exponents, influence of fugacities, types of transition,
and others [81, 99–106], to mention only a few references.

At this time, W. Nahm, during a workshop at Erice [107], severely criticized the
shortcomings of the model and pointed out that they would forbid its application
in astrophysics and to phase transitions, while particle physics applications might
still be reasonable [108]. His criticism coincided, however, with a new formulation
of SBM, just presented at the same workshop, in which most of the inconsistencies
were removed [109], and to which we now turn.

Hadron Volumes

The breakthrough came when J. Rafelski and myself tried to apply SBM to
heavy ion collisions. There it was obvious that we could no longer deal with
pointlike ‘constituent clusters’ of the extended clusters to be described. It took us a
considerable time to equip the model with baryon conservation and proper hadron
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volumes. Our efforts, helped in a later stage by I. Montvay, resulted in the following
treatment of the volume question:

• In the fully relativistic formulation we strived for, the volume had to be a four-
vector parallel to the system it confined [110]:

V �! V� D A.m; : : :/p� : (25.26)

• If a cluster c consisted of clusters i, then

V�
c D K

X

i

V�
i ; (25.27)

where K is some constant.
• Hence, with Eq. (25.26),

A.mc; : : :/p
�
c D K

X

i

A.mi; : : :/p
�
i : (25.28)

• Since momentum conservation requires p�c DP p�i , it follows that the volume is
proportional to the mass:

K D 1 (dense packing) ; A D const. (independent of m; : : :) 	 1=4B :

(25.29)

We identify B with the bag constant. These and other results were presented
in Erice in the 1978 Workshop on Hadronic Matter at Extreme Energy Density
[109]. However, this paper leaves one question unsolved: after treating the volume
correctly on the level of the BE, the hadron gas should also take particle volumes
into account (as already done by Baacke [97]). We later succeeded in doing so [111],
by introducing the notion of the ‘available volume’, defined by subtracting (cluster)
volumes from the ‘external’ (confining box) volume:

�� WD V�
ext �

X

all particles i

V�
i : (25.30)

Then, instead of keeping (as usual) the external volume fixed, we required � to
be constant when summing over particle numbers and integrating over the mass
spectrum, whereby V�

ext was pushed to infinity. By this trick, the partition function
became formally that of pointlike particles in the available volume �, which we
knew how to calculate explicitly. Thereafter,� had to be eliminated by using

hVexti D �C hEi
4B

: (25.31)
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Then the energy density (and all other physical quantities) could be calculated. It
turned out that

hEi
hVexti D E .T; �/ D Ept.T; �/

1C Ept.T; �/=4B
; (25.32)

and similarly for other quantities. Here Ept is the fictitious ‘point particle energy
density’, which we can explicitly calculate and which diverges on the ‘critical
curve’ [given by an equation like Eq. (25.25) with the baryon chemical potential �
incorporated]. Thus on the critical curve, the energy density is now finite [Eq. (25.32)
with Ept.T; �/!1]:

E .Tcrit; �crit/ D 4B D bag energy density : (25.33)

The baryon number density is also finite along this curve, while the average cluster
mass and volume tend to infinity, and the pressure to zero: everything coalesces
into one infinite cluster with the energy density of a bag. Since inside highly excited
(large) bags we have a quark-gluon gas, we should identify the single infinite cluster
with quark-gluon matter, the transition to which is achieved just on the critical curve.

We have finally arrived at a sophisticated, relativistic van der Waals-type gas of
strongly interacting particles: finite (mass proportional) cluster volumes represent
repulsive forces, while the exponential mass spectrum resulting from bootstrap
represents the attractive forces. The thus completed SBM leads to a phase transition
on a critical curve (Fig. 25.3) qualitatively common to many models [95, 106, 112–
116] to mention only a few of the many references. The results of QCD lattice
calculations (see [95]) support our conclusions.

Yet, one might argue, how do you know that the singularity indicates a phase
transition to quark-gluon matter? Nowhere in the SBM do quarks appear as input
particles! Short of a proof, I can at least propose a chain of heuristic arguments:

• The identical properties of QCD bags and SBM clusters: both have the same
mass–volume relation and the same mass spectrum up to the finest details with
respect to conservation laws [117, 118]. These identities lead to the conclusion
that QCD bags of interacting fields and SBM clusters are complementary
descriptions of the same objects below the transition.

• If we are thus free to claim that, inside our clusters we do indeed have quark-
gluon matter (though correlated by colour neutrality of constituent subclusters),
then we do indeed implicitly have quarks and gluons in the model.

• The very nature of the bootstrap approach makes it rather irrelevant which are the
input particles, provided the basic quantum numbers are represented. Instead of
starting with quarks and gluons and imposing their interaction and confinement
to colourless bound states, we have accepted nature’s own solution of the QCD
bound state problem and used the   and the nucleon (others could be added) as
input. (After all, to describe a helium gas, you do not start with neutrons, protons,
and electrons!)

Thus, without having a formal proof, I believe one can justify asserting that SBM
predicts a phase transition (of which not yet all details are known) to a quark-
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Fig. 25.3 The singular curve
of the statistical bootstrap
model. In the shaded region,
the model is unreliable,
because there the (otherwise
negligible) effects of
Bose–Einstein and
Fermi–Dirac statistics
become important

gluon matter phase, as J. Rafelski and I proposed at the 1980 Bielefeld symposium2

[119, 120].
A further criticism was brought up by V.V. Dixit and H. Satz: in the standard

thermodynamical limit, a hard sphere gas, even with an exponential mass spectrum,
cannot produce a singularity at any finite temperature [121]. Therefore, our method
with the available volume violates the standard rules of taking the thermodynamic
limit. The question was discussed at length [122] and it was shown that, since hadron
matter at the regime near transition cannot be enclosed in boxes of fixed volume, the
standard thermodynamical limit is not suitable. Using the ‘grand canonical pressure
ensemble’ (without recourse to the available volume technique), the result of Dixit
and Satz was reproduced, (see Chap. 24), our old results were also recovered, and
this settled the question.

Here I must stop. Work goes on. For a review of present developments,
applications, problems, and progress, see Rafelski and Danos [123, 124], also [125],
and a rather daring and controversial paper of mine [91].

And if you ask me now why it took 27 years to arrive at the present (still
problematic) state, let me answer with Shakespeare [126]:

There are more things in Heaven and Earth,

Horatio, than are dreamt of in your philosophy.

2Two months later a workshop at GSI was held in October 1980, and in this volume we reprint
these two contributions in Chaps. 26 and 27.
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In 1977 we embarked on the study of hot nuclear-hadron matter and its connection
to deconfined hot quark-gluon matter, which we soon called QGP. By late 1978, in
addition to us, several other researchers recognized that one can melt the confining
vacuum structure and reach quark deconfinement in RHI collisions. By 1979, as
awareness of paradigm-changing discovery opportunity spread, the leading particle
and nuclear physics laboratories were evaluating their options.

The following reports characterize the events at key laboratories from the period
Summer 1980–Summer 1983:

a) The GSI laboratory at Darmstadt, Germany. GSI, a participant in the LBL, and
the nascent CERN HI programs, was also preparing its own RHI accelerator
proposal, see Chap. 13. In October 1980 a workshop was staged. Hagedorn, see
Chap. 26, showed methods from the pp collisions adapting these to the new
AA relativistic collision domain. I presented, see Chap. 27, specific results that
near term experiments could address. These two contributions, published by the
GSI home press, summarized our understanding of the collision dynamics, the
approach to equilibrium, the properties of hadron gas, and of hot quark-gluon
matter, the dynamical evolution of the dense fireball, and, propose strangeness
and strange antibaryons as the signature of QGP. Few copies of the GSI report
survived to the present.

b) At CERN RHI collisions were long seen as a possible research direction for the
ISR collider. Chapter 28 describes the context and provides the QGP presentation
made in January 1981 to the ISR ‘soft hadron’ community. Soon after constraints
arising from the need to build the LEP (present day LHC tunnel) redirected the
attention at CERN to the SPS. Chapter 29 presents the related decisive discussion
at the CERN Science Policy Committee (SPC) meeting of June 1982. This
discussion relied on a meeting held in May 1982 at Bielefeld. My Bielefeld
‘Strangeness’ report did not appear in the proceedings, due to several mishaps
described in Chap. 30. Influential in shaping the experimental program, this
report Chap. 31, was hard to find when the experiments began a decade later.

c) Another workshop defining the LBL future project was held June 1983. I
presented strangeness signature of QGP, see Chap. 32. My LBL report was
distributed in a LBL printed proceeding volume, and disappeared from view in
consideration of RHIC at BNL becoming the US experimental facility.

In consideration of the overlap between CERN-Bielefeld Chap. 31 and LBL-
Chap. 32 lectures I have omitted the duplicate material such that Chap. 31 is focused
on strangeness production in QGP, and Chap. 32 on strangeness in hadronic gas. All
the ideas presented in regard to strangeness QGP signature are reproduced verbatim
in these sections.

Our (Hagedorn and Rafelski) work on RHI collisions presented here shows two
primary insights: a) accessibility of quark deconfinement at relatively modest (low
SPS-range) heavy ion energies, and b) the opportunity that strangeness signature of
quark-gluon plasma holds for the discovery of both quark deconfinement, and a new
phase of matter.

A general retrospective in Chap. 33 completes this book.



Chapter 26
How to Deal with
Relativistic Heavy Ion Collisions

Rolf Hagedorn

Abstract A qualitative review is given of the theoretical problems and possi-
bilities arising when one tries to understand what happens in relativistic heavy
ion collisions. The striking similarity between these and pp collisions suggests
the use of techniques similar to those used 5–12 years ago in pp collisions
to disentangle collective motions from thermodynamics. A very heuristic and
qualitative sketch of statistical bootstrap thermodynamics concludes an idealized
picture in which a relativistic heavy ion collision appears as a superposition of
moving ‘fireballs’ with equilibrium thermodynamics in the rest frames of these
fireballs. The interesting problems arise where this theoretician’s picture deviates
from reality: non-equilibrium, more complicated motion (shock waves, turbulence,
spin) and the collision history. Only if these problems have been solved or shown to
be irrelevant can we safely identify signatures of unusual states of hadronic matter
as, for example, a quark-gluon plasma or density isomers.

26.1 Introduction

During the last 2 years when I was working with Johann Rafelski on the Statistical
Bootstrap Model [1] in order to adapt it to describe hot nuclear matter, I came more
and more often across people concerned with relativistic heavy ion collisions, and
also slowly became acquainted with the literature of this field—only to become
more and more aware of how similar its problems are to those encountered in the
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beginning of particle physics. Of the many different theoretical models invented and
applied in the development of hadron physics, there is one—the ‘thermodynamical
model’ [2], which tries to describe just those aspects of high energy particle
collisions which are most strikingly similar to the main ones of relativistic heavy
ion collisions, namely, the many-body aspects with an intimate mixture of coherent
collective and incoherent stochastic movements.

I think one can still claim that the thermodynamical model was successful when
applied with care and precaution. The well-known ‘large transverse momenta’ do
not invalidate this model; they belong to phenomena outside its range of validity,
as I shall explain later. That there was success at all—one dared to apply statistical
thermodynamics to two-body collisons of elementary (sic) particles—was due to
the many degrees of freedom in the final states and, without doubt, also to the
colliding ‘elementary’ particles being much less elementary than one thought 30
years ago. The analogy with relativistic heavy ion collisions becomes obvious when
the ‘elementary’ particles are considered as bags [3] filled with quarks and gluons.
If I anticipate here that the present form of the statistical bootstrap model has good
reasons to claim that, in collisions with a few GeV per nucleon, the individual bags
will melt into a single bag, then the analogy between a pp collision and a relativistic
heavy ion collision is perfect; remaining differences in the theoretical treatment of
these collisions are quantitative, but not principal.

It is therefore not surprising that several ideas of the thermodynamical model
have been independently rediscovered by people concerned with relativistic heavy
ion collisions. With all this in mind, I have the courage to dig deep into the past
and uncover a few forgotten things which may still be useful for today’s relativistic
heavy ion collisions. The rather explicit list of references should compensate for the
extremely qualitative style of this talk.
Notation and abbreviations: We use energy units MeV and GeV and set

„ D c D k D 1 :

We use the abbreviations the relativistic heavy ion collision for relativistic heavy ion
collisions and SBM for statistical bootstrap model.

26.2 Collective Motions

To my knowledge, Weisskopf [4] was the first to apply thermodynamics to the
emission of particles from excited nuclei. The situation was favourable to such an
approach: the excitation energy was low and the compound nucleus was long lived
enough to reach an equilibrium state.

One would think that this could no longer be true in elementary collisions or
the relativistic heavy ion collision. Nevertheless, when the first pion producing pp
collisions were analyzed, Koppe [5] realized that they could be interpreted as pion
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evaporation from some hot object of elementary dimensions. To honour Koppe for
this pioneering work, this model was called the ‘Fermi statistical model’ [6].

The hot dense object became known as a ‘fireball’. Very soon it was discovered
that a single fireball could not explain the momentum distribution of emitted
particles; it was impossible to find, for any given event, a Lorentz frame in
which the momentum distribution was isotropic. Indeed, this should not have been
expected, since even if a single fireball had formed it would, in general, have a very
high spin. Moreover, phase space calculations show that the actual anisotropy—a
forward/backward jet in the centre-of-momentum frame—cannot be accounted for
by assuming a single, high spin fireball [7]. This is easily understood: the initial
state has very definite phase relations between its individual partial waves; a single
fireball, even if considered as a statistical sum over spins, cannot reproduce these
phase relations.

It was then found, with the help of ingeniously chosen variables [8], that two
fireballs moving with large opposite velocities in the CM frame were a much
better approximation of reality. Adding a third fireball, at rest in CM, substantially
improved the picture [9] (and references therein). Of course, the two oppositely
moving fireballs need not have the same mass nor the same speed, and the third
could also have some velocity in the CM. Therefore, one should rather introduce
mass and velocity distributions, but then why have just three fireballs? Why not
sometimes one, sometimes two, and sometimes three or even more? Thus, one
should also introduce a distribution for the number of fireballs. It seems that, in this
way, one obtains so much freedom that one can fit everything. This is not so if some
simple model assumptions are made which are based on observation and which are
very restrictive. This was done in the thermodynamical model [2], which I shall
briefly describe. It was designed to predict inclusive momentum distributions and
branching ratios of particles produced in high energy pp collisions, but it was later
easily adapted to  p, Kp [10], and pA (even heavy nuclei) collisions [11]. Some
of the simplifying assumptions may be grossly wrong if extended to the relativistic
heavy ion collision. I shall come back to this.

The simplifying postulates were [2, 12]:

Postulate 1. In high energy collisions of hadrons, collective motions have only
components in the direction of the collision axis. It is possible to find a continuum
of comoving Lorentz frames (local rest frames) such that a comoving observer
will, in his neighbourhood, see only thermal motion. Turbulence is absent.

Postulate 2. All the kinetic energy of the incoming particles, which disappears
by decelerating hadronic matter, is adiabatically and locally converted into
excitation energy (heat).

Postulate 1 is illustrated in Figs. 26.1, and 26.2 The first figure images are taken
from my CERN lectures in 1971 [12], while the second are from recent theoretical
articles on the relativistic heavy ion collision [13, 14]. Figure 26.1 is a picture of the
distribution at the moment of impact, while Fig. 26.2 show a time development, on
left in a model [13] and on right in a simplified hydrodynamic calculation [14], the
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Fig. 26.1 Velocity distribution in a collision at the moment of impact, interpreted as continuous
(on left) or as a probability distribution of fireballs (on right), from [12]

Fig. 26.2 On left: shape and velocity distribution in a collision of 250 MeV/nucleon Neon on
Uranium, seen at different times from top to bottom 10, 20, 30 fm/s after the moment of impact
(qualitative figure follows Fig. 1 in [13]); on right: temporal development of density distribution
in a low energy collision from a hydrodynamical calculation, the two sets of figures belong to
different hydrodynamical assumptions, from [14]

two results are obtained under different assumptions about the equation of state from
hydrodynamical calculations for a symmetric system. Some transverse collective
motion is present in the latter case.
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Useful Variables

We use ˇ D velocity and � D .1 � ˇ2/�1=2 D Lorentz factor. A momentum four-
vector is then p D m.�;ˇ�/. A Lorentz transformation along a given direction is
fully determined by ˇ or � . It brings a particle from rest to velocity ˇ.

A very useful variable is the ‘rapidity’ � defined by

� D cosh � ; ˇ� D sinh � ; ˇ D tanh� : (26.1)

Hence � is the angle if a Lorentz transformation is represented as a rotation in
Minkowski space. As the product of two rotations about the same axis is the rotation
with the sum of the two angles, it follows for the product of two parallel and rotation
free Lorentz transformations

L.�2/ ı L.�1/ D L.�1 C �2/ : (26.2)

In applying Postulate 1, we shall have to ascribe at any moment to a fireball a
velocity along the collision axis and, according to Postulate 2, an internal excitation
equal to the kinetic energy which has disappeared by decelerating it from the initial
to its present velocity. The excitation energy of a fireball must therefore be a function
of the initial as well as of the actual velocity. Therefore, a suitable velocity variable
should contain both the actual and the initial velocities. Giving the initial one a
subscript zero, reasonable choices for velocity variables are then

� WD sinh �

sinh �0
; or � WD �

�0
; or � WD � � 1

�0 � 1 sign.ˇ/ : (26.3)

Note that � WD ˇ=ˇ0 is not suitable since ˇ and ˇ0 are almost always near to one and
thus such a � would have no ‘resolution power’ for analyzing a relativistic velocity
spectrum. The three other possible choices above all have good resolution power
and they share the property �1 � � � 1. The first choice makes � almost equal
to Feynman’s variable x [15], while the second choice does not seem to have been
used, and the third is still used today in the thermodynamical model [2, 16, 17]. It
has the advantage of being physically obvious, since .� � 1/=.�0� 1/ is the ratio of
the actual kinetic energy density to the initial one of a decelerated volume element.
However, it has the disadvantage of not being an analytic function as the other two
are. Today I would prefer the first choice, but in this talk I leave the choice open. It
could be any of the three or even some other one.
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Momentum Distributions

What is the situation now? We assume that there is a velocity distribution of
hadronic matter which will depend on time t, space point x, impact parameter b,
and ‘velocity’ � :

longitudinal velocity distribution u.�; x; t;b/ : (26.4)

If properly normalized, u.�; x; t;b/d3x d3b is the probability that the piece of matter
contained in d3x has, at time t, the velocity � when the impact parameter of the
collision was in fb; d3bg.

According to Postulate 1, such a piece of matter is, for a comoving observer,
hot matter at rest in equilibrium, having a certain local temperature T. From very
general arguments about black body radiation, it then follows that, in this volume
element, the momentum distribution of particles with mass m will be

d3x fm.p;T/d3p D d3x

.2�/3
d3p

exp
p

p2Cm2

T ˙ 1
: (26.5)

For m D 0, this is just the Planck formula which initiated quantum physics.
The local temperature T can now be calculated from Postulate 2 if an equation

of state is known (see below). Consider a piece of incoming hadron matter. Before
the collision, it has the rest energy density "0 of cold hadron matter. Now follow it
as a comoving observer until it has decelerated from its initial Lorentz factor �0 to
the actual Lorentz factor � at time t. For the comoving observer, it is still at rest,
but now has rest energy density " because the initial kinetic energy has become
excitation energy. Postulate 2 asserts that

"� D "0�0 : (26.6)

Assuming the equation of state is known, we furthermore have

" D ".T/ :

This can be inverted to give T."/, and since we have " D "0�0=� , it follows that
T D T.�; �0/.

Now put everything together to obtain the momentum distribution of particles of
mass m in any fixed Lorentz frame. To be definite, we may choose the CM frame of
the collision:

h
Wm.p/d3p

i

CM
D
Z 2R

0

d3b
Z

dt d3x
Z

d� u.�; x; t;b/L.�/
h
fm
�
T.�; �0/;p0	d3p0i :

(26.7)
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This formula does the following: for fixed �; x; t;b, the momentum distribution
fm.T;p0/d3p0 in the local � rest frame is Lorentz transformed by L.�/ to the
CM frame and then the integrations sum up all these local contributions to yield
Wm.p/CM.

We now observe that neither the local spectrum fm.T;p0/ nor the Lorentz
transformation depend on x; t;b. Therefore, we can immediately integrate over these
variables and obtain a new weight function

VF.�; �0/ WD
Z

d3b
Z

dt d3x u.�; x; t;b/ ; (26.8)

where V is the total interaction volume and Eq. (26.7) reduces to

Wm.p/d3p D
Z 1

�1
F.�; �0/L.�/

h
Vfm

�
T.�; �0/;p0	d3p0i ; (26.9)

where F.�; �0/ now picks up all contributions to a given � summed over the entire
spacetime history and all impact parameters. This formula can be written in a
manifestly covariant way.

In Eq. (26.9), everything is known except the weight function F.�; �0/. As a
probability distribution, it must obey

Z 0

�1
F.�; �0/d� D

Z 1

0

F.�; �0/d� D 1 : (26.10)

We normalize it independently over each half interval in order to allow target and
projectile to have different mass. Now F.�; �0/ is normalized and defined over the
�0 independent interval f�1; 0I 0; 1g. Hence, if �0 varies, F can only change shape.
One would like to choose the definition of � in such a way that F.�; �0/ becomes a
scaling function:

lim
�0!1 F.�; �0/ D F.�/ : (26.11)

It has turned out that the choice made in the thermodynamical model [2], that is,
� D .� � 1/=.�0 � 1/, which was made with that aim, almost led to the desired
behaviour of Eq. (26.11). From 10 to 1,000 GeV (ISR), F.�; �0/ did not detectably
depend on �0 if fitted to experiments [18]. However, if any, then only one choice of
� can lead to Eq. (26.11), because if �f D f .�; �0/ does so, then any other choice
�g D g.�; �0/ will not, unless a function of �f above.
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Determination of the Weight Function F.�; �0/

One can have two attitudes:

1. Try to calculate F.�; �0/ from some model1:

• from Regge poles [19],
• from form factors [20],
• from relativistic kinematics [21, 22],
• from hydrodynamics [23],
• from Monte Carlo cascade calculations [24],
• from the Boltzmann collision equation [25],
• from any other models (I apologize to the authors not quoted due to my

ignorance).

2. Find it by parametrization and fit to experiments. This was done by several
authors [2, 17]. When fitted to pion production at one primary energy, the same
F.�/ gave good predictions for other different energies (up to ISR), for other
secondaries ( , N, Y, K, N, Y, d, d, He3, He3, etc.) and for other projectiles and/or
targets [10, 11]. As F.�/ was parametrized with only two parameters (remaining
the same and constant for all these processes), one could say that F.�/was nearly
(i.e., within the precision of the fit and the comparison of predictions with the
data [11]) a universal function, although at ISR energies, the behaviour at � near
zero suggested a violation of the desired form of scaling [18]. The various F.�/
calculated from models differ among each other and from the empirical one, but
never dramatically, except for a possible singularity at � D 0.

Violations of the Postulates 1 and 2

Our postulates worked rather well in particle physics, but they may fail in the
relativistic heavy ion collision as follows:

(a) Transverse Collective Motions

The function F.�/ is designed to represent only longitudinal collective motions. In
principle, there should also be a function G.�?/ for transverse collective motions,
or better still, a function F.�/ with � representing three-dimensional collective
motions. While in pp collisions, this was not necessary; hydrodynamic calculations
[23] for the relativistic heavy ion collision indicate the existence of non-negligible

1Not all the listed references set out to calculate F.�; �0/, but the models yield information which
can be interpreted in terms of such a function.
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Fig. 26.3 Temperature, density, and velocity distributions in 400 MeV/nucleon Ne–U collisions,
results from hydrodynamical calculations of [27]. Note the significant transverse velocity compo-
nent

transverse components of hydrodynamic flow and of shock waves [26]. Figure 26.3
shows the result of a non-relativistic hydrodynamical calculation [27]. Clearly, all
such calculations greatly depend on the assumptions made for the equations of state,
viscosity, compressibility, and so on. As a child, I was much impressed when I
discovered that solid cold tar was like a liquid if one had patience (a stone would
sink into a tar barrel within a couple of days), but it would shatter like glass if hit
hard. Thus transverse motion may depend on the collision energy.

Theoretical work in this domain can greatly profit from experiment; we will
always have a superposition of collective and heat motion. Heat motion is (as we
shall see) limited to typical values as, for example, at ISR energies [28]:

hP?iproton � 500MeV=c H) ˇ
.p/
? � :47 ;

hP?i  � 350MeV=c H) ˇ
. /

? � :93 :
(26.12)

Hence, the chance to observe transverse collective motion despite the thermal noise
grows with the mass. For m� T, i.e., m� m , we have [2, 12]

hp?.m;T/i �
r
�mT

2
: (26.13)

Hence, with

ˇ2? D
�2? � 1
�2?

D p2?
m2 C p2?

; (26.14)

hˇ?i � hp?i
m
�
r
�T

2m
.m� T/ ; (26.15)
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the typical temperature for high collision energies is T D 160MeV. This gives, with
Eq. (26.15), for protons hˇi � 0:52, which shows that Eq. (26.15) already gives a
good estimate for m D mN and is rather good for heavier masses. Since even for
very large collision energies T . T0 � 160MeV, we have for all energies above a
few GeV/nucleon,

hˇ?iA � :52=
p

A ; (26.16)

where A is the nucleon number of the emitted fragment. For heavy fragments,
the thermal transverse velocity ˇ? is therefore small and may become smaller
than the transverse collective velocity. Therefore, the transverse momentum of
heavy fragments should be studied carefully because it allows one to determine
the collective transverse motion and to compare it to hydrodynamic calculations.
Turbulence might also be detected by such measurements.

(b) Violation of Postulate 2

Postulate 2 is also certainly violated and here it seems to be difficult to say how this
could be experimentally detected because there are many violating mechanisms:

• It is not true that an incoming volume element will simply be decelerated. It will
also be deformed and its matter content will be mixed by mutual interpenetration
with that of the collision partner. Nevertheless, it seems that the velocity weight
function F.�; �0/ is able to absorb part of this type of violation and that the
fast rise of the local temperature towards some limiting value does the rest to
dissimulate it.

• While heating up matter, some particle emission already takes place. Thus,
heating is not quite adiabatic. However, emission is damped by exp.�m=T/ so
that only near the highest temperature reached in the heating process will particle
emission be significant.

• Equilibrium might not be established even locally. We will come back to this
point.

• Heat conduction might take place [29]. This will be negligible if break-up and
particle emission is faster than heat transfer.

• Reabsorption of emitted particles violates not so much Postulate 2 as the
assumption made in Eq. (26.9) that emission in the local rest frame is isotropic.
Figure 26.4a shows how this can generate an asymmetry in the angular distri-
bution (‘hot spot’) [29]. Figure 26.4b shows that this asymmetry would also
disappear if longitudinal break-up into many fireballs is fast.
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Fig. 26.4 Two extreme possibilities for the situation after a collision. (a) Two ‘hot spots’ leading
to an asymmetry in the lab distribution of produced particles. (b) A fast stretching continuum will
not lead to an asymmetry

26.3 Statistical Bootstrap Thermodynamics

The whole philosophy and all technical details of SBM are described in the literature
[1, 12, 30]. Here I shall be very qualitative.

The Partition Function

Consider a microscopic system confined to a volume V and embedded in
a heat bath of temperature T. It will have an energy level spectrum S D
fE0;E1;E2; : : : ;En; : : :g. As an example, think of an ideal gas of one sort of
particles of mass m. Then the probability of finding the system in the energy
level En is proportional to exp.�En=T/. Normalised to one, we have

Wm D exp.�En=T/P1
iD1 exp.�Ei=T/

: (26.17)

The expectation value of its energy is

hEi D
1X

nD0
EnWn D

P
En exp.�En=T/P

exp.�En=T/

D � d

d.1=T/
ln

� 1X

nD1
exp.�En=T/

�
: (26.18)

The expression in square brackets is the partition function

Z.T;V/ WD
1X

nD1
exp.�En=T/ DW

Z 1

0

.E;V/e�E=TdE : (26.19)
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The density of states .E;V/ is defined by this identity; .E;V/dE is the number
of energy levels in the interval fE; dEg. Equation (26.19) states that the partition
function is the Laplace transform of the density of states.

From Z.T;V; : : :/ all interesting thermodynamic quantities can be derived by
logarithmic differentiation, as in Eq. (26.18). Apart from T and V , the partition
function may depend on further variables like chemical potentials (one for each
conservation law), external fields, etc.

Interaction

We learn from chemists that, if there are atoms of sorts A and B which can undergo
exothermic chemical reactions liberating the heat Q, viz.,

AC B � .AB/C Q ; (26.20)

where .AB/ is a molecule consisting of atoms A and B, then one introduces just three
different particles A, B, and .AB/ with masses mA, mB, and mAB, with

mAB WD mA C mB � Ebind ; Q 	 Ebind : (26.21)

If then no other sorts of particles and no other reactions occur, this is sufficient to
calculate the chemical equilibrium rates A W B W .AB/ and the equations of state. One
simply considers a three component ideal gas:

Z.T;V; : : :/ D ZA.T;V; : : :/ZB.T;V; : : :/Z.AB/.T;V; : : :/ (26.22)

and calculates everything from

ln Z D ln ZA C ln ZB C ln Z.AB/ : (26.23)

We need not know any details except Ebind about the interaction between A
and B, nor of the internal structures of A, B, and .AB/. The values of mA, mB,
and mAB (which contains Ebind) are sufficient to represent the interaction for all
questions about the equilibrium state (not, for example, for the question of how fast
equilibrium is reached). This method can be pushed further. We could also include
molecules .AlBk/ with l; k D 1; 2; : : : or add further elementary objects (atoms)
C;D; : : : and consider molecules .AiBjCkDl : : :/ as well as their excited states.

