Vol. 7 (2020): ECLOUD’18 : Proceedings of the Joint INFN-CERN-ARIES Workshop on Electron-Cloud Effects, 3–7 June 2018, La Biodola, Isola d’Elba, Italy

					View Vol. 7 (2020): ECLOUD’18 : Proceedings of the Joint INFN-CERN-ARIES Workshop on Electron-Cloud Effects, 3–7 June 2018, La Biodola, Isola d’Elba, Italy

Editors: R. Cimino, G. Rumolo, F. Zimmermann

This report contains the proceedings of the sixth electron-cloud workshop, ECLOUD'18, held, from 3 to 7 June 2018 at La Biodola (Isola d'Elba) Italy. The ECLOUD’18 workshop reviewed many recent electron-cloud (EC) observations at existing storage rings, EC predictions for future accelerators, and various advanced electron-cloud studies. The existence of EC effects in many frontier accelerators has by now been firmly established. It is a consequence of the strong coupling between a positively charged particle beam and a cloud of electrons that almost inevitably builds up inside the vacuum chamber. The EC causes various effects limiting accelerator performance, such as beam instabilities, beam losses, emittance growth, increases in vacuum pressure, additional heat load on the vacuum chamber walls inside cold magnets, and interference with certain types of beam diagnostics.

At ECLOUD’18, recent EC studies were presented, discussed and compared: electron-cloud observations at the LHC, SuperKEKB, CESR-TA and DAFNE; electron-cloud predictions for FAIR, NICA, EIC and for the FCC and other machines; electron-cloud mitigation measures, such as clearing electrodes, graphite/carbon coatings, and chemically or laser treated surfaces; modeling of incoherent electron-cloud effects; self-consistent simulations including ionized molecules; synergies with other communities like the Valencia Space Consortium and the European Space Agency, surface science experts and specialists for conventional accelerator impedance.

ECLOUD’18 identified a number of open questions and defined future R&D needs.

Published: 2020-09-19

Full Issue

Articles

  • Electron cloud effects in accelerators

    F. Zimmermann
    1
    DOI: https://doi.org/10.23732/CYRCP-2020-007.1
  • Electron cloud effects at the CERN accelerators

    G. Rumolo, H. Bartosik, E. Belli, G. Iadarola, K. Li, L. Mether, A. Romano, F. Zimmermann
    13
    DOI: https://doi.org/10.23732/CYRCP-2020-007.13
  • Coupled-bunch instabilities and related effects due to electron cloud in SuperKEKB LER

    M. Tobiyama
    21
    DOI: https://doi.org/10.23732/CYRCP-2020-007.21
  • Measurements and simulations of electron-cloud-induced tune shifts and emittance growth at CesrTA

    S. Poprocki, J.A. Crittenden, D.L. Rubin, S.T. Wang
    27
    DOI: https://doi.org/10.23732/CYRCP-2020-007.27
  • Investigating the role of photoemission in the e-cloud formation at the LHC

    P. Dijkstal, G. Iadarola, L. Mether, G. Rumolo
    39
    DOI: https://doi.org/10.23732/CYRCP-2020-007.39
  • Overview on heat loads in the LHC

    G. Iadarola, B. Bradu, P. Dijkstal, L. Mether, G. Rumolo, G. Skripka, L. Tavian
    51
    DOI: https://doi.org/10.23732/CYRCP-2020-007.51
  • Electron cloud build-up in two-beam regions for HL-LHC, heat load and vacuum aspects

    G. Skripka, G. Iadarola
    59
    DOI: https://doi.org/10.23732/CYRCP-2020-007.59
  • Beam induced dynamic pressure during Run 2 (2015-2018) Machine operation in the LHC

    C. Yin Vallgren, P. Ribes Metidieri, G. Bregliozzi
    65
    DOI: https://doi.org/10.23732/CYRCP-2020-007.65
  • How does a cryogenic system cope with e-cloud induced heat load?

    B. Bradu, K. Brodzinski, G. Ferlin
    73
    DOI: https://doi.org/10.23732/CYRCP-2020-007.73
  • Sub-THz EM characterization of coated material

    A. Passarelli, H. Bartosik, G. Rumolo, V.G. Vaccaro, M.R. Masullo, C. Koral, A. Andreone, O. Boine-Frankenheim
    83
    DOI: https://doi.org/10.23732/CYRCP-2020-007.83
  • Instability caused by electron cloud in combined function magnets: the FERMILAB experience

    S.A. Antipov
    91
    DOI: https://doi.org/10.23732/CYRCP-2020-007.91
  • Secondary electron yield of surfaces: what we know and what we still need to know

    M. Taborelli
    97
    DOI: https://doi.org/10.23732/CYRCP-2020-007.97
  • Surface characterization of vacuum components extracted from LHC dipole magnet

