Professional Development in the School Institute “Discovery Experimentation” – Framework and First Results


  • Markus Emden Zurich University of Teacher Education, Lagerstrasse 2, CH-8090 Zurich
  • Armin Baur University of Education, Im Neuenheimer Feld 561, 69120 Heidelberg, Germany
  • Arne Bewersdorff University of Education, Im Neuenheimer Feld 561, 69120 Heidelberg, Germany



professional development, inquiry-based learning, experimentation, beliefs, intervention study, quasi experiment



This article introduces a Design- and Effect Framework for Professional Development (PD), the research design for a validating intervention study, and first findings from this study. The PD aimed at introducing teachers to a method of inquiry-based experimentation (Discovery Experimentation); During 1.5 academic years teachers attended workshops, were visited in their lessons and coached. Teachers were monitored regarding the development of their beliefs towards inquiry-based experimentation, their respective professional content knowledge (PCK), and their teaching practice. Results suggest that the PD can contribute to improving teachers’ beliefs towards inquiry-based experimentation. Developments in PCK appear to be quite low but might be affected by the small realized sample at the time of reporting.

Background: Professional development (PD) in science education is understood to be influenced by personal dispositions as well as by the quality of formal learning opportunities for teachers. Some beneficial promotors of PD can be identified: duration of a PD programme, active learning of participants, content focus, coherence, collective participation. Respecting these promotors in PD programmes is expected to favourably influence teachers’ professional knowledge, their beliefs about teaching, their teaching practices, and – in extension – student achievement. All these aspects (development of professional competence, promotors of PD, relevant goal variables of PD) can be merged into a coherent framework that can inform empirical studies as well as the design of PD.


Purpose of this study is to check the validity of one of the promotors by contrasting variant settings regarding “active learning” in two formats of PD. In one of these, participants are encouraged to intensively collaborate and coach each other (PD institute) while teachers’ progress in the other format (personal PD) is left to their own disposal with the coaching function falling exclusively to the professional developers.


Sample/Setting: Forty-six teachers from eight secondary schools in Baden-Wuerttemberg (Germany) participated in the PD programme (PD institute: = 22, personal PD: = 24). The programme lasted for three consecutive semesters (1.5 academic years). Teachers were introduced to a novel approach to teaching through inquiry: “Discovery Experimentation” as a form of opened experimentation (semester 1). All the teachers were observed twice in their teaching (semesters 1 and 2) which formed the core of subsequent coaching sessions either in the teacher group (PD institute) or individually with professional developers (personal PD). The third semester served as a fade-out phase to still have professional developers available but without intensified personal engagement.


Design Methods: This is a quasi-experimental study. Quantitative data were surveyed from teachers – over four points of measurement – on their pedagogical content knowledge (PCK) and their beliefs about teaching with opened experimentation. Paper-and-pencil-tests and -questionnaires prove to survey reliably (PCK: α = .853, beliefs: average α = .738). Most teachers were video-taped twice (semesters 1 and 2); this is the focus of a separate video study on teaching practices whose results are pending. Data survey has not yet been completed – thus, the reported data are provisional allowing, nonetheless, to identify general trends.


Results: Trends in teachers’ developing beliefs about teaching with opened forms of experimentation suggest that the PD can contribute to advancing these. Regarding the experimental conditions, the PD institute appears more promising when it comes to improving an understanding of the significance of opened experimentation, and to decrease inhibitors to implementing opened experimentation. We suggest that this is due to increased discourse amongst teachers in the PD institute. PCK develops positively for the duration of the programme but without remarkable effect.


Conclusions/Implications for classroom practice and future research: Professional developers should actively encourage teachers to collaborate and discuss content and implications from a PD programme. Left to their own impetus, teachers can easily miss (if not avoid) the development potentials of a formal learning opportunity. This might, ultimately, render any attempts at PD fruitless.


Author Biography

Markus Emden, Zurich University of Teacher Education, Lagerstrasse 2, CH-8090 Zurich

Zentrum für Didaktik der Naturwissenschaften


Improving America’s Schools Act of 1994. Title II - Dwight D. Eisenhower Professional Development Program (1994). Public Law 103-382. Washington, D.C.: 103rd United States Congress.

Adey, P. (2006). A model for the professional development of teachers of thinking. Thinking Skills and Creativity, 1(1), 49–56.

Anderson, R. D. (2002). Reforming Science Teaching: What Research Says About Inquiry. Journal of Science Teacher Education, 13(1), 1–12.

Anthofer, S. (2017). Förderung des fachspezifischen Professionswissens von Chemielehramtsstudierenden. Berlin: Logos.

Baumert, J. & Kunter, M. (2013). The COACTIV Model of Teachers’ Professional Competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers (pp. 25–48). Boston, MA: Springer US.