Back to particle physics. Here we include all possible reactions and all bound
states, excited states, and resonances of the elementary input particles. The latter
are chosen by convenience. One could start with quarks and gluons, but equally
well with pions and nucleons (or with all these at the same time). Let us consider
pions and nucleons (one could add strange, charmed, and other particles).
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Fig. 26.5 The mass spectrum
�.m/ of hadrons
(schematically). Each line
represents one particle and
their density grows
exponentially with the mass

Figure 26.5 shows a mass distribution of   and its resonances, A and its
resonances, and bound states (nuclei) of ( N) and its resonances. We know from
the chemists that we need all these masses and that we have only to consider a
mixture of ideal gases, one for each particle mass (labelled i D 1; : : : ;1):

ln Z.T;V; : : :/ D
X

i

ln Zmi.T;V; : : :/ DW
Z

dm �.m/ ln Zm.T;V; : : :/ ; (26.24)

where �.m/dm is the number of different sorts of particles in fm; dmg, while
Zm.T;V; : : :/ is the ideal gas partition function for an unrestricted number of
particles of mass m, and dots indicate further variables (chemical potentials). The
number of particles has to be unrestricted because:

• their total number is unrestricted due to particle creation and annihilation,
• the number of each sort changes via ‘chemical’ reactions, e.g.,

NC N �! NC N� C 2  :

For the partition function of an ideal gas of an arbitrary number of particles, we find
in any textbook

ln Zm.T;V/ D Vf .m;T/e�m=T ; f .m;T/ �!
m�T

�
mT

2�

�3=2
: (26.25)

Note that the factor e�m=T is missing in most textbooks, since in non-relativistic
statistical mechanics it is an irrelevant normalizing factor. In the relativistic situation
it is the important part as it governs the equilibrium between particle creation and
annihilation. Hence,

ln Z.T;V/ D V
Z 1

0

f .m;T/�.m/ e�m=T dm (26.26)
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is the partition function for the strongly interacting  –N gas, i.e., for the simplest
strongly interacting hadron gas. What now is �.m/? We have the , N, all nuclei with
their excited states,   resonances, A resonances, N states and their resonances, etc.
Only a finite number of them is known, but there are many more still unknown.
The finite number of known states is, in general, sufficient to calculate some
interesting quantities. This has been done for a long time—recently and in the
context of nucleosynthesis in the early universe as well as for the relativistic heavy
ion collision in some pioneering papers [31, 32]. In particular, the two papers by
A.Z. Mekjan [32] are an excellent introduction to many fundamental concepts and
open questions—most recommended reading!

What a finite number of states, included in the integral of Eq. (26.26) for ln Z,
cannot do, is to generate a singularity of the partition function, in other words,
generate a phase transition. As one sees from Eq. (26.26), ln Z.T;V/ is analytic
in the entire right half of the complex T plane if OŒ�.m/� D m˛, ˛ < 1. If �.m/
grows exponentially, �.m/ � Cm˛ exp.m=T0/, then the integral of Eq. (26.26) does
not exist for Re.T/ > T0 and ln Z.T;V/ has a singularity at T0, as first observed by
Yu.B. Rumer [33], years before the SBM was proposed.

The Bootstrap Hypothesis

An incomplete �.m/, however, useful for computing low temperature properties of
the system, will fail to exhibit critical phenomena. We therefore need the complete
�.m/, 0 � m < 1. Indeed, only the complete spectrum can represent the full
interaction; it is equivalent to the eigenphase representation of the S matrix [30].

We obtain the full mass spectrum from the ‘bootstrap’ hypothesis. The idea goes
like this. From Eqs. (26.19) and (26.26), we have

Z.T;V/ D
Z 1

0

.E;V/e�E=T dE ;

Z.T;V/ D exp

�
V
Z 1

0

f .m;T/�.m/e�m=Tdm

�
:

(26.27)

The same function Z.T;V/ is expressed in different ways, once by the density of
states of the whole system and once by the mass spectrum of its constituents.

We must clearly understand the physical meaning of .E;V/ and of �.m/ (see
Fig. 26.6):

• .E;V/dE is the number of states between E and ECdE of an interacting system
enclosed in any externally given volume V .

• �.m/dm is the number of states (i.e., different particles) between m and mCdm of
an interacting system confined to its ‘natural volume’, i.e., to the volume resulting
from the forces keeping these masses together as bound states or resonances.
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Fig. 26.6 One step in the argument leading to the statistical bootstrap

Thus .E;V/ refers, in general, to some macroscopic system, while �.m/ refers
to particles. Here the reader should hold on for a moment and imagine that we
could compress the macroscopic system to that small volume which would be the
natural volume V.E/ belonging to the energy E. What would happen? It would
itself become a ‘particle’—just one among the infinite number counted by the mass
spectrum. Thus 

�
E;V.E/

	
would have to be equal to the mass spectrum at m D E,

namely, 
�
m;V.m/

	 D �.m/. This argument is so important that I will repeat it in
another formulation:

The interaction reigning in the macroscopic system enclosed in V is identical to the one cre-
ating the various bound states and resonances, keeping them together awhile and squeezing
them into their natural volumes. On the other hand, we have claimed that the existence of
all these—just exactly these!—bound states and resonances with all possible ‘chemical’
reactions between them, does represent—even generate—this interaction. Hence,

the interaction is generated by reactions between bound states and res-
onances, which themselves are generated by the interaction, which is
generated by reactions between bound states and resonances, and so on ad
infinitum.

This circular reasoning is a special example of the more general ‘bootstrap
philosophy’ proposed by G.F. Chew [34].

Coming back to the above gedankenexperiment, if we could compress the
system with energy E and volume V to its natural volume V.E/, it would not be
distinguishable from a resonance or a bound state with mass m D E and volume
V.m/. However, it then also follows that such a particle is also ‘composed of’ other
particles just as it was before compressing and because it is subject to the same
interaction (Fig. 26.6). Then of course 

�
E;V.E/

	
is the number of states between
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E and E C dE of a system confined to its natural volume; this is just the definition
of �.m/ at E D m. Therefore, the function �.m/ is at the same time:

• the density of states of a composite system confined to its natural volume,
• and the mass spectrum of the constituents of such a system,

and � generates the interaction which generates �. This double role of � can be
illustrated by a highly simplified ‘bootstrap equation’ in which everything except
the double role has been omitted:

�.m/ � �.m1/�.m2/ : : : �.mN/ ; with
NX

iD1
mi D m for any N : (26.28)

Such a type of equation has only exponential solutions. Actually, the arguments are
much more subtle and the equation for �.m/ is not as simple as Eq. (26.28), but the
conclusion remains the same: � is of the exponential type

�.m/ D g.m/em=T0 ; OŒg.m/� D m˛ ; ˛ <1 ; (26.29)

where g.m/ is not exponential. It is not easy to determine g.m/, but its asymptotic
behaviour for m ! 1 is well known. In fact, g.m/ ! C=m3. The reader will find
more information in [1, 30, 35]. Here I mention only two things. The constants C
and T0 can be guessed from a simplified model involving only pions [36]: T0 �
m . Such a spectrum fits well the lower part of the known spectrum of hadrons
where we are sure to have found all resonances [1] and T0 gives about the right
slope. Furthermore, the same T0 accounts quantitatively for the well-known limited
mean transverse momenta of particles produced in high energy collisions because
the partition function will become singular at T0 (as explained above) and T0 � m 

should be in some sense a limiting temperature or the critical temperature of a phase
transition (boiling point of hadron matter). We shall come back to this.

Thus the bootstrap hypothesis allows one to predict the (averaged) hadronic mass
spectrum and relates it to one of the most prominent features of high energy particle
production—limited mean transverse momenta. It might be expected that it can also
be applied to the relativistic heavy ion collision.

The Singularity of the Partition Function: Baryon Conservation

We have to conserve the baryon number in the relativistic heavy ion collision. So
far we have ignored this, but now it will be built in. In order to do so, we must study
the singularity of the partition function. We insert the exponential mass spectrum
of Eq. (26.29) into Eq. (26.26) for ln Z, combine the two non-exponential functions
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f .m;T/ of Eq. (26.26) and g.m/ of Eq. (26.29) into a new non-exponential function
h.m;T/, and obtain

ln Z.T;V/ D V
Z 1

0

h.m;T/ em=T0e�m=Tdm ; (26.30)

where it is obvious that this integral exists for T < T0 and has a singularity at
T D T0, the nature of which depends on h.m;T/ and does not interest us at the
moment.

Now we split ln Z into two parts, ln Z  and ln ZN, where the first one only contains
pions and pionic resonances, while the second contains all baryonic states:

ln Z D ln Z  C ln ZN ; (26.31)

where

ln Z ;N D V
Z 1

0

h ;N.m;T/ em=T0e�m=Tdm : (26.32)

Here we claim that the asymptotic part em=T0 of the mass spectrum is the same for
pions and baryons. Qualitatively, this can be understood by considering all hadrons
with a given baryon number b and a very large mass such that m� bmN. For such
large masses, the presence of a few baryons is irrelevant as most of the mass is
due to excitation of non-baryonic degrees of freedom. Hence, for any fixed baryon
number b, the asymptotic part of the mass spectrum must be the same and equal to
the pionic one. This conclusion can be proved rigorously [37].

Consider now the baryonic partition function

ln ZN D V
Z 1

0

hN.m;T/ em=T0e�m=Tdm : (26.33)

The factor e�m=T is proportional to the probability of creating a mass m at
temperature T. This factor is extremely small for small T and so would be the
number of baryons. If we wish ln ZN to exhibit a given number of brought-in
baryons, we must counteract the small factor e�m=T . This can be done by artificially
lowering m by subtracting some suitable �m from it. This �m should account for
the actual average baryon number hbi we wish to impose and it should lie between
0 and m (�m D 0 is no correction,�m D m is just excluded as too much). Thus we
put

�m D m
�

�N
; (26.34)
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where � is some parameter to be adjusted to yield the wanted hbi. Then replacing
e�m=T by e�.m��m/=T , we obtain a new baryonic partition function

ln ZN.T;V; �/ D V
Z 1

0

hN.m;T/ exp
m

T0
exp

�
�m

T

�
1� �

mN

��
dm : (26.35)

This partition function, in which � can be chosen to give any desired expectation
value hbi of the baryon number, has no longer an isolated singularity at T0, but
a singular curve in the .T; �/ plane. Indeed, it will be singular where the total
exponent vanishes:

Tcrit D T0.�/ WD T0.1 � �=mN/ : (26.36)

This is the broken straight line in Fig. 26.7.
The above arguments are oversimplified in order to make the idea clear. In reality,

one proceeds differently and ln ZN has a slightly different form, the critical curve in
the .T; �/ plane is not trivial to calculate [35] and it looks like the curve in Fig. 26.7
instead of being a straight line. The partition function exists below that curve.

The new parameter � introduced here (in a sloppy way) is called the chemical
potential related to baryon number conservation. There is an extra chemical
potential for every conserved quantity. Ours is the relativistic chemical potential.
In non-relativistic statistical mechanics, it is defined as �NR D � � mN. This is
consistent with omitting the factor e�m=T in non-relativistic situations. Suppose we
deal with a nucleon gas non-relativistically, then for the one-particle case

E � � D p2

2mN
C mN � .�NR C mN/ D p2

2mN
� �NR

Fig. 26.7 The critical curve
in the .T; �/ plane. The
broken line is obtained from
the handwaving ‘derivation’
in the text, while the full
curve results from the model
of [35]
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and

e�.E��/=T D exp

�
� p2

2mNT
C �NR

T

�
:

Thus the factor e�mN=T has disappeared.
With the knowledge of �.m/ and the introduction of the chemical potential for

baryon number conservation, Z.T;V; �/ has become calculable and is ready for
application to the problem of highly excited hadronic (nuclear) matter. I stress that
here I have only presented the general ideas. The complete analytical solution is
technically more involved, but known in every detail [35].

The Partition Function for Real (Extended) Particles

All we have done so far suffers from a most unrealistic tacit assumption, namely,
that our particles are pointlike. For dilute gases, this is known to be a good
approximation. We, however, consider dense matter. Indeed, when applying the
bootstrap argument, the system considered has the density of a composite particle,
i.e., roughly nuclear density. From nuclear physics, we know that describing a
nucleus as a gas of pointlike nucleons is a bad approximation. We also know that
the volume of a nucleus is proportional to the number of its nucleons, i.e., to
its total mass. In a relativistic situation, it is not possible to distinguish between
mass due to the rest masses of constituents and mass due to kinetic energy. Hence,
relativistically, the natural volume V.m/ of a particle must be proportional to the
mass m, viz.,

V.m/ D m

4B
; (26.37)

where B is a fundamental constant with the dimension of energy density. Relation
Eq. (26.37) is borne out not only by low energy nuclear physics, but also by bag
models [3]2 and by the statistical bootstrap model, as can be seen as follows:

• First write Eq. (26.37), which is valid in the particle’s rest frame, in covariant
form

V�.m/ D p�

4B
; (26.38)

2We take B to be the ‘bag constant’. Then 4B is the energy density of a bag.
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by which the four-volume V� is defined. In the rest frame, this reduces to (26.37)
and therefore is the unique generalization of (26.37) and of the corresponding
low energy nuclear property.

• Consider a particle as a densely packed assembly of any number of other particles
with masses mi :

V�.m/ D
X

i

V�.mi/ ; for any set fm1;m2; : : :g : (26.39)

• Bootstrap tells us that the mi have the same composite internal structure as the
composite m. Hence, the V�.mi/ must obey Eq. (26.38) with the same B.

• Therefore,

V�.m/ D p�

4B
D 1

4B

NX

iD1
p�i ; (26.40)

which is an identity, since p� DPi p�i for any partition. This proves Eq. (26.37)
to be true in statistical bootstrap.

Coming back to the partition function of a macroscopic system, we now introduce
the notion of the available volume [35]

� WD V �
NX

iD1
V.mi/ ; (26.41)

where V is the externally given volume enclosing the system in a heat bath [for such
a system, Eq. (26.38) is of course not true; it only holds for each of its constituents]
and� is what remains after taking the proper volumes of all constituents away, just
as in the van der Waals gas:

� is the volume in which the particles move as if they were pointlike, while
in reality they have finite proper volumes and move in V .

There are some differences with the van der Waals gas, however:

1. The proper volumes V.mi/ are not equal.
2. The proper volumes will have to be written covariantly

V�.mi/ D p�i
4B

; p�i pi� D m2
i :

3. The usual factor four multiplying
P

Vi is missing. It arises only for particles that
are rigid spheres of equal radius. Our particles are deformable and of different
sizes, in which case the factor is one.
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4. The second van der Waals correction, which simulates attractive forces by
subtracting a density dependent term from the pressure, is not necessary here
since bootstrap takes care of attractive forces (and to all orders in the virial
expansion).

The above statement (vdW) implies that one obtains the partition function of real
extended particles enclosed in V by calculating the partition function of pointlike
particles enclosed in the volume� :

Zreal.T;V; �/ 	 Zpt.T; �; �/ : (26.42)

Consider a particular microstate of the system where the particles have momenta p�i
(i D 1; : : : ;N). In that case, Eq. (26.41) reads

�� D V� �
NX

iD1

p�i
4B
D V� � p�

4B
; (26.43)

with p� being the momentary total four-momentum of the system (p� fluctuates due
to the heat bath). How then can we insert� in the partition function? The difficulties
seem great since Zpt is equal to eZ1 , the one-particle function [see Eq. (26.27)], and
yet we shall introduce a quantity which depends on all momenta and even fluctuates.
We solve the problem by a tour de force. We choose � to be our independent
volume-like parameter. Then

V� D �� C p�

4B
(26.44)

for any state contributing to ln Z. Thus now V is no longer fixed. It has, however, an
expectation value. In the rest frame of the heat bath

hV.E; �/i D �C hEi
4B

: (26.45)

Properties of the Real Hadron Gas

From Eqs. (26.42) and (26.45), we can calculate all the usual thermodynamic vari-
ables. As an example, we calculate hEi=hVi, the energy density. Equation (26.18)
says that

hEi D T2
@

@T
ln Zreal D T2

@

@T
ln Zpt.T; �; �/ ; (26.46)
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and since ln Zpt.T; �; �/ is proportional to � [see, e.g., Eq. (26.35)],

hEi D �
�
1

�
T2

@

@T
ln Zpt.T; �; �/

�
: (26.47)

The expression in square brackets is the (� independent) energy density of a gas of
pointlike particles, viz., "pt.T; �/. Hence,

hEi D � 
 "pt D
�
hV.E; �/i � hEi

4B

�
"pt.T; �/ : (26.48)

Here "pt does not depend on �. Furthermore, � can be chosen so that any given
value hV.E; �/i is assumed (� hEi=4B). Hence we can now consider hVi as a
variable which can be prescribed and we can thus solve Eq. (26.38) without regard
for the implicit dependence of hVi on hEi :

hEi D hVi "pt.T; �/

1C "pt.T; �/=4B
(26.49)

and

hEi
hVi D "real.T; �/ D "pt.T; �/

1C "pt.T; �/=4B
: (26.50)

Furthermore, from Eq. (26.48), hEi D � 
 "pt, we find with Eq. (26.50),

hV.T; �; �/i D �
�
1C "pt.T; �/

4B

�
; � D hVi

�
1 � "real.T; �/

4B

�
:

(26.51)

It turns out that all ‘real’ intensive quantities like pressure, baryon number density,
etc., are related to the ‘point’ intensive quantities as "real is related to "pt :

"real.T; �/ D �

hVi"pt.T; �/ ;

Preal.T; �/ D �

hViPpt.T; �/ .pressure/ ;

�real.T; �/ WD hbihVi D
�

hVi�pt.T; �/ :

(26.52)
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Behaviour Near the Critical Curve

Inspection of the exact partition function [35] reveals that "pt.T; �/ ! 1 when
the system approaches the critical curve. While, for given T; �, one can choose �
to yield any given hVi � hEi=4B [see Eq. (26.45), Eq. (26.51) says how], the ratio
�=hVi is a definite function of T and�, tending to zero when the system approaches
the critical curve:

lim
.crit/

"real.T; �/ D 4B ; (26.53)

that is, on the critical curve, the whole system assumes the density 4B of its
constituents [remember Eq. (26.37)] and therefore has become just one giant
‘particle’. Closer inspection [35] yields for the pressure and the baryon number
density

lim
.crit/

Preal.T; �/ D 0 ; lim
.crit/

�real.T; �/ D �crit.T; �/ ¤ 0;1 : (26.54)

As the critical curve is reached at finite energy density, nothing prevents it being
reached in actual particle collisions and nothing prevents it even being passed over,
provided the collision was energetic enough. Considering hadrons as quark-gluon
bags, the hadronic gas becomes then on the critical curve a giant quark-gluon bag,
and it should be described as an interacting quark-gluon gas on the other side. This,
at least, is our (J. Rafelski and R. Hagedorn) present interpretation [35] (Fig. 26.8).

Fig. 26.8 Physical
interpretation of different
regions of the .T; �/ plane as
proposed in [35]
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This thermodynamics, combined with a good description of the collective
motions, should then give a model for the relativistic heavy ion collision:

Complete description D
Z ˚

collective motion
�˝

�
local bootstrap

thermodynamics

�
:

(26.55)

While the local bootstrap thermodynamics is known, we still know little about the
collective motions, which themselves depend again on the local thermodynamics.
There remains a great deal of work to be done!

26.4 Is There Equilibrium in the Relativistic Heavy Ion
Collision?

Nobody expects global equilibrium (except perhaps in selected ‘central’ collisions),
but there are good reasons to doubt even that there is local equilibrium, because the
duration of a collision, the lifetime of resonances, and the time needed to create a
particle are all of the same order of magnitude. In particle collisions one can agree
that thermodynamic equilibrium does not require a number of collisions of existing
particles, but that the quantum mechanical probability distributions governing the
creation of particles are such that the new-born particles seem to come from an
equilibrium state [12]. This might be different in the relativistic heavy ion collision
where many particles are already present before the collision and have to undergo
collisions individually and/or coherently.

The argument for equilibrium seems to be valid in particle physics because the
thermodynamical model which rests heavily on it was on the whole successful. With
very few free parameters chosen once and for all, it covered collisions of different
sorts of particles with lab energies between 10 and 1,000 GeV, describing rather
well the features of particle production for all sorts of particles and with production
rates ranging over 12 orders of magnitude. While many models are quantitatively
superior in restricted areas, the thermodynamical model was (and still is) the only
one covering the whole reasonably well. There are also some failures:

1. Two-particle correlations are not well described by the simple thermodynamical
model [38].

2. The large p? processes observed at ISR energies [39] are not predicted by the
model.

The second failure is particularly interesting because it concerns only about one
per thousand of all produced particles—the rest behave as the model predicts.
Figure 26.9 shows what happens qualitatively. The p? distribution takes off the
straight line predicted by the model at p? & 1:5GeV/c and stays higher up
depending on the height of the collision energy. Why does this not kill the model?
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Fig. 26.9 Transverse momentum distribution of  0 at ISR energies [39]. The curves (hand drawn
by the present author) can be well approximated by a superposition of three exponentials. At p? .
1:5GeVc, the SBM prediction holds with T � 165MeV, while at p? & 5GeV/c, a temperature
growing � E2:7c:m: (broken straight lines) suggests a plasma of gluons and not quite massless quarks

Because the straight parts of all curves, coinciding below�1:5GeV/c have the same
energy-independent shape corresponding to a temperature �165MeV, just as the
model says. If the shape of this part had decreased steadily with rising energy, the
model would have been in serious trouble. The large transverse momenta can be
understood as being due to pre-hadronization processes taking place in the quark-
gluon phase and emitting some energetic quark or gluon before crossing the critical
curve. All the particles belonging to the straight line below 1.5 GeV/c would then
be emitted from the hadronic phase after crossing the critical curve.

While in pp collisions at ISR energies there are thus definite traces of pre-
equilibrium processes happening in the quark-gluon phase, such indications are as
yet missing in proton–nucleus and nucleus–nucleus collisions, presumably because
the collision energies are not yet high enough. In any case, models along the lines
described in the previous sections have been applied to pA and AA collisions. I
will mention just a few (apologizing to any authors not mentioned because of my
ignorance):
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• The ‘Black Book’ on particle spectra [11] calculates the pA collisions between
20 and 70 GeV primary lab energy with A being Be, Al, Cu, and Pb. A
single collective velocity function F.�/ covers all of these energies and targets
in satisfactory agreement with data (where available). Production of heavy
fragments is not calculated.

• J.P. Alard [40] pioneered the calculation of nucleon and heavy fragment emission
(He4, Be, Li, : : :) using a special F.�/ and introducing chemical potentials.

• A. Mekjian [41] calculated the relativistic heavy ion collision with F.�/ �
ı.� � �0/, where �0 was adjusted to represent a single moving fireball with
thermodynamics restricted to the lower, explicitly known part of the spectrum.

• J. Gosset et al. [42] obtained good results using a velocity distribution (‘fire
streak’) derived from kinematical considerations by W.D. Myers [13] and with
thermodynamics using the lower part of the spectrum [31, 41].

• R. Malfliet [25] derived a collective velocity distribution [in the sense of F.�/,
but taking into account its temporal evolution] from the relativistic Boltzmann
equation. Supplied with low-spectrum thermodynamics and nucleon–nucleon
cross-sections, the model yielded particle spectra in good agreement with the
relativistic heavy ion collision data.

All these attempts are based on the assumption of

˚
local equilibrium

�˝ ˚collective motion
�

and they are all more or less successful. This is surprising.

The Way to Equilibrium

It is necessary to understand why there can be local equilibrium at least approx-
imately. The problem has been considered in the literature [43–45]. Clearly, the
approach to equilibrium takes time. After a sufficient time has elapsed, any system
will come to equilibrium. What is less obvious is that the equilibrium state reached
will, everything else being equal, depend on the volume available [12, 45]. Here I
shall outline the ideas without going into detail. There are two kinds of equilibrium:
kinetic and chemical:

• Kinetic equilibrium means equipartition of the total kinetic energy among the
particles then present. This is a fast process which needs only very few collisions
per particle. We assume this kind of equilibrium to be established instantaneously
and locally, which means that a local temperature can be defined meaningfully.
This temperature can still vary in space and time.

• Chemical equilibrium is equilibrium between the numbers of different species of
particles. Being in equilibrium means for a given species that its rate of creation
balances its death rate. To arrive at that state may take a short or a long time
depending on cross-sections, lifetimes, densities, and so on.
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Consider a simplified example which exhibits the main point: a quasi-ideal pion–
nucleon gas in which a third kind of particle with a conserved charge Q can be
created. Let A and A denote this particle and its antiparticle and a the density of
either A or A, whence a D NA=V . Further, let n be the number density of pions plus
nucleons, viz., n D .N  C NN/=V . Then

da

dt
D da

dt

ˇ̌
ˇ̌
creation

� da

dt

ˇ̌
ˇ̌
annihilation

; (26.56)

da

dt

ˇ̌
ˇ̌
creation

D cvTn2Wpair : (26.57)

Here c is the inelastic cross-section (assumed energy independent and equal for
all collisions  N,   , AA), vT the mean thermal velocity, and n the density of
pions plus nucleons. We have assumed that A has a sufficiently large mass so that
its contribution to n is negligible: n � a at all times. Wpair is the pair creation
probability per collision. Also,

da

dt

ˇ̌
ˇ̌
ˇ
annihilation

D AvTAa2 ; (26.58)

where A is the annihilation cross-section of A and vTA is the mean thermal velocity
of the A particles. Hence,

da

dt
D cvTn2Wpair � AvTAa2 DW ˛ � ˇa2 ; ˛ WD cvTn2Wpair ; ˇ WD AvTA ;

(26.59)

where ˛; ˇ are constants fixed by particle properties, densities, and temperature.
Obviously equilibrium is reached when

da

dt
D 0 ; a.1/ D

r
˛

ˇ
: (26.60)

The system approaches this value from below or from above depending on the initial
value a.0/, as shown in Fig. 26.10. From the thermodynamical model, we know (first
paper of [2] and CERN lectures [12]) that

Wpair � e�2mA=T ; (26.61)

so that

a.1/ D Const: 
 e�mA=T : (26.62)
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Fig. 26.10 The approach to
equilibrium (qualitative)
predicted by our simple
model for two different initial
values a(0)

Consider now a.0/. This initial value is determined by the process which creates
the  N gas in which the creation of AA pairs takes place. Let this process be an
the relativistic heavy ion collision. Then in the first instant, AA collisions at high
(not thermal) velocities take place and, in these collisions, pions as well as AA
pairs are created. Then kinetic equilibrium between all these is rapidly reached and
Eqs. (26.56)–(26.58) can be applied, with a.0/ being the density of A resulting from
the pairs created in the first impact, viz.,

a.0/ � e�2mA=T ; (26.63)

the proportionality constant depending on the details of the collision (energy,
number of nucleons, etc.).

Above, we have made the assumption that the density a is so small that it can be
neglected against n. This implies that after creation the particles A and A part from
each to large distances and that A.A/ has to wait for annihilation until colliding
with some other particle A(A). This, however, is only possible if the total volume
available to the whole system is so large that the pairs created in the first instance
can escape to distances which are large compared to the range of the annihilation
interaction. If the volume were so small as to keep them always within annihilation
distance, the number of pairs would always remain proportional to exp.�2mA=T/
as in pp collisions [2, 12]. Between such a small and a very large volume, many
intermediate situations may occur in the relativistic heavy ion collision. Therefore,
it is important to know the volume dependence of the equilibrium distribution a.1/,
which may vary between � exp.�2mA=T/ and � exp.�mA=T/ [45]. (Our above
equation is valid only for large volumes, as n� a was assumed.)

The time needed to reach equilibrium depends on the values of ˛ and ˇ, which
determine the slopes of the curves in Fig. 26.10. Equilibrium is then reached when
ja.t/ � a.1/j2 is of the order of the natural fluctuations in equilibrium, i.e.,

ˇ̌
a.t/� a.1/ˇ̌2 �

equilbrium
ha2i � hai2 : (26.64)
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From this the equilibrium time can be determined [44].

Expansion and Cooling

Expansion and cooling after onset of a relativistic heavy ion collision are not
equilibrium processes, but the only way presently known of describing them
theoretically seems to be via a sequence of quasi-equilibrium states. Two approaches
have been discussed in the literature [41, 43]: expansion with constant energy and
with constant entropy. We believe [35] that constant entropy is wrong in early stage,
while particle creation still takes place, no external work is done, and the process
is irreversible. On the other hand, total energy is conserved, but it is insufficient to
characterize the process, since we can calculate from thermodynamics only energy
densities and do not know the dynamical expanding volume. On the other hand,
baryon number is also conserved and must be taken into account. Again, we can
only calculate the baryon number density and do not know the volume. The ratio of
the two conserved quantities hEi and hbi is then also conserved and the unknown
expanding volume drops out:

hEi
hbi D

"

v
D E

b

ˇ̌
ˇ̌
initial

D Const: (26.65)

We therefore advocate the calculation of cooling curves given by (26.65) as a
succession of quasi-equilibrium states [35]. We may visualize this as in Fig. 26.11
where we imagine the separating walls pulled down one after another, each time
waiting until a new equilibrium is established. At some stage, pulling down more
walls will not change any more the momentum distribution and particle ratios. We

Fig. 26.11 Freely expanding hadron matter seen as a sequence of equilibrium states. Energy and
baryon number are conserved, entropy increases
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have then reached an ideal gas situation: the equilibrium has been frozen [41, 43].
This state will be the one recorded on our particle detectors, but particles being
emitted during the whole process will superimpose on it [35]. Clearly, the process
pictured in Fig. 26.11 is only an approximation of reality, since equilibrium is not
reached after each decay step. But it will be at first a much better approximation
than that obtained from the assumption of constant entropy.

26.5 Conclusions

Despite a great number of well worked out partial theoretical models, we do not
yet know enough to build a theory which describes coherently the whole of the
relativistic heavy ion collision. Under these circumstances, even the detailed models
cannot be adequately tested since we have not yet learned to disentangle the dozen
or so different mechanisms mixed up in an the relativistic heavy ion collision. There
exists, however, a fully worked out analogue computer programme based on the one
and only true, complete theory: the relativistic heavy ion collision experiment. As
we do not know the programme, but only its output for a given input, learning the
theory from it is far from trivial. We should try to force it to give answers to the
following unsettled questions:

• Is there a unique F.�/?
• How important are transverse collective motions and turbulence?
• Must hydrodynamics be used?
• Is bootstrap thermodynamics right?
• How fast is equilibrium reached locally?
• Which is the best thermometer?
• How do fireballs cool and expand?
• Is there a phase transition to a quark-gluon plasma?
• Do ISR jets (large p?) indicate such a phase transition?

These questions result from theoretical prejudice. Given that these prejudices might
be reasonable to start with, the following experiments will be interesting:

1. Measure total multiplicities or relative ratios of secondaries:  , N, K, Λ, Σ, d, t,
He3, He4, Be, Li, . . . , and of as many of their antiparticles as feasible.

2. Measure for all of these the mean transverse momentum hp?i as a function of
the primary energy per nucleon E=A and of the secondary’s mass m.

For these first type types of measurement, try to make things as simple as possible:
projectile 	 target and trigger for central collisions, in order to approach the
theoretician’s dream object—a single fireball.

3. Measure inclusive momentum distributions W.p/d3p as a function of E=A and
m. Try to fit with some F.�/˝ flocal bootstrap thermodynamicsg:
• Can one find an energy independent F.�/?
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• Is it the same for all targets and projectiles?
• Is it independent of the emitted secondary?
• Does one need transverse collective motion?

For these measurements all events must be taken; triggering for central collisions
or selecting events according to any specific criteria would distort the picture. One
might start, however, by colliding equal nuclei and later make projectile ¤ target.
Pay special attention to transverse momenta of heavy fragments, the heavier the
better [see Eq. (26.16)].

4. Look for asymmetries in individual events:

• Azimuthal, i.e., non-isotropic in the angle about the collision axis. Such an
asymmetry should arise from angular momentum conservation [46] and be
large in peripheral, small in central collisions.

• While the first type of azimuthal asymmetry would still maintain symmetry
with respect to reflection on the collision axis, even that might be destroyed
by the ‘hot spot’ mechanism [29] leading to a right–left asymmetry.