    105
    DOI: https://doi.org/10.23732/CYRCP-2020-007.105
  • Experimental studies on secondary electron emission characteristics of accelerator chamber materials

    S. Liu, Y. Liu, W. Liu, G. Pei, P. Wang, L. Zeng, X. Sun
    109
    DOI: https://doi.org/10.23732/CYRCP-2020-007.109
  • SEY from noble metals

    L.A. Gonzalez, M. Angelucci, R. Larciprete, R. Cimino
    115
    DOI: https://doi.org/10.23732/CYRCP-2020-007.115
  • The effect of the structural properties on the SEY of C materials

    L.A. Gonzalez, M. Angelucci, R. Larciprete, R. Cimino
    119
    DOI: https://doi.org/10.23732/CYRCP-2020-007.119
  • Photo reflectivity and photo electron yield from technical surfaces

    A. Liedl, M. Angelucci, E. La Francesca, F. Schäfers, M.G. Sertsu, F. Siewert, A. Sokolov, R. Cimino
    125
    DOI: https://doi.org/10.23732/CYRCP-2020-007.125
  • Recent secondary electron modeling at Princeton Plasma Physics Laboratory

    C. Swanson, I.D. Kaganovich
    131
    DOI: https://doi.org/10.23732/CYRCP-2020-007.131
  • Facets of spacecraft charging; critical temperature and dependence on ambient electron density

    Shu T. Lai
    137
    DOI: https://doi.org/10.23732/CYRCP-2020-007.137
  • Experiments with stable confined electron columns

    K.I. Thoma, V. Britten, M. Droba, O. Meusel, H. Podlech, B. Scheible, K. Schulte
    143
    DOI: https://doi.org/10.23732/CYRCP-2020-007.143
  • Synchrotron radiation interaction with cryosorbed layers for astrochemical investigations

    R. Dupuy, M. Bertin, G. Féraud, X. Michaut, T. Putaud, L. Philippe, P. Jeseck, R. Cimino, V. Baglin, C. Romanzin, J.-H. Fillion
    147
    DOI: https://doi.org/10.23732/CYRCP-2020-007.147
  • SEY and other material properties studies at cryogenic temperatures

    L. Spallino, M. Angelucci, R. Larciprete, R. Cimino
    153
    DOI: https://doi.org/10.23732/CYRCP-2020-007.153
  • Characterisation of technical surfaces at cryogenic temperature under electron bombardment

    B. Henrist, V. Baglin, M. Haubner
    159
    DOI: https://doi.org/10.23732/CYRCP-2020-007.159
  • Coldex: A tool to study cold surfaces in accelerators

    V. Baglin
    165
    DOI: https://doi.org/10.23732/CYRCP-2020-007.165
  • Electron cloud effects in SuperKEKB commissioning

    K. Ohmi, J. Flanagan, H. Fukuma, H. Ikeda, E. Mulyani, K. Shibata, Y. Suetsugu, M. Tobiyama
    179
    DOI: https://doi.org/10.23732/CYRCP-2020-007.179
  • Simulations of synchrotron-radiation-induced electron production in the CESR vacuum chamber wall

    J.A. Crittenden, S. Poprocki, D.L. Rubin, D. Sagan
    183
    DOI: https://doi.org/10.23732/CYRCP-2020-007.183
  • Preliminary results obtained with the LHC Vacuum Pilot Sector

    E. Buratin, V. Baglin, B. Henrist
    195
    DOI: https://doi.org/10.23732/CYRCP-2020-007.195
  • Electron cloud effect and its cures in the SuperKEKB positron ring

    Y. Suetsugu, H. Fukuma, K. Ohmi, M. Tobiyama, K. Shibata
    201
    DOI: https://doi.org/10.23732/CYRCP-2020-007.201
  • Laser ablated surface engineering: from discovery to machine application

    R. Valizadeh, O.B. Malyshev, T. Sian, J.S. Colligon, Q. Li, W. Perrie
    209
    DOI: https://doi.org/10.23732/CYRCP-2020-007.209
  • Complex technological solutions for particle accelerators

    O.B. Malyshev, R. Valizadeh
    217
    DOI: https://doi.org/10.23732/CYRCP-2020-007.217
  • Intra-bunch feedback system development at DAΦNE

    A. Drago, D. Alesini, S. Caschera, A. Gallo, J.D. Fox, J. Cesaratto, J. Dusatko, J. Olsen, C. Rivetta, O. Turgut, W. Hofle, G. Iadarola, K. Li, E. Metral, E. Montesinos, G. Rumolo, S. De Santis, M. Furman, J.-L. Vay, M. Tobiyama
    223
    DOI: https://doi.org/10.23732/CYRCP-2020-007.223
  • ECLOUD’18 summary and outlook

    229
    DOI: https://doi.org/10.23732/CYRCP-2020-007.229