Mitigation of space charge effects using electron column at IOTA ring
DOI:
https://doi.org/10.23732/CYRCP-2020-009.112Abstract
We investigate a novel method to mitigate space charge effects of high intensity proton beams propagating in circular accelerators by means of trapping and controlling electrons generated from beam-induced residual gas ionization. This compensation method uses Coulomb repulsion force between a proton beam and electrons to mitigate self-space charge effects of the beam if it passes through a plasma column. The transverse electron-proton (e-p) instability in the plasma column is well controlled by the longitudinal magnetic field of a solenoid magnet and the bias voltages on electrodes. In this report, we will show simulation results how to control distributions of electrons and ions as well as that of the proton beam inside the column.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 CERN
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this publication agree to the following terms:
- CERN retains copyright and publishes the work licensed under the Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this series.
- Authors are able to enter into separate, additional contractual arrangements for distribution of the published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this series.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).