5. Look for ‘abnormal’ things such as:

• sideward jets,
• unusually large p?,
• unexpected (from equilibrium thermodynamics) particle ratios, in particular

involving anti-.Λ;Σ/.

This last group of observations would have to be interpreted as evidence supporting
the theoretical picture of a phase transition to a quark-gluon plasma. Any process
originating in that phase and surviving the return to the hadron phase would leave
traces of the sort mentioned.
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Chapter 27
Extreme States of Nuclear Matter: 1980

Johann Rafelski

Abstract The theory of hot nuclear fireballs consisting of all possible finite-
size hadronic constituents in chemical and thermal equilibrium is presented. As
a complement of this hadronic gas phase characterized by maximal temperature
and energy density, the quark bag description of the hadronic fireball is considered.
Preliminary calculations of temperatures and mean transverse momenta of particles
emitted in high multiplicity relativistic nuclear collisions together with some
considerations on the observability of quark matter are offered.

27.1 Overview

I wish to describe, as derived from known traits of strong interactions, the likely
thermodynamic properties of hadronic matter in two different phases: the hadronic
gas consisting of strongly interacting but individual baryons and mesons, and
the dissolved phase of a relatively weakly interacting quark-gluon plasma. The
equations of state of the hadronic gas can be used to derive the particle temperatures
and mean transverse momenta in relativistic heavy ion collisons, while those of
the quark-gluon plasma are more difficult to observe experimentally. They may
lead to recognizable effects for strange particle yields. Clearly, the ultimate aim
is to understand the behaviour of hadronic matter in the region of the phase
transition from gas to plasma and to find characteristic features which will allow its
experimental observation. More work is still needed to reach this goal. This report
is an account of my long and fruitful collaboration with R. Hagedorn [1].

Invited lecture at Quark Matter 1: Workshop on Future Relativistic Heavy Ion Experiments at
the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany, 7–10 October 1980;
circulated in the GSI81-6 Orange Report, pp. 282–324, R. Bock and R. Stock, editors; Reprinted in
the ‘Bormio 1981’ Winter School proceedings. Presented here in complete original format omitting
SBM pictures shown in previous chapters.

J. Rafelski (�)
Department of Physics, University of Arizona, Tucson, AZ 85721, USA

© The Author(s) 2016
J. Rafelski (ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature
to Ultra-Relativistic Heavy-Ion Collisions at CERN,
DOI 10.1007/978-3-319-17545-4_27

343



344 J. Rafelski

The theoretical techniques required for the description of the two phases are
quite different: in the case of hadronic gas, a strongly attractive interaction has to be
accounted for, which leads to the formation of the numerous hadronic resonances—
which are in fact bound states of several (anti) quarks. if this is really the case,
then our intuition demands that at sufficiently high particle (baryon) density the
individuality of such a bound state will be lost. In relativistic physics in particular,
meson production at high temperatures might already lead to such a transition at
moderate baryon density. As is currently believed, the quark–quark interaction is
of moderate strength, allowing a perturbative treatment of the quark-gluon plasma
as relativistic Fermi and Bose gases. As this is a very well studied technique
to be found in several reviews [2], we shall present the relevant results for the
relativistic Fermi gas and restrict the discussion to the interesting phenomenological
consequences. Thus the theoretical part of this report will be devoted mainly to the
strongly interacting phase of hadronic gas. We will also describe some experimental
consequences for relativistic nuclear collisions such as particle temperatures, i.e.,
mean transverse momenta and entropy.

As we will deal with relativistic particles throughout this work, a suitable
generalization of standard thermodynamics is necessary, and we follow the way
described by Touschek [3]. Not only is it the most elegant, but it is also by
simple physical arguments the only physical generalization of the concepts of
thermodynamics to relativistic particle kinematics. Our notation is such that „ D
c D k D 1. The inverse temperature ˇ and volume V are generalized to become
four-vectors:

E �! p� D .p0;p/ D mu� ; u�u� D 1 ;
1

T
�! ˇ� D .ˇ0;ˇ/ D 1

T
v� ; v�v

� D 1 ; (27.1)

V �! V� D .V0;V/ D Vw� ; w�w� D 1 ;

where u�, v�, and w� are the four-velocities of the total mass, the thermometer, and
the volume, respectively. Usually, hu�i D v� D w�.

We will often work in the frame in which all velocities have a timelike component
only. In that case we shall often drop the Lorentz index �, as we shall do for the
arguments V D V�, ˇ D ˇ� of different functions.

The attentive reader may already be wondering how the approach outlined
here can be reconciled with the concept of quark confinement. We will now
therefore explain why the occurrence of the high temperature phase of hadronic
matter—the quark-gluon plasma—is still consistent with our incapability to liberate
quarks in high energy collisions. It is thus important to realize that the currently
accepted theory of hadronic structure and interactions, quantum chromodynamics
[4], supplemented with its phenomenological extension, the MIT bag model (for a
review, see for example [5]), allows the formation of large space domains filled
with (almost) free quarks. Such a state is expected to be unstable and to decay
again into individual hadrons, following its free expansion. The mechanism of quark
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confinement requires that all quarks recombine to form hadrons again. Thus the
quark-gluon plasma may be only a transitory form of hadronic matter formed under
special conditions and therefore quite difficult to detect experimentally.

We will recall now the relevant postulates and results that characterize the current
understanding of strong interactions in quantum chromodynamics (QCD). The most
important postulate is that the proper vacuum state in QCD is not the (trivial)
perturbative state that we (naively) imagine to exist everywhere and which is little
changed when the interactions are turned on/off. In QCD, the true vacuum state is
believed to a have a complicated structure which originates in the glue (‘photon’)
sector of the theory. The perturbative vacuum is an excited state with an energy
densityB above the true vacuum. It is to be found inside hadrons where perturbative
quanta of the theory, in particular quarks, can therefore exist. The occurrence of the
true vacuum state is intimately connected to the glue–glue interaction. Unlike QED,
these massless quanta of QCD, also carry a charge—colour—that is responsible for
the quark–quark interaction.

In the above discussion, the confinement of quarks is a natural feature of
the hypothetical structure of the true vacuum. If it is, for example, a colour
superconductor, then an isolated charge cannot occur. Another way to look at this
is to realize that a single coloured object would, according to Gauss’ theorem, have
an electric field that can only end on other colour charges. In the region penetrated
by this field, the true vacuum is displaced, thus effectively raising the mass of a
quasi-isolated quark by the amount BVfield.

Another feature of the true vacuum is that it exercises a pressure on the surface
of the region of the perturbative vacuum to which quarks are confined. Indeed, this
is just the idea of the original MIT bag model [6]. The Fermi pressure of almost
massless light quarks is in equilibrium with the vacuum pressure B. When many
quarks are combined to form a giant quark bag, then their properties inside can be
obtained using standard methods of many-body theory [2]. In particular, this also
allows the inclusion of the effect of internal excitation through a finite temperature
and through a change in the chemical composition.

A further effect that must be taken into consideration is the quark–quark
interaction. We shall use here the first order contribution in the QCD running
coupling constant ˛s.q2/ D g2=4� . However, as ˛s.q2/ increases when the average
momentum exchanged between quarks decreases, this approach will have only
limited validity at relatively low densities and/or temperatures. The collective
screening effects in the plasma are of comparable order of magnitude and should
reduce the importance of perturbative contributions as they seem to reduce the
strength of the quark–quark interaction.

From this general description of the hadronic plasma, it is immediately apparent
that, at a certain value of temperature and baryon number density, the plasma must
disintegrate into individual hadrons. Clearly, to treat this process and the ensuing
further nucleonisation by perturbative QCD methods is impossible. It is necessary
to find a semi-phenomenological method for the treatment of the thermodynamic
system consisting of a gas of quark bags. The hadronic gas phase is characterized
by those reactions between individual hadrons that lead to the formation of new
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particles (quark bags) only. Thus one may view [7–9] the hadronic gas phase as
being an assembly of many different hadronic resonances, their number in the
interval .m2;m2 C dm2/ being given by the mass spectrum �.m2; b/dm2. Here the
baryon number b is the only discrete quantum number to be considered at present.
All bag–bag interaction is contained in the mutual transmutations from one state to
another. Thus the gas phase has the characteristic of an infinite component ideal gas
phase of extended objects. The quark bags having a finite size force us to formulate
the theory of an extended, though otherwise ideal multicomponent gas.

It is a straightforward exercise, carried through in the beginning of the next
section, to reduce the grand partition function Z to an expression in terms of the
mass spectrum �.m2; b/. In principle, an experimental form of �.m2; b/ could then
be used as an input. However, the more natural way is to introduce the statistical
bootstrap model [7], which will provide us with a theoretical � that is consistent
with assumptions and approximations made in determining Z.

In the statistical bootstrap, the essential step consists in the realization that a
composite state of many quark bags is in itself an ‘elementary’ bag [1, 10]. This
leads directly to a nonlinear integral equation for � . The ideas of the statistical
bootstrap have found a very successful application in the description of hadronic
reactions [11] over the past decade. The present work is an extension [1, 9, 12] and
application [1, 13] of this method to the case of a system containing any number of
finite size hadronic clusters with their baryon numbers adding up to some fixed
number. Among the most successful predictions of the statistical bootstrap, we
record here the derivation of the limiting hadronic temperature and the exponential
growth of the mass spectrum.

We see that the theoretical description of the two hadronic phases—the individual
hadron gas and the quark-gluon plasma—is consistent with observations and with
the present knowledge of elementary particles. What remains is the study of
the possible phase transition between those phases as well as its observation.
Unfortunately, we can argue that in the study of temperatures and mean transverse
momenta of pions and nucleons produced in nuclear collisions, practically all
information about the hot and dense phase of the collision is lost, as most of the
emitted particles originate in the cooler and more dilute hadronic gas phase of
matter. In order to obtain reliable information on quark matter, we must presumably
perform more specific experiments. We will briefly point out that the presence of
numerous s quarks in the quark plasma suggest, as a characteristic experiment, the
observation Λ hyperons.

We close this report by showing that, in nuclear collisions, unlike pp reactions,
we can use equilibrium thermodynamics in a large volume to compute the yield of
strange and anti-strange particles. The latter, e.g., Λ, might be significantly different
from what one expects in pp collisions and give a hint about the properties of the
quark-gluon phase.
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27.2 Thermodynamics of the Gas Phase and the SBM

Given the grand partition function Z.ˇ;V; �/ of a many-body system, all thermo-
dynamic quantities can be determined by differentiation of ln Z with respect to
its arguments. Here, � is the fugacity introduced to conserve a discrete quantum
number, here the baryon number. The conservation of strangeness can be carried
through in a similar fashion leading then to a further argument �s of Z. Whenever
necessary, we will consider Z to be implicitly dependent on �s.

The grand partition function is a Laplace transform of the level density .p;V; b/,
where p� is the four-momentum and b the baryon number of the many-body system
enclosed in the volume V :

Z.ˇ;V; �/ D
1X

bD�1
�b
Z
.p;V; b/e�ˇ�p�d4p : (27.2)

We recognize the usual relations for the thermodynamic expectation values of the
baryon number,

hbi D � @
@�

ln Z.ˇ;V; �/ ; (27.3)

and the energy–momentum four-vector,

hp�i D � @

@̌ �

ln Z.ˇ;V; �/ ; (27.4)

which follow from the definition in Eq. (27.2).
The theoretical problem is to determine .p;V; b/ in terms of known quantities.

Let us suppose that the physical states of the hadronic gas phase can be considered
as being built up from an arbitrary number of massive objects, henceforth called
clusters, characterized by a mass spectrum �.m2; b/, where �.m2; b/dm2 is the
number of different elementary objects (existing in nature) in the mass interval
.m2;m2 C dm2/ and having the baryon number b. As particle creation must be
permitted, the number N of constituents is arbitrary, but constrained by four-
momentum conservation and baryon conservation. Neglecting quantum statistics (it
can be shown that, for T & 40MeV, Boltzmann statistics is sufficient), we have

.p;V; b/ D
1X

ND0

1

NŠ

Z
ı4
�

p �
NX

iD1

pi

�X

fbig

ık

�
b �

NX

iD1

bi

� NY

iD1

2��p�i
.2�/3

�.p2i ; bi/d
4pi :

(27.5)

The sum over all allowed partitions of b into different bi is included and � is the
volume available for the motion of the constituents, which differs from V if the



348 J. Rafelski

different clusters carry their proper volume Vci :

�� D V� �
NX

iD1
V�

ci : (27.6)

The phase space volume used in Eq. (27.5) is best explained by considering what
happens for one particle of mass m0 in the rest frame of �� and ˇ� :

Z
d4pi

2��p�i
.2�/3

e�ˇ�pı0.p2i �m2/ D�0

Z
d3pi

.2�/3
e�
p

p2Cm2ˇ0 D �0

Tm2

2�2
K2.m=T/ :

(27.7)

The density of states in Eq. (27.5) implies that the creation and absorption of
particles in kinetic and chemical equilibrium is limited only by four-momentum
and baryon number conservation. These processes represent the strong hadronic
interactions which are dominated by particle productions. �.m2; b/ contains all
participating elementary particles and their resonances. Some remaining interaction
is here neglected or, as we do not use the complete experimental � , it may be
considered as being taken care of by a suitable choice of � . The short range repulsive
forces are taken into account by the introduction of the proper volume V of hadronic
clusters.

One more remark concerning the available volume � is in order here. If V
were considered to be given and an independent thermodynamic quantity, then in
Eq. (27.5), a further built-in restriction limits the sum over N to a certain Nmax,
such that the available volume � in Eq. (27.6) remains positive. However, this
more conventional assumption of V as the independent variable would significantly
obscure our mathematical formalism. It is important to realize that we are free to
select the available volume � as the independent thermodynamic variable and to
consider V as a thermodynamic expectation value to be computed from Eq. (27.6):

V� �! hV�i D �� C ˝V�
c .ˇ;�; �/

˛
: (27.8)

Here hV�
c i is the average sum of proper volumes of all hadronic clusters contained

in the system considered. As already discussed, the standard quark bag leads to the
proportionality between the cluster volume and hadron mass. Similar arguments
within the bootstrap model [9, 10], as for example discussed in the preceding
Chapter 26 by R. Hagedorn, also lead to

hV�
c i D

˝
p�.ˇ;�; �/

˛

4B
; (27.9)

where 4B is the (at this point arbitrary) energy density of isolated hadrons in the
quark bag model (for a review, see for example [5]).
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Since our hadrons are under pressure from neighbours in hadronic matter, we
have in principle to take instead of 4B the energy density of a quark bag exposed to
a pressure P [see Eq. (27.57) below]

"bag D 4B C 3P :

Combining Eqs. (27.8)–(27.10), we find, with ".ˇ;�; �/ D hp�i=hV�i D hEi=hVi,
that

�

hV.ˇ;�; �/i D 1 �
".ˇ;�; �/

4BC 3P.ˇ;�; �/
: (27.10)

As we shall see, the pressure P in the hadronic matter never rises above' 0:4B, see
Fig. 27.3a below, and arguments following Eq. (27.63). Consequently, the inclusion
of P above—the compression of free hadrons by the hadronic matter by about
10%—may be omitted for now from further discussion. However, we note that
both " and P will be computed as ln Z becomes available, whence Eq. (27.10) is
an implicit equation for�=hVi.

It is important to record that the expression in Eq. (27.10) can approach zero only
when the energy density of the hadronic gas approaches that of matter consisting of
one big quark bag: " ! 4B, P ! 0. Thus the density of states in Eq. (27.5),
together with the choice of � as a thermodynamic variable, is a consistent physical
choice only up to this point. Beyond we assume that a description in terms of
interacting quarks and gluons is the proper physical description. Bearing all these
remarks in mind, we now consider the available volume � as a thermodynamic
variable which by definition is positive. Inspecting Eq. (27.5) again, we recognize
that the level density of the extended objects in volume hVi can be interpreted for
the time being as the level density of point particles in a fictitious volume� :

.p;V; b/ D pt.p; �; b/ ; (27.11)

whence this is also true for the grand canonical partition function in Eq. (27.2):

Z.ˇ;V; �/ D Zpt.ˇ;�; �/ : (27.12)

Combining Eqs. (27.2) and (27.5), we also find the important relation

ln Zpt.ˇ;�; �/ D
1X

bD�1
�b
Z
2��p�

.2�/3
�.p2; b/e�ˇ�p�d4p : (27.13)

This result can only be derived when the sum over N in Eq. (27.5) extends to infinity,
thus as long as �=hVi in Eq. (27.10) remains positive.

In order to continue with our description of hadronic matter, we must now
determine a suitable mass spectrum � to be inserted into Eq. (27.5). For this we
now introduce the statistical bootstrap model. The basic idea is rather old, but has
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undergone some development more recently making it clearer, more consistent, and
perhaps more convincing. The details may be found in [9] and the references therein.
Here a simplified naive presentation is given. We note, however, that our present
interpretation is non-trivially different from that in [9].

The basic postulate of statistical bootstrap is that the mass spectrum �.m2; b/
containing all the ‘particles’, i.e., elementary, bound states, and resonances (clus-
ters), is generated by the same interactions which we see at work if we consider
our thermodynamical system. Therefore, if we were to compress this system until it
reaches its natural volume Vc.m; b/, then it would itself be almost a cluster appearing
in the mass spectrum �.m2; b/. Since .p; �; b/ and �.p2; b/ are both densities of
states (with respect to the different parameters d4p and dm2), we postulate that

.p; �; b/
ˇ̌
ˇhVi �!

�!0
Vc.m;b/

OD const: 
 �.p2; b/ ; (27.14)

where OD means ‘corresponds to’ (in some way to be specified). As .p; �; b/ is
[see Eq. (27.5)] the sum over N of N-fold convolutions of � , the above ‘bootstrap
postulate’ will yield a highly nonlinear integral equation for � .

The bootstrap postulate (27.14) requires that � should obey the equation resulting
from replacing  in Eq. (27.5) by some expression containing � linearly and by
taking into account the volume condition expressed in Eqs. (27.8) and (27.9).

We cannot simply put V D Vc and � D 0, because now, when each cluster
carries its own dynamically determined volume, � loses its original meaning and
must be redefined more precisely. Therefore, in Eq. (27.5), we tentatively replace

.p;Vc; b/ �! 2Vc.m; b/ � p
.2�/3

�.p2; b/ D 2m2

.2�/34B
�.p2; b/ ;

2� � pi

.2�/3
�.p2i ; bi/ �! 2Vc.mi; bi/ � pi

.2�/3
�.p2i ; bi/ D 2m2

i

.2�/34B
�.p2i ; bi/ :

(27.15)

Next we argue that the explicit factors m2 and m2
i arise from the dynamics and

therefore must be absorbed into �.p2i ; bi/ as dimensionless factors1 m2
i =m2

0. Thus,

.p;Vc; b/ �! 2m2
0

.2�/34B
�.p2; b/ D H�.p2; b/ ;

2� � pi

.2�/3
�.p2i ; bi/ �! 2m2

0

.2�/34B
�.p2i ; bi/ D H�.p2i ; bi/ ;

(27.16)

1Here is the essential difference with [9], where another choice was made.
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with

H D 2m2
0

.2�/34B
;

where either H or m0 may be taken as a new free parameter of the model, to be
fixed later. (If m0 is taken, then it should be of the order of the ‘elementary masses’
appearing in the system, e.g., somewhere between m  and MN in a model using
pions and nucleons as elementary input.) Finally, if clusters consist of clusters which
consist of clusters, and so on, this should end at some ‘elementary’ particles (where
what we consider as elementary is fixed by convention). Inserting Eq. (27.16) into
Eq. (27.5), the bootstrap equation (BE) then reads

H�.p2; b/ D Hgbı0.p
2 �m2

b/ (27.17)

C
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ND2

1
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Z
ı4
�
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NX

iD1
pi

�X

fbig
ık

�
b �

NX

iD1
bi

� NY

iD1
H�.p2i ; bi/d4pi :

Clearly, the bootstrap equation (27.17) has not been derived. We have made it
more or less plausible and state it as a postulate. For more motivation, see [9].
In other words, the bootstrap equation means that the cluster with mass

p
p2 and

baryon number b is either elementary (mass mb, spin isospin multiplicity gb), or it is
composed of any number N � 2 of subclusters having the same internal composite
structure described by this equation. The bar over mb indicates that one has to take
the mass which the ‘elementary particle’ will have effectively when present in a
large cluster, e.g., in nuclear matter, m D m � hEbindi, and mN � 925MeV. That
this must be so becomes obvious if one imagines Eq. (27.17) solved by iteration (the
iteration solution exists and is the physical solution). Then H�.p2; b/ becomes in the
end a complicated function of p2, b, all mb, and all gb. In other words, in the end a
single cluster consists of the ‘elementary particles’. As these are all bound into the
cluster, their mass m should be the effective mass, not the free mass m. This way
we may include a small correction for the long-range attractive meson exchange by
choosing mN D m � 15MeV.

Let us make a brief excursion to the bag model at this point. There the mass of a
hadron is computed from the assumption of an isolated particle (= bag) with its size
and mass being determined from the equilibrium between the vacuum pressure B
and the internal Fermi pressure of the (valence) quarks. In a hadron gas, this is not
true as a finite pressure is exerted on hadrons in matter. After a short calculation, we
find the pressure dependence of the bag model hadronic mass:

M.P/ D M.0/
1C 3P=4B

.1C P=B/3=4
D M.0/

"
1C 3

32

�
P

B

�2
C � � �

#
: (27.18)
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We have already noted that the pressure never exceeds 0:4B in the hadronic gas
phase, see Fig. 27.3a below, and arguments following Eq. (27.63). Hence we see that
the increase in mass of constituents (quark bags) in the hadronic gas never exceeds
1.5 % and is at most comparable with the 15 MeV binding in m. In general, P is
about 0:1B and the pressure effect may be neglected.

Thus we can consider the ‘input’ first term in Eq. (27.17) as being fixed by pions,
nucleons, and whenever necessary by the usual strange members of meson and
baryon multiplets. Furthermore, we note that the bootstrap equation (27.17) makes
use of practically all the same approximations as our description of the level density
in Eq. (27.5). Thus the solution of Eq. (27.17) is particularly suitable for our use.

We solve the BE by the same double Laplace transformation which we used
before Eq. (27.2). We define

'.ˇ; �/ WD
Z

e�ˇ�p�
1X

bD�1
�bHgbı0.p

2 �m2
b/d

4p D 2�HT
1X

bD�1
�bgbmbK1.mb=T/ ;

˚.ˇ; �/ WD
Z

e�ˇ�p�
1X

bD�1
�bH�.p2; b/d4p : (27.19)

Once the set of input particles fmb; gbg is given, '.ˇ; �/ is a known function, while
˚.ˇ; �/ is unknown. Applying the double Laplace transformation to the BE, we
obtain

˚.ˇ; �/ D '.ˇ; �/C exp˚.ˇ; �/ �˚.ˇ; �/ � 1 : (27.20)

This implicit equation for˚ in terms of ' can be solved without regard for the actual
ˇ; � dependence. Writing

G.'/ WD ˚.ˇ; �/ ; ' D 2G � eG C 1 ; (27.21)

we can draw the curve '.G/, see Fig. 17.5a, and then invert it graphically, see
Fig. 17.5b to obtain G.'/ D ˚.ˇ; �/. G.'/ has a square root singularity at ' D
'0 D ln.4=e/ D 0:3863. Beyond this value, G.'/ becomes complex. There are
further branches; for example Fig. 17.5b the dashed line represents the unphysical
real solution branch.

Apart from this graphical solution, other forms of solution are known:

G.'/ D
1X

nD1
sn'

n D
1X

nD0
wn.'0 � '/n=2 D integral representation : (27.22)

The expansion in terms of .'0 � '/n=2 has been used in our numerical work (12
terms yield a solution within computer accuracy) and the integral representation
will be published elsewhere [15]. Henceforth, we consider ˚.ˇ; �/ D G.'/ to be
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a known function of '.ˇ; �/. Consequently, �.m2; b/ is also in principle known.
From the singularity at ' D '0, it follows [1] that �.m2; b/ grows, for m � mNb,
exponentially � m�3 exp.m=T0/. In some weaker form, this has been known for a
long time [7, 16, 17].

27.3 The Hot Hadronic Gas

The definition of ˚.ˇ; �/ in Eq. (27.19) in terms of the mass spectrum allows us
to write a very simple expression for ln Z in the gas phase (passing now to the rest
frame of the gas):

ln Z.ˇ;V; �/ D ln Zpt.ˇ;�; �/ D � 2�

.2�/3H

@

@̌
˚.ˇ; �/ : (27.23)

We recall that Eqs. (27.10) and (27.20) define (implicitly) the quantities� and ˚ in
terms of the physical variables V , ˇ, and �.

Let us now introduce the energy density "pt of the hypothetical pointlike
particles as

"pt.ˇ; �/ D 1

�

�
� @
@̌

ln Zpt.ˇ;�; �/

�
D 2

.2�/3H

@2

@̌ 2
˚.ˇ; �/ ; (27.24)

which will turn out to be quite helpful as it is independent of �. The proper energy
density is

".ˇ; �/ D 1

hVi
�
� @
@̌

ln Z

�
D �

hVi"pt ; (27.25)

while the pressure follows from

P.ˇ; �/hVi D T ln Z.ˇ;V; �/ D T ln Zpt.ˇ;�; �/ ; (27.26)

P.ˇ; �/ D �

hVi
�
� 2T

.2�/3H

@

@̌
˚.ˇ; �/

�
DW �hViPpt : (27.27)

Similarly, for the baryon number density, we find

�.ˇ; �/ D hbihVi DW
�

hVi�pt.ˇ; �/ ; (27.28)

with

�pt.ˇ; �/ D 1

�
�
@

@�
ln Zpt D � 2

.2�/3H
�
@

@�

@

@̌
˚.ˇ; �/ : (27.29)
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From Eqs. (27.24)–(27.24), the crucial role played by the factor �=hVi becomes
apparent. We note that it is quite straightforward to insert Eqs. (27.25) and (27.26)
into Eq. (27.10) and solve the resulting quadratic equation to obtain �=hVi as an
explicit function of "pt and Ppt. First we record the limit P� B :

�

hVi D 1 �
".ˇ; �/

4B
D
�
1C "pt.ˇ; �/

4B

��1
; (27.30)

while the correct expression is

�

hVi D
1

2
� "pt

6Ppt
� 2B

3Ppt
C
s
4B

3Ppt
C
�
1

2
� "pt

6Ppt
� 2B

3Ppt

�2
: (27.31)

The last of the important thermodynamic quantities is the entropy S. By differenti-
ating Eq. (27.26), we find

@

@̌
ln Z D @

@̌
ˇPhVi D PhVi � T

@

@T
.PhVi/ : (27.32)

Considering Z as a function of the chemical potential, viz.,

Z.ˇ;V; �/ D Z.ˇ;V; e�ˇ/ D QZ.ˇ;V; �/ D QZpt.ˇ;�;�/ ; (27.33)

we find

@

@̌
ln Z

ˇ̌
ˇ̌
�;�

D @

@̌
ln QZpt.ˇ;�;�/ D �EC �hbi ; (27.34)

with E being the total energy. From Eqs. (27.32) and (27.34), we find the ‘first law’
of thermodynamics to be

E D �PhVi C T
@

@T
.PhVi/C �hbi : (27.35)

Now quite generally,

E D �PhVi C TSC �hbi ; (27.36)

so that

S D @

@T

h
P.ˇ;�;�/hV.ˇ;�;�/i

iˇ̌
ˇ
�;�

: (27.37)
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Equations (27.26) and (27.34) now allow us to write

S D @

@T
.PhVi/ D ln QZpt.T; �; �/C E � �b

T
: (27.38)

The entropy density in terms of the already defined quantities is therefore

S D S

hVi D
PC " � ��

T
: (27.39)

We shall now take a brief look at the quantities P, ", �, �=hVi. They can be written
in terms of @˚.ˇ; �/=@̌ and its derivatives. We note that [see Eq. (27.21)]

@

@̌
˚.ˇ; �/ D @G.'/

@'

@'

@̌
; (27.40)

and that @G=@' � .'0 � '/�1=2 near to ' D '0 D ln.4=e/ (see Fig. 17.5b). Hence
at ' D '0, we find a singularity in the point particle quantities "pt, �pt, and Ppt.
This implies that all hadrons have coalesced into one large cluster. Indeed, from
Eqs. (27.25), (27.27), (27.28), and (27.30), we find

" �! 4B ;

P �! 0 ;

�=hVi �! 0 :

(27.41)

We can easily verify that this is correct by establishing the average number of
clusters present in the hadronic gas. This is done by introducing an artificial fugacity
�N in Eq. (27.5) in the sum over N, where N is the number of clusters. Denoting by
Z.�/ the associated grand canonical partition functions in Eq. (27.23), we find

hNi D � @
@�

ln Z�pt.ˇ;�; �I �/
ˇ̌
ˇ̌
�D1
D � 2�

.2�/3H

@

@̌
˚.ˇ; �/ ; (27.42)

which leads to the useful relation

PhVi D hNiT : (27.43)

Thus as PhVi ! 0, so must hNi, the number of clusters, for finite T. We record the
astonishing fact that the hadron gas phase obeys an ‘ideal’ gas equation, although of
course hNi is not constant as for a real ideal gas but a function of the thermodynamic
variables.

The boundary given by

'.ˇ; �/ D '0 D ln.4=e/ (27.44)
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thus defines a critical curve in the ˇ; � plane. Its position depends, of course, on the
actually given form of '.ˇ; �/, i.e., on the set of ‘input’ particles fmb; gbg assumed
and the value of the constant H in Eq. (27.16). In the case of three elementary
pions  C,  0, and  � and four elementary nucleons (spin ˝ isospin) and four
antinucleons, we have from Eq. (27.19)

'.ˇ; �/ D 2�HT

�
3m K1.m =T/C 4

�
�C 1

�

�
mNK1.mN=T/

�
; (27.45)

and the condition (27.44), written in terms of T and � D T ln�, yields the curve
shown in Fig. 25.3 i.e., the ‘critical curve’, corresponding to '.T; �/ D '0 in the
�;T plane. Beyond it, the usual hadronic world ceases to exist. In the shaded
region our theory is not valid, because we neglected Bose-Einstein and Fermi-Dirac
statistics. For � D 0, the curve ends at T D T0, where T0, the ‘limiting temperature
of hadronic matter’, is the same as that appearing in the mass spectrum [7, 9, 16, 17]
�.m2; b/ � m�3 exp.m=T0/ (for b� bmN).