Baur, A. & Emden, M. (2020). How to open inquiry teaching? An alternative teaching scaffold to foster students' inquiry skills. Chemistry Teacher International, 2, 1–12.

Bewersdorff, A., Baur, A. & Emden, M. (2020). Untersuchung der Wirksamkeit einer Lehrkräftefortbildung zum Experimentieren. In S. Habig (Ed.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen (pp. 860–863). Essen: Universität Duisburg-Essen.

Bolam, R., McMahon, A., Stoll, L., Thomas, S. & Wallace, M. (2005). Creating and sustaining effective professional learning communities (Research report / Department for Education and Skills No. RR637). Annesley.

Bonsen, M. & Rolff, H.‑G. (2006). Professionelle Lerngemeinschaften von Lehrerinnen und Lehrern. Zeitschrift Für Pädagogik, 52(2), 167–184.

Brotherton, P. N. & Preece, P. F.W. (1995). Science Process Skills: Their Nature and Interrelationships. Research in Science & Technological Education, 13(1), 5–11.

Capps, D. K. & Crawford, B. A. (2013). Inquiry-Based Professional Development and Nature of Science? What does it take to support teachers in learning about inquiry? International Journal of Science Education, 35(12), 1947–1978.

Capps, D. K., Crawford, B. A. & Constas, M. A. (2012). A Review of Empirical Literature on Inquiry Professional Development: Alignment with Best Practices and Critique of the Findings. Journal of Science Teacher Education, 23(3), 291–318.

Capps, D. K., Shemwell, J. T. & Young, A. M. (2016). Over reported and misunderstood? A study of teachers’ reported enactment and knowledge of inquiry-based science teaching. International Journal of Science Education, 38(6), 934–959.

Davis, E. A., Janssen, F. J. J. M. & van Driel, J. H. (2016). Teachers and science curriculum materials: Where we are and where we need to go. Studies in Science Education, 52(2), 127–160.

DeBoer, G. E. (2006). Historical Perspectives on Inquiry Teaching in Schools. In L. B. Flick & N. G. Lederman (Eds.), Scientific Inquiry and Nature of Science: Implications for Teaching, Learning, and Teacher Education (pp. 17–35). Dordrecht, Boston, London: Kluwer Academic Publishers.

Desimone, L. M. & Garet, M. S. (2015). Best Practices in Teachers’ Professional Development in the United States. Psychology, Society and Education, 7(3), 252–263.

DiBiase, D. (2014). Formative Assessment Professional Development: Impact on Teacher Practice (Dissertation). Johnson & Wales University, Providence, RI.

Emden, M. & Baur, A. (2017). Effektive Lehrkräftebildung zum Experimentieren: Entwurf eines integrierten Wirkungs- und Gestaltungsmodells. Zeitschrift für Didaktik der Naturwissenschaften, 23(1), 1–19.

Engeln, K. (2013). IBL implementation survey report: The PRIMAS project: Promoting inquiry-based learning (IBL) in mathematics and science education across Europe. Deliverable No. 9.3. Retrieved from

Engeln, K., Euler, M. & Maass, K. (2013). Inquiry-based learning in mathematics and science: a comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM Mathematics Education, 45(6), 823–836.

Fischer, H. E., Borowski, A. & Tepner, O. (2012). Professional Knowledge of Science Teachers. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 435–448). Dordrecht: Springer Netherlands

Furtak, E. M., Seidel, T., Iverson, H. & Briggs, D. C. (2012). Experimental and Quasi-Experimental Studies of Inquiry-Based Science Teaching: A Meta-Analysis. Review of Educational Research, 82(3), 300–329.

Gagné, R. M. (1965). The Psychological Bases of Science - A Process Approach (AAAS Miscellaneous Publication No. 65-8). Washington, D.C.

Garet, M. S., Birman, B. F., Porter, A. C., Desimone, L. M. & Herman, R. (1999). Designing Effective Professional Development: Lessons from the Eisenhower Program (No. ED/OUS99-3). Washington, D.C.

Garet, M. S., Porter, A. C., Desimone, L. M., Birman, B. F. & Yoon, K. S. (2001). What Makes Professional Development Effective? Results From a National Sample of Teachers. American Educational Research Journal, 38(4), 915–945.

Glug, I. (2009). Entwicklung und Validierung eines Multiple-Choice-Tests zur Erfassung prozessbezogener naturwissenschaftlicher Grundbildung. (Dissertation). Christian-Albrechts University, Kiel. Retrieved from

Gräsel, C., Fußangel, K. & Parchmann, I. (2006). Lerngemeinschaften in der Lehrerfortbildung: Kooperationserfahrungen und -überzeugungen von Lehrkräften. Zeitschrift Für Erziehungswissenschaft, 9(4), 545–561.

