Vol. 10 (2020): High-Luminosity Large Hadron Collider (HL-LHC): Technical design report

					View Vol. 10 (2020): High-Luminosity Large Hadron Collider (HL-LHC): Technical design report

Editors: I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, L. Tavian, M. Zerlauth

The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require new infrastructures (underground and on surface) and over a decade to implement. The new configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 Tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 100 metre-long high-power superconducting links with negligible energy dissipation, all of which required several years of dedicated R&D effort on a global international level.

The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of the HL-LHC.

ISBN 978-92-9083-586-8 (paperback), ISBN 978-92-9083-587-5 (PDF). 

Published: 2020-12-17

Full Issue

  • Chapter 1: High-Luminosity Large Hadron Collider

    O. Brüning, L. Rossi
    DOI: https://doi.org/10.23731/CYRM-2020-0010.1
  • Chapter 2: Machine layout and performance

    G. Arduini, R. Bruce, R. De Maria, M. Giovannozzi, G. Iadarola, J. Jowett , E. Métral, Y. Papaphilippou, R. Tomás Garcia
    DOI: https://doi.org/10.23731/CYRM-2020-0010.17
  • Chapter 3: Insertion magnets

    E. Todesco, P. Ferracin
    DOI: https://doi.org/10.23731/CYRM-2020-0010.47
  • Chapter 4: RF systems

    R. Calaga, P. Baudrenghien, O. Capatina, E. Jensen, E. Montesinos
    DOI: https://doi.org/10.23731/CYRM-2020-0010.65
  • Chapter 5: Collimation system

    S. Redaelli, R. Bruce, A. Lechner, A. Mereghetti
    DOI: https://doi.org/10.23731/CYRM-2020-0010.87
  • Chapter 6: Circuit layout, powering and protection

    F. Rodríguez Mateos, T.D. Catalão Rolhas da Rosa, F. Menéndez Cámara, S. Yammine, M. Zerlauth
    DOI: https://doi.org/10.23731/CYRM-2020-0010.115
  • Chapter 6A: Cold powering of the superconducting circuits

    A. Ballarino, P. Cruikshank, J. Fleiter, Y. Leclercq, V. Parma, Y. Yang
    DOI: https://doi.org/10.23731/CYRM-2020-0010.129
  • Chapter 6B: Warm powering of the superconducting circuits

    M. Martino, J-P. Burnet, M. Cerqueira Bastos, V.R. Herrero Gonzales, N. Kuczerowski, S. Pittet, H. Thiesen, Y. Thurel, B. Todd, S. Yammine
    DOI: https://doi.org/10.23731/CYRM-2020-0010.139
  • Chapter 7: Machine protection

    D. Wollmann, R. Denz, B. Lindström, E. Ravaioli, F. Rodríguez Mateos, A. Siemko, J. Uythoven, A. Verweij, A. Will, M. Zerlauth
    DOI: https://doi.org/10.23731/CYRM-2020-0010.153
  • Chapter 8: Collider-experiment interface

    F. Sanchez Galan, H. Burkhardt, F. Cerrutti, A. Gaddi, J.L. Grenard, L. Krzempek, M. Lino Diogo dos Santos, J. Perez Espinos, M. Raymond, P. Santos Diaz
    DOI: https://doi.org/10.23731/CYRM-2020-0010.169
  • Chapter 9: Cryogenics for the HL-LHC

    S. Claudet, G. Ferlin, E. Monneret, A. Perin, O. Pirotte, M. Sisti, R. Van Weelderen
    DOI: https://doi.org/10.23731/CYRM-2020-0010.189
  • Chapter 10: Energy deposition and radiation to electronics

    F. Cerutti, R. Garcia Alia, G. Lerner, M. Sabaté Gilarte, A. Tsinganis
    DOI: https://doi.org/10.23731/CYRM-2020-0010.199
  • Chapter 11: 11 T dipole and new connection cryostat for the dispersion suppressor collimators

    F. Savary, D. Schörling
    DOI: https://doi.org/10.23731/CYRM-2020-0010.213
  • Chapter 12: Vacuum system

    V. Baglin, P. Chiggiato, C. Garion, G. Riddone
    DOI: https://doi.org/10.23731/CYRM-2020-0010.229
  • Chapter 13: Beam instrumentation and long-range beam–beam compensation

    R. Jones, E. Bravin, T. Lefèvre, R. Veness
    DOI: https://doi.org/10.23731/CYRM-2020-0010.245
  • Chapter 14: Beam injection and dumping systems

    C. Bracco, M.J. Barnes, A. Lechner
    DOI: https://doi.org/10.23731/CYRM-2020-0010.259
  • Chapter 15: Integration, (de-)installation and alignment

    P. Fessia, H. Mainaud Durand
    DOI: https://doi.org/10.23731/CYRM-2020-0010.269
  • Chapter 16: IT string and hardware commissioning

    M. Bajko, M. Pojer
    DOI: https://doi.org/10.23731/CYRM-2020-0010.285
  • Chapter 17: Technical infrastructure

    L. Tavian, M. Battistin, S. Bertolasi, C. Bertone, B. Di Girolamo, N. Dos Santos, K. Foraz, T. Hakulinen, P. Mattelaer, P. Muffat, P. Pepinster
    DOI: https://doi.org/10.23731/CYRM-2020-0010.295
  • Chapter 18: Controls technologies

    J. Serrano
    DOI: https://doi.org/10.23731/CYRM-2020-0010.323
  • Chapter 19: Safety

    T. Otto, C. Adorisio, C. Gaignant, A. Infantino, M. Maietta
    DOI: https://doi.org/10.23731/CYRM-2020-0010.329
  • List of machine and beam parameters

    The editorial team
    DOI: https://doi.org/10.23731/CYRM-2020-0010.345
  • HL - LHC acronyms

    The editorial team
    DOI: https://doi.org/10.23731/CYRM-2020-0010.361
  • Glossary and definitions

    The editorial team
    DOI: https://doi.org/10.23731/CYRM-2020-0010.369