The value of the constant H in Eq. (27.16) has been chosen [13] to yield T0 D
190MeV. This apparently large value of T0 seemed necessary to yield a maximal
average decay temperature of the order of 145 MeV, as required by [18]. (However,
a new value of the bag constant then induces a change [1] to a lower value of T0 D
180MeV.) Here we use

H D 0:724 GeV�2 ; T0 D 0:19 GeV ;

m0 D 0:398 GeV Œwhen B D .145MeV/4� ;
(27.46)

where the value of m0 lies as expected between m  and mN [.m mN/
1=2 D

0:36GeV].
The critical curve limits the hadron gas phase. By approaching it, all hadrons

dissolve into a giant cluster, which is not in our opinion a hadron solid [14]. We
would prefer to identify it with a quark-gluon plasma. Indeed, as the energy density
along the critical curve is constant (D 4B), the critical curve can be attained
and, if the energy density becomes > 4B, we enter into a region which cannot
be described without making assumptions about the inner structure and dynamics
of the ‘elementary particles’ fmb; gbg—here pions and nucleons—entering into the
input function '.ˇ; �/. Considering pions and nucleons as quark-gluon bags leads
naturally to this interpretation.

27.4 The Quark–Gluon Phase

We now turn to the discussion of the region of the strongly interacting matter in
which the energy density would be equal to or higher than 4B. As a basic postulate,
we will assume that it consists of —relatively weakly—interacting quarks. To begin
with, only u and d flavours will be considered as they can easily be copiously
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produced at T & 50MeV. Again the aim is to derive the grand partition function
Z. This is a standard exercise. For the massless quark Fermi gas up to first order in
the interaction [1, 2, 12], the result is

ln Zq.ˇ; �/ D 8V

6�2
ˇ�3

"�
1� 2˛s

�

��
1

4
ln4 �q C �2

2
ln2 �q

�
C
�
1� 50

21

˛s

�

�
7�4

60

#
;

(27.47)

valid in the limit mq < T ln�q.
Here g D .2sC 1/.2I C 1/C D 12 counts the number of the components of the

quark gas, and �q is the fugacity related to the quark number. As each quark has
baryon number 1/3, we find

�3q D � D e�=T ; (27.48)

where as before � allows for conservation of the baryon number. Consequently,

3�q D � : (27.49)

The glue contribution is

ln Zg.ˇ; �/ D V
8�2

45
ˇ�3

�
1 � 15

4

˛s

�

�
: (27.50)

We notice the two relevant differences with the photon gas:

• The occurrence of the factor eight associated with the number of gluons.
• The glue–glue interaction as gluons carry colour charge.

Finally, let us introduce the vacuum term, which accounts for the fact that the
perturbative vacuum is an excited state of the ‘true’ vacuum which has been
renormalized to have a vanishing thermodynamic potential,˝ D �ˇ�1 ln Z. Hence
in the perturbative vacuum,

ln Zvac D �ˇBV : (27.51)

This leads to the required positive energy density B within the volume occupied
by the coloured quarks and gluons and to a negative pressure on the surface of this
region. At this stage, this term is entirely phenomenological, as discussed above. The
equations of state for the quark-gluon plasma are easily obtained by differentiating

ln Z D ln Zq C ln Zg C ln Zvac (27.52)
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with respect to ˇ, �, and V . The baryon number density, energy, and pressure are
respectively:

� D 1

V
�
@

@�
ln Z D 2T3

�2

�
1 � 2˛s

�

��
1

34
ln3 �C �2

9
ln�

�
; (27.53)
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�B : (27.55)

Let us first note that, for T � � and P D 0, the baryon chemical potential tends to

�BD 3�q �! 3B1=4

�
2�2

.1 � 2˛s=�/

�1=4
D 1010 MeV ; ˛sD 1=2 ; B1=4D 145 MeV ;

(27.56)

which assures us that interacting cold quark matter is an excited state of nuclear
matter. We have assumed that, except for T, there is no relevant dimensional
parameter, e.g., quark mass mq or the quantity 
 which enters into the running
coupling constant ˛s.q2/. Therefore the relativistic relation between the energy
density and pressure, viz., " �B D 3.PCB/, is preserved, which leads to

P D 1

3
." � 4B/ ; (27.57)

a relation we have used occasionally before [see Eq. (27.10)].
From Eq. (27.57), it follows that, when the pressure vanishes, the energy density

is 4B, independent of the values of� and T which fix the line P D 0. This behaviour
is consistent with the hadronic gas phase. This may be used as a reason to choose
the parameters of both phases in such a way that the two lines P D 0 coincide. We
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will return to this point again below. For P > 0, we have " > 4B. Recall that, in the
hadronic gas, we had 0 < " < 4B. Thus, above the critical curve of the �;T plane,
we have the quark-gluon plasma exposed to an external force.

In order to obtain an idea of the form of the P D 0 critical curve in the �;T plane
for the quark-gluon plasma, we rewrite Eq. (27.55) using Eqs. (27.48) and (27.49)
for P D 0:

B D 1 � 2˛s=�

162�2



�2 C .3�T/2

�2 C T4�2

45

�
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�
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3

˛s

�

�
C 8

�
1 � 15

4

˛s

�

��
:

(27.58)

Here, the last term is the glue pressure contribution. (If the true vacuum structure
is determined by the glue–glue interaction, then this term could be modified
significantly.) We find that the greatest lower bound on temperature Tq at � D 0

is about

Tq �B1=4 � 145–190 MeV : (27.59)

This result can be considered to be correct to within 20 %. Its order of magnitude
is as expected. Taking Eq. (27.58) as it is, we find for ˛s D 1=2, Tq D 0:88B1=4.
Omitting the gluon contribution to the pressure, we find Tq D 0:9B1=4. It is quite
likely that, with the proper treatment of the glue field and the plasma corrections,
and with larger B1=4 � 190MeV, the desired value of Tq D T0 corresponding to
the statistical bootstrap choice will follow. Furthermore, allowing some reasonable
T; � dependence of ˛s, we can then easily obtain an agreement between the critical
curves.

However, it is not necessary for the two critical curves to coincide, even though
this would be preferable. As the quark plasma is the phase into which individual
hadrons dissolve, it is sufficient if the quark plasma pressure vanishes within the
boundary set for non-vanishing positive pressure of the hadronic gas. It is quite
satisfactory for the theoretical development that this is the case. In Fig. 27.1a, a
qualitative picture of the two P D 0 lines is shown in the �;T plane. Along the
dotted straight line at constant temperature, we show in Fig. 27.1b the pressure as
a function of the volume (a P;V diagram). The volume is obtained by inverting the
baryon density at constant fixed baryon number:

V D hbi
�
: (27.60)

The behaviour of P (V;T D const.) for the hadronic gas phase is as described before
in the statistical bootstrap model. For large volumes, we see that P falls with rising
V . However, when hadrons get close to each other so that they form larger and larger
lumps, the pressure drops rapidly to zero. The hadronic gas becomes a state of few
composite clusters (internally already consisting of the quark plasma). The second
branch of the P (V;T D const.) line meets the first one at a certain volume V D Vm.
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Fig. 27.1 (a) The critical curves (P D 0) of the two models in the T; � plane (qualitatively).
The region below the full line is described by the statistical bootstrap model and the region above
the broken line by the quark-gluon plasma. The critical curves can be made to coincide. (b) P;V
diagram (qualitative) of the phase transition (hadron gas to quark-gluon plasma) along the broken
line T D const. of (a). The coexistence region is found from the usual Maxwell construction (the
shaded areas being equal)

The phase transition occurs for T D const. in Fig. 27.1b at a vapour pressure
Pv obtained from the conventional Maxwell construction: the shaded regions in
Fig. 27.1b are equal. Between the volumes V1 and V2, matter coexists in the
two phases with the relative fractions being determined by the magnitude of the
actual volume. This leads to the occurrence of a third region, viz., the coexistence
region of matter, in addition to the pure quark and hadron domains. For V < V1,
corresponding to � > �1 � 1=V1, all matter has gone into the quark plasma phase.

The dotted line in Fig. 27.1b encloses (qualitatively) the domain in which the
coexistence between the two phases of hadronic matter seems possible. We further
note that, at low temperatures T � 50MeV, the plasma and hadronic gas critical
curves meet each other in Fig. 27.1a. This is just the domain where, at present, our
description of the hadronic gas fails, while the quark-gluon plasma also begins to
suffer from infrared difficulties. Both approaches have a very limited validity in this
domain.

The qualitative discussion presented above can be easily supplemented with
quantitative results. But first we turn our attention to the modifications forced
onto this simple picture by the experimental circumstances in high energy nuclear
collisions.
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27.5 Nuclear Collisions and Inclusive Particle Spectra

We assume that in relativistic collisions triggered to small impact parameters by
high multiplicities and absence of projectile fragments [19], a hot central fireball of
hadronic matter can be produced. We are aware of the whole problematic connected
with such an idealization. A proper treatment should include collective motions
and distribution of collective velocities, local temperatures, and so on [20], as
explained in the preceding Chapter 26 by R. Hagedorn [10]. Triggering for high
multiplicities hopefully eliminates some of the complications. In nearly symmetric
collisions (projectile and target nuclei are similar), we can argue that the numbers of
participants in the centre of mass of the fireball originating in the projectile or target
are the same. Therefore, it is irrelevant how many nucleons do form the fireball—
and the above symmetry argument leads, in a straightforward way, to a formula for
the centre of mass energy per participating nucleon:

U WD Ec:m:

A
D mN

s

1C Ek;lab=A

2mN
; (27.61)

where Ek;lab=A is the projectile kinetic energy per nucleon in the laboratory frame.
While the fireball changes its baryon density and chemical composition ( Cp$ �,
etc.) during its lifetime through a change in temperature and chemical potential, the
conservation of energy and baryon number assures us that U in Eq. (27.61) remains
constant, assuming that the influence on U of pre-equilibrium emission of hadrons
from the fireball is negligible. As U is the total energy per baryon available, we
can, supposing that kinetic and chemical equilibrium have been reached, set it equal
to the ratio of thermodynamic expectation values of the total energy and baryon
number:

U D hEihbi D
E.ˇ; �/

�.ˇ; �/
: (27.62)

Thus we see that, through Eq. (27.62), the experimental value of U in Eq. (27.61)
fixes a relation between allowable values of ˇ; � : the available excitation energy
defines the temperature and the chemical composition of hadronic fireballs. In
Fig. 27.2a, b, these paths are shown for a choice of kinetic energies Ek;lab=A in the
�;T plane and in the �;T plane, respectively. In both cases, only the hadronic gas
domain is shown. We wish to note several features of the curves shown in Fig. 27.2
that will be relevant in later considerations:

1. Beginning at the critical curve, the chemical potential first drops rapidly when
T decreases and then rises slowly as T decreases further (Fig. 27.2a). This cor-
responds to a monotonically falling baryon density with decreasing temperature
(Fig. 27.2b), but implies that, in the initial expansion phase of the fireball, the
chemical composition changes more rapidly than the temperature.
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Fig. 27.2 (a) The critical curve of hadron matter (bootstrap), together with some ‘cooling curves’
in the T; � plane. While the system cools down along these lines, it emits particles. When all
particles have become free, it comes to rest on some point on these curves (‘freeze out’). In the
shaded region, our approach may be invalid. (b) The critical curve of hadron matter (bootstrap),
together with some ‘cooling curves’ [same energy as in (a)] in the variables T and �=�0 D ratio
of baryon number density to normal nuclear baryon number density. In the shaded region, our
approach may be invalid

2. The baryon density in Fig. 27.2b is of the order of 1–1.5 of normal nuclear
density. This is a consequence of the choice of B1=4 D 145MeV. Were B three
times as large, i.e., B1=4 D 190MeV, which is so far not excluded, then the
baryon densities in this figure would triple to 3–5�0. Furthermore, we observe
that, along the critical curve of the hadronic gas, the baryon density falls with
rising temperature. This is easily understood as, at higher temperature, more
volume is taken up by the numerous mesons.

3. Inspecting Fig. 27.2b, we see that, at given U, the temperatures at the critical
curve and those at about �0=2 differ little (10 %) for low U, but more significantly
for large U. Thus, highly excited fireballs cool down more before dissociation
(‘freeze out’). As particles are emitted all the time while the fireball cools down
along the lines of Fig. 27.2, they carry kinetic energies related to various different
temperatures. The inclusive single particle momentum distribution will yield
only averages along these cooling lines.

Another remark which does not follow from the curves shown is:

4. Below about 1.8 GeV, an important portion of the total energy is in the collective
(hydrodynamical) motion of hadronic matter, whence the cooling curves at
constant excitation energy do not properly describe the evolution of the fireball.

Calculations of this kind can also be carried out for the quark plasma. They are, at
present, uncertain due to the unknown values of ˛s and B1=4. Fortunately, there is
one particular property of the equation of state of the quark-gluon plasma that we



27 Extreme States of Nuclear Matter: 1980 363

can easily exploit. Combining Eq. (27.57) with Eq. (27.62), we obtain

P D 1

3
.U� � 4B/ : (27.63)

Thus, for a given U (the available energy per baryon in a heavy ion collision),
Eq. (27.63) describes the pressure–volume (� 1=�) relation. By choosing to
measure P in units of B and � in units of normal nuclear density �0 D 0:14=fm3,
we find

P

B
D 4

3

�
�

U

mN

�

�0
� 1

�
; (27.64)

with

� WD mN�0

4B
D 0:56 ; B1=4 D 145MeV ; �0 D 0:14=fm3 :

Here, � is the ratio of the energy density of normal nuclei ("N D mN�0) and of quark
matter or of a quark bag ("q D 4B). In Fig. 27.3a, this relation is shown for three
projectile energies: Ek;lab=A D 1:80GeV, 3.965 GeV, and 5.914 GeV, corresponding
to U D 1:314GeV, 1.656 GeV, and 1.913 GeV, respectively. We observe that, even
at the lowest energy shown, the quark pressure is zero near the baryon density
corresponding to 1.3 normal nuclear density, given the current value of B.

Before discussing this point further, we note that the hadronic gas branches of
the curves in Fig. 27.3 show a quite similar behaviour to that shown at constant
temperature in Fig. 27.1b. Remarkably enough, the two branches meet each other

Fig. 27.3 (a) P;V diagram of ‘cooling curves’ belonging to different kinetic laboratory energies
per nucleon: (1) 1.8 GeV, (2) 3.965 GeV, (3) 5.914 GeV. In the history of a collision, the system
comes down the quark lines and jumps somewhere over to the hadron curves (Maxwell). Broken
lines show the diverging pressure of pointlike bootstrap hadrons. (b) The total specific entropy per
baryon in the hadronic gas phase. Same energies per nucleon as in (a) and a fourth value 1.07 GeV
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at P D 0, since both have the same energy density " D 4B and therefore V.P D
0/ � 1=� D U=" D U=4B. However, what we cannot see by inspecting Fig. 27.3
is that there will be a discontinuity in the variables � and T at this point, except if
parameters are chosen so that the critical curves of the two phases coincide. Indeed,
near to P D 0, the results shown in Fig. 27.3a should be replaced by points obtained
from the Maxwell construction. The pressure in a nuclear collision will never fall to
zero. It will correspond to the momentary vapour pressure of the order of 0:2B as
the phase change occurs.

A further aspect of the equations of state for the hadronic gas is also illustrated in
Fig. 27.3a. Had we ignored the finite size of hadrons (one of the van der Waals
effects) in the hadron gas phase then, as shown by the dash-dotted lines, the
phase change could never occur because the point particle pressure would diverge
where the quark pressure vanishes. In our opinion, one cannot say it often enough:
inclusion of the finite hadronic size and of the finite temperature when considering
the phase transition to quark plasma lowers the relevant baryon density (from 8–
14�0 for cold point-nucleon matter) to 1–5�0 (depending on the choice of B) in
2–5 GeV/A nuclear collisions [21].

The physical picture underlying our discussion is an explosion of the fireball into
vacuum with little energy being converted into collective motion, e.g., hydrodynam-
ical flow, or being taken away by fast pre-hadronization particle emission. Thus the
conserved internal excitation energy can only be shifted between thermal (kinetic)
and chemical excitations of matter. ‘Cooling’ thus really means that, during the
explosion, the thermal energy is mostly convered into chemical energy, e.g., pions
are produced.

While it is at present hard to judge the precise amount of expected deviation
from the cooling curves shown in Fig. 25.3, it is possible to show that they are
entirely inconsistent with the notion of reversible adiabatic, i.e., entropy conserving,
expansion. As the expansion proceeds along U D const. lines, we can compute
the entropy per participating baryon using Eqs. (27.38) and (27.39), and we find a
significant growth of total entropy. As shown in Fig. 27.3b, the entropy rises initially
in the dense phase of the matter by as much as 50–100% due to the pion production
and resonance decay. Amusingly enough, as the newly produced entropy is carried
mostly by pions, one will find that the entropy carried by protons remains constant.
With this remarkable behaviour of the entropy, we are in a certain sense, victims
of our elaborate theory. Had we used, e.g., an ideal gas of Fermi nucleons, then
the expansion would seem to be entropy conserving, as pion production and other
chemistry were forgotten. Our fireballs have no tendency to expand reversibly and
adiabatically, as many reaction channels are open. A more complete discussion of
the entropy puzzle can be found in [1].

Inspecting Fig. 27.2 again, it seems that a possible test of the equations of state for
the hadronic gas consists in measuring the temperature in the hot fireball zone, and
doing this as a function of the nuclear collision energy. The plausible assumption
made is that the fireball follows the ‘cooling’ lines shown in Fig. 27.2 until final
dissociation into hadrons. This presupposes that the surface emission of hadrons
during the expansion of the fireball does not significantly alter the available energy
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per baryon. This is more likely true for sufficiently large fireballs. For small ones,
pion emission by the surface may influence the energy balance. As the fireball
expands, the temperature falls and the chemical composition changes. The hadronic
clusters dissociate and more and more hadrons are to be found in the ‘elementary’
form of a nucleon or a pion. Their kinetic energies are reminiscent of the temperature
found at each phase of the expansion.

To compute the experimentally observable final temperature [1, 13], we shall
argue that a time average must be performed along the cooling curves. Not knowing
the reaction mechanisms too well, we assume that the temperature decreases
approximately linearly with the time in the significant expansion phase. We further
have to allow that a fraction of particles emitted can be reabsorbed in the hadronic
cluster. This is a geometric problem and, in a first approximation, the ratio of the
available volume � to the external volume Vex is the probability that an emitted
particle not be reabsorbed, i.e., that it can escape:

Resc D �

Vex
D 1 � ".ˇ; �/

4B
: (27.65)

The relative emission rate is just the integrated momentum spectrum

Remis D
Z

d3p

.2�/3
e�
p

p2Cm2=TC�=T D m2T

2�2
K2.m=T/e�=T : (27.66)

The chemical potential acts only for nucleons. In the case of pions, it has to be
dropped from the above expression. For the mean temperature, we thus find

hTi D

Z

c
RescRemisTdT

Z

c
RescRemisdT

; (27.67)

where the subscript c on the integral indicates here a line integral along that
particular cooling curve in Fig. 27.2 which belongs to the energy per baryon fixed
by the experimentalist.

In practice, the temperature is most reliably measured through the measurement
of mean transverse momenta of the particles. It may be more practical therefore to
calculate the average transverse momentum of the emitted particles. In principle, to
obtain this result we have to perform a similar averaging to the one above. For the
average transverse momentum at given T; �, we find [8]

hp?.m;T; �/ip D

Z
p?e�

p
p2Cm2��/=Td3p

Z
e�
p

p2Cm2��/=Td3p
D
p
�mT=2K5=2.m=T/e�=T

K2.m=T/e�=T
:

(27.68)
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The average over the cooling curve is then

˝hp?.m;T; �/ip
˛
c D

Z

c

�

Vex
T3=2

p
�m=2K5=2.m=T/e�=TdT

Z

c

�

Vex
TK2.m=T/e�=TdT

: (27.69)

We did verify numerically that the order of averages does not matter:

˝
p?.m; hTic; �/

˛
p
� ˝hp?.m;T; �/ip

˛
c ; (27.70)

which shows that the mean transverse momentum is also the simplest (and safest)
method of determining the average temperature (indeed better than fitting ad hoc
exponential type functions to p? distributions).

In the presented calculations, we chose the bag constant B D .145 MeV/4, but
we now believe that a larger B should be used. As a consequence of our choice and
the measured pion temperature of hTiex

  D 140MeV at highest ISR energies, we
have to choose the constant H such that T0 D 190MeV [see Eq. (27.46)].

The average temperature, as a function of the range of integration over T, reaches
different limiting values for different particles. The limiting value obtained thus
is the observable ‘average temperature’ of the debris of the interaction, while the
initial temperature Tcr at given Ek;lab (full line in Fig. 27.4) is difficult to observe.
When integrating along the cooling line as in Eq. (27.67), we can easily, at each
point, determine the average hadronic cluster mass. The integration for protons is
interrupted (protons are ‘frozen out’) when the average cluster mass is about half the
nucleon isobar mass. We have also considered baryon density dependent freeze-out,
but such a procedure depends strongly on the unreliable value of B.

Fig. 27.4 Mean temperatures for nucleons and pions together with the critical temperature
belonging to the point where the ‘cooling curves’ start off the critical curve (see Fig. 27.2a). The
mean temperatures are obtained by integrating along the cooling curves. Note that TN is always
greater than T 
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Fig. 27.5 Mean transverse
momenta of nucleons and
pions found by integrating
along the ‘cooling curves’

Our choice of the freeze-out condition was made in such a way that the nucleon
temperature at Ek;lab=A D 1:8GeV is about 120 MeV. The model dependence of our
freeze-out introduces an uncertainty of several MeV in the average temperature. In
Fig. 27.4, the pion and nucleon average temperatures are shown as a function of the
heavy ion kinetic energy. Two effects contributed to the difference between the  
and N temperatures:

1. The particular shape of the cooling curves (Fig. 27.2a). The chemical potential
drops rapidly from the critical curve, thereby damping relative baryon emission
at lower T. Pions, which do not feel the baryon chemical potential, continue being
created also at lower temperatures.

2. The freeze-out of baryons occurs earlier than the freeze-out of pions.

A third effect has been so far omitted—the emission of pions from two-body decay
of long-lived resonances [1] would lead to an effective temperature which is lower
in nuclear collisions.

In Fig. 27.5, we show the dependence of the average transverse momenta of pions
and nucleons on the kinetic energy of the heavy ion projectiles.

27.6 Strangeness in Heavy Ion Collisions

From the averaging process described here, we have learned that the temperatures
and transverse momenta of particles originating in the hot fireballs are more
reminiscent of the entire history of the fireball expansion than of the initial hot
compressed state, perhaps present in the form of quark matter. We may generalize
this result and then claim that most properties of inclusive spectra are reminiscent
of the equations of state of the hadronic gas phase and that the memory of the initial
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dense state is lost during the expansion of the fireballs as the hadronic gas rescatters
many times while it evolves into the final kinetic and chemical equilibrium state.

In order to observe properties of quark-gluon plasma, we must design a ther-
mometer, an isolated degree of freedom weakly coupled to the hadronic matter.
Nature has, in principle (but not in practice) provided several such thermometers:
leptons and heavy flavours of quarks. We would like to point here to a particular
phenomenon perhaps quite uniquely characteristic of quark matter. First we note
that, at a given temperature, the quark-gluon plasma will contain an equal number
of strange (s) quarks and antistrange (s) quarks, naturally assuming that the
hadronic collision time is much too short to allow for light flavour weak interaction
conversion to strangeness. Thus, assuming equilibrium in the quark plasma, we find
the density of the strange quarks to be (two spins and three colours)

s

V
D s

V
D 6

Z
d3p

.2�/3
e�pp2Cm2s=T D 3Tm2

s

�2
K2.ms=T/ ; (27.71)

neglecting for the time being the perturbative corrections and, of course, ignoring
weak decays. As the mass ms of the strange quarks in the perturbative vacuum
is believed to be of the order of 280–300 MeV, the assumption of equilibrium for
ms=T � 2may indeed be correct. In Eq. (27.71), we were able to use the Boltzmann
distribution again, as the density of strangeness is relatively low. Similarly, there is
a certain light antiquark density (q stands for either u or d):

q

V
D 6

Z
d3p

.2�/3
e�jpj=T��q=T D e��q=TT3

6

�2
; (27.72)

where the quark chemical potential is �q D �=3, as given by Eq. (27.49). This
exponent suppresses the qq pair production.

What we intend to show is that there are many more s quarks than antiquarks of
each light flavour. Indeed,

s

q
D 1

2

�ms

T

�2
K2
�ms

T

�
e�=3T : (27.73)

The function x2K2.x/ is, for example, tabulated in [22]. For x D ms=T between
1.5 and 2, it varies between 1.3 and 1. Thus, we almost always have more s than q
quarks and, in many cases of interest, s=q � 5. As �! 0, there are about as many
u and q quarks as there are s quarks.

When the quark matter dissociates into hadrons, some of the numerous s may,
instead of being bound in a qs kaon, enter into a q q s antibaryon and, in particular2,
a Λ or Σ0. The probability for this process seems to be comparable to the similar
one for the production of antinucleons by the antiquarks present in the plasma.

2Σ0 decays into Λ by emitting a photon and is always counted as part of a Λ abundance.
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What is particularly noteworthy about the s-carrying antibaryons is that they can
conventionally only be produced in direct pair production reactions. Up to about
Ek;lab=A D 3:5GeV, this process is very strongly suppressed by energy–momentum
conservation because, for free pp collisions, the threshold is at about 7 GeV. We
would thus like to argue that a study of the Λ and Σ0 in nuclear collisions for
2 < Ek;lab=A < 4GeV could shed light on the early stages of the nuclear collisions
in which quark matter may be formed.

Let us mention here another effect of importance in this context: the production
rate of a pair of particles with a conserved quantum number like strangeness will
usually be suppressed by the Boltzmann factor e�2m=T , rather than a factor e�m=T

as is the case in thermomechanical equilibrium (see, for example, the addendum
in [8]). As relativistic nuclear collisions are just on the borderline between those
two limiting cases, it is important when considering the yield of strange particles to
understand the transition between them. We will now show how one can describe
these different cases in a unified statistical description [23].

As we have already implicitly discussed [see Eq. (27.13)], the logarithm of the
grand partition function Z is a sum over all different particle configurations, e.g.,
expressed with the help of the mass spectrum. Hence, we can now concentrate in
particular on that part of ln Z which is exclusively associated with the strangeness.

As the temperatures of interest to us and which allow appreciable strangeness
production are at the same time high enough to prevent the strange particles
from being thermodynamically degenerate, we can restrict ourselves again to the
discussion of Boltzmann statistics only.

The contribution to Z of a state with k strange particles is

Zk D 1

kŠ

�X

s

Zs
I .T;V/

�k

; (27.74)

where the one-particle function Z1 for a particle of mass ms is given in Eq. (27.17).
To include both particles and antiparticles as two thermodynamically independent
phases in Eq. (27.74), the sum over s in Eq. (27.74) must include them both. As the
quantum numbers of particles (p) and antiparticles (a) must always be present with
exactly the same total number, not each term in Eq. (27.74) can contribute. Only
when n D k=2 D number of particles = number of antiparticles is exactly fulfilled
do we have a physical state. Hence,

Zpair
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.2n/Š

�
2n
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��X
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Z
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1

�n�X

sa

Zsa
1

�n

: (27.75)
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We now introduce the fugacity factor f n to be able to count the number of strange
pairs present. Allowing an arbitrary number of pairs to be produced, we obtain

Zs.ˇ;VI f / D
1X
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f n
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�X
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Z
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where I0 is the modified Bessel function and
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We have to maintain the difference between the particles (p) and antiparticles (a), as
in nuclear collisions the symmetry is broken by the presence of baryons and there
is an associated need for a baryon fugacity (chemical potential �) that controls the
baryon number. We obtain

Zp;a
1 WD

X

sp;a

Z
sp;a

1 D
VT3

2�2

n
2W.xK/C 2e˙�=T



W.xΛ/C 3W.xΣ/

�o
; (27.78)

for particles (C�) and antiparticles (��), where W.x/ D x2K2.x/, xi D mi=T, and
all kaons and hyperons are counted. In the quark phase, we have

Zp;a
1;q D

VT3

2�2

h
6 e˙�=3TW.xs/

i
; (27.79)

with Txs D ms � 280MeV. We note in passing that the baryon chemical potential
cancels out in y of Eq. (27.77) when Eq. (27.79) is inserted in the quark phase
[compare with Eq. (27.71)].

By differentiating ln Zs of Eq. (27.76) with respect to f , we find the strangeness
number present at given T and V :

hnis D f
@

@f
ln Zs

ˇ̌
ˇ
f D1 D

I1.
p
4y/

I0.
p
4y/

p
y : (27.80)

For large y, that is, at given T for large volume V , we find hnis D py � e�m=T ,
as expected. For small y, we find hnis D y � e�2m=T . In Fig. 27.6, we show the
dependence of the quenching factor I1=I0 D � as a function of the volume V
measured in units of Vh D 4�=3 fm3 for a typical set of parameters: T D 150,
� D 550MeV (hadronic gas phase).

The following observations follow from inspection of Fig. 27.6:

1. The strangeness yield is a qualitative measure of the hadronic volume in
thermodynamic equilibrium.
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Fig. 27.6 The quenching factor for strangeness production as a function of the active volume
V=Vh, where Vh D 4�=3 fm3, the hadron curve was obtained for baryochemical potential � D
550MeV

2. Total strangeness yield is not an indicator of the phase transition to quark plasma,
as the enhancement (

p
�q=� D 1:25) in yield can be reinterpreted as being due

to a change in hadronic volume.
3. We can expect that, in nuclear collisions, the active volume will be sufficiently

large to allow the strangeness yield to correspond to that of ‘infinite’ volume
for reactions triggered on ‘central collisions’. Hence, e.g., Λ production rate will
significantly exceed that found in pp collisions.

Our conclusions about the significance of Λ as an indicator of the phase transition
to quark plasma remain valid as the production of Λ in the hadronic gas phase will
only be possible in the very first stages of the nuclear collisions, if sufficient centre
of mass energy is available.

27.7 Summary

Our aim has been to obtain a description of hadronic matter valid for high internal
excitations. By postulating the kinetic and chemical equilibrium, we have been
able to develop a thermodynamic description valid for high temperatures and
different chemical compositions. In our work we have found two physically different
domains: firstly, the hadronic gas phase, in which individual hadrons can exist as
separate entities, but are sometimes combined into larger hadronic clusters, while in
the second domain, individual hadrons dissolve into one large cluster consisting of
hadronic constituents, viz., the quark-gluon plasma.

In order to obtain a theoretical description of both phases, we have used
some ‘common’ knowledge and plausible interpretations of currently available
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experimental observations. In particular, in the case of hadronic gas, we have
completely abandoned a more conventional Lagrangian approach in favour of a
semi-phenomenological statistical bootstrap model of hadronic matter that incorpo-
rates those properties of hadronic interaction that are, in our opinion, most important
in nuclear collisions.

In particular, the attractive interactions are included through the rich, expo-
nentially growing hadronic mass spectrum �.m2; b/, while the introduction of the
finite volume of each hadron is responsible for an effective short-range repulsion.
Aside from these manifestations of strong interactions, we only satisfy the usual
conservation laws of energy, momentum, and baryon number. We neglect quantum
statistics since quantitative study has revealed that this is allowed above T �
50MeV. But we allow particle production, which introduces a quantum physical
aspect into the otherwise ‘classical’ theory of Boltzmann particles.