Gräsel, C. & Parchmann, I. (2004). Implementationsforschung: oder: der steinige Weg, Unterricht zu verändern. Unterrichtswissenschaft, 32(3), 196-214.

Gräsel, C., Pröbstel, C., Freienberg, J. & Parchmann, I. (2006). Anregung zur Kooperation von Lehrkräften im Rahmen von Fortbildungen. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchung zur Bildungsqualität von Schule (pp. 310–329). Münster: Waxmann.

Hodson, D. (2014). Learning Science, Learning about Science, Doing Science. Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.

Hofmann, J. (2015). Untersuchung des Kompetenzaufbaus von Physiklehrkräften während einer Fortbildungsmaßnahme. Berlin: Logos.

Hood Cattaneo, K. (2017). Telling Active Learning Pedagogies Apart: From theory to practice. Journal of New Approaches in Educational Research, 6(2), 144–152.

Justi, R. & van Driel, J. H. (2005). The development of science teachers’ knowledge on models and modelling: promoting, characterizing, and understanding the process. International Journal of Science Education, 27(5), 549–573.

Knight, P. (2002). A Systemic Approach to Professional Development: Learning as Practice. Teaching and Teacher Education, 18(3), 229–241.

Kolisang, C. (Ed.) (2013). Research. Bundesweiter Bildungsstreik 2009: Protestbewegung - Aktionismus - Reformen der Reformen. Wiesbaden: Springer VS.

Köller, O. & Parchmann, I. (2012). Competencies: The German notion of learning outcomes. In S. Bernholt, K. Neumann & P. Nentwig (Eds.), Making it tangible: Learning outcomes in science education (pp. 151–171). Münster: Waxmann.

Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S. & Neubrand, M. (Eds.) (2013). Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers. Boston, MA: Springer US

Kunter, M., Kleickmann, T., Klusmann, U. & Richter, D. (2013). The Development of Teachers’ Professional Competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers (pp. 63–77). Boston, MA: Springer US.

Lipowsky, F. (2014). Theoretische Perspektiven und empirische Befunde zur Wirksamkeit von Lehrerfort- und -weiterbildung. In E. Terhart, H. Bennewitz & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (pp. 511–541). Münster: Waxmann.

McMorran, D. & Warren, D. (2012). Taking Chemistry Out of the Lab: Perspectives on Chemistry Outreach at Otago. Chemistry in New Zealand, 76(2), 56–61.

Moch, P. (2011). The Race to Space: Launching Fear and Blasting Off to Reform. In M. L. Kysilka (Ed.), Studies in the history of education. Critical times in curriculum thought: People, politics, and perspectives (pp. 165–179). Charlotte, N.C: Information Age Pub.

Osborne, J. (2014). Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 25(2), 177–196.

Ostermeier, C., Prenzel, M. & Duit, R. (2010). Improving Science and Mathematics Instruction: The SINUS Project as an example for reform as teacher professional development. International Journal of Science Education, 32(3), 303–327.

Richter, D. (2011). Lernen im Beruf. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV (pp. 317–325). Münster: Waxmann.

Schecker, H. (2012). Standards, competencies and outcomes: A critical view. In S. Bernholt, K. Neumann & P. Nentwig (Eds.), Making it tangible: Learning outcomes in science education (pp. 219–234). Münster: Waxmann.

Schmitt, A. K. (2016). Entwicklung und Evaluation einer Chemielehrerfortbildung zum Kompetenzbereich Erkenntnisgewinnung. Berlin: Logos.

Schulz, R. M. (2009). Reforming Science Education: Part I. The Search for a Philosophy of Science Education. Science & Education, 18(3-4), 225–249.

Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK] (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. München: Luchterhand.

(2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München: Luchterhand.

(2005c). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. München: Luchterhand.

Shulman, L. S. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1–22.

Tepner, O., Borowski, A., Dollny, S., Fischer, H. E., Jüttner, M., Kirschner, S., . . . Wirth, J. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften. Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.

Timperley, H., Wilson, A., Barrar, H. & Fung, I. (2007). Teacher professional learning and development: Best evidence synthesis iteration (BES). Wellington, N.Z.: Ministry of Education.

Tinoca, L. F. (2004). From Professional Learning for Science Teachers to Student Learning in Science (Dissertation). University of Texas, Austin, TX. Re-trieved from

Van Driel, J. H., Beijaard, D. & Verloop, N. (2001). Professional Development and Reform in Science Education: The Role of Teachers’ Practical Knowledge. Journal of Research in Science Teaching, 38(2), 137–158.