SEY and other material properties studies at cryogenic temperatures
DOI:
https://doi.org/10.23732/CYRCP-2020-007.153Abstract
A very low secondary electron yield is confirmed to be the fingerprint of laser treated copper substrates. In future high energy particle accelerators, this feature offers unquestionable advantages for electron cloud mitigation purposes. Thermal programmed desorption between 20 and 70 K by dosing Ar multilayers of different thicknesses on a laser treated copper substrate and on its flat counterpart are here reported. The results show that, as a consequence of their nanostructured porous morphology, the desorption of gas from the laser treated substrates occurs in a much broader and higher temperature range with respect to what is observed from the flat substrates. These findings suggest that vacuum transient eects against temperature fluctuations should be better evaluated, if such surfaces would be included as cryogenic vacuum components in accelerators.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 CERN
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this publication agree to the following terms:
- CERN retains copyright and publishes the work licensed under the Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this series.
- Authors are able to enter into separate, additional contractual arrangements for distribution of the published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this series.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).