Our approach leads us to the equations of state of hadronic matter which reflect
what we have included in our considerations. It is the quantitative nature of our work
that allows a detailed comparison with experiment. This work has just begun and it
is too early to say if the features of strong interactions that we have chosen to include
in our considerations are the most relevant ones. It is important to observe that the
currently predicted pion and nucleon mean transverse momenta and temperatures
show the required substantial rise (see Fig. 27.5) as required by the experimental
results available at Ek;lab=A D 2GeV (BEVALAC, see [19]) and at 1,000 GeV (ISR,
see [18]). Further comparisons involving, in particular, particle multiplicities and
strangeness production are under consideration.

We also mention the internal theoretical consistency of our two-fold approach.
With the proper interpretation, the statistical bootstrap leads us, in a straightforward
fashion, to the postulate of a phase transition to the quark-gluon plasma. This
second phase is treated by a quite different method. In addition to the standard
Lagrangian quantum field theory of weakly interacting particles at finite temperature
and density, we also introduce the phenomenological vacuum pressure and energy
densityB.

Perhaps the most interesting aspect of our work is the realization that the
transition to quark matter will occur at much lower baryon density for highly excited
hadronic matter than for matter in the ground state (T D 0). The precise baryon
density of the phase transition depends somewhat on the bag constant, but we
estimate it to be at about 2–4�0 at T D 150MeV. The detailed study of the different
aspects of this phase transition, as well as of possible characteristic signatures of
quark matter, must still be carried out. We have given here only a very preliminary
report on the status of our present understanding.

We believe that the occurrence of the quark plasma phase is observable and
we have proposed therefore a measurement of the NΛ=p relative yield between 2
and 10 GeV/N kinetic energies. In the quark plasma phase, we expect a significant
enhancement of NΛ production which will most likely be visible in the NΛ=p
relative rate.
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Chapter 28
Hot Quark Plasma in ISR Nuclear Collisions:
January 1981

Johann Rafelski

Abstract In 1980/81 the ISR community of Physicists at CERN was preparing
for a heavy ion experimental program. My lecture was moved-up from a later AA-
meeting after another speaker bowed-out from the ˛-meeting. Before describing my
presentation, I provide a few circumstantial details of potential interest.

An Invitation to ISR-discussion meeting at CERN read: Discussion Meeting
˛˛ and ˛p Interactions

ISR Amphitheatre
Thursday, 22 January 1981

14:00 hours

The purpose of this meeting is to review and discuss present information about
˛˛ and ˛p interactions following the analysis of the data collected during the runs
of July 1980. Whilst this meeting will focus on low p? physics another meeting,
scheduled for 19 February, will discuss large p? results.

Introductory talks will be given by1:

D. Lloyd-Owen (R210) on elastic scattering
T.J.M. Symons (R418) on elastic scattering
S. Frankel (R807) on inelastic interactions
R. Szwed (R418) on inelastic interactions at low p?
and
J. Rafelski (Frankfurt) who will review theoretical models2

This announcement is sent to contact persons only. Please post or circulate it. For
questions or comments, please contact M. Albrow (5924) or M. Jacob (2414).

1The Numeral in parentheses indicates the ISR experiment reference.
2I was invited as replacement for L. Bertocchi (CTP Trieste).
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DOI 10.1007/978-3-319-17545-4_28

375



376 J. Rafelski

Each introductory talk is scheduled to last about 30 min with ample time for dis-
cussion. The meeting is expected to be over by 18:00 and will include a coffee break.

Shortly after my lecture, I found in my CERN mailbox a note from Maurice
Jacob : Thank you for your beautiful talk. I think the meeting was quite lively and it
was good to give the field momentum.

I do hope that you can leave me something for the proceedings. At least your
�=T figure with an extensive caption and an explanation of the LBL/ISR behaviors
is almost a must. Can you leave me at least that before you depart.

I left a handwritten response before departing in early morning: This is for the
ISR meeting on 22 January, 1981; consult R. Hagedorn (2138) for unreadable words
and insertion of formulas. I never saw the ISR report, the following transcript is from
my own correspondence records.

Write-up for the ISR-report:
Hot Quark Plasma in ISR Nuclear Collisions

As nucleons consist of three quarks trapped in their perturbative vacuum domain,
there is a non-vanishing probability that in high energy heavy nuclear collisions
sufficient temperatures and compressions will be reached to form a quark gluon
plasma. The experiments currently in progress at LBL, Dubna and ISR may be
capable of producing this new form of matter.

The thermodynamic properties of a hadronic fireball created in such collisions are
best characterized by the following three parameters: Volume V , Temperature T and
the baryon chemical potential � that controls the baryon density in the fireball. In
the Fig. 28.1 a summary of the current qualitative knowledge about hadronic matter
is described. Further details can be found in [1, 2].

For relatively small temperatures, i.e. 50 < T < T0, hadronic matter will
consist of individual hadrons, mesons for small � and also nucleons brought into
the reaction for � � 500MeV. This part of the phase diagram is shown dashed in
Fig. 28.1. For � ! 1GeV and T ! 0 we enter the dark-shaded domain of normal
nuclear matter where effects other than those of interest here are relevant.

The phase transition from the hadronic gas to the quark-gluon plasma occurs
when the number of hadrons at a given temperature and chemical potential is so
large that their energy density corresponds to 4B, the value known from the quark
bag models. B is the energy density of the perturbative vacuum as compared with
the “true” vacuum state of QCD. At the same time Pvac D �B is the pressure
exercised by the true vacuum on the surface of the perturbative vacuum, balanced
by the pressure of the quark-gluon plasma at the phase transition line where the total
pressure of hadronic matter in comparison is small.

When the quark-gluon plasma is produced in nuclear collisions at some charac-
teristic temperature T and chemical potential �, it will expand against the vacuum
pressure. The conservation laws of total energy and baryon number introduce two
constraints between V; � and T of the fireballs as a function of time. Assuming
instantaneous thermal equilibrium, the fireballs can evolve only along the paths
shown in the �-T diagram. During this expansion, the entropy grows substantially.
We note that in particular at ISR energies only the emission of particles from the
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Fig. 28.1 See text; one non-explained item—a QGP fireball that equilibrates faster than it cools
and expands at a prescribed energy and baryon content has Tmax as shown on abscissa for ˛s D 0:6

fireballs that may lead to the high p? effects influence negligibly the energy and
baryon number balance. The same is true for the energy of radial expansion mode.

The understanding of the quark-gluon plasma is not complete at present, but
important qualitative insights can be gained by considering the effects of a Fermi-
Bose gas with interaction of order ˛s. Then at given collision energy at ISR, per
nucleon,

p
sNN=2 � 15GeV we find a relation

p
sNN D 2.�T/2

�

�
f .˛s/ � 1C NG

Nq

�
; (28.1)

which describes the initial quadratic rise of � as function of T of the ISR path shown
in Fig. 28.1.

As mentioned, the pressure is small and even vanishes at the phase boundary
which leads to the relation

T0 ' B1=4: (28.2)

Consequently at ISR energies the chemical potential at the phase transition, where
hadronization will occur, is

�cr D 2�2B1=2

p
sNN

� 20MeV: (28.3)

In this number we recognize the main difference to the LBL Bevalac energies which
lead to chemical potentials of the order and above 500 MeV at T � .2=3/T0, see
LBL path in [1].
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When the hadronization occurs, the entropy of the fireball with A D 4C 4

S D ln Z C E � �A

T
(28.4)

can be well approximated for ˛˛ ISR collisions as

S

A
D
p

sNN

2T0
� 100 (28.5)

given that T ln Z D PV ! 0 and � � ps. This is an extremely high entropy
per participating nucleon and it requires very high particle multiplicity by use
of Boltzmann’s relation S / ln W. Hence we are led to the conclusion that the
production of quark-gluon plasma at ISR must be characterized by very high
multiplicities. The mean transverse momenta of the hadrons produced will show the
known features of pp collisions as almost all particles are made in the final stages of
the fireball explosion when the transition to the hadronic gas phase occurs.

I do not doubt that important signatures of quark-gluon plasma will be found,
however we expect the relative particle yields and appearance of high p? particles
to be more valuable indicators, rather than the inclusive particle spectra. I am not yet
prepared to speculate further on possible characteristic features of the quark-gluon
plasma formation in ˛˛ collisions.

Finally let us stress the similarity of the physics at LBL-Bevalac and ISR, as
shown in Fig. 28.1, despite different domains explored in the �;T diagram and
different type of experiments. It could be therefore desirable to have at ISR data with
heavy nuclei (as compared with ˛’s) at perhaps somewhat lower

p
sNN. This would

close the gap between both available experiments, at the same time allowing for
higher collectivity (higher number of nucleons A) and thus a much larger probability
for production of the plasma.

I would like to thank R. Hagedorn for his interest, support and stimulating
discussions.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
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Chapter 29
Possible Experiments with Heavy Ions
at the PS/SPS: CERN SPC 1982

Johann Rafelski

Abstract I present the heavy ion program development at CERN, reproducing
much of the pivotal discussion at the 123th meeting of the CERN Scientific Policy
Committee (SPC), Geneva—21 and 22 June 1982, based on the Draft Minutes of
the meeting (CERN/SPC/0490/Draft, 1982) and related clarifications as marked.

29.1 The Participants

The CERN Scientific Policy Committee meeting in June 1982 brought together a
large invited group that included the international particle physics leadership.
Chairman: Prof. V.L. Telegdi Members:

Prof. I. Bergström Prof. N. Cabibbo Prof. P. Falk-vairant
Prof. S.L. Glashow Prof. E. Lohrmann Prof. L.B. Okun
Prof. D.H. Perkins Prof. Abdus Salam Prof. G. Salvini
Dr. G.H. Stafford Prof. W. Thirring Prof. K. Tittel
Dr. R. Turlay.

Ex Officio Members:
Prof. G. Bellettini, Chairman—ISR Committee
Prof. P.G. Hansen, Chairman—PS/SC Committee
Prof. J. Lefrançois, Chairman—SPS Experiments Committee
Dr. J.H. Mulvey Invited in his capacity as Chairman of ECFA

Also present:
Prof. K.O. Nielsen—Chairman of the Finance Committee
Prof. J.C. Kluyver
Prof. J. Lemonne

Editor of the SPC Protocol
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Prof. P. Olesen
Prof. A.C. Pappas

Former Members Invited:
Prof. E. Amaldi Prof. M. Conversi Prof. A.G. Ekspong
Prof. B. Hahn Prof. W. Jentschke Prof. A. Lehmann
Prof. L. Leprince-Ringuet Prof. P.T. Matthews Prof. W. Paul
Prof. F. Perrin Prof. A. Rousset Prof. S.A. Wouthuysen

CERN Officials: Prof. H. Schopper—CERN Director-General
Dr. G. Brianti—Technical Director
Dr. E. Gabathuler—Research Director
Prof. R. Klapisch—Research Director
Prof. E. Picasso—Director and LEP Project Leader
Invited: Dr. M. Jacob for the “Heavy Ion Collisions” item of the agenda

29.2 On Formation of QGP in Heavy Ion Collisions

Maurice Jacob begins his presentation at 11:20, 22 June, 1982.
“Heavy ion collisions offer the possibility to reach very high densities and very

high temperatures over extended domains, many times larger than the size of a single
hadron. The energy densities considered are of the order of 0.5–1.5 GeV/fm3 and
the relevant temperatures are in the 200 MeV range. The great interest of reaching
such conditions originates from recent developments in Quantum Chromodynamics,
QCD, which make it very plausible that, while color confinement should prevail
under standard circumstances, deconfinement should occur at sufficiently high
density and (or) sufficiently high temperature. Under such conditions a new phase
of matter, a quark-gluon plasma, is likely to exist. This phase should be viewed as
due to a coalescence, or perhaps a percolation, of hadrons into larger entities and
not as an actual separation of free quarks! . . .

“Over an extended volume where the required density or temperature conditions
would prevail, one expects that the properties of the physical vacuum would be
modified. While the normal vacuum excludes the gluon field, the color-equivalent of
the dielectric constant being zero (or practically zero), one would get a new vacuum
state where quarks and gluons could propagate while interacting perturbatively.

“The equivalent of the dielectric constant would now be unity. The required
conditions may be reached at high enough densities, hadrons being squeezed into
one another, or at high enough temperature, the calculation of the partition function
no longer favoring confining configurations whereby a color flux tube of fixed cross
section extends between two color sources. The temperature at which the phase
transition is expected to occur depends on the density, or on the quark chemical
potential. One may thus separate two phases, a hadron phase and a quark gluon
plasma, on a density-temperature diagram.. . .

“The presence of a phase transition could long be expected from phenomeno-
logical models with an exponentially increasing hadron spectrum. The limiting
Hagedorn temperature, obtained as the specific heat of the hadron gas diverges, can
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be interpreted as a critical temperature beyond which the relevant description should
be in terms of a quark-gluon plasma reaching eventually a Stephan-Boltzmann
behavior. The actual presence of a phase transition finds however its strongest
present support in lattice gauge calculations.. . .

“Granting the fact that phase transition(s) exist(s), the next question is to assess
whether or not the required conditions could be met in heavy ion collisions with
center-of-mass energy in excess of 10 GeV/nucleon. At present there also appears
to be a consensus that this is the case. . . .

“The expected mean energy density is of the order of 2 GeV/fm3 for the (most
favorable) case of head on U-U collisions and still of the order of 1.2 GeV/fm3 for
Fe-Fe collisions. This applies to the fragmentation region, considering the energy
trapped in what remains of the projectile or target nucleus just after the collision. . . .

“Granting the fact that a thermalized quark gluon plasma is formed during the
collision, it will very rapidly destroy itself through instabilities, expansion and
cooling. One should then watch for specific signals which could be associated with
its transient (but most interesting) presence. . . .

“Several signals have attracted particular attention.

1. One of them is provided by the prompt photon or lepton pairs radiated (a volume
effect!) by the thermalized plasma, . . .

2. Another interesting signal may be provided by strange particles originating
in relatively large number from the plasma, once it has reached chemical
equilibrium.

3. There may also be more violent effects, with abnormal density fluctuations in the
overall energy flow associated with secondaries.

4. Size and lifetime could be determined through pion/photon interferometry since
each violent event with head on collision could produce pions in the thousands!

29.3 Experimental Opportunities to Study QGP

At the recent Bielefeld workshop.
“. . . six working groups studied experimental questions from the point of view of

physics goals and their technical realization.. . .

1. The group convened by S. Nagamiya and H. Specht studied measurement of
inclusive particle distributions. It became clear that the desired measurements
were single particle spectra, not necessarily truly inclusive, but with various
triggers to select central collisions and those with large multiplicity or energy
deposit in the target.

From the physics side, it was established that a good way to investigate the
effects in the quark-gluon plasma such as the suppression of u-quarks and the
chemical equilibrium of s-quarks, should be to measure distributions of strange
particles, mesons and especially strange and multiply strange baryons and anti-
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baryons. . . . It was concluded that the presence of very high multiplicities does
not present a major obstacle to these experiments.

. . . It is certainly reasonable to expect to find many strange quarks (and some
charmed quarks) lodged in the fragments of the projectile. The large Lorentz
factor will then allow the use of beams similar to the existing hyperon beams
to provide momentum analyzed, mass and charge identified hypernuclei. There
should also be usable numbers of multiply strange hypernuclei. This is a radically
new approach to the study of these particles and should give rise to a major step
forward.

2. Experiments on correlations among a few particles were considered by the group
convened by I. Otterlund and H. Boggild. The idea here was to handle the high
multiplicities by using spectrometers with a solid angle just large enough to
cover the angles between two particles in the range of interest, but small enough
so that the number of particles to be measured is still close to that commonly
encountered.. . .

The topic of identical particle intensity interferometry by study of few particle
correlations was given special attention. This technique has already proved its
worth in nuclear collisions and is expected to be a major tool in high energy
nucleus-nucleus interactions. It is used to measure the size and shape of the
interaction volume,. . . .

This apparatus also seems suited for studies of V0’s. The group also designed
a special spectrometer to study photon correlations. This group devoted a
substantial effort to the study of various triggers to select central or peripheral
events, including measurement of the forward particles and a “plastic ball” type
of detector covering most of the solid angle of target fragmentation.

3. G. London and K. Nakai convened a group working on the production of leptons
and photons. They established that several distinct kinematic regions seemed
to be of interest. For intermediate and high mass muon pair production in
the projectile fragment region, they showed that an experiment using the NA3
apparatus at the SPS with small modification could be very effective. . . .

4. A combined group convened by C. Fabjan, H. Gutbrod, A. Sandoval and A.
Wagner studied colorimetric techniques and tracking devices in large solid
angle detectors. The beauty of energy flow measurements with calorimeters is
well recognized, but this group took the attitude that there would be powerful
arguments for an apparatus which could make nearly complete measurements on
an event by event basis and set out to investigate if it is technically feasible using
methods presently available.. . .

5. Another working group convened by M. Faessler and S. Frankel studied the case
of deuteron and alpha particle beams.. . .

6. A group convened by R. DeVries and H.G. Fischer worked on the subject of
peripheral interactions. A major part of their time was devoted to the study of the
experiments at Berkeley giving particles with very short interaction lengths . . . .
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“The large variety of experiments devised by the working group indicates a
need to run several experiments at one time. The intensity requirements of the
experiments are such that this should be possible. . . .

“Concluding this rapid survey of the physics of heavy ion collisions, one may say
that there is practically no doubt that a phase transition exists, even if the exact form
which it takes is not yet precisely known. There is also practically no doubt that the
energy density to be achieved in heavy ion collisions, with incident ion beams in the
200 GeV/nucleon energy range, should reach the critical value. . . .

29.4 Discussion on Relativistic Heavy Ion Collisions

The chairman, Prof. H. Schopper, thanked Maurice Jacob for his presentation, and
opened the discussion.

Replying to a question from Prof. P.T. Matthews, Maurice Jacob said that the
fundamental purpose of heavy-ion collision experiments was to study matter at
very high quark densities. It was thought that when such densities were created,
a new phase of matter appeared which would signal its existence by an anoma-
lous production of photons, lepton-pairs or strange particles. Heavy-ion collision
experiments would therefore be designed to investigate this anomalous production.
It was possible that even more peculiar effects could be associated with high quark
densities, but he had concentrated on the conservative ones which one could expect
to see from a blob of natter at a temperature of the order of 200 MeV. At this
energy the blob would radiate photons and its gluons would transform favorably
into pairs. Experiments would therefore be designed to observe and search for large
fluctuations in specific parameters. It was expected that the production mechanism
would show up clearly in heavy-ion collisions, whereas there was no evidence for,
and little hope to reach, such energy densities over an extended domain in proton-
nucleus collisions.

Prof. P.G. Hansen, PS/SC Committee Chair added that one of the essential
aspects of any experiment would be to study the question at different energies
to determine how much energy was required for the formation of quark-gluon
plasma, JR. In such experiments there were three essential variables: the target
mass, the projectile mass and the energy. Unfortunately, the projectile mass was not
available at all energy scales, and therefore, for the time being, only relatively light
projectiles at very high energies could be considered. This increased the importance
of repeating the experiment at different energies to ascertain whether the signature
variables showed any characteristic change which could indicate the existence of
the phase transition. It was in this context that the discussion centered on the use of
the PS as a step on the way to 200 GeV per nucleon.

Prof. D.H. Perkins observed that, as the atomic number of colliding ions
increased, there must be a critical point where plasma effects became important,
but it was difficult to see how this point could be determined owing to the large
energy density fluctuations.
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Maurice Jacob, replying, said that theoretical efforts were currently being
concentrated on obtaining mean values of energy densities which could be expected
in a collision of this kind. There were bound to be large fluctuations, and while there
was some information about fluctuations in pp, p-nucleus and ˛˛ collisions, as yet
there was no information on how significant these fluctuations could be in the case
of heavy-ion collisions. Information about such fluctuations was a very important
reason for experimentation and indeed, density fluctuations towards large values
were probably those needed for the phase transition to take place.

The chairman, Prof. H. Schopper pointed out that, with regard to the question of
particle signature, it should first be established in what rare fraction of cases, using
the standard theory, such phenomena would take place. It ought to be possible,
for example, to predict the probability that 1,000 pions would be produced at
the reference energies without invoking such phenomena as the phase transition
predicted by QCD.

Maurice Jacob replying, said that the standard theories would predict that the
mean multiplicity would rise from between A2=3 to A4=3 according to the model.
The observation of very large multiplicities, showing that a large amount of energy
could be found in excitation energy, could be considered as a necessary condition
for a phase transition.

Regarding fluctuations away from the mean, information was available in
the case of proton/proton collisions where the fluctuations had been very well
characterized in terms of the KNO distribution up to a certain value. Thereafter,
practically nothing was known about collisions with extremely high multiplicities
because they were so difficult to study. The results of the NA5 experiment had
emphasized this point, showing, for example, that, when looking for large amounts
of transverse energy, the production of a very large number of particles with medium
p? might prove to be a more frequent phenomenon than the production of a few
particles with large p? associated with jets.

Replying to questions from Prof. D.H. Perkins and the chairman, Prof. H.
Schopper, Maurice Jacob said that collisions with a projectile with a large atomic
number were required because the amount of deposited energy was proportional to
the number of nucleons in the incident nucleus. Estimates suggested that, in the most
optimistic case of head-on uranium/uranium collisions, energy densities of the order
of 2 GeV/fm3 would be obtained, whereas in the case of carbon/uranium collisions,
this figure would fall to 1 GeV/fm3.

Prof. G. Bellettini, ISR Committee Chairman, I observed that, not withstanding
the obvious advantages of heavy-ion collisions, it would be interesting to ascertain
experimentally whether anomalous phenomena could be observed with pp and/or
˛˛ collisions.

Replying to a question from Prof. E. Amaldi, Maurice Jacob said that, with
regard to the question of the time necessary for the plasma to achieve equilibrium, it
was expected that there was a chance that some thermalization would take place at
the level of the quarks and the gluons present in the plasma, many collisions having
time to take place.
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Replying to Prof. N. Cabibbo, Maurice Jacob said that the Helsinki group in
particular had estimated lepton pair production in detail. In accordance with the
standard thermodynamic formulae, the number of photons produced in the plasma
depended upon the charged-particle density and the temperature. Since this would
essentially be a volume effect, the larger the volume of the plasma the greater
would be the increase in photon production with respect to pions. Consequently,
the volume of the plasma was an important parameter to determine.

In reply to a question from Prof. A.G. Ekspong, about the anomalous effect
termed the anomalon, Maurice Jacob said that its interpretation as the decay of a
hyperfragment of a strange particle had now been rejected. Research at the Bevalac
at Berkeley had revealed that, when observed close to production, some fragments
seemed to have very large cross-sections for a given ionizing power, . . . . Purely
experimental problems should, however, not be underestimated.1

Replying to Dr R. Turlay, Maurice Jacob said that what was particularly new in
this type of physics was the expected production of lepton pairs at large x. If a new
state of matter existed, one could foresee that it would radiate lepton pairs and that
their momentum would correspond essentially to the global motion of the blob of
matter. Any experiment would therefore concentrate on looking for lepton pairs at
large x with a thermal-type mass distribution as opposed to the 1=m4 distribution for
the d=dm2 distribution, associated with the Drell-Yan theory with a concentration
at low x. One would expect to see a very sharp fall-off of the lepton-pair mass
spectrum as compared to the Drell-Yan spectrum.

Replying to a question from Prof. J. Lefrançois, SPS Experiments Chairman,
Maurice Jacob said that at 1 GeV/fm3 the temperature of the plasma would be too
low for significant production of charm and beauty particles.

In reply to a question from Prof. N. Cabibbo, Maurice Jacob said that the great
merit of the QCD calculation using the lattice over the Hagedorn model was that it
made direct exploration of the system possible over and beyond the phase transition,
whereas the phenomenological model had been based on a separate study of the
two phases. The two approaches were, however, complementary, in many respects.
What the experimenters wished to do with heavy-ion collision experiments was to
ascertain whether matter existed in a different form beyond the hadron gas.

The chairman, Prof. H. Schopper, in conclusion, said it was clear that any
discussion of heavy-ion collision experiments raised as many questions as it
attempted to resolve. However, before very long the Scientific Policy Committee
would have to address itself to the question of heavy-ion collision experiments in
a more formal way. When the proceedings of the Bielefeld Workshop had been

1An analysis offered by I. Otterlund a year later (lecture at the Sixth High Energy Heavy Ion Study,
Berkeley, 28 June–1 July 1983) has shown that the bias of human eye-based-analysis was the
source of the shortened reaction path observed; see also S.B. Beri et al. [Banaras-Chandigarh-
Jaipur-Jammu-Lund Collaboration], “A Search for Anomalous Fragments in 1:8A Gev 40Ar
Reactions in Nuclear Emulsions,” Phys. Rev. Lett. 54 (1985) 771. JR.
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published, the Committee would be in a position to brief itself more thoroughly in
order to formulate an appropriate recommendation.

The Committee took note of the report, and of the further explanations provided
by Maurice Jacob.

The chairman, Prof. H. Schopper, said that before concluding the proceedings
he wished to ask any of the former members of the Committee whether they had
any comments or statements of a general nature to make.

Prof. L. Leprince-Ringuet said that, although no longer directly associated with
the affairs of CERN, he nevertheless continued to follow its development with great
interest. In this respect, he particularly appreciated the opportunity afforded him by
this meeting of the Scientific Policy Committee to become acquainted with the latest
developments in particle physics research and to hear about the progress achieved
in specific projects.

In general terms, however, he was increasingly bewildered by the size and
complexity of CERN’s activities and of individual experiments, which could involve
hundreds of physicists and whose leaders were thus no longer experimentalists in the
true sense of the word but administrators. He was concerned that this preoccupation
with size and a concomitantly high degree of organization could have the effect
of reducing flexibility and the ability of scientists to maintain an open-minded
approach to the problems with which they were concerned.

Increasingly, it seemed, experimentalists were informed in advance of the phe-
nomena they would encounter. This elevation of the theorist to pre-eminence could
have the detrimental effect of reducing the receptiveness of the experimentalist to
the unexpected, weighed down as he was by the sheer volume of data to be analyzed.
It should never be forgotten that most of the major discoveries made in the field of
particle physics during the century had been unforeseen.

Prof. E. Amaldi said that while he did not share Leprince–Ringuet’s concern
that the size of experiments must necessarily limit their success, for he was certain
that new discoveries would emerge before long, he doubted whether a member of
a modern collaboration of, say, 250 physicists could derive as much pleasure and
satisfaction from an experiment as had physicists of his own generation.

On behalf of the Committee, the chairman, Prof. H. Schopper, expressed thanks
to all former members of the Scientific Policy Committee for their contributions
during the meeting, and to the three members now leaving the Committee—Prof. G.
Salvini, Dr. G.H. Stafford and Prof. W. Thirring—for their work.

The meeting ended at 13.15—after 1h 55 min mostly if not exclusively devoted
to the discussion of the future heavy ion program at CERN.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 30
What Happened to ‘Strangeness
in Quark-Gluon Plasma: 1982’

Johann Rafelski

Due to mishaps, the following manuscript Chap. 31 did not appear in the proceed-
ings of the QM2 meeting in Bielefeld, 10–14 May, 1982. It seems appropriate to
show in this volume how things worked and what obstacles needed to be overcome
in a new field of research that was recently born and rapidly advancing. The science
policy decisions to be taken meant that 1–2 weeks were important, while a document
could take as long as 4 weeks to travel between Geneva and Frankfurt.

The lectures given at the QM2 meeting play an important role in the report made
by Maurice Jacob on 22 June 1982 to the CERN Scientific Policy Committee, see
Chap. 29. Looking at the actual CERN SPC meeting protocol prepared the end of
June 1982, one sees that Maurice’s own QM2 contribution was not available but in
first typed draft, with hand-drawn figures.

The story of my displaced manuscript: I left it behind in the care of a trusted
student in Frankfurt, and I believed that my instructions were that upon final
corrections in one-two days my contribution would be sent straight to Maurice Jacob
at CERN. However, Mr. Günther Staadt felt uneasy submitting what I had not seen
and on Wednesday, 14 July, 1982, translated from German, he wrote:

Enclosed you will find, as desired, a copy of your typed and corrected work, “Strangeness
in Quark-Gluon-Plasma.” Everything here is in order. As soon as the fifth chapter of your
book is finished, I will send you a copy. I wish you a continued pleasant stay in America.

I was in Seattle. I reviewed the manuscript and after one small white-out change
I sent it off the same day to CERN, with the note to Maurice Jacob:

Dear Maurice, I hope that you can enclose this late manuscript, “Strangeness in Quark-
Gluon Plasma” into the proceedings of the Bielefeld meeting, Sincerely yours, Johann, PS
Till 13 August in Seattle, from Sept 4th at Frankfurt

J. Rafelski (�)
Department of Physics, The University of Arizona, Tucson, AZ 85721, USA
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After I was already back a letter from Maurice Jacob dated and stamped at CERN
on 12 August, 1982 arrived on 8 September, taking 4 weeks from Geneva to reach
my mail bin in Frankfurt:

Dear Johann, Thank you very much for your letter and your manuscript. However even
though your letter is dated “July” I received it only today (12 August, 1982) when
everything is already in Singapore.

Since the Bertocci’s session report was in an unsettled stage until the last minute I am
forwarding your paper to Helmut who had straightened out the matter after discussing things
with Bertocci. While there may still be time to include your contribution I am very much
afraid it could already be very – too – late.

I remember calling Bielefeld that day and talking to a secretary. She had the
contents of the book on her desk and informed me that my paper was not in
proceedings. This conference paper was half review of published work and in part
new and original with many ideas. This is a typical conference, and less typical
manuscript to be submitted to a refereed journal. So what was I to do? I gave a copy
of the manuscript to my friend John W. Clark who happened to visit just at the time
of the call to Bielefeld. On 4 October, 1982 he wrote back:

Dear Jan, I turned (2 copies of) your paper “Strangeness in Quark-Gluon Plasma” over
to Manuel de Llano, who will present it to the editor of KINAM. However, a cover letter
stating explicitly that the paper is submitted for publication in KINAM will be needed.
Please address the letter to . . .

After more lost mail (!) KINAM wrote on 2 March, 1983 by surface mail:

I am glad to inform you that your paper . . . has been recommended for publication after
revision. Please find enclosed the referee’s comments.

The request of the referee was justified: I had to either make this a review, or a
research paper. I hand-wrote a response on 4 May, 1983:

Regret that in view of the enclosed review I am unable to satisfy the demands of the referee
and withdraw the paper.

I presented the story as an anecdote when traveling in South Africa, and
found sympathetic ears. The submission letter sent on 11 May, 1983 from Cape
Town to Professor Chris Engelbrecht, the editor of the South African Journal
of Physics reads:

The enclosed manuscript ‘Strangeness in Quark-Gluon Plasma’ was prepared some months
ago with the intention that it should appear in proceedings of the Bielefeld Workshop,
as mentioned on the first page. Unfortunately, it had arrived too late to be included in
these proceedings. Aside from reviewing work published in Refs. 4, 11 (enclosed for your
information) it also contains quantitative discussion of strangeness as a signal for plasma
formation (Section 4) not available elsewhere. I would be delighted if you decide to publish
this manuscript in your journal.

