Vol. 3 (2020): Theory for the FCC-ee: Report on the 11th FCC-ee Workshop, Theory and Experiments, CERN, Geneva, 8–11 January 2019

					View Vol. 3 (2020): Theory for the FCC-ee: Report on the 11th FCC-ee Workshop, Theory and Experiments, CERN, Geneva, 8–11 January 2019

Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann

The Future Circular Collider (FCC) at CERN, a proposed 100 km circular facility with several colliders in succession, culminates in a 100 TeV proton–proton collider. It offers a vast new domain of exploration in particle physics, with orders-of-magnitude advances in terms of precision, sensitivity, and energy. The implementation plan published in 2018 foresees, as a first step, an electroweak factory electron–positron collider. This high-luminosity facility, operating at centre-of-mass energies between 90 and 365 GeV, will study the heavy particles of the Standard Model (SM), Z, W, and Higgs bosons, and top quarks with unprecedented accuracy. The physics programme offers great discovery potential: (i) through precision measurements, (ii) through sensitive searches for symmetry violations, forbidden, or extremely rare decays, and (iii) through the search for direct observation of new particles with extremely small couplings. The electroweak factory e+e- collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z boson resonance to the experimental demands. The second workshop, in January 2019, extended the scope to the next stages, with the production of W bosons (FCC-ee-W), the Higgs boson (FCC-ee-H), and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, αQED, αQCD, MW, and mt, at the level of FCC-ee requirements was thoroughly discussed. The requirements on Standard Model theory calculations were spelt out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multiloop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, including effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.

Full Issue

  • Editors’ note

    viii
    DOI: https://doi.org/10.23731/CYRM-2020-003.viii
  • Contents

    xi
    DOI: https://doi.org/10.23731/CYRM-2020-003.xi
  • Executive summary

    1
    DOI: https://doi.org/10.23731/CYRM-2020-003.1
  • Introduction and overview

    3
    DOI: https://doi.org/10.23731/CYRM-2020-003.3
  • αQED, eff (s) for precision physics at the FCC-ee/ILC

    9
    DOI: https://doi.org/10.23731/CYRM-2020-003.9
  • Precision quantum chromodynamics

    D. d’Enterria
    38
    DOI: https://doi.org/10.23731/CYRM-2020-003.38
  • Inclusion of mixed QCD–QED resummation effects at higher orders

    G.F.R. Sborlini
    51
    DOI: https://doi.org/10.23731/CYRM-2020-003.51
  • CoLoRFulNNLO at work: a determination of αs

    A. Kardos, S. Kluth, G. Somogyi, Z. Trócsányi, Z. Tulipánt, A. Verbytskyi
    57
    DOI: https://doi.org/10.23731/CYRM-2020-003.57
  • Theoretical luminosity precision for the FCC-ee: overview of the path to 0.01%

    65
    DOI: https://doi.org/10.23731/CYRM-2020-003.65
  • e+e → γγ at large angles for FCC-ee luminometry

    C.M. Carloni, M. Chiesa, G. Montagna, O. Nicrosini, F. Piccinini
    71
    DOI: https://doi.org/10.23731/CYRM-2020-003.71
  • Prospects for higher-order corrections to W pair production near threshold in the EFT approach

    C. Schwinn
    77
    DOI: https://doi.org/10.23731/CYRM-2020-003.77
  • Perspectives of heavy quarkonium production at the FCC-ee

    Z.-G. He, B.A. Kniehl
    89
    DOI: https://doi.org/10.23731/CYRM-2020-003.89
  • Vertex functions in QCD—preparation for beyond two loops

    J.A. Gracey
    97
    DOI: https://doi.org/10.23731/CYRM-2020-003.97
  • Effective field theory approach to QED corrections in flavour physics

    107
    DOI: https://doi.org/10.23731/CYRM-2020-003.107
  • Top pair production and mass determination

    A. Maier
    117
    DOI: https://doi.org/10.23731/CYRM-2020-003.117
  • Higgs boson decays: theoretical status

    123
    DOI: https://doi.org/10.23731/CYRM-2020-003.123
  • Heritage projects, preservation, and re-usability concerns

    135
    DOI: https://doi.org/10.23731/CYRM-2020-003.135
  • Scalar one-loop Feynman integrals in arbitrary space–time dimension d – an update

    T. Riemann, J. Usovitsch
    139
    DOI: https://doi.org/10.23731/CYRM-2020-003.139
  • NNLO corrections in four dimensions

    R. Pittau
    163
    DOI: https://doi.org/10.23731/CYRM-2020-003.163
  • Unsubtractions at NNLO

    J.J. Aguilera-Verdugo, F. Driencourt-Mangin, J. Plenter, S. Ramírez-Uribe, G. Rodrigo, G.F.R. Sborlini, W.J. Torres Bobadilla, S. Tracz
    169
    DOI: https://doi.org/10.23731/CYRM-2020-003.169
  • Numerics for elliptic Feynman integrals

    C. Bogner, I. Hönemann, K. Tempest, A. Schweitzer, S. Weinzierl
    177
    DOI: https://doi.org/10.23731/CYRM-2020-003.177
  • Numerical multiloop calculations: sector decomposition and QMC integration in pySecDec

    S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk
    185
    DOI: https://doi.org/10.23731/CYRM-2020-003.185
  • Analytics from numerics: five-point QCD amplitudes at two loops

    S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page
    193
    DOI: https://doi.org/10.23731/CYRM-2020-003.193
  • Recent developments in Kira

    P. Maierhöfer, J. Usovitsch
    201
    DOI: https://doi.org/10.23731/CYRM-2020-003.201
  • Precision Monte Carlo simulations with WHIZARD

    205
    DOI: https://doi.org/10.23731/CYRM-2020-003.205
  • FCC tau polarisation

    S. Banerjee, Z. Was
    211
    DOI: https://doi.org/10.23731/CYRM-2020-003.211
  • Electron–positron annihilation processes in MCSANCee

    A. Arbuzov, S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov, V. Yermolchyk
    213
    DOI: https://doi.org/10.23731/CYRM-2020-003.213
  • Global electroweak fit in the FCC-ee era

    J. Erler, M. Schott
    217
    DOI: https://doi.org/10.23731/CYRM-2020-003.217
  • SMEFT

    S.D. Bakshi, J. Chakrabortty, S.K. Patra
    221
    DOI: https://doi.org/10.23731/CYRM-2020-003.221
  • (Triple) Higgs coupling imprints at future lepton colliders

    J. Baglio, C. Weiland
    231
    DOI: https://doi.org/10.23731/CYRM-2020-003.231
  • Exotic Higgs decays (and long-lived particles) at future colliders

    J.F. Zurita
    241
    DOI: https://doi.org/10.23731/CYRM-2020-003.241
  • Precision predictions for Higgs decays in the (N)MSSM

    F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein
    247
    DOI: https://doi.org/10.23731/CYRM-2020-003.247
  • Acknowledgements

    --- ---
    267
    DOI: https://doi.org/10.23731/CYRM-2020-003.267