Laboratory Experiments in Innovation Research

Authors

  • Eric Guerci Université Côte d’Azur, CNRS, GREDEG, 250 rue Albert Einstein, CS 10269, 06905 Sophia Antipolis Cedex, France

DOI:

https://doi.org/10.23726/cij.2025.1794

Keywords:

Experimental methodology

References

Al-Ubaydli, O., List, J. A., & Suskind, D. L. (2023). The scale-up effect in early childhood and public policy: Why interventions lose impact at scale and what we can do about it. Cambridge University Press.

Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press.

Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. https://doi.org/10.3758/s13428-019-01237-x

Boudreau, K. J., & Lakhani, K. R. (2016). Innovation experiments: Researching technical advance, knowledge production, and the design of supporting institutions. Innovation Policy and the Economy, 16(1), 135–167. https://doi.org/10.1086/684985

Bravo-Biosca, A. (2020). Experimental innovation policy. In B. H. Hall & N. Rosenberg (Eds.), Innovation Policy and the Economy (Vol. 20, pp. 191–232). University of Chicago Press/NBER. https://doi.org/10.1086/705644

Browder, R. E., Aldrich, H. E., & Bradley, S. W. (2019). The emergence of the maker movement: Implications for entrepreneurship research. Journal of Business Venturing, 34(3), 459–476. https://doi.org/10.1016/j.jbusvent.2018.10.005

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ, 8, e9414. https://doi.org/10.7717/peerj.9414

Brüggemann, J., Crosetto, P., Meub, L., & Bizer, K. (2016). Intellectual property rights hinder sequential innovation: Experimental evidence. Research Policy, 45(10), 2054–2068. https://doi.org/10.1016/j.respol.2016.07.008

Brüggemann, J., & Bizer, K. (2016). Laboratory experiments in innovation research: A methodological overview and a review of the current literature. Journal of Innovation and Entrepreneurship, 5, Article 24. https://doi.org/10.1186/s13731-016-0053-9

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Rand McNally.

Chambers, C. D., & Tzavella, L. (2022). The past, present and future of Registered Reports. Nature Human Behaviour, 6(1), 29–42. https://doi.org/10.1038/s41562-021-01193-7

Chen, D. L., Schonger, M., & Wickens, C. (2016). oTree: An open-source platform for laboratory, online, and field experiments. Journal of Behavioral and Experimental Finance, 9, 88–97. https://doi.org/10.1016/j.jbef.2015.12.001

Deck, C., & Kimbrough, E. O. (2017). Experimenting with contests for experimentation. Southern Economic Journal, 84(2), 391–406.

https://doi.org/10.1002/soej.12185

Falk, A., & Heckman, J. J. (2009). Lab experiments are a major source of knowledge in the social sciences. Science, 326(5952), 535–538. https://doi.org/10.1126/science.1168244

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10(2), 171–178. https://doi.org/10.1007/s10683-006-9159-4

Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358

Gershenfeld, N. (2005). FAB: The coming revolution on your desktop—from personal computers to personal fabrication. Basic Books.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal of the Economic Science Association, 1(1), 114–125. https://doi.org/10.1007/s40881-015-0004-4

Hacking, I. (1983). Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.

Heckman, J. J. (2020). Randomization and Social Policy Evaluation Revisited. Institute for Fiscal Studies (IFS). https://ifs.org.uk/publications/randomization-and-social-policy-evaluation-revisited.

Herbst, D., & Mas, A. (2015). Peer effects on worker output in the laboratory generalize to the field. Science, 350(6260), 545–549. https://doi.org/10.1126/science.aab0552

Holt, C. A. (1999). Teaching economics with classroom experiments. Southern Economic Journal, 65(3), 603–610. https://doi.org/10.2307/1061260

Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated measures designs: A review. British Journal of Mathematical and Statistical Psychology, 54(1), 1–20. https://doi.org/10.1348/000711001159357

Levitt, S. D., & List, J. A. (2007). What do laboratory experiments measuring social preferences reveal about the real world? Journal of Economic Perspectives, 21(2), 153–174. https://doi.org/10.1257/jep.21.2.153

Levitt, S. D., & List, J. A. (2008). Homo economicus evolves. Science, 319(5865), 909–910. https://doi.org/10.1126/science.1153640

Lowe, D. (2023). Rethinking the nature of experimental learning: Moving beyond conventional laboratory experiences. European Society for Engineering Education (SEFI). https://doi.org/10.21427/QW7S-N349

McCabe, T. M., & Olimpo, J. T. (2020). Advancing metacognitive practices in experimental design: A suite of worksheet-based activities to promote reflection and discourse in laboratory contexts. Journal of Microbiology & Biology Education, 21(1), 1–11. https://doi.org/10.1128/jmbe.v21i1.2009

Morris P. J. T. (2021). The history of chemical laboratories: a thematic approach. Chemtexts, 7(3), 21

Nosek, B. A., et al. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114

Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. https://doi.org/10.1016/j.jbef.2017.12.004

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press.

Pearl, J., & Bareinboim, E. (2014). External validity: From do-calculus to transportability across populations. Statistical Science, 29(4), 579–595. https://doi.org/10.1214/14-STS486

Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017). Crowdsourcing participant pools for online experiments: A comparison of Amazon Mechanical Turk, CrowdFlower, and Prolific. Behavior Research Methods, 49(2), 433–442. https://doi.org/10.3758/s13428-016-0727-6

Pretzer, W. S. (Ed.). (1989). Working at invention: Thomas A. Edison and the Menlo Park experience. Johns Hopkins University Press.

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469), 322–331. https://doi.org/10.1198/016214504000001880

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

Thomke, S. (1998) Managing Experimentation in the Design of New Products. Management Science 44(6): 743–762.

Weimann, J. (2015). The role of behavioral economics and experimental research in economics and policy advice. Perspektiven der Wirtschaftspolitik, 16(3), 247–268. https://doi.org/10.1515/pwp-2015-0205

Downloads

Published

2025-12-31

How to Cite

Guerci, E. (2025). Laboratory Experiments in Innovation Research. CERN IdeaSquare Journal of Experimental Innovation, 9(3), 4–10. https://doi.org/10.23726/cij.2025.1794

Issue

Section

Methodological Notes

Categories