The reception date by publishers was 16 May, 1983. Note how well, in
comparison, the mail in South Africa worked.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.



Chapter 31
Strangeness in Quark–Gluon Plasma – 1982

Johann Rafelski

Abstract It is argued that observation of the strange-particle abundance may lead to
identification of the quark–gluon plasma and measurement of some of its properties.
Approach to chemical equilibrium and competitive processes in the hadronic gas
phase are discussed.

31.1 Overview

I would like to argue in this paper that the nature of the properties of quark–gluon
plasma can be studied by observing the abundance of strange particles created
in nuclear collisions, [1]. Unlike hadron–hadron collisions, we anticipate that in
an important fraction of nucleus–nucleus collisions, each participating quark will
scatter many times before joining in an asymptotic hadronic state. The associated
simplification of the physics involved arises because the well-established methods
of statistical physics can be used in such a case in order to connect the microscopic
world with effects and properties visible to the experimentalist’s eyes. Only the
presumption of an approximate thermochemical equilibrium to be studied below in
more detail, frees us from the dependence on details of quark wave functions.

As a consequence of the statistical equilibrium the available energy is equiparti-
tioned among accessible degrees of freedom and, among other sNs pairs. This means
that there exists a domain in space in which, in a proper Lorentz frame, the energy
of the longitudinal motion has been largely transformed to transverse degrees of
freedom. The basic question concerns the internal structure of this hadronic fireball:
instead of consisting of individual hadrons, it may be formed by quarks and gluons.
In this new physical phase, these colour-charged particles are deconfined and can
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move freely over the volume of the fireball. It appears that the phase transition from
the hadronic gas phase to the quark–gluon plasma is mainly controlled by the energy
density of the fireball. Several estimates (See, e.g., [2]) lead to 0.6–1 GeV/fm3

for the critical energy density, to be compared with around 0.25 GeV/fm3 inside
individual hadrons. Many theoretical questions about strong interactions will be
settled once the parameters and nature of the phase transition have been determined.

Further development of this new field of research depends on the ability to
observe plasma creation and its detailed physical properties. It is quite difficult to
insert a thermometer and to measure baryon density at T D 150 MeV. We must
either use only electromagnetically interacting particles [3] (photons, lepton pairs)
in order to get them out of the plasma, or study the heavy quark flavour abundance,
in particular strangeness, generated in the collision [1]. To obtain a better impression
of what is meant, imagine that strange quarks are very abundant in the plasma (and
indeed they are!). Then, for example, since the (sss)-state is bound and stable in
the hot perturbative QCD vacuum, it would be the most abundant baryon to emerge
from the plasma. I doubt that such an omegazation of nuclear matter could leave
any doubts about the occurrence of the phase transition. But even the enhancement
of the more accessible abundance of Λ may already be sufficient for our purposes.

I will now explain in more detail why the strange-particle abundance is so useful
[1] for observing properties of the quark–gluon plasma. First we note that, at a
given temperature, the quark–gluon plasma will contain an equal number of strange
(s) and antistrange (s) quarks, naturally assuming that the hadronic collision time is
much too short to allow for light-flavour weak-interaction conversion to strangeness.
Thus, assuming equilibrium in the quark plasma (see Sect. 31.2), we find the density
of the strange quarks to be (two spins and three colours)

s

v
D s

v
D 6

Z
d3p

.2�/3
1

exp.
p

p2 C m2
s=T/C 1 � 3

Tm2
s

�2
K2.ms=T/ ; (31.1)

neglecting for the time being the perturbative corrections. The mass ms of the strange
quarks in the perturbative vacuum is believed to be of the order of 180–300 MeV.1

Since the phase space density of strangeness is not too high, the Boltzmann limit is
used in Eq. (31.1). Similarly, there is a certain light antiquark density (q stands for
either u or d):

q

v
D 6

Z
d3p

.2�/3
1

exp.jpj=T C �q=T/C 1 � e��q=TT3
6

�2
; (31.2)

where the quark chemical potential is �q D �B=3 and �B is the baryon chemical
potential, we drop below the subscript ‘B’. This exponent suppresses the qNq pair
production. It reflects the chemical equilibrium between q and Nq and the presence of
a light quark density associated with the net baryon number.

1The 2014 reference value is ms.� D 2GeV/ D 95˙ 5MeV.
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Alternative, but physically equivalent, ways to understand these factors are the
following two statements:

• Nq is Fermi-blocked, since in its production the partner q-quark has to go on top
of a Fermi sphere (T ! 0 limit).

• Nq quarks are easily destroyed by the abundant q quarks in the plasma.

What we now intend to show is that there are often more Ns quarks than antiquarks
of each light flavour. Indeed,

s

q
D 1

2

�ms

T

�2
K2
�ms

T

�
e�=3T : (31.3)

This ratio is shown in Fig. 31.1. Thus, we almost always have more Ns than Nq quarks
and, in many cases of interest, s=q � 5. As �! 0, there are about twice as many Nu
or Nd quarks as there are Ns quarks at T & ms.

When the quark matter dissociates into hadrons, some of the numerous Ns quarks
may, instead of being bound in a qNs kaon, enter into a (Nq Nq Ns) or (Nq Ns Ns) antibaryon and,
in particular, a Λ, Σ, or Ξ. The probability for this process seems to be comparable
to the similar one for the production of Λ, Σ, Ξ, or Ω by the quarks present in the
plasma. What is particularly noteworthy about the Ns-carrying antibaryons is that they
can conventionally only be produced in direct pair production reactions. Up to high
energies, this process is suppressed by energy-momentum conservation and phase
space considerations. This leads me to argue that a study of the Λ, Σ, Ξ, and Ω in
high energy nuclear collisions could shed light on the early stages of the nuclear
collisions in which quark matter may be formed.

As is apparent from the above remark, the crucial aspects of the proposal to use
strangeness as a tag of quark–gluon plasma involve:

• assumption of thermal and chemical equilibrium (see next section),

Fig. 31.1 Relative
abundance of antistrange
quarks Ns to light antiquark Nq
as a function of � for
T D 160MeV (solid lines)
and T D 120 (dashed lines),
and strange quark mass
ms D 150, and 280 MeV,
respectively
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• comparison between results anticipated in both hadronic phases at given T and�,
the chemical potential to be determined by other considerations (see Sect. 31.3).

The theoretical techniques required for the description of the two quite different
hadronic phases, the hadronic gas and the quark–gluon plasma, must allow for
the formation of numerous hadronic resonances, which then dissolve at sufficiently
high partial density in the state consisting of its constituents. At this point we must
appreciate the importance of, and help provided by finite temperature. To obtain
high particle density we may, instead of compressing the matter (which as it turns
out is quite difficult), heat it up; many pions are generated easily, leading to the
occurrence of the transition at moderate (even vanishing) baryon density [1].

31.2 Strangeness Production in the Quark–Gluon Plasma

In this section, we investigate the abundance of strangeness as a function of the
lifetime and excitation of the plasma state [4]. This investigation was motivated
by the observation that light quarks could not by themselves lead to chemical
equilibrium of strange quarks [5]. After identifying the strangeness-producing
mechanisms, we compute the relevant rates as a function of the energy density
(‘temperature’) of the plasma state and compare them with those for light u and
d quarks.

In lowest order in perturbative QCD, sNs quark pairs can be created in collisions
of two gluons (Fig. 31.2a–c) and by annihilation of light quark–antiquark pairs
(Fig. 31.2d). The averaged total cross-sections for these processes were calculated
by B. Combridge [6]. For fixed invariant mass-squared s D .k1 C k2/2, where ki are
the four-momenta of the incoming particles, below w.s/ D .1 � 4M2=s/1=2,

Fig. 31.2 Lowest order QCD
diagrams for sNs production:
(a–c) gg ! sNs, and (d)
qNq ! sNs
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gg!sNs D 2�˛2s
3s
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1C 4M2
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C M4
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�
tanh�1 w.s/ �
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s

�
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(31.4a)

qNq!sNs D 8�˛2s
27s

�
1C 2M2

s

�
w.s/ ; (31.4b)

For the mass of the strange quark, we explore the following cases:

• the value fitted within the MIT bag model: M D 280MeV, and
• the value found in the study of quark currents: M D 150MeV.

When discussing light quark production, we use M D 15 MeV. The effective QCD
coupling constant ˛s D g2=4� is an average over space- and timelike domains of
momentum transfers in the reactions shown in Fig. 31.2. We use (a) ˛s D 2:2, the
value consistent with M D 280MeV in the MIT bag model, and (b) the value ˛s D
0:6, expected at the involved momentum transfer, together with M D 150 MeV.

Given the averaged cross-sections, it is easy to calculate the rate of events per
unit time, summed over all final and initial states2:

dN

dt
D 1

2

Z
d3x

Z
d3k1

.2�/3jk1j
X

i

�i.k1; x/
Z

d3k2
.2�/3jk2j

X

i

�i.k2; x/Ik
�
1 k2�.s/:

(31.5)

The sum over initial states involves the discrete quantum numbers i (colour, spin,
etc.) over which Eqs. (31.4a) and (31.4b) are averaged. The factor k1 � k2=jk1jjk2j is
the relative velocity for massless particles. We introduced a dummy integration I 	R1
4M2 ds ı

�
s� .k1 C k2/2

	 D 1 in order to facilitate the calculations. We now replace
the phase space densities �I.k; x/ by momentum distributions fg.k/, fq.k/, and fNq.k/
of gluons, quarks, and antiquarks that can still have a parametric x dependence,
i.e., through a space dependence of temperature T D T.x/. The (invariant) rate
per unit time and volume for the elementary processes shown in Fig. 31.2 is
then

A D dN

dtd3x
D 1

2

Z 1

4M2

sds ı
�
s� .k1 C k2/

2
	 d3k1
.2�/3jk1j

d3k2
.2�/3jk2j (31.6)

h .2 
 8/2
2

fg.k1/fg.k2/gg!sNs C 2.2 
 3/2fq.k1/fNq.k2/qNq!sNs
i
;

where the numerical factors count the spin, colour, and isospin degrees of freedom.

2An additional factor 1/2 in the gluon production term is included in this printing: the wave function
of two identical particles comprises the normalization factor 1=

p
2 which when squared leads to

1=2 in the thermal rate.
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We furthermore assume that in the rest frame of the plasma, the distribution
functions f depend only on the absolute value jkj D k0 	 k of the momentum.
We then evaluate angular integrals in Eq. (31.6):

A D 4

�4

Z 1

4M2

sds gg!sNs

"Z 1

0

dk1

Z 1

0

dk2�.4k1k2 � s/fg.k1/fg.k2/

#

C 9

4�4

Z 1

4M2

sds qNq!sNs

"Z 1

0

dk1

Z 1

0

dk2�.4k1k2 � s/fq.k1/fNq.k2/
#
;

(31.7)

where the step function � requires that k1k2 � s=4 � M2. We now turn to
the discussion of the momentum distribution and related questions. We note that
the anticipated lifetime of the plasma created in nuclear collisions is of the order
6 fm/c D 2 
 10�23 s. After this time, the high internal excitation will most likely
have dissipated to below the energy density required for the global restoration
of the perturbative QCD vacuum state (See also [7, 8]). The transition between
the hadronic and the quark–gluon phase is expected at an energy density of
approximately 1 GeV/fm3. Under these conditions, it is possible to estimate that
each perturbative quantum (light quark, gluon) in the plasma state will rescatter
several times during the lifetime of the plasma. Hence the momentum distribution
functions f .p/ can be approximated by the statistical Bose (Fermi) distribution
functions:

fg.p/ �
�
eˇ�p � 1	�1 (gluons) ; (31.8)

fq=Nq.p/ �


eˇ�p�.˙/ C 1��1 (quarks/antiquarks) ; (31.9)

where ˇ � p D ˇ0Ep � ˇ�p, Ep ! jpj for massless particles, .ˇ � ˇ/�1=2 D T is
the temperature-like parameter, and �.˙/ is the baryon number (antibaryon number)
fugacity. In the rest frame of the plasma, ˇ � p D Ep=T ! jpj=T. The distributions
[Eqs. (31.8) and (31.9)] can only be taken seriously for jpj not much larger than
T; to populate the high-energy tail of the distributions, too many collisions are
required, for which there may not be enough time during the lifetime of the plasma.
While in each individual nuclear collision, the momentum distribution may vary, the
ensemble of many collisions may lead to better statistical distributions.

Finally, let us discuss the values of the fugacities �.˙/ in Eq. (31.9). As quarks are
brought into the reaction by the colliding nuclei, baryon number conservation makes
it possible to relate the baryon density � to the fugacities by integrating Eq. (31.9)
over all momenta:

�.T; �C; ��/ D 1

3

12

Z
d3p

.2�/3

h�
ejpj=T�CC1	�1��ejpj=T��C1	�1

i
: (31.10)



31 Strangeness in Quark–Gluon Plasma – 1982 395

The factor 1/3 takes into account the fractional baryon number of quarks. As we will
show, the gg! qNq reaction time is much shorter than that for qNq! sNs production,
since the light quark masses are only of the order of � 15MeV. Consequently, we
may assume chemical equilibrium between q and Nq (� D 3�q):

�C D 1

�� D e��q=T ; (31.11a)

�.T; �q/ D 2

3�2



�3q C �q.�T/2

�
: (31.11b)

As long as gluons dominate the sNs formation in plasma state, conditions at the phase
transition, such as abundance of q and Nq, will not matter for the sNs abundances at
times comparable to the lifetime of the plasma. Hence, for the purpose of this study,
we will use the value�q D 300MeV in order to estimate the quark densities at given
temperature. We can now return to the evaluation of the rate integrals in Eq. (31.7).

In the glue part of the rate A, Eq. (31.7), the k1; k2 integral can be carried out
exactly by expanding the Bose function Eq. (31.8) in a power series in exp.�k=T/:

Ag D 4

�4
T
Z 1

4M2

ds s3=2gg!sNs.s/
X

n;n0D1
.nn0/�1=2K1

�
.nn0s/1=2

T

�
: (31.12)

In the quark contribution, an expansion of the Fermi function is not possible and the
integrals must be evaluated numerically. It is found that the gluon contribution of
Eq. (31.12) dominates the rate A. For T=M & 1, we find

A � Ag D 7

6�2
˛2s MT3e�2M=T

�
1C 51

14

T

M
C � � �

�
: (31.13)

Examples for A at ˛s D 0:6 and M D 150MeV is shown in Fig. 31.3a. We note that
in general the invariant production rate rises rapidly with T.

The abundance of sNs pairs driven by A cannot grow forever. At some point
the sNs annihilation reaction will deplete the strange quark population. The sNs
pair annihilations may not only proceed via the two-gluon channel, but instead
through ”g final states [9]. The noteworthy feature of such a reaction is the
production of relatively high energy ”’s at the fixed energy of about 700–900 MeV
(T D 160MeV). These ”’s will leave the plasma without further interactions. To
some degree, this process is stimulated by coherent glue emission.

In any case, the sNs annihilation loss term is proportional to the square of the
density ns of strange and antistrange quarks. With ns.1/ being the saturation density
at large times, the following differential equation determines ns as a function of
time [10]:

dns

dt
� A

(
1 �

�
ns.t/

ng.1/
�2)

: (31.14)
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Fig. 31.3 (a) Rates A and (b) relaxation time constants � , as a function of temperature T for
˛s D 0:6 and M D 150MeV. Full lines total process: gg ! sNs C qNq ! sNs. Dashed lines:
qNq ! sNs. Dotted lines: gg ! qNq where M D 15 MeV. Note that on left rates A for glue based
processes are shown too large by factor two

The solution for initial value ns.t D 0/ � 0 is,

ns.t/ D ns.1/ tanh
t

2�
! ns.1/

�
1 � 2e�t=�

	
; (31.15)

where3 � D ns.1/=2A. ns.t/ is a monotonically increasing with temperature,
saturating function, with asymptotic t!1 behavior seen in Fig. 31.4b, controlled
by the characteristic time constant � . In a thermally equilibrated plasma, the
asymptotic strangeness density ns.1/ is that of a relativistic Fermi gas (� D 1):

ns.1/ D 2 
 3
2�2

TM2

1X

nD1

.�1/n�1

n
K2.nM=T/ ; (31.16)

provided the volume V is large.
For � we find that the relaxation time4
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s M1=2T�3=2eM=T
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1C 99
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C � � �

��1
(31.17)

is falling rapidly with increasing temperature as shown in Fig. 31.3b. While our
results for strangeness production by light quarks agree in order of magnitude with

3The factor 2 in definition of � had been inadvertently omitted.
4The following result has been always correct, however it combines two compensating, omitted
factors 2 as noted above.
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Fig. 31.4 Time-evolution of
the strange quark density in
the plasma for temperatures
T D 300; 200; 160MeV (top
to bottom) for
ms D 150 MeV, ˛s D 0:6

those of Biró and Zimányi [5] (considering their choice of parameters), it is obvious
here that gluonic strangeness production, which was not discussed by these authors,
is the dominant process.

If we compare the time constant � with the estimated lifetime of the plasma state,
we find that the strangeness abundance will be chemically saturated for temperatures
of 160 MeV and above, i.e., for an energy density above 1 GeV/fm3. We note that �
is quite sensitive to the choice of the strange quark mass parameter and the coupling
constant ˛s and both must, however, be chosen consistently.

Also included in Fig. 31.3a,b are our results for gluon conversion into light
quark–antiquark pairs. The shortness of � for this process indicates that gluons and
light quarks reach chemical equilibrium during the beginning stage of the plasma
state, even if the quark/antiquark (i.e., baryon/meson) ratio was quite different in
the prior hadronic compression phase.

The evolution of the density of strange quarks in Eq. (31.15) in the plasma state
is shown in Fig. 31.4 for temperatures T D 300; 200; 160MeV. The saturation of the
abundance is clearly visible for T � 160MeV. To obtain the measurable abundance
of strange quarks, the corresponding values reached after the typical lifetime of the
plasma state, 2 
 10�23 s, can be read off in Fig. 31.4 as a function of temperature.
The strangeness abundance shows a pronounced threshold behaviour at T � 120–
160 MeV.

I thus conclude that strangeness abundance saturates in sufficiently excited
quark–gluon plasma (T > 160MeV, " > 1 GeV/fm3).

31.3 Equilibrium Chemistry of Strange Particles
in Hot Nuclear Matter

In order to establish the relevance of the strangeness signal for diagnosis of a
possible formation of quark–gluon plasma, we must establish relevant particle rates
originating from highly excited matter but consisting of individual hadrons—the
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hadronic gas phase, see [11] and Sect. 32.2. The main hypothesis which makes
it possible to simplify the situation is to postulate the resonance dominance of
hadron–hadron interactions (See, for example, [12])—in this case the hadronic gas
phase is practically a superposition of an infinity of different hadronic gases and
all information about the interaction is hidden in the mass spectrum �.m2; b/ which
describes the number of hadrons of baryon number b in a mass interval dm2 [13].
When considering strangeness-carrying particles, all we need to consider is the
baryon chemical potential established predominantly by the non-strange particles.5

Here, we turn our interest directly to the rarest of all singly strange particles, and
show in Fig. 31.5 the ratio hnΛi=hnΛi. We notice an expected suppression of Λ due
to the baryon chemical potential as well as strangeness chemistry. This ratio exhibits
both a strong temperature dependence and a strong � dependence. The remarkably
small abundance of Λ, e.g., 10�4Λ, under conditions likely to be reached in an
experiment [T � 120–180 MeV, � � .4–6/T] is characteristic of the nuclear nature
of the hot hadronic matter phase under consideration here. Our estimates for quark–
gluon plasma based on flavour content are two to three orders of magnitude higher.
We further note that KC=K� abundance is a sensitive measure of the baryochemical
potential, see Fig. 32.3.

In summary to this section, the relative abundance of strangeness-carrying
antibaryons is greatly suppressed in the hadronic gas phase. Hence enhancements
observed in nuclear collisions may be a useful indications of the reactions leading
to the formation of the quark–gluon plasma. The study of multistrange hadrons is in
progress.

31.4 Discussion

Only some selected aspects of the strangeness production in hot hadronic matter
have been studied in detail. The results are quite encouraging and suggest interesting
future perspectives. It was shown in Sect. 31.2 that strangeness abundance reaches
chemical equilibrium in the plasma. The subsequent depletion of the strangeness
during the plasma disintegration as well as its preferred hadronization channels
have not yet been studied in detail. However, only if the plasma disintegration is
an extremely slow process, lasting on the order of 10�22 s, can we anticipate a
significant feedback on the high s abundance created at the maximum temperature
reached in the collision. As shown in Fig. 31.3, the invariant rates drop quite rapidly
with decreasing temperature, leading to a rapid increase in the equilibrium time
constant � ; hence the strangeness abundance decouples from the equilibrium and
remains a witness of the hot collision period.

While we cannot yet discuss in detail the abundance of multistrange antihadrons,
which are influenced also by the possible ss, Ns Ns, sss, Ns Ns Ns, and sNs bound states

5To minimize duplication within this book we refer for the technical developments and the
measurement of baryochemical potential � to Sect. 32.2.
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Fig. 31.5 The hadron gas
ratio hnΛi=hnΛi as a function
of � for several temperatures
T D 100; 120; 140; 160MeV

in the plasma, it is apparent from the calculations performed in Sect. 31.3 that
measurement of the production cross-section of the antistrange baryons could
already be quite helpful in the observation of the phase transition. The high
suppression of these degrees of freedom in the hadronic gas phase for obvious
physical reasons is not maintained in the plasma phase, where Ns abundance is larger
than Nu, Nd abundance, as shown in Sect. 31.1. Measurement of the relative KC=K�
yield, while indicative for the value of the chemical potential, see Section 32.2, may
carry less specific information about the plasma.

The K=  ratio may indeed also contain relevant information. However, it will be
much more difficult to decipher the message. The   abundance will originate from
diverse sources needed to be understood for that purpose.

It is more appropriate to concentrate attention on those reaction channels which
will be particularly strongly populated when the quark plasma dissociates into
hadrons. Here, in particular, it appears that otherwise quite rare multistrange hadrons
will be enhanced, on the one hand by the relatively high phase space density of
strangeness in the plasma, on the other hand by the attractive ss QCD interaction in
the 3c and Nss in 1c channels. Hence we should search for the rise of the abundance
of particles like Ξ, Ξ, Ω, Ω, and 	, and perhaps in highly strange pieces of baryonic
matter, rather than in the K channels. It seems that such experiments would uniquely
determine the existence of the phase transition to the quark–gluon plasma.
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It is important to appreciate that the experiments discussed above would certainly
be complementary to the measurement with the help of electromagnetically inter-
acting probes, e.g., dileptons or direct photons. Strangeness-based measurements
have the advantage that they are based on the observation of a strongly interacting
particle (s; Ns quark) originating from the hot plasma phase; these are much more
abundant than the electromagnetic particles.
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Chapter 32
Strangeness and Phase Changes in
Hot Hadronic Matter – 1983

Johann Rafelski

Abstract Two phases of hot hadronic matter are described with emphasis put on
their distinction. Here the role of strange particles as a characteristic observable of
the quark-gluon plasma phase is particularly explored.

32.1 Phase Transition or Perhaps Transformation: Hadronic
Gas and the Quark-Gluon Plasma

I explore here consequences of the hypothesis that the energy available in the
collision of two relativistic heavy nuclei, at least in part of the system, is equally
divided among the accessible degrees of freedom. This means that there exists a
domain in space in which, in a suitable Lorentz frame, the energy of the longitudinal
motion has been largely transformed to transverse degrees of freedom. The physical
variables characterizing such a ‘fireball’ are energy density, baryon number density,
and total volume. The basic question concerns the internal structure of the fireball.
It can consist either of individual hadrons, or instead, of quarks and gluons in a new
physical phase, the plasma, in which they are deconfined and can move freely over
the volume of the fireball. It appears that the phase transition from the hadronic gas
phase to the quark-gluon plasma is controlled mainly by the energy density of the
fireball. Several estimates [1] lead to 0.6–1 GeV/fm3 for the critical energy density,
to be compared with 0.16 GeV/fm3 in nuclear matter.

We first recall that the unhandy extensive variables, viz., energy, baryon number,
etc., are replaced by intensive quantities. To wit, the temperature T is a measure

Invited lectures at the Sixth High Energy Heavy Ion Study, Berkeley, 28 June – 1 July 1983. In LBL-
16281; UC-34C; CONF-830675 pp. 489–510; also preprint CERN-TH-3685 available at https://
cds.cern.ch/record/147343/files/198311019.pdf. This abbreviated version omits material seen in
other chapters.

J. Rafelski (�)
Department of Physics, The University of Arizona, Tucson, AZ 85721, USA

© The Author(s) 2016
J. Rafelski (ed.), Melting Hadrons, Boiling Quarks – From Hagedorn Temperature
to Ultra-Relativistic Heavy-Ion Collisions at CERN,
DOI 10.1007/978-3-319-17545-4_32

401

https://cds.cern.ch/record/147343/files/198311019.pdf
https://cds.cern.ch/record/147343/files/198311019.pdf


402 J. Rafelski

Fig. 32.1 p;V diagram for
the gas–plasma first order
transition, with the dotted
curve indicating a
model-dependent, unstable
domain between overheated
and undercooled phases

of energy per degree of freedom; the baryon chemical potential � controls the
mean baryon density. The statistical quantities such as entropy (= measure of the
number of available states), pressure, heat capacity, etc., will also be functions of T
and �, and will have to be determined. The theoretical techniques required for the
description of the two quite different phases, viz., the hadronic gas and the quark-
gluon plasma, must allow for the formulation of numerous hadronic resonances on
the one side [2], which then at sufficiently high energy density dissolve into the state
consisting of their constituents. At this point, we must appreciate the importance and
help by a finite, i.e., nonzero temperature in reaching the transition to the quark-
gluon plasma: to obtain a high particle density, instead of only compressing the
matter (which as it turns out is quite difficult), we also heat it up; many pions are
generated in a collision, allowing the transition to occur at moderate, even vanishing
baryon density [3].

Consider, as an illustration of what is happening, the p;V diagram shown
in Fig. 32.1. Here we distinguish three domains. The hadronic gas region is
approximately a Boltzmann gas where the pressure rises with reduction of the
volume. When the internal excitation rises, the individual hadrons begin to cluster.
This reduces the increase in the Boltzmann pressure, since a smaller number of
particles exercises a smaller pressure. In a complete description of the different
phases, we have to allow for a coexistence of hadrons with the plasma state in the
sense that the internal degrees of freedom of each cluster, i.e., quarks and gluons,
contribute to the total pressure even before the dissolution of individual hadrons.
This does indeed become necessary when the clustering overtakes the compressive
effects and the hadronic gas pressure falls to zero as V reaches the proper volume
of hadronic matter. At this point the pressure rises again very quickly, since in the
absence of individual hadrons, we now compress only the hadronic constituents. By
performing the Maxwell construction between volumes V1 and V2, we can in part
account for the complex process of hadronic compressibility alluded to above.

As this discussion shows, and detailed investigations confirm [4], we cannot
escape the conjecture of a first order phase transition in our approach. This con-
jecture of [1, item (g)] has been criticized, and only more recent lattice gauge theory
calculations have led to the widespread acceptance of this phenomenon, provided
that an internal SU(3) (colour) symmetry is used—SU(2) internal symmetry leads
to a second order phase transition [1, item (i)]. It is difficult to assess how such
hypothetical changes in actual internal particle symmetry would influence phe-
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Table 32.1 Phase transition of hot hadronic matter in theoretical physics

Object �! Observational hypothesis �! Theoretical consequence

Nature �! Internal SU(3) symmetry �! First order phase transition

(on a lattice)

Nature �! Bootstrap OD resonance �! First order phase transition

dominance of hadronic in a phenomenological

interactions bootstrap approach

? �! Internal SU(2) symmetry �! Second order phase transition

(on a lattice)

Fig. 32.2 Paths taken
in the �; T plane by different
physical events

nomenological descriptions based on an observed picture of nature. For example, it
is difficult to argue that, were the colour symmetry SU(2) and not SU(3), we would
still observe the resonance dominance of hadronic spectra and could therefore use
the bootstrap model. All present understanding of phases of hadronic matter is based
on approximate models, which requires that Table 32.1 be read from left to right.

I believe that the description of hadrons in terms of bound quark states on the one
hand, and the statistical bootstrap for hadrons on the other hand, have many common
properties and are quite complementary. Both the statistical bootstrap and the bag
model of quarks are based on quite equivalent phenomenological observations.
While it would be most interesting to derive the phenomenological models quantita-
tively from the accepted fundamental basis—the Lagrangian quantum field theory of
a non-Abelian SU(3) ‘glue’ gauge field coupled to coloured quarks—we will have
to content ourselves in this report with a qualitative understanding only. Already
this will allow us to study the properties of hadronic matter in both aggregate states:
the hadronic gas and the state in which individual hadrons have dissolved into the
plasma consisting of quarks and of the gauge field quanta, the gluons.

It is interesting to follow the path taken by an isolated quark-gluon plasma fireball
in the �;T plane, or equivalently in the �;T plane. Several cases are depicted in
Fig. 32.2. In the Big Bang expansion, the cooling shown by the dashed line occurs
in a Universe in which most of the energy is in the radiation. Hence, the baryon
density � is quite small. In normal stellar collapse leading to cold neutron stars, we
follow the dash-dotted line parallel to the � axis. The compression is accompanied
by little heating.
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In contrast, in nuclear collisions, almost the entire �;T plane can be explored
by varying the parameters of the colliding nuclei. We show an example by the full
line, and we show only the path corresponding to the cooling of the plasma, i.e., the
part of the time evolution after the termination of the nuclear collision, assuming
a plasma formation. The figure reflects the circumstance that, in the beginning of
the cooling phase, i.e., for 1–1:5 
 10�23 s, the cooling happens almost exclusively
by the mechanism of pion radiation [5]. In typical circumstances, about half of the
available energy has been radiated away before the expansion, which brings the
surface temperature close to the temperature of the transition to the hadronic phase.
Hence a possible, perhaps even likely, scenario is that in which the freezing out
and the expansion happen simultaneously. These highly speculative remarks are
obviously made in the absence of experimental guidance. A careful study of the
hadronization process most certainly remains to be performed.

In closing this section, let me emphasize that the question whether the transition
hadronic gas ! quark-gluon plasma is a phase transition (i.e., discontinuous) or
continuous phase transformation will probably only be answered in actual experi-
mental work; as all theoretical approaches suffer from approximations unknown in
their effect. For example, in lattice gauge computer calculations, we establish the
properties of the lattice and not those of the continuous space in which we live.

The remainder of this report is therefore devoted to the study of strange particles
in different nuclear phases and their relevance to the observation of the quark-gluon
plasma.

32.2 Strange Particles in Hot Nuclear Gas

My intention in this section is to establish quantitatively the different channels
in which the strangeness, however created in nuclear collisions, will be found.
In our following analysis (see [6]) a tacit assumption is made that the hadronic
gas phase is practically a superposition of an infinity of different hadronic gases,
and all information about the interaction is hidden in the mass spectrum �.m2; b/
which describes the number of hadrons of baryon number b in a mass interval dm2

and volume V � m. When considering strangeness-carrying particles, all we then
need to include is the influence of the non-strange hadrons on the baryon chemical
potential established by the non-strange particles.

The total partition function is approximately multiplicative in these degrees of
freedom:

ln Z D ln Znon-strange C ln Zstrange : (32.1)

For our purposes, i.e., in order to determine the particle abundances, it is sufficient
to list the strange particles separately, and we find
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ln Zstrange.T;V; �s; �q/ D C
n
2W.xK/.�s�

�1
q C ��1

s �q/ (32.2)

C 2
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W.xi/ D
�mi

T

�2
K2
�mi

T

�
: (32.3)

We have C D VT3=2�2 for a fully equilibrated state. However, strangeness-creating
(x! sC Ns) processes in hot hadronic gas may be too slow (see below) and the total
abundance of strange particles may fall short of this value of C expected in absolute
strangeness chemical equilibrium. On the other hand, strangeness exchange cross-
sections are very large (e.g., the K�p cross-section is � 100mb in the momentum
range of interest), and therefore any momentarily available strangeness will always
be distributed among all particles in Eq. (32.2) according to the values of the
fugacities �q D �1=3B and �s. Hence we can speak of a relative strangeness chemical
equilibrium. Henceforth we omit the subscript ‘B’ when referring to barychemical
properties and symbols.

We neglected to write down quantum statistics corrections as well as the
multistrange particles Ξ and Ω�, as our considerations remain valid in this simple
approximation [7]. Interactions are effectively included through explicit reference to
the baryon number content of the strange particles, as just discussed. Non-strange
hadrons influence the strange faction by establishing the value of �q at the given
temperature and baryon density.

The fugacities �s and �q as introduced here control the strangeness and the
baryon number, respectively. While �s counts the strange quark content, the up and
down quark content is counted by �q D �1=3.

Using the partition function Eq. (32.2), we calculate for given �, T, and V the
mean strangeness by evaluating

hns � nNsi D �s
@

@�s
ln Zstrange.T;V; �s; �q/ ; (32.4)

which is the difference between strange and antistrange components. This expres-
sion must be equal to zero due to the fact that the strangeness is a conserved quantum
number with respect to strong interactions. From this condition, we get

�s D �q

ˇ̌
ˇ̌
ˇ
W.xK/C ��1
W.xΛ/C 3W.xΣ/

�

W.xK/C �


W.xΛ/C 3W.xΣ/

�
ˇ̌
ˇ̌
ˇ

1=2

	 �qF ; (32.5)

a result contrary to intuition: �s ¤ 1 for a gas with total hsi D 0. We notice a
strong dependence of F on the baryon number. For large �, the term with ��1 will
tend to zero and the term with � will dominate the expression for �s and F. As a
consequence, the particles with fugacity �s and strangeness S D �1 (note that by
convention strange quarks s carry S D �1, while strange antiquarks Ns carry S D 1)
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are suppressed by a factor F which is always smaller than unity. Conversely, the
production of particles which carry the strangeness S D C1will be favoured by F�1.
This is a consequence of the presence of nuclear matter: for � D 0, we find F D 1.

In nuclear collisions, the mutual chemical equilibrium, that is, a proper distri-
bution of strangeness among the strange hadrons, will most likely be achieved.
By studying the relative yields, we can exploit this fact and eliminate the absolute
normalization C [see Eq. (32.2)] from our considerations. We recall that the value
of C is uncertain for several reasons:

i V is unknown.
ii C is strongly .t; r/-dependent, through the spacetime dependence of T.

iii Most importantly, the value C D VT3=2�2 assumes absolute chemical equilib-
rium, which is not achieved owing to the shortness of the collision.

Indeed, we have [see Eq. (32.31) for in plasma strangeness formation and further
details and solutions, also see Sect. 31.2]

dC

dt
D AH

�
1 � C.t/2

C.1/2
�
; (32.6)

and the time constant �H D C.1/=2AH for strangeness production in nuclear matter
can be estimated to be 10�21 s [8]. Thus C does not reach C.1/ in plasmaless
nuclear collisions. If the plasma state is formed, then the relevant C > C.1/ (since
strangeness yield in plasma is above strangeness yield in hadron gas, see Chap. 31
and below).

Now, why should we expect relative strangeness equilibrium to be reached
faster than absolute strangeness equilibrium [6]? Consider the strangeness exchange
interaction

K�p �! Λ 0 (32.7)

which has a cross-section of about 10 mb at low energies, while the sNs ‘strangeness
creating’ associate production

pp �! pΛKC (32.8)

has a cross-section of less than 0.06 mb, i.e., 150 times smaller. Since the latter
reaction is somewhat disfavoured by phase space, consider further the reaction

 p �! YK (32.9)
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where Y is any hyperon (strange baryon). This has a cross-section of less than
1 mb, still 10 times weaker than one of the s-exchange channels in Eq. (32.7).
Consequently, I expect the relative strangeness equilibration time to be about ten
times shorter than the absolute strangeness equilibration time, namely 10�23 s, in
hadronic matter of about twice nuclear density.

We now compute the relative strangeness abundances expected from nuclear
collisions. Using Eq. (32.5), we find from Eq. (32.2) the grand canonical partition
sum for zero average strangeness:

ln Zstrange
0 D C

h
2W.xK/

�
F�K C F�1�K

	C 2W.xΛ/
�
F��Λ C F�1��1�Λ

	

C 6W.xΣ/
�
F��Σ C F�1��1�Σ

	i
; (32.10)

where, in order to distinguish different hadrons, dummy fugacities �i, i D K, K, Λ,
Λ, Σ, Σ have been written. The strange particle multiplicities then follow from

hnii D �i
@

@�i
ln Zstrange

0

ˇ̌
ˇ
�iD1

: (32.11)

Explicitly, we find (notice that the power of F follows the s-quark content):

hnK˙i D CF	W.xK/ ; (32.12)

hnΛ=Σ0i D CFC1W.xΛ=Σ0 /e
C�=T ; (32.13)

hnΛ=Σ0i D CF�1W.xΛ=Σ0 /e
��=T : (32.14)

In Eq. (32.14) we have indicated that the multiplicity of antihyperons can only
be built up if antibaryons are present according to their (small) phase space. This
still seems an unlikely proposition, and the statistical approach may be viewed as
providing an upper limit on their multiplicity.

From the above equations, we can derive several very instructive conclusions.
In Fig. 32.3 we show the ratio hnKCi=hnK�i D F�2 as a function of the baryon
chemical potential � for several temperatures that can be expected and which are
seen experimentally. We see that this particular ratio is a good measure of the baryon
chemical potential in the hadronic gas phase, provided that the temperatures are
approximately known. The mechanism for this process is as follows: the strangeness
exchange reaction of Eq. (32.7) tilts to the left (K�) or to the right (abundance F �
KC), depending on the value of the baryon chemical potential.

In the Fig. 32.4 the long dashed line shows the upper limit for the abundance
of Λ as measured in terms of Λ abundances. Clearly visible is the substantial
relative suppression of Λ, in part caused by the baryon chemical potential factor
of Eq. (32.14), but also by the strangeness chemistry (factor F2), as in KCK� above.
Indeed, the actual relative number of Λ will be even smaller, since Λ are in relative
chemical equilibrium and Λ in hadron gas are not: the reaction KCp ! Λ 0,
analogue to Eq. (32.7), will be suppressed by low p abundance. Also indicated in
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Fig. 32.3 The ratio hnKC i=hnK� i 
 F�2 as a function of the baryon chemical potential �, for
T D 100; .20/; 160MeV. The lines cross where � D mY � mK; mY is the mean hyperon mass

Fig. 32.4 Relative abundance of Λ=Λ. The actual yield from the hadronic gas limit may still be
10–100 times smaller than the statistical value shown

Fig. 32.4 by shading is a rough estimate for the Λ production in the plasma phase,
which suggests that anomalous Λ abundance may be an interesting feature of highly
energetic nuclear collisions [9], for further discussion see Sect. 32.5 below.

32.3 Quark-Gluon Plasma

From the study of hadronic spectra, as well as from hadron–hadron and hadron–
lepton interactions, there has emerged convincing evidence for the description
of hadronic structure in terms of quarks [10]. For many purposes it is entirely
satisfactory to consider baryons as bound states of three fractionally charged
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particles, while mesons are quark–antiquark bound states. The Lagrangian of quarks
and gluons is very similar to that of electrons and photons, except for the required
summations over flavour and colour:

L D  
F � .p � gA/�m
�
 � 1

4
F��F

�� : (32.15)

The flavour-dependent masses m of the quarks are small. For u, d flavours, one
estimates mu;d � 5–20 MeV. The strange quark mass is usually chosen at about
150 MeV [11]. The essential new feature of QCD, not easily visible in Eq. (32.15),
is the non-linearity of the field strength F in terms of the potentials A. This leads
to an attractive glue–glue interaction in select channels and, as is believed, requires
an improved (non-perturbative) vacuum state in which this interaction is partially
diagonalized, providing for a possible perturbative approach.

The energy density of the perturbative vacuum state, defined with respect to the
true vacuum state, is by definition a positive quantity, denoted by B. This notion
has been introduced originally in the MIT bag model [12], logically, e.g., from a fit
to the hadronic spectrum [12], which gives

B D 
(140–210)MeV
�4 D (50–250)MeV/fm3 : (32.16)

The central assumption of the quark bag approach is that, inside a hadron where
quarks are found, the true vacuum structure is displaced or destroyed. One can
turn this point around: quarks can only propagate in domains of space in which the
true vacuum is absent. This statement is a reformulation of the quark confinement
problem. Now the remaining difficult problem is to show the incompatibility of
quarks with the true vacuum structure. Examples of such behaviour in ordinary
physics are easily found; e.g., a light wave is reflected from a mirror surface,
magnetic field lines are expelled from superconductors, etc. In this picture of
hadronic structure and quark confinement, all colourless assemblies of quarks,
antiquarks, and gluons can form stationary states, called a quark bag. In particular,
all higher combinations of the three-quark baryons .qqq/ and quark–antiquark
mesons (qNq) form a permitted state.

As the u and d quarks are almost massless inside a bag, they can be produced
in pairs, and at moderate internal excitations, i.e., temperatures, many qNq pairs will
be present. Similarly, sNs pairs will also be produced. We will return to this point at
length below. Furthermore, real gluons can be excited and will be included here in
our considerations.

Thus, what we are considering here is a large quark bag with substantial,
equilibrated internal excitation, in which the interactions can be handled (hopefully)
perturbatively. In the large volume limit, which as can be shown is valid for baryon
number b & 10, we simply have for the light quarks the partition function of a
Fermi gas which, for practically massless u and d quarks can be given analytically
(see ref.[1, item (b)] and [13]), even including the effects of interactions through
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first order in ˛s D g2=4� :

ln Zq.ˇ; �/D gV
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(32.17)

Similarly, the glue is a Bose gas:

ln Zg.ˇ; �/ D V
8�2

45
ˇ�3

�
1 � 15

4

˛s

�

�
; (32.18)

while the term associated with the difference to the true vacuum, the bag term, is

ln Zbag D �BVˇ : (32.19)

It leads to the required positive energy density B within the volume occupied by
the coloured quarks and gluons and to a negative pressure on the surface of this
region. At this stage, this term is entirely phenomenological, as discussed above. The
equations of state for the quark-gluon plasma are easily obtained by differentiating

ln Z D ln Zq C ln Zg C ln Zvac ; (32.20)

with respect to ˇ, �, and V .
An assembly of quarks in a bag will assume a geometric shape and size such as to

make the total energy E.V; b; S/ as small as possible at fixed given baryon number
and fixed total entropy S. Instead of just considering one bag we may, in order to be
able to use the methods of statistical physics, use the microcanonical ensemble. We
find from the first law of thermodynamics, viz.,

dE D �PdV C TdSC �db ; (32.21)

that

P D �@E.V; b; S/

@V
: (32.22)

We observe that the stable configuration of a single bag, viz., @E=@V D 0,
corresponds to the configuration with vanishing pressure P in the microcanonical
ensemble. Rather than work in the microcanonical ensemble with fixed b and S, we
exploit the advantages of the grand canonical ensemble and consider P as a function
of � and T :

P D � @

@V



T ln Z.�;T;V/

�
; (32.23)

with the result

P D 1

3
." � 4B/ ; (32.24)
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where " is the energy density:
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In Eq. (32.24), we have used the relativistic relation between the quark and gluon
energy density and pressure:

Pq D 1

3
"q ; Pg D 1

3
"g : (32.26)

From Eq. (32.24), it follows that, when the pressure vanishes in a static configura-
tion, the energy density is 4B, independently of the values of � and T which fix
the line P D 0. We note that, in both quarks and gluons, the interaction conspires to
reduce the effective available number of degrees of freedom. At ˛s D 0, � D 0, we
find the handy relation

"q C "g D
�

T

160MeV

�4 �GeV

fm3

�
: (32.27)

It is important to appreciate how much entropy must be created to reach the plasma
state. From Eq. (32.20), we find for the entropy density S and the baryon density �:

S D 2
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(32.28)
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3
.�T/2

��
; (32.29)

which leads for �=3 D �q < �T to the following expressions for the entropy per
baryon [including the gluonic entropy second T3 term in Eq. (32.28)]:

S

�
� 37

15
�2

T

�q

T��q ! 25 Š (32.30)

As this simple estimate shows, plasma events are extremely entropy-rich, i.e., they
contain very high particle multiplicity. In order to estimate the particle multiplicity,
one may simply divide the total entropy created in the collision by the entropy per
particle for massless black body radiation, which is S=n D 4. This suggests that, at
T � �q, there are roughly six pions per baryon.
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32.4 Strange Quarks in Plasma

In lowest order in perturbative QCD, sNs quark pairs can be created by gluon fusion
processes, Fig. 31.2a,b,c; and by annihilation of light quark-antiquark pairs, see
Fig. 31.2d. The averaged total cross-sections for these processes were calculated by
Brian Combridge [14]. Note that in this book the thermal in quark-gluon plasma
strangeness production rates were evaluated in Sect. 31.2 closely following the
original presentation in [15] and thus we skip much of the original presentation.

The loss term of the strangeness population is proportional to the square of the
density ns of strange and antistrange quarks. sNs pair annihilations proceeds via the
two-gluon channel, quark-antiquark channel, and occasionally through ”G final
states [16]. With ns.1/ being the saturation density at large times, the following
differential equation determines ns as a function of time [15]:

dns

dt
� A

(
1 �

�
ns.t/

ns.1/
�2)

: (32.31)

Thus we find

ns.t/ D ns.1/
tanh.t=2�/C ns.0/

ns.1/

1C ns.0/

ns.1/
tanh.t=2�/

; � D ns.1/
2A

: (32.32)

For ˛s � 0:6 and M � T, we find, see Sect. 31.2 that � � 4 
 10�23 s. � falls
off rapidly with increasing temperature. Figure 32.5 shows the approach of ns.t/,
normalized with baryon density, to the fully saturated phase space as a function of
time. We note the high abundance of strangeness relative to baryon number seen
in Fig. 32.5—here, baryon number was computed assuming T � �q D �=3 [see
Eq. (32.29)]. These two facts, namely:

1. high relative strangeness abundance in plasma,
2. practical saturation of available phase space,

have led me to suggest the observation of strangeness as a possible signal of quark-
gluon plasma [9].

There are two elements in point (1) above: firstly, strangeness in the quark-
gluon phase is practically as abundant as the anti-light quarks u D d D Nq, since
both phase spaces have similar suppression factors, see Sect. 31.1. Note that the
chemical potential of quarks suppresses the Nq density. This phenomenon reflects
on the chemical equilibrium between qNq and the presence of a light quark density
associated with the net baryon number. Secondly, strangeness in the plasma phase
is more abundant than in the hadronic gas phase (even if the latter phase space is
saturated) when compared at the same temperature and baryon chemical potential in
the phase transition region. The rationale for the comparison at fixed thermodynamic
variables, rather than at fixed values of microcanonical variables such as energy
density and baryon density, is outlined in the next section. I record here only that the
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Fig. 32.5 Time evolution of
the strange quark to baryon
number abundance in the
plasma for various
temperatures T � �q D �=3.
M D 150MeV, ˛s D 0:6

abundance of strangeness in the plasma is well above that in the hadronic gas phase
space (by factors 1–6, see Fig. 31.1) and the two become equal only when the baryon
chemical potential � is so large that abundant production of hyperons becomes
possible. This requires a hadronic phase at an energy density of 5–10 GeV/fm3.

32.5 How to Discover the Quark–Gluon Plasma

Here only the role of the strange particles in the anticipated discovery will be
discussed. My intention is to show that, under different possible transition scenarios,
characteristic anomalous strange particle patterns emerge. Examples presented are
intended to provide some guidance to future experiments and are not presented here
in order to imply any particular preference for a reaction channel. I begin with a
discussion of the observable quantities.

The temperature and chemical potential associated with the hot and dense phase
of nuclear collision can be connected with the observed particle spectra, and,
as discussed here, particle abundances. The last grand canonical variable—the
volume—can be estimated from particle interferences. Thus, it is possible to use
these measured variables, even if their precise values are dependent on a particular
interpretational model, to uncover possible rapid changes in a particular observable.
In other words, instead of considering a particular particle multiplicity as a function
of the collision energy

p
s, I would consider it as a function of, e.g., mean transverse

momentum hp?i, which is a continuous function of the temperature (which is in turn
continuous across any phase transition boundary).

To avoid possible misunderstanding of what I want to say, here I consider the
(difficult) observation of the width of the KC two-particle correlation function in
momentum space as a function of the average KC transverse momentum obtained
at given

p
s. Most of KC would originate from the plasma region, which, when it

is created, is relatively small, leading to a comparatively large width. (Here I have
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assumed a first order phase transition with substantial increase in volume as matter
changes from plasma to gas.) If, however, the plasma state were not formed, KC
originating from the entire hot hadronic gas domain would contribute a relatively
large volume which would be seen; thus the width of the two-particle correlation
function would be small. Thus, a first order phase transition implies a jump in the
KC correlation width as a function of increasing hp?iKC , as determined in the same
experiment, varying

p
s.

From this example emerges the general strategy of my approach: search for
possible discontinuities in observables derived from discontinuous quantities (such
as volume, particle abundances, etc.) as a function of quantities measured exper-
imentally and related to thermodynamic variables always continuous at the phase
transition: temperature, chemical potentials, and pressure. This strategy, of course,
can only be followed if, as stated in the first sentence of this report, approximate
local thermodynamic equilibrium is also established.

Strangeness seems to be particularly useful for plasma diagnosis, because its
characteristic time for chemical equilibration is of the same order of magnitude as
the expected lifetime of the plasma: � � 1–3 
 10�23 s. This means that we are
dominantly creating strangeness in the zone where the plasma reaches its hottest
stage—freezing over the abundance somewhat as the plasma cools down. However,
the essential effect is that the strangeness abundance in the plasma is greater, by a
factor of about 30, than that expected in the hadronic gas phase at the same values of
�;T. Before carrying this further, let us note that, in order for strangeness to disap-
pear partially during the phase transition, we must have a slow evolution, with time
constants of � 10�22 s. But even so, we would end up with strangeness-saturated
phase space in the hadronic gas phase, i.e., roughly ten times more strangeness than
otherwise expected. For similar reasons, i.e., in view of the rather long strangeness
production time constants in the hadronic gas phase, strangeness abundance survives
practically unscathed in this final part of the hadronization as well. Facit:

If a phase transition to the plasma state has occurred, then on return to the hadron phase,
there will be most likely significantly more strange particles around than there would be (at
this T and �) if the hadron gas phase had never been left.

In my opinion, the simplest observable proportional to the strange particle
multiplicity is the rate of V-events from the decay of strange baryons (e.g., Λ) and
mesons (e.g., Ks) into two charged particles. Observations of this rate require a
visual detector, e.g., a streamer chamber. To estimate the multiplicity of V-events,
I reduce the total strangeness created in the collision by a factor 1/3 to select only
neutral hadrons and another factor 1/2 for charged decay channels. We thus have

hnVi � 1

6

hsi C hsi
hbi hbi � hbi

15
; (32.33)

where I have taken hsi=hbi � 0:2 (see Fig. 32.5). Thus for events with a large baryon
number participation, we can expect to have several V’s per collision, which is 100–
1,000 times above current observation for Ar-KCl collision at 1.8 GeV/Nuc kinetic
energy [17].
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Due to the high Ns abundance, we may further expect an enrichment of strange
antibaryon abundances [9]. I would like to emphasize here Ns Ns Nq states (anticascades)
created by the accidental coagulation of two Ns quarks helped by a gluon ! Nq
reaction. Ultimately, the Ns Ns Nq states become Ns Nq Nq, either through an Ns exchange
reaction in the gas phase or via a weak interaction much, much later. However,
half of the Ns Nq Nq states are then visible as Λ decays in a visual detector. This anomaly
in the apparent Λ abundance is further enhanced by relating it to the decreased
abundance of antiprotons, as described above.

Unexpected behaviour of the plasma–gas phase transition can greatly influence
the channels in which strangeness is found. For example, in an extremely particle-
dense plasma, the produced sNs pairs may stay near to each other—if a transition
occurs without any dilution of the density, then I would expect a large abundance
of φ.1020/ sNs mesons, easily detected through their partial decay mode (1/4 %) to a
�C�� pair.

Contrary behaviour will be recorded if the plasma is cool at the phase transition,
and the transition proceeds slowly—major coagulation of strange quarks can then
be expected with the formation of sss and Ns Ns Ns baryons and in general .s/3n clusters.
Carrying this even further, supercooled plasma may become ‘strange’ nuclear
(quark) matter [18]. Again, visual detectors will be extremely successful here,
showing substantial decay cascades of the same heavy fragment.

In closing this discussion, I would like to give warning about the pions. From
the equations of state of the plasma, we have deduced in Sect. 32.3 a very high
specific entropy per baryon. This entropy can only increase in the phase transition
and it leads to very high pion multiplicity in nuclear collisions, probably created
through pion radiation from the plasma [5] and sequential decays. Hence by relating
anything to the pion multiplicity, e.g., considering K=  ratios, we dilute the signal
from the plasma. Furthermore, pions are not at all characteristic for the plasma; they
are simply indicating high entropy created in the collision. However, we note that the
K=  ratio can show substantial deviations from values known in pp collisions—but
the interpretations of this phenomenon will be difficult.

It is important to appreciate that the experiments discussed above would cer-
tainly be quite complementary to the measurements utilizing electromagnetically
interacting probes, e.g., dileptons, direct photons. Strangeness-based measurements
have the advantage that they have much higher counting rates than those recording
electromagnetic particles.
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Chapter 33
Melting Hadrons, Boiling Quarks

Johann Rafelski

Abstract The events presented in this book happened more than three decades ago.
At that time we did not know how long it would take for the experimental program
to come to be, and to make the discovery happen. Looking back, and looking at the
present I can say that a vast majority of physicists studying relativistic heavy ion
collisions agree today that the new quark-gluon plasma phase has been discovered
and the discovery of more than a decade ago has been confirmed by the more recent
results obtained at LHC. Given this circumstance, as a final word, I answer a few
pertinent questions which I have heard often as related directly to the contents of
this book—there are many other questions each answer generates.

33.1 The Concepts: Hadron Side

What is Hagedorn Temperature?

Hagedorn temperature TH ' 1:8 
 1012 K is the maximum temperature at which
matter can exist in the usual form. At T > TH all individual material particles
dissolve into the quark-gluon plasma. This transformation can occur at a lower
temperature in the presence of dense nuclear matter. At densities an order of
magnitude greater than the nuclear density this transformation probably can occur
near to, or even at, zero temperature.

The value of TH is measured by the way of the exponential growth of the hadron
mass spectrum,

�.m/ / m�a exp.m=TH /: (33.1)

TH is thus uniquely defined independent of the question, if the conversion of matter
into quark-gluon plasma is a sharp boundary, or a continuous transformation. The
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index ‘a’ of the pre-exponential factor determines the nature of the transformation,
see Table 23.1.

TH is not a maximum temperature in the Universe. A further heating of the quark-
gluon plasma ‘liquid’ can and will continue. We understand today TH as the boiling
point of a hot gas made of hadrons, i.e. Hadron Gas (HG), dissolving into the quark-
gluon plasma (QGP), a liquid phase made of Debye screened color-ionic quarks and
gluons.

What is the Statistical Bootstrap Model?

SBM is based on the hypothesis that the exponential in particle mass growth of
the density of hadron states generates a state of matter in which practically every
strongly interacting particle produced is distinguishable—one way to think about
this situation is to omit in the statistical evaluation the Boltzmann pre-factor 1=nŠ.
The SBM relies on the model hypothesis of which the most prominent is, see
Eq. (20.4)

log �.m/

log .m/
�!

m!1 1 ; (33.2)

where .m/ is the density of states of the system, from which the shape of
the exponential mass spectrum �.m/, Eq. (33.1) emerges. It is important to note
the relation to Eq. (33.1) which thus characterizes .m/, and keep in mind that
Hagedorn temperature and SBM are two separate ideas.

The pre-exponential power index a in Eq. (33.1) is dependent on additional
technical details, see Hagedorn’s discussion in Chap. 25, below Eq. (25.16) on page
292. By 1972 in a Lorentz-covariant SBM a value a D 3 emerges, replacing the
value a D 2:5 that Hagedorn considered in 1965, see Chap. 20. The compressibility
of the finite size hadron fireballs embedded in dense matter plays an important role
producing other values of a discussed in Chap. 21: For incompressible hadrons of
finite size one finds a D 7=2, while allowing compressibility leads to a > 7=2.
How the value of a controls the singular behavior near phase boundary is shown in
Table 23.1 on page 258.

SBM can evolve with our understanding of the strongly interacting matter
and provide a deeper understanding of the results of lattice-QCD: for example
introducing strange quark related scale into characterization of the hadron volume,
or making baryons more compressible as compared to mesons in consideration of
the interaction scale of QCD. In this way one can embrace in detail the current
emerging lattice-QCD paradigm predicting a critical point at finite baryon density
and a phase transition for higher baryon density.
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What is Hadron Resonance Gas?

While SBM produces the shape of the mass spectrum �.m/, this is a description
that includes averaging of the hadron spectrum features. This can be avoided:
given the availability of computers of ever greater power, it is opportune to employ
an experimentally known spectral composition including all observed hadrons as
explicit partial fractions. This is the Hadron (equivalently, Hagedorn) Resonance
Gas (HRG), represented by a discrete sum, see Sect. 7.4.

The emphasis here is on ‘resonances’, reminding us that all hadrons, stable
and unstable, must be included. Hagedorn went to great length to justify how the
inclusion of unstable hadrons, i.e. resonances, accounts for the dominant part of
the interaction between all hadronic particles. His theoretical insight can be tested
today by comparing HRG results with lattice-QCD. One finds good agreement,
see Chaps. 7 and 21: within 10 % precision we have ab-initio confirmation that
Hagedorn developed a properly working model of strongly interacting particles for
T < TH . I believe, based on my own tedious study of the experimental particle
yields and fireball properties within the SHM (see next), that the experimentally
available discrete hadron mass spectrum is sufficient to achieve accurate description
of physical phenomena for T < 145MeV at a precision level that exceeds the
numerical precision of lattice-QCD results.

Still, there is something that can be done better: not all ‘high’ mass hadron
resonances are known, with the current experimental limit implying that ‘high’
means about twice the proton mass. The physical relevance of such experimentally
undiscovered Hagedorn states depends on the temperature of the system. Thus for
higher values of T in the direct vicinity of TH , such additional heavy resonances
could play a significant role in the comparison of lattice results with the HRG model.

What is the Statistical Hadronization Model?

The statistical hadronization model (SHM) was invented to characterize, using
Fermi-Hagedorn statistical particle evaporation methods, how a blob of primordial
matter falls apart into individual hadrons. The SHM is in essence a complete and
careful implementation of the Fermi-Hagedorn picture of particle production using
the observed discrete hadron mass spectrum.

The SHM analysis relies on the hypothesis that a hot fireball will ‘hadronize’,
populating all available phase space cell proportional to their respective size. This is
the Fermi hypothesis which is now implemented using the semi-grand-canonical
Hagedorn method. In the present day implementation all known exact (baryon
number for example) and approximate (entropy) conservation laws can be respected.

This analysis of particle production allows the inference of both the statistical
canonical parameters as well as the extensive and intensive microcanonical physical
properties of the fireball source. Importantly, among the observables we note the



420 J. Rafelski

entropy content and strangeness content of the emerging multiplicity of hadronic
particles. These properties originate at a far earlier fireball evolution stage compared
to the hadronization process itself. Therefore performing a SHM analysis of all
hadrons produced we obtain a deeper look into the history of the expanding QGP
fireball.

33.2 The Concepts: Quark Side

Why are Quarks Confined?

Quark confinement can be seen as an expression of the incompatibility of quark and
gluon color-electrical fields with the vacuum structure. This feature was inherent in
the work on quark confinement by Ken Wilson [1]. A clear statement of how this
mechanism works, with a description of confinement of color charge, is seen for
the first time in the September 28, 1979 lecture by T.D. Lee [2]. Quark confinement
within a bound state with other quarks is explained as result of a transport property
of the vacuum state surrounding us, and is not a direct consequence of the nature of
an inter-quark force.

This understanding of confinement is convenient for the understanding of the
quark-gluon plasma as a domain in space in which this vacuum structure is
dissolved, and chromo-electric field lines can exist.

With their color field lines expelled from the vacuum, quarks can only exist in
colorless cluster states: mesons qq and baryons qqq (and antibaryons qqq). These
are bubbles with the electric field lines contained in small space domain.

To make the mechanism of confinement in lattice-QCD visible we can pose the
question; what is the interaction energy between a heavy pair of a quark and an
antiquark? Such a particle pair interacts in terms of color-Coulomb force. Such a
force can be for T > TH similar to the normal electric-Coulomb 1=r force when the
pair is in a global colorless state. For T < TH the color field lines are, however,
confined. When we place heavy quarks relatively far apart, the field lines are
according to above squeezed into a cigar-like shape where the field occupied volume
grows linearly with long axis of the cigar. The expected heavy quark potential will
therefore have more linear than Coulomb 1=r character. Potential shape can be
studied as a function of quark separation and of temperature, demonstrating how
the potential properties change when deconfinement sets in [3, 4].

What is the Quark Bag Model?

A popular model implementation of quark-confinement is the so-called quark-bag
model where by imposing boundary conditions we find quark wave functions in a
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localized bound state. This model works akin to the localization of quantum states
in an infinite square-well potential. Since there have been quite a few variants of
the quark-bag model I present in qualitative terms the main common ideas. A key
new ingredient is that the domain occupied by quarks and their chromo-electrical
fields has a higher energy density called bag constant B: the deconfined state is
the state of higher energy compared to the conventional confining vacuum state.
Variants of such a model including a contributing “surface energy” are not viable
phenomenologically.

The physical volume size Vh of a deconfined domain containing quarks forming
a hadron ‘h’ arises from the balance of the vacuum energy VhB with the quark
energy / n=V1=3

h inside the bag. n is the number of valance quarks and antiquarks.
Optimization of the total energy reveals an optimum size for each hadron Vh /
B�3=4. The larger is B, the smaller and more compressed are hadron volume
bubbles. In such a simplified model with just one scale parameter B, the mass of
each hadron can be written as being proportional to the particle volume: Mh D
4VhB. Knowledge of the hadronic size of the proton (a ball of radius 1fm) allows
an estimate of B.

The growth in energy of the quark bound state with the volume occupied by
the field means that as a ‘kicked’ quark attempts an exit, as described in above
discussion on confinement, pulling its field lines in a cigar-shaped geometry. As
result there is a linearly rising attachment energy as function of the length of the
cigar-shaped field lines. Ultimately, one can expect that the field line connection
snaps, producing a quark-antiquark pair. Instead of a free ‘kicked’ quark, a colorless
meson escapes from the colorless bound state that remains colorless. The field lines
connecting the quark to its source, along with the modification of the vacuum that
arise, are called a ‘QCD string’.

This explanation of quark confinement as a confinement of the color-electrical
field lines takes us to the question: how can there be a vacuum structure that expels
color-electric field lines? Can we invoke as a justification the present day results
of lattice-QCD computations? If you attempt a search on-line you will be mostly
disappointed. This is so because lattice-QCD produces values of static observables,
and not interpretation of confinement in terms of moving quarks and dynamics of
the color-electric field lines.

What Does Quark-Gluon Plasma Mean Precisely?

Quark-Gluon Plasma (QGP) in the contemporary use of the language is a nearly
free gas of quarks and gluons at thermal (kinetic) and close to chemical (abundance)
equilibrium. Even today not everybody likes this ‘QGP’ name, as an example see
Chap. 9. Léon Van Hove wrote a report in which he refers in title to “QGP, also
called Quark Matter”.
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Let us look within lattice-QCD at strongly interacting matter in the domain of
temperature which is large compared to Hagedorn temperature, yet not beyond the
range of experiments that can be conducted today, T ' 4 
 TH . We look at results
of references seen in Chaps. 7 and 21, such as the behavior of the pressure which
follows the Stefan-Boltzmann law,

PQCD D ST4; S D gQCD
�2

90
(33.3)

S is the QCD Stefan-Boltzmann constant, and gQCD describes all effectively
massless ‘radiation’ particles which can be excited at temperature T. gQCD includes
2s
8c D 16 gluons and 2s
2p
3c
3f 
7=8jF D 31:5 u; d; s-quarks, where indices
stand for: s=spin (=2), c=color (=3, or =8), p-particle and antiparticle (=2), f -flavor
(=3), and F-Fermi as compared to Bose particle reference in the Stefan-Boltzmann
constant S.

Based on perturbative thermal, QCD properties, we expect and find a 10–20 %
reduction in gQCD ' 40 instead of 47:5 due to effects of interaction in O.˛s=�/. ˛s

is the QCD energy scale dependent coupling constant, which in the domain of T we
consider is about ˛s ' 0:5.

Given that lattice-QCD is a correct description of strongly interacting particles,
we can conclude that the state of strongly interacting matter at T ' 4TH is
composed of the expected number of nearly free quarks and gluons, and the count
of these particles emerges exactly as expected in results of lattice-QCD. We can say
that in this numerical work, QGP emerges to be the phase of strongly interacting
matter which manifests its physical properties in terms of nearly free dynamics of
practically massless gluons and quarks. The ‘practically massless’ is inserted also
for gluons as we must remember that in dense matter all color charged particles
including gluons acquire an effective in medium mass.

As temperature decreases towards and below TH , the color charge of quarks and
gluons literally freezes, and for T < 0:8TH the properties of strongly interacting
matter are now fully characterized by a HRG, see Chaps. 7 and 21. As these results
of lattice-QCD demonstrate, the modern meaning of “quark-gluon plasma” is a
phase of matter comprising color charged particles (gluons and quarks) that can
move nearly freely so as to create ambient pressure close to the Stefan-Boltzmann
limit. The properties of QGP that we check for are thus:

1. kinetic equilibrium—that is a meaningful definition of temperature;
2. dominance by effectively massless particles assuring that P / T4;
3. both quarks and gluons must be present in conditions near chemical (yield)

equilibrium with their color charge ‘open’ so that the count of their number
produces the correctly modified Stefan-Boltzmann constant of QCD.

How do we connect this simple result to experiment? The path to measuring P in
plasma and for that matter the local energy density " goes via the dynamics of the
expansion of the QGP phase. It is important to note that the smallness of the QCD
interaction effects that one sees in the behavior of P.T/ indicates that the color-
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ionic charges are screened; the viscosity entering flow models should be, in relative
terms, small. Thus we expect that a QGP blob formed at a high value of T � TH

will expand in a way similar to a gas of non-interacting quarks and gluons, but with
a reduced by interaction value of gQCD.

How Did the Name “QGP” Come into Use?

Quite often in physics names attached to important insights appear late and even
sometimes attribute the discovery to the wrong person. The situation is similar
with the naming of hot interacting quark-gluon matter as QGP: we call QGP today
what appeared in many early articles under a different name ‘quark matter’, while
yesterday QGP used to denote something else, a Feynman parton gas.

In my memory, the use of “QGP” to describe the strongly interacting quark-gluon
interacting thermal equilibrium matter was adopted following the title of a paper by
Kalashnikov and Klimov [5] of July 1979. However, let me stress that the work by
Kalashnikov-Klimov [5] did not invent QGP, neither in the content, and the name
already existed

• We see the key results of Kalashnikov-Klimov in a year earlier, July 1978,
work of Chin [6] presented under the name “Hot Quark Matter” and including
hot gluons and their interaction with quarks and with themselves, which is the
important pivotal element missing in many other papers.

• Kalashnikov-Klimov may have borrowed the term from another work, of March
1978, by Shuryak [7]. Shuryak at that time also used ‘QGP’ in his title addressing
pp collisions as a source of photons, dileptons and charmonium. With time one
notices Shuryak’s pp work cited in the modern AA QGP meaning context. This
was also done in some of our citations both by Hagedorn and myself.

Why is Quark-Gluon Plasma of Interest?

Several fundamental questions come together in the study of the deconfined phase
of matter, QGP:

• All agree that QGP was the Big-Bang stuff that filled the Universe before
matter formed. The experimental exploration of the QGP properties solidifies our
models of the Big Bang when the Universe was younger than 20 microseconds.
We learn about the material content of the Universe and what happened near the
end of the quark Universe era.

• In relativistic heavy ion collisions the kinetic energy of ions feeds the quark
population in the QGP phase. These quarks later turn into material particles. This
means that we study experimentally the mechanisms that lead to the conversion
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of energy into matter. In an as yet unknown way, this could lead to a better
understanding of the stability of matter and conversion of matter into energy.

• While as noted above, the mass of quarks is believed to originate in the Higgs
field, the mass of nucleons, a ‘bag’ of three confined quarks is about 40 times
larger than the sum of constituent quark masses. Nucleons dominate the mass
of matter by a factor 2000. For this reason, the origin of the mass of matter
is recognized to be caused by the confinement of quarks, compressed to a
relatively small, hadron volume—this confinement mass effect dominates the
Higgs effect by a large factor [8, 9]. Therefore, the vacuum structure which causes
confinement of color is responsible for the inertia of matter. We can hope to learn
how to use this deep insight in the future.

• In the standard model there are three families of particles which duplicate in
essence all their properties, except for their mass-generating interaction with the
Higgs field. They are thus distinguished only by three different sets of elementary
particle masses. At present we do not have a good explanation why this is so.

There have been few experiments possible to study this situation since in
experiments involving elementary particle collisions, we deal with a few if not
only one pair of newly created second, or third family at a time. A new situation
arises in the QGP formed in relativistic heavy ion collisions. QGP includes a large
number of particles from the second family: the strange quarks, and in fact also,
the yet heavier charmed quarks; and from third family at the LHC also bottom
quarks.

The new ability to study a large number of these second and third generation
particles present together in a different vacuum structure of QGP could help
answer the riddle about the meaning and origin of the three particle families.
“Could” means that a proposal has not emerged on how to approach this
fundamental question.

33.3 Quark-Gluon Plasma and Relativistic Heavy Ion
Collisions

How Did RHI Collisions and QGP Come Together?

In October 1980, I answered this question as follows, see Chap. 27, [21]: “The
possible formation of quark-gluon plasma in nuclear collisions was first discussed
quantitatively by S.A. Chin: Phys. Lett. B 78, 552 (1978); see also N. Cabibbo, G.
Parisi: Phys. Lett. B 59, 67 (1975).”

I now have second thoughts about this answer. The work by Cabibbo and Parisi,
though pointing to the need to develop SBM to include melting of hadrons, does
not mention or allude to nuclear collisions directly or indirectly. And, the paper by
Chin, of July 1978, in its Reference [7] grants the origin of the idea to Chapline and
Kerman [10], manuscript of March 1978.
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The contents of the never-published Chapline-Kerman’s manuscript is qualita-
tive. The authors did not pursue further development of their idea; I note that a
year later Chin and Kerman presented the idea of strangelets [11], cold drops of
quark matter containing a large strangeness content. This proposal will anchor the
resources of the BNL-AGS program for many years. A few years later Chapline
considers the possibility of ‘warm’ high baryon density quark matter being produced
in RHI collisions, which the experiments did not confirm.

Here some partial regrets: an ‘idea’ paper equivalent to [10] introducing bootstrap
of hot hadron matter could have been written by Hagedorn and myself in October
1977. But, as already discussed in Chap. 1, Hagedorn would never write such a paper
without working out a good model. After 10 months of further effort we wrote a 99
page long paper [12], as well as a shorter version, presented in Chap. 23.

How and What Happens When QGP is Created
in the Laboratory?

The reaction path into QGP in some early work has been a line placed in the
temperature-baryon density plane, such as the one shown in Fig. 32.2 on page 403,
with an arrow pointing from a hot thermal hadron phase into the QGP domain.
For RHI collisions capable of forming QGP, such a picture can only apply if a
mechanism of entropy production exists at hadron collision level that creates the
thermally equilibrated hadron phase. While new particles are formed, this state
dissolves into QGP.

This process requires conversion of directed motion energy into locally equili-
brated matter. Moreover, the system proceeds via a non-equilibrium stage where
neither the particle abundance nor their spectra are close to conditions that are
associated with the phase diagram properties. Thus a locally equilibrated matter
emerges first amongst quark and gluon degrees of freedom. Presentation in the phase
diagram of a RHI collision entrance path into QGP domain is thus not appropriate.

In fact, for very high RHIC and LHC energies all scattering processes occur at
quark-gluon (parton) level. Thus there is no connection whatsoever with models
of hadron-hadron scattering that sometimes decorate in an explanatory way the
AA collision process. At much lower energies, near to the presumed threshold of
QGP formation, the reaction path at least in part involves hadron based processes
described within kinetic non-equilibrium approaches. The question one may wonder
about in this case is how Hagedorn could interpret hadron production, introducing
his limiting temperature.

“Why the Hadronic Gas Description of Hadronic Reactions Works” is the title
of a work suggesting an explanation long ago [13]: it is the formation of nearly
equilibrated QGP that is, partonic gas, and the evaporation of hadrons from QGP
fireball that produces the near equilibrium hadron particle abundances observed.
I believe this is practically the case for all strong interaction reaction processes,
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including pp and pA (proton-Nucleus) scattering, aside of AA nucleus-nucleus
(heavy ion) collisions, all of these differ only in the degree of equilibration that is
achieved.

The present consensus about the formation of an equilibrium state characterized
by a high entropy density contents in relativistic heavy ion collision at RHIC and
LHC is that it is much more likely to be produced in the context of parton collisions.
Among the first to address a parton based entropy production quantitatively within
a kinetic collision model was Klaus Geiger [14, 15], see Fig. 14.2 on page 111.
Klaus built computer cascade models at parton level, and studied thermalization
as a collision based process which opens a Pandora box of questions in regard to
decoherence of investigated processes. Thus more than 20 years later a search and
exploration of fast entropy generating mechanism properly described within QCD
continues, see for example [16].

When and Where was QGP Discovered?

Both CERN and BNL have held press conferences describing their experimental
work. In Fig. 33.1 a screenshot shows how CERN advertised its position in February
2000 to a wider public. The document for scientists agreed to by those representing
the seven CERN experiments read: “A common assessment of the collected data

Fig. 33.1 The press release text: “At a special seminar on 10 February 2000, spokespersons
from the experiments on CERN’s Heavy Ion programme presented compelling evidence for the
existence of a new state of matter in which quarks, instead of being bound up into more complex
particles such as protons and neutrons, are liberated to roam freely”
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leads us to conclude that we now have compelling evidence that a new state of matter
has indeed been created, . . . . The new state of matter found in heavy ion collisions
at the SPS features many of the characteristics of the theoretically predicted quark-
gluon plasma.”

At the April 2005 meeting of the American Physical Society, held in Tampa,
Florida a press conference took place on Monday, April 18, 9:00 local time. The
public announcement read: At RHIC “. . . two beams of gold atoms are smashed
together, the goal being to recreate the conditions thought to have prevailed in the
universe only a few microseconds after the Big Bang, so that novel forms of nuclear
matter can be studied. At this press conference, RHIC scientists will sum up all they
have learned from several years of observing the world’s most energetic collisions
of atomic nuclei. The four experimental groups operating at RHIC will present a
consolidated, surprising, exciting new interpretation of their data.” The participants
at the conference obtained “Hunting for Quark-Gluon Plasma” report, of which the
cover in Fig. 33.2 shows the four BNL experiments, which reported on the QGP
physical properties that have been obtained at BNL.

33.4 Hadrons and Quark-Gluon Plasma

What Controls Kinetic Energy Conversion into Material
Particles?

Particles emerging in hadronization of QGP carry entropy. In the temporal sequence
of events, entropy contents must increase. Conversely, the final yield of particles
produced is thus dependent on how much entropy will be created when heavy ions
collide. Most of the entropy production is, when considered in quantitative fashion,
related to the process of color deconfinement and thermalization of quarks and
gluons in QGP.

Entropy is produced in the processes that occur when partons collide forming
dense matter. These mechanisms continue at first when the system expands. The
massless light quark and gluon abundances all grow, substantially. Thus at least in
the beginning the dense matter fireball explodes in a non-adiabatic fashion, forming
additional entropy in the process of the creation of new particle populations, such
as strange quark pairs.

Once local thermal and chemical equilibrium is achieved, the explosive flow
of QGP, the micro-bang, should be largely adiabatic, not much different from the
picture that emerges in the study of the Big-Bang QGP dynamics in the early
Universe. The main difference between the big- and micro-bangs is that in the
laboratory experiments the time frame in which dense matter exists is so short that
the electromagnetic and weakly interacting particles remain far from equilibrium.

In this adiabatic expansion involving dilution of particle density and adiabatic
cooling of temperature thermal energy is transferred into the energy of the kinetic
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Fig. 33.2 The cover of the BNL-73847-2005 Formal Report prepared by the Brookhaven National
Laboratory, on occasion of the RHIC experimental program press conference April 2005. The
cover identified the four RHIC experiments
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flow of matter. This, as well as the potential radiation effects reduce the temperature
of QCD matter fireball, ultimately leading to the freezing of quarks and gluons back
into hadrons. This latter process is described in the Statistical Hadronization Model
described earlier.

All of the entropy produced in this time line of QGP formation and hadronization
turns at the end into a hadronic matter-antimatter, meson, particle gas, just as was
the case in the evolution of the early Universe. A remarkable outcome of the QGP
formation is that by way of the formation of a large entropy content when breaking
color bonds and deconfining quarks and gluons we convert the kinetic energy of the
colliding nuclei into abundantly produced entropy that needs to emerge at the end
in the form of material particles.

What is Special About Heavy Quarks?

Strangeness

In order to produce the large abundance of strange quark pairs that can be present in
QGP, the initial collisions of partons do not suffice. One can see this by considering
the strangeness yield as a function of reaction energy and size of QGP formed: the
relative population of strangeness grows as the collision volume increases and/or the
energy increases. Strange quark pairs: s and antiquarks Ns, are for most part produced
after QGP formation, in processes called gluon fusion [17] illustrated in the center of
Fig. 33.3, see Sect. 31.2. Processes based on light quark collisions contribute fewer

Fig. 33.3 Multistrange (anti)baryons as signature of QGP, see text for further discussion
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sNs-pairs by nearly a factor 10. Thus, the abundance of strangeness is considered a
signature of the formation of a thermal gluon medium.

The fireball of QCD matter, driven by its internal pressure, changes rapidly and
with this the rates of production and reannihilation of massive quarks change. In the
early stage it is likely that a sequence of chemical equilibration processes is present,
with gluons being first to equilibrate in their number and momentum distribution,
and then gluon based processes driving the equilibration of quarks, first light to later,
heavy.

Once produced, strangeness evolves with light (u; Nu; d; Nd) quarks and gluons g
until the time of hadronization, when the remaining particles seed the formation
of hadrons observed in the experiment. In QGP, s and Ns can move freely and their
large abundance leads to unexpectedly large yields of particles with a large s and Ns
content, as is illustrated exterior of the QGP domain in Fig. 33.3.

Strange Antibaryons

In regard to strange antibaryon signature: in the 1982 discussion of the possible and
forthcoming CERN SPS experiments I said [18], see Sect. 31.4:

“. . . we should search for the rise of the abundance of particles like Ξ, Ξ, Ω, Ω, and 	,
. . . such experiments would uniquely determine the existence of the phase transition to the
quark-gluon plasma.. . . Strangeness-based measurements have the advantage that they are
based on the observation of a strongly interacting particle (s; Ns quark) originating from
the hot plasma phase; these are much more abundant than the electromagnetic particles
(dileptons or direct photons).”

Léon Van Hove, the former DG (1976–1980), characterized the strange
antibaryon situation after the 1982 presentation as follows [19]:

In the “Signals for Plasma” section: . . . implying (production of) an abnormally large
antihyperon to antinucleon ratio when plasma hadronizes. The qualitative nature of this
prediction is attractive, all the more so that no similar effect is expected in the absence of
plasma formation.

These remarks became the intellectual cornerstone of the experimental stran-
geness program carried out at the CERN SPS in the last decade of the twentieth
century.

Production and Annihilation of Flavor

The initial on-impact production of charm c, Nc and yet heavier bottom quark pairs
b; Nb increases with AA collision energy. From some collision energy on, dependent
on the heavy quark mass, the initial production yields thus corresponds to an
abundance which exceeds the chemical equilibrium yield of heavy quark pairs at the
later hadronization condition of the QGP fireball. This happens because the ratio of
heavy quark mass to the hadronization temperature enters in the exponential, and
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the mass of charmed (and bottom) quarks is much larger compared to the final
temperature at which QGP fireball breaks up into hadrons. I expect that there is
enough charm produced at LHC to allow that during evolution of the QGP fireball
charm yield undergoes the thermal pair annihilation processes decreasing in yield
down towards the chemical equilibrium abundance.

After noting this anomalous charm behavior, one wonders if to a smaller measure
a similar above chemical abundance yield can occur also for strangeness: if the
QGP formed in the AA high energy collision is very hot, thermally produced
strangeness reaches its highest abundance at a transient high temperature condition
in the QGP fireball. Later, as QGP expands and cools, strangeness pair yield is above
chemical equilibrium, just as charm is. The difference between strangeness and
charm is that for strangeness both production and later annihilation is by thermal in-
plasma reaction processes. Once above chemical equilibrium, strangeness in QGP
is decreasing towards chemical equilibrium. Depending on dynamical evolution
details, strangeness can hadronize from a state above QGP chemical equilibrium.

The final state abundance of all heavy quark flavors: strangeness, charm and yet
heavier bottom quark pairs b; Nb is thus a part of the ongoing investigation of the time
evolution of a QGP fireball.

Was the Predicted Strange (Anti)baryon Enhancement Found?

SPS Results

Given the quark combination reactions shown in Fig. 33.3 that create multistrange
baryons and antibaryons, these particles are naturally a sensitive probe of the
hadronization strangeness density. Experiments explored the production of multi
strange nucleons—‘Cascades’ Ξ�.ssd/ and ‘Omegas’ Ω�.sss/ and, importantly,
their antiparticles, the multi-strange anti-nucleons Ξ;Ω. The study of single strange
mesons—kaons KC.uNs/, K�.Nus/, and single strange nucleons—the Lambda parti-
cles Λ0.sud/ set a comparison base-line.

The studies in AA collisions at the CERN-SPS Ω0-spectrometer, see Sect. 15.3
thus measured the production of higher strangeness content baryons and
antibaryons, as compared to lower strangeness content particles, Ξ=Λ and NΞ= NΛ.
These early SPS experiments clearly confirmed the QGP prediction in a systematic
fashion, as we see in the compilation of the pertinent results in Fig. 33.4, see [20].

In these experiments WA85 and WA94 the sulfur ions S with 200 A GeV hit
stationary laboratory targets, S, W (tungsten), respectively, with reference date
from pp (AFS-ISR) and p on S shown for comparison. The Ξ=Λ and NΞ= NΛ ratio
enhancement rises with the size of the reaction volume measured in terms of target
A, and is larger for antimatter as compared to matter particles. This agrees very
well with qualitative model predictions [18], Chap. 31 and their quantitative model
consideration [21], much of this work was carried out with Berndt Müller, Fig. 33.5.
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Fig. 33.4 Results obtained at the CERN-SPS Ω0-spectrometer for Ξ=Λ-ratio in fixed target S-S
and S-Pb at 200 A GeV/c; results from compilation in [20]

Fig. 33.5 Berndt Müller (left) with Johann Rafelski work on hadronization of QGP in 1984/85,
the Physics Reports article [21]. Image credit: Johann Rafelski and University of Cape Town

When a thermal QGP fireball domain is not formed, the production of such
complex multistrange (anti)baryons is less probable for two reasons:

1. When new particles are produced in color string breaking process, strangeness is
known to be produced less often by a factor 3 compared to lighter quarks.

2. The generation of multistrange content requires multiple such suppressed steps.

Thus the conclusion is that with increasing strangeness content the production by
string processes of strange hadrons is progressively more suppressed.
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Fig. 33.6 Results obtained at the CERN-SPS Ω0-spectrometer for multi-strangeness enhancement
at mid-rapidity jyCMj < 0:5 in fixed target Pb–Pb collisions at 158 A GeV/c at CERN SPS as a
function of the mean number of participants hNparti, from [22]

Conversely, comparing pp, pA to AA absolute yield results, the enhanced
production of higher strangeness content baryons and antibaryons in AA collisions
increases with the particle strangeness content. To make this comparison fairly, one
normalizes the yields to be per unit of hadronization volume measured in terms of
the number of collision participating nucleons. The number of ‘participants’ hNparti
is obtained from geometric models of reaction based on energy and particle flows.

The results obtained for the top SPS energy Pb (lead) beam of 156 A GeV are
shown in Fig. 33.6. On the right are considered particles made only of quarks
and antiquarks that are created in the collision. On the left some of the particle
valence quarks can be from matter brought into the reaction volume. The number
of participants is large, greater than 100, a point to remember. The particles
made entirely from newly created quarks are up to 20 times more abundant. This
enhancement falls with decreasing strangeness content and increasing contents of
valence quarks which are brought into collision. The results at yield ratio ‘1’ provide
the error measure for the pA reference measurement.

All these results are in excellent agreement with the deconfined QGP fireball as
the source of strange baryons and antibaryons. These results provided key evidence
for the formation of a new state of matter at the CERN-SPS energies, which CERN
announced in a press release in February 2000. Much has been learned about the
QGP fireball properties from ongoing analysis of these and other related hadron
production results [24–28].
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RHIC and LHC Confirmation

Some of the above presented discoveries are now nearly 20 years old. They have
been confirmed by further results obtained at SPS, at RHIC, and at the LHC. The
present day experimental summary is shown in Fig. 33.7. We see results obtained
by the collaborations:

SPS NA57 for collision energy
p

sNN D 17:2GeV (lighter open symbols);
RHIC STAR for collision energy

p
sNN D 200GeV (darker open symbols);

LHC Alice for collision energy
p

sNN D 2760GeV (filled symbols).

These results span a range of collision energies that differ by factor 160.
Comparing results of Fig. 33.7 with those seen in Fig. 33.6 we note that hNparti is

now on a logarithmic scale: the results of Fig. 33.6 which show that the enhancement
is volume independent are in Fig. 33.7 compressed to a relatively small domain on
the right in both panels. The new SPS results seen in Fig. 33.7 are in agreement with
the earlier SPS results shown in Fig. 33.6.

The rise of enhancement which we see in Fig. 33.7 as a function of the number
of participants 2 < hNparti < 80 reflects on the rise of strangeness content in QGP
to its chemical equilibrium abundance with an increase in volume and thus lifespan
of QGP fireball. It is not surprising that the enhancement at SPS is larger than that

Fig. 33.7 Enhancements of Ξ�; Ξ
C
; Ω� CΩ

C
in the rapidity range jyCMj < 0:5 as a function of

the mean number of participants hNparti: LHC-ALICE: full symbols; RHIC-STAR and SPS-NA57:
open symbols. The LHC reference data use interpolated in energy pp reference values. Results
at the dashed line (at unity) indicate statistical and systematic uncertainties on the pp or pBe (at
SPS) reference. Error bars on the data points represent the corresponding uncertainties for all the
heavy-ion measurements. Results presented and compiled in [23]
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seen at RHIC and LHC, considering that the reference yields play an important
role in this comparison. Especially the high energy LHC pp reactions should begin
to create space domains that resemble QGP but do not yet achieve the degree of
chemical strangeness equilibration that would erase the enhancement effect entirely.

Detailed analysis of the RHIC and LHC AA particle production abundance
results shows that the source of strange baryons and antibaryons is a deconfined
QGP fireball which hadronizes at a common physical condition [29]. This estab-
lishes that in a large range of collision energies the final hadron abundance is sourced
in the same fireball with a main and practically only difference being the volume
size.

Is There a Threshold in Energy and Size for QGP Formation?

Dynamics and Deconfinement

Our study of properties of hot nuclear matter assumes chemical equilibrium
abundance of all strongly interacting particles, including those that are quite heavy.
In the SBM approach there are very few of each kind, but there are many, many
different types of particles. For each particle there is an equilibration relaxation
time. The heavier the particle is, the more time is needed to produce it. Thus it is not
guaranteed that the theoretical result about thermal equilibrium properties of the hot
hadronic matter is a true image of the dynamical RHI collision situation.

The smaller the size of colliding nuclei, the shorter is the collision time. Thus
in collisions of small size objects such as pp or light nuclei, one cannot presume
that at relatively low collision energy a complete chemical equilibration is achieved.
As nucleon number A increases, for large nuclei, the situation changes. However,
should the hadro-chemical equilibrium be established late in the collision, the
hadron dissolution into the deconfined QGP phase will have only a fleeting presence
and thus leave few if any signatures. In such ‘just beyond’ deconfinement reactions
of great importance are signatures that are based on strong interactions, as these are
more likely to appear.

An important additional observation is that particle production processes are
more effective with increasing collision energy. Therefore the chemical equilibra-
tion is achieved more rapidly at higher energy. This was the main reason why
QGP search experiments started at the highest available energy where QGP is both
more easily produced, and, in terms of more rarely produced particles, more easily
detected. This said, the question about threshold of QGP production remains.

Where are Thresholds of Deconfinement?

The above qualitative discussion suggest that thresholds are expected as a function
of collision energy and reaction volume size. The volume can be controlled by
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creating categories of the ‘violence’ of collisions which are associated with collision
offset between centers of nuclei and/or value of A of the nuclei colliding. This is the
participant number hNparti.

Thus in principle for each reaction energy studied, one can explore a range
of reaction volumes and compare the results by looking at observables such as
strangeness. This type of data is under consideration both at the SPS at CERN (see
Chap. 11) and at RHIC at BNL (see Chap. 14). A study of head-on Pb–Pb collisions
as a function of energy at SPS did produce by 2010 tantalizing hints of an energy
threshold to new phenomena [30] in an energy range also accessible to RHIC.

What makes the search for a threshold difficult is a likely change, as a function of
both reaction energy and reaction volume, of the probability to enter the QGP phase.
Since experiments in general ‘trigger’ their detector on interesting looking events in
a process one would call ‘maximum bias’, the variation of this probability can be
compensated in part by trigger procedures which are often specific to the particular
approach taken by the experimental group.

In Chap. 11 discontinuities as a function of collision energy in the KC=�C
particle yield ratio and the inverse slope parameter of the m? spectra of K�, see
Fig. 11.1 are interpreted as the onset of deconfinement. We see a local maximum
near to 30 A GeV, that is at 3.8+3.8 GeV,

p
sNN D 7:6GeV collider energy collisions

in both quantities. Both of these behavior ‘thresholds’ are to some degree mirrored
in the much smaller pp reaction system. This indicates that a qualitative change in
the production mechanism of strange particles occurs in a wide range of reaction
volume.

An analysis of the SPS AA global particle production results shows that the
fireball content in strangeness per entropy s=S nearly saturates at this

p
sNN D

7:6GeV energy threshold [28], as is shown in Fig. 33.8. This means that both
strangeness and entropy above threshold grow with energy in same manner; one
can argue this signals activation of gluon and quark degrees of freedom, a point
made in Chap. 11.

Fig. 33.8 Fireball thermal energy content divided by strange quark pair content as function of
collision energy, update of results [28]
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Fig. 33.9 1978: Rolf Hagedorn (on right) toasts to work accomplished. Photo: JR

This shows that while the formation of QGP has been clearly achieved, the work
on the characterization of the relation of phase diagram and experimental conditions
has just begun. Two new accelerator complexes (FAIR at GSI and NICA at Dubna)
should improve experimental access to these questions in the future. This effort
continues today the tradition begun 50 years ago, when Hagedorn Temperature was
invented. We can toast, see Fig. 33.9, to 50 more years of transforming advances in
the study of ‘hot’ strong interactions.

33.5 Conclusions

This report barely touches the surface of the physics program that has emerged
in the past 17 years of hard work. By showing a few qualitative and quantitative
pictures I have aimed to illustrate how the interest in Melting Hadrons and
Boiling Quarks morphed into a comprehensive experimental program addressing
strangeness observable of QGP. In a nutshell, the theoretical and experimental
highlights are:

– (Multi) strangeness enhancement from QGP fireball formed in AA collisions is
natural and was predicted.

– All SPS, RHIC and LHC data clearly shows it consistent with predictions.
– At LHC energy the particle multiplicity and thus space-time volume of the

reaction increases strongly; therefore even pp data show gradual approach to
strangeness equilibration.
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– For large AA colliding nuclei the onset of new physics with collision energy
occurs early, permitting an intense experimental exploration of the physical
properties of the deconfined state in the coming decade. These final remarks
are complemented by the full account presented under the same title (Melting
Hadrons, Boiling Quarks) in format of a Review in the European Physical Journal
A (2015).
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